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4. STRATEGY USE ON DIVISION PROBLEMS

ABSTRACT

Individual differences in strategy use (choice and accuracy) were analyzed. A sample
of 362 Grade 6 students solved complex division problems under two different
conditions. In the choice condition they were allowed to use either a mental or
a written strategy. In the subsequent no-choice condition, they were required to
use a written strategy. Latent class analysis showed that there were 3 subgroups of
students with respect to their pattern of strategy choices: primarily using a written
strategy (more girls than boys); primarily using a mental strategy (more boys than
girls); and using a written strategy on more difficult items, but a mental strategy on
the easier ones (almost no weak mathematical achievers). Strategy accuracies were
analyzed with explanatory IRT modeling. A between-subjects comparison in the
choice condition showed that written strategies were usually more accurate than
mental strategies, especially for the weak achievers. A within-subject comparison
showed that the performance of students who used mental calculation on a particular
item in the choice condition, improved by requiring the use of a written strategy in

the no-choice condition.

4.1 INTRODUCTION

In arithmetic, children know and use multiple strategies (e.g., Lemaire & Siegler, 1995;
Siegler, 1988a). These strategies and their characteristics have been extensively studied
in elementary addition and subtraction (e.g., Carr & Jessup, 1997; Carr & Davis, 2001;
Torbeyns et al., 2004b), in elementary multiplication (e.g., Lemaire & Siegler, 1995; Siegler
& Lemaire, 1997) and in mental multidigit addition and subtraction (e.g., Beishuizen,
1993; Beishuizen, Van Putten, & Van Mulken, 1997; Blote et al., 2001; Fuson et al., 1997;
Torbeyns et al., 2006). In these domains of mathematics, near consensus is reached on
what strategies children use (Torbeyns et al., 2006). In contrast, strategies for division
have received considerably less attention (Robinson et al., 2006). In particular, few studies
are devoted to more complex division problems in higher grades of primary school
(Van Putten et al., 2005). However, complex arithmetic in general (i.e., operations with
multidigit numbers for which one may use a written procedure) and complex division in
particular are interesting domains in the light of the reform in mathematics education.
In addition, the most recent national assessment in the Netherlands reported a large
performance decline on these domains since 1987 (J. Janssen et al., 2005). Therefore,
it is important to systematically study solution strategies for solving complex division
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4.1. Introduction

problems, which was the purpose of the present study. Specifically, the aim was to
analyze individual differences in strategy choice and strategy accuracy in solving complex

division problems by students at the end of primary school (Grade 6).

4.1.1 Solution strategies

Strategy competence is a much-studied topic in cognitive and educational psychology.
Lemaire and Siegler (1995) distinguished four dimensions of strategic competence on
which individuals may differ: their strategy repertoire (which strategies are used), their
strategy distribution (the frequency with which the strategies are used), their strategy
efficiency (strategy speed and/or accuracy), and their strategy selection (how strategies
are chosen, related to problem and individual strategy characteristics). These dimensions
are central to the current study.

In cognitive models such as the Adaptive Strategy Choice Model (ASCM, Siegler &
Shipley, 1995), the choice of a strategy on a particular problem is a function of individual
strategy performance characteristics for that problem and strategy-choice criteria held
by the individual. People tend to choose their strategy adaptively: they choose the
fastest and most accurate strategy for a given problem out of their strategy repertoire.
Strategy speed and accuracy may vary from individual to individual (Siegler & Lemaire,
1997). Furthermore, individuals differ in the stringency of the threshold for choosing a
strategy, the confidence criterion (Siegler, 1988a, 1988b). For example, Siegler (1988a)
has found three subgroups of first-graders with regard to their strategy choices, and
labeled them as good students, not-so-good-students, and perfectionists. The latter
group contrasted with the first two groups with respect to the required certainty that a
particular strategy yields the correct answer for choosing that strategy: the perfectionists
had a high confidence-criterion (Siegler, 1988a, 1988b). Hecht (2006)) found similar
subgroups in adult’s multiplication.

In addition to task and individual strategy performance characteristics, individual
differences in strategy choices are also the result of the influence of other cognitive
and socio-emotional or socio-cultural variables (Torbeyns, Ghesquiére, & Verschaffel,
2009). In mathematics, gender differences and achievement level effects on strategy
choices have been found. Previous studies reported that girls show a greater reliance on
rules and procedures (i.e., they may set their confidence criterion higher), whereas boys
seem to use more intuitive strategies (Carr & Davis, 2001; Carr & Jessup, 1997; Gallagher
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4. STRATEGY USE ON DIVISION PROBLEMS

et al., 2000; Timmermans et al., 2007). These findings may also be related to more
general gender-related differences in mathematics, such as that girls have lower levels of
confidence with mathematics (Mullis et al., 2008; Timmermans et al., 2007; Vermeer et al.,
2000). With respect to achievement level, Torbeyns et al. (2006)) found that above-average
achievers were more adaptive in their strategy choices than below-average achievers
on addition and subtraction up to 100. Similar differences were found by Foxman and
Beishuizen (2003) in mental calculation strategy choices of top, middle, and bottom
attainment band students. Finally, on complex (multidigit) division problems, weak
mathematical achievers more often used mental strategies and less often used written
strategies, compared to medium and strong mathematical achievers (Hickendorff et al.,
2009b).

Individual differences in strategy use can only be found by analyzing individual
profiles of strategy choice and strategy performance over items; aggregate measures
such as means or correlations obscure the profiles (Gilmore & Bryant, 2006; Mabbott &
Bisanz, 2003). Until recently, strategy use was usually studied by the so-called Choice
method: letting students solve several problems, subsequently coding their overt and/or
covert strategy use, and relate these strategies to the correctness of the answers and time
needed to execute the strategy. Such a procedure was also followed in the few studies
devoted to solution strategies for complex division (Anghileri et al., 2002; Van Putten et al.,
2005). Siegler and Lemaire (1997) have argued that such studies are flawed by selection
effects, because strategy performance was assessed in a condition in which students
could choose which strategy they used. In that case, estimates of strategy characteristics
may be biased by selection effects in two ways. Selection of students could play a role: for
example, it could be that the accuracy of a particular strategy is overestimated because it
is applied relatively more often by better than by weaker students. Second, selection of
items could play a role: it could for example be that the accuracy of a particular strategy
is underestimated because it is applied more often on difficult problems than on easy
ones.

To estimate strategy characteristics in an unbiased manner, Siegler and Lemaire
(1997) have proposed the Choice/No-Choice method. Each participant is tested under
two different types of conditions. In the Choice condition, participants are free to choose
their strategy. In the No-Choice conditions, participants have to use a specific strategy
to solve all items, so that accuracy and speed of that strategy are assessed unbiasedly.

Several studies in mathematics have applied the Choice/No-Choice methodology to
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4.1. Introduction

study solution strategies (e.g., Lemaire & Lecacheur, 2002; Luwel, Verschaffel, Onghena,
& De Corte, 2003; Torbeyns et al., 2004b, 2006). An important aspect of the Choice/No-
Choice methodology is that the adaptiveness of strategy choices can be evaluated on an
individual level, i.e., whether a subject chooses that strategy that for him or her is most
efficient (Luwel et al., 2003).

4.1.2 Complex division

In the present paper, complex division is defined as division problems in which the
quotient is a multidigit number (e.g., 872 -4 =218), and the divisor may be multidigit
too (e.g., 736 +23 = 32). This contrasts with simple division (division problems from the
multiplication tables), in which the quotient is a single digit (e.g., 48 -~ 8 = 6; Robinson et
al., 2006). Complex division is of special interest for three reasons. First, complex division
is an understudied topic thus far. Second, with the mathematics education reform in the
Netherlands, instruction in solving complex division problems has changed to the largest
extent compared to other arithmetical domains. Third, a large decline in achievement
has been observed on this domain in the Netherlands. These latter two points will be
discussed below.

Mathematics education has experienced a reform process of international scope
over the last couple of decades (Kilpatrick et al., 2001). A common international trend
is that students should become active learners who construct their own mathematics
(Blote et al., 2001). In the Netherlands this reform movement is known by the name of
Realistic Mathematics Education (RME) (Freudenthal, 1973; Gravemeijer, 1997b; Treffers,
1987). In RME, students’ deep understanding of mathematics is pursued, instead of
mastery of rules and procedures. Students should acquire insight and flexibility in their
use of strategies (Kilpatrick et al., 2001). Instruction is based on the key principle of
guided reinvention (Freudenthal, 1973), implying that instructors should give students
the opportunity to reinvent the mathematics they have to learn for themselves, according
to a mapped out learning route, starting at the informal or intuitive strategies students
have. Another characteristic of the reform is that mental arithmetic plays a central role in
mathematics education (Blote et al., 2001). At present, nearly all Dutch primary schools
use mathematics textbooks based on RME principles (J. Janssen et al., 2005).

The RME approach to solving complex division problems starts from the informal
strategies that young children employ for division. These are direct counting, repeated
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addition, use of a multiplicative operation (reversed multiplication), and repeated
subtraction (Ambrose et al., 2003; Mulligan & Mitchelmore, 1997; Neuman, 1999;
Robinson et al., 2006). In the Netherlands, Treffers (1987) introduced progressive
schematization, building on the informal strategy of repeated subtraction of multiples
(chunks) of the divisor. The resulting solution strategy is increasingly schematized
and abbreviated. Therefore, two aspects of the solution strategy can vary: the level of
abbreviation and the level of schematization. Figure 4.1 shows examples of strategies
varying in abbreviation of chunking (low-level versus high-level, discussed in more detail
later) and in whether or not the schematic notation of repeated subtraction is used.
In general, there are two fundamental differences between these types of chunking
strategies and the traditional algorithm for long division (also in Figure 4.1). First,
in the traditional algorithm it is necessary that each subtraction of a multiple of the
divisor is optimal, while this is not necessary in the chunking approaches. Second,
understanding the place values of the digits in the dividend is not important for applying
the traditional algorithm in a correct way, while the place values of the numbers are
left intact in the progressive schematization approach. In RME-based textbooks, the
traditional long division algorithm is replaced by the alternative approach as introduced
by RME. Therefore, complex division can be said to be a prototype of the RME approach
(Van Putten et al., 2005), which makes it an interesting domain to study.

Another reason why research on strategies for complex arithmetic, especially division,
is needed, is that national assessment results from the Netherlands showed that
achievement on these domains has decreased considerably since 1987 (J. Janssen et al.,
2005). This decrease occurred between four consecutive large scale national assessments
of mathematics achievement at the end of primary school, carried out in 1987, 1992,
1997, and 2004 by the Dutch National Institute for Educational Measurement (CITO).
Results showed that achievement has increased on numerical estimation and general
number concepts, and to a lesser extent on calculations with percentages and mental
addition and subtraction. However, results showed a decline of performance on complex
arithmetic. Students who were in their final year of primary school in 2004 performed
less well than students who were at their final year in 1987 on complex addition and
subtraction, and especially on complex multiplication and division. Between 1987 and
2004, achievement in complex multiplication and division has dropped with more than
one standard deviation on the ability scale, with an accelerating trend (J. Janssen et al.,
2005).
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FIGURE 4.1 Examples of solution strategies for the problem 736 + 32.

A recent study related this achievement decline on complex division on the two most
recent national assessments of 1997 and 2004 to the solution strategies used (Hickendorff
et al,, 2009b). Results showed that two changes appeared to have contributed to the
decline. First, strategy use had shifted: use of written procedures decreased (attributable
to a decrease in the use of the traditional long division algorithm), while an increased
percentage of items was answered without calculations written down on scrap paper.
This shift could be attributed to boys much more than to girls. The strategy shift was
unfortunate, since answering these problems with a nonwritten strategy yielded fewer
correct answers than when students used a written strategy. Second, each of the solution
strategies yielded less correct answers in 2004 than in 1997, with approximately the same
amount of accuracy decrease per strategy. So, the performance decline on complex

division seems to be related to a change in strategy use, in particular to a decrease in
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the use of written strategies, and to a change in strategy accuracy as well (Hickendorff et
al., 2009b). However, this study was descriptive and therefore limited in several aspects,

among which the aforementioned selection effects.

4.1.3 Current study

The purpose of the current study was to study strategy use for solving complex division
problems in a more systematic way than has been done in the descriptive studies devoted
to this subject. Therefore, a partial Choice/No-Choice design was used: in the Choice
condition students could choose whether they used a written or mental strategy in
solving a set of complex division problems, and in the subsequent No-Choice condition
they had to use a written strategy on a set of parallel problems. Students were interviewed
on their nonwritten strategies in the Choice condition.

The main focus in this study was on the distinction between written and mental
strategies, because national assessment findings showed that this was a very relevant
distinction with respect to the observed performance decrease: use of mental strategies
increased over time, but their success rates stayed far behind those of written strategies
(Hickendorff et al., 2009b). In the present study, mental computation was defined as
carrying out arithmetical operations without the use of any recording devices such as
pen and paper, similar to the definitions of for example Reys (1984), Timmermans et al.
(2007), and Varol and Farran (2007). Written strategies included all forms of calculations
in which some part of the solution process was written down on paper, ranging from
only recording intermediate solution steps to written algorithmic procedures.

The design of the current study was a partial implementation of the Choice/No-
Choice design, because there was only one No-Choice condition (forced written strategy
use). So, there was no No-Choice condition in which students had to answer these
problems using mental computation. We believed it would be too large a burden for a
great number of students if they had to use a mental strategy on this type of problems on
which they would usually need scrap paper. Many students may have become frustrated
and unmotivated to continue such a task. Another difference with many of the other
studies using the Choice/No-Choice methodology was that response times were not
recorded, because we applied a classroom administration procedure, comparable to the
procedure in the national assessments.

The present study’s first aim was to describe the repertoire and distribution of the
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written strategy types, as well as of the mental calculation strategies. Two aspects were of
particular interest. One aspect concerned the mental strategies. From previous studies, it
was not entirely clear that students who did not write down their strategy or intermediate
solution steps had used a mental calculation strategy to reach their answer. It could also
be that they provided only an estimate of the precise answer, or that they just guessed
because they did not know how to solve the problem. The other aspect concerned the
repertoire and distribution of (forced) written strategies that were used by students who
applied a mental strategy when they could choose. Specific points of focus were to
investigate whether these students did have written procedures in their repertoire, and
how their written strategy choices compared to those of students who already used a
written procedure when they were free to choose.

The second aim was to analyze individual differences in the extent to which students
chose mental or written procedures, and relate these individual differences to problem
characteristics and to the student characteristics gender and general mathematics level.
Regarding problem features, we distinguished problems with a large cognitive demand
from problems requiring less cognitive effort. In the former category, the dividend,
divisor, and outcome were either large or decimal numbers. On these problems, more
written strategies were expected. Problems in the latter category were such that either
the dividend could be easily split up, or that a compensation procedure (rounding off
the dividend) could be used. We expected that solving these problems would require less
cognitive effort, and therefore, less need to write down a solution strategy or intermediate
steps. Regarding student characteristics, we first hypothesized that boys would be more
inclined than girls to use a mental strategy, replicating the findings of the national
assessments (Hickendorff et al., 2009b) and other studies on gender differences in
strategy choice (e.g., Carr & Davis, 2001; Carr & Jessup, 1997; Timmermans et al., 2007).
Second, we expected that students with lower levels of mathematics achievement would
make less adaptive strategy choices than higher achieving students, such as has been
found by Foxman and Beishuizen (2003) and Torbeyns et al. (2006).

The final aim of this study was to compare the relative accuracy of written and
mental calculation strategies in a more systematic way than was possible in the national
assessments (Hickendorff et al., 2009b) and previous studies into complex division
(Anghileri et al., 2002; Van Putten et al., 2005). The national assessments showed that
the accuracy of written procedures was higher than the accuracy of answering without

writing anything down, suggesting that encouraging the use of of a written strategy would
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improve performance. However, these results were based on comparing the performance
results between students and items, and thus biased by selection effects. In the present
study, these comparisons were made within students and items. We hypothesized that
the accuracy of students who used mental calculation on a particular item would increase
on a parallel item, by forcing them to use a written strategy, since writing down of the
solution procedure helps both in recording key information and in schematizing the
solution process (Ruthven, 1998). For students who already chose to write down their
solution steps in the Choice condition, we expected that forcing them to do so in the
No-Choice condition would not be harmful (but also not beneficial) since it would be
their usual way of solving the problem.

4.2 METHOD

4.2.1 Participants

The present sample consisted of 362 students from Grade 6, with a mean age of 12.0 years
(SD =.51), ranging from 10.4 to 14.5 years. There were 193 boys, 161 girls, and 8 students
with missing gender information. The students originated from 12 different schools,
located in different regions in the Netherlands with varying levels of urbanization. Each
of these schools used a mathematics textbook based on the RME principles, although

they did not use the same textbook.

4.2.2 Materials
Experimental task

The experimental task consisted of a total of 13 items: 4 pairs of parallel items yielding 8
items, and 5 additional unpaired items. ! The complete item set is presented in Appendix
4.A. Parallel item versions were constructed such that the two items within each pair
were as similar as possible with respect to item context and number characteristics of the
divisor, dividend, and outcome, but would not result in testing effects that would occur
when 2 sets of identical items were presented to each student. All 13 items presented
a complex division problem that was embedded in a realistic situation of sharing or
dividing.

The complete task administered to the students consisted of 22 items. The 9 items that were not part of the
present study were administered for other purposes of CITO.
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As discussed in our hypothesis on the effect of problem features, we distinguished
items with large cognitive demands — the four items pairs — from items requiring
less cognitive effort — the five unpaired items. In the four item pairs, several item
characteristics were varied, taking pair 1 as the base. In pair 2, the dividend and divisor
were decimal numbers. In pair 3, the outcome (quotient) was much larger than in the
other items, so that students had to subtract more chunks and/or larger chunks. Finally,
in pair 4 the outcome was a decimal number, so students had to deal with a remainder.
The five unpaired items (items 5 to 9 in Appendix 4.A) were constructed so that they
could well be solved mentally, or by only recording some key numbers. Specifically, the
dividend and divisor of items 6, 8, and 9 were chosen so that they could be mapped
directly (e.g., 32404 could easily be split up in 32(00)+4 and 40+4). Items 5 and 7 were
constructed so that a compensation procedure (rounding the dividend) would be an
efficient approach (e.g., 2475 +25 =2500+25—1).

The task was divided into two parts containing separate instructions. Lay-out was
designed in such a way that when students had finished the first part (items in the

Choice-condition), they could not see the next part.

Standardized mathematics test

The general mathematical ability of each student was measured by the standardized
mathematics subtest from the 2007-version of CITO’s End of Primary School Test (CITO,
2007). This instrument is widely used in the Netherlands, and assesses the level of
achievement of Grade 6 students on mathematics, language, study skills, and world
orientation. The 60-item subtest on mathematics has high internal reliability (KR20 =.92;
CITO, 2007). In addition to the sum score (the number of items answered correctly), the
percentile rank for each student, based on a total of more than 150,000 participants of
the End of Primary School Test 2007, could be calculated.

4.2.3 Conditions

In the experimental task, items were administered in 2 different conditions: 9 items were
administered in the Choice condition, and 4 items in the No-Choice condition. The 9
items in the Choice condition consisted of a particular version of each of the 4 pairs of
parallel items, and of the 5 unpaired items. In this condition, students were free to choose
whether they used the scrap paper or not in solving each of the problems presented. If
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students wanted to write down notes or solution procedures, they had to use the space
next to each item for doing this.

In the No-Choice condition, the parallel versions of the first 4 items in the Choice
condition were administered. In this condition, students were instructed that they had
to write down their solution procedure in a calculation box presented next to each of the
items. To encourage the use of the calculation box even more, students were told that if
they would not write anything down in the calculation box, the answer they would state
would be scored as incorrect.

The Choice condition always preceded the No-Choice condition, to prevent carry-
over effects of having to write down solution steps on the free strategy choice. The
assignment of item version to condition was counterbalanced, yielding two different
forms of the task. In Form A, item versions a of each of the 4 item pairs were presented
in the Choice condition, and their counterparts (versions b) were presented in the No-
Choice condition. In Form B, this assignment was reversed. Half of the sample completed
Form A, the other half Form B.

4.2.4 Procedure
Classroom administration of the experimental task

The experimental task was administered in the classroom. One of the two specific task
forms (A or B) was assigned to each class. The teacher instructed the students that this
test consisted of two parts, and that they could start with the first part (the items in the
Choice condition), but that they could not start the second part before all students in
the classroom had finished the first part. In addition, students were instructed that they
could use the space next to each item to write down notes or calculations, and that it was
not allowed to use a separate piece of paper.

When the last student in the classroom had finished the first part of the task, students
could turn the page to the next part of the task, and the teacher read the instructions
about using the calculation box out loud. All students then started the second part at
the same time. When all students had finished both parts of the task, they handed in
their test booklet. They could take as much time as they needed, so there was no time
pressure.
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Individual interviews

In 8 of the 12 schools, students interviews took place. After all students had finished both
parts of the paper-and-pencil task and had handed in their booklets, the experimenters
selected those who failed to write out calculations on at least 1 of the first 4 items. Due to
time limitations, only a sample of 89 students from this selection (stratified on a teacher-
based judgment of their general mathematics level) were interviewed. They were asked
about their solution procedure on problems in the Choice condition on which they had
not written down anything but their answer.

Interviews took place individually in a room outside the class, approximately one to
three hours after they had finished the experimental task. The experimenters emphasized
that they were only interested in how the student had solved the problem, so that
the students needed not to worry about making mistakes. The experimenters asked
the students whether they could remember how they had calculated the answer they
had given and whether they could demonstrate the solution steps thinking aloud, for
each item solved without written working. These interviews were audiotaped, and the
experimenter also made notes.

Standardized mathematics test

The students completed the 2007 End of Primary School Test (CITO, 2007), as part of
their final year’s standardized assessment. This assessment took place approximately
one month after the students participated in the current study:.

4.2.5 Solution strategies

The strategy use on the experimental task of all 362 students was categorized. First,
strategies were crudely categorized into one of three categories, based on the notes or
solution procedures that were written down in the booklets containing the items. These
categories were written strategies, mental strategies (answers stated without written
work), or skipped items. A more fine-grained classification specified the type of written
strategies or the type of mental strategies, respectively.

Types of written strategies were classified based on the work students had written
down. A first consideration was whether a traditional strategy or a chunking-based
approach was used. The latter category was subdivided into 4 categories, based on the
combination of two aspects (see also Figure 4.1). First, this was the level of abbreviation
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or chunking: divided into low-level chunking or high-level chunking. For a strategy to
be categorized as high-level chunking, the first chunk needed to be at least the largest
possible power of 10 times the divisor that fits into the dividend (for example, when
solving 782 < 34 the first chunk should be at least 10 x 34, and when solving 4080 = 20
it should be at least 100 x 20). Furthermore, the remaining chunks needed also to be
sufficiently efficient (so, no long tail after a first efficient chunk). If these criteria did
not hold, the strategy was categorized as low-level chunking. This category included
also: trying out several solutions, no chunking at all (for instance, when solving 782 <34
repeatedly subtracting single 34s from 782), or splitting of the dividend (e.g., when
solving 33+-12 doing 30+124-3-+12). The second aspect on which written strategies were
classified was whether or not a schematic notation of repeated subtraction was used. A
final category was included containing wrong procedures (either the wrong operation or
splitting of the divisor, e.g., when solving 782 <32 doing 782 + 30 + 782 = 2) and unclear
strategies. Interrater reliability of categorization was assessed by computing Cohen’s ¥
(Cohen, 1960) on 200 randomly selected observations (student-by-item combinations)
that were coded by two independent experts. For the crude classification (written,
mental or skipped) x was .95, indicating almost perfect agreement. For the fine-grained
classification x was .76, indicating substantial and satisfactory agreement.

Based on audiotaped interviews, the type of strategies that the sample of students
interviewed used in solving the items they had answered without written work in the
experimental task was inferred. In the large majority of these instances (92%), students
reported that they calculated the answer mentally ("in their head”). Within these mental
calculation strategies, the following four categories were distinguished. Similar to the
types of written strategies, these were first low-level chunking and second high-level
chunking (of course, always without the schematic notation of repeated subtraction). In
the third category, students reported that they did not try to calculate the exact answer
and that the answer given was a guess or a numerical estimation. The final category
comprised wrong and unclear mental calculation procedures.

4.3 RESULTS

For 354 subjects, the CITO mathematics test score as well as gender information were
available. On the mathematics test, an average score of 45.2 items correct (SD = 9.3)
out of a total of 60 items was obtained. The present sample of students performed
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TABLE 4.1 Descriptive statistics of strategy use and strategy accuracy.

Choice No-Choice
strategy it.t1 it2 it3 it4 it5 it.6 it7 it.8 it.9 it1 it2 i3 it4
strategy choice: number of students using each strategy
mental strategy 44 106 42 92 141 155 157 235 196 3 8 2 13
written strategy (total) 313 253 317 264 218 205 202 125 161 354 350 355 343
high-level schema 263 122 234 176 124 114 107 77 93 304 187 281 222
high-level no schema 27 58 39 40 59 57 67 24 55 26 80 30 62
low-level 18 63 37 26 25 26 22 19 10 19 64 37 37
wrong/unclear 5 10 7 22 10 8 6 5 3 5 19 7 22
total (non-skipped) 357 359 359 356 359 360 359 360 357 357 358 357 356
strategy accuracy: proportion correct per strategy
mental strategy 57 .57 .40 .53 .82 .81 .75 .95 .71 na. na. na. na.
written strategy (total) 79 82 75 59 76 .79 8 .90 .83 82 77 76 .62
high-level schema .83 .87 .81 .66 .81 89 92 99 83 .88 .84 .81 .68
high-level no schema .78 .90 77 .60 .83 77 .84 .83 .87 .73 .84 .73 .71
low-level 39 75 49 62 52 65 .73 .89 .90 32 73 54 46
total (non-skipped) .76 .75 .72 .58 .79 .80 .81 .93 77 .82 .76 .76 .60

slightly better than the national sample of test takers: the median (population) percentile
rank was 57.0, with (population) quartiles of 38.3 and 78.0 (these values would have
been 50, 25, and 75, respectively, if the distribution of mathematics achievement of this
sample would have been completely representative of the total population of participants
of the End of Primary School Test 2007). Furthermore, there were gender differences
in standardized mathematics achievement: girls answered significantly fewer items
correctly (M =42.8, SD =9.3) than boys did (M =47.2, SD =8.9), #(352) =4.43, p <.001.
In the total population, there were similar differences between boys and girls on this
mathematics test, so the present sample is representative in that respect.

Table 4.1 shows descriptive statistics of strategy choice (upper part) and strategy
accuracy (lower part) for the items in the Choice as well as in the No-Choice condition
on the experimental task. The two low-level chunking categories (with and without
schematic notation) were taken together because of small numbers of observations.
Furthermore, in the present sample there turned out to be only 3 out of the 362 students
who used the traditional algorithm. Therefore, the traditional algorithm was grouped
with the strategies of high-level chunking with a schema of repeated subtraction. Several
aspects of Table 4.1 will be discussed in the following sections in which each of the
research objectives is addressed.
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4.3.1 Repertoire and distribution of written and mental solution strategies (first aim)

Table 4.1 shows that in the Choice condition, items 1 to 4 were solved with a mental
strategy by 12% to 29% of the students. Not surprisingly, these percentages were higher on
items 5 to 9, that were devised such that they could be solved mentally more easily than
the first 4 items, ranging from 39% to 65%. Items were skipped only by very small numbers
of students (2 to 6 students). In the No-Choice condition, items 1 to 4 were answered
without written working by 3, 8, 2, and 13 students, respectively. These observations will
be left out of the analyses comparing the Choice and No-Choice conditions. Evidently,
the experimental manipulation to force students to write their solution steps in the

calculation box was successful for the large majority of observations.

Written strategies

Table 4.1 also shows that the vast majority of written procedures consisted of high-level
chunking, ranging from 71% on item 2 to 93% on item 1. High-level chunking was applied
usually with the schematic notation of repeated subtraction. However, on items 5 to 9
and also on item 2, this schematic notation was relatively less often used than on items 1,
3, and 4. Another interesting result (not presented in Table 4.1) is that on items 5 and
7, which were devised so that applying a compensation strategy would be an efficient
approach, compensation was not used very often within the written solution strategies.
On item 5, 13% of the 218 written solutions involved compensation of the dividend, and
on item 7 this was only in 7% of the 202 written solutions.

Table 4.2 shows the relative distributions of written strategies on items 1 to 4 in the No-
Choice condition, separately for students who used a written or a mental computation
procedure on the parallel item in the Choice condition. Per item, students were excluded
who skipped the item in Choice and/or in No-Choice. The Fisher’s Exact test-statistic
testing the association between using a mental or written procedure on an item in the
Choice condition on the one hand, and the distribution of written strategies used on that
item on the other hand, is reported.? For each item, the association was significant (see
last row of Table 4.2).

2 Statistical testing of the Pearson y?2-statistic for independence of rows and columns of a contingency table
was not feasible. This was because the assumption of most of the cells having an expected cell count of at
least 5 was violated in 2 of the contingency tables. Fisher’s Exact test was used instead. This test uses exact
distributions instead of large sample approximations, such as the Pearson y?2 does. See for example Agresti
(2002).

126



4.3. Results

TaBLE 4.2 Distributions of written strategies in the No-Choice condition, separate for
students who solved that item with a mental (m) or written (w) strategy in the Choice
condition.

item 1 item 2 item 3 item 4
strategy m w m w m w m w
low-level .07 .05 .16 19 18 10 18 .08
high-level 22 .05 26 .22 23 .06 27 .16
high-level schema .66 .89 44 57 .51 .83 43 .72
wrong/unclear .05 .01 14 .02 .08 .01 12 .05
N 41 310 98 251 39 314 82 257
Fisher’s Exact Test 18.1* 20.0* 21.7* 23.3*

*p < .001

On all 4 items, students who used mental computation in the Choice condition
relatively more often applied wrong or unclear procedures on that item in the No-
Choice condition than students who used a written procedure in the Choice condition.
Schematic high-level chunking was relatively more often used by students who already
used a written procedure in the Choice condition. In addition, low-level chunking and
high-level chunking without schematic notation were relatively more often used by

students applying mental calculation in the Choice condition, except on item 2.

Mental strategies

Table 4.3 displays the distribution of the types of mental computation strategies used
on items 1 to 9 presented in the Choice condition, based on the sample of 89 students
who were interviewed. A clear difference between items 1 to 4 on the one hand, and
items 5 to 9 on the other hand appears. Although on all items high-level chunking carried
out mentally was the dominant strategy, this dominance was much more pronounced
on items 5 to 9 (92% to 100% high-level chunking) than on items 1 to 4 (56% to 65%
high-level chunking). On items 1 to 4, the students interviewed sometimes made a guess
or numerical estimate, applied low-level chunking mentally, or used a wrong or unclear
strategy. These strategies were almost never observed on items 5 to 9.

Another important observation is that within these mental calculation procedures,
compensation strategies were used very often on items 5 and 7: on item 5 in 95% of
the 43 mental strategies, and on item 7 in 75% of the 36 mental strategies. These high
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TABLE 4.3 Distribution of mental computation strategies on items in the Choice condition.

strategy it1 it2 it3 i4 it.t5 it.6 it.7 it.8 it 9
guess/estimate .05 .06 .00 .27 .00 .00 .00 .00 .00
low-level 15 19 22 .07 .00 .05 .00 .00 .04
high-level 65 56 56 .56 98 95 97 1.00 .92
wrong/unclear .15 19 .22 10 .02 .00 .03 .00 .04
N (interviewed) 20 48 18 41 43 42 36 58 52

percentages are in contrast with the 13% and 7% of the written strategies on items 5 and
7, respectively. These differences in proportions of use of compensation between written
and mental strategies are statistically significant on both items (for item 5, y2(1, N =
261)=119.0, p <.001, and for item 7, y2(1, N =238)=91.4, p <.001).

4.3.2 Individual differences in strategy choices (second aim)

Thus far, strategy distributions were analyzed per item. In this section, we focus on
individual differences in the extent to which students chose a written or a mental solution
strategy on the items administered in the Choice condition. In the Choice condition,
38% of the students chose at least once for a mental solution strategy on the first 4 items.
Considering all 9 items in the Choice condition, this percentage was 79%.

Multivariate analysis: Latent class models

Since each student chooses a strategy on each of the 9 items administered in the Choice
condition, resulting data are multivariate. There are within-subject dependencies
between the 9 strategy choice variables, and we need analysis techniques that can
take these dependencies or correlations into account. As Hickendorff et al. (2009b)
argued, latent variable modeling is appropriate. The latent variable (either categorical or
continuous) accounts for the correlations within individuals by mapping the multivariate
responses on the latent variable. Individual differences between students are allowed for
as well, because each individual is allocated a particular position on the latent variable.

To analyze individual differences in the extent to which students chose written or
mental procedures (on the items presented in the Choice condition), we used latent
class analyses (LCA) (e.g., Goodman, 1974; Lazarsfeld & Henry, 1968. In LCA, the
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latent variable is assumed to be categorical, representing latent (unobserved) classes
or subgroups of subjects. The basic latent class model is f(y) = 2115:1 P(k)]_[l. P(yilk).
Classes run from k =1,..., K, and y is a vector containing the observed data: the strategy
categorization (written/mental) on all items i = 1,...,9 presented to the student in
the Choice condition. Resulting parameters are the class probabilities or sizes P(k)
and the conditional probabilities P(y;|k). The latter reflect for each latent class k the
probabilities of solving item i with a written and a mental strategy, respectively. As
latent class software, we used LEM (Vermunt, 1997), a general and versatile program for
categorical data analysis. To decide on the number of latent classes underlying the data,
we relied on the BIC-criterion. The BIC-value (Bayesian Information Criterion) is a model
fit statistic that penalizes the fit of a model with the number of parameters estimated.
Lower BIC-values represent a better trade-off between model fit and parsimony of the
model.

In addition to searching for subgroups of students who could be characterized by a
specific tendency to apply mental calculation on each of the items, we were interested
in potential effects of background variables (gender and general mathematics level) on
these class sizes. In other words: are the relative sizes of the latent subgroups different
for boys and girls, and/or for students with a weak, medium or strong mathematics level?
The existence of these kind of class size differences can be tested by inserting covariate(s)
in latent class models, meaning that the covariate (such as gender) predicts class
membership (Vermunt & Magidson, 2002). The LC-model with one observed covariate
z can be expressed as f(y|z) = Zle P(k |Z)1_L~ P(yilk). Now, class probabilities sum
to 1, conditional on the level of the covariate, i.e. Zle P(k|z) = 1. The contribution
of a covariate can be tested by a Likelihood Ratio (LR) Test statistic A, in which the
improvement in fit of the model with the covariate relative to the fit of the model without
the covariate is tested for statistical significance.

Model fitting steps

The 9 dependent variables of the LCA were, for each item in the Choice condition,
whether it was solved by a written procedure or by mental calculation. Skipped items
were coded missing. There were two explanatory variables: gender (2 categories) and
general mathematics level (3 categories, based on the student’s obtained percentile
rank scores on the standardized mathematics test: weak students with a (population)
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percentile rank of 33 or below, medium students with a percentile rank between 34 and
66, and strong students with a percentile rank of 67 or higher). Eight students had missing
values on either or both of these explanatory variables, and were excluded from these
analyses, so N =354.

First, we had to decide how many latent classes to interpret. The model with 3 latent
classes had the lowest BIC-value. Taking this 3-class model as the base model, our
next step was to assess the effect of gender and general mathematics level (GML) on
the sizes of these classes, by including these variables as covariates in the latent class
model. Both general mathematics level (A =29.7, df =4, p <.001) and gender (A = 38.3,
df =2, p <.001) had a significant effect on latent class sizes. Furthermore, gender had a
significant effect on the latent class formation independent from GML (A =22.6, df =4,
p < .001). Finally, gender and GML did not interact in their prediction of latent class
probabilities (A =2.0, df =4, p=.74).

Interpreting the best fitting model

So, we found that a model with 3 latent classes showed the best fit, and gender as well
as general mathematics level significantly affected class sizes. First, the latent classes
are characterized. Figure 4.2 shows, for each class separately, the probability to use
mental calculation on each item. The first class, containing 18% of the students, was
characterized by a high probability to apply mental calculation on each item. However,
items 1 and 3 were less likely to be solved mentally than the other items. The third class
(43% of the students) was characterized by low probabilities to use mental calculation,
so these were students who mostly used written procedures. Item 8 had the highest
probability to be solved by mental calculation, but this probability was still only .33. The
second class (39% of the students) was in between the first and the third class. Students
in this class were influenced by item characteristics in their choice between written
procedures and mental calculation. On the first 4 items, their probability to use mental
calculation did not exceed .17. However, on items 5 to 9 their tendency to use mental
calculation was between .55 (item 5) and .85 (item 8).

All three classes showed a similar pattern of strategy choice over the first 4 items,
reflecting that students adapted their strategy choices to problem features to some extent.
Items 1 and 3 were least likely to be solved by written procedures, followed by items
2 and 4. Items 1 and 3 were whole number division problems, of which item 3 was
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FIGURE 4.2 Probability of applying mental calculation in 3 latent classes.

designed to have the highest cognitive demands when doing mental calculation. Items 2
and 4 both dealt with decimal numbers, in the dividend and divisor or in the quotient,
respectively. From the remaining 5 items, item 8 triggered mental calculation the most,
also for students that were the least inclined to use mental calculation (class 3). This item
may have had the least cognitive demands, because 663 can be divided by 3 on a single-
digit basis. Although direct mapping of the divisor to the dividend was also possible
on items 6 and 8, this may have had a little higher cognitive demands than on item 6,
because it was not possible on a single-digit basis, but on a two-digit basis (i.e., 3240
could not be split up in single digits 3, 2, 4, and 0, but instead had to be split up in 32 and
40). Items 5 and 7 were special in the sense that if students did not use a compensation
strategy, many steps would have to be taken, requiring high cognitive demands if they
would do this mentally. However, when using a compensation strategy, fewer steps need
to be taken, which can be well done mentally. So, choosing between mental and written
strategies on these items may reflect whether a compensation strategy was used or not.

Table 4.4 shows the effects of gender and general mathematics level (GML), by
presenting the class sizes conditional on the combinations of gender and GML3. In
general, boys were much more likely to be classified in the first class of mainly mental

3 Although gender and GML did not interact in their prediction of class probabilities, class probabilities are still
presented for combinations of gender and GML. This was done because boys and girls were not equally spread
over the levels of mathematics achievement, which confounded with interpreting the effects of gender and
GML separately.
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TABLE 4.4 Estimated class probabilities, conditional on gender and GML. Standard errors
(SEs) between brackets.

class 1 class 2 class 3
gender GML mental ment/writ written N
weak 40 (.09) .09 (.06) .51 (.09) 27
boys medium .22 (.05) .50 (.07) .28 (.05) 66
strong .25(.04) .52(.05) .23(.05) 100
weak .09 (.03) .06 (.04) .84 (.05) 49
girls medium .06 (.02) .41 (.07) .53 (.07) 64
strong .07 (.03) .47 (.08) .46 (.08) 48
total 18 .39 43 1.00

calculation than girls, while the majority of the girls could be characterized as consistently
using written procedures. Boys were also slightly more often than girls classified in the
class of students that combined written and mental calculation. With regard to general
mathematics level, the main differences were found between weak students on the one
hand, and medium or strong achieving students on the other hand. These differences
predominantly arised in the second and third latent class. About half of the medium
and strong students (boys and girls) combined written and mental calculation, while
only 6 to 9% of the weak students did so. In contrast to switching between mental
and written strategies, weak students were more inclined either to consistently use a
written procedure (weak girls) or to consistenly use a mental procedure (weak boys). So,
weak students adapted their strategy choices to problem features to a lesser extent than
medium and strong students did.

Besides characteristics on the student level, school level characteristics might also
have an effect on strategy choices and hence on latent class membership. Since there
were 12 schools, entering school as another covariate in the latent class model would
result in an unstable model. As an alternative, students were assigned to the class
for which they had the highest posterior probability (modal assignment), yielding a
classification of students. Relative class sizes differed between the 12 schools: the size
of the first latent class (mainly mental) ranged from 0% to 28% between schools, the
size of the second latent class (mental/written) ranged from 34% to 53%, and the size of
the third latent class (mainly written) ranged from 26% to 55%. However, these school

differences were not significant (Fisher’s Exact Test = 29.2, p = .12), and neither were
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class size differences with respect to mathematics textbook used (Fisher’s Exact Test = 2.8,

p =.59) or to indicators of social-economical status (Fisher’s Exact Test = 3.8, p =.40).

4.3.3 Strategy accuracies (third aim)

The lower part of Table 4.1 presents descriptive statistics of the accuracy of each strategy.
On the first 4 items in the Choice condition, accuracy of written strategies seems
higher than of mental strategies, but this difference will be statistically tested below.
Furthermore, comparing the accuracies on a particular item presented in the Choice
condition with the accuracies on its parallel version presented in the No-Choice condition
does not yield clear differences. However, in the strategy accuracies in the No-Choice
condition of Table 4.1, no distinction was made with respect to the type of strategy
(mental/written) chosen on the parallel version of that item in the Choice condition. This
type of trial (student-by-item combination) information is crucial in the current analyses,
because we only expect an accuracy difference between the two conditions on an item
for students who chose a mental strategy in the Choice condition on that particular item.
Only on these student-by-item combinations, strategy use had changed from a mental

strategy in the Choice condition to a written strategy in the No-Choice condition.

Multivariate analysis: IRT-models

Strategy accuracy data are also multivarate. Therefore, latent variable modeling is again
suitable. To analyze accuracy differences between mental and written strategies, we
applied explanatory item response theory (IRT) analyses (De Boeck & Wilson, 2004;
Rijmen et al., 2003). In IRT modeling, a continuous latent variable 8 is introduced, usually
interpreted as the latent ability of each subject. In the most simple IRT measurement
model, the Rasch model, the probability of a correct response (y = 1) of subject p on
item i can be expressed as a logistic (S-shaped) function of the difference between the
latent ability of that subject 0, and the item difficulty §;,i.e., P(ypi =1)= %.
Such descriptive or IRT measurement models can be extended by an explanatory
part (Rijmen et al., 2003; Wilson & De Boeck, 2004), meaning that covariates or predictor
variables are included. These explanatory variables can be subject predictors, item
predictors, or subject-by-item predictors. In the present analyses, there were two subject
predictors, gender and general mathematics level. There were three predictors on the
item level: item number (1 to 9) dummies, parallel item version (a or b), and condition
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FIGURE 4.3 Hypothesized group means on logistic latent ability scale for one item pair.

of administration (Choice/No-Choice). Furthermore, there was one subject-by-item
predictor: the strategy a subject used in solving an item (mental or written) in the Choice
condition (see Hickendorff et al., 2009b, for further details on using strategy data in
explanatory IRT-analyses).

We were interested in the effects of using a mental or a written strategy on the
probability to solve an item correctly (i.e., the strategy accuracies), controlled for item
difficulty level B; and potential differences in difficulty level between the two versions of
an item. Specifically, we had three hypotheses concerning performance on the item pairs,
also presented graphically in Figure 4.3. First, we expected that in the Choice condition,
the performance of students using a written strategy would be higher than that of
students using a mental strategy, i.e. C > A in Figure 4.3 (a between-subjects comparison).
Second, we expected that performance of students who calculated mentally on an item
in the Choice condition would be higher on the parallel item presented in the No-Choice
condition, i.e. B > A (a within-subjects comparison). Third, we hypothesized that
performance of students who used a written strategy on an item in the Choice condition
would be equal to their performance on the parallel item presented in the No-Choice
condition, i.e. D = C (a within-subjects comparison). In addition, we hypothesized
that also on the unpaired items 5 to 9, the performance of students using a written
strategy would be higher than that of students using a mental strategy (between-subjects
comparisons). All explanatory IRT analyses in the present study were carried out in SAS
(SAS Institute, 2002, see also De Boeck & Wilson, 2004).
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Model fitting steps

We fitted a series of IRT-models, starting with the general model as illustrated in Figure 4.3.
As a first step, several restrictions were imposed to make the model more parsimonious.
The effects of condition (Choice/No-Choice) on accuracy were restricted to be equal for
items 1 to 4: i.e., the difference between B and A in Figure 4.3 had to be the same for each
of the items, and also the D - C difference had to be the same. This restriction resulted
in a non-significant loss in model fit (A = 3.6, df =6, p =.74), so this was a legitimate
simplification of the model. In contrast, restricting the accuracy differences between
written and mental strategies in the Choice condition to be equal for all items (i.e., the
difference between C and A in Figure 4.3 had to be the same for items 1 to 9) did result
in a significant decrease in model fit (A = 44.6, df = 8, p < .001). So, the differences
between chosen mental and written strategies accuracies were item-specific.

As a second step, student characteristics gender and the standardized score on the
mathematics achievement test were inserted as predictors in the model. Both variables
appeared to have a significant effect on latent ability (for gender, A=8.9,df =1, p=
.003; for mathematics achievement, A = 176.3, df =1, p <.001). When mathematics
achievement was incorporated in the model, adding gender did not have a significant
effect on performance anymore (A =.1, df =1, p = .81), so gender differences in general
mathematics level mediated gender differences in performance on complex division.
Mathematics achievement did have a significant effect on performance, as could be
expected, and was explored further in the third step. Specifically, two interaction effects
of mathematics achievement were tested. It was tested whether the within-subject effect
of condition (No-Choice compared to Choice for mental calculators: B - A difference)
was dependent on the mathematics level of the student, but this interaction effect was
not significant (A = .0, df =1, p =.90). However, mathematics achievement and strategy
used in the Choice condition (mental/written, between-subjects) did have a significant
interaction effect with each other on accuracy (A =17.4, df =1, p <.001). This implied
that the item-specific differences between the accuracies of written and mental strategies

(the C - A differences) depended on the mathematics achievement level of the student.

Interpreting the best fitting model

Results of the best fitting model are presented graphically in Figure 4.4. We start our
interpretation with results on the first hypothesis: the relative accuracies of written and
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FIGURE 4.4 Estimated probabilities to solve items 1 to 9 correctly for students at the mean
level of mathematics achievement. Left plot: items administered in Choice as well as
No-Choice condition, per item students who used mental calculation on that item in the
Choice condition are separated from those who used a written procedure. Right plot: items
only administered in Choice condition.

mental strategies on the items in the Choice condition (between-subjects comparison).
On more than half of the items, students choosing a written strategy were more accurate
than those choosing a mental strategy, but these differences decreased with higher
levels of mathematics achievement. For students at the mean level of mathematics
achievement, written strategies were significantly more accurate than mental strategies
onitems 1, 2, 3, 7, and 9. On the remaining items (4, 5, 6, and 8), the accuracy difference
between written and mental strategies was not significant for average achievers.

So, although selection effects on these strategy accuracy differences could not be
ruled out completely (because they are based on between-subjects comparisons), we
could correct for the mathematical achievement level of the students. We found that
written strategies were at least as accurate as and usually more accurate than mental
strategies. These differences, however, depended on the mathematics achievement level
of students, being largest for weak students and smallest for strong students.

Within-subjects comparison of performance on parallel items showed results on the
second hypothesis: for those who used a written procedure when they could choose,
performance in Choice and No-Choice did not differ significantly from each other (in
Figure 4.4, the lines with white squares on items 1 to 4 are almost horizontal). However,

as formulated in the third hypothesis, for those who used mental calculation on an item
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when they were free to choose, performance was higher in the No-Choice condition on
the parallel item (when they were forced to use a written strategy). This difference was
present on all four items (for items 1 to 4, the lines with black circles in Figure 4.4 show
an ascending trend). The average effect of forcing mentally calculating students to write
down their solution strategy is .68 (on the logistic scale), SE =.22, p =.002, effect size =
.87. This large effect is equivalent to raising the probability of a correct answer from 50%
to 66%. Furthermore, the size of the effect did not depend on the student’s mathematics

achievement level.

4.4 DISCUSSION

The main results of this study were that when students were free to choose how they
solved the presented problems on complex division, there were individual differences
in these strategy choices. Specifically, about 20% of the students predominantly used
mental calculation procedures on all items (more boys than girls), 40% quite consistently
used a written procedure (more girls than boys), and the remaining 40% used mental
calculation on more easy items but written procedures on the more difficult ones
(almost no weak students). There were also individual differences in strategy accuracies.
Mental calculation was less accurate than applying a written procedure on several items,
especially for students having a weak mathematical level. More importantly, when
students who used mental calculation to solve a problem were forced to write down
their solution steps on a parallel item, they were usually capable of applying a written
procedure, and their performance improved. This effect was unaffected by the level of
mathematical achievement of the student. So, the present study showed that mental
calculation may be a less accurate strategy than writing down notes or calculations on
complex arithmetic problems, not only between but also within students and items.
Therefore, encouraging students to make use of scrap paper in solving this type of
complex division problem would probably improve performance.

4.4.1 Individual differences in strategy use

There was an association between the type of strategy used in the Choice condition
(mental/written) and the types of written strategies used in the No-Choice condition.
In particular, mental calculators used less structured written strategies when forced to
write down their solution steps than written calculators did. This difference may be the

137



4. STRATEGY USE ON DIVISION PROBLEMS

result of a more general student characteristic affecting strategy choice: the tendency
to use algorithmic strategies (perhaps related to a larger emphasis on accuracy) versus
the tendency to use more intuitive, less structured strategies. These different tendencies
have been found in studies on gender differences in strategy use (Carr & Davis, 2001;
Carr & Jessup, 1997; Timmermans et al., 2007). Similar gender differences in strategy
choices were also found in the present study: it were mainly boys who relied on mental
calculation, girls were much less inclined to do so.

Furthermore, there were differences between items in the extent that they triggered
mental calculation, as came forward from the strategy frequencies (Table 4.1) as well as
from the latent class analysis (Figure 4.2). Mental calculation was applied less often on
the first 4 items than on the remaining 5 items (which had a smaller cognitive demand
due to the number characteristics) to some extent. So, students showed that they adapted
their strategy choices to problem characteristics, but individual differences were present
in the general tendency to apply a mental or a written strategy. In addition, there were
differences between students of different levels of mathematical performance in the
extent to which they spontaneously adapted their strategy choices to problem features.
There were almost no weak students combining mental and written procedures, while
almost half of the students with a medium or strong mathematical level did switch to
mental calculation on the easier items, adapting to the item characteristics. So, medium
and strong students showed some flexibility in their strategy choices, while weak students
did not, a result resembling that of Foxman and Beishuizen (2003) and Torbeyns et al.
(2006) with mental calculation.

Another interesting finding with respect to the adaptivity of strategy choices concerns
application of the compensation strategy on items 5 and 7. The number characteristics of
these two items were such, that rounding the dividend would be a very efficient approach.
We found only a small proportion of the written strategies making use of compensation,
while, in contrast, the majority of the sample of mental strategies involved compensation.
A possible explanation for this difference could be that students who were aware of
the possibility of compensation given the number characteristics of these items, could
solve these items by compensation in their head. In contrast, students unaware of
this possibility of compensation required many more solution steps, for which scrap
paper would be useful. Another explanation could be that a third variable, such as
mathematical insight, influenced both the awareness of the possibility of compensation,

and the skills needed to solve these problems mentally. In either way, the fact that those
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applying a compensation strategy usually did it mentally, while those who did not use
a compensation strategy predominantly used a written strategy, indicates that to some
extent an adaptive strategy choice was made.

Another aspect of adaptivity is whether students adapted their strategy choice to
their individual strategy accuracies. We can only discuss this topic with respect to
accuracy of (forced) written strategies. There is evidence that several students (mainly
boys) did not choose adaptively between written and mental calculation, because
their performance with mental calculation was lower than when they were forced to
write down their solution steps. This performance difference did not depend on the
mathematics achievement level of the student, so even high achievers can be said to be
unadaptive in this respect. However, it should be noted that adaptiveness in the present
study could only be related to accuracy, and not to speed of strategy execution. It could
well be that mental calculation is faster than written calculations, and that this plays an
important role in students’ choices as well.

4.4.2 Methodological considerations

In designing the present study, several methodological choices were made. First, parallel
items were used to assess the effect of administration condition. By doing this, it was
implicitly assumed that how students solved one version of the item in the No-Choice
condition represents how the other item version (presented in the Choice condition)
would have been solved in the No-Choice condition, and vice versa. This assumption
cannot be tested, because students were never administered the same item version twice.
However, because we counterbalanced item version over the administration conditions,
we could assess that the parallel item versions did not differ significantly in difficulty
level from each other, on any of the four items that had parallel versions.

Second, it was decided not to implement a No-Choice condition in which students
would have had to calculate the answer to all items with a mental procedure, because we
expected many students to struggle with obligatory mental calculation on these problems
with large numbers. As a consequence of having only one No-Choice condition, the
difference in accuracy between solving a problem with a mental or a written strategy
could not be assessed completely unbiasedly, and therefore, conclusions about adaptivity
of strategy choices with respect to individual strategy accuracies could only be drawn on
the basis of results for the written strategy. However, we could correct for the students’
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level of achievement in mathematics in general, ruling out this source of selection effects.
In addition, we were able to assess whether the distribution and accuracy of the written
strategies in the No-Choice condition were different for students using a mental or a
written strategy when they were free to choose. Another disadvantage of having only
one No-Choice condition, which was always preceded by the Choice condition, was that
alternative explanations for the positive effect on performance of forcing the mental
calculators to use a written strategy could not be ruled out. For example, accuracy may
increase just from forcing students to use another strategy, irrespective of the particular
strategy used, because they have to be more effortful and deliberate in executing their
non-chosen strategy. Another explanation may be that by mental calculation, conceptual
knowledge is activated that may have a beneficial effect on subsequent problem solving.
Future research should include a No-Choice condition in which students would have to
use a mental strategy, with a problem set requiring less cognitive effort.

A third methodological consideration was our procedure of classroom administration
of the task, which had several consequences. An advantage was that the testing situation
resembled that of the national assessments and classroom practice in general. However,
a disadvantage was that it was not possible to gather data on strategy speed, because
that would have required individual testing. Therefore, the speed of execution could
not be incorporated as a strategy performance component. As a result, the adaptivity of
strategy choices could only be assessed with respect to accuracy and not to speed, while
speed probably is an important predictor of strategy choice as well. Moreover, students
may weigh speed and accuracy differently (i.e., they may hold a different speed/accuracy
trade-off), which may be an alternative explanation of found class size differences with
respect to gender and mathematics level. Future research should take accuracy as well as
speed into account to tap these issues.

Another consequence of classroom administration was that the experimental task
could only be followed by the interviews one to several hours later. Robinson (2001)
showed that retrospective reporting is a valid measure of cognitive processes in children’s
subtraction, supporting the validity of our procedure. However, it should be noted that
in Robinson’s (2001) study, children had to report on their solution strategy immediately
after they had stated their answer to an item, on a trial-by-trial basis. In contrast, in
the present study students completed all items before they were asked whether they
could report how they solved the items. This time lag may have negatively affected the

veridicality of the verbal reports, i.e., the reports may not have been accurate descriptions

140



4.4. Discussion

of the strategy used due to forgetting and fabrication (Ericsson & Simon, 1993; Russo,
Johnson, & Stephens, 1989). On the other hand, having the students verbally report
only after all items were completed safeguarded against potential reactivity bias, i.e., the
strategy choice and accuracies being affected by verbalization requirements (Russo et
al., 1989). However, results on the interview data should be interpreted with caution.
Future research should test students individually, and let them report on their strategy

use immediately after answering each problem.

4.4.3 Educational implications

The most important implication of this study for school practice probably lies in
promoting the value of writing down solution steps on more difficult complex arithmetic
problems. As noted before, students nowadays are less inclined than students were a
decade ago to use a written strategy in solving these kind of problems on complex division
(Hickendorff et al., 2009b). In the present study we showed that both in comparisons
between as well as within students, mental calculation may be less accurate than written
calculation. That raises the question what role school practice plays in the strategy
choices students make. It might be that the large emphasis on mental calculation
in RME has had the side-effect that some students overuse mental calculation. A
recommendation is that teachers emphasize these possible benefits of writing down
notes or calculations to their students.

Another interesting finding was the near absence of the traditional algorithm for
long division. Apparently, instruction regarding division was completely based on RME
principles, at least in the 12 schools that were part of our sample. Instruction in the
traditional algorithm has been discredited because it was said to be a mechanistic trick,
in which understanding and insight in the numbers and their interrelations are not
fostered. However, we argue that it might be possible to build in the traditional algorithm

as the optimal form of abbreviation at the end point of the learning trajectory.
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APPENDIX 4.A ITEM SET

item version a version b

1 Fanny takes piano lessons. She has to Marleen takes piano lessons. She has to
pay 782 euros for 34 lessons. pay 864 euros for 36 lessons.
How much does one lesson cost? How much does one lesson cost?

2 The machine packs up 1.2 kilos of The machine packs up 2.2 kilos of
chocolate per minute. candies per minute.
How many minutes does it take to pack How many minutes does it take to pack
up 21.6 kilos of chocolate? up 30.8 kilos of candies?

3 FEEDING BOX SUITED FOR 12 COWS FEEDING BOX SUITED FOR 14 PIGS
The farmer had 936 cows. The farmer had 938 pigs.
How many of these feeding boxes does How many of these feeding boxes does
he need? he need?

4 16 children go to the playground. 12 children go to the museum. Together,
Together, they have to pay 28 euros. they have to pay 33 euros.
How many euros is that per child? How many euros is that per child?

5 Saskia sells DVDs for € 25 a piece.
She received € 2475. How many DVDs did she sell?

6 A cycle path of 3240 meters will be covered with concrete plates.
Each plate is 4 meters long.
How many plates are needed for the entire cycle path?

7 Grandma divides 490 euros among her 5 grandchildren.
How many euros does each grandchild get?

8 The DVD-player costs € 663,-.
Jasper pays this amount in 3 times, each time the same amount.
How much does he have to pay each time?

9 The farmer has 4080 liters of milk in his cooling basin.

The milk is distributed over milk cans: each milk can is filled with 20 liters of milk.
In total, how many milk cans will the farmer fill?

Note. Items are translated from Dutch. Illustrations of items 5, 6, 8, and 9 are not shown.
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