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Abstract 

Purpose: In toxicology experiments measures of drug exposure are calculated using non-

compartmental methods, despite evidence that population pharmacokinetic (PK) modelling 

can provide accurate estimates of the parameters of interest.  Here we explore the utility of 

optimised protocol design and PK modelling on the precision of exposure measures for a 

variety of hypothetical compounds. 

Methods: Optimal design concepts were applied to a range of hypothetical drugs with 

different pharmacokinetic profiles.  Protocol designs were optimised both in terms of 

sampling schedule and number of animals per group.  The precision of secondary 

parameters, namely AUC and CMAX was used as target for optimization purposes.  Adequate 

precision levels were defined as expected CV% < 40%.  Absolute changes in expected 

precision of less than 10% were deemed acceptable. 

Results: Independent of differences in drug disposition, our results show that the number of 

animals used in experimental protocols can be reduced by 2/3 with acceptable loss of 

precision in AUC and CMAX estimates.  Even though some PK parameters were found to be 

imprecisely estimated when drug disposition involves more than one compartment, this 

does not significantly affect the secondary parameters describing systemic exposure, which 

showed adequate precision (all CVs  <36%). 

Conclusions: The accuracy and precision of measures of systemic exposure such as AUC and 

CMAX are essential to ensure appropriate interpretation of experimental findings and make 

inferences about safety risk in humans.  However, our analysis reveals that for composite 

methods, which are commonly used in toxicology protocols, sample size does not determine 

the precision of the pharmacokinetic parameters of interest.  Rather, it is the sampling 

scheme and dose levels which matter. In contrast to current practice, precise calculation of 

safety thresholds can be obtained with a considerable reduction in the number of animals 

used in a typical protocol.  
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Introduction 

 

Despite the evidence for important limitations in the assessment of non-clinical safety and 

toxicology, experimental protocols and data analysis have not advanced in the same way risk 

management concepts have evolved over the last decade (81). Drug exposure remains a 

proxy for risk even when other markers of safety and toxicity might be better predictors of 

adverse drug reactions (5). In fact, the establishment of safe exposure levels prior to first 

time in human studies is still one of the most important milestones in drug development 

(6,7).  Yet, the reliability of these estimates depends on the quality, accuracy and precision 

of the data obtained from preclinical toxicology experiments.  Even though statistical 

considerations are described in current guidelines, these methodological aspects appear to 

remain beyond the scope of the scientific debate on the relevance of safety thresholds.  

Undoubtedly, prediction of safety thresholds is fraught with various challenges from a 

scientific, statistical and practical perspective.  As shown in Table 1, strengths and 

weaknesses exist for the different methods currently used for the assessment of safe 

exposure, whether based on thresholds or not (8).  These challenges are often compounded 

by the restrictive nature of regulatory guidelines for the evaluation of safety pharmacology 

and toxicity.  Typically, experimental protocols for general toxicity used for defining safe 

exposure ranges in dose escalation (i.e., first-time-in-humans) studies rely on sparse 

sampling of pharmacokinetic data and other relevant safety measures.  Samples are 

collected according to a pre-defined sampling matrix with a fixed number of animals per 

time point.  Measures of drug exposure are then derived by naive pooling of the data to 

generate using composite parameters such as AUC and CMAX. Subsequently, these 

parameters are used to establish the no-adverse-event-level (NOAEL), which determines the 

maximum allowed exposure during dose escalation in clinical trials (82). 
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Table 1 Safety thresholds and prediction of risk in humans.  Reprinted with permission from Edler et 

al. (7).  

 

 Strengths Limitations and Weakness 

SAR and TTC 

• Avoids unnecessary animal testing • Assumes that structure predicts toxicity 

• Depends on current exposure estimates 

for the population 

Threshold 

• Is simple to apply and readily 

understood 

• Assumes the existence of a threshold 

• The NOAEL does not exclude biologically 

significant effects below the sensitivity 

of the test 

• The value of the NOAEL depends on 

experimental conditions such as group 

size, sensitivity of measurement of the 

adverse effect, and dose spacing. 

• Does not make full use of the dose-

response information 

• Uses default UFs 

CSAF 

modelling 

• Chemical specific data can be 

incorporated to reduce 

uncertainty 

• Depends on the validity of the 

subdivision of the 10-fold factors 

• Is a data intensive method 

Non-

threshold 

• Linear extrapolation is simple to 

apply 

• Linear extrapolation is thought to be 

highly conservative. 

• LMS cannot be validated as a model for 

low doses and extrapolation is model 

dependent 

• Differing balances between reactivity 

and repair between low and high doses 

are not accommodated. 

BMD 

• Makes full use of the dose-

response data 

• Allows confidence limits for point 

estimates 

• An optimal experimental design 

may allow reduction of the 

number of animals tested (does 

not require a large number of 

• Obtaining consensus defining a 

benchmark response level for the 

adverse effect (e.g. 5 or 10%) is difficult 

• Is not applicable to studies with few 

dose groups 
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animals per group) 

Probabilistic 

RA 

• Uncertainties associated with all 

aspects of the quantitative 

methods of the RA process can be 

taken into account 

• Appropriate chemical specific 

information can be incorporated 

to reduce uncertainty 

• Provides effect estimates at actual 

exposure levels 

• Requires use of default distributions in 

most cases 

Categorical 

regression 

• Takes all studies into account and 

not only the most sensitive one 

• Allows the prediction of a severity 

effect category at a particular 

dose (e.g. above ADI) 

• Requires toxicological judgement for the 

categorisation. 

• The interpretation of fitted model 

(different endpoints, observer variation 

etc.) is difficult 

PBTK 

• Is able to model the time course 

of the amount of the active 

compound at the target site 

• Is possible for any species and for 

different exposure (e.g. route to 

route extrapolation) and lifetime 

conditions 

• Allows extrapolation from animal 

to human without having to have 

human exposure data 

• Allows target organ dose-

response relationships to be used 

for low-dose extrapolation 

• Is a data intensive method 

• Does not address the dynamics 
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Given the importance to explore pharmacologically relevant exposure levels in humans, it 

should be clear that the accuracy of such estimates can become a critical factor during the 

dose escalation.  To date, current guidelines do not describe the implications of variability or 

bias in these estimates. Yet, the NOAEL is often presented as point estimates to describe the 

population (22).  This ignores variability which can be decomposed into two parts; variability 

associated with estimation methods and biological variation in pharmacokinetics which 

arises from inter- and intra-individual differences.  Most importantly the exposure estimates 

from composite measures such as AUC do not allow accurate inferences about the 

underlying pharmacokinetic processes and individual concentration-effect relationships. 

In a previous investigation we have shown that lack of precision exists in exposure 

estimates derived from the empirical methods currently used for the estimation of 

toxicokinetic (Sahota et al, unpublished results).  One of the main problems is that drug 

exposure levels observed in satellite animals do not necessarily mirror those assigned to the 

primary treatment group, in which safety pharmacology and toxicity are evaluated.  

Evidence form long-standing pharmacokinetic research in pre-clinical species clearly shows 

that such an approach ignores important differences that may exist between the two 

experimental groups (11, 12).  It is equivalent to assuming that all animals have the same 

exposure and variability in exposure, i.e., that the underlying physiological processes do not 

vary between animals.  By contrast, the use of a model-based approach enables one to 

incorporate prior knowledge and additional data from other experiments into the analysis, 

providing accurate estimates of between- and within-subject variability.  This information is 

essential to ensure a more quantitative, unbiased evaluation of safety pharmacology and 

toxicology findings. 

Arguably, one should not consider only the implications of the statistical method for the 

analysis and interpretation of safety thresholds, but also question whether experimental 

protocols are informative enough to allow accurate estimation of the parameters of interest. 

In this context, there has been an increase in the awareness about the relevance of 

optimality concepts for the optimisation and selection of suitable protocol designs for the 
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evaluation of pharmacokinetic data in conjunction with non-linear mixed-effects modelling.  

The statistical method was first proposed by Fedorov and later adopted into the PKPD field 

(83).  The approach enables the prospective prediction of parameter precision in the 

protocol development phase using the expected fisher information matrix (FIM).  Variations 

or adaptations to the original methods have been introduced, which have enable further use 

of optimality concepts in experimental protocols involving different types of continuous, 

repeated measurements (84,85).  In addition to enhancing the informative value of 

experimental protocols, the use of optimal design has proven to be an opportunity for 

reduction in total sample size and consequently in the number of animals required for an 

experiment (86).  Of particular relevance for the evaluation of safety protocols is the 

possibility of building robust designs to prior uncertainty in pharmacokinetic parameters.  

Model uncertainty can be explored via sensitivity analysis or by of applying ED-optimality 

which assumes a prior distribution around the parameters of interest (87). 

In the current investigation, simulations are used to illustrate how a model-based approach 

can be implemented in conjunction with D-optimality software to improve the design of 

protocols for safety pharmacology and toxicology experiments.  It can be anticipated that 

improved parameter precision and accuracy will allow appropriate dose escalation with less 

uncertainty about the safety thresholds (20).  In fact, our analysis includes an evaluation of 

the sensitivity to model and parameter uncertainty (21).  Furthermore, we also show how to 

account for the principle of the 3 Rs to ensure that the optimisation procedures do not 

represent an additional burden to animals required for the experiments (4).  

 

Methods 

 

Currently available software programs have two major limitations for optimising general 

toxicity protocols.  The first is that optimisation is performed with respect to primary model 

parameters (e.g. CL, Vd).  This is restrictive because measures of interest in toxicology are 
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secondary parameters such AUC and CMAX.  For instance, for AUC estimation, the precision of 

KA is of little importance.  Similarly, for most drugs, precise estimation of CMAX will not 

depend on the precision of CL and peripheral compartment parameters.  An optimisation 

routine that optimises over all parameters may not be suitable either. Ideally, it would be 

useful to reparameterise the model so that derived measures of exposure are treated as 

optimisation variables, but this is not always possible as there may be no closed form 

solution relating primary and secondary model parameters. 

The second problem arises from the tendency of software to only provide optimal solutions.  

In practice there are many other factors to consider (e.g. logistical, ethical, financial, and/or 

minimal false positive rate) which can be difficult to account for within the optimisation 

options in a software program.  For example, there may be suboptimal designs (in terms of 

expected parameter precision) that are much more cost effective or ethical.  It is therefore 

important to be able to explore the space of candidate study designs achieving a desired 

level of precision. 

To address the aforementioned problems we proposed to use a simulation-re-estimation 

approach to study design.  However, this is computationally intensive and can quickly 

become unfeasible when applied to variety of candidate designs and proposal models.  For 

this reason, here we employ a hybrid approach where candidate designs are evaluated in 

PopED v. 2.10 (University of Uppsala, Sweden) and then expected primary parameter 

(co)variances are converted to secondary parameter variances using traditional PKPD 

simulation procedures, as implemented in NONMEM v.6.2 (ICON Development Solutions. 

Hanover, Maryland). 

The studies under consideration were a one week, one month, and three-month general 

toxicology protocol, in which toxicokinetic data for three different hypothetical drugs were 

evaluated.  Given the pre-defined pharmacokinetic parameters used in the simulations, the 

true exposure for each individual animal was computed using a variety of measures which 

were subsequently set as reference for further assessment of the no adverse effect level 

(NOAEL).   
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Finally, it should be noted that one of the main issues with the estimation of the NOAEL is 

that it is limited to the computed exposure at one of the pre-specified experimental doses 

(22).  Consequently, the estimated exposure at any one of the dose levels is a candidate 

threshold depending on the observed adverse events. To overcome this limitation, the 

assessment of experimental designs was primarily based on the estimates from secondary 

parameters (AUC and CMAX) across all treatment groups. In addition, our design space was 

limited to sampling schedule and number of animals per group to ensure that the NOAEL 

estimates could be obtained both by NCA and non-linear mixed effects methods.  In fact, 

only experimental designs which allowed for the analysis of the data according to both 

methods were evaluated.   

Given that in typical experimental protocols, three animals are sampled per time point for 

toxicokinetic analysis, alternative candidate designs were aimed at reducing total sample 

size, including two or even one animal per sampling time point.  These alternative designs 

represent therefore a reduction in the total number of samples and in the number of 

animals required per study.  Details of the experimental protocols, pharmacokinetic models 

and optimisation procedures are described in details in the next paragraphs. 

Experimental protocols: Three hypothetical drugs were considered to account for differences 

in disposition properties.  We assumed the availability of prior information in the form of 

single dose pharmacokinetic experiments performed across a range of doses with putative 

pharmacological activity (1, 3, and 10 mg/kg), in which 8 animals were tested per cohort.  

The toxicology protocol design was based on an initial set-up commonly used for chronic 

toxicity evaluation.  Four treatment groups (N= 8 per group) receiving oral daily doses of 

vehicle, 10, 30, and 100 mg/kg/day were tested throughout this set of virtual experiments, 

which lasted either one week, one month or three months.  Satellite groups with 3 

animals/time point were used to mimic the dosing conditions in the animals used for the 

assessment of toxicity (see Figure 1 for a simulation of typical satellite group data). This 

procedure ensures the availability of more frequent blood samples for toxicokinetics.  Blood 

sampling scheme included four occasions based on feasibility, namely days 1, 8, 25, and 89. 
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Sampling times on those days were determined by ED-optimality.  For the purposes of 

optimisation, we assumed that all three hypothetical drugs could be fitted by a one-

compartment model (model A1) and assumed a 50% CV on all parameters. This was 

intended to represent standard use of ED-optimality for the optimisation of sampling times.  

Sampling times were rounded to the nearest 15 minutes. 

Pharmacokinetic models: To ensure accurate evaluation of the impact that differences in 

drug disposition may have on the requirements for experimental design optimisation, three 

different scenarios were considered in which hypothetical drugs showing on a one-

compartment pharmacokinetics with linear and nonlinear (Michaelis-Menten) elimination as 

well as a two-compartment pharmacokinetics were tested.  Parameter values for each 

scenario are shown in Table 2.  In all scenarios, residual variability was assumed to be 15%.  

Moreover, for the purposes of this exercise, we have assumed a homogeneous population, 

avoiding the need to explore covariate relationships in any of the models. 

Optimisation criteria: See the appendix for background information on the optimality 

concepts used in this investigation.  ED-optimality can be used to incorporate parameter 

uncertainty into the optimisation process.  However, ED optimality only provides an 

assessment of expected parameter precision and provides no basis for exploration of 

suboptimal, yet sufficient designs, i.e. reduced designs.  Therefore, our decision to use the 

expected FIM explicitly for the prediction of parameter precision is motivated by a need to 

have a fast, reliable and flexible method to assess and optimise experimental designs for a 

model-based analysis whilst adhering to the principle of the 3 Rs.  The expected FIM 

provides a close approximation of expected parameter uncertainty (23,24).  In addition, we 

have favoured the practice of explicitly running the optimisation at different perturbations in 

model parameters (Table 3). Model parameters were changed in the three PK models tested 

(one compartment with linear and nonlinear elimination and two compartments), yielding to 

a total of 27 different models.  These models are labelled A1...9, B1....9 and C1....9. 
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Figure 1:  Plots of simulated data for scenarios A1, B1, and C1 overlaid with population prediction 

(black line).  Top panel shows 10mg/kg dosing group using the 3 samples per time point.  Bottom 

panel shows pharmacokinetic profiles at the lower dose level (1 mg/kg) with 8 animals per cohort. 
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Table 2: Parameters and corresponding between-subject variability used to characterise the 

pharmacokinetic profiles of hypothetical compounds showing one-compartment, two-compartment 

and Michaelis-Menten disposition in rats.  Doses were defined according to a general toxicology 

protocol design.  Ke: first order rate constant of elimination, Ka: first order rate constant of 

absorption V: volume of distribution, K12: hybrid constant, K21: hybrid constant; Vmax: maximum 

metabolic rate ; Km: Michaelis-Menten constant (substrate concentration corresponding to 0.5 Vmax) 

     MODEL  A: 

Parameter Value BSV (%) 

CL (ml/h) 10 20 

Ka (h-1) 14.82 50 

V (mL) 49 16 

 

     MODEL B: 

Parameter Value BSV (%) 

CL (ml/h) 10 20 

Ka (h-1) 14.82 50 

V (mL) 49 16 

K12(h-1) 2.17 16 

K21(h-1) 3.554 69 

 

     MODEL C: 

Parameter Value BSV (%) 

Vmax (mg/h) 0.3 20 

Ka (h-1) 14.82 50 

V (mL) 49 16 

Km(mg/L) 30 0 FIX 
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Table 3: Perturbations in the parameters for the three different pharmacokinetic models. CL: clearance, Ka: first order rate constant of absorption V: volume 

of distribution, Vmax: maximum metabolic rate.  

Model KA V CL Model KA V CL Model KA V VMAX 

A1 - - - B1 - - - C1 - - - 

A2 - +50% +50% B2 - +50% +50% C2 - +50% +50% 

A3 - +50% -50% B3 - +50% -50% C3 - +50% -50% 

A4 - -50% +50% B4 - -50% +50% C4 - -50% +50% 

A5 - -50% -50% B5 - -50% -50% C5 - -50% -50% 

A6 -80% +50% +50% B6 -80% +50% +50% C6 -80% +50% +50% 

A7 -80% +50% -50% B7 -80% +50% -50% C7 -80% +50% -50% 

A8 -80% -50% +50% B8 -80% -50% +50% C8 -80% -50% +50% 

A9 -80% -50% -50% B9 -80% -50% -50% C9 -80% -50% -50% 
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All evaluations were performed in PopED v.2.10 (University of Uppsala, Sweden) (88), a 

software developed in O-Matrix® (Harmonic Software Inc., Seattle, WA, USA).  Data 

manipulation and statistical and graphical summaries were performed in R 2.10.0 (26).  In 

our analysis, the expected FIM was used to compute the expected covariance matrix from 

which, the expected precision of primary pharmacokinetic parameters was quantified 

(89,90). 

The expected precision of the derived parameters of interest, namely AUC and CMAX, were 

calculated from the expected covariance matrix of primary parameters in NONMEM 6.2 

(ICON Development Solutions. Hanover, Maryland) (27).  First, 1000 pharmacokinetic 

profiles were simulated from the primary parameters uncertainty distributions by including 

the covariance information in the $PRIOR subroutine.  For each pharmacokinetic profile, the 

AUC and CMAX were calculated as follows: 

AUC = W �� �!!"�#  

CMAX = max	('��((): � − 24 < ( < �.) 
where individual predicted drug concentrations are denoted by ��(�). 
The expected precision (standard error) of the parameters was then summarised.  Adequate 

precision was defined as expected CV% < 40%.  Absolute changes in expected precision of 

less than 10% were deemed biologically irrelevant. 

 

Results 

 

Our analysis shows that optimal design concepts can be used in toxicology research to 

improve the precision of the parameters of interest whilst allowing for a reduction in the 

total number of animals required per experiment.  As shown in figure 1, plots of the 
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simulated profiles for a typical individual together with simulated samples, representing 

“observed” data are depicted to illustrate the impact of different disposition characteristics 

on the concentration vs. time profiles.  

The optimised sampling times for all scenarios were 0.25, 0.5,0.75, 1, 1.5, 2, 8 and 24 hours 

after dosing.  Results show that for all designs the precision of AUC and CMAX associated with 

a reduced sample size of 2/3 from the initial sample size resulted in an acceptable loss of 

precision (the absolute difference in expected precision was <10% for all scenarios for 

sample size reduction of 2/3).  Therefore, optimised protocols result in a reduction of up to 

2/3 in the number of animals utilised in toxicokinetic experiments. 

An overview of the point estimates and coefficient of variation (CV%) obtained for AUC and 

CMAX is presented in Table 5.  The differences in parameter precision associated with varying 

sample size, including the NOAEL, is summarised for each model in Figures 2, 3 and 4).  We 

show how precision changes when one or two animals are sampled at each time point 

instead of using 3 animals per sampling time point. Interestingly, the expected precision was 

very high for the one-compartmental model but there was less precision for the two-

compartmental model, where a distribution phase is evident.  In addition, our analysis 

reveals that metabolic saturation, as described by Michaelis-Menten kinetics does not 

further affect the precision of parameter estimates.  Further assessment of the precision of 

the primary parameters indicates that the parameters governing peripheral compartment 

distribution will be the least precisely estimated, with a loss of precision as high as 75% for 

some parameter perturbations.  Between-subject variability was also found to be 

imprecisely estimated and would have to be fixed to 0 for some parameters during data 

analysis.  Yet, despite these differences, AUC and CMAX imprecision was <36% for the two-

compartmental models. 
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Figure 2. Bar charts of CVs of selected parameters for models A.x, where x range from 1-9 and is indicated on the x-axis.  The y-axis shows expected 

precision of the various scenarios. 

 
1 animal per sample point point3 animals per sample animals per sample point 
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Figure 3. Bar charts of CVs of selected parameters for models B.x, where x range from 1-9 and is indicated on the x-axis.  The y-axis shows expected 

precision of the various scenarios. 
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Figure 4. Bar charts of CVs of selected parameters for models C.x, where x range from 1-9 and is indicated on the x-axis.  The y-axis shows expected 

precision of the various scenarios. 
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Discussion  

 

Experimental protocols based on repeated-dose treatment arms are essential for accurate 

inferences about the risk associated with the exposure to new chemical entities in the early 

phase of clinical development.  These studies provide the basis for the calculation of safety 

thresholds such as the no-observed-adverse-effect level (NOAEL) or lowest-observed-

adverse-effect level (LOAEL), which are used to extrapolate the concentration or exposure 

above which adverse effects can be expected in humans (82,91).  

Despite the efforts and attention given to different methodologies for the estimation of such 

safety thresholds, it is now acknowledged that the use of NOAEL or LOAEL as traditional 

thresholds or point of departure for risk assessment has significant limitations.  The NOAEL 

and LOAEL are determined by the selected dose levels and intervals used in an experimental 

protocol. 

To date, these measures remain a requirement for regulatory purposes (2).  However, there 

is a wide consensus that they do not mathematically relate to the underlying exposure-

response curve (92).  In addition, it has been shown that differences in protocol design can 

influence the precision and accuracy of the parameters of interest, yielding biased NOAEL 

and LOAEL estimates.  In fact, the bench mark dose (BMD) as the threshold or point of 

departure has been proposed as an alternative method to avoid many of these pitfalls (41).  

Unfortunately, similar challenges exist with regard to the accuracy and precision of 

estimates obtained by the BMD (18,93).  The experimental data are not integrated nor 

parameterised in a mechanistic manner so as to benefit from the advantages of a model-

based approach.  

Whilst risk assessment methods need undoubtedly to incorporate mechanistic aspects of 

drug action to ensure better characterisation of potential hazards to humans, it should be 

noted that improvements are also required from a statistical perspective.  Thus far 

empiricism and regulatory-related issues have dominated traditional toxicological testing 



 139 

paradigms (32-35).  Minimal efforts have been made to introduce optimality concepts in 

experimental design as a means to increase accuracy and precision of the parameters of 

interest.  

In this investigation we have attempted to show the feasibility of implementing a model-

based approach in conjunction with optimal design based on techniques, which have been 

developed for the field of pharmacokinetics for more than two decades ago (13,36,37).  By 

considering a number of hypothetical scenarios in which drugs with different disposition 

properties were simulated, we have demonstrated that accurate estimates of AUC and CMAX 

can be obtained for drugs showing different pharmacokinetic profiles.  Our results also 

highlight the impact of optimisation procedures on the estimation of secondary parameters.  

We have shown that even when precision of the primary pharmacokinetic parameter is 

poor, as in the case of parameters governing distribution into peripheral compartments, the 

precision of the secondary parameters remains unaffected.  This can be attributed to the 

fact that the selected candidate designs systematically yield estimates of clearance and 

volume of distribution with acceptable precision.  These two parameters ultimately 

determine systemic exposure and peak concentrations, respectively.  

Although it may seem a disadvantage to use model-dependent estimates for the assessment 

of safety thresholds, this approach presents various important advantages (38-39). First, it is 

unbiased and predictive, allowing for the incorporation of the physiological factors 

underlying the pharmacokinetic properties of the drug under investigation.  Moreover, it 

enables ne to integrate prior information, including data from other experiments.  We 

anticipate that many areas in toxicology research which can benefit from such an approach.  

New methodology does not necessarily mean that human safety will be placed at risk.  On 

the contrary, newer methods provide an opportunity to remove much of the guess work 

involved with older methodologies, which rely on assumptions which clearly prevent the 

uptake of evolving knowledge about pharmacokinetic and pharmacodynamic properties of a 

drug. 

 



 140 

Methodological aspects 

In assessing and optimising the protocol we found that existing routines in optimality 

software were insufficient to meet our assessment criteria.  In particular, existing software 

did not enable the assessment and optimisation over arbitrary secondary parameters, and 

did not allow for the impact of parameter perturbations on expected precision to be 

assessed.  The alternative brute force approach to account for these limitations would have 

been to perform multiple simulation-re-estimation procedures across our design and model 

space.  However, this would have involved extensive computation times.  Our approach 

instead consisted of FIM evaluations followed by calculation of the expected secondary 

parameter precision.  This exercise ultimately showed that optimisation can be performed 

on secondary parameters of interest, and minimally sufficient designs can be obtained.  Both 

of these procedures are computationally inexpensive.  Our approach therefore enables 

exploration of large design and model spaces without the aforementioned limitations in 

current optimality software.  

Limitations 

Our work does involve a number of assumptions, which may represent potential theoretical 

and practical limitations.  First, it should be noted that we have constrained ourselves to 

candidate designs that enable estimation of exposure using non-compartmental methods for 

each treatment group.  Further gains in terms of reduced burden and/or parameter 

precision are likely to be achieved if a model-based analysis was the only intended analysis 

of the data.  

Another requirement is the availability of a well-defined population pharmacokinetic model, 

which is feasible, but in practice not used in routine pre-clinical research.  It should be clear 

that the computation of expected (co)variance by means of the FIM, cannot directly account 

for the possibility of unidentifiably of parameters.  Hence, the validity of any optimisation 

procedures implies accurate knowledge of the pharmacokinetic properties and 

corresponding parameterisation.  Parameter unidentifiability will likely manifest in terms of 
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large standard errors, high correlations in the correlations and/or large differences in 

eigenvalues.  On the other hand, optimal design does tackle another common issue 

observed during data fitting and parameter estimation, i.e., numerical unidentifiability, 

which may be caused by poor experimental design. 

An additional assumption is that parameter estimates will be unbiased. This assumption may 

not hold true for more complex models, but the reader should be aware that this issue may 

be equally important when non-compartmental methods are used to describe complex 

pharmacokinetic profiles, as for instance in the case of metabolic inhibition or drugs with 

long elimination half-life (40).  To ensure further characterisation of bias, a full bootstrap 

(simulation-re-estimation) procedure is recommended.  Lastly, one should realise the 

implications of our own objectives, i.e., to compare designs which are suitable for both non-

compartmental and model-based methods.  Further gains in terms of reduced burden 

and/or parameter precision are likely to be achieved if a model-based analysis was the only 

intended analysis of the data.  

In summary, it can be concluded that despite the biological debate about the relevance of 

safety thresholds, the accuracy and precision of estimates are essential to ensure 

appropriate interpretation of experimental findings and make inferences about risk in 

humans.  We have shown that the use of a model-based approach is critical for appropriate 

data integration and informative value of experimental protocols.  Our work also 

demonstrates that population size is not the critical variable when evaluating precision and 

accuracy of the parameters of interest.  This feature allows for comparable results to be 

obtained with considerable lower number of animals and consequently reduction in the cost 

of experiments.  Overall, these results make the need to explore the requirements for 

further implementation of optimal design in toxicology research an ethical and scientific 

imperative.
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Appendix  

 

In an optimal design exercise, design variables are variables that describe properties of the 

biological system, drug or experimental protocol which can be changed to explore their 

impact on the information contents of the experiment.  Typically these include dose, 

sampling scheme, number of samples, number of individuals or other covariates (94). Even 

though the number of animals is constrained (88), the main use of this technique is to 

optimise sampling times.  It has been shown that sample times can have significant influence 

in the accuracy and precision of parameters (95,96). By optimising sampling times it is 

possible therefore to improve the overall efficiency of PK experiments (96,97). 

Here we summarise the statistical framework for the evaluation and optimisation of 

experimental designs using D-optimality.  There are various software programs for optimal 

design, making them equally suitable for the purposes of this type of analysis. They differ 

primarily in the features available for optimisation and in the optimisation method.  

 

Statistical summary 

There are various numerical methods to fit a model to data. The mostly commonly used is 

the maximum likelihood (ML) estimator.  The maximum likelihood is calculated by 

maximising the following likelihood function (L):  

X(�) = R(Y|�) 
where θ is the vector of parameters, D is the data. The results of a maximum likelihood 

estimation are �[, the maximum likelihood estimate and cov(�[), the covariance matrix 

determining the parameter precision.  The information contents within the study data, D is 

what determines cov(�[).  Prior to running the experiment, assuming the availability of a 

model, it is possible to compute an expected covariance matrix by the use of the Cramer-Rao 

inequality: 
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\>](�[) ≥ 1_`B(�[) 
where the Fisher Information Matrix (FIM) is given by  

_`B��[� = D ab cc� X(�)de b cc� X(�)df 
 

Although this function constrains the lower bound of cov(�[), in practice such a lower bound 

is reached as indicated by comparisons with bootstrapped expected covariance estimates 

(98,99). Thus, by computing the FIM of a given design, under the assumption of no or minor 

model and parameter misspecification, one can estimate the covariance matrix and 

consequently assess parameter precision values.  By maximising the determinant of the FIM 

over design variables, such, as for instance the sampling schedule, it is possible to identify 

experimental conditions or design(s) that maximise the expected parameter precision. 

 

  


