
Archaeology and the application of artificial intelligence : case-studies on
use-wear analysis of prehistoric flint tools
Dries, M.H. van den

Citation
Dries, M. H. van den. (1998, January 21). Archaeology and the application of artificial intelligence :
case-studies on use-wear analysis of prehistoric flint tools. Retrieved from
https://hdl.handle.net/1887/13148
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional
Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13148
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13148


6.1 Introduction

In chapter 2 the neural network was introduced as a know-
ledge-based approach that is even more unknown and less
applied by archaeologists than expert systems. This approach
may, however, have at least an equal potential for our discip-
line. Neural networks are able to handle large quantities of
complex data, of which the exact importance of the involved
variables is unknown. With rapidly increasing success they
are applied for a large variety of industrial, medical and
other practical tasks (e.g. Kappen & Gielen 1997), like
classifications, diagnosis, pattern recognition and prediction.
Likewise, they may provide an appropriate solution to
archaeological problems. 
An artificial neural network is a computer program that
has been developed to simulate the principle of the biologi-
cal neural network in the human brain. By means of a math-
ematical model it tries to predict the outcome of highly
complex situations by generalizing from similar situations
that occurred previously. Such situations must be presented
to a network in large quantities, because it must learn from
these examples in order to be able to generalize from them.
The learning process takes place during a training procedure
in which it autonomously searches for the (non-linear) rela-
tions between the variables of the examples. It selects the
variables that are most important and learns to ignore the
ones which are irrelevant. The purpose of this is to model
the relations between the input and output data, not to mem-
orize the examples.
Apart from their background and aim, neural networks and
expert systems have not much in common. They have a
different architecture, they use specific knowledge storing
and processing methods and are applicable to different kinds
of tasks. Nevertheless there is some rivalry between the
advocates of neural networks and of expert systems. Both
present their approach as the most successful in simulating
human reasoning.
In some instances, this rivalry even had its effect in host
disciplines. For instance, the archaeologist Gibson published
a paper in which he advocated the superiority of neural
networks above expert systems regarding their functional
abilities and social acceptability (Gibson 1992: 265)
(see also chapter 2). The present case study was started as a

reaction to this statement. The prime aim of this case study
was to investigate the possibilities and difficulties of formal-
izing and modelling the expert knowledge that is involved in
wear trace analysis by means of a neural network approach.
The findings would be compared with my experiences
regarding the development of WAVES in order to find
arguments that would either support or reject Gibson’s state-
ment. The preliminary version of WAVES could serve a
functional comparison with a neural network approach.
It was thought that use-wear analysis would be a suitable
application area for a neural network application because it
involves a task that this approach is good at: classification.
The output of the network would give an indication of the
class of patterns (the contact material) to which the input
(wear attributes) probably belongs. Nevertheless, the aim of
this study was not to develop a fully operational system
which, like WAVES, would be useful for student training.
It was merely meant as an initial exploration of this new
technique. Consequently, the resulting neural network appli-
cation (WARP) is only a limited prototype which has not
(yet) been optimally designed and trained.
In this chapter, an introduction is given of the fundamen-
tals of neural networks (paragraph 6.2) and of their develop-
ment (6.3) first. Next, the composition of WARP will be
discussed (paragraph 6.4), in particular its design and the
way the knowledge was represented. Finally (paragraph 6.5),
the functionality of WARP will be evaluated. It will
be examined whether and in what way it can meet the
requirements that archaeologists in general and use-wear
analysts in particular pose on knowledge-based applications
(see chapter 2).
Since neural networks may play an increasingly important
role in future archaeological research, it has been tried
throughout this chapter to illustrate the difference between
this approach and expert systems. The aim is not to prove
the superiority of one of the two, but rather to give an
impression of their capabilities and of the purposes they
can be employed for. For an objective assessment of the
actual performance of WARP, the reader is referred to
chapter 7, in which the result of a test is given that involved
both a first version of WAVES and the neural network
prototype.

79

6 A neural network prototype for use-wear analysis: WARP1



6.2 Neural network fundamentals

6.2.1 HISTORICAL BACKGROUNDS

It is often thought that neural networks are one of the more
recent developments in the field of artificial intelligence.
This is a misunderstanding. In fact, neural networks origin-
ate from biological research on brain function rather than
from artificial intelligence research and they experience a
renewed interest. Their development already started more
than 50 years ago when McCulloch and Pitts (1943) pre-
sented a model for neuron functioning that was thought to be
representative of processes in the human brain. Neurons are
the cells that the human brain consists of. Subsequently Hebb
(1949) related neuron activation with learning processes and
neuron distribution with knowledge storage. His rules are
known as Hebbian learning and many of the present artifi-
cial neural networks are still being built according to his
ideas.
It was only from 1956 onwards that computers were
deployed to simulate human neural networks by means of
artificial counter parts. The first applications were presented
at the famous Dartmouth summer conference in that year.
They marked the official starting date of the artificial intelli-
gence research (e.g. Patterson 1996). During the 1960’s the
research on this subject blossomed. Especially Rosenblatt’s
so-called perceptron networks received much interest
(Rosenblatt 1961). This lasted until Minsky and Papert
(1969) mathematically analyzed the computational abilities
of these networks and clearly expounded their restrictions.
Simultaneously, their achievements became overshadowed
by approaches that were based on rules instead of automated
learning, such as expert systems. The latter were expected to
offer more promising results in simulating human intelli-
gence because their knowledge handling resembled heuristic
reasoning. As a result, most research on neural networks was
almost immediately abandonned.
It did not take long, however, before the limitations of the
rule-based approaches were acknowledged as well. In the
early 1980’s, after less than 10 years of research, the expert
system technology was no longer believed to be able to
reveal the secrets of human reasoning (cf. Copeland 1993:
32). Gradually the conviction gained ground that the over-
whelming data processing capabilities of the human brain
had to be caused by massive parallelism rather than by
sequential methods. Since parallelism was the very principle
on which the early neural networks were based, several
researchers returned to this approach and revived the
research.2

The renewed research not only led to the development of
new network models and knowledge processing algorithms
that could meet some of the objections of the original neural
networks, but the improvements and new achievements also
started to direct the attention to commercial applications.

Like expert systems, neural networks gradually became
successfully employed in all kinds of domains. They turned
out to perform well on tasks like pattern recognition (speech
and image processing), trend or behavior prediction, noisy
data filtering, non-linear data analysis, classification, diagno-
sis and control optimization (cf. Lawrence 1991: 13; Patter-
son 1996: 215). A well-known example of a subject that a
neural network can handle successfully, is the prediction of
price fluctuations on the stock market. This market is very
vulnerable to changes in all kinds of variables, but it is
hardly known which variables are influential to what degree
and at what time.
Based on examples of previous situations and the resulting
changes in the stock prices, a neural network is able to
predict the results when similar or slightly deviating situa-
tions occur. These are tasks that are very hard to model and
to represent by means of decision rules, but they can be
handled perfectly by a neural network approach.
The revived interest in neural networks caused a competition
between advocates of both approaches. Especially the
devotees of the new neural network approach claimed to have
found the most successful method for simulating human
reasoning. They believed that the days of the sequential
approaches had been counted (e.g. Copeland 1993: 242-245).
However, considering the many dissimilarities and the fact
that they serve different types of tasks, this competition is
rather peculiar, and not very useful. In fact, there are so many
differences between expert systems and neural networks that
they can hardly compete with each other. For instance,
neural networks suit problems that involve complex non-
linear knowledge which cannot be captured by rules, while
expert systems can only be applied for tasks that comprise of
explicit deduction procedures. Since the former are able to
autonomously detect hidden relations between the variables
in a data set, they do not require intensive knowledge elicit-
ation and modelling procedures (fig. 39). In other words,
they only need examples which contain knowledge implicitly
rather than explicit decision rules.
However, neural networks have not been developed to per-
form logical deductions or step-wise actions. Their process-
ing characteristics are based on statistical calculations and
the resulting predictions reflect estimations rather than math-
ematical facts (cf. Lawrence 1991: 18). Furthermore, the two
methods work with different data formats. Expert systems
can process non-numerical (symbolic) knowledge, while
neural networks are based on numerical data. This implies
that the latter can process information much faster. Addition-
ally, networks owe their speed to the strategy of parallel
processing.
Neural networks are also known to be more robust than
traditional, sequentially oriented programs like expert sys-
tems. Within a neural network the knowledge is distributed

80



Fig. 39. A comparison of the structure (left side) of an expert system (top) with a neural network (below) and of the knowledge composition (right
side). A neural network is only supplied directly with examples, whereas an expert system requires modelled and formalized knowledge.

across all of its neurons and connections, while the knowledge
in an expert system is located in single rules. Moreover, the
knowledge in a network, the examples, contains redundant
information because it has not been disposed of irrelevant
data. Consequently, a neural network is still able to perform
when part of the network is damaged or when the training
examples contain a considerable amount of noise. With
expert systems this is impossible.
Those differences imply that the two techniques are meant
to serve different purposes: expert systems for simulating
heuristic methods and techniques, neural networks for
detecting or recognizing (hidden) relationships between the
properties that describe patterns within large and complex
data-sets. When applied in this way, neural networks are
able to perform significantly better than standard statistical
techniques (Epping et al. 1993).

6.2.2 ARCHITECTURE3

Due to the fact that the research on neural networks aims to
discover the secrets of the power of the human brain, the
architecture of an artificial neural network imitates that of its
biological example. The brain is a very complex organ that
consists of ten to one-hundred billion cells, called neurons.
These neurons are cells that are able to receive, store and
send information. They are connected with each other
through dendrites, hair-like channels through which the

neurons can transmit signals. A single neuron may be con-
nected to tens of thousands of other neurons and together
they form a complex network. Via the dendrites the neurons
send electrical and chemical signals in order to communicate
with each other. Since these signals can be transferred simul-
taneously, thousands of impulses can be transported through
the neurons per second. Therefore, the network structure in
our brain enables a massive neuron activity. This implies that
it can quickly process an enormous quantity of information.
Without this, we would not be able to respond adequately to
the signals from our sense organs and we would be very
vulnerable in perilous situations.
Like the human brain, an artificial network consists of neurons,
i.e., small processing elements that can receive, process
and send signals. They can pass information to each other
through programmed instructions. The network translates
these relationships as connections between the neurons. Like
in the human brain, the neurons in a neural network are
arranged in layers and connected with each other, although
not physically. Most neural networks consist of at least three
layers: an input layer, one (or several) hidden layer(s), and
an output layer. Each neuron in one layer is connected with
those of another layer (fig. 40). In a neural network applica-
tion, the neurons of the input layer represent the variables
that describe a problem; the output neurons represent the
solution that is associated with it. The neurons of the hidden

81



layer act as an intermediate between the input neurons and
the output neurons. They have no direct connection to the
outside world: they only receive internal signals and are
invisible for both the application developer and the user.
Each connection between two neurons has its own specific
weight, a numeric value. A weight represents the strength of
the signal and, therefore, the amount by which the neuron
that receives this signal is activated. Weights can have a
negative or a positive value, or no value at all. A negative
weight has an inhibitory influence on the activity of a
receiving neuron, a zero weight means that there is no
connection. The connections and their weights are of crucial
importance for the networks functionality because they
contain its knowledge. The collection of all weights and all
connections is stored as a data matrix instead of by means of
rules or other explicit representation formalisms.
Since all connections may deliver an input signal to a neuron,
it receives numerous values (weights). These values are
summed or otherwise calculated into a total value. Before
the neuron sends its output signal it compares its total value

with a so-called threshold value. This represents a point on
which it is decided whether the neuron will actually be
activated to fire its output signal or not. In other words, the
activation of a neuron is determined by an activation or
transfer function. As long as a neuron receives signals that
do not exceed this threshold value, the neuron will not be
activated. There are various types of functions, but the step-
transfer and the sigmoid transfer function are most common.
A step-transfer function means that only at one particular
value the neuron is allowed to pass its signal. A sigmoid
transfer function means there are two limits, a negative (μ1)
and a positive value (+1). All values in between these two
limits may indeed activate the neuron.
Many different types of networks can be built. It is not only
possible to vary the number of layers or the transfer function,
but it is also possible to specify to which neurons the signals
will be passed. The neurons in different layers may send
signals to those of other layers in a forward and a backward
direction, and the neurons of one layer may send signals to
other neurons in the same layer or even to their selves.

82

Fig. 40. Neuron and layer structure
of a neural network. Each neuron
(N) in one layer is connected to
each neuron of another layer. The
top neuron level represents the
input layer, the middle level the
hidden layer and the lower level the
output layer.



Despite the fact that neural networks resemble our brain
structure and that they operate faster than expert systems,
their performance is yet hardly comparable to that of
humans. It is said that “... networks in fact form only the
crudest approximation to networks of real neurons...”
(Copeland 1993: 222). Major discrepancies are, for instance,
that artificial networks have less complex neuron connec-
tions and that they are still much more slower than our
brain. The latter has to do with the way the signals are
processed. In our brain all neurons can be active simultan-
eously because they are massively connected. An artificial
network may seem to process various values simultaneously
(parallel), but in fact this is still carried out sequentially
because computers are basically sequentially operating
devices (Carling 1992: 11-12). Another important difference
is the way signals are transmitted. Computers use electronic
signal transmission, while our brain employs chemical
processes. In contrast to the other aspects this is clearly in
the advantage of artificial neural networks, because elec-
tronic signals are more than one million time as fast as the
biological method (e.g. Vuik 1993: 188; Patterson 1996:
28). This implies that artificial networks have the potency to
process knowledge much faster than humans. However, they
will never beat us as long as their electronic signals cannot
be processed en masse.

6.3 Development process

6.3.1 INTRODUCTion
The performance and reliability of a neural network depends
on many factors, such as the network structure, the quality
of the training set, the training method, and the tolerated error
rate. As there are no development guidelines that guarantee
good results, the development process may be complicated.
The best applications are achieved by experimentation, i.e.
by means of a trial-and-error process in which various
options are tried.
That is why the development process of a neural network is
an iterative process. In this, four main activities can be
distinguished. The first activity is to define the task that will
be simulated and to collect sufficient data for the learning
process. The acquisition of this data may be less time-
consuming than the knowledge elicitation that is required for
an expert system application, because there is no need to
make the knowledge explicit before it can be implemented
into a network. But, it is of crucial importance that the col-
lected examples are representative descriptions of the vari-
ous situations (and the associated solutions) that have been
experienced within the problem domain. The learning set
must cover the range of variability which the real world
exhibits and must be large enough to be representative for
the population about which the network application must be
able to make predictions. In general, the predictions of a

neural network are more reliable when it is used for inter-
polation (the new situations are similar to the training
examples) instead of for extrapolation (situations that deviate
from the training examples) (Stehouwer 1997: 66).
Designing the network structure is the second main activity
in the development process. It must be decided how many
layers, and neurons are required to represent the data and
which transfer function and signal direction suits the task
and data best. Subsequently the training method is chosen
and the training can be started. It is during the training
process that the neural network deduces the relevant rela-
tions between the input and output data from the examples.
While an expert system needs explicit knowledge, like deci-
sion rules that are composed by a developer, the network
builds its own ‘decision rules’. By means of predefined
mathematical functions the network software autonomously
determines the connections between the neurons and their
weights.
It is often during training that various problems arise and it
may be necessary to edit or expand the training set or to adapt
the network structure and its functions (see paragraph 6.3.3).
Each accommodation is followed by a new training proce-
dure in order to verify its effects. The fourth step in the
development process is to test the network with a new data
set in order to assess its generalization capacity. Again it
may turn out that the network does not yet perform accept-
ably. In that case the training set or the network structure
may need to be adapted and the training procedure must be
carried out again. The knowledge representation and the
training procedure will be looked at more closely in the
following paragraphs.

6.3.2 KNOWLEDGE REPRESENTATION

Since the knowledge that a neural network represents is
included in the training examples, it is important to obtain
the right examples. Not only should these examples cover
the variance that occurs in the real world, they should also
be translatable into a format that the neural network can
understand. Whereas knowledge may consist of images,
symbols or numbers, a neural network only understands
figures. Moreover, these figures must fall within the range of
the transfer functions, for instance between +1 and μ1.
Consequently all non-numerical data must be transformed
into a numerical format.
The difficulty of encoding data is that the figures must be
meaningful and that they must represent the initial meaning
of the non-numerical variables. For example non-numerical
attributes such as ‘small’, ‘round’ and ‘red’ can be translated
into absence and presence values, 1 and 0 respectively.
Images can be encoded by representing a particular location
of the image by a particular neuron and subsequently trans-
lating the grey tone or colour of that location into a numeric

83



value. When the data exists of both non-numerical and
numerical values, such as measurements, colour indications
or decoration patterns, it takes slightly more effort to create
a meaningful encoding system. It may be helpful to use the
data translation facilities that some commercial neural net-
work packages offer.

6.3.3 A MATTER OF TRAINING AND EXPERIMENTATION

A neural network obtains its functionality by generalizing
from examples. Therefore, the learning process implies that
a large set of input and output patterns are presented to the
network. The input attributes of these patterns correspond
with the network’s input neurons; the output attributes with
the output neurons. Subsequently, the network uses the
examples to construct the connections and the weights
between the neurons of its input and output layer. For
instance, the input attributes for a network that has to recog-
nize fruit would be ‘red, round, small’ and the output
‘cherry’. The configuration of the connections between the
neurons and of their weights is based on calculations. It is
established through a process of rehearsing examples.
In the case of a neural network, ‘learning’ therefore means
that the connections, the connection weights, the activation
functions, or a combination of these are adjusted until the
error on the training examples is minimized.
Due to the autonomous nature of the learning process of a
neural network the influence of a network developer is
limited. During the training process the progression can be
read from the height of the mean square error (MSE). This
is the cumulative error over all training examples. The lower
this error the better the network is trained. The difficulty,
however, is that the MSE will almost never reach zero.
Nevertheless, there are a number of network parameters and
elements that the network developer can manipulate. First of
all he should select a MSE that is both in reach and acceptable.
Moreover, he does not have to wait until all the examples
have been learned, but he still can stop the training when
the acceptable MSE has been reached (e.g. Patterson 1996:
213). An additional advantage of stopping the training
process at an early stage is it may prevent the network from
overtraining itself. Overtraining means that a network has
not modelled the relations within the data, but has memor-
ized the examples. The consequence of this is that it will be
poor in generalizing: it may not perform well when it is
confronted with new situations.
Another element which can be used to manipulate the training
procedure is the learning algorithm. This algorithm supervises
the training process: it defines the way the errors are validated
and adjusted during training. By changing the parameters of
the learning algorithm the training process can be influenced.
The two most frequently and successfully applied algorithms
are supervised learning and unsupervised learning.

In case of a supervised learning process a control set of
which the required output is known is used to validate the
output of the training examples (Hinton 1992). It means that
the network starts its training by giving an arbitrary output
to a specific input of an example. It compares this output
with the expected output of the example. The arbitrary
outputs are of course predominantly wrong. However, the
network evaluates these mistakes and subsequently adjusts
the connections or the weights of the connections until the
network is able to generate all outputs correctly. In other
words, it ‘learns’ by experience. The most applied super-
vised learning algorithm is back propagation. By this way
all output-mistakes are evaluated and the ‘conclusions’ serve
as the input for the adaption of the connection weights in all
previous (hidden) layers. This is meant to prevent the same
error from happening again. This method is most popular for
training multi-layer networks and seems to be the most
suitable to practical applications (cf. Lawrence 1991: 76).
Unsupervised learning means that there is no control set and
no feedback on the correct output. The network learns by
discovering structures or clusters within the input patterns of
the examples. It makes an internal representation of the data
by classifying similar input patterns (Lawrence 1991: 76).
One way of doing this is by means of the method of com-
petitive learning (Patterson 1996: 30). In this method the
weights of the neurons that respond most to a particular
input signal are raised. Unsupervised learning is still one of
the main research topics because its potential is not yet fully
understood. It is also for this reason that it is less frequently
applied to practical applications.
It may not be easy to determine a suitable learning algorithm
for a particular task. There are no universal guidelines for its
selection and a network developer must find out by experi-
mentation which approach is the most appropriate. This is
complicated by the fact that most software packages only
allow one or a few training methods.
A third element that a developer may need to manipulate is
the training tolerance. A network’s answer that deviates
slightly from the expected output may still be correct as long
as the deviation is smaller than this tolerance. For instance if
the tolerance is set at 0.2 and according to the training
example the value of the output neuron should be 0.5, the
network considers all answers between 0.3 and 0.7 to be
correct.
Some neural network packages also offer the possibility to
adjust the so-called learning rate. This parameter determines
the height by which the connection strengths are adjusted
during training. For instance, a learning rate of zero (0)
means that the weights will not be changed at all and that
the network will fail to learn. A normal learning rate is 1.
It may take some experiencing, however, before an efficient
learning rate is found. A learning rate that is too low will

84



slow down the learning process, while a high learning rate
will adjust the weights too radically and this will keep the
network from learning at all.
The training process is highly affected by the training data.
If the training causes problems, one of the most simple
methods to manipulate the training process is to start with
small bits of data rather than with the entire database at once
(Skapura 1996: 81). When it performs well with these small
parts, it can be trained again with a larger number of training
examples. Another possibility is to eliminate the examples
from the training set which cause trouble and to remove
internal conflicts within the training examples, such as simi-
lar inputs which have different outputs. In fact, there are
various means to track down and to subsequently eliminate
errors in the training set. Even conflicting examples may be
coded in such a way that they can still be incorporated
(ibid.: 80-89).
More advanced measures that may improve the training
process are: removing unimportant connections in order to
reduce the training time (cf. Hertz et al. 1991); manipulating
the weight decay during training; adjusting the initial value
of the weights; applying training algorithms that separate the
examples which the network simulates correctly from those
which are simulated incorrectly. The latter helps to save the
correct connections and weights and to fasten the learning
process (see Hertz et al. 1991: 158).
Usually when one employs one or a combination of these
measures, it is likely that the training process can be com-
pleted successfully. This does not automatically mean, how-
ever, that the resulting network will make excellent general-
izations. If, for instance, an unsuitable learning algorithm has
been selected the network may turn out to be overtrained.
This means that it is trained too well: it has learned the
training set by ‘head’, but it cannot generalize from it. As a
result it will not be able to interpret a new and slightly
deviating input pattern.
In order to prevent this, it has been recommended to add
noise to the training data, to stop the training process before
the network starts memorizing them, to adjust the number of
neurons and hidden layers or to try a combination of these
(Patterson 1996: 206-208). Adding noise is simple and can
be achieved by presenting the examples in a random order or
by adding irrelevant facts. In general it is believed to be
better to offer a network too much information than too
little, because it is able to filter the irrelevant data but not
able to think of other relevant examples.
In recent years these difficulties have been the subject of many
researches and various means have been developed that may
help to improve network performances. Especially in cases in
which only a limited amount of data is available, there are
alternative ways to minimize the generalization error, i.e.
the probability of the misclassification of a new situation.

One possibility to validate the accuracy of the predictions is
by means of bootstrapping. It means that several networks
are trained with the same data. The variation in the perform-
ance of the ensemble of networks enables the deduction of
the average generalization error and of confidence intervals
(e.g. Heskes, in press). Consequently, the probabilities of the
output can be defined.
As the initial values of the weights may influence the general-
ization capability of the final network as well, it may also be
worthwhile to train several networks with different weight
initializations (Stehouwer 1997: 69). The different networks
can then be used to obtain an average of the output of all
networks. This average is a more reliable generalization than
one answer from one network.
Furthermore, the validation of the network depends on the
composition of the test examples. Both the training set and
the test set represent only a part of the examples which may
occur in the real-world situation, the so-called population.
The newly interpreted patterns belong to that population as
well, but may not have been part of the training set. When
the network is confronted with deviating situations it is
forced to extrapolate. As the extrapolated generalizations are
less reliable than those resulting from interpolation (cf.
Skapura 1996: 86), the average generalization error will
increase. When the number of learning examples is limited,
it is therefore advisable not to hold out a percentage for
testing purposes. In such a case it is recommended to divide
the data into segments and to train different networks with
different segments. For each network a different segment
can be used as a test set (ibid.: 87). The average general-
ization error of the ensemble is a better indication of the
achievements than the generalization error of one network.
These are only some of a large variety of measures which can
be taken to improve the reliability of the output of networks
that are used for classification purposes (cf. Stehouwer
1997). For most training or generalization problems several
expedients can be applied. However, it may take a consider-
able amount of patience, inventiveness, (computing) time
and knowledge of both statistics and neural network technol-
ogy to obtain an optimally operating application.

6.3.4 A SESSION

A session with a trained network is often a simple and quick
procedure. The application comprises of a screen on which
the input and output neurons are represented by means of
figures, images or symbols. The latter has been used for
WARP (see fig. 43). A user simply points out the attributes
that represent the input data of the situation, for instance by
clicking with a mouse on the input symbols. In reference to
the fruit example in the previous paragraph, the user would
click on the symbols that represent the attributes ‘red’,
‘round’, and ‘small’. This instantly activates these neurons to

85



send a signal to the hidden layer. Since each input neuron is
connected with each hidden neuron, the latter receives sev-
eral signals. Each of these incoming signals has a different
weight, because they derive from various connections. By
summing the incoming signals the hidden neuron calculates
its activation strength. In their turn, the hidden neurons
pass a signal on to the neurons of the output layer. Again,
the activation level of the neurons of the output layer is
determined by the strength of the signals from the hidden
neurons.
The final combination of the activated output neurons repre-
sents the network’s interpretation of the information that was
presented by the user. The output may be presented by
means of figures, images or symbols. In contrast with the
output of most expert systems, the output of neural networks
represents objectively calculated probabilities. This means
that if it is based on a balanced training set, the network
application can give reliable indications of the chance that
the output is correct. For some tasks this may be of crucial
importance.

6.4 The prototype

6.4.1 INTRODUCTION

Various software packages are available for the purpose of
building neural networks. This implies that there are also
numerous network types. Most of them are based on the
multi-layer feed-forward model, use a sigmoid transfer func-
tion and have been trained by means of the back-propagation
learning method (Patterson 1996: 141). This combination
has proved to be suitable to various kinds of applications.
The choice of the network, however, must always be made
on the basis of the characteristics of the subject that the
network will be deployed for, of the data and of the desired
functionality. For instance, a network that is trained by
means of the back-propagation learning method will be able
to generalize better than one that was trained by means of
unsupervised learning. If, by contrast, one is more interested
in a network that can associate rather than classify, it is
recommendable to apply just a self-organizing learning
method (e.g. Patterson 1996: 35; Lawrence 1991: 79).
At the time the prototype had to be built, there was only a
limited number of software packages available that could run
on an ordinary personal computer. The package that was
used to develop WARP is Brainmaker (version 2.3).4 This is
a non-Windows5 program which is a multi-layer feed-forward
type of network. It allows a variety of transfer functions and
employs the back-propagation learning method. This type
was selected because its characteristics were expected to suit
our purpose and because its hardware requirements were
modest. In fact, it was one of the most sophisticated and
user-friendly programs that would still run on a regular
stand-alone computer.

It must be stressed that WARP is a limited and simple proto-
type which was developed to relate wear traces to contact
materials only. It focuses on what in chapter 5 was called
the analysis procedure and has merely been trained to recog-
nize polishes. The other three wear categories (edge retouch,
edge rounding and striations) have not been included yet,
nor is it equipped to relate the wear patterns to motions. The
reason for this limitation is threefold. First of all, WARP
was merely meant as a small case-study in which the abil-
ities of a neural network approach would be investigated for
the analysis of use-wear traces. For this it was not necessary
to build a large network. Moreover, it was assumed that it
would be more easy to develop and train a small network
rather than a large and complex one. It is known that it is
best to start with a small network, especially if the data
consists of conflicting examples (cf. Skapura 1996: 81).
As this is the case with the reference collection on which
WARP had to be trained, it was thought to be more practical
to gradually expand a well trained small network than trying
to train a large network on all data at once.
Secondly, the knowledge in WARP had to resemble that of
the preliminary version of WAVES in order to enable a
meaningful comparison. At the time that the development
of WARP started (1992), merely the polish interpretation
function had been worked out in the expert system appli-
cation.
The third reason for concentrating on the traces of polish
was that the reference collection yielded the largest number
of training examples for this wear category. Of the 300
experiments 53.3% (160) had shown traces of polish, while
edge retouch, rounding and striations had been observed on
less implements: 43.6% (131), 51.6% (155) and 14% (42)
respectively. Moreover, the features of the polishes had been
documented in more detail (more attributes) than those of
the other wear categories.

6.4.2 THE KNOWLEDGE REPRESENTED

One of the differences between the knowledge representation
process for WAVES and WARP is that the knowledge had
to be translated into a different format: for the expert system
into decision rules and for the network into presence (1) and
absence (0) scores. Another difference is that the training set
for WARP consisted of unaltered examples, whereas the
data was analyzed and modelled before it was implemented
in WAVES. A similarity is that, based on the information
that was gained from the knowledge analysis and modelling
that had been carried out for WAVES, only those variables
were selected for WARP of which it had been demonstrated
that they relate to the applied contact material. It would have
complicated the training process needlessly if irrelevant
variables had been included. As a result, only five variables
were selected, i.e., the distribution, texture, brightness,

86



topography and width of the polish (see appendix III).
Together these variables consisted of 31 attributes.
Since WARP was meant to interpret wear traces, the input
neurons represented the 31 wear attributes, the output neurons
the contact materials.6 Fifteen contact materials were
selected (see appendix III). Shell, tooth, polish ‘23’ and
polish ‘10’ were not included because there was insufficient
quantitative data on the traces that these contact materials
cause. For the same reason they had not been included in the
first version of WAVES either (see paragraph 5.4.2).
In order to adapt the data to the numerical character of a
neural network, the wear attributes were encoded by means
of absence and presence scores (see paragraph 6.3.1). This
means that each neuron representing an attribute that is
present in a training example receives a 1, while those that
represent the attributes that are absent receive a 0. Further-
more, each neuron that represents a contact material which is
responsible for the observed traces receives a 1 as well, all
others a 0 (fig. 41). Consequently, each training example

was represented by 46 neurons but only 6 of these had a
positive value (1).
Like with the output of the expert system, several of the
output neurons can be active simultaneously if the analyzed
traces point at several contact materials. However, the activ-
ity strength of these neurons can differ, which gives an
indication of the certainty of the interpretation. An output
cell may be filled for 100 percent, but it may also be partly
filled (fig. 43). The cell that is filled most represents the
answer which has the highest probability.
With reference to the other network features, it was decided
to use an equal number of hidden neurons and input neurons,
and a sigmoid transfer-function (fig. 42). The guideline that
was followed in defining the number of hidden neurons is to
use between 0.5 and 2.5 times the number of input neurons
(Lawrence & Lawrence 1990: 7-9). Research has shown that
networks with more than one hidden layer do not necessarily
perform better. Moreover, networks with many hidden neurons
do not perform better than those with an equal number of

87

Input neurons Output neurons

distribution texture brightness topography width contact material
abcdefghi abc abc abcdefgh abcdefgh abcdefghijklmno

exp.

92 (fresh hide) 000001000 001 010 00010000 10000000 010000000000000
283 (silic. plants) 000010000 100 100 10000000 10000000 000000000000010
273 (cereals) 000001000 100 100 10000000 00001000 000000001000000
etc.

Fig. 41. The training examples have been translated into series of zero's and one's before they could be presented to the network.

Architecture

type of network: multi-layer feedforward
number of layers: 3
number of input neurons: 31
number of hidden neurons: 31
number of output neurons: 15
number of weights in the hidden layer: 992
number of weights in the output layer: 480
activation or transfer function: sigmoid

Training

learning method: supervised (back propagation)
training tolerance: 0.4 
training stopped at: 650 runs (one hour)
noise: yes
test mistakes: 25%

Fig. 42. Basics of WARP.



hidden and input neurons. On the contrary, too many
hidden neurons may create a network that has learned the
examples by heart. Such a network will not be able to
generalize and to interpret slightly deviating situations
(see paragraph 6.3.3).
Nevertheless, the selection of 31 hidden neurons was a guess
rather than a decision based on experience. It had to prove
its validity during the training and testing. If necessary, the
network could be expanded with layers or neurons or be
based on another transfer function. The initial value of the
connection weights could not be influenced. The software
package assigned these automatically.

6.4.3 THE TRAINING PROCESS

Usually, a software package provides a standard learning
method. The Brainmaker program applied the back-propaga-
tion approach. It automatically reserves 10% (16) of the
training examples for the purpose of testing the trained
network and presents the training examples in a random
order. Furthermore, it offers statistics (histograms) that give
an impression of the training progression and of the health
of the network. It allows to pause on each incorrect output in
order to analyze them. Subsequently, these ‘bad examples’
can be written to a file in order to analyze them in more
detail.
Since the training set consisted of only 160 examples, the
network was expected to ‘learn’ these examples relatively
quickly. Only if a network is trained with many more
examples or if the data is very complex, it may take hours
or days of training. In the case of WARP, however, it soon
turned out that the network had indeed some difficulty to
learn the examples. After it had been training for more than
one hour (650 runs through all examples) the network was
not able to learn circa 38 of the examples (26.4%) and to
further improve its achievements.
Some difficulty had been expected because repeated
attempts confirmed that the data contained various contradict-
ory facts on which it would be difficult to train the network.
For instance, during the knowledge analysis and modelling
procedure for WAVES, it had been experienced that the
reference collection contained both facts which have a simi-
lar input but a different output and facts which have a differ-
ent input but an identical output (chapter 5.2.3 and 5.2.4).
This means that in one case WARP must learn that the wear
features (attributes) A, B and C relate to contact material X,
while in another example these traces relate to material Y. It
is for a neural network even more confusing that material X
can also be associated with attributes D, E and F, while this
does not hold for material Y.
Successively, the training tolerance, the network structure,
and the transfer function were changed in order to achieve
improved results. Unfortunately, none of these adjustments

lead to a significant improvement of the training process.
It simply refused to learn a fourth part of the examples.
Subsequently the facts which the network failed to learn
were analyzed. It turned out that the network was more
rigorous than necessary, because many answers were not
really false. In one training round I counted only 21 mistakes
(14.6%) instead of 38, the number of mistakes that the net-
work counted. Most of the differences resulted from the fact
that the answers were not very persuasive. Consequently,
many of them had a score that just misfitted the training
tolerance. Still, most answers corresponded with the
expected answer and pointed at the right contact material.
In fact, all 21 ‘mistakes’ included the right contact material
in the answer. Moreover, eight of the ‘mistakes’ are dis-
putable because they consisted of two outputs with equal
scores on similar materials, like cereals and siliceous plants.
Given the fact that such answers would have been con-
sidered correct if they would be given by WAVES, I believe
it to be justified to accept them of WARP as well. In fact, it
is typical for use-wear patterns that some are not absolutely
diagnostic for one contact material.
This consideration reduced the number of mistakes to 13
(9%). Since this was considered to be an acceptable learning
error for this prototype, the training procedure was stopped.
Subsequently, WARP was tested with the 16 randomly
selected examples that the program had reserved for this
purpose. It concluded that 10 (62.5%) of these generated a
false output. However, when the incorrect answers were
assessed according to the same procedure as the mistakes
that were encountered during the training process, exactly
the same conclusions could be drawn on these ‘mistakes’.
Again, the network considered six answers (37.5%) wrong,
but regarding my standards only four (25%) were really
false.
It is expected that the network’s achievements will improve
most when the training set is improved. According to Patter-
son accurate learning occurs when only the desired examples
are presented and the non-desired examples are excluded
(Patterson 1996: 26). This means that the problematic
examples will have to be excluded from the training set. The
difficulty with this, however, is that it cannot be known with
certainty that the examples which generate incorrect answers
are the ones the network cannot learn. In each round of
training different examples may cause problems because
the network adapts itself constantly to the encountered mis-
takes. Consequently, an example that was learned well in
one round might generate an incorrect output in the next.
In our case, the best way to trace conflicting examples is
probably by training different networks on small subsets.
The subsets that render the largest training errors can then
be analyzed and disposed of the problematic items (Skapura
1996: 81).

88



However, it must be questioned whether the resulting know-
ledge base would still be representative of the real-world
situation. If all the ‘problematic examples’ — which are
likely to occur in practice — are discarded, it is to be
expected that WARP will not be able to generalize well.
Moreover, the exclusion of the problematic wear patterns
would have meant that WARP was no longer comparable
with WAVES, because it would not have been based on the
same knowledge.
Based on these considerations and on the obtained achieve-
ments, it was decided that the network had been sufficiently
trained to suit our purpose, i.e., a comparability study. Since
WAVES had not been optimized either, the network was
believed to perform comparably. An additional argument for
this decision was that the network’s learning statistics looked
good. It showed a neat bell-shape curve, which is an indica-
tion for a healthy pattern of connections and weights
(Lawrence & Lawrence 1990: 5-10).

6.5 An assessment of the prototype

6.5.1 INTRODUCTION

Compared with WAVES, the development of the neural
network prototype was more easy and less time-consuming.
One of the reasons for this is that WARP was only meant as
an experiment rather than a practically functional applica-
tion. Consequently, the demands concerning the knowledge
handling and user interaction that had to be taken into
account during the design and implementation of WAVES
(chapter 5.3), did not play a dominant role during the devel-
opment of WARP.
Nevertheless, the latter has been assessed on the same aspects
as WAVES (see paragraph 5.8) in order to give an impression
of the similarities and differences between the two applica-
tions and, in particular, between a neural network and an
expert system approach in general. In outline, the prototype
will first be evaluated against the demands that computer
archaeologists (paragraph 6.5.2) and use-wear analysts (6.5.3)
pose on knowledge-based systems. Secondly some sugges-
tions for the improvement of the prototype will be discussed.

6.5.2 ANSWERS TO EXPECTATIONS OF COMPUTER

ARCHAEOLOGISTS7

It was stated in previous sections (paragraph 2.4.1 and 5.8.2)
that the most important complaints from archaeologists in
relation to knowledge-based applications are that they offer a
single answer without leaving an opportunity for uncertainty,
that they are ‘black boxes’, that they fossilize knowledge,
and that they lack user friendliness. In the design of WARP
some complaints could easily be met, but others turned out
to be more difficult to meet.
The demand to consider uncertainty or alternatives in the
application’s answer is easy to incorporate in a neural net-

work. In fact, neural networks cannot exclude uncertainty.
Their output is the outcome of a statistical estimation. In
contrast with most expert systems these estimations
represent probabilities which are calculated on the basis of
quantitative data rather than subjective impressions. More-
over, the reliability of a neural network can be deduced by
calculating the confidence intervals of its generalizations
(e.g. Heskes, in press).
The second major concern of archaeologists, the black box
problem, is more difficult to overcome with neural networks
than with expert systems. They are more or less composed
as a black box: some input goes in, some output comes out,
and the intermediate actions are invisible to the user. This is
due to the fact that they have not been developed to simulate
heuristic reasoning but to handle a large number of figures.
However, the black box characteristic is one of the aspects
that is the subject of research. Some facilities have already
been developed that enable the deduction of ‘rules’ from the
data structure within a neural network.8 Moreover, this lack
of transparency can also be overcome by combining a neural
network application with a program that serves as a commu-
nication interface.
With respect to the concern of knowledge fossilization, it
was argued previously (paragraph 5.8.2) that I consider this
aspect to be inherent to the recording of the results of scien-
tific research, irrespective whether this is done in a book or
a computer program. It can be avoided by making sure that
the involved knowledge is evaluated and adjusted periodically.
Obviously, this also applies to the knowledge in a neural
network application. The difference, however, with an expert
system is that updating is more easily effectuated in a neural
network. Whereas an expert system requires a complete,
and therefore costly, evaluation of the knowledge rules etc.,
a neural network can simply be trained again with a revised
database.
Finally, it was stated that archaeologists prefer user-friendly
and easily understandable applications. Most neural net-
works, like WARP, are indeed easy to handle and to under-
stand. It was shown in paragraph 6.3.4 that a session consists
of very simple acts. A user only has to click on the five
input neurons that correspond with the characteristics of the
observed use-wear traces (fig. 43). The network then com-
pares this information with its reference matrix, calculates
the strength of the output neurons and lightens the output
neurons that represent the contact material that the network
associates with the presented wear traces. Due to the fact
that it consists of compiled data matrices only, it takes the
network less than a second to generate its answer. A session
with WAVES will take a student at least a quarter of an
hour. This means that for tasks in which time is a crucial
element, the choice between an expert system and a neural
network should be in favour of the latter.

89



To summarize this paragraph, neural networks can meet
several of the demands of archaeologists. They are able to
provide alternative answers, they can give an indication of
the reliability of their output. Once they have been trained,
they are easy to employ by laymen and they operate very
fast. But, they are not meant to explain their answers and for
archaeology students the internal reasoning processes may
be difficult to understand.

6.5.3 ANSWERS TO EXPECTATIONS OF USE-WEAR ANALYSTS

Apart from the more general demands that computer archae-
ologists pose on knowledge-based applications there are also
more specific demands. These are posed by use-wear ana-
lysts. In paragraph 4.5.6 it was stated that use-wear analysts
expect from automated approaches that they provide a means
for standardizing the method of analysis and for formalizing
the knowledge that is involved with it, that they incorporate
all wear categories, that they support the learning process of
students, that they are maintenance friendly, and that they
are applicable to different archaeological assemblages. Like
with the more general demands of the computer archaeolo-
gists, neural networks, and WARP in particular, have turned
out to be able to meet some of these specifications remark-
ably well, but others less.

First of all, neural networks indeed provide a means to
formalize and model the knowledge that is involved in wear
trace analysis and offer a standardized approach to the
method. The use of an application like WARP implies that
the method of analysis will yield less subjective results.
Therefore, it improves the comparability of the interpreta-
tions of different analysts. Moreover, it may help to trace
deficiencies within the knowledge or may be used for other
research purposes. For instance, a professional use-wear
analyst may employ WARP in studying the diagnostic value
of specific attributes: by manipulating the input it may
become clear what the effects are on the output. The neural
network approach can also be used to ground interpretations
with statistical reliability.
With regard to the incorporation of all aspects of use-wear
traces, this will not be very easy to accomplish within
WARP. Presumably the database contains too many contra-
dictory facts to allow for a smoothly training process.
Moreover, if the network would have to include all wear
categories, both the number of input neurons and the training
time would increase drastically. This would also mean that
additional computational facilities would be demanded, like
a more powerful computer, but also that the reference collec-
tion would have to be expanded. The present training set

90

Fig. 43. The input/output screen of
WARP. The left hand side shows
the input neurons, the other side
the output neurons. The user
chooses the five input neurons that
correspond with the observed wear
traces and the system shows the
contact materials that may have
caused that wear pattern.



contains insufficient examples for training such a large and
complex network. This does not mean, however, that the
neural network approach is by definition unsuitable to incorp-
orate all wear categories. If it is unfeasible to develop one
large network a good alternative is to build separate net-
works for all wear categories.
With reference to the demand that a knowledge-based
approach ought to support and preferably even quicken the
learning process of students, an application like WARP is
less useful than an expert system like WAVES. It is not very
well equipped to teach the principles of the analysis process
because it does not represent its knowledge in a way that is
understandable for archaeology students. The data matrices
are composed for internal calculation purposes, not for
making the reasoning processes accessible to others. More-
over WARP does not offer a sophisticated user-interface
with illustrations, explanations or instructions, it does not
offer the analysis process as a step-by-step procedure, and it
cannot react when a student makes input mistakes.
On the other hand, the demand of maintenance friendliness
can be easily met by a neural network. It only has to be
trained again with a revised database. Even an adaptation of
its structure can be accomplished more easily than that of
an expert system application. When the number of neurons
has to be changed, one has to try and find a new balanced
structure by going through a new process of trial-and-error
experimentation.
With respect to the demand that an automated approach
for use-wear analysis must be applicable to various archaeo-
logical assemblages, there is no large difference between
WAVES and WARP, because this aspect relates to the range
and quality of the involved domain knowledge rather than to
the way it is represented and handled. Since both applica-
tions are based on the same knowledge, they can be applied
to the same range of assemblages (paragraph 5.8.3). Never-
theless, WARP may turn out to perform better in situations
that demand interpolations, while WAVES may be better in
extrapolations.
To summarize, the neural network approach can be used to
standardize use-wear analysis and to formalize the involved
knowledge, it is maintenance friendly and very well applicable
to interpret the traces from various archaeological assemblages.
However, it does not suit educational purposes very well
because it does not offer means to validate its answers, and its
autonomous knowledge handling approach does not contribute
to a better understanding of the involved knowledge.

6.5.4 SUGGESTIONS FOR ADDITIONS

In the previous paragraphs it has been argued why the pres-
ent form of WARP is not very suitable for educational pur-
poses. In order to exploit the power of the neural network
approach for the benefit of use-wear analysis, it is advisable

to apply WARP for different purposes, like research on the
diagnostic value of wear traces. Still it would need some
improvements in order to obtain better interpretations.
First of all, it needs more training. With many of the contact
materials too few experiments have been done to allow for
reliable statistical inferences. Scientifically, it would also be
interesting to analyze the facts that it failed to learn in
more detail. Moreover, it could be tried to train WARP on
the altered data that was used to build the knowledge rules
for WAVES instead of on the raw data from the reference
collection. This would probably decrease the number of
examples that cannot be learned, because the altered data
contains less conflicting wear patterns.
Furthermore, WARP should be supplemented with the other
wear categories, with a possibility to interpret applied
motions, and perhaps with additional interpretational means
such as residue analysis, or with a facility to validate
hypotheses. An addition of the other wear categories may
best be achieved by dividing the application into small
networks which each handle one category. These small
networks are more easy to train and can eventually be
brought together into one application.
With reference to the range of the conceptual knowledge of
the application, the scope of the experiments would need
some expansion as well, especially because WARP has only
been trained on examples from the experimental programme.
Unlike WAVES, it has not been supplemented with expert
knowledge. Moreover, as it was recommended for WAVES,
it would have to be expanded with knowledge or experimen-
tal examples from multiple experts.
An additional problem, to which no adequate answer has
been found in the design of WAVES ánd WARP, is the
subjective nature of the input the system receives from the
user. Whereas in designing WAVES these difficulties were
partly met by offering illustrations and definitions of the
variables and attributes, this is no solution for WARP
because these cannot be incorporated using Brainmaker.
Finally, WARP shows some imperfections that are present in
WAVES as well. For instance, both applications do not
differentiate between the traces on the ventral and dorsal
face of the implements. While this is complex with WAVES,
this could be rather easily adjusted in WARP. It would
simply imply a training procedure with twice as many input
neurons. The main provision, however, is that this kind of
information would be supplied by the reference collection.
To conclude, several of the difficulties and hiatuses that
were encountered during the development of WARP are
both inherent to the applied approach and to the characteris-
tics of the method of analysis and the available data.9

Especially the limited amount of data makes it difficult to
simulate use-wear analysis by means of a neural network.
Nevertheless, it can be a useful approach to standardize this

91



method of analysis and to formalize its knowledge. In fact,
they can be a valuable extension of conventional statistical
techniques. However, it is an oversimplified conclusion to
state that, in comparison with expert systems, neural net-
works are superior regarding their functionality and social
acceptability. Whether one approach is better than the other
depends entirely on the aim of an application and on the
type of data that it involves.

notes

1 Since the beginning of the nineties the research on neural net-
work technology flourishes and the technical developments in this
area succeded each other speedily. The application that is presented
in this chapter was built in 1992 and, therefore, does not reflect the
latest technical state of affairs.

2 The more recently developed neural network methods are also
referred to as parallel distributed processing (PDP).

3 This paragraph does not give a comprehensive view of the
technical possibilities of neural networks. It merely is a simple

introduction to the elements that a neural network comprises. There
are many good books on this subject, to which the interested reader
is referred to.

4 Brainmaker is a registered trademark of California Scientific
Software.

5 Windows is a registered trademark of Microsoft Corporation.

6 In the guide book that accompanied the software package it was
recommended to use between 50 and 200 training examples for a
network with a limited complexity. It did not mention the optimal
relation between the number of training examples and the number
of neurons (and weights).

7 Computer archaeologists refers to people who are specialized in
applying and developing quantitative and automated methods for
archaeological issues.

8 Pers. comm. prof. dr. J.N. Kok, Department of Computer Science,
Leiden University.

9 With reference to the achievements of WARP it must be stressed
that I merely explored the possibilities of one type of neural net-
work, while more than 20 different types exist. Consequently,
another type of network may have yielded different results.

92


