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CHAPTER 5 I

Solution strategies and adaptivity
in complex division:
A choice/no-choice study

This chapter is co-authored by Marije E Fagginger Auer.
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5. STRATEGY USE AND ADAPTIVITY IN DIVISION PROBLEMS

ABSTRACT

The current study systematically investigated mental and written solution strategies
for solving complex division problems (e.g., 306 =17), with the main focus on strategy
adaptivity. Eighty-six Dutch 12-year-olds were tested using the choice/no-choice
design. They first solved division problems in the free strategy choice condition,
and consecutively with forced mental and forced written computation in the two
respective no-choice conditions. Strategy choice and strategy performance (accuracy
and speed) were recorded. Findings showed that mental computation was usually
chosen for reasons of speed, while choices for written computation were fit to
accuracy characteristics. Moreover, there were group differences regarding gender
and mathematics achievement level of the student in the relative preference for
accuracy and speed in choosing between mental and written strategies.

5.1 INTRODUCTION

Solution strategies for solving cognitive tasks have been an important psychological
research topic. Especially solution strategies for mathematics problems have received
considerable attention, since they are interesting both from a cognitive psychological
perspective and from the viewpoint of mathematics education. Until recently, these
studies were mostly limited to elementary addition, subtraction, and multiplication
in the number domain up to 100. In contrast, complex arithmetic that is part of the
curriculum of higher grades of primary school (i.e., operations with multidigit numbers
for which one may use a written procedure) — and particularly complex division — has
not received much research attention. However, systematic studies in complex division
are needed, particularly in the Netherlands. Dutch national assessments showed a
descending achievement trend on complex arithmetic in general, and on complex
division in particular (J. Janssen et al., 2005), and this trend appears to be related to
a shift in strategy use from written to mental strategies (Hickendorff et al., 2009b).

Therefore, the present study aims at a systematic investigation of the characteristics
of mental and written solution strategies Dutch children at the end of primary school use
to solve complex division problems, with a special focus on adaptivity: to what extent
do the children choose the strategy (mental or written) with which they perform best?
In the remainder of this section, we discuss research into solution strategies including
strategy adaptivity, and previous research in the domain of complex division. We end
this section with the design and aims of the current study.
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5.1. Introduction

5.1.1 Solution strategies

Children and adults know and use multiple strategies to solve cognitive tasks, including
mathematics problems. The many studies into solution strategies for elementary
addition and subtraction (e.g., Carr & Jessup, 1997; Carr & Davis, 2001; Torbeyns
et al., 2002, 2004a, 2005), elementary multiplication (e.g., Anghileri, 1989; Imbo &
Vandierendonck, 2007; Lemaire & Siegler, 1995; Mabbott & Bisanz, 2003; Mulligan &
Mitchelmore, 1997), and mental multidigit addition and subtraction (e.g., Beishuizen,
1993; Beishuizen et al., 1997; Blote et al., 2001; Torbeyns et al., 2006) have resulted in near
consensus on the strategies used and the characteristics thereof for these mathematical
domains.

Research into strategies for solving mathematics problems has been carried out in
the field of cognitive psychology and in the field of mathematics education. Cognitive
psychology acknowledges that arithmetic performance depends on the type of strategies
that a subject uses (Lemaire, 2010). Within the cognitive psychological framework, the
work of Siegler and his colleagues has been very influential (e.g., Lemaire & Siegler, 1995;
Shrager & Siegler, 1998; Siegler, 1988a, 1988b). Lemaire and Siegler distinguished four
dimensions of strategic competence on which individuals may differ: their strategy
repertoire (which strategies are used), their strategy distribution (the frequency with
which the strategies are used), their strategy efficiency or performance (strategy speed
and/or accuracy), and their strategy selection or adaptivity (how strategies are chosen,
related to problem and individual strategy characteristics). These four dimensions are
central to the current study, with the main focus on the last one: strategy adaptivity.

Cognitive models of the underlying structures and mechanisms of strategy choice or
adaptivity have been developed (Shrager & Siegler, 1998; Siegler & Shipley, 1995). In these
models, an individual’s strategy choice on a particular problem is for the largest part
determined by the individual’s strategy performance characteristics for that problem.
According to Siegler and Lemaire (1997), people tend to choose their strategies adaptively:
they choose the fastest and most accurate strategy for a given problem out of their strategy
repertoire. Strategy speed and accuracy on a particular task may vary from individual
to individual. However, not all research findings support this cognitive claim on the
adaptivity of strategy choices. For example, suboptimal strategy choices have been
observed in 2-digit addition and subtraction (Torbeyns, De Smedt, et al., 2009b) and
in complex division (Hickendorff et al., 2010). Moreover, cognitive models on strategy
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5. STRATEGY USE AND ADAPTIVITY IN DIVISION PROBLEMS

choice have been argued to ignore the influence of sociocultural context variables such
as sociomathematical norms (Ellis, 1997; Luwel, Onghena, Torbeyns, Schillemans, &
Verschaffel, 2009; Verschaffel et al., 2009).

From the perspective of mathematics education, solution strategies are important
in the international reform movement (e.g., Kilpatrick et al., 2001) for at least two
reasons. First, the didactics for solving complex arithmetic problems have changed,
from instructing standard written algorithms to building on children’s informal strategies
(Freudenthal, 1973; Treffers, 1987, 1993), and mental computation has become very
important (Blote et al., 2001). Second, mathematics education reform aims at attaining
adaptive expertise instead of routine expertise: instruction should foster the ability
to solve mathematics problems efficiently, creatively, and flexibly, with a diversity of
strategies (Baroody & Dowker, 2003; Torbeyns, De Smedt, et al., 2009b). It is worth
mentioning at this point that the terms 'adaptivity’ and 'flexibility’ are used with different
meanings by different authors (for a discussion, see Heinze, Star, & Verschaffel, 2009, and
Verschaffel et al., 2009). In the present study, adaptivity is defined with respect to both
individual strategy performance characteristics and task characteristics, in the following
way: to what extent does a child choose the strategy that is the most appropriate or
efficient for him or her on a given problem?

Although this conceptualization of strategy adaptivity is used in the literature (e.g.,
Heinze, Star, & Verschaffel, 2009; Star & Newton, 2009; Torbeyns, De Smedt, et al., 2009b),
itis not particularly well-defined, because what constitutes ’appropriate’ or "efficient’ is
ambiguous. These terms usually refer to the performance of a strategy, but there are at
least two components to strategy performance: accuracy and speed. Problems arise when
the most accurate strategy on a problem is not the fastest. For example, backup-strategies
are slower but can be more accurate than retrieval (e.g., Kerkman & Siegler, 1997; Lemaire
& Siegler, 1995; Siegler & Lemaire, 1997), and on complex arithmetic problems it has been
suggested that written strategies are more accurate but slower than mental strategies
(Hickendorff et al., 2010). In these instances, an adaptive strategy choice is not univocally
defined. Some researchers leave the relative importance of accuracy and speed rather
unspecified by defining the most efficient strategy as the fastest and most accurate (e.g.,
Lemaire & Callies, 2009; Siegler & Lemaire, 1997). Obviously, such a definition does not
accommodate for the situations where one strategy is faster, but another strategy is more
accurate. Other researchers defined the most efficient strategy as the one leading fastest
to the correct answer (e.g., Kerkman & Siegler, 1997; Luwel et al., 2009; Torbeyns, De

146
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Smedt, et al., 2009b; Torbeyns et al., 2004a, 2005, 2006) or the strategy that produces the
most beneficial combination of speed and accuracy (Verschaffel et al., 2009). Although
the latter definitions combine accuracy and speed, in the operationalizing analyses by
these researchers accuracy and speed were generally not considered simultaneously but
separately instead (an exception is the study by Torbeyns et al., 2005).

So, the relative importance of accuracy and speed plays a role in situations where
the most accurate strategy is not the fastest. Moreover, individuals may differ in
their relative favoring of accuracy and speed: they may have different speed-accuracy
preferences (Ellis, 1997; Phillips & Rabbitt, 1995). In other words, they may differ in
which combination of speed and accuracy they find most beneficial. Such considerations
have not received much research attention in the research on strategy adaptivity. For
elementary cognitive tasks, Siegler (1988a) discusses individual differences in the strength
of the confidence criterion (i.e., the certainty required for stating an answer from
retrieval), which relates to the individual differences in motivation to make few errors. In
such elementary cognitive tasks backup strategies are clearly slower but evenly or more
accurate than retrieval. Such clear performance differences do not necessarily exist in
more complex cognitive tasks, in which relative strategy accuracy and speed may differ
from individual to individual. In the current study, we try to gain insight into different
patterns in the relative favoring of strategy accuracy and strategy speed in complex
division problem solving. Such insight may have important educational implications,
since instruction may be adapted to these individual differences. For instance, students
who favor speed over accuracy may be encouraged to work slower but with fewer errors.

5.1.2 Complex division

In the present paper, complex division is defined as division problems in which the
quotient is a multidigit number (e.g., 872 +4 =218)!, and the divisor may be multidigit
too (e.g., 306 + 17 = 18). This contrasts with simple division (division problems from the
multiplication tables), in which the quotient is a single digit (e.g., 48 + 8 = 6; Robinson
et al., 2006). Compared to addition, subtraction, and multiplication, the domain of
(complex) division is understudied thus far. However, systematic studies on complex
division are needed, particularly at the end of primary school in the Netherlands, for at
least two reasons.

1 We consider a decimal number (e.g., 34 <-4 = 8.5) as multidigit too.

147



5. STRATEGY USE AND ADAPTIVITY IN DIVISION PROBLEMS

First, the most recent Dutch national assessment showed a large decline in sixth
graders (12-year-olds) performance on complex division problems over a period of
two decades (J. Janssen et al., 2005). Second, mathematics education reform has had
a considerable impact on instruction in complex division. Under the influence of
Realistic Mathematics Education (RME) the traditional long division algorithm has
disappeared from mathematics textbooks, and has been replaced by more informal
strategies based on repeatedly adding or subtracting multiples of the divisor (Freudenthal,
1973; Treffers, 1987). Figure 5.1 presents examples of such repeated addition and
subtraction strategies, that differ in their level of abbreviation (i.e., the number of steps
taken), see also Hickendorff et al. (2010) and Van Putten et al. (2005). Moreover, the
traditional long division algorithm (and its notational form in the Netherlands and the
US) is also presented. In addition to this shift in instruction in written strategies, another
characteristic of the reform is that mental arithmetic plays a central role in mathematics
education (Blote et al., 2001). In 2004, nearly all Dutch primary schools used mathematics
textbooks based on RME principles (J. Janssen et al., 2005), although a return to more
traditionally oriented mathematics textbooks has been observed recently (KNAW, 2009).

In a recent study, secondary analyses on the student materials of the two most recent
national assessments of 1997 and 2004 were carried out, aiming to relate the achievement
decline on complex division to (changes in) the solution strategies used (Hickendorff et
al., 2009a, 2009b). Results showed that two changes appeared to have contributed to the
decline. First, strategy use had shifted: use of written procedures decreased (attributable
to a decrease in the use of the traditional long division algorithm), while an increasing
percentage of the students (more boys than girls) predominantly answered without
calculations written down on scrap paper. This strategy shift was unfortunate, since
answering these problems with a nonwritten strategy was less accurate than using a
written strategy. Second, each of the solution strategies yielded less correct answers
in 2004 than in 1997, with approximately the same amount of accuracy decrease per
strategy. So, the performance decline over time on complex division in the Netherlands
seems to be related to a change in strategy choice — in particular to a decrease in the use
of written strategies — and to a general decrease in strategy accuracy as well.

These strategy change results of the national assessment data were descriptive by
nature and therefore limited in several aspects, among which possible selection effects
(cf. Siegler & Lemaire, 1997). That is, because strategy choice is probably influenced by
the ability of the student and/or difficulty of the item, the strategy accuracy estimates
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FIGURE 5.1 Examples of solution strategies for the problem 306 ~ 17.

may have been biased by these student and item selection effects. To overcome this,
Hickendorff et al. (2010) studied strategy choice in an experimental test design, in which
sixth graders had to solve division problems under two conditions: free choice between
mental and written computation, and forced written computation. One of the main
findings was that accuracy of students who used mental calculation on a particular
item in the free choice condition, improved by requiring the use of a written strategy in
the forced written condition. So, these findings suggest that these choices for mental
strategies were counter-adaptive with regard to accuracy. However, the methodology of
this study hampered drawing conclusions on adaptivity rigorously for two reasons. First,
data were collected on strategy accuracy but not on strategy speed, so only one aspect of
strategy performance could be accounted for. Second, unbiased strategy characteristics
(i.e., accuracies) were gathered only for written strategies and not for mental strategies,
since it was deemed to be too demanding for a large number of students to solve complex
division problems with large numbers with obligatory mental calculation. As a result,

unbiased strategy characteristics of only one of the two strategies could be used in
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assessing adaptivity.

The current study extends the finding of Hickendorff et al. (2010) in a follow-
up experiment in which these two main methodological limitations are overcome.
Specifically, we also included speed measures in addition to accuracy data, as well
as a condition in which students were forced to use mental computation in addition to a
forced-written strategy use condition. In order to prevent students becoming frustrated
from having to solve quite difficult problems in their heads, the presents study’s division
problems were designed to be somewhat less cognitively demanding compared to the
ones used in Hickendorff et al. (2010).

5.1.3 The current study

The present study’s aim is to systematically investigate the four dimensions of strategic
competence in the domain of complex division problem solving (repertoire, distribution,
performance, and adaptivity), distinguishing between mental and written computation
strategies. Particularly the fourth dimension, adaptivity of the strategy choices, received
special attention: to what extent do individual strategy performance characteristics
(accuracy and speed) predict the choice of a strategy? We expected that different patterns
in preference for accuracy and speed would be present, giving rise to different patterns
of strategy adaptivity. Such findings may have implications relevant for educational
practices, since students favoring speed over accuracy may require another instructional
approach than students favoring accuracy over speed.

The main focus regarding solution strategies was on the distinction between written
and mental computation, because secondary analyses on Dutch national assessments
at the end of primary school showed that this was a very relevant distinction with
respect to the observed decrease of performance over time: use of mental strategies
increased over time, but their success rates lagged far behind those of written strategies
(Hickendorff et al., 2009b). In the present study, mental computation was defined as
carrying out arithmetical operations without the use of any recording devices such as
pen and paper, similar to the definitions of for example Hickendorff et al. (2010), Ruthven
(1998), Siegler and Lemaire (1997), and Timmermans et al. (2007), but unlike other
studies (e.g., Beishuizen et al., 1997; Blote et al., 2001; Torbeyns, De Smedt, et al., 2009b).
Written strategies included all forms of calculations in which some part of the solution

process was written down on paper, ranging from only recording intermediate solution
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steps to written algorithmic procedures. In order to be able to extend conclusions
of the present experiment to the earlier studies on strategy use on complex division
problems, participants and problems were chosen to resemble those of the Dutch
national assessments. That is, students at the end of primary school (sixth graders) were
selected, and we devised division problems presented in a realistic context involving
multidigit quotient and/or divisor.

To estimate strategy characteristics in an unbiased manner, we used Siegler and
Lemaire’s (1997) choice/no-choice methodology. Each participant solved three parallel
series of division problems under three different conditions. They first solved a series of
division problems in the free strategy choice condition, and consecutively solved the two
parallel series with forced mental and forced written calculation in the two respective no-
choice conditions. From these two no-choice conditions, individual accuracy and speed
characteristics of written and mental computation strategies were assessed without
selection effects. Several studies in mathematics have applied the choice/no-choice
methodology to study solution strategies (for an overview, see Luwel et al., 2009). An
important feature of this design is that the adaptivity of strategy choices can be evaluated
on an individual level, i.e., whether a subject chooses that strategy that for him or her is
most efficient.

In addition to assessment of the four dimensions of strategic competence in general,
we searched for effects of the student characteristics gender and general mathematics
level. Gender differences in strategy use have been reported frequently. For example,
girls have been found to have a larger tendency than boys to (quite consistently) use
algorithmic strategies instead of using more intuitive, less structured strategies (Carr &
Davis, 2001; Carr & Jessup, 1997; Hickendorff et al., 2009b, 2010; Gallagher et al., 2000;
Timmermans et al., 2007). In contrast, gender differences in strategy adaptivity not been
studied often, thus far. However, the findings of Hickendorff et al. (2010) showed boys
making less adaptive strategy choices than girls, at least regarding accuracy, and it was
suggested that girls and boys may weigh the importance of accuracy and speed differently.
Regarding mathematics achievement level, it has been frequently (but not uniformly,
see Torbeyns et al., 2005) reported that students of higher mathematical ability choose
more adaptively between strategies than students of low mathematical ability (Foxman
& Beishuizen, 2003; Hickendorff et al., 2010; Torbeyns, De Smedt, et al., 2009b; Torbeyns
etal., 2002, 2006). So, we expect to find the same pattern in the current study.
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5.2 METHOD

5.2.1 Participants

The participants were 86 students in the sixth grade (12-year-olds). They originated
from 9 Dutch primary schools located either in the city or in a more rural area. All
schools used a mathematics textbook based on RME principles, but they did not use the
same textbook. In the sample, there were 43 girls and 43 boys. Also, information about
the general mathematical level of the students was obtained: the students most recent
level on CITO’s Student Monitoring System mathematics test, a national standardized
measurement instrument (in which speed of performance is not important) yielding a
norm-referenced mathematics score, that we categorized into 2 levels: above the average

of the norm group and below the average of the norm group.

5.2.2 Material

Three parallel sets of four complex division problems each were constructed, resulting in
a total of 12 problems (see Appendix 5.A). These problems were designed to resemble
those that students encounter in their classroom and testing practices. Each problem
was presented within a realistic context: a situation that described a hypothetical real
life mathematical problem. For each item, three parallel versions were constructed that
were as similar as possible to each other with respect to number characteristics and
realistic context, but that at the same time would not be perceived as identical problems
to prevent practice effects. The 3 parallel sets were counterbalanced over the 3 conditions
(choice, no-choice mental, and no-choice written; see below).

The number characteristics of each item set were as follows. In the first item set, the
outcome was below 10, but students had to deal with a remainder. In the second item
set, numbers were such that a compensation approach (rounding the dividend; e.g.,
1089+11=1100+11—1=100 - 1 = 99) would be efficient. In the third item set, the
dividend and divisor were decimal numbers (while the outcome was not). Finally, in the
fourth item set a 3-digit number had to be divided by a 2-digit number, with outcome

also a 2-digit number.
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5.2.3 Procedure

Per school, six to twelve students were randomly selected for participation. The students
were tested individually in a quiet room outside their classroom. They were told that
they would be given twelve division problems to solve. Each student was first tested
in the free choice condition (C) and then in two no-choice conditions: forced mental
calculation (NC-M) and forced written calculation (NC-W). The order of the 2 no-choice
conditions was counterbalanced over students. All problems were presented one by one,
and solution times were collected with a stopwatch on a trial-by-trial basis. The students
received the following instruction: 'With this stopwatch, I will register what time you need
to solve the problems, but you can take as much time as you need on each problem.

5.2.4 Conditions

The first four division problems were presented in the free choice condition. On these
problems, students were free to choose whether they solved them by mental or written
calculation. There was a pencil available for the student to use and space for writing
down calculations in the booklet. At the end of this first set of problems, the children
were asked to report verbally on the strategies they used on the problems that they solved
by mental calculation.

In the no-choice mental condition, another parallel set of four problems was
presented. The procedure was similar to the choice condition, except for the fact the
students could not use paper and pencil in doing their calculations and thus were
forced to use mental calculation. In addition, the students were asked to report on their
calculation strategy verbally after each problem was solved.

In the no-choice written condition, the final set of four problems was presented. In
this condition, students had to write down their calculation procedure and were thus

forced to use written calculation.

5.2.5 Responses

For each trial, the following responses were coded: (a) the accuracy of the answer given,
(b) the solution time (ST), (c) the main strategy used, mental or written calculation (only
in choice condition), and (d) the type of written or mental solution strategy used.

The type of written or mental strategy used was coded to get more insight into the
rather broad categorization into mental and written strategies. The types distinguished
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were (a) repeated addition or subtraction of multiples of the divisor (see left part of
Figure 5.1), (b) traditional algorithm for long division (see right part of Figure 5.1), (c)
wrong procedure: e.g., multiplication of dividend and divisor, numerical estimation
and splitting up the divisor (e.g., solving 306 + 17 by 306 + 10+ 306 = 7), and (d) unclear
procedure or student did not remember. The type of written strategy was inferred from
the solution steps that were written down. The type of mental strategy was inferred from

the verbal reports.

5.2.6 Statistical Analyses

Because item responses were nested in individual students, observations were not
independent. To account for these correlated responses we used (generalized) linear
mixed (also called hierarchical, multilevel or random effects) regression models (e.g.,
Hedeker & Gibbons, 2006; Snijders & Bosker, 1999). All estimated models were random
intercepts models, in which individual differences were accounted for by the intercept
being random over students. The continuous dependent variable ’solution time’ was
analyzed with linear mixed models using the SAS procedure MIXED. Because solution
times deviated from normality (the smallest z-value of skewness of solution times on the
12 problems was 4.32), solution times were log-transformed before entering the analyses
(cf. Klein Entink, Fox, & Van der Linden, 2009). The binary dependent variables strategy
choice (mental/written) and accuracy (incorrect/correct) were analyzed by mixed binary
logistic regression models using the SAS procedure NLMIXED. The statistical significance
of predictor effects was tested using a likelihood ratio (LR) test. The LR-test statistic is
computed as two times the difference between the log-likelihood of the model with and
the model without the predictor effect, and is asymptotically y? distributed with df the

number of parameters associated with the predictor effect.

5.3 RESULTS

Preliminary mixed linear (speed) and logistic (strategy choice and accuracy) regression
analyses showed that that the three parallel item sets A, B, and C did not differ in
proportion mental calculation (choice condition only; LR = 1.0, df = 2, p > .05) nor
in average accuracy (LR = .0, df = 2, p > .05), but the effect of item set on speed did
just reach significance (LR = 6.1, df = 2, p = .048). Furthermore, the order of the no-
choice conditions did not affect accuracy (LR = .1, df =1, p > .05) or speed (LR = .6,
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df =1, p >.05). In the main analyses, data were grouped over the versions of the item set
and order of no-choice conditions, but in the speed analyses we statistically controlled
for the item set version.

The main results are discussed in three sections: (a) repertoire and distribution of
strategies in the choice condition, (b) strategy performance data (accuracy and speed)
from the choice as well as from the two no-choice conditions, and (c) results on adaptivity

of strategy choices.

5.3.1 Strategy repertoire and distribution in choice condition

Almost half of the students (42 students, 49%) used mental calculation and written
calculation at least once. The remaining students used either written calculation on all
items (33 students, 38%) or mental calculation on all items (11 students, 13%).

On 67% of all trials a written strategy was chosen. Girls chose a written strategy
(M = 80%) significantly more often than boys (M =53%), LR = 13.0, df =1,p < .001.
The difference between below-average (M = 70% written strategies) and above average
mathematics achievers (M = 64% written strategies) was not significant, LR =.5, df =
1, p > .05. Finally, the four items significantly differed in percentage of written strategies,
LR = 34.3, df = 3,p = .001. Post-hoc pairwise comparisons showed that on item 4
(M = 84% written strategies) significantly more written strategies were used than on item
3 (M =67%, t(85)=3.20, p =.002), item 2 (M =59%, ¢(85) =4.40, p <.001), and item 1
(M =57%, t(85)=4.55, p <.001), respectively. All other pairwise comparisons were not
significant.

Table 5.1 shows the distribution of each type of strategy used in the choice condition
averaged over the four items. The distribution of repeated addition/subtraction strategies
and the traditional algorithm on the one hand, and applying the wrong procedure or
unclear strategy on the other hand, was significantly different for mental and written
strategies (LR = 15.8, df =1, p <.001). Within written as well as within mental strategies,
repeated addition/subtraction strategies were dominant with 75% and 84% respectively.
The traditional algorithm was used very infrequently (on 5% of all trials), and if it was
used it was only within written strategies. Furthermore, executing the wrong procedure
was more prevalent in mental strategies (17%) than in written strategies (5%). The same
pattern holds for unclear strategies: 8% of the mental strategies, and 3% of the written
strategies. Another interesting result (not presented in Table 5.1) was on the prevalence
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TABLE 5.1 Distribution of type of strategies used in choice condition.

within mental within written
type of strategy strategies strategies total
repeated addition/subtraction 86 (75%) 192 (84%) 278 (81%)
traditional algorithm 0 (0%) 18 (8%) 18  (5%)
wrong procedure 19 (17%) 12 (5%) 31 (9%)
unclear 9 (8%) 6 (3%) 15 (4%)
total number of trials 114 (100%) 228 (100%) 342 (100%)

Note. On two trials the student did not give an answer, so the strategy used could not be determined. As a
result, the total number of trials equals 342.

of the compensation strategy on item 2 (a strategy in which the dividend was rounded;
this was a specific form of the repeated addition/subtraction category): this shortcut
strategy constituted 63% of all 35 mental strategies on this item, but only 12% of the 54

written strategies, a significant difference (z-test for proportions = 4.68, p <.001).

5.3.2 Strategy performance
Choice condition

Table 5.2 shows strategy performance data (accuracy and speed?) in the choice condition,
by gender and general mathematics level. On average, the accuracy difference between
mental strategies and written strategies was border significant (LR=3.8, df =1, p =.051).
The speed difference was highly significant (LR =108.8, df =1, p <.001), with mental
strategies being faster than written strategies.

Boys and girls did not differ significantly in average total accuracy in the choice
condition (LR = .2, df = 1,p > .05), nor in accuracy within mental or within written
strategies (LR = 3.5, df =1, p > .05). Boys were significantly faster on average (LR =11.3,
df =1, p <.001), but within each strategy choice the gender difference in speed was
not significant anymore (LR = 2.1, df = 1, p > .05). So, difference in strategy choice

2 All speed data presented in the Results are based on all trials (correct and incorrect ones), because we argue that
this presents a more complete picture than presenting only speed of correctly executed strategies. However, we
also analyzed speed data based on only the correct trials. Results were very similar, with the exception that
correct responses were faster.

156



5.3. Results

TABLE 5.2 Strategy performance in the choice condition, by gender and general mathematics
level.

accuracy (P (correct)) speed (ST in seconds)
strategy choice mental  written  total mental  written  total
girl 41 57 .54 44.0 105.6 93.3
boy .56 .68 .63 47.4 84.8 67.4
< average math level .23 .48 .40 66.4 1141 99.6
> average math level 77 77 77 29.1 781 60.3
total 52 .61 .58 46.4 97.2 80.3

accounted for gender differences in speed in the choice condition: boys were faster on
average because they chose fast mental calculation more often than girls.

The effect of general mathematics level of the student was highly significant on
average accuracy (LR =29.0, df =1, p <.001) as well as on average speed (LR = 18.6,
df =1,p <.001). Moreover, accuracy differences within mental and written strategy
choices were also significant (LR = 32.0, df = 1, p < .001), as were speed differences
within the two strategies (LR = 20.5, df =1, p <.001). Below-average achievers had a
lower proportion correct and were slower than above-average achievers within the two
strategies as well as totaled over the strategy choices. The difference in performance
between below-average and above-average achievers was the same in mental strategies
as in written strategies, since the interaction between general mathematics level and
strategy choice was not significant on either accuracy (LR = 3.3, df =1, p > .05) or speed
(LR=2.9,df=1,p>.05).

No-choice conditions

Table 5.3 shows strategy performance data (accuracy and speed) from the two no-
choice conditions, by gender and general mathematics level. No-choice condition had a
significant effect on accuracy (LR=11.8, df =1, p <.001) as well as on speed (LR =46.9,
df =1,p <.001). These unbiased strategy performance data thus showed that forced
mental strategies were less accurate but faster than forced written strategies.

The accuracy difference between boys and girls within each condition was not
significant (LR = 2.8, df =1, p > .05). By contrast, gender did have a significant effect
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TABLE 5.3 Strategy performance in the no-choice conditions, by gender and general
mathematics level.

accuracy speed

P (correct) ST in seconds
condition NC-M  NC-W NC-M  NC-W
girl .46 .55 92.4 92.5
boy .55 .67 67.2 90.4
< average math level .25 .43 102.8  1156.1
> average math level .76 .81 55.8 66.9
total .50 .61 79.6 91.4

on speed (LR = 4.7, df =1, p = .031) with boys being faster than girls. Moreover, the
interaction between gender and no-choice condition (mental versus written) was also
significant (LR = 6.6, df = 1,p = .010). Post-hoc contrasts showed that boys were
significantly faster than girls in the no-choice mental condition (#(85) =3.06, p =.003),
but that the gender difference in speed in the no-choice written condition was not
significant (¢(85) = .96, p > .05). Moreover, for boys (#(85) =6.97, p <.001) as well as for
girls (¢£(85)=3.11, p =.003) forced mental strategies were significantly faster than forced
written strategies.?

The effect of general mathematics level of the student was highly significant on
accuracy (LR =63.6, df =1, p <.001) as well as on speed (LR = 27.1, df =1, p <.001).
Students with below-average mathematics level had a significantly lower proportion
correct than above-average achievers, in both no-choice conditions (interaction between
mathematics level and no-choice condition on accuracy not significant; LR = 2.3,
df = 1,p > .05). Regarding speed, below-average achievers were significantly slower
than above-average achievers, regardless of the strategy they had to use (interaction
between mathematics level and no-choice condition on speed not significant; LR = .9,
df = 1,p > .05).

3 Although for girls the mean solution times in the two no-choice conditions (92.4s. and 92.5s.) did not seem to
differ, these means were influenced by the skewness of the distribution of raw solution times. Log-transformed
STs were not affected by skewness, and the mean in the no-choice mental condition was significantly lower
(4.14) than the mean in the no-choice written condition (4.36).

158



5.3. Results

5.3.3 Strategy adaptivity

Comparing the strategy performance data from the no-choice conditions with the
strategy choice made in the choice condition gives information on the adaptivity of the
strategy choice. To what extent was the most appropriate strategy chosen, as evidenced
from the individual strategy performance data from the no-choice conditions?

The issue of strategy adaptivity is approached in three ways. In the first two
approaches, analyses were done on the item level (aggregating over students), and
in the third approach they were done on the student level (aggregating over items) (cf.
Luwel et al., 2009). In these latter analyses, group differences with respect to gender and
mathematics achievement level were studied as well.

Adaptivity at the item level

In analyzing adaptivity at the item level, we ask the following question: Is the
performance difference between forced mental and forced written strategy on an item in
accordance with the strategy choice made in the choice condition on the parallel item?
First, accuracy and speed are dealt with separately.

For the mental strategy choices in the choice condition, there was no difference
in accuracy rates between forced mental (M = .57) and forced written computation
(M = .57) on (the parallel versions of) that item (#(85) = .00, p > .05). So, regarding
accuracy, these mental strategy choices were neither adaptive nor counter-adaptive. In
contrast, these mental strategy choices were adaptive to speed: for instances in which
a mental strategy was chosen in the choice condition, forced mental strategies were
significantly faster (M = 53.3 seconds) than forced written strategies (M = 84.7 seconds),
£(85)=8.00, p <.001.

For written strategy choices in the choice condition, the forced mental strategy was
significantly less accurate (M = .48) than forced written computation (M = .64) on the
parallel items in the no-choice conditions, #(85) = 4.07, p < .001. So, the choices for
a written strategy were adaptive regarding accuracy. In contrast, these choices were
counter-adaptive to speed: for instances in which a written strategy was chosen in the
choice condition, forced mental strategies (M = 93.2 seconds) were significantly faster
than forced written strategies (M = 94.8 seconds), ¢(85) =—3.31, p =.001.

In short, these separate analyses on accuracy and speed suggest that on average,
mental strategy choices seem adaptive to speed considerations as evidenced from the
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solution time differences between the no-choice conditions (mental strategies being
faster), while there were no differences in unbiased accuracy characteristics. In contrast,
written strategy choices seem adaptive to accuracy, but counter-adaptive to speed.

In the next approach, accuracy and speed were combined on a trial-level basis.
Following Lemaire and Siegler (1995), an adaptive strategy choice was defined as
choosing the strategy that leads the individual fastest to an accurate answer. To
operationalize this definition, for each trial in the choice condition we combined
accuracy and speed information from the two no-choice conditions, and compared
it to the strategy choice made in the choice condition, similar to Imbo and LeFevre
(2009).

There were three possible categories. First, a strategy choice was coded as adaptive
either when (a) a correct answer was obtained on an item with both forced mental and
forced written calculation and the fastest of these two strategy was chosen, or (b) when a
correct answer was obtained in only one of the no-choice conditions and the strategy that
had yielded the correct answer was chosen. For example, for a student who obtained the
correct answer in the NC-W condition but an incorrect answer in the NC-M condition,
choosing a written strategy in the choice condition was coded as an adaptive strategy
choice. For these latter trials, potential differences in speed of the two strategies did not
play a role in coding adaptivity: accuracy was deemed more important and therefore
decisive. Second, a strategy choice was coded as counter-adaptive if (a) a correct answer
on an item was obtained with both forced mental and forced written calculation and the
strategy that was slowest was chosen, or (b) when the correct answer was obtained in only
one of the no-choice conditions and the strategy that had yielded the incorrect answer
was chosen. Finally, a strategy choice was coded indeterminate when a student answered
the item in both no-choice conditions incorrectly. In these instances it is hard to think of
adaptivity, since neither of the strategies yielded a correct answer, and hence could never
lead to an adaptive choice. Results showed that strategy choices were adaptive on 43%
of the items and counter-adaptive on 30% of the trials. In addition, 28% of the strategy
choices were indeterminate with respect to adaptivity. Moreover, for each individual
student summing the adaptivity scores over the 4 trials in the choice condition, showed
that there was substantial variation between students. To illustrate, 51 students (59%)
made an adaptive as well as a counter-adaptive choice at least once.
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Adaptivity at the student level

In the preceding section results were aggregated over students, obscuring individual
variations in accuracy differences and speed differences. In this section, we took these
individual differences into account by analyzing adaptivity at the student level. Accuracy
and speed were treated separately, by computing the correlation between the frequency
of mental calculation of a student in the choice condition and the differences in accuracy
(total number correct) and in speed (total log-transformed solution time) between the
two strategies from the no-choice conditions (cf. Torbeyns, De Smedet, et al., 2009b).

Spearman’s p correlation between frequency of mental calculation (choice condition)
and the difference in the total number correct between no-choice mental and no-choice
written conditions was positive and significant (p =.28, df =84, p =.009), indicating
that students took into account which of the two strategies was most accurate for them.
Gender seemed to affect this correlation (pgins = .40, df = 41,p = .008; pPpoys = .26,
df =41, p > .05) but the difference was not significant (z = .68, p > .05). Mathematics
level did have a significant effect on the correlation (z = 2.85, p =.004), pPpelow = -00,
df =42,p > .05; papove = .56, df =40,p <.001.

With respect to speed, Spearman’s p correlation between frequency of mental
calculation and differences in solution time between forced mental and written strategies
was also significant (p =—.32, df =84, p =.002). Note that the correlation is negative
because solution times are inversely related to speed, so that this result indicates that
students took into account their individual strategy speed characteristics. This time,
gender had a significant effect on this relation (z = 2.29, p = .022): pggs = —.07,
df =41,p > .05; Ppoys = —.52, df =41, p < .001. Although the effect of mathematics
achievement level on the size of this correlation was not significant (z =1.62, p > .05),
the correlation was not significantly different from zero for below-average achievers
(Pbelow =—-15, df =42, p > .05), while it was for above-average achievers (0 apove = —-47,
df =40, p =.002).

So, for the sample as whole, students seemed to adapt their strategy choices to their
individual accuracy and speed characteristics of the two strategies. However, interesting
gender differences were found. Girls appeared to fit their strategy choices to accuracy
characteristics, ignoring speed characteristics. In contrast, boys showed the opposite
pattern, by choosing adaptively regarding speed, and thereby paying less attention
to accuracy (although the — nonsignificant — correlation with accuracy difference was
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positive and not significantly different from the correlation for girls). Moreover, there
were also important differences with respect to mathematics level. Below-average
achievers did not significantly fit their strategy choice to either accuracy or speed, while
above-average achievers chose significantly adaptive regarding both accuracy and speed.

5.4 DISCUSSION

In this study, mental and written solution strategies on complex division problems
were investigated using the choice/no-choice paradigm. Students successively solved
three parallel sets of four division problems with free strategy choice, forced mental,
and forced written calculation, respectively. Besides assessment of strategy repertoire,
distribution, and efficiency, an important focus was on strategy adaptivity. We will first
discuss the results on the four dimensions of strategy competence, and then focus on
gender differences and mathematics achievement level effects. We will end by discussing
cognitive psychological and educational implications of the findings of the current study.

5.4.1 Strategy repertoire, distribution, efficiency, and adaptivity

Concerning strategy repertoire, findings showed that approximately one half of the
students used written as well as mental strategies in the choice condition. The majority
of the other half used only written strategies, and a small part used only mental strategies.
Regarding strategy distribution, the relative frequencies of mental and written strategies
in the choice condition showed that each item was solved most frequently by written
calculation, but that there were differences in this respect between items. Analysis of the
specific types of strategies showed that both written and mental strategies predominantly
comprised repeated addition/subtraction. Item 2 deserves special attention because of
the possibility of using a compensation strategy (a special case of the repeated addition/
subtraction strategy, in which it is possible to take advantage of the closeness of the
dividend to a hundredfold of the divisor). The majority of mental strategies involved
compensation, while this was not very frequent within written strategies. So, choosing
between mental and written computation on that item mainly reflected using the
compensation strategy or not: a similar finding to Hickendorff et al. (2010).

Strategy performance in the choice condition showed that, for the sample as a whole,
freely chosen mental strategies were evenly accurate but faster than freely chosen written
strategies. However, these accuracy data were probably affected by selection effects (cf.
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Siegler & Lemaire, 1997), because the accuracy difference between the two no-choice
conditions was significant: forced written strategies were on average more accurate
than forced mental strategies. Speed differences between the no-choice conditions
were congruent with those from the choice condition, with mental strategies being
significantly faster than written strategies. Thus, unbiased strategy performance data
showed that mental strategies were less accurate but faster than written strategies.

The main focus was on strategy adaptivity, which we approached in three ways. In
each approach, we assessed whether the strategy selected in the choice condition was the
most "appropriate’ one, as evidenced by the unbiased strategy performance information
from the no-choice conditions. First, item-level analysis showed that, on average,
mental strategy choices were adaptive to speed, and indifferent to accuracy. In contrast,
written strategy choices were fit to accuracy differences, while being counter-adaptive to
speed. Second, we combined accuracy and speed on a trial-basis by operationalizing the
definition of the 'best’ strategy as being the one leading fastest to an accurate answer.
On average, on 43% of the trials the 'best’ strategy was chosen, and on 30% the best
strategy was not chosen. On the remaining 28% of the trials there was no correct answer
obtained in either of the two no-choice conditions, so the strategy choice in the choice
condition could not be scored with respect to adaptivity. Interestingly, more than half
of the students made at least one adaptive and one counter-adaptive strategy choice
on the 4 trials. Third, student-level analyses showed that the correlations between
frequency of use of mental computation on the one hand and unbiased accuracy and
speed differences on the other hand were significant and in the expected direction. So,
in general, strategy choices seem adaptive both to accuracy and speed. In sum, we found
that mental strategies were chosen in trials where they were faster but equally accurate
according to the unbiased strategy performance data, while written strategies were
chosen on trials on which it was the more accurate (albeit slower) strategy. Combining
these findings resulted in the pattern that, on average, students chose adaptively both
to accuracy and speed. However, when accuracy and speed were combined to define
the optimal strategy, we found that students made a suboptimal strategy choice on a
substantial percentage of items (30%).
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5.4.2 Gender differences and mathematics achievement level effects

We found interesting gender differences in the dimensions of strategic competence.
Regarding strategy choice, boys were more inclined to mental computation than girls,
a finding resembling earlier research findings that girls favor structured, algorithmic
strategies, while boys tend to use less structured, more intuitive strategies (Carr &
Davis, 2001; Carr & Jessup, 1997; Gallagher et al., 2000; Hickendorff et al., 2009b,
2010; Timmermans et al., 2007). In the current study, there were no significant gender
differences in strategy accuracy. Regarding speed, girls were slower than boys when they
were forced to use mental computation. In all other conditions, gender differences in
speed were not significant. Consequently, for boys the speed gains of choosing mental
strategies over written ones was larger than for girls, which may partially account for boys’
larger inclination of choosing mental strategies. In addition, boys and girls appeared to
have different speed-accuracy preferences. Girls appeared to fit their strategy choices
to accuracy considerations, ignoring speed, while boys had a preference for speed over
accuracy. This may be related to individual differences in the confidence criterion that
have been reported in children (Siegler, 1988a, 1988b) and in adults (Hecht, 2006).

Moreover, these found gender differences in strategy choice and strategy adaptivity
may be related to the consistent finding that girls have lower levels of confidence with
mathematics (Mullis et al., 2008; Timmermans et al., 2007; Vermeer et al., 2000), so they
may perform more cautiously than boys and therefore choose accuracy over speed. In
line with this reasoning, girls have been found to be less inclined to intellectual risk-
taking than boys (Byrnes et al., 1999). In addition, girls tend to be more inclined to
(academic) delay of gratification (Bembenutty, 2009; Silverman, 2003), which might
partially explain that boys more often choose fast mental calculation over slower but
more accurate written computation.

In addition to gender differences, there were mathematics achievement level effects.
Below-average and above-average achievers chose mental computation equally often.
Performance differences were as could have been expected, with below-average achievers
less accurate and slower than above-average achievers, regardless of the strategy
they chose (choice condition) or the strategy they had to use (no-choice conditions).
Interesting differences were found in strategy adaptivity: below-average achievers did not
take either accuracy or speed into account in their strategy choices, while above-average

achievers fitted their strategy choices to both components of performance. Therefore, we
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argue that the present study’s results implies that strategy adaptivity in complex division
is currently only attained by the better achieving students, resembling findings of Foxman
and Beishuizen (2003), Hickendorff et al. (2010), Torbeyns, De Smedyt, et al. (2009b), and
Torbeyns et al. (2002, 2006). Further research is needed into whether this important goal
of mathematics education reform is feasible or desirable for the below-average achievers.
Like Geary (2003), Torbeyns et al. (2006), and Verschaffel et al. (2009), we plead for more
research-based evidence for striving for adaptive expertise in mathematics education,
especially for average and weaker students.

5.4.3 Methodological considerations

Several methodological considerations of the current study merit attention. First, we
focused on distinguishing between between mental strategies, defined as nothing
written down on paper, and written strategies in which something was written down on
paper, ranging from intermediate answers to procedural algorithms. Note that this is
a similar categorization of strategies as in Siegler and Lemaire’s (1997) original choice/
no-choice study, in which they distinguished between using a calculator, using mental
arithmetic, and using pencil and paper (experiment 3). Although this is arguably a
rough classification, and other categorizations (for example with respect to the number
of solution steps) are thinkable, we chose this strategy split for two reasons. First,
earlier studies into strategy use on complex division by Dutch sixth graders showed
that both strategy types were used, and that they had large predictive power of the
accuracy of solutions (Hickendorff et al., 2009b, 2010). Second, the didactical practice
in the Netherlands — with the disappearance of the traditional algorithm and many
different informal strategies —leads to obstacles in studying the characteristics of different
strategies in a choice/no-choice design. That is, if students are forced to use a particular
strategy in the no-choice conditions, they should have those strategies in their repertoire,
and many students did not get instruction in for example the traditional algorithm.
Second, the number of items (4 items times 3 conditions) was small, mainly based
on practical considerations. Because these kind of complex division problems are quite
demanding to solve for sixth graders (as also comes forward from the long solution
times, on average 83.7 seconds with peaks to over 500 seconds), we believed it was
not practically feasible to administer more than 12 problems to a student in a session.
Given this limited number of items, we were unfortunately not able to rigorously analyze
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the effect of item features on strategy choice. However, we argue that we were able to
study adaptivity, because we did found substantial variation in strategy choice, with half
of the students using both strategies on the set of 4 problems in the choice condition.
Moreover, the single strategy users were also spread over the two strategies: two-thirds
of them consistently used written strategies, while one third consistently used mental
strategies. Therefore, even on this small number of problems there were clear differences
in strategy choice, that we tried to predict by strategy performance characteristics in
order to investigate the issue of adaptivity.

5.4.4 Implications

In conclusion, we found several indications that there are different patterns of adaptivity
to strategy accuracy and speed. If we look at the general pattern for the whole sample,
it would seem that mental strategies are chosen for reasons of speed, while written
strategies are chosen for reasons of accuracy. However, when we look at different
subgroups of students (gender, mathematics level), we find that there are different
adaptivity patterns. Interestingly, there are students who prefer accuracy over speed,
while there are also students showing the opposite pattern. Moreover, the majority of
students made both optimal and suboptimal strategy choices on the 4 items.

Individual differences in preference for accuracy and speed are important from a
theoretical as well as from practical point of view. Theoretically, they have not been
specifically addressed in the cognitive models of strategy choice and adaptivity (Shrager
& Siegler, 1998; Siegler & Shipley, 1995), although the concept of different confidence
criterion individuals may hold is related. Moreover, future research may investigate
whether other individual differences constructs can (partly) account for the found
accuracy-speed preferences. The cognitive style of impulsivity-reflection (Kagan, 1966)
may very well be related (cf. Siegler, 1988a), with reflectives being slow but accurate,
but impulsives being fast but with more errors (Phillips & Rabbitt, 1995). In addition,
concepts such as academic delay of gratification (Bembenutty, 2009) and academic
risk-taking (Byrnes et al., 1999) may be associated as well.

In addition to task and subject variables, sociocultural context variables may also
affect strategy choices (Luwel et al., 2009; Verschaffel et al., 2009). Ellis (1997) pointed
out the possibility of (sub)cultural differences in the weights assigned to speed versus
accuracy of performance, and the value placed on solutions constructed in the head
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versus by means of external aids. For instance, classroom socio-mathematical norms
and practices valuing speed over accuracy and/or mental strategies over written ones,
may result in students overusing mental strategies at the cost of accuracy. Besides
the implication that cognitive models for strategy adaptivity are limited in this respect
(see also Ellis, 1997; Verschaffel et al., 2009, there are also important educational
consequences. Most educators will agree that being correct is more important than being
fastin learning mathematics. However, not all students (particularly boys) seem to reason
in that way, and teachers should be aware of that. So, teachers may create a classroom
environment in which accuracy is preferred over speed and using an external aid (paper
and pencil) is not necessarily less valuable than working in the head. Furthermore,
they may explicitly encourage consistently mentally calculation students (especially
those with low mathematical ability) to write down their solution procedures, as this
would improve their accuracy. Finally, it would be interesting to conduct a similar study
in another educational climate with a larger focus on written arithmetic than in the
Netherlands and compare the results.
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APPENDIX 5.A COMPLETE ITEM SET

Table 5.4 presents the number characteristics of the three parallel sets (A, B, and C) of 4
items each. The realistic contexts in set A were (translated from Dutch):

1. Four children go to an amusement park together. For admission, they have to pay
34 euro in all. How much is that per child?

2. A bookseller has earned 1,089 euro. He sold all his books for 11 euro each. How
many books did he sell?

3. Robert is making a fence, which will have a length of 31.2 meters. The planks he
uses are 1.2 m long. How many planks will he need for the entire fence?

4. Anne has 304 biscuits. She divides the biscuits over 19 jars. How many biscuits are
there in each jar?

The contexts of the items in set B and set C were comparable.

TABLE 5.4 Number characteristics of the items.

item set
item nr. A B C
34 -4 52+-8 45 -6
1089 = 11 2450 = 25 1980 = 20

31.2+-12 308-+11 322+-14
304 - 19 306 - 17 221 +13

A~ O N =

4 NB. Original item included illustration, making clear that the height of the fence was the height of one plank.
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