
Archaeology and the application of artificial intelligence : case-studies on
use-wear analysis of prehistoric flint tools
Dries, M.H. van den

Citation
Dries, M. H. van den. (1998, January 21). Archaeology and the application of artificial intelligence :
case-studies on use-wear analysis of prehistoric flint tools. Retrieved from
https://hdl.handle.net/1887/13148
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional
Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13148
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13148


3.1 Introduction 
Expert systems are knowledge-based computer programs
instructed to function like a human expert does in solving a
particular problem or in giving advice. This does not mean,
however, that they have brain functions at their disposal
which are similar to that of humans. It is yet far from under-
stood how our brain functions and expert systems are only
one way by which it is tried to simulate human performance.
The more formal definition that will therefore be followed,
is given by Hayes-Roth et al. (1983), which says that an
expert system is a program with a wide base of represented
knowledge in a restricted domain, that uses inferential rea-
soning and, when necessary, user dialogue to perform tasks
which a human expert could do.
The development of the expert system as we know it today,
started in the late sixties. One of the first systems was devel-
oped at Stanford University, called DENDRAL (Feigenbaum
et al. 1971). It could be used to identify the chemical struc-
ture of unknown substances. A few years later, another
famous system (MYCIN) was built at Stanford (Shortliffe
1976). MYCIN was used for diagnosing patients suffering
from a bacterial infection. Although the first systems were
mainly built for the purpose of research, it was soon recog-
nized that they could be of practical use as well. Especially
companies and industries active on fields on which expertise
is hard to get and thus expensive, considered them beneficial.
Over the past two decades, various applications have shown
the benefit of the expert system approach and nowadays they
are successfully employed in all kinds of fields (cf Feigen-
baum & McCorduck 1983; Jackson 1986; Vadera 1989).
The most interesting aspect of expert systems is that they
offer a possibility to capture and organize human expertise
and experience into a form that enables other people to
employ it. This is not only interesting for laymen, but also
for the expert who offers his or her knowledge. Most experts
spend a large percentage of their time on problems they
consider simple and, therefore, less interesting. For them,
solving such problems is a routine. If an expert system could
take over (part of) this routine, the expert gets the opportunity
to concentrate on difficult and more interesting problems and
to engage in new challenges that can expand his knowledge. 
In this chapter, the fundamentals of expert systems will be

described. It starts with their architecture, i.e. the compon-
ents they consist of and their specific task (paragraph 3.2).
Subsequently it will be discussed how knowledge and rea-
soning processes can be represented by means of expert
systems (paragraph 3.3), of what elements the development
process of an expert system application consists, what diffi-
culties can be expected during a development trajectory
(3.4), and what tools are available to build an application
(paragraph 3.5).

3.2 Architecture
Expert system applications differ from other computer pro-
grams in their tasks and architecture. Applications which are
built according to traditional programming methods consist
of explicit and task-specific algorithms: they perform a task
on the basis of a set of actions which are processed in a
predefined order. Consequently, traditional programming
methods can only be used for tasks that have an algorithmic
nature. The expert system approach, on the other hand, has
been designed to handle tasks which cannot be solved by
straightforward and predefined procedures but by heuristic
methods only. Heuristic methods are based on the concept of
trial-and-error. They do not use formal problem solving
procedures, but they simply test approaches of which it is
uncertain whether they will lead to a solution. Expert sys-
tems employ actions that can be executed independently of
each other and in a variable order. The application chooses
the appropriate activities on the basis of the information
that it receives from the external world. Consequently, the
course of the program is automatically accommodated to the
situations it is confronted with. This implies that an expert
system application is more flexible than one which is built
according to traditional programming methods. In figure 2
some of the tasks are shown for which this approach is
known to be useful.
One of the main advantages of flexibility is speed. This can
best be illustrated by the following, slightly overdrawn,
example. Imagine a program that is employed to diagnose
diseases. If this is a traditionally written program, it consists
of a huge list of possible diseases which will be evaluated in
a given order on the basis of the symptoms that are provided
by the user. This evaluation may be quickened by using

19

3 Expert system fundamentals1



Fig. 2. Examples of tasks suitable for an expert system approach
(After Hayes-Roth 1983).

Fig. 3. Expert system architecture. The arrows indicate the system’s
internal and external lines of communication.

indexes, but it has to check all main groups of diseases in a
given order until one will be encountered that fully fits the
described symptoms. If the worst comes to the worst this
may imply that a person suffering from a critical cardiac-
arrest may first be questioned about all kinds of irrelevant
infirmities before the system eventually concludes that the
patient has died of an inadequately treated heart attack.
If this program would be an expert system, it may also
consist of an enormous amount of knowledge which covers
all possible diseases, but it is able to search more directly
for the most appropriate one. Expert systems anticipate on
the information that is received from the external world,
i.e. the description of the patient’s symptoms and his med-
ical history, by eliminating possibilities and by avoiding
irrelevant questions.

20

Interpretation of data or a situation

Prediction of consequences of a given situation

Diagnosing diseases or malfunctions from symptoms

Planning of actions given certain circumstances

Monitoring behavior of vulnerable systems or instruments

Instruction of students 

Classification of objects

because they are both storage facilities. The main difference,
however, is that a knowledge base contains knowledge
instead of raw data or information. Within the context of
artificial intelligence research there has been much discus-
sion on what ‘knowledge’ exactly is and it appears that it
can have several forms, like defaults, facts, rules of thumb,
strategies etc. In broad outline, knowledge can be separated
into a static (or descriptive) and a dynamic (or procedural)
part, representing respectively the facts and the conclusions
that can be drawn from them. In the context of this study,
knowledge is defined as facts and the relations between
these facts. 
The second element of an expert system is an inference
mechanism. Whereas the knowledge base consists of domain
dependent facts and relations, the inference mechanism
consists of domain independent procedures. It can be seen as
the central nervous system: it controls the reasoning process,
i.e. the problem solving strategy. It selects the knowledge
that is needed to solve the problem or to carry out the task.
In other words, the inference mechanism makes sure that the
appropriate knowledge is applied at the appropriate moment. 
An expert system employs its knowledge either to interpret
new information or to collect information that may answer a
question. They are data oriented or goal oriented, respect-
ively. Both approaches use a specialized reasoning strategy.
A data-oriented system has no predefined goal: it reacts
to information that the system receives from the external
world.2 The system will try to interpret this information by
consulting its knowledge base for conclusions that can be
drawn from it. This is called forward reasoning. A goal-
oriented system does the opposite, it ‘reasons’ in a backward
direction in order to confirm a predefined goal. It will try to
retrieve information from the external world that is required
to confirm that goal. This can be done by questioning the user
or by consulting an external data source such as a database.
Since data-oriented systems can be used to interpret data or
to react to (changes of) incoming information, they are most
suitable for applications with analytical and educational
purposes, especially for those that require an immediate
reaction of a ‘master’. A goal-oriented system can best be
applied to situations in which a user either wants to have a
hypothesis validated. In paragraph 3.3 will be further elabor-
ated on reasoning strategies.
The third component of an expert system is a user interface.
It handles the communication between an application and its
users. Any application needs communication with the out-
side world in order to gather information that can help to
solve the problem — or to perform a task — and to return its
conclusions. Since the quality of the information is of decisive
influence on the adequacy of the reasoning process and
thus for the conclusions that the application can draw, it is
very important that the dialogue between the system and its

Expert systems owe their flexibility to their architecture:
they are composed of three elements that operate independ-
ently of each other. These elements are a knowledge base,
an inference mechanism, and a user interface (fig. 3). The
first element comprises the knowledge that an application
requires. In a way, it can be compared with a database,



user does not cause misunderstandings (see also chapters 5
and 7). Therefore, the interface must be adapted to the level
of the user and provided with explanatory facilities. The
same counts for the transmission of the system’s conclusions.
A system can only present its suggestions and advices to its
user through the user interface. In order to convince the
person on the other side of the screen or to enable him or
her to make the right decisions, the application must offer
clear messages and additional information on how it reached
its conclusion. 
Irrespective of the fact whether an application is data oriented
or goal oriented, the dialogue between system and user can
be user initiated, computer initiated or a mixture of both.
The first form is often used by systems designed to support
users with a high level of experience on the domain. These
users only ask the system for advice in case of difficult
problems and they determine the system’s role. A computer-
initiated dialogue is characteristic of systems designed to
give direction to users without any domain experience.
Depending on the degree of experience of the users, the
dialogue is sometimes also alternating initiated by the user
and the computer.
It is this special architecture of expert systems that realizes
the required flexibility. Due to the fact that the knowledge
base and the reasoning mechanism are independent elements,
the latter can consult the knowledge base whenever it is
required and it can select only those facts and relations that
are relevant for that particular situation. Moreover, the rea-
soning mechanism can either apply the facts and relations
from the knowledge base for the purpose of drawing new
conclusions from the known information or for the validation
of a hypothesis.
An additional advantage of the division of expert systems
into three elements concerns the aspect of maintenance.
The algorithmic architecture of traditional programs makes
maintenance a hazardous enterprise because all procedural
actions relate to each other. If one single aspect of the
program is changed, the entire program must be adapted
or rewritten. Since the components of expert systems are
independent, they can be updated or expanded without this
having effect on each other. For instance, the inference
mechanism can be changed from data oriented into goal
oriented, but it will still be able to use the same know-
ledge from the knowledge base. Reversely, if the know-
ledge base is expanded with new facts or new relations
the inference mechanism does not have to be adjusted as
well: it will still be able to consult the knowledge.
Furthermore, the user interface does not influence the
reasoning process nor the contents of the knowledge base.
If the lay-out of the application is improved, neither
its knowledge is affected by this nor its reasoning
strategies.

3.3 Knowledge representation and reasoning
methods

3.3.1 INTRODUCTION

In the previous paragraph, it was shown that an expert sys-
tem not only consists of a knowledge base, but also of a
reasoning mechanism which enables the knowledge to be
used. How knowledge can be represented in a knowledge
base and how the inference mechanism accomplishes reason-
ing is shown in this paragraph. Since the early days of expert
system development knowledge and reasoning representation
has evoked much research (e.g. Charniak & McDermott
1985), because it is a complex matter and it turned out that
different tasks and their associated knowledge require differ-
ent representation formalisms. Nowadays many formalisms
are available, but in this paragraph we will only introduce
the most common ones: predicate logic, decision rules,
semantic networks and frames.

3.3.2 PREDICATE LOGIC

One way of representing knowledge is by means of math-
ematical logic: it is a method to prove a theorem and thus to
deduce facts. Pure logic, however, is not easy to computerize
and it is not a suitable medium for the representation of
procedural knowledge. Hence for computational purposes
it is not used in its original format, but in a format that is
adapted to the specific demands of a knowledge representa-
tion formalism. An example of such a specific logic-based
method is PROLOG. This is a programming language
which uses a combination of predicate logic, for represen-
ting facts (descriptive knowledge) and conventional
non-logical functions, for including procedural aspects
(Schotel 1987).
Predicate logic is a formal means for describing facts, which
are propositions that are either true or false. Propositions
consist of a predicate and one or more arguments: predicate
(object x, object y). Reasoning with this method is based on
the concept that a fact is either true or false and that from
known facts new facts are logically deducible. Imagine the
following archaeological ‘knowledge’:

the edge of an artefact can be blunt
the edge of an artefact can be sharp
the edge of an artefact can be used for scraping
the edge of an artefact can be used for cutting
the edge of an artefact can be used for piercing
If an edge is blunt, it cannot be sharp, vice versa
If an edge is blunt, it can be used in a scraping motion
If an edge is sharp, it can be used in a cutting motion
If an edge is sharp, it can be used in a piercing motion

When representing this by means of a programming
language that is based on predicate logic, it could look
like:

21



motion (scraping, blunt edge)
motion (cutting, sharp edge)
motion (piercing, sharp edge)

These three lines would constitute the entire knowledge
base. Since expert systems work with a closed-world
assumption, facts simply do not exist if they have not been
made explicit. Therefore, it is not necessary to include exclu-
sions such as ‘a blunt edge cannot be used for cutting’. This
simple and small knowledge base can already be consulted
by a user. A question could for instance be: can we use a
blunt edge for a cutting motion? This would look like:3

motion (cutting, blunt edge)?

If we pose such a question, the system will try to find the
answer in its knowledge base. In this case, it simply checks
whether the combination of the objects ‘cutting’ with ‘blunt
edge’ occurs in the knowledge base. The answer would be
negative. The question ‘can we use a blunt edge for a scrap-
ing motion?’ would, however, be answered positively. The
dialogue between the user and the system could look like:

user: motion (scraping, blunt edge)?
system: yes

Other questions for which this knowledge base could be
used are:

what kind of edge do you need for a scraping motion?
user: motion (scraping, X)?
system: X = blunt edge

or: 

show all motions that can be performed with a sharp edge 
user: motion (X, sharp edge)?
system: X = cutting

X = piercing

These examples did not really require complex reasoning
processes, in fact, it did not require reasoning at all. The
application merely had to consult its factual knowledge.
Most applications have, of course, much more complicated
knowledge bases. They may contain all kinds of functions
through which complex relations between specific facts can
be represented or inferencing strategies can be expressed and
through which complex reasoning processes can be simu-
lated. Fortunately, reasoning can also be achieved through
simple logical inferences. This is illustrated by the following
example: 

a burial is an archaeological feature
a plough mark is an archaeological feature
a mole hole is a biological feature
all archaeological features are indicative of human activity

In a knowledge base this knowledge could be expressed by
means of three facts and one relation:

facts: archaeological feature (burial)
archaeological feature (plough mark)
biological feature (mole hole)

relation: human activity (X) := archaeological feature (X)

The last line expresses the relation between the predicates
‘archaeological feature’ and ‘human activity’. It means that
the predicate ‘human activity’ receives (:=) its object (X)
from the predicate ‘archaeological feature’. The X’s are
variables of which the values can be exchanged between
predicates. In order to obtain a value for X, the inference
mechanism can consult the knowledge base. The predicate
‘archaeological feature’ from the second part of the relation,
can get the values from all predicates in the knowledge base
that have the same name. In this case, the predicate ‘archaeo-
logical feature’ that is part of the relation can get the values
from the predicates ‘archaeological feature’ that are
expressed as facts. These values are ‘burial’ and ‘plough
mark’. In other words, by means of the above relation it can
be deduced that a burial as well as a plough mark points to
human activity. Thus, a question a user could ask this
knowledge base is:

user: human activity (burial)?

Since this is not described as a fact, the system has to
deduce the answer from the given relation. By means of
the rules of logic this can be easily achieved.4 The answer
is positive because the value ‘burial’ is one of the values
which the predicate ‘archaeological feature’, that is part of
the relation, can collect from the lists of facts. Other ques-
tions could be:

user: archaeological feature (mole hole)?
system: no

user: human activity (X)?
system: X = burial

X = plough mark

user: human activity (mole hole)?
system: no

One of the main advantages of predicate logic is that it
offers a user the possibility to consult the knowledge base in
various ways. Even the above simple knowledge bases
could answer several questions. This implies that once a
knowledge base has been composed, it may serve several
purposes. One of the major drawbacks of this representation
method, however, is that it already yields large and complex
knowledge bases when only small tasks or problems are
represented. The problem with such large and complex

22



knowledge bases is that they are rather inefficient in terms
of storage, processing speed and maintenance. For instance,
a consultation of such a system means that it checks all facts
and relations in order to make as many deductions as pos-
sible. As a consequence, all deductions that can be made, will
be made, even if they are of no concern for the problem.
Another disadvantage of predicate logic is that it is not
very user-friendly because it is quite difficult to learn.
Moreover, it is hard to represent all aspects of human know-
ledge by means of predicate logic. The reasoning of a human
expert rarely follows exactly the rules of logic. On the
contrary, experts predominantly think in terms of heuristics,
defaults, strategies, rules of thumb, etc., which are difficult
or sometimes impossible to model into a logic framework.
Furthermore, it is not easy to handle exceptions to the rules
or uncertainties with this method, because it is such a
straightforward formalism for which a fact is either true
or false.
These drawbacks imply that this formalism is less suitable
to represent the empirical knowledge of domains like archae-
ology. In most cases it would be very difficult, or even
impossible to describe archaeological knowledge in such a
generalized way as in the above examples. This does not
mean, however, that it is not a useful representation method.
In fact, the principle of logical reasoning is employed in all
other knowledge representation methods.

3.3.3 PRODUCTION RULES

The second representation formalism, that of production or
decision rules, is more popular than predicate logic. They
exploit the power of predicate logic, but do not have the
same drawbacks. Production rules have specifically been
designed by Shortliffe and Buchanan to encode heuristic
knowledge in a simple manner (Davis et al. 1977). This
formalism combines facts with procedural knowledge (rela-
tions) by means of logical deductions, but its syntax is easier
to understand than that of predicate logic. It employs IF-
THEN constructions that are reminiscent of human inference
procedures. 
With this method, facts are represented by means of object-
attribute-value triplets and the relations between the facts by
rules. An object consists of several attributes and each
attribute has a value. At the beginning of a session the
objects have usually no value. During the inference process
they are gathered if they are needed. They can be received
from the user or deduced from other facts. The rules are
based on the principle that ‘IF condition X is true, THEN
conclusion Z can be made’. The more formal format is:
IF attribute X OF object X has value X, THEN attribute Z
OF object Z gets value Z. The knowledge from the first
example in the previous paragraph could be represented by
means of the following facts and rules:

objects attributes values
motion cutting TRUE/FALSE

scraping TRUE/FALSE
piercing TRUE/FALSE

edge angle blunt TRUE/FALSE
sharp TRUE/FALSE

rules
1 IF blunt OF edge angle IS TRUE

THEN scraping OF motion IS TRUE
2 IF sharp OF edge angle IS TRUE

THEN cutting OF motion IS TRUE
AND piercing OF motion IS TRUE

The basic process of reasoning with rules is to match facts
with the rules that relate to them. This matching can be done
in a backward or a forward direction. The first is called the
backward chaining approach and the latter the forward
chaining approach. As was explained in paragraph 3.2, the
inferencing process of the backward reasoning approach
starts with a predefined goal. In practice, an expert system
that is based on backward chaining usually provides the user
with a number of goals from which he or she can choose.
These goals refer to the hypotheses that the application is
able to validate.
If, in our example, the user wants to verify whether his arte-
fact is a cutting tool, the goal of the system becomes ‘cutting
OF motion IS TRUE’. Subsequently, the inference engine
starts searching for a rule that may confirm this goal, i.e. that
can conclude that ‘cutting OF motion IS TRUE’. In this
case, this is rule number 2. This rule, however, can only
draw this conclusion if its own condition ‘sharp OF edge
angle IS TRUE’ is acknowledged. Consequently, the infer-
ence mechanism now has to search for another rule that can
confirm this condition. Alternatively, it may ask the user to
provide the additional information. If the knowledge base
does not contain rules which may confirm the condition or
if the user denies that the edge angle is sharp, then rule
number 2 fails and the system concludes that the user’s
hypothesis is falsified. If, on the contrary, the user confirms
that the edge is sharp, the system can infer that the conclu-
sion of rule number 2 can be drawn and that the user’s
hypothesis is correct.
With respect to the forward reasoning approach the deduc-
tion process starts when it is triggered due to a changing
value of one of the facts from the knowledge base. Such a
change can be caused by information that is provided by a
user, a database, another computer, or another device like a
measuring-instrument. If this happens, the application imme-
diately starts checking which rules are activated, i.e. which
conclusions can be drawn from this fact, and what conse-
quences this change has on other facts. In our example, the
process may start when the user indicates that he has found

23



an artefact with a sharp edge. As soon as the inference
engine receives this message, it starts searching for rules that
relate to this fact. Rule number 2 will be found, because
it has ‘IF sharp OF edge IS TRUE’ in its condition. Subse-
quently, two new facts can be inferred, i.e. ‘cutting OF
motion IS TRUE’ and ‘piercing OF motion IS TRUE’.
Since there will be no more rules triggered by these two
facts, the inferencing process will stop and the user receives
the conclusions which can be deduced from his observation.
One of the major advantages of a knowledge representation
method that is based on production rules, is the ability to
employ the so-called Boolean operators AND, OR, NOT
etc. These operators enable rules to describe both positive
and negative relations between objects and the attributes of
objects. For instance in rule 2 of the above example, the
Boolean operator AND was employed to deduce a multiple
conclusion. Usually, these operators can simultaneously be
part of the condition of a rule and of its conclusion. This
makes it a suitable method to represent especially non-logic
or non-linear heuristic knowledge. 
Another advantage of decision rules is that its (IF-condition,
THEN-conclusion) syntax represents a more natural,
human way of reasoning. Consequently, they are relatively
easy to understand and work with. Furthermore, they can
represent knowledge of different levels. They can make
inferences with facts but they can also contain knowledge
about knowledge (meta knowledge) and procedures (see also
chapter 5).
Nevertheless, a rule-based system has some disadvantages as
well. Like with the pure logic method, the knowledge is still
is not very well-structured. Complex systems may contain
hundreds of rules and, from a developers point of view, such
systems are still difficult to develop, handle and maintain.
The more rules you create, the less predictable and orderly
the system becomes. Due to the fact that rules influence each
other it may become impossible to keep track of all the
effects of simple changes (Jackson 1986). Furthermore, rule-
based systems are still not as efficient as may be wished.
For example, each time an application receives or deduces a
new value (a fact), it will check all rules in order to find
out which one of them can be activated by that fact. With
complex systems it may take a relatively long processing
time before a conclusion is drawn. This can be problematic
if time is a critical factor, like with process control. That is
why Payne & McArthur suggest that “...when the rules in a
system become harder to understand than the equivalent
programming code, it is clearly time to explore solutions
other than rules.” (Payne & McArthur 1990: 60).
Furthermore, it has been repeatedly argued that the expres-
siveness of rules is not optimal for all kinds of expert system
applications (see also chapter 2.4.1). Rules may represent
complex relations sufficiently explicit and they may, there-

fore, not explain the underlying decisions in reasoning
process adequately enough (cf. Clancy 1983).
Another limitation is that with goal-oriented applications the
goals must be explicitly incorporated in one of the rules of
the knowledge base. This means that this restricts the
exploitation of the knowledge: it is only employed for the
purpose of confirming these predefined goals, while it could
be used for many more purposes. This is in contrast with, for
instance, predicate logic. The example in paragraph 3.3.2
showed that predicate logic enables a user to consult a
knowledge base in various ways. 
Despite these limitations, the representation formalism of
production rules is most frequently chosen by system designers:
it yields transparent and understandable knowledge bases.
Exactly for these reasons it has also been deployed for the
construction of WAVES (see chapter 5.5.5).

3.3.4 SEMANTIC NETS

Another way of representing knowledge is by means of a
semantic net. This method is predominantly used for knowl-
edge that consists of a hierarchical nature. Semantic nets
consist of objects (nodes) and the hierarchical relations
(links) between the objects. The relations between the
objects have the form of ‘IS-A’ or ‘HAS-A’. Imagine the
following hierarchical knowledge:

prehistoric man occupied hunting camps
characteristic for a hunting camp are its flint artefact

assemblage
a scraper may belong to this assemblage
an arrowhead may belong to such an assemblage
a scraper has a blunt edge, while an arrowhead has a

sharp edge
a blunt edge has an angle of more than 60 degrees
a sharp edge has an angle of less than 60 degrees

This could be represented as:

site IS-A hunting camp
HAS-A flint artefact

IS-A scraper 
HAS-A blunt edge

HAS-AN angle > 60 degrees
IS-AN arrowhead 

HAS-A sharp edge
HAS-AN angle < 60 degrees

Like all other reasoning methods, the deduction principle is
based on a direct comparison of the facts that the user pro-
vides and those the knowledge base contains. A user could
consult this knowledge base by asking: what type of flint
artefact has a sharp edge? The answer will be ‘arrowhead
HAS-A sharp edge’. Another question could be: 
which flint artefacts occur on a hunting site?

24



user: hunting site HAS-A flint artefact IS-A X?
system: X IS-A scraper

X IS-AN arrowhead

Semantic nets have another specific way of deducing facts,
i.e. through inheritance. This means that the objects of a
lower level automatically receive the characteristics of the
upper levels. Regarding the above example, inheritance
means that each type of edge angle belongs to a specific
edge, to a type of artefact, and to a hunting site. Often, it is
however more complicated than this. In fact, any node can
be related to any node from the same or from any other
level. In this way, knowledge can be passed between any
related object. Consequently, the network and thus the direc-
tions of the knowledge exchange can be very complicated.
In the above example, the principle of inheritance allows
a user to consult the knowledge base in different ways.
One could, for instance, verify whether an excavated arte-
fact can be classified as a scraper. This dialogue would
look like:

user: IS-A scraper?
system: HAS-AN angle > 60 degrees?
user: yes
system: yes

Few systems that are based on structured objects reason by
means of inheritance only. Most of them can use some form
of forward or backward chaining as well. Examples of these
are when-changed and when-needed methods. A when-
changed method means that a command can be attached to a
certain attribute. This implies that when the value of such an
attribute changes, a particular action is taken, like with the
forward chaining mechanism. A when-needed method means
that whenever the value of a particular object is needed, an
immediate action is taken to retrieve that value. This resem-
bles the goal-oriented backward chaining mechanism.
A hierarchy-oriented formalism such as a semantic network,
is very useful for representing hierarchical related know-
ledge and thus for tasks like object classification. It can
structure such knowledge perfectly. Another advantage is its
processing speed. Once you have a known fact, only one
deduction path will be followed, i.e. that of the related
nodes. As a consequence, only related facts are deduced
without wasting time on irrelevant facts and conclusions.
Unfortunately, this method has also some disadvantages. It is
less useful for representing rules-of-thumb or for knowledge
that comprises many exceptions. In the above example, for
instance, a wooden arrowhead would not be classified as an
arrowhead. Exceptions must be handled as separate objects
(nodes) with their own relations and a network with many
exceptions soon becomes very complex and disordered and,
thus, difficult to maintain. 

3.3.5 FRAMES

The fourth representation method is based on the concept of
frames. Frames have many things in common with semantic
nets: they also describe facts in terms of objects and they
reason through inheritance. One of the differences, however,
is that their objects have their own associated attributes
which have no links to other frames of the same level. In
other words, each node of a frame can consist of several
attributes, while in a semantic network each node represents
one attribute. The frame based method implies that related
knowledge is further grouped together. A semantic network
can be used to describe the general structure of a situation or
task, while frames describe stereotypical situations. This
leads to another difference with semantic nets. Inheritance
across the nodes of the same or other levels is impossible.
It can only take place in an one-way direction, i.e. from the
general (parents) levels to the more specific (children’s)
levels. The strength of frames is that knowledge can be
deduced from an object as soon as it is known that this
object belongs to a certain class. That object automatically
has the same characteristics as its parents.
When the knowledge of the previous example would have to
be described by means of frames, it could look like this:

Frame 1 SITE TYPE X
characteristics

excavated in:
coordinates: 
environmental data:
altitude:

Frame 2 EXCAVATED ITEMS
part-of site type X
characteristics

artefact types:
features:
samples:

Frame 3 ARTEFACT TYPE SCRAPER
part-of excavated items
characteristics

amount:
edge shape:
function:

Frame 4 ARTEFACT number xx
part-of artefact type scraper
characteristics

edge angle:
raw material:
find condition:
coordinates:

25



The inheritance in this example implies that if you ask infor-
mation on artefact number xx, the system can automatically
trace all knowledge that is related to that particular artefact,
such as its function, its find context and the type of site it
belongs to.
In comparison with the other representation forms, a frame-
based knowledge structure is the most easiest to expand and
maintain. New frames or relations between frames or charac-
teristics of frames can be unlimitedly added or removed,
without influencing the other knowledge and without
increasing the complexity of the knowledge base. However,
this form is only useful for tasks with perfectly structured
knowledge, like classifications.

3.3.6 HYBRID REPRESENTATIONS

Each of the discussed representation methods has its own
advantages and disadvantages but each suits a specific prob-
lem or application best. It highly depends on the character-
istics of the knowledge and the demands of a system which
method is used. Moreover, the use of one method does
not exclude that of another. Often expert system shells
(see paragraph 3.5.3) are hybrid systems that offer a combin-
ation of representation methods as well as of goal-oriented
and data-oriented inference mechanisms. In that way, the
advantages of various methods can be used to build an
application that is optimally tailored to its task and the asso-
ciated knowledge.

3.4 Expert system development process
3.4.1 INTRODUCTION

In the previous paragraph, knowledge bases and reasoning
processes were described in an operational state, but it usu-
ally requires a considerable effort to reach this stage of an
expert system application. The main struggle is to retrieve
the right knowledge, to analyze it and to mould it into a
model that is effective and efficient for both the computer
and its future user. Moreover, before any of the simulated
knowledge can be actually consulted, it must be implemented
into a computer and thoroughly tested. Consequently, the
development of an expert system application that is meant to
be used for practical purposes and by independent users, is a
complex and time consuming venture. The success of the
operation and the subsequent application depends on various
aspects, such as the co-operation between the domain expert
who is going to provide the required knowledge and the
developer, the so-called knowledge engineer, the management
of the project and the limiting conditions (cf. Kulikowski
1989).
In this paragraph the most important aspects of the develop-
ment process will be discussed. Although there are no unam-
biguous strategies developed for this kind of projects, a
development trajectory can generally be divided into five

26

Fig. 4. Stages in a top-down expert system development trajectory.
Implementation occurs according to the incremental programming
approach: each stage of the trajectory allows for feedback and
comprises the possibility to adapt the result of the previous stages.

main components: orientation, acquisition, design, imple-
mentation and evaluation. I have treated them as consecutive
stages that are prosecuted in a top-down fashion (fig. 4).
This implies that the nature of a task and its knowledge is
the starting point of the development process and that the
characteristics of the application will be attuned to this.
In this chapter these stages are mainly described from a
theoretical point of view. In chapter 5 they will be encoun-
tered in the practical context of the construction of WAVES. 

3.4.2 ORIENTATION

In paragraph 3.1 (fig. 2), it was shown that expert systems
can be employed for a large variety of tasks. This does not
mean however that they can perform any task, or that all
problems or tasks need to be handled by an expert system
application. Often they can be perfectly-well carried out by a
standard algorithm of a conventional program. The orienta-
tion phase of the development process, therefore, implies
that it is studied whether the problem domain or task suits a
knowledge-based approach.
One of the aspects which call for attention during the orienta-
tion phase is the nature of the task and its related knowledge.



Expert system applications are most successful when they
are employed for tasks which can be clearly defined and
which have a limited complexity. In respect to this complex-
ity a useful directive may be that a human expert must be
able to solve a particular task or problem within a couple of
hours. Even more important, however, is that the required
knowledge can be made explicit by means of formal repre-
sentation methods. This may be problematic because it has
been experienced that experts may find it difficult to
describe their subjective knowledge explicitly and to explain
the underlying reasoning processes that they apply (Kidd
1987: 3). Moreover, some expert knowledge can hardly be
formalized because of its subjective character and because of
the uncertain relations between the facts or the observed
phenomena. Such difficulties may cause serious problems
for an application building process and should be discovered
and, if possible, bypassed before the development trajectory
is started.
Since the success of an application building process highly
depends on the character and possibilities of the knowledge
domain, some authors (e.g. De Witte & Kwee 1987; Prerau
1989) have formulated directives for a suitability evaluation
of the selected subject, such as: 

– one should only select tasks for which sufficient knowledge
is available, either in writing or in the form of an expert; 

– the problem and its associated tasks must be well-defined
and decomposable into smaller problems and tasks in
order to keep the project manageable;

– the problem’s solutions must be assessable; 
– it must be possible to program the problem within the

limitations of the available time and money and of the
hardware and software facilities;

– the expert must be sufficiently available and co-operative
to share his or her knowledge;

– the end-users must be able and willing to use an expert
system;

– it must be acceptable for end-users that the system shall
not be a duplicate of the real expert, but only a limited
extraction;

– the problem cannot be handled sufficiently by conven-
tional programming methods.

It must be stressed, however, that even if these conditions
are met, the success of a development project is not guaran-
teed. Reversely, if some of the conditions cannot be met, this
does not automatically mean that a project has no chance of
succeeding.

3.4.3 KNOWLEDGE ACQUISITION

Once the decision is made to build a knowledge-based appli-
cation, the first development phase begins, i.e. the acquisi-
tion of the required knowledge. In order to enable a program

to simulate an expert’s reasoning, it must be provided with
expert knowledge. The acquisition phase consists of two
activities: the elicitation of the knowledge and its subsequent
analysis. The elicitation refers to the entire process of mak-
ing an inventory of the knowledge, tasks and procedures that
are involved in a task and of gathering it from the available
sources. The analysis implies that the elicited knowledge is
studied, organised and finally structured into a model.
In many cases it is far from easy to elicit knowledge (see
chapter 5). Usually, the knowledge that is involved in expert
system applications not only consists of formal facts and
theories (gained by education), but also of heuristic elements,
such as rules-of-thumb that are based on intuition and experi-
ence. The subjective nature of the heuristic knowledge
makes it difficult to retrieve the expert’s underlying reason-
ing processes and, therefore, to gather all the necessary
information. Experts are not used to give a detailed or step
by step description of their approach to a problem and may
feel uncomfortable in doing so. Especially knowledge that is
based on intuition may be hard to make explicit. 
The engineer, on the other hand, may have difficulties to
perceive the approach of an expert and to understand the
underlying reasoning processes and must try to get
acquainted with the jargon and the subject of the domain
practitioner. There are mainly four methods to withdraw
information from the expert. An engineer usually employs a
combination of them. These methods are interviewing,
observation, introspection, and participation. With an inter-
view, the system developer initiates the elicitation trajectory
and the expert is questioned. An observation implies that the
knowledge engineer watches the activities of an expert at
work. Introspection means that the expert describes and
explains all his actions and thoughts while he carries out
particular case studies. Participation implies that the engineer
tries to perform some of the procedures or actions himself.
After the elicitation has finished, the next step is to analyze
the information that was gathered and to divide it into small
parts. This means that the relating items must be recovered,
brought together and structured into distinctive tasks, i.e. the
hypotheses are separated from the evidence and actions.
Subsequently, each reasoning task is characterized and all
actions are specified. Finally, all knowledge is captured in
descriptive (factual) and procedural knowledge models.
During this phase a frequent feedback with the expert is
essential for the verification of all parts of the model. It may
also be useful to consult other experts for an evaluation of
the model. Furthermore, if it is possible to include the
viewpoints of several experts, an application will be more
complete and more easily accepted by the user (see also
chapters 5 and 7).
Since knowledge acquisition holds the key to success for
any application, it is an important topic in the field of expert

27



system research. Many scientists have developed methods,
techniques or tactics that can support or facilitate this aspect
of the development process (e.g. Kidd 1987; Roth & Woods
1989). This research even entails the automatic acquisition
and synthesis of knowledge, which implies that particular types
of knowledge are elicited by means of specially designed
algorithms (cf. Hart 1987). Despite these more formal
approaches, knowledge acquisition remains one of the most
difficult phases in the expert system building trajectory.

3.4.4 DESIGN, IMPLEMENTATION AND EVALUATION

The knowledge models which result from the acquisition
phase, provide the basis for the third phase in the develop-
ment process, the design of the application. It means that a
conceptual map is made of what the application is going to
look like, how it will carry out its task, how the knowledge
will be represented, what inference mechanism will be
required, what explanatory facilities will be incorporated,
what other aspects should be taken into consideration in the
communication with the user, etc. It is important that a
design is mature, because it is not only decisive for the func-
tionality of the final application but also for its maintenance.
Consequently, decisions must be made on the hardware and
software that will be needed to effectuate the design.
In principle, if the design of an application has finished, the
real programming, i.e. the implementation begins. This
implies that the required software and hardware is selected
and that the knowledge models are implemented by means
of knowledge representation methods and inference mech-
anisms. The implementation process can be carried out
according to three approaches, i.e. linear programming,
(rapid) prototyping and incremental programming. Linear
programming is a classical method. It means that an applica-
tion is implemented and evaluated as a complete package.
Often such applications are very well-developed technically.
But their practical use may be disappointing for the end-
users because this approach usually does not give them
much opportunity to participate in the development process.
Another risk is that the evaluation can reveal problems
which affect the entire application and which may require
severe and time-consuming adaptations.
It is important to involve the end-user in the development
process because they determine whether the final system is
accepted or not. It is rather obvious that a system which has
the users’ approval, will be more easily accepted than a new
system which suddenly is imposed on them by some know-
ledge engineer. Prototyping is, therefore, considered to be an
important part of the development process (e.g. Hayes-Roth
et al. 1983; Bratko 1989; Kahn & Bauer 1989; Whipp &
Lewis 1989; Van den Broek et al. 1990). It means that small
tasks or modules are implemented and evaluated separately
and that the user participates regularly in the development

process. The user’s feedback is very important for this
approach.
In its most extreme form rapid prototyping implies that the
application’s final shape is predominantly established by
means of a process of trial-and-error in which the user’s
wish is the developer’s command. The underlying concept is
that everything is allowed as long as it makes the user
happy. Unfortunately, an application that is built in such a
way lacks a firm and coherent structure. It may lead to an
ill-considered and opaque application which is very difficult
to maintain because the consequences of changes cannot be
predicted (Van den Broek et al. 1990).
The third method, incremental programming is a combina-
tion of the previous two. With this method the system is
divided into small parts or increments and each of these is
implemented according to the linear method and
subsequently evaluated by means of prototyping (fig. 4).
If necessary, the design of a module can be updated on the
basis of each evaluation. Moreover, the consistency between
the modules is constantly controlled. Hence, the user is
involved in the development process, but the application’s
design remains the foundation for the implementation
process. In this way, the system’s maintenance is secured.
Since the incremental method combines the advantages of
the former two, it is the most efficient approach.
When the process of implementation has been completed,
the resulting system has to be tested and evaluated as a
whole. In particular, if an application will be used for prac-
tical purposes its quality needs to be assessed thoroughly.
Unfortunately, there is no generally accepted validation
method for each approach has its limitations (Hollnagel
1989: 377). In chapter 7 this aspect will be discussed in
more detail. Finally, if the evaluation has been carried out
the application can be made operational and released for
practical use.

3.5 Implementation tools
3.5.1 INTRODUCTION

The actual implementation of an application is facilitated by
using a tool that is dedicated to this, although sometimes
conventional procedural languages are used as well (Water-
man 1986; Alty 1989).5 Various dedicated tools are avail-
able. The two most commonly used are a programming
language and a shell. In the beginning, applications were
built with general purpose expert system building languages,
like LISP and PROLOG. Ever since, many different lan-
guages have been developed which are dedicated to building
knowledge bases with particular representation formalisms.
Examples of these are logic-based languages, rule-based
languages, and frame-based languages. The choice of a
language, therefore, depends on which of these formalisms
will suit the application.

28



When more people became (commercially) interested in
expert systems, new methods were developed to simplify the
expert system building process and to improve the accessibil-
ity of this technology. In this respect, especially the success
of the application MYCIN (see paragraph 3.1) has been
important for a further development of the expert system
technology. MYCIN has served as a blue-print for the expert
system shell. This is an empty expert system application:
a skeleton which provides representational, reasoning and
communication facilities, but in which no knowledge is
incorporated. In a way, a shell may be compared with a
baby: it is equipped with all facilities and functions (brains
and sense-organs) that are necessary to store knowledge and
to communicate, but it does not know anything and cannot
speak yet. Just like a baby can learn English as easy as
Dutch or Swahili, a shell can be filled with knowledge from
any domain.
Using a shell does not mean that it suddenly becomes easy
to develop a knowledge-based system. It only enables
domain specialists, like archaeologists, with some knowledge
of computing to implant their own expertise or that of col-
leagues into a system. This is opposite to the traditional
situation in which system development was solely reserved
for computing specialists, who often had no affinity with the
concerning domain. It does not mean, however, that shells
make knowledge engineers superfluous. On the contrary,
the development of really complicated applications must be
entrusted to a person educated for such a job, and not to an
archaeologist who happens to know something of expert
systems, like myself. Since specialists in knowledge engin-
eering master a great diversity of sometimes very complex
knowledge representation techniques, their contribution will
surely diminish the risk of ending up with a useless system. 

3.5.2 PROGRAMMING LANGUAGES VERSUS SHELLS

For some applications conventional programming languages
can be used. However, for more complex problems for
which no straightforward solutions can be programmed, the
algorithm becomes very complex and, therefore, difficult to
maintain. Since expert systems need maintenance regularly,
conventional programs are often less suitable. The virtue of
expert system programming languages is that they are highly
specialized to a particular representation and inferencing
method. This makes them quite sophisticated tools. Another
advantage is that a language has almost no procedural
restrictions, because the engineer develops the procedures
him or herself. This means that he or she can build an appli-
cation in such a way that it perfectly fits its task. Although it
may need complex and trickery programming, it is said that
“...any facility missing in a language can be provided by
programming.” (Alty 1989: 198). Languages allow for
custom-made applications.

Languages have their disadvantages as well, however. The
fact that their representational and inferencing possibilities
are predominantly dedicated to a particular type of task,
means that the knowledge of the application that is being
built, must fit this approach seamless. If this is not the case,
it may be difficult to represent the various types of know-
ledge in an equally effective way. Another drawback is
that it may take considerable time to learn a language.
Especially system developers who have not been trained in
the computing profession, may experience difficulties in
exploring and employing their abilities. Furthermore, it takes
a long time to actually implement an application, simply
because all of its aspects must be explicitly programmed.
Languages offer few standardized and ready-to-use procedural
tasks.
That is why shells were developed. The first examplars were
nothing more than abstractions of existing expert system
applications, i.e. empty structures. They consisted of a repre-
sentation method and an inference mechanism, which could
be filled with knowledge. This enabled a developer to build
an application without having to construct and program its
entire architecture. These simple shells were soon succeeded
by shells which offer combinations of different representa-
tion and inference methods, fancy user interfaces and built-
in facilities to communicate with databases or other devices.
Some shells even developed into sophisticated implementa-
tion environments, which also provide facilities to ease the
actual programming, such as editors and automatic debug-
gers (Payne & McArthur 1990: 51). Shells became popular
tools. Many commercial companies started to develop their
own. Consequently, this has resulted in a large assortment of
these tools.6

Compared with languages, shells are more easy to learn and
work with. The developer no longer has to program complex
inference mechanisms, user interfaces, etc. The built-in
facilities make it fairly easy, even for an unexperienced
system developer, to make an application that is able to
simulate rather complicated reasoning processes.
Shells have disadvantages as well. The main objection
against shells is that they may restrict a programmer’s cre-
ativity to represent expert knowledge. Because of the fact
that the facilities of a shell are prefabricated, its possibilities
are bordered. Often they have been designed for particular
tasks, like diagnosing or classification, which means that it
is difficult to employ these special-purpose shells for tasks
which deviate from these approaches (cf. Alty 1989). Using
a shell implies that the engineer has to tune either the abil-
ities of an application with the shell or vice versa. Generally,
this is not as intervening as it may sound. Most shells are
well-equipped and enable various combinations of know-
ledge representation methods and inference strategies to
minimise this potential drawback. Moreover, if a particular

29



shell cannot comply with the requirements one can simply
choose another. Since in recent years all kinds of dedicated
shells have been developed to accommodate specific kinds
of tasks, nowadays many applications can be developed by
means of a shell.
There are no clear guidelines as to which tool suits a prob-
lem best. In general, languages are more generally applica-
ble, but they offer less facilities. Moreover, in both options
the development costs for an operational expert system are
more or less equal: shells require a higher initial expense,
but languages require more implementation time. The hard-
ware requirements are comparable as well. Hence, the choice
of the implementation tool often depends on the character of
the application’s task (De Swaan Arons 1991) and on the
personal experience or preference of the knowledge engineer.

notes

1 In general, the terms ‘expert systems’ and ‘knowledge-based
systems’ are used indifferently. Some authors, however, make
explicit distinctions. In some cases different terms are used in order
to draw a distinction between systems that concern general know-
ledge and the real expert systems which employ highly specialized
expertise (cf Van Praag et al. 1988: 45). In other cases it is meant
to differentiate between the various problem solving methods on
which the systems are based. For instance, searching through a
large knowledge base in order to compare knowledge would be
characteristic for a knowledge-based system, while only a true
imitation of an expert’s reasoning strategy would deserve the
predicate ‘expert system’ (Nijssen 1992: 13). Furthermore, it is
argued that the term ‘expert system’ may be misleading. According
to Winograd and Flores “There is a danger inherent in the label
‘expert system’. When we talk of a human expert we connote some-
one whose depth of understanding serves not only to solve specific

well-formulated problems, but also to put them into a larger con-
text. We distinguish between experts and idiot savants. Calling a
program an expert is misleading... The misrepresentation may be
useful for those who are trying to get research funding or sell such
programs, but it can lead to inappropriate expectations by those
who attempt to use them.” (Winograd & Flores 1986: 132). Since
the term ‘expert system’ suggests that it simulates or approaches an
expert’s reasoning and problem solving abilities and may cause
high expectations that cannot always be fulfilled, it would probably
be better to use the term knowledge-based system. However, this is
only logical from the point of view of a developer. Compared with
the human expert of which he tries to simulate the reasoning
processes, he may consider an application to reach a much lower
level of performance. The user, on the other hand, is a layman:
in his eyes the application may still act as an expert. The applica-
tion that will be discussed in this study (WAVES) contains and
processes only basic knowledge and handles and interprets data
of a non-problematic character best, but students may experience
the advices of the system comparable to that of a human expert.
For this reason, and because it is a common term, I have not
avoided to use the word ‘expert system’. Moreover, I considered it
irrelevant in the context of this thesis to make a careful weighing in
favour of one of them.

2 The external world may be a person, a database or another
device.

3 The format that is used in these examples does not represent the
format that is used in an existing language or other representation
method.

4 Besides by logical deductions, predicate logic can achieve rea-
soning through more complicated ways like backtracking and
unification (e.g. Schotel 1987; Lucas & van der Gaag 1988), but it
is beyond the scope of this thesis to discuss these methods as well.

5 Examples of procedural or high level languages are FORTRAN,
COBOL, BASIC, PASCAL, C, etc.

6 Overviews and comparisons of different types of shells are,
amongst others, given by Jackson 1986; Alty 1989; Filby et al.
1989; Payne & McArthur 1990.

30


