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CHAPTER 6
The language factor in assessing

elementary mathematics ability:

Computational skills and applied

problem solving in a

multidimensional IRT framework

This chapter has been submitted for publication as Hickendorff, M. The language factor in assessing elementary
mathematics ability: Computational skills and applied problem solving in a multidimensional IRT framework.
A Dutch paper on this study has been published as Hickendorff & Janssen (2009).

I am indebted to Jan Janssen from CITO for collecting the data, Rinke Klein Entink for programming the
MCMC-algorithm in R, and Norman Verhelst, Kees van Putten, and Willem Heiser for their helpful suggestions.
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6. THE LANGUAGE FACTOR IN ELEMENTARY MATHEMATICS TEST

ABSTRACT

In this paper, the results of an exploratory study into measurement of elementary

mathematics ability are presented. The focus was on the abilities involved in solving

standard computation problems on the one hand and problems presented in a

realistic context on the other hand. The objectives were to assess to what extent

these abilities are shared or distinct, and to what extent students’ language level

plays a differential role in these abilities. Data from a sample of over two thousand

students from first, second, and third grade in the Netherlands were analyzed in

a multidimensional item response theory (IRT) framework. The latent correlation

between the two abilities (computational skills and applied mathematics problem

solving) ranged from .81 in grade 1 to .87 in grade 3, indicating that the abilities

are highly correlated but still distinct. Moreover, students’ language level had

differential effects on the two mathematical abilities: Effects were larger on applied

problem solving than on computational skills. The implications of these findings for

measurement practices in the field of elementary mathematics are discussed.

6.1 INTRODUCTION

Mathematics education has experienced a large international reform (e.g., Kilpatrick

et al., 2001). A general characteristics of this reform is that mathematics education

should no longer focus predominantly on decontextualized traditional mathematics

skills. Instead, the process of mathematics problem solving and doing mathematics are

important educational goals (e.g., National Council of Teachers of Mathematics, 1989,

2000) as is also reflected in large-scale assessment frameworks such as from TIMSS,

NAEP, and PISA. Word problems or contextual problems – typically a mathematics

structure in a more or less realistic problem situation – serve a central role for several

reasons. They may have motivational potential, mathematical concepts and skills may be

developed in a meaningful way, and students may develop knowledge of when and how

to use mathematics in everyday-life situations (e.g., Verschaffel et al., 2000). Moreover,

solving problems in context may ideally serve as tools for mathematical modeling or

mathematizing (e.g. Greer, 1997). As a consequence of this shift in educational goals,

mathematics assessments include more and more contextual problems in their tests.

For example, the PISA study (OECD, 2004) included mainly problems in a real-world

situation.
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6.1. Introduction

In the Netherlands, the reform has gained dominance in mathematics curricula. In

2004, almost all elementary schools used a mathematics textbook based on reform

principles (J. Janssen et al., 2005; Kraemer et al., 2005), although a return to more

traditionally oriented mathematics textbooks has been observed recently (KNAW, 2009).

These reform-based textbooks contain many problems in context, although there are

substantial differences in this respect between the different textbooks. To link up with

these developments, Dutch mathematics assessments (J. Janssen et al., 2005; Kraemer

et al., 2005) and commonly used student monitoring tests such as CITO’s Monitoring

and Evaluation System for primary school students - Arithmetic and Mathematics also

contain predominantly contextual problems. The latter testing system’s purpose is to

enable teachers to monitor their students’ progress in a number of meaningful ways, and

it consists of two tests in each school year (midway and at the end) from grade 1 to grade

6. In conclusion, today’s Dutch primary school students mathematics education and

assessment consists for a large part of problems in (more or less) realistic contexts.

This international shift towards including many or predominantly contextual

problems gives rise to two questions. First, to what extent are different abilities involved

in solving standard computation problems versus solving contextual problems? This

question is important because it will give insight whether the currently used tests that

are dominated by contextual problems give rise to the same conclusions on individual

or group differences as a test that is dominated by standard computation problems.

Second, contextual problems are usually verbal, giving rise to the question what the role

of language is. Determining to what extent the student’s language level has differential

effects on the two abilities is clearly of practical importance, for example in getting more

insight in the broadness of the commonly observed performance lag of ethnic minority

students for whom the language used at school and in the test is not their first language.

Next, these two questions are elaborated further.

6.1.1 Standard computation problems and context format problems

Solving standard computation problems on the one hand and realistic context format

problems on the other hand, are likely to involve different aspects of mathematical

cognition (e.g., Fuchs et al., 2008). Solving contextual problems is a complex process

involving several cognitive processes or phases, as argued by phase-like approaches

to mathematical modeling or mathematizing. Only after steps in which a situational
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and mathematical model of the problem situation have been formed accurately,

computational skill (and carefulness therein) comes into play. Therefore, other factors

than ’pure’ computational skills are likely to contribute to success in applied mathematics

problem solving (Wu & Adams, 2006). Alternative approaches to mathematical modeling

in word problem solving are more holistically oriented (e.g., Gravemeijer, 1997a).

Ideally, children should approach (unfamiliar) contextual problems as situations to

be mathematized, and they should not revert to searching for the application of the

appropriate standard procedure. Computational skill is conceived of not so much as

a necessary prerequisite of successful applied problem solving, but these two aspects

involve separate abilities instead.

Either way – emphasizing problem solving phases or adhering a more holistic

approach – it is likely that different abilities are involved in solving standard numerical

mathematics problems and context format problems, and that they therefore measure

different aspects of mathematics competence. An important question that is addressed

in the present study is to what extent these abilities are shared or distinct and whether

this depends on grade. Similar to the findings of Fuchs et al. (2008), we hypothesize

that these are two related but distinct abilities. Furthermore, we expected the relation

between these two aspects to increase with age, since students in higher grades have

had more years of formal schooling and therefore more developed cognitive schemata

to solve word problems (De Corte, Verschaffel, & De Win, 1985; Vicente, Orrantia, &

Verschaffel, 2007).

The results on this research question could have implications for theoretical insights

into the structure of mathematical competence, but also for mathematics assessment and

instruction practices. In particular, information on the extent to which an ability estimate

derived from a mathematics test containing almost exclusively problems in a context (as

is current practice in the Netherlands) converges with an ability estimate derived from a

mathematics test that would contain only standard computational problems may yield

practical recommendations for future test construction.

6.1.2 The language factor

A necessary condition for obtaining the correct answer to a contextual problem is that the

problem solver accurately understands the problem situation and all relevant parameters

to it. Since the problem situation is usually verbal, it is likely that the language level of
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the problem solver plays an important role. Supporting the importance of language in

word problem solving, research has found that a common source of errors appears to

be misunderstanding of the problem situation (Cummins, Kintsch, Reusser, & Weimer,

1988; Wu & Adams, 2006) and that conceptual rewording of word problems facilitated

performance (e.g., Vicente et al., 2007).

Ethnic minority students score lower on language ability tests than native students.

In addition, they have been consistently found to lag behind in mathematics as well,

as has been found in international assessments such as TIMSS (Trends in International

Mathematics and Science Study; Mullis et al., 2008) as well as in Dutch national

assessments (J. Janssen et al., 2005; Kraemer et al., 2005). An obvious question is

whether language level plays a role in the performance lag of ethnic minorities on

mathematics problems that involve a verbal context. In the US, Abedi and Lord (2001)

found that linguistic simplifications of the problem text of NAEP mathematics test

items benefited students who were English language learners more than it benefited

their proficient English speaking peers. They contended that the use of unfamiliar

or infrequent vocabulary and passive voice constructions hampered understanding

for certain groups of students. Similarly, Abedi and Hejri (2004) found that the gap

between students with limited English proficiency and their proficient peers was larger

on linguistically complex items than on noncomplex items, regardless of the item content

difficulty. Recently, two Dutch studies investigated this issue in secondary education

mathematics. Prenger (2005) found that ethnic minority students were impaired in

their understanding of mathematics texts due to their limited vocabulary of typical

school words. Similarly, Van den Boer (2003) found that ethnic minority students lagged

behind in mathematics achievement as assessed on contextual problems due to hidden

language problems, because contextual problems are accompanied by language as well

as (mathematical) concepts that need to be interpreted correctly.

The present study extends these previous research findings by addressing the role of

language in solving contextual problems for young children (early grades in elementary

school) in the Netherlands. We expect that students’ language level effects are more

profound on the ability to solve contextual problems than on the ability to solve

computational problems. Moreover, we expect the language effects to decrease with

more years of formal schooling: inexperienced problem solvers rely more heavily on

the text because they lack highly developed semantic schemata for word problems (De

Corte et al., 1985). So, language level is expected to be more important to understand the
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problem situation in lower grades than in higher grades. Of particular importance was

whether ethnic minorities (students who spoke a language other than Dutch at home)

have a larger performance lag on contextual mathematics problems than on standard

computation problems. This would have serious implications for the current testing

practices, that focus heavily on contextual problems. Moreover, the role of reading

comprehension level is addressed.

6.1.3 The current study

In the current cross-sectional survey students from grade 1, 2, and 3 solved a set of

computational problems in addition to a set of contextual problems. The main objectives

were to assess to what extent abilities to solve these different types of problems are shared

or distinct, and to what extent students’ language level plays a differential role in these

abilities. To answer these two questions, we used a multidimensional item response

theory (MIRT) modeling framework (Reckase, 2009). Specifically, we used between-item

or simple structure multidimensional IRT models, in which it is assumed that each item

in a test is only related to one of several related subscales that each measure a separate

ability dimension (Adams, Wilson, & Wang, 1997).

6.2 METHOD

6.2.1 Participants

Participants were 713 students from grade 1 (average age 6 years), 761 students from

grade 2 (average age 7 years), and 753 students from grade 3 (average age 8 years) from 34

different primary schools in the Netherlands. To be able to study language level effects

with sufficient power, the schools that were selected had relatively many ethnic minority

students. As a consequence, the current sample of schools and students is not entirely

representative for the population of Dutch primary schools. Furthermore, we included

only the students who completed more than half of the contextual problems and more

than half of the numerical expression problems in the analyses. These were 649 students

from grade 1 (from 31 schools), 736 students (from all 34 schools) from grade 2, and 664

students (from 31 schools) from grade 3, yielding a effective sample of 2,049 students.

Two types of background information on the students’ language level were collected.

First, that was the language spoken at home (as reported by the teacher), which we
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TABLE 6.1 Pupil background information: distribution of home language and reading
comprehension level.

home language reading comprehension level
Dutch other ? A B C D ?

grade 1
frequency 430 215 4 112 130 140 159 108
valid % 66 34 21 24 26 29

grade 2
frequency 514 216 6 170 152 177 106 131
valid % 70 30 28 25 29 18

grade 3
frequency 454 203 7 171 122 135 116 120
valid % 69 31 31 25 22 21

classified into Dutch or another language. Almost one-third of the students spoke a

language different than Dutch at home, see also Table 6.1. The distribution of home

language (Dutch versus other) did not differ significantly by grade, χ2 (2, N = 2,032) =

2.3, p = .32. The most prevalent non-Dutch language was Turkish (over 30%), followed

by Moroccan/Arabic (about 10%), Berber/Tamazight (about 10%), and a Dutch dialect

such as Friesian (about 10%).

Second, information on each student’s reading comprehension level was collected,

by gathering the most recent score on CITO’s Monitoring and Evaluation System for

primary school students - Reading Comprehension test. This is a widely used standardized

measurement instrument, for which percentile score groups are reported based on a

population norm group. We used four percentile groups (quartiles). Level A includes

students who scored at or above norm group percentile 75, so these were the top 25%.

Level B represents percentile 50-75, level C represents percentile 25-50, and level D

represents the bottom 25%. Table 6.1 shows the distribution of students over the different

levels of reading comprehension per grade. These distributions – excluding the missing

values – differed by grade (χ2 (6, N = 1,690) = 33.8, p < .001): norm-referenced reading

comprehension levels of the first graders in the current sample were relatively lower than

of the second and third graders in the sample.
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TABLE 6.2 For both subscales, the number of problems per operation, descriptive statistics
of the proportion correct scores P (correct), and Cronbach’s α.

number of problems P (correct)

add. sub. mult. div. combi total M SD α

computational skills
grade 1 16 15 0 0 0 31 .73 .22 .90
grade 2 15 15 4 0 0 34 .68 .21 .89
grade 3 9 9 10 9 2 39 .75 .18 .89

contextual problem solving
grade 1 3 8 5 3 3 22 .67 .24 .87
grade 2 4 6 4 4 6 24 .65 .21 .85
grade 3 5 5 5 6 7 28 .69 .22 .88

6.2.2 Material

Each student was administered two types of booklets (collection of multiple items admin-

istered in one session): the grade-appropriate regular booklets from CITO’s Monitoring

and Evaluation System for primary school students - Arithmetic and Mathematics and

an extra grade-specific booklet that was designed specifically for this study. There

were 2 regular CITO booklets for grade 1 (CITO, 2005a) and also 2 regular booklets

for grade 2 (CITO, 2005b), and 3 regular booklets for grade 3 (CITO, 2006). All these

booklets contained predominantly problems in context format. In contrast, the extra

booklet contained only problems in standard computation format (numerical expression

only, e.g., 17 − 5 = . . .). All problems in the extra booklet required either addition,

subtraction, multiplication, division, or a combined operation. In order to make a

fair comparison, we selected only those problems from CITO’s regular booklets that

required one of these four (combined) operations. Therefore, the current analyses are

based only on problems requiring either addition, subtraction, multiplication, division,

or a combined operation. Moreover, the few problems from CITO’s regular booklets

that were in numerical expression format were grouped with the extra booklet problems.

For both subscales, the number of problems per operation, descriptive statistics of the

proportion correct scores, and Cronbach’s α are shown in Table 6.2.

All context format problems from CITO’s regular booklets included text. In addition,

a large majority of the context format problems included an illustration, containing

either essential information, duplicate information, or no relevant information at all.
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Appendix 6.A shows a sample of problems used.

6.2.3 Procedure

The students completed each of the three (grade 1 and 2) or four (grade 3) different

booklets on a different morning. The assessment procedure of CITO’s regular booklets

(mainly context format problems) differed by grade. In grade 1, each problem text

was read aloud by the teacher. In grade 3, students had to read and work trough all

problems independently. In the second grade, on one booklet the teacher read out

the problem text aloud, while on the other booklet students had to work through the

problems independently. The assessment procedure of the extra booklet was equal for

each grade: students had to work through the problems independently. After all booklets

were administered, the teachers sent in the students’ work, and research assistants

entered the answers given in a database, and scored them as either correct or incorrect.

6.2.4 Multidimensional IRT models

All statistical analyses were done in a multidimensional IRT modeling framework. For

each grade, descriptive as well as explanatory IRT models were fitted (see also Wilson

& De Boeck, 2004). First, we fitted multidimensional descriptive or measurement IRT

models, aiming to answer the first research question by obtaining an accurate description

of the latent variables involved in solving the two types of mathematics problems and

the relation between these latent variables. For the second research question, we added

an explanatory part to the IRT models, in which we assessed the (possibly differential)

effects of the student’s language variables on the latent abilities by means of a latent

regression approach.

Measurement MIRT models

Unidimensional IRT models may be generalized to multidimensional IRT (MIRT) models

(for a recent review, see Reckase, 2009). In these models, persons are no longer

characterized by their position on a single latent variable, but instead by their position

on two or more latent variables. If the number of abilities or dimensions is given by

m , then each person p is characterized by an ability vector θ p = (θp 1,θp 2, . . . ,θp m ). The
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multidimensional generalization of the 2PL model is:

P (X i p = 1 |θ p ) =
exp

�
∑m

k=1αi kθp k +δi

�

1+exp
�
∑m

k=1αi kθp k +δi

� . (6.1)

Each item is characterized by an intercept δi , and by m dimension-specific discrim-

ination parameters αi k (k = 1, . . . , m ). These discrimination parameters reflect the

importance of factor k for solving item i – similar to a factor loading in factor analysis or

structural equation modeling. The simplest multidimensional IRT models are simple

structure or between-item models (Adams et al., 1997) in which each item is associated

with only one of the dimensions, and hence there is only one nonzero element in αi k for

each item i . These models are suited if a test is built up of several subtests that are each

supposed to measure one ability. In the present application, we used between-item MIRT

models with two dimensions or abilities: (a) computational skills: the ability to solve

numerical expression format problems, and (b) applied mathematics problem solving:

the ability to solve context format problems. Figure 6.1 shows a graphical representation

of this two-dimensional model.

MIRT models overcome several shortcomings of applying separate unidimensional

IRT scales for each dimension: the intended structure is explicitly taken into account,

the relation between the latent dimensions is estimated directly, and it makes use of

all available data resulting in more accurate individual ability estimates (Adams et al.,

1997). Our main interest lied in the estimate of the latent correlations between the

two ability factors. A latent correlation estimate in a MIRT model is not attenuated by

measurement error: it is an unbiased estimate of the true correlation between the latent

variables (Adams & Wu, 2000; Wu & Adams, 2006). Therefore, it is a better alternative

than estimating consecutive unidimensional models, or classical test theory approaches

that are based on the proportion of items solved correctly.

Explanatory MIRT models

Measurement IRT models (either unidimensional or multidimensional) can be extended

by an explanatory part, by estimating the effects of predictor variables on the latent

factor(s). These predictors can be either on the person level, item level, or person-by-

item level (Rijmen et al., 2003; Wilson & De Boeck, 2004). In the current study, we were

interested in the effects of two person-level variables on mathematics ability: students’

home language (Dutch or other) and their reading comprehension level (four norm-
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FIGURE 6.1 Graphical representation of between-item two-dimensional IRT model.

referenced quartiles). Including person explanatory variables in an IRT model results in

a latent regression: the latent person variable θp can be considered as being regressed

on external person variables. This latent regression can be either univariate (in case of

unidimensional IRT models) or multivariate (with multidimensional IRT models) (Von

Davier & Sinharay, 2009).

There are three different approaches to assess the effect of external person predictor

variables on the ability factor(s) in an IRT framework: a one-step, a two-step, and a

three-step approach. The one-step approach involves joint modeling of item parameters

and latent regression parameters. The advantage is that measurement error of the item

parameters is taken into account, but a disadvantage is that the measurement scale (i.e.,

the item parameters) depends on the predictor variables included (Verhelst & Verstralen,

2002, for a discussion of this issue in the multidimensional case see Hartig & Höhler,

2008). In the two-step approach this disadvantage is overcome. In the first step the

item parameters of the measurement model are estimated. In the second step the item

parameters are fixed at their estimated values, and a (univariate or multivariate) latent
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regression model is estimated. This approach is commonly employed in large-scale

assessment programs, such as NAEP, TIMSS, PIRLS, and PISA (Von Davier & Sinharay,

2009). The three-step approach involves first estimating the item parameters of the IRT

model (either unidimensional or multidimensional), next estimating individual person

ability scores with item parameters fixed at their estimated value, and finally carrying out

a (univariate or multivariate) regression analysis on these ability scores. This approach

(which is, strictly speaking, not a latent regression analysis) was for example carried out

by Hartig and Höhler (2008). A disadvantage is that measurement error of both person

and item parameters is not taken into account.

In the present analyses, for each grade separately, we implemented the two-step

approach. First, a two-dimensional between-item MIRT measurement model was fit.

Next, item parameters αi k and δi were fixed to their estimated value, and plugged in

as known constants in the multivariate latent regression analyses, by estimating the

conditional – given the regression variable(s) – multivariate distribution of θ p . The

effects of dummy-coded home language (2 categories) and reading comprehension level

(4 categories) were estimated. Moreover, we tested whether these effects were equal or

different for the two latent dimensions.

Model fit

Model fit is approached in two ways. First, by model fit information criteria BIC and

AIC in which the statistical fit (log-likelihood, LL) of the model is penalized by the

complexity of the model, i.e., the number of parameters P . The BIC is calculated

as -2LL +P log (N ), and the AIC as -2LL +2P ; the BIC values parsimony of the model

more than the AIC. Second, likelihood-ratio (LR) tests can be employed to test whether

the improvement in fit between two nested models is statistically significant. The LR-

test statistic Λ is calculated as two times the difference between the LL-value of the

encompassing model and the LL-value of the restricted (nested) model. This statistic

is asymptotically χ2 distributed if the parameter space of the restricted model lies in

the parameter space of encompassing model. The number of degrees of freedom (d f )

equals the difference in d f between the two models. The LR-test can be used in models

with predictor effects (i.e., explanatory IRT models with a latent regression part): they

form the encompassing model; leaving out the regressors creates a restricted model

(stating that the explanatory variables have no effect). Furthermore, to test whether a
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TABLE 6.3 Correlations between total number correct scores, latent correlations between
computational skills and contextual problem solving, and Likelihood Ratio (LR) test results
comparing fit of the one-dimensional (1D) versus the two-dimensional (2D) IRT models.

correlation latent LR-test (2D vs. 1D)
total scores correlation statistic p-value

grade 1 .72 .81 (SE = .02) 305.2 p < .001
grade 2 .75 .85 (SE = .02) 199.3 p < .001
grade 3 .77 .87 (SE = .02) 171.8 p < .001

two-dimensional model (encompassing model) fits better than a unidimensional model

(restricted model), one has to take into account that to obtain the unidimensional model

the correlation between the dimensions is restricted to one, which is on the boundary of

the parameter space. In such situations, the LR-test is no longer χ2 distributed, but it

is asymptotically distributed as a mixture of χ2 (1) and χ2 (2) each with probability of .5

(Molenberghs & Verbeke, 2004, p. 136).

Software

All measurement and explanatory MIRT models were estimated in the NLMIXED

procedure from SAS (SAS Institute, 2002, see also De Boeck & Wilson, 2004; Rijmen

et al., 2003; Sheu et al., 2005). IRT model parameters were estimated by the NLMIXED

procedure within a MML formulation, and a (multivariate) normal distribution for the

person parameters was assumed. Gaussian quadrature with 20 nonadaptive quadrature

points was used for the approximation of the integration, and Newton-Raphson as the

optimization method.

6.3 RESULTS

6.3.1 Relationship between the different abilities

To answer the first research question, unidimensional and between-item (also known

as simple structure) multidimensional measurement IRT models were estimated. The

main results are the size of the latent correlation between the two abilities, and the

improvement in model fit by defining two ability dimensions instead of one single

dimension, both shown in Table 6.3.
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In grade 1, the observed correlation between the proportion correct on numerical

expression problems and the proportion correct on contextual problems was .72. The

two-dimensional model fits significantly better than the one-dimensional model, as

evidenced from the LR-test, as well as from the AIC and BIC criteria (not shown in

Table 6.3). Therefore, it seems legitimate to distinguish computational skills (the ability

to solve numerical expression problems) from applied mathematics problem solving

(the ability to solve context format problems). The latent correlation between these two

abilities was .81: obviously very high (and higher than the observed correlation, since it is

unaffected by measurement error), but apparently not high enough to consider it as one

single ability dimension. To provide a frame of reference for interpreting this size, the

latent correlations in PISA 2006 between mathematics and reading was .80, and between

mathematics and science .89 (OECD, 2009). So, we would expect a latent correlation of at

least .80 between two subscales of mathematics, and the found estimate of .81 is barely

higher. The current latent correlation indicates that 65% of the ability variances is shared,

while 35% of the variance is unique.

In grade 2, the observed correlation between the proportion correct on numerical

expression problems and the proportion correct on contextual problems was .75.

Table 6.3 shows that like in grade 1, also in grade 2 the two-dimensional model fits

significantly better than the one-dimensional model according to the LR-test. AIC and

BIC-criteria were in accordance with this conclusion. The latent correlation between

computational skills and applied mathematics problem solving was .85, indicating that

73% of the ability variances is shared, while 27% of the variance is unique.

Finally, in grade 3 the observed correlation between the proportion correct on

numerical expression problems and the proportion correct on contextual problems

was .77. Table 6.3 shows that, like in grades 1 and 2, also in grade 3 the two-dimensional

model fits significantly better than the one-dimensional model as evidenced from the LR-

test. In addition, the AIC and BIC criteria also indicate the 2-dimensional model as better

fitting. So, again, we can distinguish computational skills from applied mathematics

problem solving, as measured by the context format problems (all read independently by

the students). The latent correlation between these two abilities was .87, indicating that

76% of the ability variances is shared, while 24% of the variance is unique.

The results thus far quite clearly show that that in each grade, computational skills

and applied mathematics problem solving involve highly related but still distinct abilities.

This means both dimensions contribute some unique variance to a students’ overall
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score. Moreover, the relationship between these two abilities seems to increase with

grade: the latent correlations increased from .81 to .85 to .87 for grades 1, 2, and 3,

respectively.

6.3.2 Language effects

Now that we have established that computational skills and applied mathematics

problem solving involve two highly related but distinct abilities, we are moving to the next

research question about the role of language. Since students’ test scores are determined

both by a part that is shared between the two abilities, as well as by unique contribution

of each of the abilities, students’ language level may affect both parts. This may result in

differential effect of language level on the two abilities. Because of their verbal nature,

we expected the language level effects to be larger on the ability to solve contextual

problems than on the ability to solve computations. It is important to note that the

two language predictors – home language and reading comprehension level – were

significantly associated with each other (grade 1: χ2 (3, N = 540) = 65.5, p < .001; grade

2: χ2 (3, N = 592) = 46.6, p < .001; and grade 3: χ2 (3, N = 544) = 44.9, p < .001). Not

surprisingly, students who spoke a language other than Dutch at home were behind in

their reading comprehension level compared to students with Dutch as home language.

Recall that we apply the two-step approach in the explanatory IRT analyses. Per

grade, the item parameters (αi k and δi ) of the two-dimensional models were fixed at

their estimated values, and plugged into the multivariate latent regression part as known

constants. Several latent regressions were carried out, from which all students with

missing values on one or both language predictor variables excluded. The two ability

dimensions were scaled with a mean value of 0 and with equal variances. All effects

reported are on the logit scale.

Grade 1

In grade 1, 109 students had missing values on one or both predictor variables, so these

analyses were based on data of 540 students. Pupils’ home language significantly affected

overall or average mathematics problem solving ability (LR = 17.7, d f = 1, p < .001).

Moreover, the difference between Dutch-speaking and other-language speaking children

was different for the computational and applied ability dimensions (differential effect

significant, LR = 24.3, d f = 1, p < .001). The upper left plot of Figure 6.2 graphically
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shows that Dutch-speaking students outperformed students with another home language

significantly more on the applied dimension (difference on the logit scale = .57, z = 5.98)

than on the computational dimension (difference = .20, z = 2.23).

Similarly, reading comprehension level also had a significant effect on overall

mathematics ability (LR = 235.7, d f = 3, p < .001), and this effect was also significantly

different for the two ability dimensions (LR = 10.0, d f = 3, p < .05). The upper right plot

of Figure 6.2 shows that reading comprehension level had a larger effect on the ability

to solve contextual problems than on the computational skills dimension. To illustrate,

the difference between students with the highest reading comprehension level A and

the lowest level D was significantly larger on the applied dimension (difference= 1.77,

z = 14.84) than on the computational dimension (difference = 1.46, z = 12.41).

Finally, we tested whether the performance lag of non-Dutch speaking students

was mediated by their lower reading comprehension level. Statistically controlling for

reading comprehension level, the outperformance of students with Dutch as home

language disappeared on the applied mathematics dimension (difference = .05, z = .61),

and even turned into a significant disadvantage on the computational skills dimension

(difference = –.28, z =−3.10).

Grade 2

In the second grade data, 130 students had missing values on one or both predictor

variables and were excluded from the analyses, so 592 students remained. Pupils’ home

language significantly affected overall mathematics problem solving ability (LR = 10.1,

d f = 1, p = .001). In addition, the difference between Dutch-speaking and other-

language speaking children was different for the computational and applied ability

dimensions (differential effect significant, LR = 14.7, d f = 1, p < .001). The middle left

plot of Figure 6.2 graphically shows that Dutch-speaking students outperformed students

with another home language significantly more on the applied dimension (difference =

.42, z = 4.54) than on the computational dimension (difference= .17, z = 1.86; home

level effect did not reach statistical significance).

Next, there was a significant main effect of reading comprehension level on total

mathematics ability (LR = 164.7, d f = 3, p < .001). However this effect was not

significantly different for the two dimensions (LR = 6.7, d f = 3, p = .08). The difference

between students with reading comprehension A and D on the computational skills
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FIGURE 6.2 Graphical display of home language effects (left plots) and reading comprehen-
sion level effects (right plots) for the two ability dimensions, grade 1 (upper part), grade 2
(middle part), and grade 3 (bottom part).
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dimension (difference = 1.35, z = 11.61) was nonsignificantly smaller than on the

applied problem solving dimension (difference = 1.53, z = 12.61), as can be seen from

the middle right plot of Figure 6.2.

Finally, statistically controlling for reading comprehension level differences, the home

level effects were no longer significantly on applied mathematics (difference = .07,

z = .82) as well as on the computational skills dimension (difference = –.16, z = −1.81).

On computation skills, a pattern similar to grade 1 emerged: the (nonsignificant)

disadvantage of non-Dutch speaking students reversed to a (nonsignificant) advantage

after controlling for reading comprehension level.

Grade 3

In grade 3, 120 students had missing values on one or both predictor variables, so

these analyses were based on data of 544 students. Like in grade 1, students’ home

language had a significant overall effect (LR = 15.3, d f = 1, p < .001), and this effect was

significantly different on the two dimensions of math problem solving ability (LR = 16.8,

d f = 1, p < .001). The bottom left plot of Figure 6.2 shows that Dutch-speaking students

outperformed students with another home language significantly more on the applied

dimension (difference = .52, z = 4.99) than on the computational skills dimension

(difference= .24, z = 2.24). Similarly, reading comprehension level also had a significant

overall effect (LR = 100.7, d f = 3, p < .001) that was significantly different on the the

two ability dimensions (LR = 12.4, d f = 3, p = .006). The difference between students

with the highest reading comprehension level A and the lowest level D was significantly

larger on the applied dimension (difference= 1.30, z = 11.35) than on the computational

dimension (difference= 1.02, z = 9.19), as is also visible from the bottom right plot of

Figure 6.2.

Finally, statistically controlling for reading comprehension level, Dutch-speaking

students still significantly outperformed students with another home language on the

applied mathematics dimension (difference = .21, z = 2.10), but on the computational

skills dimension there was no significant difference anymore (difference = −.03,

z = −.33).
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Comparison of results by grade

The results for grade 1, 2, and 3, have several things in common. First, students with

Dutch as home language significantly outperformed those with another home language

on each mathematics dimension in each grade, except on the computational skills

dimension in grade 2. Second, this home language effect was not the same for each

dimension. As expected, the performance lag of students with a non-Dutch home

language was substantially larger on the applied mathematics problem solving ability

dimension than on the computational skills dimension. Third, reading comprehension

level was positively associated with each mathematics ability dimension in each

grade. Also as expected, this reading comprehension effect was larger on the applied

mathematics dimension than on the computational skills dimension. Finally, controlling

for reading comprehension level, the disadvantage of students with home language other

than Dutch was reduced: on the applied mathematics abilities it was either smaller or

nonsignificant, while on the computational skills dimensions it was either nonsignificant

or had even turned into an advantage.

Looking for a trend in the language level effects between the grades, the following

pattern emerges. There was no specific trend in the differences between students with

and without Dutch as home language by grade (the respective differences in grades 1,

2, and 3 being .20, .17, and .24 on computational skills, and .57, .42, and .52 on applied

problem solving). In contrast, reading comprehension effects seemed to decrease in

higher grades: on computational skills the level A versus level D differences decreased

from 1.46 to 1.35 to 1.02 between grades 1, 2, and 3, respectively. Similarly, on the

contextual problem solving dimension, the differences decreased from 1.77 to 1.53

to 1.30 between the grades. In conclusion, the role of reading comprehension seems

to diminish by grade, while the performance lag of students with a non-Dutch home

language did not decrease by grade.

6.4 DISCUSSION

A sample of first, second, and third graders with relatively many ethnic minority students

solved two sets of mathematics problems: standard computation problems in numerical

expression format, and applied problems in context format. Our first research question

was on the relationship between the abilities involved in solving the two types of

mathematics problems. Evaluating the latent correlation estimates that were between
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.81 and .87, we can conclude that two highly related but distinct aspects of mathematical

competence are involved. Between 65% and 76% of the variance in overall performance

on these problems can be explained by a common ability factor, but the remaining 35%

to 24% of the variance are determined by unique contributions of the two dimensions.

Moreover, the relationship appeared to get stronger in the higher grades.

Analyses on the second research question on the role of language showed that there

were differential effects of both home language and reading comprehension level on the

two mathematical abilities. As hypothesized, the effects were larger on applied problem

solving than on computational skills in each grade. That is, the performance gap between

students who spoke a language other than Dutch at home compared to Dutch-speaking

students was larger on the ability to solve contextual problems than on the ability to

solve computations. There were no clear grade-specific trends in this differential effect.

Reading comprehension level also affected the ability to solve contextual problems to

a larger extent than the ability to solve computations. However, the role of reading

comprehension seemed to diminish in the higher grades. This may be a result of

increased experience in solving word problems that has led to more sophisticated

cognitive schemata of older students, so that they to need to rely less on the problem text.

Moreover, statistically controlling for reading comprehension level, the performance

lag of students with non-Dutch home language (compared to their native peers) was

reduced on each dimension by a slightly larger amount on the applied mathematics

dimension than on computational skills.

6.4.1 Issues in the multidimensional IRT framework

In this study, we employed a the multidimensional IRT framework. Between-item MIRT

models with explanatory variables on both dimensions turned out to be a very useful and

flexible approach. However, three issues deserve further attention. First, in the between-

item or simple structure MIRT models that were used, each item was assigned a priori

to one of the dimensions (Adams et al., 1997; Reckase, 2009). Although this framework

was deemed appropriate for the current structure, within-item multidimensionality

might provide meaningful results as well. In within-item MIRT models, items can have

more than one nonzero discrimination, and hence require multiple latent factors. These

multiple factors interact in a compensatory manner: a low level on one factor can be

compensated with a high level on the other factor. For example, similar to what Hartig
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and Höhler (2008) did on assessment data on reading and listening comprehension

in a foreign language, it would be possible to distinguish two dimensions: one general

computational skill dimension that affected items of both problem types, and one specific

dimension that was only involved in solving context format problems. However, it would

be necessary to assume a compensatory mechanism between these two dimensions,

which seems unnatural. Furthermore, latent regression analyses, interpretation of

the dimensions, and communication with the end-users of the test would be less

straightforward. Other alternatives would be to set up a model with noncompensatory

dimensions in which an individual must succeed on all subcomponents of item solving

(Adams et al., 1997; Embretson & Reise, 2000), or other models from the family of

cognitive diagnosis models (e.g., Leighton & Gierl, 2007).

Second, estimating MIRT models in marginal maximum likelihood framework, as

was done in SAS PROC NLMIXED (SAS Institute, 2002) is computationally intense and

hence very time consuming. The estimation time increases exponentially with number

of dimensions, which poses practical limitations on the feasible number of quadrature

points one can distinguish, which can affect results (Lesaffre & Spiessens, 2001).

Therefore, we investigated whether results were robust against estimation procedure, by

implementing two other estimation methods. In a first approach, item parameter were

estimated for each dimension separately using conditional maximum likelihood (Verhelst

& Glas, 1995) and the latent correlations between the dimensions were estimated,

resulting in very similar values as in the present approach (see Hickendorff & Janssen,

2009). Second, we used a Bayesian framework: the MIRT models were formulated as

normal-ogive instead of logistic models, and parameters were estimated using an MCMC-

procedure (see also Albert, 1992 for unidimensional IRT models, and Béguin & Glas,

2001 for MIRT models), that was programmed into R (R Development Core Team, 2009).

Again, results were very similar to the MML-results from SAS, so they seem robust against

the estimation procedure used.

Finally, the relation of the currently employed multidimensional IRT framework to

a Differential Item Functioning (DIF) approach is worth mentioning. Carrying out DIF-

analyses would have been an alternative way to find differential effects of language

level on certain problems (such as for example was done by Van Schilt-Mol (2007).

However, as noted by several authors (see Embretson & Reise, 2000, p. 262), DIF is usually

caused by multidimensionality. If other dimensions than the main ability dimension are

involved in an item, and the groups of interest (such as home language groups) differ
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on these secondary dimensions, the item will show DIF. In DIF analyses, the secondary

dimensions are usually considered as nuisance, and DIF items will be eliminated from the

test. As a consequence, the final test will be more homogeneous (i.e., unidimensional),

but information on the secondary dimension(s) is lost. Therefore, MIRT modeling is

more general than the DIF approach, in the sense that information on all relevant ability

dimensions contributing to item responses is retained without making a priori decisions

on what the main ability dimension is, and what is considered nuisance.

6.4.2 Recommendations for further research

Several issues regarding the problems included in the current study would require further

research. A first issue concerns the number characteristics of the problems. Although

both types of problems were on the same content domain (the four basic number

operations) in the same number range, the exact numerical properties of the contextual

problems and numerical expression problems were not matched. As a consequence, a

direct comparison of the difficulty levels of problems with and without context was not

possible. It would be very interesting to study this in future research.

A second issue concerns the contexts used. In particular, the level of linguistic

demands and the type of context (e.g., the semantic structure or the inclusion of an

illustration) varied substantially between the problems, to obtain a broad coverage

of applied problem solving reflecting educational practices. Unfortunately, these

characteristics were not varied in a systematic way because the test’s objective was

to monitor the students and not the items. Therefore it was not possible to study effects

of context characteristics rigorously. However, it seems very likely that the difficulty of the

problem text hampers particularly the students with language difficulties, as suggested

by the findings of Abedi and Lord (2001), Abedi and Hejri (2004), Prenger (2005), and

Van den Boer (2003). In addition, illustrations can make a difference. Berends and Van

Lieshout (2009) reported recently that in their study on grade 3 students, an illustration

containing essential information for solving the problem negatively affected performance

(accuracy and speed) as compared to problems containing all essential information in

the problem text. In secondary education, Van den Boer (2003) reported that ethnic

minority students were inclined to interpret the illustration in a wrong way, or ignore it

altogether. Van Schilt-Mol (2007) also points out the possibility of wrongly interpreting

the illustrations by ethnic minority students, although she observed that these students
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devoted more attention to illustrations compared to their native peers. Future research is

needed to assess to what extent illustrations in context format mathematics problems

pose a stumbling block for ethnic minority students.

Another recommendation for future research concerns the fact that the study’s

findings did not extend beyond grade 3. Since we observed some interesting trends

with increasing grades (stronger relationship between computational skills and applied

mathematics, diminishing influence of students’ reading comprehension level), it would

be very interesting to collect similar data in higher grades as well.

6.4.3 Practical implications

The present findings have implications for testing practices as well as for education.

Regarding testing, the current dominance of context format problems in Dutch math-

ematics competence tests as well as in for example PISA merits critical consideration.

We should be well aware that this offers a rather one-sided picture of mathematics

competence: the fact that computational skills correlates only .80-.90 with applied

problem solving, means that we are missing out on important information provided by

administering standard computation problems. In addition, students with low language

level score relatively less well on a test that focuses on context format problems compared

to a test on computational skills, although this seems to play less a role in the higher

grades.

We plead for a separate or embedded mathematics test containing standard

numerical expression problems. The total score of such a mixed test would give a

more fair representation of the two abilities than the current testing practice does.

Alternative to the total score or in addition to the total score, separate subscale scores for

computational skill and problem solving skill can be reported (as was also recommended

by Fuchs et al., 2008), which may yield diagnostic information on potential remedial an

instructional benefit (De la Torre & Patz, 2005). Sinharay, Puhan, and Haberman (2010)

showed that caution with reporting subscale scores is needed, however. They have added

value over reporting the total score only if the reliability of the subscales is large enough

and if the dimensions are sufficiently distinct. These conditions were met in the present

application, in which reliabilities of the subtests were at least .85 and two-dimensional

models fitted substantially better than unidimensional models. Moreover, in cases were

there is essentially one dominant factor or highly correlated dimensions, MIRT modeling
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has been shown to yield subscale scores that have improved reliability over unadjusted

subscale scores, because the correlational structure is taken into account (De la Torre &

Patz, 2005; Stone, Ye, Zhu, & Lane, 2010).

Regarding educational practices, the potential (hidden) language problems of ethnic

minority students affecting their mathematics problem solving merit educational

attention, in language lessons as well as in mathematics lessons. In addition, a shift of

focus of educational assessment towards separate or embedded testing of computational

skills might also bring along a shift of focus in educational practice, since assessments

signal what is valued and expected in teaching (Greer, 1997). Moreover, a profile of

subscores representing different mathematical competencies would yield more fine-

grained diagnostic information about a student’s specific strengths and weaknesses,

which may enable tailoring instruction for students with mathematical difficulties to

their specific needs.
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6.A. Sample problems (problem texts translated from Dutch)

APPENDIX 6.A SAMPLE PROBLEMS (PROBLEM TEXTS TRANSLATED FROM DUTCH)

 1 

context format numerical expression 
format 

 
grade 1 

Student’s worksheet 

 
Teacher reads aloud: 
“You see 4 goats in the paddock. Inside, 11 goats are having a 
rest. How many goats live on this children’s farm?” 
 

 
grade 1 

 
5 + 12 = ___ 
 
17 – 5 = ___ 
 
18 – ___ = 10 

 

 
grade 2 

 

 
 
Adults have to pay 12 euros. Children pay only half the price. 
Father takes his two children to the amusement park. 
How much does he have to pay in total? 
 
___ euros 
 

 
grade 2 

 
 
26 + 25 + 27 = ___ 
 
2 x 18 = ___ 
 
58 = 98 – ___ 

 

 
grade 3 

 

 
 
One tray contains 4 plants. Joyce buys 12 of these trays. 
How many plants does that make? 
 
___ plants 

 

 
grade 3 

 
 
263 + 19 = ___ 
 
487 – ___ = 427 
 
9 x 30 = ___ 
 
36 : 4 = ___ 

 

 

Amusement Park 

“The Whale” 

ADULTS      €12 

CHILDREN 
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