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CHAPTER 1 

Challenges in the assessment and prediction of safety 

pharmacology and drug toxicity in humans 

 

Tarjinder Sahota, Meindert Danhof and Oscar Della Pasqua 
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Abstract 

Despite ongoing efforts to better understand the mechanisms underlying safety and toxicity, 

approximately 30% of the attrition in drug discovery and development is still due to safety 

concerns.  Changes in current practice regarding the assessment of safety and toxicity are 

required to reduce late stage attrition and enable effective development of novel medicines.  

This review focuses on the implications of empirical evidence generation for the evaluation 

of safety and toxicity during drug development.  A shift in paradigm is proposed to 1) ensure 

that pharmacological concepts are incorporated into the evaluation of safety and toxicity; 2) 

facilitate the integration of historical evidence and thereby the translation of findings across 

species; and 3) promote the use of experimental protocols tailored to address specific safety 

and toxicity questions.  

Based on historical examples, we highlight the challenges for the early characterisation of 

the safety profile of a new molecule and discuss how model-based methodology can be 

applied for the design and analysis of experimental protocols.  Issues relative to the scientific 

rationale are categorised and presented as a hierarchical tree describing the decision making 

process. Focus is given to four different areas, namely, optimisation, translation, analytical 

construct, and decision criteria.  From a methodological perspective, nonlinear-mixed effects 

modelling is recommended as a tool to account for such requirements.  Its use in the 

evaluation of pharmacokinetics (PK) and pharmacokinetic-pharmacodynamic relationships 

(PKPD) has enabled the advance of quantitative approaches in pharmacological research in 

recent decades.  Comparable benefits can be anticipated for the assessment of safety and 

toxicity. 
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1. Introduction 

 

The assessment of the safety and toxicity profile of new chemical or biological entities is an 

integral part of drug development.  Despite ongoing efforts to better understand the 

mechanisms underlying safety and toxicity, approximately 30% of the attrition in drug 

discovery and development is still due to safety concerns (1,2).  Such a high attrition rate is 

further compounded by the empiricism and entrenched belief which prevails among 

industry scientists and regulators about the level of evidence and requirements for 

determining acceptable risk in humans.   

In addition to its contribution to the attrition rate, safety and toxicity findings have business, 

legal and societal consequences, which often lead to speculations and even more empiricism 

in the evaluation and interpretation of experimental data.  Whilst a positive benefit-risk ratio 

should be anticipated and subsequently demonstrated when administering new drugs to 

humans, the basis upon which inferences are made still lacks the scientific clarity and rigour 

one would endeavour.  The efficiency and value of current paradigm for the evaluation of 

safety and toxicity, which relies primarily on standard battery tests at supra-therapeutic 

exposure levels of the investigational drug, is not questioned by the scientific community. 

Rather, it is mandated by regulators as a mechanism to minimise liabilities.  

A shift in paradigm is required that 1 ) enables the introduction of pharmacological concepts 

to the evaluation of safety and toxicity; 2) facilitates the integration of historical evidence 

and thereby the translation of findings across species; and 3)  promotes the value of 

experimental protocols tailored to address specific safety and toxicity questions.  

In this review we will focus on the implications of current practice for drug development and 

consider the scientific and ethical requirements for the evaluation of safety and toxicity.  Of 

particular interest for us is to demonstrate that despite the assumption that preclinical 

safety testing, toxicity findings are generally seen as predictive of human toxicity (3), 

inefficiencies in the experimental design violate the principle of the 3 Rs (reduction, 
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refinement and replacement) (4).  Empirical evidence must be replaced by a model-based 

approach. 

Two recent examples can be used to illustrate the issues with the current paradigm for the 

evaluation of safety and toxicity, namely the serious adverse events observed with TGN1412 

and the increased incidence of myocardial infarction in patients who were prescribed 

rofecoxib. These two cases encompass most of the critical issues one attempts to address 

prior to making a commitment to clinical development and subsequently to regulatory 

submission and marketing of a medicinal product. Albeit neglected in the assessment of the 

clinical findings and in the subsequent reports in the published literature, the use of a 

mechanism-based approach in conjunction with some basic pharmacology concepts would 

be sufficient to predict the consequences of the treatment, whether given as single dose to 

healthy subjects or chronically to patients; i.e., both examples reflect the immediate 

consequences of target engagement and the corresponding changes due to the mechanism 

of action and  (patho)physiological pathways. Yet, the experimental evidence generated pre-

clinically for these two compounds does not take into account target engagement or 

exposure-response relationships as the basis for the interpretation of the findings. Instead, it 

is the characterisation of the maximum tolerated dose (MTD) and /or no-adverse effect level 

(NOAEL) that ultimately drives the design of safety pharmacology and toxicity experiments. 

The empirical evidence of MTD and NOAEL does not provide insight into the underlying 

mechanisms and often obscures the translation of findings across species.  

According to published reports, the serious adverse events observed after intravenous 

administration of TGN1412, a novel monoclonal T-cell agonist, could not have been 

“predicted” or inferred from non-clinical data.  The empiricism in the design of the 

experimental protocol and in the interpretation of the findings clearly shows the 

disconnection between pharmacology and toxicology, despite extremely high degree of 

selectivity and specificity of the biologicals.  The failure to predict a systemic inflammatory 

response by rapid induction of cytokines (a “cytokine storm”) with catastrophic multi-organ 

failure (5) is not surprising when structure homology, target occupancy and pharmacokinetic 
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principles are disregarded. Despite the availability of in vitro binding assays, there was no 

attempt to correlate or integrate the results from different experiments with each other.  

Most importantly, the effects observed with the proposed dosing regimen could have been 

anticipated even without any experimental data. Knowledge of receptor agonism theory and 

drug disposition properties would have been sufficient to make inferences about target 

activation and pharmacological effects. 

Tragedies like this provoke reactive measures from industry and regulator (6-11).  New 

guidelines for the assessment of preclinical data were released by regulatory authorities.  

However, none of them tackle the problem from a scientific, mechanistic perspective.  

Similarly, changes have been introduced to the design of first-in-man studies (6), which 

reflect mitigation measures for process-related consequences of safety and toxicity findings.  

A framework that ensures critical appraisal of the scientific rationale, based on 

pharmacological concepts and expected biological activity (i.e., target engagement) is still 

missing.   

Rofecoxib, a selective COX-2 inhibitor prescribed to more than 107 million patients in the US 

(12), is another example of withdrawal from the market because of so-called “unexpected” 

long-term safety findings. Despite the debate that followed the evidence from clinical trial 

data on the increased risk of myocardial infarction (13), little effort was made to incorporate 

very basic pharmacological concepts into the evaluation of the findings and provide a 

mechanism-based interpretation, which could easily disentangle the core issue: whether this 

is a class-effect or whether that was a compound specific toxicity.  Paracelsus highlighted the 

importance of the dose more than 500 years ago, and yet none of the published reports 

considered this critical question: were patients receiving the optimal dose and dosing 

regimen for the proposed indications? Clinical and scientific experts dwelled on the realm of 

toxicity as the result of an off-target event, without exploring in a systematic manner the 

(obvious) connection to dosing regimen, target exposure, the time course of 

pharmacological effect, the duration of treatment and physiological role of the substrates 

for COX2 in the heart and other tissues. Evidence of concentration-effect relationship was 
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not gathered, neither used as basis for interpreting those findings.  Instead, allegations of 

misconduct followed that overruled any comprehensive scientific debate (12).   

From a clinical pharmacology perspective, the aforementioned examples reflect the failure 

in exploring causality and anticipating the biological consequences of target engagement, 

i.e., in establishing the correlation between target-related events and drug exposure, as 

defined by the evidence of pharmacokinetic-pharmacodynamic relationships.  Post-market 

withdrawals are not an uncommon occurrence: between 1975 and early 2000 there have 

been 26 withdrawals from the US market due to safety issues (14).  In fact, the withdrawal of 

a medicinal product seems to have become the expected course of action for regulators and 

industry who are faced with ‘unexpected’ safety findings. Interestingly, dosage changes, due 

to safety occurred in approximately one out five drugs in the period from 1980 to 1999 

(15,16). On the other hand, from a clinical perspective, the aforementioned landscape 

appears to result from the lack of a formalised assessment of the benefit-risk ratio in which 

efficacy and safety are evaluated in an integrated manner.  Different stakeholders appraise 

the problem from a distinct point-of-view without acknowledging the intrinsic, albeit 

indirect, link between dosing regimen, exposure, target engagement and clinical events. 

The incorporation of model-based concepts and pharmacokinetic-pharmacodynamic 

relationships into the rationale for the design, analysis and interpretation of safety 

pharmacology and toxicology protocols is vital for the future of screening of novel 

compounds and for an effective shift in the assessment of safety and acceptable risk in drug 

discovery and development.  More than just enabling a framework for modernisation of 

outdated methods and techniques, a model-based approach challenges the mainstream 

scientific views about the role of experimental evidence as the sole basis for the assessment 

of non-clinical safety; it unravels the strength of inferential methods and evidence synthesis.   

In this review, we aim therefore at identifying the pitfalls in current approaches to 

estimating and predicting safety pharmacology and toxicity in humans.  Focus is given to the 

estimation of safety thresholds and decision making, with special emphasis on the 
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underlying methodological issues.  Our objectives may intersect with the message from 

other reviews of safety in humans (17,18). However, our concerns go beyond technical 

aspects of experimental and statistical methods; the objective of the larger research to be 

presented in this thesis, is to detail improved techniques for data analysis and study design, 

as well as to illustrate how a mechanism-based approach for risk assessment can formally be 

applied to support more accurate decision making. 

In the subsequent sections, we will cover a wide range of methodological and conceptual 

issues, starting with low level problems, which usually comprise experimental aspects or 

relate to the statistical methods.  Given their technical nature, implementation of the 

proposed recommendations requires little effort and can be relatively straightforward, as 

compared to higher level problems, which involve conceptual features and require a 

different attitude towards the generation, analysis and interpretation of experimental data 

regarding safety and toxicity. From a theoretical perspective, different facets of the same 

problem will be discussed, which relate to four seminal areas of scientific research: 1. 

optimisation (e.g., accuracy, precision), 2. translation (e.g., sensitivity, biological substrate, 

relevance), 3. analytical construct (e.g. choice of parameterisation) and 4. decision criteria 

(e.g., acceptable risk level).  Each of these points will be addressed separately.   

As shown in Figure 1, on the most basic level of the hierarchical tree is the choice of the 

measure of drug exposure and endpoint selected for the assessment of safety.  These issues 

are compounded by the use of point estimates and by statistical inferences regarding the 

reporting of safety thresholds. Experimental design considerations in relation to type I and II 

errors constitute the next level of attention.  The drawbacks of the use of empirical 

approaches as opposed to mechanism-based approaches will be covered. Empiricism here 

relates to data analysis methods which are primarily descriptive rather than explanatory of 

the observed phenomena. Of particular interest is the current dichotomisation of the 

problem using safety thresholds.  This will be followed by a critique of allometric scaling to 

predict exposure in humans and then more generally the manner in which risk is translated 

into decisions.  
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Highest level

Lowest 
level

Decision making How do we balance risk with 
benefits and cost?

Translation of 
RISK

What is the meaning of animal 
findings for humans?

Allometric
Scaling

Taking into account 
toxicodynamic differences 
between species

Safety threshold 
vs surface

NOAEL/BMD Is a zero-risk 
dose what we should try to 
estimate?

Non Mechanism 
based-approach

Dose-response is non-
mechanistic.  Does not make 
use of all available data.

Experimental 
design

Designs that reduce Type I and 
II errors.

Point estimates
Contain no information about 
the precision of the estimate
VARIABILITY/UNCERTAIMTY

Variable of 
interest 
(exposure)

Is 24hr AUC a good predictor of 
delayed or long term AEs?
SENSITIVITY

 

Figure 1: A hierarchical tree describing the different levels and issues underpinning decision making 

during the assessment of safety and toxicity profile of a new chemical entity.   
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2. Nonclinical evaluation of safety and toxicity 

2.1. Defining variables of interest. 

The development of a pharmaceutical is a stepwise process involving an evaluation of both 

animal and human efficacy and safety information. The goals of the nonclinical safety 

evaluation generally include a characterisation of toxic effects with respect to target organs, 

dose dependence, relationship to exposure, and, when appropriate, potential reversibility. 

This information is used to estimate an initial safe starting dose and dose range for the 

human trials and to identify parameters for clinical monitoring for potential adverse effects.  

Toxicity occurs when the drug-induced alteration of biological function overcomes normal 

repair and homeostatic mechanisms. Toxicity can be measured by its effects on the target 

(organism, organ, tissue or cell) or indirectly by measuring altered biological function 

downstream after acute, sub-chronic or chronic exposure to a chemical or biological entity.  

Drug exposure is then used as a proxy or surrogate for the undesirable effects.  It should be 

noted that an adverse event is any undesirable experience associated with the use of a 

medical product, irrespective of the evidence of a causal relationship between drug and 

adverse event. However, from a drug development perspective, different aspects of safety 

and toxicity need to be evaluated experimentally, which encompass the expected 

therapeutic and supra-therapeutic dose levels.  Although different experimental protocols 

must be implemented during the development of a new compound, the evaluation of 

immunotoxicity, genotoxicity, carcinogenicity, phototoxicity, abuse liability and reproductive 

performance and developmental toxicity are beyond the scope of this review.  The 

nonclinical safety and toxicity studies should be adequate to characterise potential adverse 

effects that might occur under the conditions of the clinical trial to be supported. Serious 

nonclinical findings can influence the continuation of the development programme and of 

clinical trials. 

Despite the different protocols for the assessment of safety and toxicity and the myriad of 

adverse events one may come across, a common practice in this field of research is the 

assessment of empirical safety thresholds such as the no observed adverse effect level 
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(NOAEL), which are no more than qualitative indicators of acceptable risk.  Support for the 

existence of thresholds has been argued on biological grounds (19-21).  The argument is that 

although any exposure to a chemical will cause some change in the biological system, the 

change must override homeostatic mechanisms in order for it to be biologically significant.  

In contrast to the maximum tolerated dose (MTD), which remains the primary endpoint of 

choice in the evaluation of chronic toxicity, the NOAEL is one of the main indicators of risk in 

nonclinical safety assessment.  Definitions of the NOAEL vary from source to source, 

however the basis behind all of them is the estimation of “the highest experimental point, 

without biologically significant adverse effects that are above baseline” (22).  In fact, the 

experimental findings are used to reflect another threshold, i.e., the underlying no adverse 

event level (NAEL).  The calculation involves determination of the lowest observed adverse 

effect level (LOAEL) which is the lowest observed dosing level for which AEs are recorded.  

The NOAEL is the dosing level below this.  If no LOAEL is found, then the NOAEL cannot be 

determined.  In these cases the LOAEL/10 is sometimes used in place of the NOAEL.  

Drug exposure and risk can be represented by a variety of different experimental measures.  

Usually, in the NOAEL approach, the measures used are dosing level, area-under-

concentration-time-curve (AUC) and/or maximum concentration (CMAX). On the other 

hand, the benchmark dose (BMD) is an alternative to the NOAEL.  The method involves the 

construction of a model of the exposure-AE relationship to predict the dosing level that 

corresponds to the threshold between non-significant and significant risk of AEs.  The 

quantity is usually expressed as a dose level rather than an AUC or CMAX, but the BMD 

remains of limited use in Industry (23). 

Another common measure is the human equivalent dose (HED), which represents the 

estimated dose level in humans yielding equivalent drug exposure as observed in animals at 

the safety threshold (23).  In addition, recommendations have been made for the use of the 

maximum recommended starting dose (MRSD) for the selection of the starting doses in first-

in-human studies. The MRSD is believed to minimise the chance of serious adverse events in 

early clinical studies (7,23).  Recently, the minimum anticipated biological effect level 
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(MABEL) has also been introduced to assist in selection of doses for first in man studies and 

to supplement existing approaches.  MABEL describes the exposure that is anticipated, prior 

to clinical testing, to produce a minimum biological effect level (24,25).  

Given the empirical nature of such safety thresholds, errors in the prediction of safety may 

arise.  Despite the various options, there is still a real safety concern when using these 

thresholds to extrapolate drug exposure levels from animals to humans and to make 

inferences from short to long term effects.  Unfortunately, instead of pursuing a more 

mechanistic approach, empirical methods continue to be used. To cope with inaccuracy and 

poor precision, safety factors, also known as uncertainty factors, have been incorporated on 

the top of empirical thresholds.  Their application in drug development has become 

widespread (26) and is detailed within the regulatory guidelines.  The purpose of such safety 

factors is to account for variability potentially greater toxicity in humans than predicted by 

the HED using existing approaches.  This is to ensure that the safety threshold is beneath the 

true threshold.  The default safety factor is 10, but it can by modified by considering it as a 

product of more refined uncertainty factors. These comprise; interspecies uncertainty, UFA, 

interindividual uncertainty UFH, subchronic to chronic uncertainty, UFS, LOAEL to NOAEL 

uncertainty, UFL, and data adequacy UFD, for when chronic toxicity studies in at least two 

different species are unavailable (27,28).  There is also a modification factor where there is a 

perceived greater risk of toxicity in humans. 

It should be noted that even when safety factors are factored into the estimation of 

thresholds, the actual risk a treatment represents to humans can be overlooked.  Over-

conservative attitude may give the wrong perception of caution. Accurate assessment of risk 

can simply not be performed without some degree of understanding of target engagement 

and nature of the ligand (i.e., agonistic or antagonistic interaction with the target).  
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2.2 Measures of drug exposure used as descriptors of acceptable risk 

A consequence of the use of safety thresholds is the estimation of drug exposure or dose 

levels that can be correlated with the adverse events observed beyond that specific 

threshold, for which the risk for humans is deemed unacceptable.  Numerous assumptions 

are however required to ensure accurate translation of such findings from animals to 

humans.  To be predictive, the exposure levels and the adverse events must reflect 

pathophysiological processes and pharmacokinetics in humans.  

Different measures of exposure are used in reports.  The most basic of these is dosing level, 

which is usually expressed in terms of daily dose (e.g., mg/day).  Dose, however may be a 

poor indicator of response since it does not account for confounders such as bioavailability, 

differences in metabolic capacity, or other pharmacokinetic processes that alter target 

exposure despite comparable dose.  For this reason, parameters derived from the 

assessment of systemic drug concentrations are preferred (e.g., AUC and CMAX).  The choice 

for those parameters relies on the assumption that rapid equilibration occurs between 

systemic circulating drug and the target tissue.  Given the fragmented process used for the 

evaluation of pharmacology and toxicology data, the validity of this assumption is 

questioned even when evidence from pharmacological and pharmacokinetic data indicates 

otherwise.  Nonlinearity in drug disposition is another important pharmacokinetic aspect 

which is not accurately captured by the use of dose as a measure of drug exposure.  

Differences in systemic and target exposure can be large in the case of metabolic saturation, 

when small increments in dose can produce disproportionately large increases in AUC.  This 

can lead to deceptively safe estimates even if the dose is divided by a safety factor.  

Conversely, the occurrence of metabolic induction may lead to overly conservative dose 

selection. 

In addition to the aforementioned points, it is also critical to understand the implications of 

the use of systemic levels as compared to target tissue or target organ exposure.  Time-

dependent processes take place which cannot be neglected or inferred from conventional 

measures of exposure. First, one should realise that given that pharmacokinetic equilibration 
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between plasma and tissue may not always be assumed.  Unbound drug concentrations are 

primarily distributed into tissues.  The extent and rate of distribution depend on 

physicochemical as well as receptor binding properties.  The implications of such processes 

are that irreversible binding, slowly reversible binding and tissue accumulation may not be 

easily correlated with circulating total concentrations.  From a pharmacodynamic 

perspective, the same considerations must be made when signal transduction and 

downstream mechanisms are rate limiting for the onset and maintenance of effects (i.e., 

adverse events).  Consequently, the use of AUC and CMAX, expressed over a single day may 

not accurately reflect the underlying relationship between exposure and adverse event.  The 

implicit assumption that there is a correlation between “daily” drug exposure and risk is 

suitable mainly for direct and reversible processes; however it is insufficient to account for 

the complex nature of indirect effects, slowly reversible and irreversible binding.  

These complexities can be illustrated by permetrexed-induced neutropenia. Absolute 

neutrophil count (ANC) is reduced by inhibition of thymidylate synthase, dihydrofolate 

reductase and glycinamide ribonucleotide formyltransferase  (29).  The trough of the ANC 

curve occurs between 8 and 9.6 days after dosing (30), and is followed by an overshoot 

effect once levels return to baseline (Figure 2).  Empirical approaches are in principle able to 

quantify the PK exposure associated with a particular ANC minimum, however this ignores 

the complexity of the ANC-curve.  The time below a threshold ANC may be a more relevant 

descriptor of risk and will require a different measure (i.e., parameterisation) of drug 

exposure.  Most importantly, in these circumstances the time course of drug effects (onset, 

duration and washout) often does not correlate with daily systemic exposures. 
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Figure 2. Time course of predicted absolute neutrophil counts (PRED) following 500 mg/m2 

pemetrexed. Lines: Solid black curve the overall ‘‘typical’’ patient in the analysis dataset (i.e., median 

values for each of the covariates contained in the final PKPD model); gray shading predictions based 

on the population PKPD model for each of the patients in the analysis dataset, assuming a 500 mg/m2 

dose; dashed horizontal lines hematologic toxicity grades (grade 1 <2, grade 2 <1.5, grade 3 <1, grade 

4 <0.5) (30). 

 

 

Likewise, irreversible binding mechanisms cause drug accumulation at the effect site yielding 

adverse events that depend primarily on the treatment duration, rather than on daily 

exposure.  Measures that do not capture the cumulative nature of these processes may lead 

to poor correlation between species.  Measures such as cumulative AUC may provide better 

prediction than 24-hour AUC since the entire dosing history is used.  Figure 3 shows an 

example of such an effect is tardive dyskinesia produced by neuroleptic drugs (31). 
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Figure 3. Curve showing incidence of tardive dyskinesia given cumulative neuroleptic exposure. 

Patients with more than 30 days of neuroleptic use at baseline had a trend for a greater cumulative 

incidence of tardive dyskinesia than those with 0-30 days of neuroleptic use  (31). 

 

Although safety factors have been used to account for possible inaccuracies in the estimates 

of safety thresholds, there are translational aspects that cannot be factored in by such an 

empirical approach.  A systematic, rational translation of findings across species requires the 

use of mechanism-based approaches to assess the implications of differences in 

pharmacokinetics, pharmacodynamics as well as in pathophysiology.  Of particular 

importance is the fact that between species variability in metabolic rate and capacity can 

lead to completely different safety profiles across specie if metabolites are the moiety 

underlying adverse events.  Likewise, molecules that are substrate to active transporters, 

carrier-mediated processes and other distribution mechanisms with known species-specific 

differences will show discrepancies in safety profile.  

 

2.3 Statistical and biological limitations of point estimates 
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From a statistical perspective, safety thresholds are often presented as point estimates to 

describe the population.  This ignores variability which can be decomposed into two parts; 

variability associated with estimation methods and real variability in response between and 

within subjects.  There is also lack of best practice in statistical inference.  Risk is inferred 

from toxicology results using statistics that may be imprecise or inaccurate.  A statistic is a 

random variable which is typically a function of the experimental data (such as, e.g., a mean 

or an observed rate).  Statistics are intended to provide an estimate of underlying 

parameters reflecting physiological processes and/or pharmacokinetics.  The implications of 

such practice can be illustrated by the comparison between sample standard deviation and 

population standard deviation.  The former is a statistic and the latter is the inferred 

parameter.  The equivalent for NOAEL is the no adverse effect level (NAEL).  The term 

“NOAEL estimate” is a misnomer in that it is the NAEL, which is being estimated by the 

NOAEL (see figure 4).  Based on statistical concepts, it can be shown that meaningful and 

useful reporting of toxicology findings should be of the estimate of NAEL with its precision 

(standard errors).  However, an empirical approach prevents the estimation of uncertainty in 

the NAEL. 

 

The use of statistics, in place of model parameters for decision making can treat the estimate 

as if it were of sufficient precision to give sufficiently narrow confidence intervals.  This 

limitation is believed to be mitigated by the incorporation of safety factors, an assumption 

which we dispute. As can be seen in Table 1, the parameter precision for the probability of 

an AE varies from 1587 to 67%, depending on group size and risk.  The number of animals in 

a group exhibiting an adverse event is often reported however, the performance of this 

estimator is highly dependent on the underlying risk of the AE in question and the sample 

size.   
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Figure 4. Relationship between MABEL and NOAEL/HED.  Shaded region indicates the expected 

therapeutic range. 

 

Table 1: Parameter precision for probability of adverse events 

Risk of AE n=4 n=8 n=10 n=16 n=20 

0.10% 1578.77% 1116.75% 998.08% 790.59% 707.92% 

1.00% 497.41% 351.67% 314.71% 248.64% 222.50% 

5.00% 217.98% 154.14% 137.83% 108.98% 97.46% 

10.00% 150.03% 106.07% 94.87% 74.99% 67.08% 

AEs were assumed to be independent binary events. The estimator is the number of animals as a percentage of 

n.  Values depicted coefficients of variation.   
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The other aspect to missing variability is the real variability in the data.  Since sampling in 

toxicology is often very sparse, exposure levels are calculated from satellite groups which 

mirror dosing of the animals assigned to the primary treatment group.  This ignores real 

differences that may be present between the two groups.  It is equivalent to assuming that 

all animals have the same exposure and variability in exposure or the underlying 

physiological processes is not responsible for variability in response.  

Given that human variability is typically larger, it is important to understand the role of the 

different sources of variability.  Without quantification of variability and identification of 

covariates it becomes difficult to predict which groups are more prone to overexposure or 

more sensitive to adverse events.  Furthermore, depending on the actual distribution of drug 

exposure, the distribution of AEs in this group may not be representative of the risk posed to 

the overall target population.  This is not limited to pharmacokinetics, pharmacodynamic 

differences have the greater potential for harm and can be more variable than 

pharmacokinetic differences.  In this case, hypersensitive subpopulations can be completely 

missed.  This is the case of abacavir-induced rash and other dose-independent reactions 

associated with receptor or target polymorphism. 

Finally, it should be noted that empirical approaches remain prone to bias.  For example, the 

mean NOAEL is only unbiased if its underlying distribution is symmetrical.  This practice 

ignores that such a summary violates current understanding of pharmacokinetic processes, 

which are best described by lognormal distributions.  Without clear assumptions of the 

underlying distribution, the choice of measure for central tendency remains unjustifiable and 

may lead to bias. 

 

2.4 Mechanism-based assessment of safety, toxicity and risk 

Whilst the introduction of regulatory policies for the non-clinical evaluation of medicinal 

products in humans, at a time when understanding about receptor pharmacology and 

pathophysiology was very limited, partly explains the historical evolution of current 
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standards and practice in safety and toxicity research, its perpetuation is no longer 

justifiable.  It is evident that the concept of safety thresholds as well as the measures of 

exposure used as proxy for acceptable risk cannot be deemed absolute: they rely upon 

numerous assumptions, which may not hold true in a considerable number of cases. In 

principle, information regarding the causal chain between target engagement and adverse 

events should be used as basis for relevant measures of exposure and risk.  This concept can 

be implemented even in the absence of evidence for the actual target or mechanism 

underlying a given adverse event or undesirable effect. Sufficient evidence exists to support 

the use of concentration-effect relationships to identify the rate limiting step in the chain of 

events from dose to response. In conjunction with tailored experimental protocols and 

pharmacokinetic-pharmacodynamic modelling, a mechanism-based evaluation of safety 

findings provides the basis for characterising safety and toxicity.  Moreover, it should be 

noted that safety and toxicity findings may not solely depend on pharmacokinetic drug 

exposure, but also on the extent of target activation or inhibition, post-receptor 

amplification and signal transduction processes as well as homeostatic mechanisms. For 

instance, drug concentrations may be a poor predictor of risk relative to the relevant 

biomarker concentrations when signal transduction is the rate limiting step for a given 

response. It is unfortunate that despite the wide discussion regarding the use of biomarkers 

in the literature (32-35), the focus has primarily been on the assessment of efficacy, not 

safety. 

In addition, experimental protocols and data analysis have not advanced in the same way 

risk management concepts have evolved over the last decade.  Causality has become pivotal 

for the characterisation of adverse drug reactions, which in contrast to adverse events, are 

defined as any noxious unintended and undesired effects of a drug that occur at doses used 

for prevention, diagnosis or treatment.  This subtle difference in definition has major 

consequences for the evaluation of safety, toxicity and risk, including experimental protocol 

requirements.  Rawlins and Thompson devised a classification scheme in 1991, which 

continues to be the most frequently used in clinical research, which could be used as the 

basis for the assessment of nonclinical safety. Their scheme, shown in Table 2, defines 
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adverse drug reactions according to seven different categories, which account for the 

underlying chain of events.  The different categories nicely match the mechanistic 

classification of biomarkers proposed by Danhof et al., and could form the basis for a new 

paradigm for the evaluation of nonclinical safety and toxicity (34).  

 

Table 2. Classification of adverse drug reactions, as proposed by Rawlins and Thompson. 

Type “A”: Predictable, common and related to Pharmacological action of the drug 

Toxicity of overdose:   e.g.  hepatic failure  paracetamol 

Side effects:    e.g sedation Antihistaminergic drugs 

Secondary effects:  e.g. development of 

diarrhoea due to altered 

antibiotic therapy 

Drug interaction: e.g. Theophylline toxicity erythromycin therapy 

Type “B”: Unpredictable, uncommon, usually not directly related to the mechanism or  

pharmacological actions of the drug. 

Intolerance:  e.g. tinnitus Aspirin 

Hypersensitivity: e.g. anaphylaxis penicillin  

Pseudoallergic: (Non-Immunological) 

reaction 

radio contrast dye reaction 

Idiosyncratic reaction: e.g. anaemia due to glucose-

6 phosphate dehydrogenase 

anti-oxidant drugs  

Type “C”: These reactions are associated with long-term drug therapy e.g. Benzodiazepine 

dependence and Analgesic nephropathy. They are well known and can be anticipated. 

Type “D”: These reactions refer to carcinogenic and teratogenic effects. These reactions are 

delayed in onset and are very rare since extensive mutagenicity and carcinogenicity studies 

are done before drug is licensed. 

Type “E” : The end of treatment or rebound effects 

Type “F” : Failure of treatment 

Type “G” : due to genetic polymorphism, not immunologically mediated 
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Figure 5.  Mechanistic classification of biomarkers.

 

 

2.5 Minimum Anticipated Biological Effective Level

A first attempt to implement mechanism

last decade, which relies on the assessment of the minimum anticipated

level (MABEL).  In the calculation of the MABEL any biomarker can be used, 

receptor occupancy or even downstream markers such as 

has the advantage of allowing measures that correlate 

including off-target or secondary target) when pharmacokinetic processes are not the rate 

limiting step.  The concept relies 

targets underlying the adverse event to accurately interpret (patho)physiological response 

and assess causality.  However, 

toxicity, it is not a measure of risk and 

therefore to use the NOAEL as a measure of risk to guide maximum d

29 

As it can be seen from Figure 5, biomarkers can be associated or linked to one of the 

and Thompson’s classification. Undoubtedly, these concepts allow 

the causal chain of events to be correlated to the time course of overt symptoms and signs 

  Such an integrated approach is essential for accurate 

(mechanistic) interpretation of risk in humans.  In the next paragraphs, we will highlight how 

are from the approaches currently used in the assessment of 

nonclinical safety and toxicity.  

.  Mechanistic classification of biomarkers. 

inimum Anticipated Biological Effective Level 

A first attempt to implement mechanism-based measures of exposure has evolved over the 

n the assessment of the minimum anticipated

calculation of the MABEL any biomarker can be used, 

receptor occupancy or even downstream markers such as physiological mediators

has the advantage of allowing measures that correlate to any target-related 

target or secondary target) when pharmacokinetic processes are not the rate 

The concept relies on the assumption of some knowledge of the putative 

targets underlying the adverse event to accurately interpret (patho)physiological response 

However, since the MABEL is defined in terms of biological effect, not 

toxicity, it is not a measure of risk and not a replacement of the NOAEL.  Current practice is 

to use the NOAEL as a measure of risk to guide maximum doses in dose escalation 

associated or linked to one of the 

son’s classification. Undoubtedly, these concepts allow 

correlated to the time course of overt symptoms and signs 

Such an integrated approach is essential for accurate 

In the next paragraphs, we will highlight how 

are from the approaches currently used in the assessment of 

 

based measures of exposure has evolved over the 

n the assessment of the minimum anticipated biological effect 

calculation of the MABEL any biomarker can be used, for example 

physiological mediators (25).  This 

related toxicity (i.e., 

target or secondary target) when pharmacokinetic processes are not the rate 

the assumption of some knowledge of the putative 

targets underlying the adverse event to accurately interpret (patho)physiological response 

is defined in terms of biological effect, not 

not a replacement of the NOAEL.  Current practice is 

oses in dose escalation 



30 

 

studies, but the maximum recommended starting dose in FTIH should now be no higher than 

both the MABEL and the NOAEL-derived MRSD. If the NOAEL with the addition a safety 

factors were indeed protective, such a measure would be an unnecessary.  Yet, one needs to 

acknowledge that the MABEL is simply a retrospective risk-mitigation measure that can 

account for some of the deficiencies of the NOAEL approach.   

 

2.6. Limitations in experimental design 

There are methodological aspects that need to be addressed to allow wider use of MABEL or 

any other mechanism-based measures of ‘acceptable risk’.  The predictive or prognostic 

value of statistical correlations depends on satisfying five important criteria, namely: 

selectivity, specificity, sensitivity, reproducibility and clinical relevance.  Currently, despite 

the characterisation of a correlation between biomarker and response, very little effort has 

been made to quantify estimators such as false positive and false negative rates.  For 

instance, liver enzyme levels provide an example of a biomarker which has high sensitivity 

but poor specificity.   Interestingly, despite the aforementioned limitations clinical scientists 

and pathologists will defend the value of ALT, AST and bilirubin as better predictors of risk, 

as compared to drug exposure. Another aspect of interest is the fact that according to 

current practice, if e.g., elevated liver enzymes are observed in one individual and acute liver 

failure in another, an empirical framework ignores the correlation between these adverse 

events. It may be treated as the same adverse event (i.e., 100% correlation), or a two 

different adverse events (i.e., uncorrelated).  The statistical methods and summary measures 

of toxicity are unable to account for partial correlation or interaction between events within 

or between individuals. 

So the question is why does one not go further along the causal chain of toxicity for all 

adverse events, instead of relying on measures of systemic exposure?  The answer probably 

lies in that pharmacokinetics is seen as the primary step along the way for most adverse 

drug reactions.  It is a simple, general purpose measure which fits the criterion of providing 
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predictive value for many adverse events, despite the exceptions, for which it will perform 

poorly, with low predictivity. 

From a theoretical point of view, it should be highlighted that empirical approaches perform 

poorly when incidence of a type of adverse event is low (Table 3).  This means that pooling 

data across different types of adverse events is necessary, and this is the root cause behind 

the choice for a single measure of exposure, rather than more predictive ones. 

 

Table 3: Probability of detection of adverse events with low incidence.  Summary data is reflect the 

occurrence of adverse events according to a Bernoulli random variable.  For different incidence rates, 

value depicts its probability of occurrence given an experimental group size of n. 

Risk of adverse 

events 
n=4 n=8 n=10 n=16 n=20 

0.10% 0.40% 0.80% 1.00% 1.59% 1.98% 

1.00% 3.94% 7.73% 9.56% 14.85% 18.21% 

5.00% 18.55% 33.66% 40.13% 55.99% 64.15% 

10.00% 34.39% 56.95% 65.13% 81.47% 87.84% 

 

 

As indicated previously, empirical data analysis does not provide uncertainty estimates to 

properly account for Type I (false positive) and Type II (false negative).  In addition, 

experimental findings are evaluated in an experiment by experiment basis. This leads to 

misrepresentation of the estimated population characteristics, which imposes the need for 

conservative safety factors to account for bias and uncertainty. An immediate consequence 

of this is illustrated by safety levels identified for tolcapone (36), cerevastin (37), and 

ximelagatran (38), which were deemed “well-tolerated” at the predefined dose levels, but 

were later shown to be unsafe (39).  It should therefore become clear that the use of the 

term tolerability ignores the high incidence of false negative results in standard designs.  
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Based on empirical methods, the absence of adverse events within the experimental group 

implies that risk is not present all.    

Another problem is the fixed design used for in the estimation of the safety thresholds, 

which relies on a set of arbitrary selection of the dose levels.  Consequently, the NOAEL is 

limited to one of the experimental dose levels.  This results in the dose selection having a 

heavy influence on the precision and accuracy of the NOAEL estimate.  Unfortunately, 

attempts to overcome the uncertainty and bias in the results may prove ineffective even if 

the number of animal is increased per group. In addition to the dose selection, the duration 

of the experiments also requires careful consideration and must be factored accordingly into 

the estimation of safety thresholds.  Current approaches consider treatment duration as a 

constant factor, irrespective of the nature of the underlying adverse event. In general, high 

doses administered over shorter periods of time are deemed comparable to therapeutic 

doses administered chronically.  This has little pharmacological foundation where time-to-

onset may bear little relationship to dose (e.g. neutropenia).  At high doses, effects may 

merely be due to secondary pharmacology. On the other hand, certain effects that can occur 

at therapeutic levels may be overlooked at higher exposures.  Furthermore, if toxicity is 

delayed, then the likelihood of false negatives will increase if recording of adverse events 

stops at the end of dosing.  A historical example is the case of methylmercury-induced 

dendritic degeneration in cats (40). Daily dosing for two months results in no differences 

from control groups, up to month five, when a significant difference becomes evident.  If 

observations had ceased at month two, this effect would have been missed. In brief, the 

experimental limitations of current approaches can be summarised not only in terms of 

imprecision and inaccuracy, but also in terms of the lack of integration of the information 

contained within and between experiments.   

From a statistical perspective, the occurrence of an adverse event can be viewed as a 

multidimensional random process over time, with one dimension for each type of adverse 

event.  In practice, these dimensionalities are reduced to binary processes, leading to loss of 

information for data arising from continuous processes.  Data loss also occurs when all these 



33 

 

binary processes are combined and reduced to a single binary number for each individual:  

the animal either had an adverse event or it didn’t.  Information about which adverse event 

occurred, the time-to-onset, duration, frequency and severity is all lost.  On top this a further 

reduction happens at group level whereby the binary numbers for each individual are 

combined and reduced to a single binary number: an adverse event occurs at a given dosing 

level, or it does not.  This approach prevents the use of quantitative methods, as it removes 

the evidence arising from the number of animals which exhibited adverse events.  Data are 

further reduced by the very definition of NOAEL, which requires only the lowest dose to be 

considered in the estimation of the NOAEL: the NOAEL is highest treatment level exhibiting 

no adverse events.  As a consequence of all the aforementioned steps, important 

information about the relationship between dose and exposure and adverse events may be 

lost.    

By contrast, an approach which involves longitudinal statistical modelling of continuous and 

categorical data has the potential use all information in the production of estimates without 

any loss in information.  However, an alternative to the NOAEL, the benchmark dose (BMD) 

approach has been proposed (41), which permits better use of experimental data.  The BMD 

yields evidence about the entire dose-response curve, rather than a single point.  Typically 

there are also large reductions at an individual and group level, but on a smaller scale.  

Relevant data across experimental groups are not collated and analysed together (42). 

 

2.7. Additional flaws in the empirical evaluation of safety and toxicity 

From a scientific and clinical point of view, one of the main disadvantages of empirical 

approaches is that extrapolation beyond experimental setting is often unreliable.  

Paradoxically, the ability to extrapolate or make inferences is central for the evaluation of 

safety and toxicity.  Nonclinical data are generated with the primary objective of data 

extrapolation in mind.   
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Another limitation which cannot be easily circumvented is the inability to parameterise risk 

in a systematic manner, accounting for what is observed and what can be inferred from an 

intervention, irrespectively of the experimental evidence.  Consequently, for instance, one 

fails to assess the implications of an adverse event arising from two different mechanisms of 

actions. To make accurate extrapolations, any relevant differences in the mechanism of 

action must be incorporated into the analysis and interpretation of the data.  A similar 

problem arises in the case of nonlinear kinetics, when extrapolation to dose ranges outside 

of experimental ranges can lead to very different exposure levels, as compared to those 

expected from linear kinetics.  Hence, it is evident that extrapolations derived from safety 

factors are doomed to remain inaccurate without further understanding of the mechanisms 

underlying the overt symptoms and signs.  

Lastly, it is important to bear in mind that empirical methods often do not lend themselves 

well to integrating data and combining results from multiple experiments.  This situation 

forces one to rely on clinical judgment to decide which findings can be deemed relevant.  

This inflexibility represents another inherent weakness of current approaches for the 

evaluation of safety, which clashes with one of the primary objectives of the drug 

development process, i.e., to reduce uncertainty about the safety and efficacy of a 

compound (43).  In theory, more information should to lead to improve precision rather 

bias.      

 

2.8. Safety threshold vs. risk or hazard surface 

Currently, the use of fixed thresholds as a metric of safety ignores the variable nature of 

continuous processes and potentially prevents accurate interpretation of the underlying 

phenomena. For example, gastric ulceration is dependent on membrane permeability.  

Interindividual differences in tissue permeability are perceived as interindividual differences 

in sensitivity to drug effects, i.e., in the exposure which is required to reach a threshold.  

Based on current practice, the factor driving such differences often remains obscure. More 
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sophisticated approaches have been proposed to incorporate toxicodynamic differences 

through use of a sensitivity parameter (44).  However, this suffers from the same weakness 

as the use of a threshold.  Furthermore, thresholds offer no mechanistic basis for 

extrapolation across species.  For example, there is no way to account for interspecies 

differences in membrane permeability.  As such, interspecies differences can only be 

handled by safety factors.  

Another immediate difficulty is the lack of consensus on what is defined as adverse events 

and how definitions vary across species.  These definitions lead to different safety levels, 

meaning that safety thresholds are sensitive to definitions of events as adverse or non-

adverse rather than the risk associated with them.  Therefore, it should be noted that even 

with agreed definitions, the relevance of a threshold for the assessment of risk is 

questionable since it mostly relates only to the presence of an adverse event, rather than its 

severity. In this context, the shape and slope of the exposure-risk relationship is an 

important consideration.  Yet, the use of thresholds incurs the danger that risk is treated and 

thought of as a binary endpoint.  Since the only way to truly eliminate risk is to cease the 

hazard-causing activity, this is at odds with the binary treatment of it.  Safety thresholds can 

also obfuscate more complicate U-shaped or bell-shaped relationships which may be 

relevant characteristics for consideration in a risk-benefit analysis. 

In summary, it should be clear that despite the dichotomous nature of thresholds, all 

(patho)physiological processes underlying an adverse event are continuous processes. In 

fact, increasing understanding of the mechanisms underlying drug-target interactions (e.g. 

receptor pharmacology theory) as well as the identification of downstream pathways (i.e., 

factors determining post-receptor events) imposes revisiting the utility and relevance of 

thresholds as basis for the evaluation of drug response, irrespective of whether it involves 

efficacy or safety.  The continuous nature of ligand-target relationships, based upon which 

target exposure must approach a certain order or magnitude in order to block or transducer 

a signal, offers the possibility of exploring signal using multidimensional response surfaces, 

rather than thresholds.  



36 

 

2.9. Translational toxicology: allometric scaling 

All the undertaking required to implementing experimental protocols in safety 

pharmacology and toxicity implies the validity of a set of assumptions regarding the 

correlation between findings in animals and humans.  Unfortunately, these assumptions do 

not take into account the prerequisite of construct validity to ensure direct comparability of 

the findings across species.  

As indicated previously, uncertainty about differences between species and lack of 

understanding about the relevance of certain effects in humans, have lead to the 

introduction of safety factors the estimation of safety thresholds.  Whilst many supporters of 

the approach envisage this as a plausible, cautionary measure, it cannot be ignored that in 

many cases over-conservatism will prevent the development of compounds that otherwise 

could be innocuous in humans.  The challenge is therefore to identify a mechanistic basis for 

translating nonclinical safety findings or at least making inferences about drug action based 

on the results in a different species or experimental system (e.g., in vitro or cell culture).  

Five different dimensions need to be considered for that purpose: 1) differences in 

pharmacokinetics (i.e., accounting for physiological processes determining drug absorption, 

distribution, metabolism and elimination); 2) differences in pharmacodynamics (i.e., 

accounting for variation or differences in receptor engagement, activation and downstream 

amplification of the biosignal); 3) differences in homeostasis (i.e., accounting for functional 

capacity and feedback mechanisms which may compensate for drug-induced changes in 

physiological processes); 4) differences in response during health vs. disease conditions and 

5) differences due to drug delivery properties. 

It can be anticipated that accurate assessment of causality is essential for making inferences 

from one species to another.  Furthermore, it is rather evident that in most cases all five 

dimensions need to be factored in the interpretation of nonclinical findings.  However, 

currently, more focus is given to differences in pharmacokinetics more than any other 

aspect.  As a matter of fact, extrapolation of findings between species often relies on the use 

of allometric scaling principles (45,46). Allometry requires assumptions about the 
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relationships between physiological function (e.g., metabolic capacity) and body size.  In 

principle, this concept can also be applied to differences in pharmacodynamics (46,47), but 

the use of this technique in drug development is usually restricted to pharmacokinetic 

parameters, and more specifically to volume of distribution and clearance.   

Despite its wide use in drug development, one needs to be aware of the limitations 

allometric methods represent to the prediction of pharmacokinetics and pharmacodynamics 

in humans. The first point relates to the unawareness of the underlying differences 

between-species.  For example, total clearance can result from multiple routes; metabolism 

by oxidation and glucuronidation, biliary excretion, and/or renal excretion.  The use of 

allometry assumes that when multiple physiological processes are involved, processes are 

scaled solely based on size differences and processes that do not scale well are considered 

clinically irrelevant (48).  Biliary excretion is known not to scale well due to the role of ABC 

transporters expression levels.  As such the decision to use scaling is dependent on an 

overall judgement of its ability to be scaled.  For volume of distribution, the assumption is 

that distribution of drug outside system circulation occurs primarily due to passive diffusion; 

active transport is not accounted for either.  Scaling via the more realistic physiologically 

based pharmacokinetic (PBPK) models (49), has been shown to account for both size-

dependent and size-independent differences. 

The second source of error in allometric scaling relate to the use of allometry as a monolithic 

extrapolation strategy:  allometric relationships, even if correct, only relate to size 

differences between species.  It is functionally equivalent to assuming that a human is a 

large rodent or another non-clinical species.  Furthermore, the scaling of parameters 

assumes that size-related factors influencing systemic exposure are the only important 

covariate relationships governing drug effects.  

Despite the clear flaw in this approach, the evaluation of alternative methods for scaling or 

translating pharmacokinetics and PKPD relationships remains limited.  In fact, size-

independent differences compose a much larger part of the differences in 
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pharmacodynamics and this is not accounted for with allometry.  Paradoxically, there is also 

support for the view that size-independent differences are usually small given that adverse 

events in humans are predictable in the majority of cases (75%) from information obtained 

from preclinical experiments (50).  This leads to the apparent conclusion that mechanisms of 

action in animals are similar to humans, however potentially serious differences may exist 

(51).  A related problem is that clinical outcome is dependent on the underlying disease 

process, which may be different between species.  Differences in baseline (physiological) 

response and in variability due to disease conditions in humans can confound the 

measurement of drug-induced effects, as compared to animals.  Likewise, differences in 

target distribution can also complicate the interpretation and translation of non-clinical 

findings.  For example,  anaphylaxis is observed in the intestine and liver of rats, but in 

humans these symptoms are primarily observed in the lungs and blood vessels (52).  The 

translational gap becomes even larger if one considers psychiatric or other neurological 

adverse events, which may not be detected in animals.  

 

2.10. Translation of Risk 

Translation of the risk associated with the experimental evidence observed in animals is the 

ultimate step triggering decisions related to nonclinical safety and toxicity of a novel 

molecule.  Thus far, expert judgment is used by decision makers, which ultimately consists in 

the use of qualitative criteria for the assessment of risk.  These criteria informally include 

some measure of overall uncertainty, but such an approach makes it difficult to understand 

the propagation of uncertainty. For instance, to infer that small physiological changes to the 

binding levels across species can lead to large changes the estimates of safe exposure.  

Clearly, accurate judgment is even more difficult when dependent on parameters for which 

uncertainty is unknown or not quantifiable.   

Whilst  the aforementioned issues have been recognised as important, regulators remain 

reluctant about the use of quantitative methods for risk assessment (53).  There are various 
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reasons why qualitative risk assessment has been advocated over quantitative methods.  

However, many of the argued limitations do not necessarily apply when more modern 

statistical techniques are considered.  We will address some of these points later in the next 

section, where model-based approaches are discussed.  

The danger with a qualitative analysis is that the extent of any overall benefit will be left to 

human intuition.  Informed decisions involve taking both benefits and risks of the drug into 

account.  Yet, the consideration of risks and benefits based on safety thresholds is 

dependent on the nature of the risks in question and as such do not account for the 

underlying mechanisms, which in turn could be used for subsequent clinical interpretation.  

An encompassing inferential method is needed which accounts for underlying mechanisms 

and balance them against benefits.  Most importantly, decision making regarding risk should 

include the contribution of historical data in a statistically and clinically formal manner.  

 

3. Non-linear mixed effects modelling 

 

The use of model-based methods has the ability to address many of the aforementioned 

criticisms pertinent to the design and analysis of safety pharmacology and toxicology 

protocols.  Nonlinear-mixed effects models are a particular class of models that allow one to 

handle a variety of parameterisations by integrating stochastic and deterministic 

components of a problem.  Although such models are often referred to as population 

models, they provide insight at the individual level, separating real variability from 

estimation uncertainty.  They contain the necessary complexities required to assess risk in a 

manner that translates into scientifically rigorous decisions. In pharmacokinetic-

pharmacodynamic data analysis, the use of a parametric approach based on nonlinear 

mixed-effects models provides a tool for handling repeated-measurement data in which the 

relationship between the explanatory variable and the response variable can be described 

by a single function, allowing model parameters to differ between subjects (54).  An 
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immediate advantage of the approach is that the within-subject variability for a given 

individual can be distinguished from the differences between subjects even in the absence 

of balanced or frequent sampling of the data.  

In hierarchical modelling, the term “mixed” refers to the use of both fixed effects 

(characterising the typical individual in the population) and random effects (describing the 

parameter distribution).  The latter are divided into two levels: the difference between the 

individual prediction and the observation (residual error) and the variability between 

subjects (BSV).  There may also be circumstances in which individual parameters vary 

longitudinally between occasions, randomly or due to some unknown physiological process.  

In such cases, a third level of variability can be introduced, i.e. the inter-occasion variability 

(IOV).   

The general structure of a hierarchical model is as follows: 

���� = ������, 
��� + 
���, 
���~�(0, ��)   Eq. 1 

where yijk is the j
th observation at occasion k in individual i. f( ) is typically a nonlinear 

function of individual parameter Pik and independent variables Xijk.  In PKPD modelling, f( ) is 

usually then individual prediction of the observation. Independent variables are usually time, 

dose or drug exposure and demographic covariates.  The εijk forms the residual variability 

with variance ��. When the variance is independent of ������, 
���, the model is said to 

have additive variability. On the other hand, when � is proportional to f( ), we have a 

proportional error model (55).  

For the ith individual, the individual parameters Pik can by the expression: 


�� = � ∙ ��� ,			��~�(0,ω�)	   Eq. 2 

This describes a log-normal variation of the individual parameter P, which has a typical value, 

Θ. The ηi and ki are the random effects describing the differences between the typical 
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(population) value and the individual parameter value.  ηi is assumed to be normally 

distributed with mean zero and variance ω�. 

Among other applications, the use of hierarchical models is justified and appropriate when 

the data available per individual are sparse.  In addition, it is recognised as the most effective 

method to perform meta-analysis of data arising from different studies and to incorporate 

prior knowledge to the estimation of model parameters.  It allows one to adjust for different 

variances (e.g. presence of influential factor in a given subgroup in the population) and to 

explore confounding correlations, when the design of the study correlates with the outcome 

(e.g., effect of weight vs. sex).  

 

3.1. Estimation methods 

The field statistical modelling field has developed well-established parameter estimation 

methods which provide the means not only to estimate the most likely value of the 

parameters given the data, but also to quantify uncertainty and correlation in estimated 

parameters and model (mis)specification.  This ultimately provides us the opportunity to 

account for limited information and gaps in our knowledge.  For example, if there is little 

information on the relationship between level of target occupancy and target activation, the 

corresponding parameters will have an appropriately high uncertainty.  This feature is 

particularly relevant for the estimation and translation of risk as uncertainty can be 

propagated as high imprecision in exposure-risk relationships.  Moreover, the calculation of 

the propagation of model uncertainty to uncertainty in the risk-benefit profile offers the 

prospect of efficient data collection. 

The standard method for parameter estimation for nonlinear mixed effects models has been 

the maximum likelihood approach (56-59).  This is where parameters are treated as random 

variables with distribution governed by the likelihood function p(y|Θ), which represents the 

probability of the total data arising given the value of the parameters.  The reported value 

for each parameter is the parameter at the maximum of the distribution, and associated 
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uncertainty given by the variance of the distribution.  No data reduction is required; each 

raw data point directly informs parameter estimation thereby making maximal use of the 

available data.  When multiple studies have been performed in populations which share 

common physiological processes or treatments, datasets may be aggregated to support 

integrated analyses across these studies.  Furthermore, model-based analysis can handle 

multiple types of observations (e.g., pharmacokinetics and pharmacodynamics) as well as 

multiple data types (e.g., continuous and categorical). 

Of particular interest for the assessment of safety and toxicity is the possibility of applying 

extensions of the maximum likelihood, which enable mathematically rigorous incorporation 

of prior parameter information (e.g., receptor occupancy or blood to plasma binding ratio in 

vitro to describe in vivo data).  The two main methods for achieving this are the penalised 

likelihood method (49,60) and Bayesian estimation (61).  It should also be noted that the 

advent of exact likelihood methods such as expectation maximisation (EM) methods (62) has 

provided  increased reliability of PKPD analyses, especially in the presence of sparse data, 

often available from general toxicity protocols. 

We should also emphasise that in the context of safety pharmacology and toxicity studies, 

trial optimisation represents proper adherence to the three R’s (reduction, refinement and 

replacement).  When prior information is available for class-specific parameters, a model-

based analysis may benefit from this allowing for a reduction experimental cohort sizes or 

burden to animals.  This is possible because model-based analyses are inferential in nature. 

 

3.2. Model parameterisation: empirical vs. mechanistic models 

Despite the increasing number of modelling examples in biomedical and pharmaceutical 

research, the use of pharmacokinetic and pharmacokinetic-pharmacodynamic models has 

remained primarily descriptive.  However, the application of such models for the evaluation 

of safety requires further consideration of its biological plausibility and predictive or 

prognostic value. For example, instead of using a simple compartmental model to describe 
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the observed phases of drug elimination, one may need to consider a physiologically-based 

pharmacokinetic model (PBPK) (63).  Such models can be developed by integrating prior in 

vitro data and literature information.   

On the other hand, it is not unusual for components of PKPD models to be statistically 

correlated to some degree.  Therefore, it is important that when identifying at-risk 

subpopulations based on collected data, covariate selection is guided by a mechanistic or 

physiological evaluation.  There are several methods that allow such an approach (64-67).  

More recently, these methods have also been applied to describe disease processes (33).  

Statistically, these models include a response variable that characterises the disease status 

and its progression over time.  

 

3.3. Simulations, experimental design and optimisation 

Model predictions, simulated outside the experimental context are extrapolations subject to 

model specification bias.  Since our primary goal is to show the relevance of such models to 

analyse data arising from pre-clinical species and eventually from healthy subjects to assess 

safety and toxicity in patients who will be receiving these drugs, this point is of special 

importance.  In PKPD modelling, computer simulation involves using statistical models to 

predict the behaviour of the biological system described by the model (68).  Clinical trial 

simulations (CTS) i.e. computer simulation of trials, allows for the investigation of the impact 

of different design characteristics on the outcome of a trial.  It can also be used to 

investigate the implications of uncertainty and variability in pharmacokinetic and 

pharmacological processes for recruited individuals, thereby allowing the prior assessment 

of the robustness of the protocol to known uncertainty and variability (69).  More generally, 

in a CTS it is possible to test the influence of any modelling assumption and design factor 

beforehand (Figure 6).  

 



44 

 

 

Figure 6: The diagram depicts the major components of a clinical trial simulation (CTS).  In model-

based drug development, CTS can be used to characterise the interactions between drug and 

disease, enabling among other things the assessment of disease-modifying effects, dose selection 

and covariate effects.  In conjunction with a trial model, CTS allows the evaluation of such 

interactions, taking into account uncertainty and trial design factors, including the implications of 

different statistical methods for the analysis of the data. 

 

 

Trial design can also benefit from the use of optimal design methodology.  The goal of 

optimal design, specifically the procedure known as D-optimality, is to determine design 

variables (such as sampling times and dose selection) that optimise the expected 

information content (usually by maximising the determinant of the Fisher Information 

Matrix (FIM)) within the desired resource constraints.  A variety of software programs exist 

purpose built for the estimation of PK/PD models (70).  Optimal sampling schedules for 

toxicity experiments can help increase the precision by which drug specific parameters can 

be estimated and/or reduce the burden to animals by minimising the number of samples 

needed.  This is desirable from an ethical and scientific perspective, as poor experimental 

design is known to result in biased estimates.  Among other advantages, optimal sampling 

may facilitate the collection of biomarkers in conjunction with pharmacokinetic data when 

blood volume is limited. 
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Conclusions 

 

High attrition rates due to a poor safety profile combined with inability to correctly identify 

risk demand revisiting of concepts and modernisation of the approaches currently used for 

the assessment of toxicity.  Current practices fail to support decision making on multiple 

levels.  Firstly, the parameterisation of drug exposure and available metrics of risk are often 

justified by historical precedent rather than by an informed scientific rationale.  These 

measures are assumed to be predictive of drug effects in humans, despite the fact that in 

many cases known pharmacokinetic and pharmacological drug properties contradict such 

assumptions. Evidence clearly shows that empirical protocols remain primarily descriptive 

rather than explanatory of the observed phenomena and are therefore unsuitable for 

extrapolation, an important point to consider when analysing and interpreting safety 

pharmacology and toxicology data.  Moreover, statistically, the use of point estimates and 

thresholds prevents understanding of the consequences of between subject variability and 

identification of at-risk subpopulations.  Additionally, type I and II errors are also not 

accounted for in the design or analysis of toxicity data, both of which are critical informed 

decision making. 

In summary, our review has highlighted the implications of empirical data generation for the 

evaluation of safety and toxicity during drug development.  A shift in paradigm was 

proposed to ensure that pharmacological concepts are incorporated into the evaluation of 

safety and toxicity. Moreover, we indicate the urgent need to integrate historical evidence, 

so that findings across species can be effectively translated.  Based on historical examples, 

we have shown some important challenges for the early characterisation of the safety 

profile of a new molecule and discuss how model-based methodologies can be applied for 

better design and analysis of experimental protocols.  From a methodological perspective, 

nonlinear-mixed effects modelling is recommended as a tool to account for such 

requirements. Its use in the evaluation of pharmacokinetics (PK) and pharmacokinetic-

pharmacodynamic relationships (PKPD) has enabled the advance of quantitative approaches 
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in pharmacological research in recent decades.  Comparable benefits can be anticipated for 

the assessment of safety and toxicity. 
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CHAPTER 2 

Scope and intent of investigation 

 

Historically, the evaluation of safety pharmacology and toxicity of drugs has largely relied on 

research in animal models, of which results have been used to extrapolate to potentially 

harmful events in humans. The research in these models has been developed to evaluate 

specific toxicological endpoints, (such as oral, dermal and ocular toxicity, immunotoxicity, 

genotoxicity, reproductive and developmental toxicity and carcinogenicity) rather than 

specifically designed to understand the exposure response relationships associated with the 

anticipated adverse event or toxicity (1). Furthermore, even if one considers the information 

obtained from these experiments useful, they are low throughput and inconsistently 

predictive of human pharmacology and pathophysiology. Some of these limitations persist in 

spite of the recognition of toxicokinetics as an important part of the safety assessment (2-3).  

More recently, several major new initiatives have begun to utilise in vitro methods and a 

variety of new technologies to develop in vitro signatures and computational models 

predictive of in vivo response. These initiatives provide insight and tools to identify a battery 

of in vitro assays to detect perturbations in cellular pathways that are expected to contribute 

to or result in adverse health effects (4,5). Furthermore, these initiatives represent a 

welcome movement away from traditional in vivo high-dose hazard studies (6,7).  

Despite such a continuing improvement in methods to characterise the safety and toxicity of 

novel medicines, uptake of these new approaches by regulatory agencies remains limited, 

with quantitative pharmacology concepts still being rarely applied to address clinical and 

regulatory questions on the safety pharmacology and toxicity of a novel compound. 

Evidence of the relevance of such concepts has been highlighted with the introduction of 

structure-activity relationships (SAR) in the absence of adequate toxicity data on the 
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chemical under certain circumstances, such as when the extent of exposure of humans is 

extremely low and toxicokinetic data cannot be easily generated (8). Clearly, the lack of a 

stronger pharmacological basis for the assessment of safety has prevented the 

implementation of a model-based approach aimed at the characterisation in a strict 

quantitative manner of the relationship between drug exposure and effects.  To date, efforts 

have been limited to physiologically-based pharmacokinetic modelling, but it is mostly 

applied to environmental toxicology, rather than to pharmaceutical R&D (9).  

Irrespective of the urgently needed changes in regulatory guidance, methodologies that 

support the translation and prediction of safety pharmacology and toxicity in humans are 

still required. To this purpose, more than novel experimental protocols and technologies are 

required. We strongly believe in integrative approaches that enable efficient use of available 

evidence and facilitate the assessment of pharmacokinetic-pharmacodynamic relationships. 

Of special importance is the possibility to evaluate and predict long term or rare adverse 

events, which continue to contribute to high attrition in drug discovery and development 

(10).  In light of the known limitations of current experimental protocols and the implications 

they represent for hazard characterisation in humans, a range of different approaches is 

necessary to ensure that the appropriate endpoint is detected and risk evaluated in a precise 

and accurate manner.  

The scientific and regulatory communities should acknowledge that most toxicity tests, as 

currently designed, are aimed solely at hazard identification at supratherapeutic levels. Data 

produced using current testing guidelines are not always suitable for robust mathematical 

exposure–response modelling. We recognise therefore that adequate characterisation of the 

exposure–response relationship requires a number of doses giving a range of different 

response levels. On the other hand, mathematical modelling of the exposure–response 

relationship would represent an important improvement to the risk assessment process.  

Here we tackle a number of issues that need to be considered during the course of drug 

discovery and development to ensure more efficient use of the evidence on safety 
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pharmacology and toxicity which is generated. Four central questions will form the basis for 

the work to be presented in the subsequent chapters in this thesis: 

1. Can current experimental protocols for safety pharmacology and toxicology evaluation be 

optimised to support the characterisation of pharmacokinetic-pharmacodynamic 

relationships? 

2. Does a meta-analytical approach based on nonlinear mixed effects modelling provide 

more precise and accurate estimates of safety thresholds than current methodologies? 

3. Can mechanism-based models be used for accurate inferences about safe drug exposure 

for low frequency, delayed (long term) or rare adverse events?   

4. Should biomarkers be used in conjunction with pharmacokinetic data to enable accurate 

estimation of the safe drug exposure (and consequently of safety thresholds) during chronic 

therapy? 

Our work is presented in a way that both conceptual and practical issues are addressed 

concurrently. After revisiting the requirements for the implementation of quantitative 

pharmacology concepts in the evaluation of safety pharmacology and toxicology, we 

highlight how existing protocols should be redesigned to obtain accurate results from the 

modelling and emphasise that an appropriate design might even result in a reduction in the 

total number of animals studied. Moreover, we show that biomarker data may allow 

translation of the external dose to an internal dose (or target-organ dose), as it reflects a 

compounds pharmacology. In fact, using naproxen as a paradigm compound for the acute 

and chronic effects of cyclo-oxygenase inhibition, we explore how biomarkers could be used 

to provide a full pharmacologically-based exposure-response model, i.e., a PBPKPD model.  

Our endeavour is complemented by further insight into the implications of modelling for risk 

prediction purposes, as described by logistic, hazard models. Clear recommendations are 

provided about the requirements for future refinements regarding the characterisation of 
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exposure–response relationships, which need to account for the extent of uncertainty and 

variability in modelling and simulation output.  

 

Section I: General introduction 

 

In Chapter 1, we have described the problems with existing practices from a methodological 

point of view and highlighted the value of mechanism-based PKPD modelling as a tool for 

the evaluation of safety pharmacology and toxicology.   From a methodological perspective, 

we show that the parameterisation of drug exposure and available metrics of risk are often 

justified by historical precedent rather than by an informed scientific rationale. These 

measures are assumed to be predictive of drug effects in humans, despite the fact that in 

many cases known pharmacokinetic and pharmacological drug properties contradict such 

assumptions. Evidence clearly shows that empirical protocols remain primarily descriptive 

rather than explanatory of the observed phenomena and are therefore unsuitable for 

extrapolation, which is an important point to consider when analysing and interpreting 

safety pharmacology and toxicology data. Moreover, statistically, the use of point estimates 

and thresholds prevents understanding of the consequences of between subject variability 

and identification of at-risk subpopulations. Additionally, type I and II errors are also not 

accounted for in the design or analysis of toxicity data, both of which are critical informed 

decision making. 

A shift in paradigm is proposed to 1) ensure that pharmacological concepts are incorporated 

into the evaluation of safety and toxicity; 2) facilitate the integration of historical evidence 

and thereby the translation of findings across species; and 3) promote the use of 

experimental protocols tailored to address specific safety and toxicity questions. Three 

important components have been identified, which will form the framework proposed 

throughout this thesis., namely, model based optimisation of experimental design, data 

integration, and incorporation of biomarkers as a way towards the implementation of a 
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pharmacology-based approach for the characterisation of safety and toxicity  in drug 

discovery and development. 

Of particular interest for us is to demonstrate that inefficiencies in the experimental design 

violate the principle of the 3 Rs (reduction, refinement and replacement) (11,12).  Optimality 

concepts are available that could be implemented even when terminal sampling procedures 

are used, as is the case of histopathological measures.  Using examples, we show that the 

poor predictive value of experimental data reflects the failure in anticipating the biological 

consequences of target engagement, i.e., in establishing the correlation between target-

related events and drug exposure, as defined by the evidence of pharmacokinetic-

pharmacodynamic (PKPD) relationships.   

Based on the requirements for the implementation of a pharmacology-based approach, 

specific issues have been identified which underpin the scope and intent of the 

investigations described here in Chapter 2. Nonlinear-mixed effects modelling will be 

recommended as a tool for protocol optimisation and knowledge integration (i.e., evidence 

synthesis). Its use in the evaluation of pharmacokinetics and pharmacokinetic-

pharmacodynamic relationships has enabled the advance of quantitative approaches in 

pharmacological research in recent decades.  As shown in the subsequent chapters of this 

thesis, comparable benefits can be anticipated for the assessment of safety and toxicity. 

The overall focus of the work presented in the following sections of this thesis is therefore to 

illustrate how the proposed methodology can be applied prospectively during the evaluation 

of a novel molecule in the early stages of development.  We also attempt to demonstrate 

the need and added value of an integrative approach to predict potential long term AEs with 

respect to performance metrics commonly used in safety pharmacology and toxicology 

experiments.  Where possible, proposals to amend study protocols are kept to a minimum to 

facilitate acceptance of the proposal by industry and regulatory bodies. 
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Section II: Conceptual framework 

 

In the section, different aspects, including advantages and limitations of a model-based 

approach are evaluated. Of interest is the fact that despite the increased attention to the 

importance of toxicokinetics, the extrapolation and prediction of a safe exposure range in 

humans from preclinical experiments continues to be based on the assessment of empirical 

safety thresholds, in particular the no observed adverse effect level (NOAEL), which is a 

qualitative indicator of acceptable risk.  In addition, pharmacokinetic data generated from 

different experiments are not evaluated in an integrated manner, whereby drug disposition 

(e.g., clearance) can be described mechanistically or at least compartmentally in terms of 

both first and zero order processes. As a consequence, safety thresholds are primarily 

derived from inferences about the putative pharmacokinetic profiles in the actual treatment 

group. Such an experimental setting has far reaching consequences for the assessment of 

risk, given the assumption that inter-individual differences are implied to result from 

residual variability. Pharmacokinetic and pharmacokinetic-pharmacodynamic parameters 

are treated as point estimates. Factors such as within- and between-subject variability or 

uncertainty in estimation are not accounted for. This is further complicated by another 

major limitation in the way exposure is described by naïve pooling approaches, i.e., the 

impossibility to accurately derive parameters such as cumulative exposure, indirect or 

delayed effects, which may be physiologically more relevant depending on type of drug and 

the mechanism of action. 

Therefore, focus is initially given to the opportunities for optimisation of experimental 

protocols supporting the characterisation of pharmacokinetic properties at therapeutic and 

supratherapeutic levels. In Chapter 3, we show that the estimation of safety thresholds such 

as the NOAEL can be optimised (13).  Using simulation scenarios in which hypothetical 

compounds with different disposition properties are evaluated, our analysis shows the 

feasibility and relative performance of a model-based analysis for the characterisation of 

systemic exposure as compared to empirical, non-compartmental analysis (NCA) methods 
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currently used in general toxicity protocols.  Simulation scenarios are used to illustrate which 

changes are required in experimental protocols with respect to standard non-

compartmental analysis. Expected bias and precision of parameters of interest, such as 

systemic exposure (AUC) and peak concentrations (CMAX), are then computed with both 

methodologies.  In addition, we also assess the predictive accuracy of cumulative exposure 

estimates up to three months beyond the study duration.  It should be noted that such an 

extrapolation represents an important advantage of model-based methods, which cannot be 

derived by descriptive methods such as non-compartmental analysis.  Overall, the scope of 

this evaluation was to show that, despite the need for an iterative process, modelling 

provides the basis for experimental protocol optimisation. 

Given the assumption of unbiased parameter estimation when using a model-based 

approach for the characterisation of pharmacokinetic properties, a natural question arises 

with respect to the principle of the 3 Rs in pre-clinical research.  Irrespective of the 

availability of alternative methods that allow evaluation of drug disposition properties in 

vitro, can experimental protocols be optimised to ensure a significant reduction in the 

number of animals required, whilst still providing sufficient estimation precision for 

measures of exposure such as AUC and CMAX?  

This question is addressed in Chapter 4, where an important methodological challenge is 

overcome, namely the possibility to optimise secondary pharmacokinetic parameters such as 

AUC and CMAX. In contrast to existing optimality software and algorithms, which support 

optimisation of experimental design with respect to primary parameter precision, we show 

that secondary parameters can be optimised without the resource-intensive procedures 

imposed by D-optimality.  Using a range of hypothetical drugs with different 

pharmacokinetic profiles, we illustrate the implementation of optimisation procedures to 

select sampling times and define the minimal number of animals per treatment group. By 

combining the expected Fisher information matrix (FIM) with simulations from uncertainty, 

this exercise ultimately shows that the precision of secondary parameters can be assessed 

and minimally sufficient designs obtained, in line with the principle of the 3 Rs. The method 
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is computationally inexpensive and can provide potential savings to numbers of animals 

without compromising study objectives. 

Still within the scope of protocol optimisation, we also explore the implications of 

introducing biomarkers into the evaluation of a drug’s safety toxicity profile, as biomarkers 

of pharmacological activity can be crucial for the prediction of long term adverse events and 

toxicity. In contrast to traditional protocols, which imply a direct relationship between 

observed systemic exposure and adverse events, in Chapter 5 we apply a model-based 

approach to characterise the PKPD correlations and the time course of biomarker responses 

associated with long-term safety. Our evaluation also compares the analysis of biomarker 

data based on standard non-compartmental methods. In brief, we propose the collection of 

biomarkers at the scheduled pharmacokinetic sampling points to facilitate the 

characterisation of pharmacokinetic-pharmacodynamic relationships.  

Study data are simulated for four hypothetical drugs, each with a different mechanism of 

delayed toxicity. For the purposes of our evaluation, delayed toxicity was parameterised in 

terms of i) an indirect response mechanism, ii) an indirect response mechanism preceded by 

biophase equilibration, iii) cumulative effects as a consequence of chronic dosing and iv) 

formation of a toxic metabolite after repeated dosing. Given the often unknown mechanism 

of toxicity, model misspecification is also considered to ensure that accurate conclusions are 

drawn from experimental protocols. Finally, bias and precision of parameter estimates were 

used as metrics of interest to compare model-based and non-compartmental methods. 

The utility of model-based approaches to predict the risk of adverse events from preclinical 

toxicology protocols is subsequently explored in Chapter 6, where pharmacokinetic, 

biomarker and adverse event data are integrated into a PKPD model.  In this investigation, 

simulation scenarios are used to generate drug-induced adverse events for reversible and 

irreversible drug effects according to three different pharmacological mechanisms (direct, 

indirect, and irreversible binding). To ensure real-life conditions, assumptions are made with 

regard to 1) the presence of background adverse events, including the situation in which 
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drug-induced and background adverse events are indistinguishable from each other, 2) 

events occur with low frequency, including rare events, 3) the symptoms evolve over time 

but can only be detected once per animal during histological examination and 4) adverse 

events are described by binary data.   

Whereas typical toxicology experiments are designed to show evidence of safety thresholds, 

it can be anticipated that they may not fully support the identification of the underlying 

mechanisms for adverse drug reactions. Therefore, we show the importance of prior 

information and more specifically of background rates from placebo and control-treated 

animals. We also make the effort to quantify model and parameter uncertainty as the basis 

for subsequent risk assessment. At the same time, we show the technical challenges for 

characterising exposure-response relationships, which make the validity and reproducibility 

of models derived by empirical experimentation questionable for predictive purposes.  

Section III:  Case study and practical application 

 

The third part of the thesis aims to illustrate the implementation of experimental protocols 

suitable for model-based analysis. Given the ongoing debate of the benefit-risk balance of 

chronic treatment with non-steroidal anti-inflammatory drugs, naproxen is used as a 

paradigm compound with known acute and chronic toxicities. Naproxen is a non-selective 

cyclo-oxygenase inhibitor, whose activity results in the suppression of pro-inflammatory 

mediators such as prostaglandins and thromboxanes  (14). By considering the requirements 

for a suitable experimental protocol, we also attempt to identify practical challenges and 

difficulties that one may face for the prospective use of the methodology.   

From a clinical pharmacology perspective, the rationale for selecting naproxen is based on 

the differences in housekeeping function of both isozymes and their contribution to the 

inflammatory response in acute and chronic inflammatory conditions (15-17). Unfortunately, 

at present the dose selection of COX inhibitors disregards whether maximum, long-lasting 

blockade of either enzyme systems is strictly required for anti-inflammatory, analgesic 
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response and how its pharmacology relates the observed adverse events (18). These 

considerations become essential when evaluating the side effects associated with long term 

use of COX inhibitors, which include gastric and cardiac adverse events. Whilst the lack of 

selectivity of naproxen and the evidence for distinct mechanisms underpinning acute effects 

(such as bleeding and ulceration) and long term effects (such as renal and cardiovascular 

damage) have evolved over the years and might not have been understood at time of the 

development of the compound, such understanding makes it quite didactic in that it 

demonstrates how human safety and toxicity may require characterisation of drug effects at 

exposure levels corresponding to the therapeutic doses. Toxicity, and in particular, long term 

safety is not a matter of supra-therapeutic exposure: it may be determined by time-

dependent pharmacological activity. 

Using a typical toxicology protocol in rats, in Chapter 7 naproxen, a non-selective cyclo-

oxygenase inhibitor is used as paradigm compound to demonstrate the concept of 

biomarker-guided safety assessment (19-21). Using pharmacokinetic-pharmacodynamic 

techniques, we subsequently illustrate how modelling and simulation techniques can be 

used to ensure accurate estimation of the safe dose levels of naproxen after chronic 

exposure. Furthermore, the pharmacokinetics of naproxen is evaluated in conjunction 

thromboxane (TXB2) and prostaglandin (PGE2) over short, moderate and long-term 

treatment. It is assumed that gastrointestinal bleeding is due continuous COX-1 inhibition, 

whereas ulceration results primarily from the suppression of COX-2, which is known to have 

an important role in the repair of gastric mucosa.  PK and biomarker findings are then 

integrated with experimental data from historical protocols and published literature to 

ensure characterisation of drug properties at putative therapeutic levels. From a 

methodological perspective, it is our endeavour to quantify the impact of nonlinearity in 

pharmacokinetics and in biomarker response.  Given the wealth of clinical data from the 

published literature, we also take the opportunity to evaluate the predictive value of 

nonclinical findings and explore whether species differences exist for naproxen effects on 

TXB2 and PGE2. 
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This evaluation is complemented in Chapter 8 by further integrating the histological data 

obtained at completion of treatment to the observed biomarker effects.  Here we emphasise 

the need for evidence synthesis to quantify and explain the risks associated with long term 

drug exposure. Clearly, efforts are required to ensure the availability of tissue- and 

mechanism-specific data for accurate interpretation of acute and long term safety findings. 

Such an objective may be hampered by the use of empirical experimental protocols, as they 

render the extrapolation of findings across species rather difficult, preventing accurate 

translation of the pharmacological properties to man.  In the current investigation we show 

therefore how pharmacokinetic-pharmacodynamic (PKPD) modelling can be used to unravel 

the relationship between chronic drug exposure, pharmacodynamic effects and overt 

symptoms and signs. The concept is illustrated by the correlation between naproxen 

concentrations, PGE2 and TXB2 inhibition, and gastric ulceration in rats.  Through the use of 

bootstrapping procedures in combination with covariate analysis, we show how model 

diagnostics can be used for model selection as well as for potential identification of the 

explanatory factors for the observed gastric ulceration. 

Section IV: Conclusions and Perspectives 

 

An overview of the results and conclusions drawn from the various chapters is provided in 

Chapter 9. Most importantly, recommendations are provided for physiologically based 

quantitative toxicity assessment. Here we also summarise the answers to the initial 

questions set up at the beginning of this chapter, which underpin the research developed 

throughout the thesis.  We anticipate that the examples used in Section II will make clear 

that there are numerous opportunities for optimisation of experimental protocols for safety 

pharmacology and toxicology. The approach should also shed light on the advantages of 

including biomarkers and characterising PKPD relationships, instead of relying solely on 

safety thresholds. 
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Lastly, the issues identified in the various simulation scenarios and the challenges 

experienced during the implementation of an integrated experimental protocol are 

discussed. Our findings should make clear that inferences about safe exposure as well as the 

risk associated with long term use of a compound cannot be achieved by scattered empirical 

experimentation.  Given the increased relevance of evidence synthesis as the basis for 

decision-making within regulatory and clinical settings, we expect that some of the meta-

analytical elements presented across the various simulation scenarios will become 

embedded into daily practice in safety pharmacology and toxicology. Irrespective of the 

advancements in the understanding of the mechanisms of toxicity, we envisage that a 

pharmacology or biomarker-based approach will always be required to allow accurate 

inferences about safe drug exposure for low frequency, delayed (long term) and rare 

adverse events.  Future perspectives are then presented taking into account ongoing 

developments in the field of systems pharmacology and its relevance for the prediction of 

drug toxicity and risk assessment in humans.  The work is concluded with a new question 

being asked with regard to the scientific and ethical basis for current experimental designs in 

toxicology.  
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Abstract 

Purpose: Current toxicity protocols relate measures of systemic exposure (i.e. AUC, Cmax)  

as obtained by non-compartmental analysis to observed toxicity.  A complicating factor in 

this practice is potential bias in the exposure estimates.  Moreover, it prevents the 

assessment of variability.  The objective of the current investigation was therefore a) to 

demonstrate the feasibility of applying nonlinear mixed effects modelling for the evaluation 

of toxicokinetics and b) to assess the bias and accuracy of systemic exposure for each 

method. 

Methods: Simulation scenarios were evaluated, which mimic standard toxicology protocols 

in rodents.  To ensure differences in pharmacokinetic properties were accounted for, 

hypothetical drugs with varying disposition properties were considered, including a one-

compartment pharmacokinetics with linear and nonlinear elimination as well as a two-

compartment pharmacokinetics.  Data analysis was performed using non-compartmental 

methods and nonlinear mixed effects modelling. Exposure levels were summarised as area 

under the concentration vs. time curve (AUC), peak concentrations (Cmax) and time above a 

predefined threshold (TAT).  Results were then compared with the reference values to 

assess the bias and precision of parameter estimates. 

Results: Population pharmacokinetic modelling yields higher accuracy and precision of 

estimates for AUC, CMAX and TAT irrespective of group or treatment duration, as compared 

with non-compartmental analysis.  Moreover, population pharmacokinetics modelling 

constitutes a basis for PKPD based analysis of safety outcomes. 

Conclusions: Despite the focus of toxicology guidelines on establishing safety thresholds for 

the evaluation of new molecules in humans, current methods neglect uncertainty, lack of 

precision and bias in parameter estimates.  The use of nonlinear mixed effects modelling in 

toxicology provides insight into variability and should be considered for predicting safe 

exposure in humans.  
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Abbreviations: 

AUC  - area under the concentration vs. time curve 

Cmax – peak concentrations 

PD - pharmacodynamics 

PK – pharmacokinetics 

TAT – time above a concentration threshold 
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Introduction 

The purpose of toxicokinetic studies in the evaluation of safety pharmacology and toxicity is 

the prediction of the risk that exposure to a new chemical or biological entity represents to 

humans (1,2).  Understanding of the relationships between drug exposure, target 

engagement (i.e., activation or inhibition) and downstream biological effects of a given 

physiological pathway can provide insight into the mechanisms underlying both expected 

and ‘unexpected’ toxicity (3) (Figure 1).  In addition, the use of a mechanism-based approach 

has allowed better interpretation of time-dependencies in drug effect, which are often 

observed following chronic exposure to a drug (e.g., delayed toxicity) (4,5).  

 

 

 

Figure 1 – Safety risk assessment based on toxicokinetics and pharmacological basis for target-

related adverse events.  Target efficacy: target engagement endpoint on in vitro or in vivo screening. 

Reprinted with permission from Horii, 1998 (3). 
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Despite the increased attention to the importance of toxicokinetics in drug discovery and  

during the early stages of clinical development, the extrapolation and prediction of a safe 

exposure range in humans from preclinical experiments continues to be one of the major 

challenges in R&D (Figure 2)  (71).  Irrespective of the choice of experimental protocol, a 

common practice in toxicology remains the assessment of empirical safety thresholds, in 

particular the no observed adverse effect level (NOAEL), which is a qualitative indicator of 

acceptable risk.  Even though support for the existence of thresholds has been argued on 

biological grounds (19-21), the NOAEL has been used to establish safe exposure levels in 

humans. In fact, this threshold represents a proxy for another threshold, i.e., the underlying 

no adverse event level (NAEL). 

 

The definition of the NOAEL varies from source to source (22).  Its calculation involves the 

determination of the lowest observed adverse effect level (LOAEL), which is the lowest 

observed dose level for which AEs are recorded.  The NOAEL is the dose level below this.  If 

no LOAEL is found, then the NOAEL cannot be determined.  Usually, in the assessment of the 

LOAEL measures of systemic exposure are derived, such as area under the concentration vs. 

time curve (AUC) and peak concentrations (Cmax), which serve as basis for the maximum 

allowed exposure in dose escalation studies in humans (10).  The aforementioned practices 

in safety and toxicity evaluation are driven by regulatory guidance (72).  The scope of these 

guidances is to ensure that the systemic exposure achieved in animals is assessed in 

conjunction with its relationship to dose level and the time course of the toxicity or adverse 

events (Figure 2).  Another important objective is to establish the relevance of these findings 

for clinical safety as well as to provide information aimed at the optimisation of subsequent 

non-clinical toxicity studies.  
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Figure 2 –  TK; toxicokinetic study in drug-development process. IND; investigational new drug 

application, NDA; new drug application. Reprinted with permission from Horii, 1998 (3).  General 

toxicity data used for supporting early clinical trials is gathered in the pre-IND stage.  After IND 

submission, the FDA will confirm whether adequate evidence of safety has been generated for 

human trials. 

 

Whilst the scope and intent of such guidance are well described since 1994, when it was 

introduced by ICH, there has been much less attention to requirements for the analysis and 

interpretation of the data.  In fact, precise details on the design of toxicokinetic studies or 

the statistical methods for calculating or estimating the endpoints or variables of interest, 

are not specified (13-15).  Instead, the assessment of exposure often takes places in satellite 

groups, which may not necessarily present the (same) adverse events or toxicity observed in 
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the main experimental group.  This is because of interferences associated with blood 

sampling procedures, which may affect toxicological findings.  For this same reason, blood 

sampling for pharmacokinetics is often sparse (73).   

As a consequence, safety thresholds are primarily derived from inferences about the 

putative pharmacokinetic profiles in the actual treatment group. Furthermore, these 

thresholds rely on the accuracy of composite profiles obtained from limited sampling in 

individual animals.  Composite profiles consist of pooled concentration data, which is 

averaged per time point under the assumption that inter-individual differences are simply 

residual variability, rather than intrinsic differences in pharmacokinetic processes (74).  

Pharmacokinetic parameters such as area-under-concentration-time (AUC) and observed 

peak concentrations (CMAX) can then be either derived from the composite profile or by 

averaging individual estimates from serial profiles in satellite animals when frequent 

sampling schemes are feasible.  Given that the parameters of interest are expressed as point 

estimates, within- and between-subject variability as well as uncertainty in estimation are 

not accounted for.  In addition, pharmacokinetic data generated from different experiments 

are not evaluated in an integrated manner, whereby drug disposition (e.g., clearance) can be 

described mechanistically or at least compartmentally in terms of both first and zero order 

processes.  This is further complicated by another major limitation in the way exposure is  

described by naïve pooling approaches, i.e., the impossibility to accurately derive 

parameters such as cumulative exposure, which may be physiologically a more relevant 

parameter for cumulative effects (e.g. lead toxicity, aminoglycosides) (18-19).  Time spent 

above a threshold concentration may also bear greater physiological relevance for drugs 

which cause disruption of homeostatic feedback mechanisms.  Such parameters cannot be 

described by empirical approaches due to limitations in sampling frequency.  

By contrast, population pharmacokinetic-pharmacodynamic methodologies have the 

potential to overcome most of the aforementioned problems.  Whilst the application of 

modelling in the evaluation of efficacy is widespread and well-established across different 

therapeutic areas (20-22), current practices have undoubtedly hampered the development 
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of similar approaches for the evaluation of adverse events, safety pharmacology and toxicity.  

It should be noted that in addition to the integration of knowledge from a biological and 

pharmacological perspective, population models provide the basis for the characterisation of 

different sources of variability, allowing the identification of between-subject and between-

occasion variability in parameters (23).  These random effects do not only reflect the 

evidence of statistical distributions.  They can be used for inference about the mechanisms 

underlying adverse events and toxicity.  In fact, recent advancements in environmental 

toxicology have shown the advantages of PBPK/PD modelling as a tool for quantifying target 

organ concentrations and dynamic response to arsenic in preclinical species (24).   

The aim of this investigation was therefore to assess the relative performance of model-

based approaches as compared to empirical methods currently used to analyse toxicokinetic 

data.  We show that, modelling is an iterative process which allows further insight into 

relevant biological processes as well as into data gaps, providing the basis for experimental 

protocol optimisation.  We illustrate the concepts by exploring a variety of scenarios in 

which hypothetical drugs with different disposition properties are evaluated. 

Methods 

A model-based approach was used to simulate the outcomes of a 3-month study protocol, in 

which toxicokinetic data for three hypothetical drugs were evaluated.  Experimental 

procedures were defined according to current guidelines for the assessment of toxicity. 

Given the pre-defined pharmacokinetic parameters used in the simulations, true exposure 

and biomarker levels for each individual animal were computed in accordance with Table 3.  

These values were subsequently used as reference for comparison of the methodologies and 

assessment of bias and precision of the parameters of interest.  The sampled data obtained 

according to a sampling matrix was analysed using non-compartmental methods and by 

nonlinear mixed effects modelling.  All simulations and fitting procedures described below 

were performed in NONMEM 7.1 (25).  Data manipulation and statistical and graphical 

summaries were performed in R 3.0.0 (26). 
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Pharmacokinetic models: The impact of differences in drug disposition on bias and precision 

of the typical measures of systemic exposure was explored by including three different 

scenarios based on a one-compartment pharmacokinetics with linear and nonlinear 

(Michaelis-Menten) elimination as well as a two-compartment pharmacokinetics. Parameter 

values for each scenario are shown in Table 1.  In all scenarios, residual variability was 

assumed to be 15%.  For the purposes of this exercise, we have assumed a homogeneous 

population, avoiding the need to explore covariate relationships in any of the models. 

 

 

Table 1 - Pharmacokinetic models used to assess the implications of molecules with varying 

disposition properties. 

Model A: One-compartment model (1 CMT) 

Parameter Pop Estimate BSV 

KA 13.46 h-1 50% 

V 49.4 ml/kg 16% 

CL 2.72 ml/hr 20% 

 

 

Model B: One compartment model with Michaelis-Menten elimination (1 CMT + MM). Parameter 

values were chosen to ensure departure from dose proportionality at the highest dose. 

Parameter Pop Estimate BSV 

Vmax 2.72 mg/hr 20% 

Km 1 mg/ml - 

Ka 13.46 h-1 50% 

V 49.4 ml/kg 16% 
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Model C: Two-compartment model (2 CMT). The values for the absorption and elimination rate 

constants were selected in such a way that slow accumulation of drug is observed at stead-state 

conditions after daily dosing for approximately two weeks. 

Parameter Pop Estimate BSV 

Ka 0.55 h-1 50% 

V 49.4 ml/kg 16% 

CL 2.72 ml/hr 20% 

K12 0.3 h-1 - 

K21 0.05 h-1 32% 

 

 

 

 

Experimental design: A summary of the sampling schemes and experimental conditions is 

shown in Table 2.  The protocol design for each experiment with the three hypothetical 

drugs was based on protocols typically used for chronic toxicity evaluation.  Four treatment 

groups receiving oral daily doses of vehicle, 10, 30, and 100 mg/kg/day were tested 

throughout this set of virtual experiments.  The same treatment groups were present in all 

duration cohorts (one week, one month or three months).  Satellite groups each were used 

to characterize the pharmacokinetics under the dosing conditions in the animals used for the 

assessment of toxicity.  This procedure ensures the availability of more frequent blood 

samples for toxicokinetics, while not influencing the assessment of the toxicity.  Two 

different sampling schedules were investigated, namely, composite sampling and serial 

sampling.  For the sake of comparison, the same number of samples was collected in both 

cases.  For composite sampling, blood was collected from three animals in the satellite group 

at predetermined sampling time points, namely, 0.1, 0.4, 1, 1.5, 4, 8, 24 hours after drug 

administration on sampling days (see Table 2).  The allocation of animals to each sampling 
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time point was random within the constraint that all animals was sampled an equal number 

of times.  Figure 3 shows PK observations from a typical dataset. 

Table 2 - Experimental design of satellite groups in a general toxicity study with serial and composite 

sampling 

 

Duration Numbers of animals Sampling scheme 

 

1 week 
Toxicity: 4 per dose group 

Satellite: 3 per dose group 

Toxicity: Composite 2 per animal 

Satellite: Serial profiles from Day 1 only 

 

1 month 
Toxicity: 10 per dose group 

Satellite: 3 per dose group 

Toxicity: Composite 2 per animal 

Satellite: Serial profiles from Day 1 and 28 

 

3 months 
Toxicity: 12 per dose group 

Satellite: 3 per dose group 

Toxicity: Composite: Wk 4, wk 13 

Satellite: Serial profiles from Day 1, Wk 4, 

wk 13. 
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Figure 3 – Overview of a simulated dataset for each of the experimental scenarios, in which 3 

animals/sampling time point design are assessed.  Dots represent simulated concentrations at the 

pre-defined sampling times, whereas the solid black line depicts the population predicted profile 

after a dose of 30 mg/kg for hypothetical drugs with different pharmacokinetic characteristics. 

 

Exposure calculations:  Five different measures of exposure were used for calculation of 

exposure, using the predicted concentration profiles obtained from the models used for 

simulation.  These exposure measures can be seen alongside the formula used for their 

calculation in Table 3.  The simulations (n = 200 replicates) were performed assuming repeat 

dosing for up to six months (three months beyond the treatment duration presented the 

investigated studies) in order to evaluate the implications of longer periods of drug 

exposure. 
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Table 3 - Individual predicted drug concentrations are denoted by ��(�). 
Covariate name Model based exposure calculation 

24-hour AUC � �� �!
!"�#  

24-hour CMAX max	('��((): � − 24 < ( < �.) 
24-hour time above threshold 

drug concentration. (TAT) 
� 1012!34563 �!
!"�#  

Predicted 6-month cumulative 

AUC 
� �� �7	89:!36
;  

Predicted 6-month CMAX max	('��((): 0 < ( < 6	=>?�ℎ(.) 
 

 

For composite sampling, non-compartmental analysis was used to determine overall drug 

exposure, which consisted in averaging the simulated concentrations at each sampling time 

point.  For serial sampling, drug exposure was calculated for each individual animal and then 

averaged over the cohort.  In both cases, the arithmetic mean and geometric mean were 

calculated.  Three different non-compartmental exposure measures were derived, the AUC, 

estimated using the linear-logarithmic trapezoidal rule, the CMAX, and the time above 

threshold drug concentration, 0.01mg/ml.  This value was used based on the assumption 

that adverse events were likely to occur above those levels. 

Population pharmacokinetic modelling: Drug concentration profiles were fitted to 

pharmacokinetic models using first-order conditional estimation method with 

interaction, as implemented in NONMEM.  Model building steps were limited to the 
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same structural models used for the initial simulations under the assumption that 

pharmacokinetic properties of the drugs are known at the time toxicology 

experiments are performed.  Model convergence was determined by successful 

minimisation and estimation of the covariance step.  Data below the lower 

quantification limit (BQL) were omitted to mimic experimental conditions in which 

imputation methods are not applied.  Estimates for all three measures of exposure 

were calculated by using same procedures applied for the reference values obtained 

during the initial simulation step (see Table 3) . 

Comparison: To ensure accurate estimates of bias and precision of the two 

methodologies, the process of simulation and estimation of exposure (using non-

compartmental vs. model-based methods) was repeated 200 times. Bias and 

precision were assessed by the relative error, scaled relative mean error (SRME) and 

the coefficient of variation (CV) respectively (27): 

ABCD = 1�E(�(�F=G�� � − �HI�)�HI�J
�KL × 100 

�N = 1�OEP�(�F=G�� � −=�G?=�G? Q�J
�KL × 100 

 

Results 

The use of simulated data for the evaluation of hypothetical scenarios provided clear insight 

of the impact of current practices on the accuracy and precision of safety thresholds, and in 

particular of the NOAEL. Irrespective of the use of serial or sparse sampling schemes for the 

characterisation of the concentration vs. time profiles, model convergence rates were 

usually high, with successful completion of the covariate step. An overview of the 

convergence rates is presented in Table 4. 



85 

 

Table 4 – Rates of successful model convergence and successful covariance (parameter precision) 

estimation. 

Model Successful convergence Successful covariance step 

1 CMT 99.75 99.75 

1 CMT + MM 99.75 99.75 

2 CMT 100 100 

 

To facilitate the comparison of the magnitude of bias and precision, results from modelling 

are shown together with the parameter values obtained from non-compartmental analysis 

where applicable.  Due to the large number of experimental conditions to be summarised, 

here we present a brief description of the relative errors obtained in the 3-month protocol, 

for AUC, Cmax and TAT.  All other experimental conditions, including an overview of the 

scaled relative mean error (SRME) and the coefficient of variation (CV) are presented in 

tabular format as supplemental material (Table 5). 

In Figure 4, the relative errors are presented for the estimates for AUC, CMAX and TAT.  The 

relative errors were clearly smaller when measures of exposure were derived by modelling, 

as compared to the results obtained by non-compartmental analysis.  In fact, the accuracy 

and precision of model-based estimates for all three measures of exposure were similar 

across the different dosing groups and treatment durations.  Non-compartmental estimates 

of exposure showed significantly higher bias and less precision in all scenarios.  The 

performance for model-based exposure estimates obtained in the 3-month protocol is 

summarised in figure 5. 

Our results also reveal the impact of composite versus serial sampling on bias and precision.  

For both model-based and NCA methods, the coefficient of variation increased with 

composite designs (with 8 animals) compared to serial sampling designs (with 3 animals), 

however the increase in precision for NCA method was larger than for model-based 
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estimates.  It should also be noted that CMAX was consistently over-estimated by the non-

compartmental method.  We also demonstrate that the use of arithmetic and geometric 

means for NCA had minor impact in these relatively small groups.  

Lastly, it was found that that nonlinearity in pharmacokinetics also has an important effect 

on bias and precision when sparse samples and limited number of dose levels are evaluated 

experimentally.  Model-based estimates in the 1CMT+MM scenario showed increased bias 

compared to the 1CMT and 2CMT scenarios. 

 



87 

 

   AUC              Cmax     TAT 

 

 

 

 

 

 

 

 

Figure 4 – Relative errors of parameter estimates for AUC (A, left panel), CMAX (B, mid panel) and TAT (C, right panel).  Data refers only to the 3-month 

toxicology protocol design following administration of 30 mg/kg/day of three hypothetical drugs with different pharmacokinetic profiles. Similar results 

were found for other cohorts in which 10 and 100 mg/kg/day were evaluated.  Dots represent the median, boxes show the 25th and 75th percentiles, and 

error bars denote the 5th and 95th percentiles.  The horizontal line shows the reference level for relative error equal to zero. Composite –  composite 

sampling;  GEOMEAN – geometric mean; MEAN – arithmetic mean; MODEL- nonlinear mixed effects modelling; NCA – non-compartmental analysis and 

Serial – serial sampling. 
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Figure 5 – Overview of the relative errors of model-based estimators of long-term exposure, as 

determined by a 3-month toxicology protocol following administration of 30 mg/kg/day of three 

hypothetical drugs with different pharmacokinetic profiles. Similar results were found for other 

cohorts in which 10 and 100 mg/kg/day were evaluated. Dots represent the median, boxes show the 

25th and 75th percentiles, and error bars denote 1.5 times the interquartile range from the median. 

The horizontal line shows the reference level for relative error equal to zero. 
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Discussion  

 

In this investigation we have attempted to identify important limitations in existing 

methodologies for the analysis of toxicokinetic data.  Most importantly, we have illustrated 

the feasibility of a model-based approach for the estimation of toxicokinetic profile using a 

well-established parameterisation for drug disposition processes.  Furthermore, given that 

model performance of toxicokinetic data has been previously evaluated (75), we have been 

able to focus the performance of measures of exposure that cannot be derived from 

empirical approaches, i.e., non-compartmental methods (29). 

The chosen models for the hypothetical drugs reflect the likely toxicokinetic profile of many 

compounds in general toxicology studies.  Taking into account the sampling schemes, the 

choice of one- and two-compartment models may apply to the majority compounds 

exhibiting linear pharmacokinetics.  Moreover, consideration was given to the implications 

that high doses may have on drug metabolism and elimination.  A pharmacokinetic model 

with Michaelis-Menten elimination was also included to ensure accurate characterisation of 

dose- and concentration-dependent pharmacokinetics, which is likely to occur for many 

compounds at least in one experimental dose level.  The results presented here should 

therefore be indicative of the most common toxicokinetic profiles and as such we anticipate 

the possibility to generalise the lessons learned to a much wider range of drugs, for which 

pharmacokinetic parameter values may differ considerably from those presented here. 

Parameter precision and bias 

As shown in Table 4, the high convergence rates of models and high success rate of 

computation of the covariance matrix for the scenarios tested here confirm the feasibility 

and reliability of results obtained using nonlinear mixed-effects modelling.  Despite 

variations in bias and precision parameter precision was consistently high.  The model-based 

approach performed particular well (CV<10% and SRME < 10% for within study exposure 

predictions and SRME < 15% for long term exposure predictions).  Such high levels of 
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precision may not be required for safe exposure evaluation where between subject 

variability in humans is expected to be larger and comparatively large uncertainty factors are 

routinely used.  This suggest that a model-based approach may enable the reductions to the 

numbers of animals and/or samples whilst still providing acceptable parameter precision.  

Moreover since optimal design methodologies for model-based analysis are well established, 

further refinement of the experimental protocol design is feasible if experimentalists and 

statisticians choose nonlinear mixed effects modelling as the primary method of analysis.   

On the other hand, the presence of bias in some of the experimental conditions presented 

here has clear implications for the so-called safety margin and toxicological cover to be used 

as proxy for risk during clinical development, especially for CMAX, which is consistently over-

estimated. The cause is due to the definition of the NCA-based Cmax, max! �R(�) being 

necessarily greater than or equal to �R(� = TTUV), where TMAX represents the time point 

which maximises the true concentration-time profile.  When the sampling scheme contains 

other observations in the region of TMAX there is potential for neighbouring sampling times 

to produce higher than predicted concentrations due to natural variability.  This is a 

fundamental limitation in the methodology in that more samples around TMAX which 

intuitively should increase confidence leads, actually lead to more bias. In other words, with 

NCA analysis, precisely estimating TMAX comes at the unavoidable cost of biased estimation 

of CMAX.  Model based analysis has an additional advantage in this respect.  Without model 

misspecification issues, maximum likelihood estimates are (asymptotically) unbiased and 

have the property of that increased sampling uniformly increases precision.  Model 

specification issues which is discussed further in the limitations sections.  Given that the 

residual variability in the scenarios was not large (i.e., fixed at 15%), the bias seen here may 

increase with larger residual noise, which may occur in real life.   

. 

Data integration 
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In contrast to non-compartmental methods, the data was analysed in an integrated manner, 

by combining the results from all experimental cohorts.  This is undoubtedly the primary 

driver of the increased accuracy and precision in model-based estimates (30-32).  In fact, we 

envisage further improvement by incorporating pharmacokinetic data from other 

experiments in the same species, which are normally collected during preclinical evaluation 

of the molecule, as for instance during the characterisation of drug metabolism.  Such an 

increase in precision would represent further adherence to the reduction, refinement and 

replacement principle (3 Rs) in ethical animal studies (4).  It should also be noted that the 

possibility of data integration provides the basis for combining safety pharmacology and 

adverse event data, enabling the development of toxicokinetic-toxicodynamic models and 

consequently allowing for the evaluation of exposure-response relationships in a continuous 

manner.  Such models would represent advancements in toxicology, as they provide the 

basis for mechanism-based inferences about unwanted effects, irrespective of their 

incidence or occurrence in the actual experimental protocol (4, 35). 

It is important to realise that the typical point estimates of parameters derived from 

empirical methods to describe drug exposure give an undue measure of certainty, allowing 

for the propagation of uncertainty from estimation to uncertainty in safety thresholds such 

as NOAEL.  Whilst there exist methods for estimating uncertainty in a composite or 

destructive sampling approach (76-78), their adoption in experimental research has not 

been widespread due in part to the requirement of normality assumptions on toxicokinetic 

parameters, and an acceptance in guidelines towards possibly large amounts of imprecision 

(79).   

As demonstrated here, model-based methods allow simulations to be performed in 

conjunction with estimation procedures, enabling the assessment of uncertainty associated 

with a variety of causes such as uninformative study design, large variability and/or 

unknown covariates.  This entails an increase in the quality of the decision-making process 

and ultimately in the interpretation of the estimated safety thresholds (39). 
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Given the success of PKPD modelling to aid in drug development (40-42), some attention 

must be paid to why the field of toxicology has yet to embrace it.  There is sometimes 

scepticism of model based approach from a view they require knowing the model in advance 

(80).  This argumentation is however flawed.  The inference principles used for hypothesis 

generation and characterisation of PKPD relationships relies on the use of statistical criteria 

that are sophisticated enough to allow model identification and its suitability for subsequent 

parameter estimation purposes, irrespective of amounts of data available.  Moreover, it 

should be noted that non-compartmental methods also make implicit assumptions about 

the underlying concentration vs. time profile.  For instance, with a linear-logarithmic analysis 

of AUC, first-order elimination kinetics is assumed.  The suitability of measures of central 

tendency will also depend on the assumed distribution characteristics and on residual 

variability.  These assumptions are often implicit and the validity of these assumptions for 

the dataset at hand cannot be checked during the analysis.   

However, NLME is specifically intended to efficiently process sparse data.  The performance 

of the NLME-based PK exposure estimates in the composite designs is illustrative of this. 

 

Potential limitations 

In the present investigation, the impact of model misspecification in the analysis of general 

toxicity data was not investigated.  For exposure measures which have a corresponding 

estimate based on non-compartmental methods (e.g. AUC and CMAX), the impact is likely to 

be small as long as the model fit to the data is good.  This is because these exposure 

measures are highly dependent on the observations.  Therefore, accurate prediction of the 

observed profiles during model evaluation is likely to result in accurate prediction of these 

exposure variables.  Model misspecification however, may lead to significant bias when 

exposure predictions are made outside the experimental context (i.e. longer timescales or 

different dosing regimens) (44,45) .  This is a particular risk when the pharmacokinetics of 

the drug is nonlinear or shows metabolic saturation.  To mitigate such effects we 
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recommend that model selection criteria take into account not only the ability to describe 

data, but also the physiological relevance of model assumptions.  When model development 

ends in multiple competing models performing similarly with respect to the above model 

selection criteria, clear reporting of such model uncertainty is necessary.  Model averaging 

should be discouraged when predictions arising from different model differ significantly  

(64).  Finally, parameter uncertainty should be incorporated into the predictions of exposure 

to ensure accurate evaluation of risk and potential therapeutic window of the compound.  

In summary, evaluation of safety is paramount for the progression of new molecules into 

humans.  Historically, toxicology experiments have evolved based the assumption that 

experimental findings suffice to demonstrate the absence of presence of risk.  This 

assumption disregards growing evidence of bias and poor precision of the derived measures 

of exposure, which should be avoided if data are subsequently used to define safety margins 

or thresholds.  Whilst the challenges R&D faces to translate toxicity findings from animals to 

humans may remain, the use of an integrated approach to the analysis and interpretation of 

toxicokinetic data will be essential to ensure experimental data is unbiased.  Most 

importantly, it represent further adherence to the 3Rs principle, enabling significant 

reduction in number of animals required for the evaluation of toxicokinetics.  
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Appendix 

The following tables contain all SRME and CV values for all scenarios, cohorts and analysis methods. 

MODEL SAMP LABEL DOSE WEEK 
SRME% : 

MODEL 

CV% : 

MODEL 

SRME% : 

NCA-MEAN 

CV% : 

NCA-

MEAN 

SRME% : 

NCA-

GEOMEAN 

CV% : 

NCA-

GEOMEAN 

1CMT SERIAL 24hr AUC 10 1 0.8066 2.787 3.993 10.74 4.15 9.824 
1CMT SERIAL 24hr AUC 10 4 1.403 2.982 5.107 9.256 4.053  10.26 

1CMT SERIAL 24hr AUC 10 12 0.784 2.822 3.055 9.367 3.948 9.826 

1CMT SERIAL 24hr AUC 30 1 0.8066 2.787 4.565 9.472 4.298 9.344 

1CMT SERIAL 24hr AUC 30 4 1.403 2.982 3.721 9.74 4.934 10.58 

1CMT SERIAL 24hr AUC 30 12 0.784 2.822 3.065 9.873 4.258 10.48 

1CMT SERIAL 24hr AUC 100 1 0.8066 2.787 4.615 9.845 3.538 9.214 

1CMT SERIAL 24hr AUC 100 4 1.403 2.982 3.02 9.474 3.939 8.846 

1CMT SERIAL 24hr AUC 100 12 0.784 2.822 4.038 9.928 3.59 10.71 

1CMT COMPOSITE 24hr AUC 10 1 0.4114 4.651 5.245 13.41 4.815 12.93 

1CMT COMPOSITE 24hr AUC 10 4 0.6365 4.324 5.634 12.73 3.838 13.51 

1CMT COMPOSITE 24hr AUC 10 12 1.115 4.373 3.815 13.17 4.564 12.98 

1CMT COMPOSITE 24hr AUC 30 1 0.4114 4.651 6.231 12.56 4.027 13.28 

1CMT COMPOSITE 24hr AUC 30 4 0.6365 4.324 5.212 12.68 4.35 12.98 

1CMT COMPOSITE 24hr AUC 30 12 1.115 4.373 3.564 13.24 4.632 12.19 

1CMT COMPOSITE 24hr AUC 100 1 0.4114 4.651 5.29 12.85 4.466 13.68 

1CMT COMPOSITE 24hr AUC 100 4 0.6365 4.324 4.209 12.18 3.833 13.03 

1CMT COMPOSITE 24hr AUC 100 12 1.115 4.373 4.564 12.71 3.903 13.63 
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MODEL SAMP LABEL DOSE WEEK 
SRME% : 

MODEL 
CV% : 

MODEL 

SRME% : 

NCA-

MEAN 

CV% : 

NCA-

MEAN 

SRME% :  

NCA-

GEOMEAN 

CV% :  

NCA -GEOMEAN 

1CMT+MM SERIAL 24hr AUC 10 1 3.454 3.152 4.042 9.245 4.066 9.429 
1CMT+MM SERIAL 24hr AUC 10 4 3.177 3.255 3.784 9.352 5.347 8.897 

1CMT+MM SERIAL 24hr AUC 10 12 3.457 3.167 4.354 9.667 3.889 9.966 

1CMT+MM SERIAL 24hr AUC 30 1 3.165 3.309 3.883 10.35 3.277 9.953 

1CMT+MM SERIAL 24hr AUC 30 4 3.416 3.281 4.477 10.15 3.199 10.62 

1CMT+MM SERIAL 24hr AUC 30 12 3.572 3.226 3.282 11.27 4.358 9.756 

1CMT+MM SERIAL 24hr AUC 100 1 2.993 3.069 4.03 9.883 3.608 10.66 

1CMT+MM SERIAL 24hr AUC 100 4 3.369 3.37 4.945 9.871 3.363 9.435 

1CMT+MM SERIAL 24hr AUC 100 12 3.459 3.024 3.657 9.409 5.191 9.725 

1CMT+MM COMPOSITE 24hr AUC 10 1 3.176 4.932 3.502 12.07 5.057 13.09 

1CMT+MM COMPOSITE 24hr AUC 10 4 3.192 4.768 3.777 12.38 4.02 12.54 

1CMT+MM COMPOSITE 24hr AUC 10 12 3.399 4.88 3.864 13.15 4.442 12.16 

1CMT+MM COMPOSITE 24hr AUC 30 1 4.214 5.316 3.68 13.83 3.438 12.73 

1CMT+MM COMPOSITE 24hr AUC 30 4 3.262 5.196 5.853 12.8 4.427 12.42 

1CMT+MM COMPOSITE 24hr AUC 30 12 3.496 5.407 3.888 13.18 7.559 13.46 

1CMT+MM COMPOSITE 24hr AUC 100 1 3.868 5.214 4.33 12.11 3.738 13.41 

1CMT+MM COMPOSITE 24hr AUC 100 4 3.502 4.82 5.149 13.12 2.725 13.61 

1CMT+MM COMPOSITE 24hr AUC 100 12 3.312 4.733 3.812 12.58 5.262 12.38 
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MODEL SAMP LABEL DOSE WEEK 
SRME% : 

MODEL 

CV% : 

MODEL 

SRME% : 

NCA-

MEAN 

CV% : 

NCA-

MEAN 

SRME% : 

NCA-

GEOMEAN 

CV% :  

NCA-

GEOMEAN 

2CMT SERIAL 24hr AUC 10 1 0.5484 2.819 3.009 10.21 4.508 9.854 
2CMT SERIAL 24hr AUC 10 4 0.8587 3.256 4.84 10.01 5.346 9.577 

2CMT SERIAL 24hr AUC 10 12 0.5528 2.943 3.429 9.583 3.767 10.48 

2CMT SERIAL 24hr AUC 30 1 0.5484 2.819 4.379 10.31 3.721 9.561 

2CMT SERIAL 24hr AUC 30 4 0.8587 3.256 3.079 10.8 3.865 9.479 

2CMT SERIAL 24hr AUC 30 12 0.5528 2.943 3.966 10.32 4.311 9.826 

2CMT SERIAL 24hr AUC 100 1 0.5484 2.819 4.732 10.38 3.649 10.28 

2CMT SERIAL 24hr AUC 100 4 0.8587 3.256 2.261 9.635 3.11 9.859 

2CMT SERIAL 24hr AUC 100 12 0.5528 2.943 4.047 10.43 3.432 9.983 

2CMT COMPOSITE 24hr AUC 10 1 0.6988 4.286 2.96 13.31 4.885 13.99 

2CMT COMPOSITE 24hr AUC 10 4 0.8458 4.847 5.062 12.59 6.413 12.44 

2CMT COMPOSITE 24hr AUC 10 12 0.5273 4.514 5.177 12.45 4.647 13.75 

2CMT COMPOSITE 24hr AUC 30 1 0.6988 4.286 4.258 13.9 4.463 12.16 

2CMT COMPOSITE 24hr AUC 30 4 0.8458 4.847 3.757 12.9 2.889 14.08 

2CMT COMPOSITE 24hr AUC 30 12 0.5273 4.514 4.381 12.81 4.018 12.59 

2CMT COMPOSITE 24hr AUC 100 1 0.6988 4.286 5.057 13.23 3.703 13.07 

2CMT COMPOSITE 24hr AUC 100 4 0.8458 4.847 3.908 14.25 6.301 13.07 

2CMT COMPOSITE 24hr AUC 100 12 0.5273 4.514 4.586 12.94 4.2 12.94 
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MODEL SAMP LABEL DOSE WEEK 
SRME% : 

MODEL 

CV% : 

MODEL 

SRME% : 

NCA-

MEAN 

CV% : 

NCA-

MEAN 

SRME% : 

NCA-

GEOMEAN 

CV% :  

NCA-

GEOMEAN 

1CMT SERIAL 24hr CMAX 10 1 0.7306 2.899 11.54 9.945 10.8 9.747 
1CMT SERIAL 24hr CMAX 10 4 0.5798 2.893 10.74 9.382 11.41 10.37 

1CMT SERIAL 24hr CMAX 10 12 0.8339 3.045 11.58 10.51 10.32 9.832 

1CMT SERIAL 24hr CMAX 30 1 0.7306 2.899 11.72 8.873 11.42 9.831 

1CMT SERIAL 24hr CMAX 30 4 0.5798 2.893 10.6 9.846 12.38 10.74 

1CMT SERIAL 24hr CMAX 30 12 0.8339 3.045 9.94 10.25 11.82 10.21 

1CMT SERIAL 24hr CMAX 100 1 0.7306 2.899 11.92 8.828 11.23 10.8 

1CMT SERIAL 24hr CMAX 100 4 0.5798 2.893 11.55 10.67 12.12 9.98 

1CMT SERIAL 24hr CMAX 100 12 0.8339 3.045 12.1 10.27 11.61 9.536 

1CMT COMPOSITE 24hr CMAX 10 1 0.6322 4.557 10.61 12.68 11.85 12.11 

1CMT COMPOSITE 24hr CMAX 10 4 0.647 4.659 9.818 12.3 11.59 14.16 

1CMT COMPOSITE 24hr CMAX 10 12 0.3693 4.73 9.869 13.41 10.37 13.76 

1CMT COMPOSITE 24hr CMAX 30 1 0.6322 4.557 12.7 12.29 10.56 13.33 

1CMT COMPOSITE 24hr CMAX 30 4 0.647 4.659 12.34 12.77 11.76 13.51 

1CMT COMPOSITE 24hr CMAX 30 12 0.3693 4.73 12.21 13.67 13.15 13.48 

1CMT COMPOSITE 24hr CMAX 100 1 0.6322 4.557 12.12 12 10.8 12.03 

1CMT COMPOSITE 24hr CMAX 100 4 0.647 4.659 11.19 13.89 12.08 12.21 

1CMT COMPOSITE 24hr CMAX 100 12 0.3693 4.73 9.968 13.04 11.67 12.97 
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MODEL SAMP LABEL DOSE WEEK 
SRME% : 

MODEL 

CV% : 

MODEL 

SRME% : 

NCA-MEAN 

CV% : NCA-

MEAN 

SRME% : 

NCA-

GEOMEAN 

CV% :  

NCA-

GEOMEAN 

1CMT+MM SERIAL 24hr 10 4 3.916 3.461 7.387 13.15 14.32 15.12 
1CMT+MM SERIAL 24hr 10 12 1.814 2.586 15.26 6.701 11.92 8.455 

1CMT+MM SERIAL 24hr 30 1 2.997 2.533 12.89 9.863 6.667 7.948 

1CMT+MM SERIAL 24hr 30 4 2.195 3.013 11.01 12.71 13.32 8.925 

1CMT+MM SERIAL 24hr 30 12 2.997 4.675 12.79 7.512 11.2 9.27 

1CMT+MM SERIAL 24hr 100 1 2.539 2.99 9.542 6.405 4.643 10.42 

1CMT+MM SERIAL 24hr 100 4 2.236 4.535 13.72 9.105 13.44 11.59 

1CMT+MM SERIAL 24hr 100 12 3.108 3.104 8.219 10.94 16.4 9.72 

1CMT+MM COMPOSITE 24hr 10 1 4.193 3.414 22.85 17.18 12.08 13.98 

1CMT+MM COMPOSITE 24hr 10 4 3.428 6.017 13.7 14.06 13.61 14.29 

1CMT+MM COMPOSITE 24hr 10 12 3.076 4.608 14.43 17.99 13.83 15.88 

1CMT+MM COMPOSITE 24hr 30 1 3.89 4.507 16.05 12.46 17.38 18.27 

1CMT+MM COMPOSITE 24hr 30 4 2.88 3.301 17.05 12 17.62 10.72 

1CMT+MM COMPOSITE 24hr 30 12 4.101 7.039 12.73 17.45 14.67 10.93 

1CMT+MM COMPOSITE 24hr 100 1 5.108 3.725 15.38 10.59 14.11 16.02 

1CMT+MM COMPOSITE 24hr 100 4 0.8694 3.595 10.94 9.899 10.14 8.477 

1CMT+MM COMPOSITE 24hr 100 12 2.504 6.026 8.776 13.82 13.18 17.37 
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MODEL SAMP LABEL DOSE WEEK 
SRME% : 

MODEL 

CV% : 

MODEL 

SRME% : 

NCA-

MEAN 

CV% : 

NCA-

MEAN 

SRME% : 

NCA-

GEOMEAN 

CV% :  

NCA-

GEOMEAN 

2CMT SERIAL 24hr CMAX 10 1 0.7472 3.015 10.9 10.33 12.4 9.994 
2CMT SERIAL 24hr CMAX 10 4 0.8701 2.938 11.06 10.1 11.89 9.653 

2CMT SERIAL 24hr CMAX 10 12 0.6139 2.959 11.32 10.4 10.68 10.7 

2CMT SERIAL 24hr CMAX 30 1 0.7472 3.015 11.35 9.376 10.76 10.76 

2CMT SERIAL 24hr CMAX 30 4 0.8701 2.938 11.19 10.82 10.64 9.939 

2CMT SERIAL 24hr CMAX 30 12 0.6139 2.959 11.19 9.61 11.63 9.976 

2CMT SERIAL 24hr CMAX 100 1 0.7472 3.015 10.86 8.862 11.59 9.721 

2CMT SERIAL 24hr CMAX 100 4 0.8701 2.938 11.34 9.274 10.92 9.915 

2CMT SERIAL 24hr CMAX 100 12 0.6139 2.959 10.53 10.36 10.95 10.01 

2CMT COMPOSITE 24hr CMAX 10 1 0.9441 4.693 10.16 14.9 9.881 12.51 

2CMT COMPOSITE 24hr CMAX 10 4 0.7777 4.718 10.49 12.52 11.22 12.73 

2CMT COMPOSITE 24hr CMAX 10 12 0.6393 5.002 11.36 14.06 11.31 13.68 

2CMT COMPOSITE 24hr CMAX 30 1 0.9441 4.693 11.82 14.28 13.13 12.84 

2CMT COMPOSITE 24hr CMAX 30 4 0.7777 4.718 12.67 12.09 12.69 12.89 

2CMT COMPOSITE 24hr CMAX 30 12 0.6393 5.002 11.43 13.28 11.23 12.88 

2CMT COMPOSITE 24hr CMAX 100 1 0.9441 4.693 11.76 11.98 11.6 14.2 

2CMT COMPOSITE 24hr CMAX 100 4 0.7777 4.718 12.52 13.27 12.34 11.92 

2CMT COMPOSITE 24hr CMAX 100 12 0.6393 5.002 10.43 13.29 12.31 13.51 
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MODEL SAMP LABEL DOSE WEEK 
SRME% : 

MODEL 

CV% : 

MODEL 

SRME% : 

NCA-MEAN 

CV% : NCA-

MEAN 

SRME% : 

NCA-

GEOMEAN 

CV% :  

NCA-

GEOMEAN 

1CMT SERIAL 24hr TAT 10 1 1.104 2.855 3.516 10.72 3.06 9.718 
1CMT SERIAL 24hr TAT 10 4 0.9731 2.95 3.725 9.746 4.782 9.684 

1CMT SERIAL 24hr TAT 10 12 0.7183 2.738 3.945 9.307 3.261 10.24 

1CMT SERIAL 24hr TAT 30 1 1.104 2.855 3.846 10.61 3.263 9.204 

1CMT SERIAL 24hr TAT 30 4 0.9731 2.95 3.112 10.22 4.793 10.36 

1CMT SERIAL 24hr TAT 30 12 0.7183 2.738 3.944 10.07 4.197 9.843 

1CMT SERIAL 24hr TAT 100 1 1.104 2.855 5.182 10.92 4.328 9.798 

1CMT SERIAL 24hr TAT 100 4 0.9731 2.95 4.906 10.05 3.802 10.18 

1CMT SERIAL 24hr TAT 100 12 0.7183 2.738 3.106 10.58 4.077 9.474 

1CMT COMPOSITE 24hr TAT 10 1 0.1905 4.511 3.011 12.53 3.635 12.95 

1CMT COMPOSITE 24hr TAT 10 4 1.022 4.251 4.875 12.75 5.447 12.87 

1CMT COMPOSITE 24hr TAT 10 12 0.1963 4.784 6.422 12.15 4.639 12.27 

1CMT COMPOSITE 24hr TAT 30 1 0.1905 4.511 2.807 13.83 4.701 13.07 

1CMT COMPOSITE 24hr TAT 30 4 1.022 4.251 6.049 12.4 2.792 13.49 

1CMT COMPOSITE 24hr TAT 30 12 0.1963 4.784 3.696 11.97 4.605 14.31 

1CMT COMPOSITE 24hr TAT 100 1 0.1905 4.511 3.725 11.97 3.86 12.92 

1CMT COMPOSITE 24hr TAT 100 4 1.022 4.251 4.092 13.38 5.199 13.95 

1CMT COMPOSITE 24hr TAT 100 12 0.1963 4.784 2.898 13.19 3.727 12.68 
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MODEL SAMP LABEL DOSE WEEK 
SRME% : 

MODEL 

CV% : 

MODEL 

SRME% : 

NCA-MEAN 

CV% : 

NCA-

MEAN 

SRME% : 

NCA-

GEOMEAN 

CV% :  

NCA-

GEOMEAN 

1CMT+MM SERIAL 24hr TAT 10 1 3.51 2.891 3.178 10.52 5.906 9.741 
1CMT+MM SERIAL 24hr TAT 10 4 3.492 3.447 4.244 10.57 4.249 10.57 

1CMT+MM SERIAL 24hr TAT 10 12 2.956 3.273 3.632 10.48 4.573 10.21 

1CMT+MM SERIAL 24hr TAT 30 1 3.473 3.036 2.326 10.07 4.185 9.986 

1CMT+MM SERIAL 24hr TAT 30 4 3.747 3.168 4.568 10.9 3.938 10.14 

1CMT+MM SERIAL 24hr TAT 30 12 2.577 3.079 3.717 9.856 2.89 10.71 

1CMT+MM SERIAL 24hr TAT 100 1 2.873 3.179 3.713 10.02 4.367 9.592 

1CMT+MM SERIAL 24hr TAT 100 4 3.447 2.947 3.826 10.31 4.132 9.726 

1CMT+MM SERIAL 24hr TAT 100 12 3.263 3.185 3.388 10.08 3.888 10.4 

1CMT+MM COMPOSITE 24hr TAT 10 1 3.786 4.678 4.308 13.54 2.909 11.91 

1CMT+MM COMPOSITE 24hr TAT 10 4 3.544 4.288 5.699 13.18 4.995 12.28 

1CMT+MM COMPOSITE 24hr TAT 10 12 3.001 4.644 4.643 13.52 3.367 11.96 

1CMT+MM COMPOSITE 24hr TAT 30 1 3.472 4.949 2.865 14.24 5.8 12.81 

1CMT+MM COMPOSITE 24hr TAT 30 4 3.562 4.826 4.148 13.6 2.608 12.83 

1CMT+MM COMPOSITE 24hr TAT 30 12 3.763 5.2 5.31 13.39 4.779 13.14 

1CMT+MM COMPOSITE 24hr TAT 100 1 3.168 4.877 3.489 14.78 5.073 11.72 

1CMT+MM COMPOSITE 24hr TAT 100 4 3.176 5.163 3.82 13.59 5.091 13.09 

1CMT+MM COMPOSITE 24hr TAT 100 12 3.286 5.171 3.485 13.09 4.549 12.53 
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MODEL SAMP LABEL DOSE WEEK 
SRME% : 

MODEL 

CV% : 

MODEL 

SRME% : 

NCA-MEAN 

CV% : 

NCA-

MEAN 

SRME% : 

NCA-

GEOMEAN 

CV% :  

NCA-

GEOMEAN 

2CMT SERIAL 24hr TAT 10 1 0.7214 3.072 5.377 10.74 4.592 10.37 
2CMT SERIAL 24hr TAT 10 4 0.5198 2.962 4.408 10.03 4.979 9.128 

2CMT SERIAL 24hr TAT 10 12 0.7113 2.8 2.965 10.73 5.301 10.43 

2CMT SERIAL 24hr TAT 30 1 0.7214 3.072 3.161 9.763 3.817 9.643 

2CMT SERIAL 24hr TAT 30 4 0.5198 2.962 3.984 9.413 4.117 9.773 

2CMT SERIAL 24hr TAT 30 12 0.7113 2.8 3.268 9.713 4.137 9.669 

2CMT SERIAL 24hr TAT 100 1 0.7214 3.072 3.36 10.37 4.292 10.07 

2CMT SERIAL 24hr TAT 100 4 0.5198 2.962 5.182 9.81 2.393 10.03 

2CMT SERIAL 24hr TAT 100 12 0.7113 2.8 3.436 10.14 3.129 9.555 

2CMT COMPOSITE 24hr TAT 10 1 0.63 4.583 4.218 11.94 3.532 13.95 

2CMT COMPOSITE 24hr TAT 10 4 0.9004 4.939 4.626 14.21 3.189 12.9 

2CMT COMPOSITE 24hr TAT 10 12 1.214 4.747 3.387 14.45 4.046 12.71 

2CMT COMPOSITE 24hr TAT 30 1 0.63 4.583 3.724 12.65 4.101 12.58 

2CMT COMPOSITE 24hr TAT 30 4 0.9004 4.939 5.745 12.5 5.615 13.23 

2CMT COMPOSITE 24hr TAT 30 12 1.214 4.747 4.28 12.28 4.449 13.19 

2CMT COMPOSITE 24hr TAT 100 1 0.63 4.583 3.513 12.72 5.004 11.98 

2CMT COMPOSITE 24hr TAT 100 4 0.9004 4.939 4.212 11.98 4.553 12.29 

2CMT COMPOSITE 24hr TAT 100 12 1.214 4.747 2.435 13.04 5.184 14.3 
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MODEL SAMP LABEL DOSE WEEK 
SRME% : 

MODEL 

CV% : 

MODEL 

1CMT SERIAL 6 mth CMAX 10 1 0.3527 2.86 
1CMT SERIAL 6 mth CMAX 10 4 0.4266 3.159 

1CMT SERIAL 6 mth CMAX 10 12 0.5896 3.19 

1CMT SERIAL 6 mth CMAX 30 1 0.3527 2.86 

1CMT SERIAL 6 mth CMAX 30 4 0.4266 3.159 

1CMT SERIAL 6 mth CMAX 30 12 0.5896 3.19 

1CMT SERIAL 6 mth CMAX 100 1 0.3527 2.86 

1CMT SERIAL 6 mth CMAX 100 4 0.4266 3.159 

1CMT SERIAL 6 mth CMAX 100 12 0.5896 3.19 

1CMT SERIAL 6 mth cum.AUC 10 1 0.6984 2.862 

1CMT SERIAL 6 mth cum.AUC 10 4 0.7434 3.223 

1CMT SERIAL 6 mth cum.AUC 10 12 0.8577 3.317 

1CMT SERIAL 6 mth cum.AUC 30 1 0.6984 2.862 

1CMT SERIAL 6 mth cum.AUC 30 4 0.7434 3.223 

1CMT SERIAL 6 mth cum.AUC 30 12 0.8577 3.317 

1CMT SERIAL 6 mth cum.AUC 100 1 0.6984 2.862 

1CMT SERIAL 6 mth cum.AUC 100 4 0.7434 3.223 

1CMT SERIAL 6 mth cum.AUC 100 12 0.8577 3.317 

1CMT COMPOSITE 6 mth CMAX 10 1 1.031 4.775 

1CMT COMPOSITE 6 mth CMAX 10 4 0.8082 4.768 

1CMT COMPOSITE 6 mth CMAX 10 12 0.7882 4.773 

1CMT COMPOSITE 6 mth CMAX 30 1 1.031 4.775 

1CMT COMPOSITE 6 mth CMAX 30 4 0.8082 4.768 

1CMT COMPOSITE 6 mth CMAX 30 12 0.7882 4.773 

1CMT COMPOSITE 6 mth CMAX 100 1 1.031 4.775 

1CMT COMPOSITE 6 mth CMAX 100 4 0.8082 4.768 

1CMT COMPOSITE 6 mth CMAX 100 12 0.7882 4.773 

1CMT COMPOSITE 6 mth cum.AUC 10 1 0.1272 4.794 

1CMT COMPOSITE 6 mth cum.AUC 10 4 0.808 4.862 

1CMT COMPOSITE 6 mth cum.AUC 10 12 0.7279 4.937 

1CMT COMPOSITE 6 mth cum.AUC 30 1 0.1272 4.794 

1CMT COMPOSITE 6 mth cum.AUC 30 4 0.808 4.862 

1CMT COMPOSITE 6 mth cum.AUC 30 12 0.7279 4.937 

1CMT COMPOSITE 6 mth cum.AUC 100 1 0.1272 4.794 

1CMT COMPOSITE 6 mth cum.AUC 100 4 0.808 4.862 

1CMT COMPOSITE 6 mth cum.AUC 100 12 0.7279 4.937 
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MODEL SAMP LABEL DOSE WEEK 
SRME% : 

MODEL 

CV% : 

MODEL 

1CMT+MM SERIAL 6 mth CMAX 10 1 12.84 2.748 
1CMT+MM SERIAL 6 mth CMAX 10 4 12.57 2.88 

1CMT+MM SERIAL 6 mth CMAX 10 12 13.02 3.121 

1CMT+MM SERIAL 6 mth CMAX 30 1 12.78 3.111 

1CMT+MM SERIAL 6 mth CMAX 30 4 13.11 3.019 

1CMT+MM SERIAL 6 mth CMAX 30 12 12.6 3.09 

1CMT+MM SERIAL 6 mth CMAX 100 1 12.62 3.252 

1CMT+MM SERIAL 6 mth CMAX 100 4 13.14 2.978 

1CMT+MM SERIAL 6 mth CMAX 100 12 13.02 3.437 

1CMT+MM SERIAL 6 mth cum.AUC 10 1 3.455 3.015 

1CMT+MM SERIAL 6 mth cum.AUC 10 4 3.266 3.138 

1CMT+MM SERIAL 6 mth cum.AUC 10 12 3.178 3.18 

1CMT+MM SERIAL 6 mth cum.AUC 30 1 3.387 3.581 

1CMT+MM SERIAL 6 mth cum.AUC 30 4 3.396 3.254 

1CMT+MM SERIAL 6 mth cum.AUC 30 12 2.9 3.18 

1CMT+MM SERIAL 6 mth cum.AUC 100 1 3.306 3.238 

1CMT+MM SERIAL 6 mth cum.AUC 100 4 3.021 3.041 

1CMT+MM SERIAL 6 mth cum.AUC 100 12 2.919 3.32 

1CMT+MM COMPOSITE 6 mth CMAX 10 1 12.83 5.214 

1CMT+MM COMPOSITE 6 mth CMAX 10 4 13.02 5.138 

1CMT+MM COMPOSITE 6 mth CMAX 10 12 12.93 5.137 

1CMT+MM COMPOSITE 6 mth CMAX 30 1 12.9 5.171 

1CMT+MM COMPOSITE 6 mth CMAX 30 4 13.25 4.735 

1CMT+MM COMPOSITE 6 mth CMAX 30 12 12.7 5.002 

1CMT+MM COMPOSITE 6 mth CMAX 100 1 12.74 5.135 

1CMT+MM COMPOSITE 6 mth CMAX 100 4 12.55 4.757 

1CMT+MM COMPOSITE 6 mth CMAX 100 12 12.34 4.913 

1CMT+MM COMPOSITE 6 mth cum.AUC 10 1 3.005 4.78 

1CMT+MM COMPOSITE 6 mth cum.AUC 10 4 3.895 4.873 

1CMT+MM COMPOSITE 6 mth cum.AUC 10 12 3.81 5.018 

1CMT+MM COMPOSITE 6 mth cum.AUC 30 1 3.572 4.78 

1CMT+MM COMPOSITE 6 mth cum.AUC 30 4 3.798 5.084 

1CMT+MM COMPOSITE 6 mth cum.AUC 30 12 3.044 4.721 

1CMT+MM COMPOSITE 6 mth cum.AUC 100 1 3.439 4.822 

1CMT+MM COMPOSITE 6 mth cum.AUC 100 4 3.656 5.019 

1CMT+MM COMPOSITE 6 mth cum.AUC 100 12 3.076 5.491 
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MODEL SAMP LABEL DOSE WEEK 
SRME% : 

MODEL 

CV% : 

MODEL 

2CMT SERIAL 6 mth CMAX 10 1 0.6298 2.803 
2CMT SERIAL 6 mth CMAX 10 4 1.158 3.014 

2CMT SERIAL 6 mth CMAX 10 12 0.6211 3.021 

2CMT SERIAL 6 mth CMAX 30 1 0.6298 2.803 

2CMT SERIAL 6 mth CMAX 30 4 1.158 3.014 

2CMT SERIAL 6 mth CMAX 30 12 0.6211 3.021 

2CMT SERIAL 6 mth CMAX 100 1 0.6298 2.803 

2CMT SERIAL 6 mth CMAX 100 4 1.158 3.014 

2CMT SERIAL 6 mth CMAX 100 12 0.6211 3.021 

2CMT SERIAL 6 mth cum.AUC 10 1 0.3169 2.891 

2CMT SERIAL 6 mth cum.AUC 10 4 0.811 3.139 

2CMT SERIAL 6 mth cum.AUC 10 12 0.6379 2.703 

2CMT SERIAL 6 mth cum.AUC 30 1 0.3169 2.891 

2CMT SERIAL 6 mth cum.AUC 30 4 0.811 3.139 

2CMT SERIAL 6 mth cum.AUC 30 12 0.6379 2.703 

2CMT SERIAL 6 mth cum.AUC 100 1 0.3169 2.891 

2CMT SERIAL 6 mth cum.AUC 100 4 0.811 3.139 

2CMT SERIAL 6 mth cum.AUC 100 12 0.6379 2.703 

2CMT COMPOSITE 6 mth CMAX 10 1 0.611 4.481 

2CMT COMPOSITE 6 mth CMAX 10 4 0.4159 4.665 

2CMT COMPOSITE 6 mth CMAX 10 12 0.8378 4.972 

2CMT COMPOSITE 6 mth CMAX 30 1 0.611 4.481 

2CMT COMPOSITE 6 mth CMAX 30 4 0.4159 4.665 

2CMT COMPOSITE 6 mth CMAX 30 12 0.8378 4.972 

2CMT COMPOSITE 6 mth CMAX 100 1 0.611 4.481 

2CMT COMPOSITE 6 mth CMAX 100 4 0.4159 4.665 

2CMT COMPOSITE 6 mth CMAX 100 12 0.8378 4.972 

2CMT COMPOSITE 6 mth cum.AUC 10 1 0.9684 4.76 

2CMT COMPOSITE 6 mth cum.AUC 10 4 1.059 4.849 

2CMT COMPOSITE 6 mth cum.AUC 10 12 0.6126 4.281 

2CMT COMPOSITE 6 mth cum.AUC 30 1 0.9684 4.76 

2CMT COMPOSITE 6 mth cum.AUC 30 4 1.059 4.849 

2CMT COMPOSITE 6 mth cum.AUC 30 12 0.6126 4.281 

2CMT COMPOSITE 6 mth cum.AUC 100 1 0.9684 4.76 

2CMT COMPOSITE 6 mth cum.AUC 100 4 1.059 4.849 

2CMT COMPOSITE 6 mth cum.AUC 100 12 0.6126 4.281 
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Abstract 

Purpose: In toxicology experiments measures of drug exposure are calculated using non-

compartmental methods, despite evidence that population pharmacokinetic (PK) modelling 

can provide accurate estimates of the parameters of interest.  Here we explore the utility of 

optimised protocol design and PK modelling on the precision of exposure measures for a 

variety of hypothetical compounds. 

Methods: Optimal design concepts were applied to a range of hypothetical drugs with 

different pharmacokinetic profiles.  Protocol designs were optimised both in terms of 

sampling schedule and number of animals per group.  The precision of secondary 

parameters, namely AUC and CMAX was used as target for optimization purposes.  Adequate 

precision levels were defined as expected CV% < 40%.  Absolute changes in expected 

precision of less than 10% were deemed acceptable. 

Results: Independent of differences in drug disposition, our results show that the number of 

animals used in experimental protocols can be reduced by 2/3 with acceptable loss of 

precision in AUC and CMAX estimates.  Even though some PK parameters were found to be 

imprecisely estimated when drug disposition involves more than one compartment, this 

does not significantly affect the secondary parameters describing systemic exposure, which 

showed adequate precision (all CVs  <36%). 

Conclusions: The accuracy and precision of measures of systemic exposure such as AUC and 

CMAX are essential to ensure appropriate interpretation of experimental findings and make 

inferences about safety risk in humans.  However, our analysis reveals that for composite 

methods, which are commonly used in toxicology protocols, sample size does not determine 

the precision of the pharmacokinetic parameters of interest.  Rather, it is the sampling 

scheme and dose levels which matter. In contrast to current practice, precise calculation of 

safety thresholds can be obtained with a considerable reduction in the number of animals 

used in a typical protocol.  
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Introduction 

 

Despite the evidence for important limitations in the assessment of non-clinical safety and 

toxicology, experimental protocols and data analysis have not advanced in the same way risk 

management concepts have evolved over the last decade (81). Drug exposure remains a 

proxy for risk even when other markers of safety and toxicity might be better predictors of 

adverse drug reactions (5). In fact, the establishment of safe exposure levels prior to first 

time in human studies is still one of the most important milestones in drug development 

(6,7).  Yet, the reliability of these estimates depends on the quality, accuracy and precision 

of the data obtained from preclinical toxicology experiments.  Even though statistical 

considerations are described in current guidelines, these methodological aspects appear to 

remain beyond the scope of the scientific debate on the relevance of safety thresholds.  

Undoubtedly, prediction of safety thresholds is fraught with various challenges from a 

scientific, statistical and practical perspective.  As shown in Table 1, strengths and 

weaknesses exist for the different methods currently used for the assessment of safe 

exposure, whether based on thresholds or not (8).  These challenges are often compounded 

by the restrictive nature of regulatory guidelines for the evaluation of safety pharmacology 

and toxicity.  Typically, experimental protocols for general toxicity used for defining safe 

exposure ranges in dose escalation (i.e., first-time-in-humans) studies rely on sparse 

sampling of pharmacokinetic data and other relevant safety measures.  Samples are 

collected according to a pre-defined sampling matrix with a fixed number of animals per 

time point.  Measures of drug exposure are then derived by naive pooling of the data to 

generate using composite parameters such as AUC and CMAX. Subsequently, these 

parameters are used to establish the no-adverse-event-level (NOAEL), which determines the 

maximum allowed exposure during dose escalation in clinical trials (82). 
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Table 1 Safety thresholds and prediction of risk in humans.  Reprinted with permission from Edler et 

al. (7).  

 

 Strengths Limitations and Weakness 

SAR and TTC 

• Avoids unnecessary animal testing • Assumes that structure predicts toxicity 

• Depends on current exposure estimates 

for the population 

Threshold 

• Is simple to apply and readily 

understood 

• Assumes the existence of a threshold 

• The NOAEL does not exclude biologically 

significant effects below the sensitivity 

of the test 

• The value of the NOAEL depends on 

experimental conditions such as group 

size, sensitivity of measurement of the 

adverse effect, and dose spacing. 

• Does not make full use of the dose-

response information 

• Uses default UFs 

CSAF 

modelling 

• Chemical specific data can be 

incorporated to reduce 

uncertainty 

• Depends on the validity of the 

subdivision of the 10-fold factors 

• Is a data intensive method 

Non-

threshold 

• Linear extrapolation is simple to 

apply 

• Linear extrapolation is thought to be 

highly conservative. 

• LMS cannot be validated as a model for 

low doses and extrapolation is model 

dependent 

• Differing balances between reactivity 

and repair between low and high doses 

are not accommodated. 

BMD 

• Makes full use of the dose-

response data 

• Allows confidence limits for point 

estimates 

• An optimal experimental design 

may allow reduction of the 

number of animals tested (does 

not require a large number of 

• Obtaining consensus defining a 

benchmark response level for the 

adverse effect (e.g. 5 or 10%) is difficult 

• Is not applicable to studies with few 

dose groups 
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animals per group) 

Probabilistic 

RA 

• Uncertainties associated with all 

aspects of the quantitative 

methods of the RA process can be 

taken into account 

• Appropriate chemical specific 

information can be incorporated 

to reduce uncertainty 

• Provides effect estimates at actual 

exposure levels 

• Requires use of default distributions in 

most cases 

Categorical 

regression 

• Takes all studies into account and 

not only the most sensitive one 

• Allows the prediction of a severity 

effect category at a particular 

dose (e.g. above ADI) 

• Requires toxicological judgement for the 

categorisation. 

• The interpretation of fitted model 

(different endpoints, observer variation 

etc.) is difficult 

PBTK 

• Is able to model the time course 

of the amount of the active 

compound at the target site 

• Is possible for any species and for 

different exposure (e.g. route to 

route extrapolation) and lifetime 

conditions 

• Allows extrapolation from animal 

to human without having to have 

human exposure data 

• Allows target organ dose-

response relationships to be used 

for low-dose extrapolation 

• Is a data intensive method 

• Does not address the dynamics 
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Given the importance to explore pharmacologically relevant exposure levels in humans, it 

should be clear that the accuracy of such estimates can become a critical factor during the 

dose escalation.  To date, current guidelines do not describe the implications of variability or 

bias in these estimates. Yet, the NOAEL is often presented as point estimates to describe the 

population (22).  This ignores variability which can be decomposed into two parts; variability 

associated with estimation methods and biological variation in pharmacokinetics which 

arises from inter- and intra-individual differences.  Most importantly the exposure estimates 

from composite measures such as AUC do not allow accurate inferences about the 

underlying pharmacokinetic processes and individual concentration-effect relationships. 

In a previous investigation we have shown that lack of precision exists in exposure 

estimates derived from the empirical methods currently used for the estimation of 

toxicokinetic (Sahota et al, unpublished results).  One of the main problems is that drug 

exposure levels observed in satellite animals do not necessarily mirror those assigned to the 

primary treatment group, in which safety pharmacology and toxicity are evaluated.  

Evidence form long-standing pharmacokinetic research in pre-clinical species clearly shows 

that such an approach ignores important differences that may exist between the two 

experimental groups (11, 12).  It is equivalent to assuming that all animals have the same 

exposure and variability in exposure, i.e., that the underlying physiological processes do not 

vary between animals.  By contrast, the use of a model-based approach enables one to 

incorporate prior knowledge and additional data from other experiments into the analysis, 

providing accurate estimates of between- and within-subject variability.  This information is 

essential to ensure a more quantitative, unbiased evaluation of safety pharmacology and 

toxicology findings. 

Arguably, one should not consider only the implications of the statistical method for the 

analysis and interpretation of safety thresholds, but also question whether experimental 

protocols are informative enough to allow accurate estimation of the parameters of interest. 

In this context, there has been an increase in the awareness about the relevance of 

optimality concepts for the optimisation and selection of suitable protocol designs for the 
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evaluation of pharmacokinetic data in conjunction with non-linear mixed-effects modelling.  

The statistical method was first proposed by Fedorov and later adopted into the PKPD field 

(83).  The approach enables the prospective prediction of parameter precision in the 

protocol development phase using the expected fisher information matrix (FIM).  Variations 

or adaptations to the original methods have been introduced, which have enable further use 

of optimality concepts in experimental protocols involving different types of continuous, 

repeated measurements (84,85).  In addition to enhancing the informative value of 

experimental protocols, the use of optimal design has proven to be an opportunity for 

reduction in total sample size and consequently in the number of animals required for an 

experiment (86).  Of particular relevance for the evaluation of safety protocols is the 

possibility of building robust designs to prior uncertainty in pharmacokinetic parameters.  

Model uncertainty can be explored via sensitivity analysis or by of applying ED-optimality 

which assumes a prior distribution around the parameters of interest (87). 

In the current investigation, simulations are used to illustrate how a model-based approach 

can be implemented in conjunction with D-optimality software to improve the design of 

protocols for safety pharmacology and toxicology experiments.  It can be anticipated that 

improved parameter precision and accuracy will allow appropriate dose escalation with less 

uncertainty about the safety thresholds (20).  In fact, our analysis includes an evaluation of 

the sensitivity to model and parameter uncertainty (21).  Furthermore, we also show how to 

account for the principle of the 3 Rs to ensure that the optimisation procedures do not 

represent an additional burden to animals required for the experiments (4).  

 

Methods 

 

Currently available software programs have two major limitations for optimising general 

toxicity protocols.  The first is that optimisation is performed with respect to primary model 

parameters (e.g. CL, Vd).  This is restrictive because measures of interest in toxicology are 
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secondary parameters such AUC and CMAX.  For instance, for AUC estimation, the precision of 

KA is of little importance.  Similarly, for most drugs, precise estimation of CMAX will not 

depend on the precision of CL and peripheral compartment parameters.  An optimisation 

routine that optimises over all parameters may not be suitable either. Ideally, it would be 

useful to reparameterise the model so that derived measures of exposure are treated as 

optimisation variables, but this is not always possible as there may be no closed form 

solution relating primary and secondary model parameters. 

The second problem arises from the tendency of software to only provide optimal solutions.  

In practice there are many other factors to consider (e.g. logistical, ethical, financial, and/or 

minimal false positive rate) which can be difficult to account for within the optimisation 

options in a software program.  For example, there may be suboptimal designs (in terms of 

expected parameter precision) that are much more cost effective or ethical.  It is therefore 

important to be able to explore the space of candidate study designs achieving a desired 

level of precision. 

To address the aforementioned problems we proposed to use a simulation-re-estimation 

approach to study design.  However, this is computationally intensive and can quickly 

become unfeasible when applied to variety of candidate designs and proposal models.  For 

this reason, here we employ a hybrid approach where candidate designs are evaluated in 

PopED v. 2.10 (University of Uppsala, Sweden) and then expected primary parameter 

(co)variances are converted to secondary parameter variances using traditional PKPD 

simulation procedures, as implemented in NONMEM v.6.2 (ICON Development Solutions. 

Hanover, Maryland). 

The studies under consideration were a one week, one month, and three-month general 

toxicology protocol, in which toxicokinetic data for three different hypothetical drugs were 

evaluated.  Given the pre-defined pharmacokinetic parameters used in the simulations, the 

true exposure for each individual animal was computed using a variety of measures which 

were subsequently set as reference for further assessment of the no adverse effect level 

(NOAEL).   
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Finally, it should be noted that one of the main issues with the estimation of the NOAEL is 

that it is limited to the computed exposure at one of the pre-specified experimental doses 

(22).  Consequently, the estimated exposure at any one of the dose levels is a candidate 

threshold depending on the observed adverse events. To overcome this limitation, the 

assessment of experimental designs was primarily based on the estimates from secondary 

parameters (AUC and CMAX) across all treatment groups. In addition, our design space was 

limited to sampling schedule and number of animals per group to ensure that the NOAEL 

estimates could be obtained both by NCA and non-linear mixed effects methods.  In fact, 

only experimental designs which allowed for the analysis of the data according to both 

methods were evaluated.   

Given that in typical experimental protocols, three animals are sampled per time point for 

toxicokinetic analysis, alternative candidate designs were aimed at reducing total sample 

size, including two or even one animal per sampling time point.  These alternative designs 

represent therefore a reduction in the total number of samples and in the number of 

animals required per study.  Details of the experimental protocols, pharmacokinetic models 

and optimisation procedures are described in details in the next paragraphs. 

Experimental protocols: Three hypothetical drugs were considered to account for differences 

in disposition properties.  We assumed the availability of prior information in the form of 

single dose pharmacokinetic experiments performed across a range of doses with putative 

pharmacological activity (1, 3, and 10 mg/kg), in which 8 animals were tested per cohort.  

The toxicology protocol design was based on an initial set-up commonly used for chronic 

toxicity evaluation.  Four treatment groups (N= 8 per group) receiving oral daily doses of 

vehicle, 10, 30, and 100 mg/kg/day were tested throughout this set of virtual experiments, 

which lasted either one week, one month or three months.  Satellite groups with 3 

animals/time point were used to mimic the dosing conditions in the animals used for the 

assessment of toxicity (see Figure 1 for a simulation of typical satellite group data). This 

procedure ensures the availability of more frequent blood samples for toxicokinetics.  Blood 

sampling scheme included four occasions based on feasibility, namely days 1, 8, 25, and 89. 
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Sampling times on those days were determined by ED-optimality.  For the purposes of 

optimisation, we assumed that all three hypothetical drugs could be fitted by a one-

compartment model (model A1) and assumed a 50% CV on all parameters. This was 

intended to represent standard use of ED-optimality for the optimisation of sampling times.  

Sampling times were rounded to the nearest 15 minutes. 

Pharmacokinetic models: To ensure accurate evaluation of the impact that differences in 

drug disposition may have on the requirements for experimental design optimisation, three 

different scenarios were considered in which hypothetical drugs showing on a one-

compartment pharmacokinetics with linear and nonlinear (Michaelis-Menten) elimination as 

well as a two-compartment pharmacokinetics were tested.  Parameter values for each 

scenario are shown in Table 2.  In all scenarios, residual variability was assumed to be 15%.  

Moreover, for the purposes of this exercise, we have assumed a homogeneous population, 

avoiding the need to explore covariate relationships in any of the models. 

Optimisation criteria: See the appendix for background information on the optimality 

concepts used in this investigation.  ED-optimality can be used to incorporate parameter 

uncertainty into the optimisation process.  However, ED optimality only provides an 

assessment of expected parameter precision and provides no basis for exploration of 

suboptimal, yet sufficient designs, i.e. reduced designs.  Therefore, our decision to use the 

expected FIM explicitly for the prediction of parameter precision is motivated by a need to 

have a fast, reliable and flexible method to assess and optimise experimental designs for a 

model-based analysis whilst adhering to the principle of the 3 Rs.  The expected FIM 

provides a close approximation of expected parameter uncertainty (23,24).  In addition, we 

have favoured the practice of explicitly running the optimisation at different perturbations in 

model parameters (Table 3). Model parameters were changed in the three PK models tested 

(one compartment with linear and nonlinear elimination and two compartments), yielding to 

a total of 27 different models.  These models are labelled A1...9, B1....9 and C1....9. 
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Figure 1:  Plots of simulated data for scenarios A1, B1, and C1 overlaid with population prediction 

(black line).  Top panel shows 10mg/kg dosing group using the 3 samples per time point.  Bottom 

panel shows pharmacokinetic profiles at the lower dose level (1 mg/kg) with 8 animals per cohort. 
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Table 2: Parameters and corresponding between-subject variability used to characterise the 

pharmacokinetic profiles of hypothetical compounds showing one-compartment, two-compartment 

and Michaelis-Menten disposition in rats.  Doses were defined according to a general toxicology 

protocol design.  Ke: first order rate constant of elimination, Ka: first order rate constant of 

absorption V: volume of distribution, K12: hybrid constant, K21: hybrid constant; Vmax: maximum 

metabolic rate ; Km: Michaelis-Menten constant (substrate concentration corresponding to 0.5 Vmax) 

     MODEL  A: 

Parameter Value BSV (%) 

CL (ml/h) 10 20 

Ka (h-1) 14.82 50 

V (mL) 49 16 

 

     MODEL B: 

Parameter Value BSV (%) 

CL (ml/h) 10 20 

Ka (h-1) 14.82 50 

V (mL) 49 16 

K12(h-1) 2.17 16 

K21(h-1) 3.554 69 

 

     MODEL C: 

Parameter Value BSV (%) 

Vmax (mg/h) 0.3 20 

Ka (h-1) 14.82 50 

V (mL) 49 16 

Km(mg/L) 30 0 FIX 
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Table 3: Perturbations in the parameters for the three different pharmacokinetic models. CL: clearance, Ka: first order rate constant of absorption V: volume 

of distribution, Vmax: maximum metabolic rate.  

Model KA V CL Model KA V CL Model KA V VMAX 

A1 - - - B1 - - - C1 - - - 

A2 - +50% +50% B2 - +50% +50% C2 - +50% +50% 

A3 - +50% -50% B3 - +50% -50% C3 - +50% -50% 

A4 - -50% +50% B4 - -50% +50% C4 - -50% +50% 

A5 - -50% -50% B5 - -50% -50% C5 - -50% -50% 

A6 -80% +50% +50% B6 -80% +50% +50% C6 -80% +50% +50% 

A7 -80% +50% -50% B7 -80% +50% -50% C7 -80% +50% -50% 

A8 -80% -50% +50% B8 -80% -50% +50% C8 -80% -50% +50% 

A9 -80% -50% -50% B9 -80% -50% -50% C9 -80% -50% -50% 
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All evaluations were performed in PopED v.2.10 (University of Uppsala, Sweden) (88), a 

software developed in O-Matrix® (Harmonic Software Inc., Seattle, WA, USA).  Data 

manipulation and statistical and graphical summaries were performed in R 2.10.0 (26).  In 

our analysis, the expected FIM was used to compute the expected covariance matrix from 

which, the expected precision of primary pharmacokinetic parameters was quantified 

(89,90). 

The expected precision of the derived parameters of interest, namely AUC and CMAX, were 

calculated from the expected covariance matrix of primary parameters in NONMEM 6.2 

(ICON Development Solutions. Hanover, Maryland) (27).  First, 1000 pharmacokinetic 

profiles were simulated from the primary parameters uncertainty distributions by including 

the covariance information in the $PRIOR subroutine.  For each pharmacokinetic profile, the 

AUC and CMAX were calculated as follows: 

AUC = W �� �!!"�#  

CMAX = max	('��((): � − 24 < ( < �.) 
where individual predicted drug concentrations are denoted by ��(�). 
The expected precision (standard error) of the parameters was then summarised.  Adequate 

precision was defined as expected CV% < 40%.  Absolute changes in expected precision of 

less than 10% were deemed biologically irrelevant. 

 

Results 

 

Our analysis shows that optimal design concepts can be used in toxicology research to 

improve the precision of the parameters of interest whilst allowing for a reduction in the 

total number of animals required per experiment.  As shown in figure 1, plots of the 
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simulated profiles for a typical individual together with simulated samples, representing 

“observed” data are depicted to illustrate the impact of different disposition characteristics 

on the concentration vs. time profiles.  

The optimised sampling times for all scenarios were 0.25, 0.5,0.75, 1, 1.5, 2, 8 and 24 hours 

after dosing.  Results show that for all designs the precision of AUC and CMAX associated with 

a reduced sample size of 2/3 from the initial sample size resulted in an acceptable loss of 

precision (the absolute difference in expected precision was <10% for all scenarios for 

sample size reduction of 2/3).  Therefore, optimised protocols result in a reduction of up to 

2/3 in the number of animals utilised in toxicokinetic experiments. 

An overview of the point estimates and coefficient of variation (CV%) obtained for AUC and 

CMAX is presented in Table 5.  The differences in parameter precision associated with varying 

sample size, including the NOAEL, is summarised for each model in Figures 2, 3 and 4).  We 

show how precision changes when one or two animals are sampled at each time point 

instead of using 3 animals per sampling time point. Interestingly, the expected precision was 

very high for the one-compartmental model but there was less precision for the two-

compartmental model, where a distribution phase is evident.  In addition, our analysis 

reveals that metabolic saturation, as described by Michaelis-Menten kinetics does not 

further affect the precision of parameter estimates.  Further assessment of the precision of 

the primary parameters indicates that the parameters governing peripheral compartment 

distribution will be the least precisely estimated, with a loss of precision as high as 75% for 

some parameter perturbations.  Between-subject variability was also found to be 

imprecisely estimated and would have to be fixed to 0 for some parameters during data 

analysis.  Yet, despite these differences, AUC and CMAX imprecision was <36% for the two-

compartmental models. 
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Figure 2. Bar charts of CVs of selected parameters for models A.x, where x range from 1-9 and is indicated on the x-axis.  The y-axis shows expected 

precision of the various scenarios. 
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Figure 3. Bar charts of CVs of selected parameters for models B.x, where x range from 1-9 and is indicated on the x-axis.  The y-axis shows expected 

precision of the various scenarios. 
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Figure 4. Bar charts of CVs of selected parameters for models C.x, where x range from 1-9 and is indicated on the x-axis.  The y-axis shows expected 

precision of the various scenarios. 
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Discussion  

 

Experimental protocols based on repeated-dose treatment arms are essential for accurate 

inferences about the risk associated with the exposure to new chemical entities in the early 

phase of clinical development.  These studies provide the basis for the calculation of safety 

thresholds such as the no-observed-adverse-effect level (NOAEL) or lowest-observed-

adverse-effect level (LOAEL), which are used to extrapolate the concentration or exposure 

above which adverse effects can be expected in humans (82,91).  

Despite the efforts and attention given to different methodologies for the estimation of such 

safety thresholds, it is now acknowledged that the use of NOAEL or LOAEL as traditional 

thresholds or point of departure for risk assessment has significant limitations.  The NOAEL 

and LOAEL are determined by the selected dose levels and intervals used in an experimental 

protocol. 

To date, these measures remain a requirement for regulatory purposes (2).  However, there 

is a wide consensus that they do not mathematically relate to the underlying exposure-

response curve (92).  In addition, it has been shown that differences in protocol design can 

influence the precision and accuracy of the parameters of interest, yielding biased NOAEL 

and LOAEL estimates.  In fact, the bench mark dose (BMD) as the threshold or point of 

departure has been proposed as an alternative method to avoid many of these pitfalls (41).  

Unfortunately, similar challenges exist with regard to the accuracy and precision of 

estimates obtained by the BMD (18,93).  The experimental data are not integrated nor 

parameterised in a mechanistic manner so as to benefit from the advantages of a model-

based approach.  

Whilst risk assessment methods need undoubtedly to incorporate mechanistic aspects of 

drug action to ensure better characterisation of potential hazards to humans, it should be 

noted that improvements are also required from a statistical perspective.  Thus far 

empiricism and regulatory-related issues have dominated traditional toxicological testing 
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paradigms (32-35).  Minimal efforts have been made to introduce optimality concepts in 

experimental design as a means to increase accuracy and precision of the parameters of 

interest.  

In this investigation we have attempted to show the feasibility of implementing a model-

based approach in conjunction with optimal design based on techniques, which have been 

developed for the field of pharmacokinetics for more than two decades ago (13,36,37).  By 

considering a number of hypothetical scenarios in which drugs with different disposition 

properties were simulated, we have demonstrated that accurate estimates of AUC and CMAX 

can be obtained for drugs showing different pharmacokinetic profiles.  Our results also 

highlight the impact of optimisation procedures on the estimation of secondary parameters.  

We have shown that even when precision of the primary pharmacokinetic parameter is 

poor, as in the case of parameters governing distribution into peripheral compartments, the 

precision of the secondary parameters remains unaffected.  This can be attributed to the 

fact that the selected candidate designs systematically yield estimates of clearance and 

volume of distribution with acceptable precision.  These two parameters ultimately 

determine systemic exposure and peak concentrations, respectively.  

Although it may seem a disadvantage to use model-dependent estimates for the assessment 

of safety thresholds, this approach presents various important advantages (38-39). First, it is 

unbiased and predictive, allowing for the incorporation of the physiological factors 

underlying the pharmacokinetic properties of the drug under investigation.  Moreover, it 

enables ne to integrate prior information, including data from other experiments.  We 

anticipate that many areas in toxicology research which can benefit from such an approach.  

New methodology does not necessarily mean that human safety will be placed at risk.  On 

the contrary, newer methods provide an opportunity to remove much of the guess work 

involved with older methodologies, which rely on assumptions which clearly prevent the 

uptake of evolving knowledge about pharmacokinetic and pharmacodynamic properties of a 

drug. 
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Methodological aspects 

In assessing and optimising the protocol we found that existing routines in optimality 

software were insufficient to meet our assessment criteria.  In particular, existing software 

did not enable the assessment and optimisation over arbitrary secondary parameters, and 

did not allow for the impact of parameter perturbations on expected precision to be 

assessed.  The alternative brute force approach to account for these limitations would have 

been to perform multiple simulation-re-estimation procedures across our design and model 

space.  However, this would have involved extensive computation times.  Our approach 

instead consisted of FIM evaluations followed by calculation of the expected secondary 

parameter precision.  This exercise ultimately showed that optimisation can be performed 

on secondary parameters of interest, and minimally sufficient designs can be obtained.  Both 

of these procedures are computationally inexpensive.  Our approach therefore enables 

exploration of large design and model spaces without the aforementioned limitations in 

current optimality software.  

Limitations 

Our work does involve a number of assumptions, which may represent potential theoretical 

and practical limitations.  First, it should be noted that we have constrained ourselves to 

candidate designs that enable estimation of exposure using non-compartmental methods for 

each treatment group.  Further gains in terms of reduced burden and/or parameter 

precision are likely to be achieved if a model-based analysis was the only intended analysis 

of the data.  

Another requirement is the availability of a well-defined population pharmacokinetic model, 

which is feasible, but in practice not used in routine pre-clinical research.  It should be clear 

that the computation of expected (co)variance by means of the FIM, cannot directly account 

for the possibility of unidentifiably of parameters.  Hence, the validity of any optimisation 

procedures implies accurate knowledge of the pharmacokinetic properties and 

corresponding parameterisation.  Parameter unidentifiability will likely manifest in terms of 
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large standard errors, high correlations in the correlations and/or large differences in 

eigenvalues.  On the other hand, optimal design does tackle another common issue 

observed during data fitting and parameter estimation, i.e., numerical unidentifiability, 

which may be caused by poor experimental design. 

An additional assumption is that parameter estimates will be unbiased. This assumption may 

not hold true for more complex models, but the reader should be aware that this issue may 

be equally important when non-compartmental methods are used to describe complex 

pharmacokinetic profiles, as for instance in the case of metabolic inhibition or drugs with 

long elimination half-life (40).  To ensure further characterisation of bias, a full bootstrap 

(simulation-re-estimation) procedure is recommended.  Lastly, one should realise the 

implications of our own objectives, i.e., to compare designs which are suitable for both non-

compartmental and model-based methods.  Further gains in terms of reduced burden 

and/or parameter precision are likely to be achieved if a model-based analysis was the only 

intended analysis of the data.  

In summary, it can be concluded that despite the biological debate about the relevance of 

safety thresholds, the accuracy and precision of estimates are essential to ensure 

appropriate interpretation of experimental findings and make inferences about risk in 

humans.  We have shown that the use of a model-based approach is critical for appropriate 

data integration and informative value of experimental protocols.  Our work also 

demonstrates that population size is not the critical variable when evaluating precision and 

accuracy of the parameters of interest.  This feature allows for comparable results to be 

obtained with considerable lower number of animals and consequently reduction in the cost 

of experiments.  Overall, these results make the need to explore the requirements for 

further implementation of optimal design in toxicology research an ethical and scientific 

imperative.
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Appendix  

 

In an optimal design exercise, design variables are variables that describe properties of the 

biological system, drug or experimental protocol which can be changed to explore their 

impact on the information contents of the experiment.  Typically these include dose, 

sampling scheme, number of samples, number of individuals or other covariates (94). Even 

though the number of animals is constrained (88), the main use of this technique is to 

optimise sampling times.  It has been shown that sample times can have significant influence 

in the accuracy and precision of parameters (95,96). By optimising sampling times it is 

possible therefore to improve the overall efficiency of PK experiments (96,97). 

Here we summarise the statistical framework for the evaluation and optimisation of 

experimental designs using D-optimality.  There are various software programs for optimal 

design, making them equally suitable for the purposes of this type of analysis. They differ 

primarily in the features available for optimisation and in the optimisation method.  

 

Statistical summary 

There are various numerical methods to fit a model to data. The mostly commonly used is 

the maximum likelihood (ML) estimator.  The maximum likelihood is calculated by 

maximising the following likelihood function (L):  

X(�) = R(Y|�) 
where θ is the vector of parameters, D is the data. The results of a maximum likelihood 

estimation are �[, the maximum likelihood estimate and cov(�[), the covariance matrix 

determining the parameter precision.  The information contents within the study data, D is 

what determines cov(�[).  Prior to running the experiment, assuming the availability of a 

model, it is possible to compute an expected covariance matrix by the use of the Cramer-Rao 

inequality: 
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\>](�[) ≥ 1_`B(�[) 
where the Fisher Information Matrix (FIM) is given by  

_`B��[� = D ab cc� X(�)de b cc� X(�)df 
 

Although this function constrains the lower bound of cov(�[), in practice such a lower bound 

is reached as indicated by comparisons with bootstrapped expected covariance estimates 

(98,99). Thus, by computing the FIM of a given design, under the assumption of no or minor 

model and parameter misspecification, one can estimate the covariance matrix and 

consequently assess parameter precision values.  By maximising the determinant of the FIM 

over design variables, such, as for instance the sampling schedule, it is possible to identify 

experimental conditions or design(s) that maximise the expected parameter precision. 
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Abstract 

Purpose: Toxicology assessment relies on the evidence of a direct relationship between 

observed systemic exposure and adverse events.  This empirical approach prevents the 

identification and the use of suitable biomarkers associated with the underlying 

pharmacodynamic processes, which ultimately determine delayed toxicity.  The objective of 

this investigation was therefore to explore the feasibility of applying a model-based 

approach to characterise the PKPD correlations and the time course of biomarker responses 

associated with long-term safety as compared to standard non-compartmental methods. 

Methods: A hypothetical toxicology protocol was designed by simulating the 

pharmacokinetics and pharmacodynamics (biomarkers responses) of four different drugs, 

each with a different mechanism of delayed toxicity.  The mechanisms of delayed toxicity 

were: i) indirect response mechanism, ii) indirect response mechanism preceded by 

biophase equilibration, iii) cumulative effects of chronic dosing and iv) formation of a toxic 

metabolite.  In the simulations data were sampled according to standard experimental 

designs.  Data for each drug were then analysed using non-compartmental methods and by 

nonlinear mixed effects modelling, as implemented in NONMEM v7.1.  Given the often 

unknown mechanism of toxicity, a variety of models was evaluated to explore model 

misspecification.  Finally, bias and precision of parameter estimates were compared for each 

method. 

Results: The true underlying model was often unidentifiable.  However, model 

approximations were identified for each scenario with satisfactory performance.  NCA-

derived estimates showed more bias and less precision for all methods in all scenarios.  The 

relative errors were smaller for parameter estimates obtained by data fitting.   

Conclusions: Integration of toxicokinetic and biomarker data is essential for the evaluation 

of long-term safety and toxicity.  Despite issues due experimental protocol design, the use of 

a model-based approach enables the assessment of putative mechanisms of toxicity.  

Traditional techniques, such as non-compartmental methods are unsuitable for the 

characterisation of long term, delayed effects. 
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Introduction 

 

Understanding of toxicokinetics during the evaluation of safety pharmacology and 

nonclinical toxicity has been considered essential for accurate prediction of safety thresholds 

for a new chemical or biological entity (1,2) (Figure 1).  Increasingly, however, it has become 

evident that characterisation of the relationship between drug exposure, target engagement 

(i.e., activation or inhibition) and downstream biological effects associated with a given 

physiological pathway can provide further insight into the mechanisms underlying both 

expected and ‘unexpected’ toxicity.  In fact, several novel toxicity biomarkers have emerged 

as sensitive tools for detection, monitoring, quantification and prediction of organ toxicity 

(3-5) (Figure 2).  In addition, the use of a more mechanism-based approach for the 

evaluation of drug effects has allowed better interpretation of time-dependencies, which are 

often observed following chronic exposure to a drug (e.g., delayed toxicity) (6).  

Whilst the availability of tissue-specific data can provide valuable information for decision 

making during toxicological assessment (7), empirical safety thresholds based on systemic 

drug exposure continue to prevail as the mainstream approach for assessing the safety 

profile of new chemical entities, preventing wider use of biomarkers and potential 

translation of pharmacological properties of a molecule from animals to man (8,9).  These 

hurdles are perpetuated by the existing view or notion that experimental data represent the 

basis for characterising phenomena arising from causes that are unknown or uncertain, as is 

often the case in early drug development. 

Thus far, little attention has been given to the possibility of evaluating toxicity using a 

mechanism-based approach whereby adverse events are assessed from a pharmacological 

perspective.  Such an approach would allow information from putative biomarkers to be 

integrated with pharmacokinetic data to support inferences about observed and unobserved 

adverse events (10-12).  In addition, the use of modelling and simulation would provide the 

opportunity to predict sub chronic and chronic safe exposure range in humans from 

preclinical experiments as well as investigate short and long term treatment effects. 



 151 

 

Figure 1 TK toxicokinetic studies in drug-development process. IND; investigational new drug 

application, NDA; new drug application. Reprinted with permission from Toxicology Letters 102-103, 

pages: 657-664 (1998) 
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Figure 2 Safety risk assessment based on toxicokinetics.  Target efficacy: target engagement endpoint 

on in vitro or in vivo screening. Reprinted with permission from Toxicology Letters 102-103, pages: 

657-664 (1998) 
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One of the problems non-clinical scientists face when considering the implementation of 

alternative methodologies is,  however, the fact that pre-clinical toxicity studies are not 

designed for the assessment of concentration-effect relationships, i.e., they are aimed 

primarily at establishing a safety threshold (e.g., NOAEL) (13, 14).  A common justification for 

current experimental protocol designs is often the complexity and limited understanding of 

the biological processes involved on one hand and the challenges to obtain regulatory 

acceptance of an alternative method on the other (15).  This is further compounded by the 

shortcomings of non-compartmental data analysis methods, which are currently 

recommended for estimating and summarising measures of exposure such area under the 

concentration vs. time curve (AUC) or peak concentrations (CMAX).  These methods cannot be 

easily adapted to account for nonlinearities in the time course of drug effects, nor allow for 

extrapolation or interpolation procedures.  Such limitations pose important questions about 

the rationale and relevance of such experiments for the translation of findings across species 

and accurate inferences about the risk associated with the proposed treatment or 

intervention in humans.  

In the current investigation we explore the feasibility of using a model-based approach to 

describe time-dependent pharmacokinetic-pharmacodynamic relationships and incorporate 

biomarkers as a proxy of drug exposure in general toxicity studies.  In addition, we show how 

the accuracy and precision of experimental parameters compare when analysing data based 

on nonlinear mixed effects modelling instead of the traditional non-compartmental 

methods.  We illustrate the concepts using simulations in which hypothetical drugs with 

different pharmacological properties are tested in a variety of scenarios.  For the sake of 

simplicity, in all scenarios the biomarker is assumed to be inhibited by the active treatment. 

Although a myriad of pathological mechanisms may exist, our scenarios are limited to a few 

examples, including biophase equilibration, (re)active metabolite formation, irreversible 

binding and indirect response mechanisms, which can be easily expanded or generalised, 

enabling accurate inferences about known causes of nonlinearity and time-dependencies 

regarding the onset, maintenance and waning of unwanted drug  effects.  
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Methods 

 

A model-based approach was used to generate drug exposure and safety biomarker data for 

five hypothetical drugs.  Experimental protocols were defined according to current 

guidelines for the evaluation of toxicity and safety pharmacology with the exception of 

additional safety biomarker data collected in parallel to the scheduled pharmacokinetic 

sampling points.  All simulations and fitting procedures described below were performed in 

NONMEM 7.1 (ICON Development Solutions. Hanover, Maryland) (16).  Data manipulation 

and statistical and graphical summaries were performed in R 3.0.0 (17).   

For the purposes of our investigation, pharmacokinetic and pharmacodynamic parameters 

were considered to accurately reflect the risk of adverse events and toxicity.  Whilst all drugs 

were assumed to have the same pharmacokinetic characteristics, different scenarios were 

used to explore five toxicodynamic mechanisms leading to biomarker inhibition.  No 

covariate relationships were included in any of the models to facilitate the interpretation 

and comparison of the results.  Data was subsequently analysed using standard non-

compartmental methods and by nonlinear mixed effects modelling.  The estimates obtained 

from these virtual experiments were then compared to the true values used initially to allow 

the assessment of bias and precision.  Methods regarding the simulation and reanalysis of 

the PK data can be found in Chapter 3 of this thesis, in which the feasibility of PK modelling 

in general toxicity study is evaluated (18). 

Experimental design: The protocol design used for each of the hypothetical drugs was based 

on an initial set-up commonly used for chronic toxicity evaluation.  Four treatment groups 

(N= 8 per group) receiving oral daily doses of vehicle, 10, 30, and 100 mg/kg/day were tested 

throughout this set of virtual experiments, which lasted either one week, one month or 

three months. Satellite groups with 24 animals each were used to mimic the dosing 

conditions in the animals used for the assessment of toxicity.  This procedure ensures the 
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availability of more frequent blood samples for toxicokinetics.  The sampling schedule 

investigated was composite sampling where blood was collected from three animals in the 

satellite group at predetermined sampling time points, namely 0.1, 0.4, 1, 1.5, 4, 8, 24 hours 

after dosing.  It was assumed that sufficient blood could be collected for plasma drug 

concentration and biomarker measurements.  The allocation of animals to each sampling 

time point was random within the constraint that all animals must be sampled an equal 

number of times. An overview of the experimental conditions is summarised in Table 1.  

Table 1: Experimental design of treatment and satellite groups in a general toxicity study with serial 

and composite sampling of blood for the evaluation of drug concentrations and biomarker levels in 

plasma.  

 

Duration 
Sampling 

approach 

No. of 

animals 

per dose 

group 

Sampling scheme Sampling  time 

1 week  

 

Composite: 

 

Serial: 

8 

 

3 

3 per animal. 3 per time point 

 

Serial profiles from Day 1 only 

0.1, 0.4, 1, 1.5, 

4, 8, 24 hours 

after dose 

1 month 

Composite: 

 

Serial: 

8 

 

3 

3 per animal. 3 per time point 

 

Serial profiles from Day 1 and 12 

0.1, 0.4, 1, 1.5, 

4, 8, 24 hours 

after dose 

3 month 

Composite: 

 

Serial: 

8 

 

3 

3 per animal. 3 per time point 

 

Serial profiles from Day 1, Wk 4, 12. 

0.1, 0.4, 1, 1.5, 

4, 8, 24 hours 

after dose 

 

Pharmacokinetics: The pharmacokinetic model for all scenarios was a one-compartment 

pharmacokinetic model with first order absorption and first order elimination. This 

corresponded to Model A in Chapter 3 of this thesis (18).  Parameter values for each 

scenario shown in table 2.  Residual variability for pharmacokinetic data was assumed to be 

15%.  
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Table 2: Pharmacokinetic model used to simulate concentrations and derive measure of drug 

exposure in the experimental groups.  For the sake of simplicity, a one-compartment model 

(1 CMT) was selected for the purpose of this analysis.  Parameters reflect data previously 

reported in Chapter 3 of this thesis (18).  

Parameter Pop Estimate BSV 

KA 13.46 h-1 50% 

V 49.4 ml/kg 16% 

CL 2.72 ml/hr 20% 

 

Pharmacodynamic effects: Five hypothetical mechanisms of drug-induced toxicity were 

simulated.  Their parameterisation is summarised in Table 3. In brief, a number of scenarios 

were included, which are representative of onset and dynamics of the effect, i.e., that take 

into account the time dependencies and delays between the start of treatment, the onset, 

maintenance and waning of the pharmacodynamic effects: 1) a direct IMAX model, describing 

immediate onset of effect and direct relationship between drug exposure and biomarker 

inhibition at the target site; 2) an indirect response model, describing the presence of 

turnover mechanisms with a delayed onset of effect and disconnect between drug exposure 

and biomarker inhibition; 3) indirect response model preceded by biophase equilibration 

processes, which emphasise the role of tissue kinetics for the characterisation of 

pharmacodynamic effects; 4) a model describing the cumulative effects of chronic dosing 

regimen associated with slow-offset and irreversible binding and 5) a model describing 

delays due to metabolite formation with immediate inhibitory effects on biomarker levels. 

All scenarios were evaluated under the assumption that assay error was small in relation to 

the magnitude of the drug effects on biomarker levels. 
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Imax model   

 

Indirect model 

 

Biophase equilibration + Imax 
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Metabolite formation + Imax 

 

Irreversible binding 

 

 

Figure 3 Diagrams depict the different pharmacokinetic-pharmacodynamic models associated with 

the hypothesised pharmacological mechanisms leading to toxicity. 
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 Table 3: Simulation scenarios modelled a range of pharmacological mechanisms.  Base: baseline effect, IC50: concentration required for 50% 

inhibition of biomarker response, Kout: first order elimination of biomarker response, Kelm: first order elimination rate of metabolite, Kon: 

receptor-ligand association rate: Imax: maximum inhibitory effect; CAOC: cumulative area above the effect (biomarker) vs. time curve. 

Simulation Scenario 
Parameter 

names 

Parameter 

values 
Rationale Modelling strategies 

1) Direct effect 

Base 

Imax 

IC50 (mg/ml) 

1 

1 

0.1 

- IC80 similar to Ctrough at 

lowest dosing level. 

-Normalised biomarker 

concentrations. 

1) Direct Imax 

2) Indirect response 

Base 

Kout (h-1) 

IC50 (mg/ml) 

Imax 

1 

1 

0.1 

1 

-Fast elimination of 

biomarker 

1) Indirect 

2) Direct Imax 

3) Biophase 

equilibration + Imax 

Imax 

IC50 (mg/ml) 

Ke0 (h-1) 

1 - Ke0 selected to give 

similar biomarker levels to 

indirect response model 

1) Biophase + Indirect response 

2) Indirect response 

3) Direct Imax 

0.1 

0.25 

4) Metabolite 

formation + Imax 

Kelm (h-1) 

Imax 

IC50 (mg/ml) 

0.0866 

1 

3 

- 100% conversion to 

metabolite assumed.  

metabolite thh= 8h 

1) Metabolite + Imax 

2) Direct Imax 

5) Irreversible binding 

Kout (h-1) 

IC50 (mg/ml) 

Kon 

0.029 

0.2 

- 24 hr turnover for 

(off)target assumed 
1) Irreversible binding 

2) Cumulative AOC (CAOC) + Imax 
0.0005  
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Biomarker exposure measures:  Five different measures of biomarker exposure were used 

for calculation of the true pharmacodynamic effects, as determined by the simulated 

profiles.  These measures can be seen in Table 4 alongside their calculation method.  AOC24 

and CMIN24 are intended to mimic the AUCτ and CMAXτ exposure variables typically calculated 

for the analysis of pharmacokinetic data. They provide a measure biomarker inhibition on 

the final day of measurement (i.e., at steady state conditions).  On the other hand, time 

under threshold biomarker concentration (TUT) is a measure of time spent, on final day of 

measurement, under a clinically significant threshold.  The threshold in this case was 

0.2mg/ml, which represents 20% change from baseline and which was assumed to be 

physiologically meaningful.  Given that at three months the scenario describing slow-offset 

and irreversible binding is not at steady-steady at the end of treatment, simulations were 

performed assuming repeat dosing up to six months (three months beyond the time frames 

of the investigated studies).  This procedure was required to ensure comparability of the 

results obtained for all five mechanisms of action. 

Non-compartmental analysis: Biomarker exposures were calculated on the composite 

profile.  Two different, commonly used, averages were investigated, the arithmetic mean 

and geometric mean.  Since the standard sampling scheme is limited to a particular day 

during the course of treatment, composite profiles over six months cannot be estimated. 

Therefore, only AOC, CMIN, TUT (in Table 4) were calculated by non-compartmental analysis. 

Model-based estimates: Each simulated dataset was an integration of all pharmacokinetic 

and pharmacodynamic data for all experimental groups.  Then drug concentration and 

biomarker profiles were fitted to multiple PKPD models (as shown by the multiple modelling 

strategies in Table 3) using the FOCEI estimation method.  In Table 3, modelling strategies 

for each scenario are ordered by decreasing numbers of parameters, starting with the true 

model.  Model convergence for each modelling strategy was determined by standard 

minimisation success criteria.  Below quantification limit (BQL) data were omitted to mimic 

experimental conditions in which imputation methods are not applied.  The model-based 
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calculation of biomarker and exposures measures are summarised in Table 4.  Estimates of 

exposure were all calculated by using same methods as for the true exposure calculation but 

with the estimated model.  Overall performance of competing modelling strategies was 

assessed by convergence rate and bias/precision of exposure/biomarker level. 

Bias/precision of exposure/biomarker levels: The process of simulation and estimation of 

exposure (using non-compartmental and model-based methods) was repeated 200 times.  

Bias and precision were assessed via the scaled relative mean error (SRME) and the 

coefficient of variation (%CV), respectively.  Relative error was also calculated for graphical 

comparison. 

Table 4:  Measures of biomarker exposure obtained with the simulated and estimated models for 

calculation of the true pharmacodynamic effects 

Covariate name Symbol Model based biomarker level 

calculation 

Area above biomarker levels vs. 

time profile 

AOC24 g01(0) − � g01 �!
!"�#  

Minimum biomarker level over 

24 hour period 

CMIN24 min	(jg01((): � − 24 < ( < �k) 
Time under threshold (80% 

inhibition) 

TUT � 1lm1n.lm1(;) �!
;  

Predicted 6-month cumulative 

area above biomarker 

concentration vs. time profile 

CAOC g01(0) ∗ 6=>?�ℎ( −� g01 �7	89:!36
;  

Predicted 6-month trough 

biomarker levels 

CMIN min	(jg01((): 0 < ( < 6	=>?�ℎ(k) 
Individual predicted biomarker levels are denoted by g01(�). 
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Table 5: Convergence rate of different modelling strategies (as determined by NONMEM 

minimization success criteria). 

 

 

Results 

 

As described below, the use of simulated data for the evaluation of hypothetical scenarios 

provided clear insight of the impact of current practices on the identification of putative 

mechanisms underlying the observed pharmacological effects as well as on the accuracy and 

precision of safety thresholds, and in particular of the NOAEL.  Results from modelling are 

shown together with the parameter values obtained from naïve pooling and non-

compartmental analysis where applicable.  

It is clear from the different profiles (Figure 4) that not only the dose level under 

investigation, but also the mechanism of action underlying drug toxicity, contribute to 

differences in the onset, magnitude and duration of the effects.  Moreover, these 

Simulation Scenario Modelling strategies Convergence rate (%) 

1) Direct effect  1) Direct Imax 94.2 

2) Indirect response 
1) Indirect 

2) Direct Imax 

100 

13.5 

3) Biophase equilibration + Imax 

1) Biophase + Indirect response 

2) Indirect response 

3) Direct Imax 

0 

88.5 

100 

4) Metabolite formation + Imax 
1) Metabolite + Imax 

2) Direct Imax 

0 

100 

5) Irreversible binding  
1) Irreversible binding 

2) Cumulative AOC (CAOC) + Imax 

0 

100 
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differences may or may not be evident depending on the dose rationale and sampling 

scheme used in the experimental protocol (Figure 5). 

Model 1 - IMAX 

 

Model 2 – Indirect response 

 

 

Model 3- Biophase + IMAX 
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Model 4: Metabolite + IMAX 

Model 5: Irreversible binding 

 

Figure 4: Full pharmacokinetic and pharmacodynamic profiles observed for each hypothetical 

mechanisms on selected sampling days. Lines represent the typical population estimates.  Dots 

represent simulated concentrations at the pre-defined sampling times.  Since all simulation scenarios 

share the same pharmacokinetics, PK is only shown for scenario 1.  

 

As can be observed from the summary of convergence rates in Table 5, the inability to 

discriminate the underlying mechanism of action based on the available experimental data 

can lead to obvious issues with model identifiability.  On the other hand, despite this 
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limitation, the large differences in convergence rate suggest that model-based estimates 

might be suitable to explore or exclude possible or plausible causes of toxicity. 

Despite variations in bias and precision between analysis methods and sampling schemes, 

parameter precision was relatively high (<30%).  This suggests that when bias is acceptable, 

reductions in numbers of animals may be possible whilst still achieving study objectives.  For 

all scenarios tested, we have assumed that the safety biomarkers levels are closely related to 

target engagement of targets relevant to downstream toxicity findings.  In other words, the 

safety biomarkers are in the causal pathway between drug exposure and manifest toxicity.  

Therefore, for all scenarios, AOC, CMIN, TOT, CAOC are expected to be more highly correlated 

with toxicity than their pharmacokinetic equivalents (AUC, CMAX, TUT and CAUC, 

respectively).  The relative relevance of AOC, CMIN, TUT and CAOC will depend on the 

downstream pathway between target engagement and toxicity finding.  For chronic enzyme 

inhibitors and receptor antagonists and/or long term toxicity, cumulative biomarker 

inhibition is likely to be more pharmacologically relevant.  For toxicity that involves 

overriding homeostatic control, TUT using a physiologically relevant threshold may be most 

relevant. 

With regard to the method of analysis, our results show that the accuracy and precision of 

model-based estimates for AOC, CMIN and TUT were similar across different dosing groups 

and treatment durations.  Non-compartmental estimates showed more bias and less 

precision in all scenarios.  In addition, relative errors were also smaller for model-based 

estimates (Figure 5).  For both model-based and compartmental methods, the coefficient of 

variation increased with composite designs (with 8 animals), as compared to serial sampling 

designs (with 3 animals).  Interestingly, the use of arithmetic and geometric means for non-

compartmental methods had minor impact on the parameter estimates.  CMIN was 

consistently over- estimated by non-compartmental methods. 
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Figure 5.  Relative errors of model-based and NCA estimators of exposure obtained for the different 

models: IMAX model (a) Imax (b), indirect model (c), biophase equilibration + IMAX model (d) 

prodrug+IMAX , (e), the irreversible binding.  X-axis shows the different measures of exposure, as 

described in Table 1.  NCA estimates are repeated in each panel for comparison purposes.  For the 

sake of clarity, only data from the 30mg/kg/day following 3-month treatment are summarised. 

Similar results were observed across other cohorts. 
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Discussion  

 

Any drug can produce an adverse response at therapeutic or supratherapeutic exposures.  It 

is imperative therefore to identify not only the response but also the exposure at which the 

effect is observed (19).  Yet, over the past decade, it has also become clear that detection of 

organ-specific toxicity is critical, both for improved preclinical/clinical translatability and 

accurate prediction of toxicity at early stages of development.  Despite the scientific 

rationale, few successful examples exist that demonstrate the development and consequent 

use of specific markers of organ toxicity during preclinical safety evaluation (20, 21).  The 

limited impact of biomarkers has been associated with the fact that early prediction of 

specific organ function, such as hepatic, dermal or immunologic, is not well established. With 

the possible exception of cardiac function, very few novel biomarkers have been identified 

and accepted over the past decade.  On the other hand, markers of tissue injury have been 

identified, but they are not predictive of overall organ function and often do not correlate 

with overt pathology (22).  These conclusions have been drawn without careful 

consideration of the impact current experimental protocol designs and data analysis 

methods have on the characterisation of the underlying pharmacokinetic-pharmacodynamic 

relationships.  Instead, here we have shown how a model-based approach can be used to 

integrate toxicokinetic and biomarker data for the evaluation of long-term safety and 

toxicity.  Based on a series of hypothetical drugs, simulation scenarios have been used to 

show the feasibility of introducing biomarkers as a proxy of drug exposure in general toxicity 

studies.  Furthermore, our work highlights the impact that modelling can have on the 

evaluation of exposure measures that cannot be derived from empirical protocols.   

From a conceptual perspective, the evaluation of hypothetical compounds whose 

mechanisms of action reflect nonlinearity and time-dependencies in the onset, maintenance 

and waning of drug effects also sheds light on the shortcomings of current protocols and 

data analysis methods, for which data and knowledge integration have remained marginal.  

Current mainstream research in toxicology and safety pharmacology is performed under the 
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assumption that evidence from data or lack thereof is sufficient to make inferences about 

the risk or hazard in humans.  Our approach comes from a quite different perspective, in 

that it incorporates oncoming data into a modelling framework, i.e., a mathematical 

representation of existing knowledge.  Whilst scepticism exists about the predictive 

reliability of models due to uncertainties (23), they facilitate the assessment of causation 

and provide the basis for the exploring the plausibility of alternative mechanisms or causes 

(24).  Most importantly, models when used as an ancillary tool during planning and design of 

experimental protocols can significantly increase the informative value and reduce bias. In 

fact, mechanism-based pharmacokinetic-pharmacodynamic modelling has evolved 

successfully as an important tool for the evaluation of exposure-response relationships and 

as such has represented a major contribution to the dose rationale in clinical research 

(25,26).  In conjunction with nonlinear mixed effects techniques, it has become possible to 

integrate efficacy and safety measures under the assumption that wanted and unwanted 

pharmacological activity is directly or indirectly associated with drug action on primary or 

secondary targets, rather than treating such effects by default as the result of an unknown 

off-target binding site, which is often assumed to be the cause of toxicity (27,28).  It should 

be noted, however, that thanks to the use of model parameterisation describing 

(patho)physiological phenomena in terms of zero, first and second order processes, it is 

possible to establish correlations between drug exposure, biomarkers and effects even if the 

underlying mechanisms are not fully understood. 

As indicated by the differences in convergence rate (table 5), our findings reveal that even 

with the incorporation of biomarkers, it may be sometimes impossible to identify the true 

model and consequently, characterise the true mechanism of toxicity.  Yet, despite model 

identifiability issues, these results also show the potential benefits of model parameters to 

rank compounds (e.g., by differences in potency) and quantify the effects associated with a 

given exposure or effect.  Moreover, the various scenarios can be used to elucidate how 

differences in mechanism of action may lead to biased estimation of the relationship 

between drug exposure and toxicity, as well as to inaccurate safety thresholds.  We believe, 

therefore, that greater awareness is required about the limitations of current experimental 
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protocols, particularly in a period in which long-term safety have become a major clinical 

and regulatory concern (29-31).  On the other hand, model misspecification, even when 

convergence is successful, may lead to significant bias when predictions are made beyond 

the experimental context (i.e., longer timescale or different dosing regimens). To mitigate 

such effects we recommend careful consideration of model selection during model 

development and model uncertainty (32-34).  Model selection criteria should be guided not 

only by ability to describe data but also by assessing the physiological relevance of model 

assumptions.  When model development ends in multiple competing models performing 

similarly with respect to the above model selection criteria, clear reporting of such model 

uncertainty is necessary.  In any case, model averaging should be discouraged when 

predictions arising from different model differ significantly (35).  Finally, parameter 

uncertainty should be incorporated when performing simulations or using the model to 

make predictions. 

Since the model-based methods outperformed non-compartmental analysis, further 

refinement of experimental protocols can be achieved if the data are analysed using 

nonlinear mixed effects modelling.  Despite the conceptual challenges, maximum likelihood 

based model estimates, statistically speaking, are asymptotically efficient.  This means that 

model parameters extract maximum information from the dataset when compared to any 

other statistical technique. In this respect, the use of a model-based approach is not only an 

improvement on non-compartmental methods in terms bias and precision, but is optimal for 

the datasets under consideration.   

Limitations 

All scenarios depicted here corresponded to the case where substantial inhibition of a 

biomarker, relative to assay and normal physiological variability, was correlated with 

toxicity.  In the present study we focused on biological systems with built in control for 

minor fluctuations in biomarker levels so that substantial inhibition could be seen in the 

data.  An example of such a biomarker and system would be prostaglandins, which exert 

their protective role in conjunction with other mediators (36-39).  The findings presented 
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here are expected to also reflect other mechanisms such as induction or tolerance, if the 

profiles and magnitude of effect are similarly large relative to the assay error. 

We also acknowledge that detection of signals above variability may not always be possible 

due to a variety of factors, including large between or within subject variability or poor assay 

precision.  In this case non-compartmental analysis and model-based approaches will fail to 

detect systematic variations without additional information. 

Lastly, we believe that complex systems pose little problem to estimation procedures as long 

as viable simplifications are available and able to describe important trends in the data.  

Clearly, there may be instances where the biological response to drug exposure manifest in 

trends in data which cannot be described accurately by more simplistic models.  In these 

circumstances, knowledge that an experiment cannot be used to describe the underlying 

exposure-effect relationships could be invaluable as the basis for further improvement of 

experimental design in subsequent phases of drug development. 

In summary, toxicology need to evolve from a discipline largely devoted to routine 

performance and interpretation of safety tests, to a quantitative discipline in which advances 

in pharmacology and molecular biology can be applied in an integrated manner, enabling 

better understanding the nature and mechanism of adverse effects caused by chemicals.  

Model-based analysis of biomarkers and toxicokinetic data provides the basis for 

differentiating settled toxicological knowledge of risk from mere possibility, and facilitating 

the translation of safety thresholds and safe exposure from animals to humans.   
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Abstract 

Purpose: Current toxicity protocols use the NOAEL approach to relate observed systemic 

exposure to the observed AEs.  However, biomarker data can provide information on 

mechanisms of toxicity and historical placebo data can help distinguish non-drug induced 

AEs to ADRs.  The objective here is to determine the feasibility of model-based risk 

assessment with the aforementioned data and to compare this with the NOAEL approach. 

Methods: An in-silico approach based on simulation scenarios and nonlinear mixed effects 

models was used to generate drug-induced and background adverse events. The test species 

was rats and data was generated according to standard preclinical toxicological designs.  A 

total of six scenarios were simulated, in which reversible and irreversible drug effects were 

evaluated under the assumption of three different pharmacological mechanisms (direct, 

indirect, and irreversible binding).  Data was then analysed using standard NOAEL approach 

and by nonlinear mixed effects modelling in NONMEM 7.1 and WinBUGS 1.4.3. 

Results: Three out of six scenarios had a viable therapeutic window.  The NOAEL approach 

showed significant bias by overestimation of toxicity.  The potential impact of bias to drug 

development programs is summarised for each scenario.  Model-based approaches showed 

high convergence rates, however model identifiability prevented model discrimination 

indicating that although risk can be predicted the underlying causes of risk cannot be 

determined. 

Conclusions: Our results indicate that standard toxicology experiments are likely to provide 

enough information to detect drug related ADRs with a model based approach, but are 

unlikely to have the power to precisely indentify the mechanisms of AE formation for rare 

events.  Quantifying model uncertainty enables this uncertainty to be reported to aid project 

teams in future study planning.  A model-based approach outperforms the NOAEL 

methodology in terms bias and precision and should therefore be recommended as method 

of choice for the purposes of safety assessment. 
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Introduction 

 

One of the main purposes of safety pharmacology and toxicology screening is the prediction 

of risk that exposure to a new chemical or biological entity represents to humans.  A major 

challenge in this endeavour is the prediction of the safe exposure in humans based on 

preclinical experiments.  Historically, numerous approaches have been considered for the 

assessment of safety and risk, which differ in their data requirements, degree of complexity, 

their applicability in different situations and the type and quality of resulting risk estimates 

(100).  Among the accepted methods, safety thresholds have been derived under the 

assumption that there is a level of exposure below which a biologically significant effect is 

unlikely to occur, i.e., no-observed adverse- effect level (NOAEL) (2,3).  Even though 

estimation of such a threshold has little or no mechanistic basis and is greatly influenced by 

experimental design factors, it has become one of preferred methods for regulatory 

evaluation of risk.  This choice has been made irrespective of the frequency of the events of 

interest or whether the occurrence of events is delayed relative to the duration of 

treatment. In these circumstances the evidence generated from small experiments may be 

affected by censoring or other shortcomings in the experimental design (4,5).  As a 

consequence, derived measures of safe exposure may become biased and imprecise.  

By contrast, a model-based analysis rooted in statistical inference and mechanistic 

description of physiological processes can have several advantages over safety thresholds, 

but its uptake has been very limited (6).  Another important point to consider is that the 

application of pharmacokinetic-pharmacodynamic modelling and simulation concepts 

enables one to explore the relationship between drug exposure and pharmacological or 

toxicological effects in a mechanistic manner, relating experimental findings to target 

engagement (See Figure 1) (7).  By using pharmacokinetic models, factors that are known or 

expected to influence the relationship between the administered dose and the target 

exposure may be accounted for (8).  Pharmacokinetic models may also be used to optimize 

protocol design and strengthen the extraction of information from experimental results by 
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linking data obtained under different experimental conditions in a uniform model (9,10).  

Thus, modelling is often hypothesis generating and may have utility for discriminating 

between markers of exposure and markers of risk (Figure 2).  Thereby, some of the 

uncertainty factors associated with the true hazard or risk may be reduced.  Furthermore, 

specific questions on mode of action may be addressed, and these models can provide a 

stronger basis for extrapolation across species, routes of exposure, dosing patterns, and 

ultimately human risk assessment.  

 

 

Figure 1 The diagram illustrates different steps that lead to disruptions of biologic pathways: 

‘‘biologic responses are results of an intersection of exposure and biologic function. The intersection 

results in perturbation of biologic pathways. When perturbations are sufficiently large or when the 

host is unable to adapt because of underlying nutritional, genetic, disease, or life-state status, 

biological function is compromised; this leads to toxicity and disease’’. A model-based approach can 

be used to parameterised both pharmacokinetic and pharmacodynamic processes. Of particular 

interest is the evaluation of the outcome from function impairment when incidence of events is low 

or processes rate are such that the events are delayed relative to the period of intervention. (From 

Anderson et al.,2005 (7)) 
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Figure 2 Inferences from risk of toxicity or disease from drug exposure data. Different approaches 

can be considered in which markers of exposure are used in conjunction or independently of markers 

of risk to predict safe exposure in humans. This diagram clearly indicates the need to discriminate 

drug reactions from adverse events during drug screening and early characterisation of the safety 

profile of a new chemical or biological entity.  
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Despite the aforementioned advantages, regulatory agencies still tend to favour the view 

that risk assessment should remain qualitative until important issues, primarily those related 

to quantitative decision-making concepts, have been addressed (101).  From a scientific and 

clinical perspective, the main concern, however, is the potential for overconfidence in the 

numerical answers obtained from small experiments.  At the same time, it must be 

acknowledged that characterising exposure-response relationships does face technical 

challenges when data is too uninformative (12).  One of the issues is model and parameter 

identifiability, which make the validity and reproducibility of models derived by empirical 

experimentation questionable for predictive purposes.  Another important point to consider 

is that toxicology studies are designed to show evidence for safety not for risk. 

To address the issue of uncertainty and data sparseness arising from safety pharmacology 

and toxicology screening, here we illustrate how population pharmacokinetic-

pharmacodynamic modelling can be implemented to characterise the relationship between 

drug exposure and the risk of adverse events.  The ultimate goal of our investigation is to 

demonstrate how limitations in the informative value of experimental data can be overcome 

by integrating non-linear mixed effects modelling with MCMC sampling algorithms.  An 

important advantage is that by simulating from uncertainty, one can eliminate the need for 

empirical safety factors when scaling up findings from animals to humans.  In addition, 

relevant biomarker data can be integrated into the analysis either as priors or as historical 

baseline data, allowing incorporation of pharmacodynamic processes and other covariates in 

the overall estimates of drug-induced risk (13-15).  Focus is given to the evaluation of events 

with low incidence under the assumption of different mechanisms of action for the observed 

events. For the sake of completeness, model-based estimates are subsequently compared 

with the results based on the traditional NOAEL approach. 
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Methods 

 

Overview 

A model-based approach was used to generate three month toxicokinetic data for a variety 

of hypothetical drugs.  The experimental protocols for simulation were defined according to 

current guidelines for the evaluation of toxicity and safety pharmacology with the one 

exception that data characterising a safety biomarker be collected at the scheduled 

pharmacokinetic sampling points.  Information on the occurrence of adverse events was 

assumed to be limited to terminal observations upon post-mortem examination.  Each 

simulation scenario, detailed below, was intended to detect the NOAEL in an unbiased 

manner, i.e. when the computed NOAEL was most likely to be associated with the treatment 

group receiving the lowest dose level being test0ed.  In this respect, the experimental design 

and the selection of the dose levels were such that further analysis could be performed 

using standard methods, i.e., the NOAEL approach.   

The proposed scenarios have taken into account conditions in which adverse events are rare 

or have very low incidence.  In this respect, this also represents a challenge for model-based 

analysis techniques due to low information content of the datasets.    Two different PKPD 

models were used for the simulation of pharmacokinetic and biomarker data. On the other 

hand, a variety of models were considered for the simulation of adverse events, based on 

different incidence rates and mechanisms for the onset and cessation of adverse events.  

Data was then analysed using standard NOAEL approach and by a variety of model-based 

analysis techniques.  Results were assessed for accuracy, precision and suitability for 

informed decision making.  A schematic showing the general workflow is shown in Figure 3. 

Data 

Toxicology Protocols: The experimental design of the general toxicity studies was chosen to 

mimic existing practices including treatment and satellite groups, as shown in Table 1.  

Different treatment durations were evaluated, in which four dose levels are considered 
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(vehicle, 3, 10, and 30 mg/kg/day).  The experimental protocol was based on the assumption 

that all animals are dosed daily via oral administration. Animals in the treatment groups are 

sacrificed at the end of the experiment, after the last sampling time. Satellite animals receive 

the same dose levels used in the main experimental groups.  AE information from these 

groups is not used due to the potential confounding effect of frequent blood sampling. In 

contrast to the traditional sampling schemes for pharmacokinetics, biomarkers of 

pharmacology are also sampled at pre-defined 0.1, 0.4, 1,1.5, 4, 8, 24 hours after dosing) and 

random time points so that an equal number samples are taken at each time point. 

Table 1: Experimental design of general toxicity study 

Duration Sampling 

approach 

No. of 

animals 

per dose 

group 

Sampling scheme Sampling  

time 

1 week  

 

Treatment: 

Satellite: 

4 

3 

Composite with 2 animals  per time 

point 

Serial profiles from Day 1 only 

0.1, 0.4, 1, 

1.5, 4, 8, 24 

hours after 

dose 

1 month Treatment: 

Satellite: 

10 

3 

Composite with 2 animals  per time 

point 

Serial profiles from Day 1 and 28 

0.1, 0.4, 1, 

1.5, 4, 8, 24 

hours after 

dose 

3 month Treatment: 

Satellite: 

12 

3 

Composite with 2 animals per time 

point on Week 4 and Week 13.  

Serial profiles from Day 1, Week 4 

and Week 13. 

0.1, 0.4, 1, 

1.5, 4, 8, 24 

hours after 

dose 

 

 

Ancillary pharmacology protocols (PK): It was assumed that additional data was available 

from drug metabolism and pharmacokinetics studies.  Typical experimental protocols were 

assumed which provided serial blood sampling based on eight animals per dose level, which 

received a for single dose oral administration (0.3, 1, and 3 mg/kg).  Only drug 

concentrations were obtained from these animals, no biomarker concentrations. 
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Ancillary pharmacology protocols (placebo AE): Monitoring of placebo animals enables the 

assessment of non-drug induced risk. However, the quantification of rare adverse events 

requires a far larger database than general toxicity studies provide.  Therefore, it was 

assumed that historical placebo datasets were also available from acute and chronic general 

toxicity experiments consisting of 400 animals for each type of study and treatment 

duration. 

Simulation scenarios:  All simulations and fitting procedures described below were 

performed in NONMEM 7.1 (ICON Development Solutions. Hanover, Maryland ) (25). Data 

manipulation and statistical and graphical summaries were performed in R 3.0.0 (26).  We 

assumed a population with high homogeneity and therefore no covariate relationships were 

included in any of the models. 200 simulated datasets were produced per scenario. 

Simulation of PK data: The pharmacokinetic model for all scenarios was a one-compartment 

pharmacokinetic model with first order absorption and first order elimination.  Parameter 

values for each scenario shown in Table 2.  Residual variability for PK observations was 

assumed to be 15%.  

Table 2: Pharmacokinetic model used to simulate concentrations and derive measure of drug 

exposure in the experimental groups.  For the sake of simplicity, a one-compartment model (1 CMT) 

was selected for the purpose of this analysis. 

Parameter Pop Estimate BSV 

KA 13.46 h-1 50% 

V 49.4 ml/kg 16% 

CL 2.72 ml/hr 20% 

 

Simulation of biomarker data: Two different pharmacodynamic models were investigated 

which related drug concentration to safety biomarker to risk of adverse events.  A schematic 

diagram of the two models is shown in Figure 4.  The rationale was to see how both 

empirical and model-based methodologies performed when time dependencies exist, i.e., 

the onset of the adverse events is delayed with regard to the start of treatment.  The first 
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model was an indirect response model where the biomarker was assumed to be directly 

related to risk of adverse events.  The second was an irreversible binding model where the 

formation of an unmeasured biomarker was assumed to be related to risk of adverse events. 

 

 

 

 

 

 

 

 

Figure 3 Schematic representation of the simulations performed for the evaluation and comparison 

of model-based vs. standard approach. 

 

Simulation of adverse event data: In total, six scenarios were investigated (Table 3). All 

adverse events were modelled as a two state continuous time Markov process, in which a 

state 0 corresponds to health and a state 1 corresponds to the presence of toxicity.  This 

assumption provided for simulated data yielding low information for subsequent model-

based analyses. For both hypothetical mechanisms, multiple Markov models were used to 

define different types of adverse events.  These adverse events were classified into 

reversible and irreversible.  Irreversible adverse events were events for which the remission 

rate was set to zero.  On the other hand, reversible adverse events always maintained a non-

zero probably of spontaneous remission.  The irreversible adverse event scenarios also 

happen to reflect a reversible event with left censored observation time, e.g. where 
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histological examination provides evidence of incidence (e.g. scarred tissue).  For all adverse 

events, it was assumed that symptoms and signs could only be detected at the end of the 

study duration.  This further challenges a model-based approach to analyse the data without 

compromising the standard methods. 

Indirect 

 

Cumulative effect (irreversible binding) 

 

Figure 4 Diagrams depict the different pharmacokinetic-pharmacodynamic models associated with 

the hypothesised pharmacological mechanisms leading to toxicity.  
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Table 3: Summary of simulation scenarios for a range of putative mechanisms associated with 

reversible and irreversible adverse events. None corresponds to conditions in which the compound is 

not toxic; Low corresponds to scenarios in which the occurrence of false positives and false negative 

is most relevant. Here the probability of NOAEL being the lowest dose level in the 1 month study is 

maximised.  

 

With regard to the assessment of the relationship between exposure and drug-induced risk, 

two possibilities were considered. A category “none” corresponded to drug effect having no 

influence on toxicity, so only non-adverse events were observed.  For the purposes of 

subsequent data analysis, it was assumed that drug-induced and non-drug induced adverse 

events were indistinguishable from each other.  The NOAEL analysis therefore treated all 

events as adverse drug reactions.  The second category was “low” toxicity.  Here, the drug 

effect parameters governing the simulation of adverse events in these scenarios were 

optimised so that the likelihood of the low dose of the 1 month study being the NOAEL dose 

was maximised.  The maximisation of NOAEL likelihood was performed by the R function 

optimise().   

For each scenario the occurrence of adverse events was described by a time-inhomogeneous 

Markov model for transition rates (Rxy): 

 

Scenario PKPD model AE type Drug toxicity 

n1 NA Reversible None 

n2 NA Irreversible None 

a1 Indirect Reversible Low 

a2 Indirect Irreversible Low 

b1 Irreversible Reversible Low 

b2 Irreversible Irreversible Low 
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where BIO is an independent variable representing putative (bio)markers. B01 and B10 

correspond to baseline transition rates.  For irreversible adverse events, B10 was fixed to 0. 

For reversible adverse events it was set to 1/168, so that mean duration of an adverse event 

was 1 week.  B10 was fixed to a value which corresponded to a prevalence of adverse events 

of 1% at three months.  Transition times were simulated by sampling from their cumulative 

distributions (i.e. cumulative hazard function) to obtain a continue state vs. time relationship 

for all subjects. 

 

Estimation steps 

Estimation of NOAEL: A NOAEL was obtained for each study duration. It corresponded to the 

maximum daily dosing level for which no adverse event were observed.  The NOAEL was 

expressed as the area under the concentration vs. time curve (AUC) at that dosing level, as 

determined by the composite method.  Calculation of composite AUC values entails naïve 

pooling of drug concentration data on the day of sacrifice.  AUCs were calculated by the 

trapezoidal rule using mean concentrations for each sampling time point.  

Model-based risk assessment: Pharmacokinetics and biomarker concentration-effect 

relationships were refitted using NONMEM 7.1 with FOCEI estimation.  Predicted 

exposure and biomarker estimates were obtained using empirical Bayes estimates 

(EBEs). Derived exposure and biomarker variables were then used independent 

variables for the characterisation of the relationship between exposure and risk of 

adverse events. 

A logit transformation was used to describe the incidence of AEs.  The general equation 

describing the incidence of ulcers is given by: 

 





=
leirreversib0

reversibleB
  R 10

10
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(q�,� = 1) = rst(uvwux∗0yz�,{)Lwrst(uvwux0yz�,{)    (equation 5) 

 

where  P(Ui,j) represents the probability of the presence of ulceration in individual i at time   ��.  COVi,j is the aforementioned independent variable individual i and time ��.  Possible 

values for COV were 24 hour AUC (AUC24), cumulative AUC (CAUC), 24hr area under 

biomarker-time curve (AUEC24) and cumulative AUEC (CAUEC). θ1, is a parameter governing 

the background logit probability and θ 2 is the slope parameter.  A basic model was also 

tested where θ 2 was fixed to 0 and no covariate was used. 

All adverse events were modelled in WinBUGS 1.4.3 with time, exposure and biomarker 

levels as independent variables using a proportional hazards model for left censored adverse 

events and an exponential model for current state observations.  To assess the implications 

of different strategies for the analysis of adverse event data, multiple strategies were used 

to refit the data.  These are listed in Table 5.  In addition to the five covariates models, two 

different averaged models were attempted on each simulated dataset.  The first averaging 

approach was where model predictions from all five covariate models were weighted 

equally.  The second approach was to use the Bayesian information criterion (BIC) to weight 

models.  This is consistent with weighting according to posterior model probability assuming 

a uniform prior weighting of models.  The unweighted average equally weighted all models 

ignoring model performance for the weighting scheme. 

For each model refit, prediction intervals for the risk of each observation were obtained, for 

plotting and calculation of predicted coverage.  Predictive coverage was defined as the 

number of observations where the true simulated risk falls within the 95% prediction 

interval.  Model convergence was determined by stationarity of the MCMC chain for all 

parameters by calculation of the Geweke statistic.   Unsuccessful runs were given a 0 weight 

in all average and discarded from summaries. 
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 Table  5: Overview of the methods and measurements applied to the different scenarios. The table also summarises how data are integrated to distinguish 

between adverse drug reactions (ADRs) and adverse events (AEs).  

 Assessment Data to be generated 
Data contributing to 

evidence synthesis 

Estimation of 

uncertainty 

Separation of 

ADR and AE 

risk 

Quantification 

of delayed 

effects 

Current 

approach 

(NOAEL) 

Observed PK exposure 

(over 1-day snapshot) 

↓ 

Observed AEs 

- PK (satellite groups) 

 

- Presence/absence 

(binary) of AEs in  

experimental cohorts 

 

- None No No No 

Model-

based 

approach 

(PK)  

PK exposure (over 

course of therapy) + PK 

variability 

↓ 

ADR risk 

- PK (satellite groups + 

toxicology groups) 

 

-  Predicted AE 

incidence rate in 

experimental cohorts 

- Historical PK data 

 

- AE incidence rate 

in historical 

placebo 

Parameter 

and model 

uncertainty 

Yes Yes 

Model-

based 

approach 

 

(Biomarker) 

PK exposure (over 

course of therapy) + PK 

variability 

↓ 

Biomarkers (over course 

of therapy) + variability 

↓ 

ADR risk 

- PK + biomarkers 

(satellite groups + 

toxicology groups) 

 

- Predicted AE incidence 

rate in experimental 

cohorts 

- Historical PK data 

 

- Historical 

biomarker data 

  

- AE incidence rate 

in historical 

placebo 

Parameter 

and model 

uncertainty 

Yes Yes 
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Results 

 

As described below, the use of simulated data for the evaluation of hypothetical scenarios 

provided further insight into the limitations of current practices for the assessment of safety 

thresholds, and in particular of the NOAEL when taking into account differences in the 

underlying mechanisms of toxicity.  Results from modelling are shown together with the 

parameter values obtained from naïve pooling and non-compartmental analysis where 

applicable.  

It is clear from the profiles observed for scenario a1 (Figure 5) that the risk of adverse events 

changes in a time-dependent manner, irrespectively of the point estimates for drug 

exposure or effect, as determined by pharmacodynamics (biomarker levels).  Such time-

dependencies impose further attention to the experimental design as not only the dose level 

under investigation, but also the mechanism of action underlying drug toxicity will 

contribute to the experimental results.  Moreover, these differences may or may not be 

captured by typical variables of interest (Table 6).  The inability to discriminate the 

underlying mechanism of action based on the available experimental data can lead to 

obvious issues with model identifiability.  On the other hand, despite this limitation, the 

large differences in convergence rate suggest that model-based estimates might be suitable 

to explore or exclude possible or plausible causes of toxicity. 
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Table 6: Overview of the predicted coverage (%) for model predictions, and corresponding 

model selection rates (%) for each of the scenarios (lower panel).  The basic model was not 

included in tests for model selection. 

 

 

 

Scenario AUC24 CAUC CAUEC AUEC24 

n1 23 29 40 22 

n2 61 25 22 6 

a1 11 0 13 76 

a2 0 29 28 43 

b1 3 0 10 87 

b2 0 24 36 40 

 

Scenario 

BMA -all 

models 

BMA -

excluding 

basic 

model Basic AUC24 CAUC CAUEC AUEC24 

a1 65 78 48 78 65 65 78 

a2 65 78 48 48 65 65 96 

b1 48 65 30 65 65 78 78 

b2 48 78 30 48 30 48 96 

n1 78 78 91 78 78 78 78 

n2 96 96 96 96 96 96 96 
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Figure 5.  Plot of study data for scenario a1.  This increase in risk represents approximately a 10-fold 

increase from baseline risk, however, overall risk is low (risk = 13% per individual; expected number 

of events per cohort = 1.04). 

 

 

With regard to the method of analysis, our results show that the accuracy and precision of 

model-based estimates for AUC24, CAUC, AUEC24 and CAUEC were similar across different 

dosing groups and treatment durations.  For all scenarios, BICs for competing models with 

different covariate relationships (AUC24, AUC, AUEC and AUEC24) were broadly similar.  This 

suggests that whilst the parameters of a given model may be estimated accurately, the 

binary adverse events datasets simulated here provide insufficient information for model 

discrimination between competing models. 



 196 

The success rates for convergence of models was high, the success rate being less than 100% 

was due to false negatives in the Geweke diagnostics.  Given the alpha level of 0.05, this 

would result in a 9.8% failure by random chance for a model including two parameters.  On 

the other hand, the observation that the BIC, AIC and DIC tend to overweight models 

without drug affect for rare adverse events implies that a conservative approach should be 

taken where the weighting of models should be decided by a priori confidence in a model 

specification rather than data fitting criteria (Table 6).  A general strategy, supported by our 

results, to account for model uncertainty is model averaging with model weighting being 

independent of data fitting criteria (such as the BIC).  Modellers should define models to fit 

to the data before conducting the analysis focusing on physiologically plausible 

specifications.  Prior model weights should be assigned and reflect the prior belief in a model 

specification.  Deviation from these model weights should only take place when it is strongly 

justified by the data (i.e. a large drop in BIC). 

Safety threshold vs. exposure-risk relationships 

NOAEL probability distributions are depicted in figure 6.  The mostly likely outcome for the 

NOAEL is the peak of the distributions.  An overview of the most likely outcome of the 

analysis of each scenario is shown in Table 7. 

Lastly, Table 8 shows the likelihood for each scenario, of concluding that the compound is 

safe, given that based on the lack evidence of adverse events by traditional methods would 

imply progression of the compound.  The results show that despite the characterisation of a 

viable therapeutic window for scenarios n1, n2, and a1, a different conclusion would be 

drawn by empirical methods.  In fact, scenario n2 is only 43% likely to be deemed safe, 

whereas this figure would be even lower for scenario a1 (27%).  This is likely due to the 

inability of these methods to quantitative account for background adverse events.  
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Table 7 - Likely study outcome using a standard approach (NOAEL) for a range of putative 

mechanisms associated with reversible and irreversible adverse events. 

 

  

Scenario Likelihood outcome given strict adherence to NOAEL approach 

n1 No adverse events will be observed.  Drug will appear safe at all duration 

levels. 

n2 Drug will appear safe at 1 month and below, but at three months, the 

NOAEL  will most likely fall  below the lowest tested dose 

a1 Most likely NOAEL dose at 1 week treatment is overestimated, i.e., it 

appears to be the mid dose level. 

Most likely NOAEL dose at 1 month is the low dose, but it has only 47% 

chance of being selected. 

 At three months, the NOAEL will most likely fall below the lowest tested 

dose . 

a2 At 1 week no NOAEL can be established due to lack of adverse events. 

 Most likely NOAEL dose at 1 month is the low dose, but it has only 47% 

chance of being selected. 

 At three months, the NOAEL will most likely fall  below the lowest 

tested dose 

b1 At 1 week no NOAEL can be established due to lack of adverse events. 

Although low dose at 1 month has been maximised,  the NOAEL will 

most likely fall below the lowest tested dose for treatment duration > 

1month. 

b2 At 1 week no NOAEL can be established due to lack of adverse events. 

 Although low dose at 1 month has been maximised,  the NOAEL will 

most likely fall below the lowest tested dose for treatment duration > 

1month 
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Table 8. Expected probability (%) of progression beyond the different stages of development 

assuming an empirical analysis where AEs observed at the low dose would lead to the compound 

being discontinued. To better interpret these figures, the reader is advised to compare the results 

presented in Figure 6, where the true NOAEL levels are presented. As it can be noticed scenarios 

n1,n2 and a1 are shown to have a viable therapeutic window and therefore high probability of 

progression. Scenarios a2, b1, and b2 are not deemed safe and therefore have low probability of 

progression into further development. 

 

SCENARIO 1 week 1 month 3 months total 

n1 97.37 90.14 87.98 77.22 

n2 98.14 83.76 52.73 43.34 

a1 87.87 59.74 51.02 26.79 

a2 95.26 61.29 15.68 9.156 

b1 94.44 50.06 8.076 3.818 

b2 96.85 52.49 3.757 1.91 

 

 

 



 199

   

Figure 6:  Probability distributions of the NOAEL dose (left) and exposure (right) for each simulated scenario.  (left) Pink indicates the cohort where 

p(dose=NOAEL dose) is maximised.  Blue indicates that a NOAEL could not be determined where either no cohorts exhibit AEs or the lowest dose cohort 

exhibits AEs.  (Right) Red line indicates true exposure corresponding to the threshold ADR risk (threshold set to ADR risk at low dose of 1 month cohort).  

“Low” and “high” indicates exposures below and above the exposure range of the study, respectively. 
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Figure 7.  Relationship between predicted risk of adverse event and different measures of drug exposure, as described by the different scenarios 

investigated in this paper. Upper panel, scenario n1 (left),  n2 (right); lower panel, scenario a1 (left), a2 (middle), b2 (right). 
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Discussion 

 

Empirical experimental protocols are used to evaluate safety pharmacology and toxicity in 

preclinical species as the basis for defining safe exposure in humans.  These protocols are 

not designed to understand toxicological mechanisms or provide insight into mechanism-

based extrapolation across species (2,16,17).  Such a limitation in experimental protocols can 

lead to biased conclusions about drug safety especially when the events of interest occur at 

low frequency or are delayed. In these circumstances, shortcomings in current approaches 

cannot be ignored. 

In the current investigation we have illustrated the implication of low incidence adverse 

events on the estimates of a safety threshold (i.e., NOAEL) as compared to those obtained by 

the characterisation of the relationship between drug exposure and risk of adverse events.  

Although there may be fundamental differences in toxicity pathways at different parts of the 

exposure–response curve, we have assumed that examples based on a single mechanism 

would be sufficiently realistic to introduce the concept.  The phenomenon of exposure-

dependent transitions in mechanisms of toxicity can be explored in a similar manner by 

introducing interaction factors (18,19).  Thanks to the statistical features of nonlinear mixed 

effects modelling, we have also shown how individual susceptibility can be incorporated into 

the evaluation of the exposure-response relationships, whilst taking into account differences 

in the underlying mechanisms involved in the continuum between exposure and adverse 

events. 

In this regard, it is helpful to think of a multistage process, which starts with systemic 

exposure and progresses through target exposure, yielding early biological effects (e.g., at 

the sub-cellular level), altered structure or function and subsequently clinical disease (20-

22).  The introduction of biomarkers of pharmacology can therefore not only contribute to 

further understanding of target exposure, but it also enables discrimination between dose-

dependency, class effects and regimen-related mechanisms without the risk of inaccuracies 

and poor precision which seem to prevail  when relying on NOAEL estimates (23). 
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From a pharmacological perspective, the selection of exposure measures (i.e. the parameter 

of interest) forms the basis for defining “safe exposure”.  Arbitrary selection of the measure 

of exposure to be used as a marker of safety can add unnecessary, correlated noise into the 

data, which may subsequently lead to bias and loss of precision (24,25).  In this context, our 

analysis has shown that toxicity findings associated with direct effects were most accurate 

represented by AUC or CMAX.  Moreover, in these cases, it appears that performance relative 

to the NOAEL approach is improved even when biomarker data was not available. By 

contrast, the availability of biomarker data was shown to help in the estimation of adverse 

events when delays occur between the beginning of treatment and onset of the effects.  

Other measures of exposure such as cumulative AUC proved more effect with indirect 

mechanisms.   

The results presented here also provide guidance for prospective use of model-based 

approaches in the evaluation of safety pharmacology and toxicology.  In contrast to current 

practice, in which experimental data is generated to define a safety threshold, we have 

shown how current understanding pharmacokinetic processes can be integrated with 

knowledge about the putative mechanisms of action to characterise exposure-risk 

relationships during safety screening in early drug development.  In fact, we demonstrate 

how important additional, ancillary data can be when dealing with rare or low frequency 

events. Statistical methods are available that enable formal inclusion of such knowledge as 

informative priors (26, 27).  However, prior distributions need be defined in advance of the 

analysis to minimise subjective bias.  The alternative strategy of aggregating datasets is also 

useful if additional study data is available from a population which is exchangeable with 

experimental data under investigation.  This underpinned the use of the aggregated placebo 

data set in our analysis.   

From a methodological perspective, the various scenarios have shown that despite the 

known advantages of parametric, model-based approaches, model identifiability can be an 

important issue.  The inability to separate models based on diagnostic criteria may lead to 

bias in predicted risk.  Care therefore needs to be taken not to over-interpret good 
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performance on model diagnostics as an indication of a well specified structural model.  The 

specification of the structural models for rare adverse events needs to be primarily justified 

on biological grounds.  It is also important to emphasise that reporting of model outputs 

(e.g. parameters, model predictions) should clearly incorporate parameter and model 

uncertainty.  Clear and accurate reporting of uncertainty enables us to understand and 

formally account for uncertainties arising from limitations in data collection and model 

estimation.   

One last methodological aspect that deserves attention concerns the accuracy and precision 

of the estimates of safe exposure.  The incorporation of placebo aggregated data allowed for 

quantification of baseline and drug-induced risk in a similar manner to what is currently 

performed for the clinical evaluation of drug safety (28,29).  Parameters for baseline risk 

were likely to be large without sufficiently large amounts of placebo data.  This would in turn 

inflate uncertainty around remaining parameters determining drug-induced risk.  Therefore, 

we have modelled both components of risk together.  Nevertheless, it is also feasible to 

model baseline risk a priori to ensure the uncertainty distributions will be narrow enough to 

precisely estimate drug-induced risk. 

The high success rates observed with a model-based approach also shows that incorporating 

model uncertainty is feasible. In turn, realistic estimation of uncertainty enables more 

informed decision-making with regard to risk.  There is a caveat that outside the 

experimental range, the positioning of the 95% risk bound will likely depend on a single 

model if equal weighting is used.  This will be the model that produces highest predictions of 

risk at low exposures.  If this proposed model is physiologically plausible and a priori equally 

likely to other proposed models, then this is appropriate (30).  However, a linear model in 

this context was the least plausible and provided overly conservative estimates.  A way of 

handling plausible, but a priori unlikely mechanisms would be to assign appropriately small 

model priors. 

Finally, it should be noted that missed adverse events were also easily quantified using the 

proposed strategies.  Differently, from the empirical approach to treating missing events as 
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absent, the use of MCMC methods provides evidence of the parameter distribution, 

enabling imputation of the events, even if they have not been observed. 

Limitations 

 

The scenarios used in this investigation were not intended to provide a comprehensive 

review of all possible toxicological mechanisms.  Therefore, it should be noted that no 

covariate effects other than baseline incidence and treatment itself were considered to drive 

adverse events.  As the number of potential covariates increases, the chance of selecting a 

false positive covariate relationship increases.  This is an important consideration whenever 

several competing models perform similarly.  Our recommendation is a pragmatic approach 

of restricting the model search to physiologically plausible models and the use statistical 

tools to guard against over-fitting (31).  In the present study, this would have involved an 

increase in computational time by a factor of more 1000 times. 

The simulated adverse events were related to descriptors of occurrence such as incidence 

and prevalence.  These were idealised situations that represent two extremes, either where 

none or complete information was available.  In reality adverse event data will contain a 

spectrum of varying degrees of information on incidence for example with interval censoring 

or imperfect sensitivity in detection.  For instance, gastric ulceration may form and heal 

before the end of treatment, making histological data inaccurate for the estimation of risk.  

Poor specificity in detection for another adverse event may similarly overestimate risk.  

Resolving this uncertainty, however, is only possible with additional information regarding 

the pathophysiology, sensitivity and specificity of detection of the methods used to 

investigate these events.  

 

In conclusion, evaluation of safety is paramount for the progression of new molecules into 

humans.  However, current methods in preclinical toxicology do not support the integration 
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of pharmacokinetic and pharmacodynamic data as basis for predicting safe exposure in 

humans.  By contrast, a model-based approach represents a viable tool for characterising 

risk-exposure relationships, including estimates of parameter and model uncertainty.  A 

benefit this strategy lends to decision-making is that clinical judgment can be applied to 

consider the entire risk-response relationship of each adverse event, rather than a point 

estimate or threshold. 
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Abstract 

The assessment of safety in traditional toxicology protocols rely on evidence arising from 

observed adverse events (AEs) in animals and on establishing their correlation with different 

measures of drug exposure (e.g., Cmax and AUC).  Such correlations, however, ignore the 

role of biomarkers, which can provide further insight into the underlying pharmacological 

mechanisms. Here we use naproxen as a paradigm drug to explore the feasibility of a 

biomarker-guided approach for the prediction of AEs in humans.  A standard toxicology 

protocol was set up for the evaluation of effects of naproxen in rat, in which four doses were 

tested (7.5, 15, 40 and 80mg/kg).  In addition to sparse blood sampling for the assessment of 

exposure, thromboxane B2 and prostaglandin E2 were also collected in satellite groups.  

Nonlinear mixed effects were performed to evaluate the predictive performance of the 

approach.  A one-compartmental model with first order absorption was found to best 

describe the pharmacokinetics of naproxen.  A nonlinear relationship between dose and 

bioavailability was observed which leads to a less than proportional increase in naproxen 

concentrations with increasing doses.  The PD of TXB and PGE was described by direct 

inhibition models with maximum pharmacological effects achieved at doses > 7.5 mg/kg.  

The predicted PKPD relationship in humans was within 10-fold of the previously published 

values.  Moreover, our results indicate that biomarkers can be used to assess interspecies 

differences in PKPD and extrapolated data from animals to humans.  Biomarker sampling 

should be used systematically in general toxicity studies. 
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Introduction 

 

Long term safety issues have increasingly become a cause of late stage attrition (1), 

prompting regulatory authorities to increase requirements for sponsors to demonstrate a 

favourable benefit-risk balance for new medicines.  Such a prerequisite has implications for 

current practices in early drug discovery and development.  Thus far, pharmaceutical 

companies seem to have adopted the concept of measuring any markers based on known 

pharmacology of the drug under development.  One challenge is the expectation/early 

identification of unknown mechanisms and the timely implementation of the assessment, 

the other challenge is the effective translation or interpretation of the data accumulated. 

Both from a clinical perspective and a pharmacological perspective, the demonstration of 

safety can only be tackled by a strategy that ensures the characterisation, in a mechanistic 

manner, of the relation between drug dosing and response (Danhof et al., 2008).  The vast 

majority of experimental protocols currently used for the evaluation of toxicity and safety 

pharmacology use dose and systemic drug exposure as a proxy for risk.  However, other 

markers of safety and toxicity may be better predictors of adverse drug reactions.  This is 

particularly important given the high degree of nonlinearity in the relation between 

pharmacokinetics and pharmacodynamics as well as the potential interspecies differences in 

these relations.  Ultimately, these nonlinearities may cause downstream biomarkers, other 

than target or systemic exposure to a drug, to better describe and predict the outcome or 

response to treatment (Bai et al., 2013).  

There is therefore an urgent need to evaluate and refine the methodology for the 

assessment of safety.  To this purpose, the classification scheme devised by Rawlins and 

Thompson, 1991, constitutes a scientific basis for the establishing correlations between 

adverse drug reactions and pharmacological effects.  Briefly, this scheme defines adverse 

drug reactions according to seven different categories, which correspond to the underlying 

pharmacological effects.  As shown in Figure 1, the different categories nicely match the 

mechanistic classification of biomarkers proposed by Danhof et al., 2005, which defines the 



 

requirements for establishing further correlations with drug exposure. As such, this 

mechanistic classification could be used for the evaluation of safety and toxicity and 

consequently for the accurate assessment of (long term) risk in humans. 

 

 

Figure 1.  Mechanistic classification of biomarkers (Reprinted with permission from Danhof 

2005). This concept can be linked to the classification for adverse events proposed by Rawlins and 

Thompson, which clusters unwanted pharmacological effect into seven

mechanism of action or characteristics of their manifestation. A type A event is one that is due to an 

extension of the active pharmacologic properties of the drug (A indicates augmented). They are also 

called predictable or anticipated events. They are generally less severe and more frequent than type 

B events. This augmented pharmacologic action may occur at the targeted receptors or at other 

nontargeted receptors producing lateral effects, parallel effects, or side effects. Types C

are not mechanisms but characteristics of their manifestations. Type C refers to reactions associated 

with long-term drug therapy. Type D is linked to carcinogenic and teratogenic effects. These 

reactions are delayed in onset and are very r

studies are done before drug is licensed. Type E refers to end of use or rebound effects. Type “F” 

reactions indicate failure of treatment.  Type “G” reactions are due to genetic polymorphism.

 

In the current investigation we therefore explore the feasibility of a model

for the evaluation of long term adverse events in which biomarkers of pharmacology are 

used as proxy of drug exposure. 

as paradigm compound to demonstrate the concept of biomarker
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we subsequently illustrate how modelling and simulation techniques can 

accurate estimation of the safe dose levels of naproxen after chronic exposure. 

Non steroidal anti-inflammatory drugs exert their actions though an interaction with cyclo
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lishing further correlations with drug exposure. As such, this 

mechanistic classification could be used for the evaluation of safety and toxicity and 

consequently for the accurate assessment of (long term) risk in humans.  
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reactions are delayed in onset and are very rare since extensive mutagenicity and carcinogenicity 

studies are done before drug is licensed. Type E refers to end of use or rebound effects. Type “F” 

reactions indicate failure of treatment.  Type “G” reactions are due to genetic polymorphism.
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extension of the active pharmacologic properties of the drug (A indicates augmented). They are also 

ted events. They are generally less severe and more frequent than type 

B events. This augmented pharmacologic action may occur at the targeted receptors or at other 

nontargeted receptors producing lateral effects, parallel effects, or side effects. Types C, D, E, F and G 

are not mechanisms but characteristics of their manifestations. Type C refers to reactions associated 

term drug therapy. Type D is linked to carcinogenic and teratogenic effects. These 
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and prostaglandins (PG) (102).  The perceived role of COX-2 in inflammation has 

substantiated the extensive use of selective COX-2 inhibitors as analgesic drugs in acute and 

chronic inflammation.  Yet, despite a putative reduction in gastrointestinal bleeding and 

ulceration by selective inhibition (13,103), cardiovascular events have arisen after prolonged 

use of rofecoxib, a selective COX-2 inhibitor which led to its withdrawal from the market, 

followed by considerable changes in the regulatory requirements for approval of novel non-

steroidal anti-inflammatory drugs (Fitzgerald, 2007).  

Continuous COX-1 inhibition following prolonged administration of non-selective COX 

inhibitors is known to induce gastrointestinal adverse effects, in particular ulcerations and 

haemorrhagic bleeding.  Unfortunately, at present the dose selection of COX inhibitors 

disregards whether maximum, long-lasting blockade of either enzyme is strictly required for 

response (Huntjens et al., 2005).  An important question that needs to be answered is 

therefore how much and how long COX-2 and COX-1 should be inhibited to ensure an 

optimal risk-benefit balance allowing for a sustained analgesic response and an appropriate 

safety margin in the treatment of chronic inflammatory conditions.  Given the mechanism of 

COX inhibition and the nature of the inflammatory response, PG and TXB can be used as 

biomarkers of pharmacological effects (Huntjens et al., 2006).  

Using the biomarker classification proposed by Danhof at al., 2005 and a model-based 

approach for the analysis and interpretation of the results, we show how a relationship can 

be established between drug exposure, biomarkers and safety findings (i.e., gastric 

ulceration).  
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Methods 

 

In this investigation the safety of the non-selective COX inhibitor naproxen was evaluated at 

three different treatment durations using a slightly modified version of a typical general 

toxicology protocol.  Endpoints included adverse events, including GI histology, 

pharmacokinetics and pharmacodynamics.  The intent of the study was explore the 

feasibility and impact of proposed methodology.  Briefly, rats received varying daily oral 

doses of naproxen.  A predefined sampling scheme was used to monitor for adverse events, 

which included sacrifice of individual animals for histopathology of the GI tract.  Satellite 

animals receiving identical doses had blood samples collected at various time points during 

the course of treatment for the assessment of both pharmacokinetics in plasma and 

biomarkers (TXB2 and PGE2).  An overview of the study protocol is depicted in Figure 2.  The 

diagram shows a typical experimental protocol including different treatment duration and 

satellite animals sampled according to composite sampling scheme. 

Animals 

The experimental protocol was approved by the Ethical Committee on Animal 

Experimentation of the University of Leiden.  Experiments were performed on male Sprague-

Dawley (SD) rats (Charles River B.V., Maastricht, The Netherlands) with an initial weight of 

256 ± 19 g.  The animals, 4 per cage, were housed in standard plastic cages with a normal 12-

hour day/night schedule (lights on 07.00 a.m.) and a temperature of 210C.  The animals had 

access to standard laboratory chow (RMH-TM; Hope Farms, Woerden, The Netherlands) and 

acidified water ad libitum. 

Drug administration 

Naproxen Sodium (Sigma Aldrich BV, Zwijndrecht, The Netherlands) was dissolved in sterile 

Millipore distilled H2O. The animals received daily doses via oral gavage for periods of 

between 1 and 4 weeks at dose levels of 0, 7.5, 15, 40 and 80 mg/kg. 
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Figure 2: Schematic representation of the experimental protocol design. As the primary purpose of 

the study was to investigate the utility of biomarker data collection, modifications were made to a 

standard toxicology protocol.  Only male animals were investigated and organ histology and 

pathology were limited to the known drug-induced toxicology findings, i.e., stomach ulceration. The 

use of an integrated approach implied the combination of additional data from (standard) 

pharmacokinetic experimental data (DMPK experiments). Animals were stratified into groups by 

treatment duration and dose level. Treatment duration varied between one, two and four weeks. For 

each treatment duration, four groups were tested each of which received four different dose levels 

(n = 8 animals/dose level in the toxicology group and n= 24 animals /dose level in the satellite arm, 

i.e.,  3 animals/sampling time point).  

 

Study Design 

As the primary purpose of the study was to investigate the utility of biomarker data 

collection, modifications were made to a standard toxicology protocol.  Only male animals 

were investigated and organ histology and pathology were limited to the known drug-

induced toxicology findings, i.e., stomach ulceration.  Animals were stratified into groups by 

treatment duration and dose level.  Treatment duration varied between one, two and four 



 220 

weeks. For each treatment duration, four groups were tested each of which received four 

different dose levels (n = 8 animals/dose level in the toxicology group and n= 24 animals 

/dose level in the satellite arm, i.e., 3 animals/sampling time point).  Details of the final 

experimental protocol are depicted in Figure 2.  It should be noted that the initial regimens 

included oral daily doses of 0, 15, 40 and 80 mg/kg naproxen.  However due to adverse 

events observed in the 1-week 80 mg/kg group, the protocol was amended to 0, 7.5, 15, and 

40 mg/kg cohorts. The animals receiving 80 mg/kg suffered from unacceptable weight loss 

and were sacrificed immediately after the first week on treatment.  Unacceptable weight 

loss was defined as either a weight loss on three or more consecutive day or a total weight 

loss of more than 10% relative to the baseline value.  Histological evaluation of the stomach 

was performed to establish a correlation between acute and long term adverse events.  

After euthanasia, stomachs were removed immediately and were cut open along the greater 

curvature and washed with warm saline.  The inner surface was photographed to allow the 

measurement of the area covered by hemorrhagic ulceration.  The area of ulceration was 

determined under a dissecting microscope.  Gastric ulceration was measured as percentage 

stomach surface area affected by ulceration.  A software (Image J version 1.43) was used for 

calculating ulcer area and total stomach surface area.  The person who performed the 

ulceration measurement was blinded as to treatment group. 

Given the need to establish a correlation between drug exposure, biomarkers, and adverse 

events, optimality concepts were used to ensure accurate characterisation of 

pharmacokinetics and biomarkers.  In addition, an integrated approach was used which 

takes into account the pharmacokinetics of the naproxen at putative therapeutic levels (i.e., 

the so-called DMPK group).  In contrast to standard protocols, sparse and serial blood 

sampling schemes were considered.  For the DMPK group, serial samples were collected at 0, 

0.25, 0.75, 1.5, 8, 24 hours after dosing.  The sampling times in this set of animals were not 

optimised for subsequent modelling.  On the other hand, optimal design methodology was 

used to select a sampling scheme and individual sampling times for satellite and toxicity 

animals (Josa et al., 2001).  Optimisation of the sampling scheme has been performed 

according to D-optimality principles, as implemented in PopED (University of Uppsala, 
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Sweden).  Due to practical constraints, optimized sampling time points were rounded to the 

nearest 15 min after dosing.  The final schedule included therefore the following sampling 

times:  0, 0.25, 0.5, 0.75, 1, 1.5, 2, 8, 24 hours post dose.  Blood samples of 250μl were taken 

from the tail vein and split into aliquots, namely 100μl for naproxen concentrations and 

PGE2 and 50μl for TXB2.  Animals allocated to the toxicology groups were sampled only at 

the beginning and end of the treatment, prior to sacrifice.  Satellite animals were each 

sampled four times throughout the study after dosing on day 1, 7, 14 and 28.  Blood samples 

for pharmacokinetics were placed into heparinised tubes and centrifuged at 5000 rpm for 10 

min. Plasma was stored at –200C until analysis. Blood samples for TXB2 analysis were placed 

into tubes and allowed to clot for 1 hour at 370C in a stirring water bath. Serum was 

collected after centrifugation and stored at –200C until analysis.  Tubes for the analysis of 

PGE2 were prepared by evaporating aspirin (10 µg/ml in methanol and heparin (10 IU)). 

Blood samples were placed in tubes together with 10 µg/ml lipopolysaccharide (LPS).  

Samples were incubated and stirred for 24 hours at 370C in a water bath.  Plasma was 

separated by centrifugation and stored at –200C until analysis. 

  

Bioanalysis of naproxen 

Naproxen concentrations were analysed via HPLC in accordance with the method described 

by Satterwhite and Boudinot (1988).  50μl Plasma samples were spiked with 50μl internal 

standard (1000mg/ml ketoprofen in methanol).  The pH was then adjusted via addition of 

0.2ml 1M phosphate solution at pH 2.  The extraction process was performed with 5ml 

diethyl ether, after which the residue was then dissolved in 100μl mobile phase and then 

50μl of this solution was injected into the HPLC system.  The HPLC system consisted of a 

Water 501 solvent pump, a Waters 717plus autosampler (Millipore-Waters, Milford, MA, 

USA), Superflow 757 Kratus UV absorbance detector (Shimadzu, Kyoto, Japan).  A C18 3μm 

cartridge column (100 x 4.6mm i.d., Chrompack, Bergen op Zoom, The Netherlands) was 

equipped with a guard column for the chromatography process.  Mobile phase was made up 

of an 82:18v/v of 0.02M phosphate buffer (pH 7.0) and acetonitrile and was set to a flow 
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rate of 1.0ml/min.  Measurement of ultraviolet absorbance was performed at a wavelength 

of 258nm.  The data was acquired and processed using a Chromatopac CR3A integrator 

(Shimadzu, Kyoto, Japan).  The calibration curves showed linearity over range of known 

concentrations (250-100,000ng/ml).  Validation was carried out and the analytical process 

was shown to have a mean accuracy and precision of 96.3% and 2.94%, respectively.  The 

intra-assay variability was shown to be 2.97%. 

 

Analysis of TXB2 and PGE2 

PGE2 and TXB2 were quantified by an in vitro whole blood assay (WBA) using a validated 

enzyme immunoassay (Amersham Biosciences Europe GmbH, Freiburg, Germany).  Samples 

were diluted in assay buffer (2-50 times for PGE2, 200-2000 times for TXB2) and a 50 µl 

sample was transferred into a coated well plate.  After addition of 50 µl antibody and 50 µl 

peroxidase conjugate, samples were incubated for 1 hour, washed four times and incubated 

for 15 min (TXB2) or 30 min (PGE2) after which 150 µl substrate was added.  The enzyme 

reaction was halted by addition of 100 µl 1M sulphuric acid and optical density was 

measured in a plate reader at 450 nm. 

 

Data analysis  

Pharmacokinetic and biomarker data from all experimental groups were combined for an 

integrated analysis of pharmacokinetics and pharmacodynamics of naproxen using nonlinear 

mixed effects modelling, as implemented in NONMEM version 7.2.0.  Convergence was 

determined by successful minimisation and covariance step.  Final model parameters were 

estimated by the first order conditional estimation method with interaction (FOCEI).  This 

approach allows the estimation of inter- and intraindividual variability in model parameters.  

All fitting procedures were performed on a computer (AMD-Athlon XP-M 3000+) running 

under Windows XP with a FORTRAN compiler (Compaq Visual Fortran, version 6.1).  Data 



 223 

processing, management and graphical display were performed in R (R Development Core 

Team, 2012).  Model diagnostics and validation were performed according to graphical and 

statistical criteria.  Goodness-of-fit plots, including observed (OBS) versus individual 

prediction (IPRED), OBS versus population prediction (PRED), conditional weighted residuals 

(CWRES) versus time and CWRES versus OBS were used for diagnostic purposes (104).  

Model validation included numerical predictive checks (NPC), visual predictive checks (VPC) 

and normalised prediction distribution errors (NPDE). If shrinkage was found to be high 

(>20%),  diagnostics using empirical Bayes estimates (EBEs), e.g. plots involving IPRED or 

individual parameter estimates, were not performed due to their reduced diagnostic value. 

Pharmacokinetic (PK) model: The pharmacokinetics of naproxen was described initially by a 

one-compartmental model with first order absorption and first order elimination assuming a 

(relative) bioavailability of 1.  Additional compartments and dose-dependent kinetics were 

also evaluated during model building.  Model selection and identification was based on the 

likelihood ratio test, parameter point estimates and their respective 95% confidence 

intervals, parameter correlations and goodness-of-fit plots.  For the likelihood ratio test, the 

significance level was set at p<0.01, which corresponds with a decrease of 6.6 points, after 

the inclusion of one parameter, in the minimum value of the objective function (MVOF) 

under the assumption that the difference in MVOF between two nested models is χ2 

distributed.  

Based on model selection criteria, naproxen pharmacokinetics was best described by a one 

compartment model including absorption rate constant (Ka), clearance (CL) and volume of 

distribution (V) as primary parameters.  The analysis was performed by use of the ADVAN13 

routine in NONMEM.  Variability in pharmacokinetic parameters was assumed to be log-

normally distributed in the population.  An exponential distribution model was used to 

account for inter-individual variability: 

( )iiiP ηθ exp⋅=       equation (1) 
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where θ is the population estimate for parameter P, Pi is the individual estimate and ηi is the 

normally distributed interindividual random variable with mean zero and variance ω2.  The 

coefficient of variation (CV %) of the structural model parameters is expressed as percentage 

of the root mean square of the interindividual variance term.  

Selection of an appropriate residual error model was based on inspection of the goodness-

of-fit plots.  A combination of a proportional and an additive error model was then proposed 

to describe residual error in the plasma drug concentration: 

( ) 2,1,,, 1 ijijijpredijobs CC εε ++⋅=     equation (2) 

where Cobs,ij is the jth observed concentration in the ith individual, Cpred,ij is the predicted 

concentration, and εij is the normally distributed residual random variable with mean zero 

and variance σ2.  The residual error term contains all the error terms that cannot be 

explained by other fixed effects including experimental error (e.g., error in recording 

sampling times) and structural model misspecification.  

Pharmacokinetic-pharmacodynamic (PKPD) model: The PKPD data were analysed 

sequentially using the so-called PPP&D approach (105,106).  In the PPP&D sequential 

analysis, population pharmacokinetic parameters are fixed, but individual pharmacokinetic 

parameters are estimated simultaneously with pharmacodynamic parameters based on both 

PK and PD data.  Even though more computationally intensive, we have preferred this 

strategy to the more common usage of simulated plasma concentration from empirical 

Bayes estimates as an independent variable since the high expected shrinkage would result 

in overestimation of the variance of PKPD random effects parameters (Karlsson et al., 2007).  

PGE2 and TXB2 concentrations were used in this study as markers of the underlying 

pharmacological effects with the aim of identifying their relevance as a proxy for safety after 

naproxen exposure. The sigmoid Imax model was used to relate naproxen plasma 

concentration (C) to the drug effect by the equation: 

))/((*)( 50max00
nnn ICCCIIIEffect +−−=   equation (3) 
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where I-max represents the maximal inhibitory effect to naproxen, I0 the baseline production 

of PGE2 or TXB2 and n the Hill coefficient. This equation is an adaptation from the Emax model 

in order to obtain the absolute values for I0 and Imax for the direct calculation of maximal 

inhibition in percentages.  To allow for further comparison with historical data, the model 

was re-parameterised during the final analysis to obtain estimates of IC80, i.e., the 

concentration corresponding to 80% biomarker inhibition.  The relationship between IC50 

and IC80 can be implemented by the following equation: 

nICIC 45080 ⋅=      equation (4) 

Covariates: The role of potential covariate factors on PK and PKPD model parameters was 

evaluated using the stepwise covariate method (SCM) in PsN (107).  Potential influential 

factors included clock time, body weight, age and biomarker levels at baseline.  Covariates 

were incorporated into the model by stepwise forward inclusion. A significance level  of 

p<0.01 was used for inclusion, which represented a drop of least 6.63 units in the objective 

function for each additional parameter.  A final evaluation of the statistical significance of all 

factors identified during the previous step was performed by subtracting each covariate 

individually (backward elimination).  The final structural model (i.e., fixed effects model) 

included only those covariates whose subtraction resulted in a decrease of at least 3.84 units 

in the objective function (p<0.05). 

Posterior predictive performance evaluation: The performance of the population PK and 

PKPD models were assessed by numerical and visual predictive checks. To that purpose, 

1000 data sets were simulated with the final model parameter estimates. The mean and the 

95 % confidence intervals were calculated for naproxen, PGE2 and TXB2 concentrations at the 

pre-defined sampling time points used in the experimental protocols. Validation procedures 

also included normalised prediction distribution errors (NPDE), which are based on the 

assumption that the normalised (decorrelated) prediction distribution errors (discrepancies) 

are normally distributed (Comets et al., 2008). One hundred datasets were simulated using 
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the final model, which was then tested for the assumption of normality of the prediction 

distribution errors. 

Exposure calculation: In addition to the use of a model-based approach to estimate relevant 

pharmacokinetic parameters, naproxen plasma data from the satellite groups were also 

analysed using traditional non-compartmental (NCA) methods for comparison with the 

predicted values of systemic exposure.  Data for each cohort was aggregated by time point 

to produce composite, geometric mean naproxen concentrations at each time point.  

Summary statistics were performed on this composite profile for the peak concentrations 

(CMAX) and area under the concentration vs. time curve (AUC).  Composite CMAX was taken to 

be the highest point on the composite profile (at time TMAX).  Composite AUC was calculated 

via the log-linear trapezoidal rule where a linear increase in the concentration vs. time 

profile was assumed till TMAX, and a log-linear decline thereafter. 

Model performance was first assessed by means of a predictive check using 1000 

simulations. Composite AUCs and composite CMAX values were calculated on each simulated 

dataset and then compared to the observed values.  The model performing well on this 

predictive check was used to compute model-based AUC and CMAX.  To ensure higher 

precision of the predicted measures of systemic exposure, 100 animals were simulated per 

cohort.  Empirical exposure calculations were then compared to model-based results. 

Simulations: As described previously, inferences about the safety profile of a drug in humans 

may be more accurate if biomarkers are considered in conjunction with or eventually as 

proxy for naproxen exposure.  Extrapolation of preclinical findings into drug effects in 

humans was therefore based on the predicted exposure-biomarker relationships in humans 

(108)  Using the PKPD models developed for PGE2 and TXB2 inhibition, simulation scenarios 

were evaluated for wide range of naproxen concentrations.  Despite some evidence of 

differences in the homeostasis of prostacyclins in rats, for the purpose of this investigation 

downstream effects were assumed to reflect the mechanisms by which adverse drug 

reactions emerge both in rats and humans. The inhibition levels were then compared to 

previously reported data on the PKPD relationship obtained in vitro by Huntjens et al., 2006 
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using healthy subject blood and to the AUC and CMAX observed after the recommended 

500mg b.i.d. dose, as described in the naproxen prescriber information (Roche 

Pharmaceuticals Australia, 2012).   

Results  

 

In total, the dataset consists of 550 samples were collected for the evaluation of the 

pharmacokinetics (n=113) and toxicokinetics of naproxen (n=437).  16.7% of the samples had 

concentrations below the lower limit of quantification. Due to calibration curve issues, not 

all samples could be evaluated in a pairwise manner with the pharmacokinetic data. In total, 

65 samples were analysed for PGE2 and 73 TXB2 levels, none falling below the limit of 

quantification.  

As shown in Figure 3, histological examination revealed gastric ulceration in all dose levels; 

therefore no NOAEL could be obtained for any of the treatment durations.  Ulceration 

occurred at an incidence of 11% after administration of the 7.5 mg/kg dose, which was 

defined as the lowest observed adverse effect level (LOAEL).  

All animals receiving 80 mg/kg in the 1 week cohorts suffered from unacceptable weight 

loss.  The animals in this cohort were immediately sacrificed, and due to ethical reasons this 

dose level was discontinued.  Different dose levels of naproxen were considered for the two-

week and one-month cohorts, which received lower doses (7.5, 15, and 40mg/kg).  

Histological examination and terminal blood samples were performed on these animals.  No 

other adverse events were reported. 
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Figure 3.  Plots of gastric ulcer incidence and severity after oral administration of 7.5, 

15 and 40 mg/kg naproxen to rats.  Ulcer severity is measured as % of stomach area 

covered in ulcers. The dots in the upper panel represent observed events in individual 

animals, whereas the solid line and shaded grey area represent the regression line and 

95% confidence interval.  
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Pharmacokinetic model 

Naproxen pharmacokinetics in plasma was best described by a one-compartment model 

with first order absorption, first order elimination and dose-dependent bioavailability (Figure 

4).  Interindividual variability was identified on all model parameters, whereas residual 

variability was described by a combined proportional error model.  As expected, η and ε 

shrinkage was high (>20%) due to the sparseness of the data.  Weight was found to show a 

statistically significant effect on both clearance and volume of distribution.  An overview of 

the final parameter estimates is presented in Table 1. 

 

 

Figure 4: Naproxen concentrations vs. time profiles after oral administration of 7.5, 15 and 40 mg/kg 

to rats.  The dots represent observed concentrations, whereas the solid line represents the 

population predicted profiles. 



 230 

 

Table 1. Final parameter estimates 

PK Parameter Final estimate Precision (CV%) 

Ka (h-1) 3.7 14.95 

CL/F (L/h) 6.42 7.85 

V/F (L) 67 7.43 

F1diff 2.47 5.75 

SLOPEWT,CL/F
a 0.00531 - 

SLOPEWT,V/F 
b 0.00229 - 

BSV in Ka (%CV) 15.8 196 

BSV in CL/F (%CV) 43.0 13.46 

BSV in V/F (%CV) 12.7 66.25 

Residual variability 41.59 8.97 

PGE Parameter Final estimate Precision (CV%) 

I0 (ng/ml) 57.97 5.09 

IC50 (mg/L) 0.0132 8.27 

HILL 1.51 - 

BSV in I0 (%CV) 12.69 49.3 

BSV in IC50 (%CV) 33.91 63.0 

Residual variability 14.76 41.4 

Residual variability (additive) 1.43 35.4 

TXB Parameter Final estimate Precision (CV%) 

I0 (ng/ml) 192.48 - 

IC50 (mg/L) 0.000599 - 

HILL 1 FIX - 

BSV in I0 (%CV) 42.78 - 

Residual variability 14.76 - 

Residual variability (additive) 33.62 - 

aCovariate relationship was modelled as CL/F*(1 + SLOPEWT,CL/F *(WT - 296.60)) 
bCovariate relationship was modelled as V/F*(1 + SLOPEWT,V/F *(WT - 296.60)) 



 231 

Pharmacokinetic-pharmacodynamic models 

Given the fast onset of effect, the naproxen-induced inhibition of PGE2 and TXB2 could be 

characterised by direct sigmoid IMAX models.  The final model for PGE2 included estimates of 

Hill coefficient different from 1, whereas for the TXB this parameter was fixed to 1.  Clearly, 

the doses used in this experimental protocol has led to considerable level of inhibition of 

TXB2, which nears complete suppression at the highest concentrations.  A similar pattern 

was observed for PGE2, but the profiles are much more variable (Figure 5).  No relevant 

deviation or model misspecification was observed in any of the diagnostics measures.  In 

addition, NPDE plots suggested no significant discrepancies across the range of predicted 

concentrations (Figure 1S, supplemental material).  Yet, it should be noted that 24-hour TXB2 

samples were not well predicted due to a rebound effect at the end of treatment, which 

could not be captured by the model.   

 

Figure 5: Pharmacokinetic-pharmacodynamic relationships for PGE2 and TXB2, after administration of 

increasing doses of naproxen (7.5, 15 and 40 mg/kg). Data pooled from animals treated during 1, 2 

and 4 weeks. Pharmacological effects are assumed to be time independent, i.e., no tolerance or 

hypersensitisation is observed at the different durations of treatment. Dots represent observed 

levels of PGE2 and TXB2, whereas the solid line depicts the population predicted inhibition.  



 232 

Exposure calculation 

The predictive check shown in Figure 6 was performed to assess the model’s ability to 

accurately predict drug exposure, as defined non-compartmentally in terms of AUC and CMAX. 

It shows that model predictions are slightly different from the observed exposure estimates 

obtained parametrically.  As depicted in the predictive check for derived measure of 

exposure (see Figure 2S, supplemental material), this bias may remain undetectable when 

data analysis is performed by non-compartmental methods, which handle variability as 

random noise.  By contrast, hierarchical modelling of pooled data assumes part of variation 

to be caused by inter-individual differences in the underlying parameters that determine the 

time course of drug concentrations.  With the exception of the last time point of the 40 

mg/kg dose group, CMAX and AUC values derived by NCA are systematically overestimated.  

In addition, it should be noted that one cannot discriminate the impact of drug accumulation 

based on NCA results.  Naproxen accumulation over time upon repeated dosing is evident 

from the model-predicted.  Model predicted-curves shows also reveal a risk of significantly 

higher than average AUCs for some individuals in the 40 mg/kg group. 

Simulations 

Figure 7 shows the PKPD relationship for PGE2 and TXB2 obtained from the pooling of data 

from the present study as compared to the ex vivo results published by Huntjes and 

collaborators (Huntjes et al., 2006).  In contrast to the observed pharmacological profile 

using human blood, which suggests similar IC80s for the inhibition of both PGE2 and TXB2, 

naproxen was found to show higher potency in terms of TXB inhibition in rats.  These 

differences strengthen our assumption that the differences in homeostasis in pre-clinical 

species must be considered when interpreting toxicology and safety pharmacology findings.  

On the other hands, the PKPD curves reveal two important features of the safety 

pharmacology of naproxen.  First, it can be observed that the exposure range associated 

with the LOAEL dose, where GI toxicity was evident in rats lies above the predicted IC80 

values in rats. Second, one can see that the exposure range observed after the currently 

recommended doses of naproxen also lies above the IC80 estimates in humans.  This finding 
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is in agreement with the assumption that GI toxicity is induced by high degree of COX-1 

inhibition. 

 

 

 

Figure 6: Model-based predictions and estimated non-compartmental values for systemic exposure 

(AUC) and peak concentrations (CMAX) after single and repeated oral administration of 7.5, 15 and 40 

mg/kg naproxen to rats. Observed exposure (triangles and dotted line) is shown together with model 

predicted parameter estimates.  Solid line represents the predicted median values, whereas the 

shaded area indicates the 95% prediction intervals. The discrepancy between model predictions and 

observed AUC and CMAX values is not a result of model misspecification. It is caused by the bias from 

non-compartmental analysis. 
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Figure 7: Estimated PKPD relationships for TXB2 and PGE2 in rats. The solid curve with shaded area 

representing 95% prediction interval, vertical line shows corresponding IC80) whilst the green-shaded 

bar depicts the drug levels associated with the LOAEL dose (7.5 mg/kg) observed in animals. The 

preclinical findings are compared to the corresponding concentration-effect relationships in humans, 

as determined by ex vivo assays in whole blood using a wide range of naproxen doses. The dashed 

line depicts PKPD curves in healthy subjects along with the IC80 values (dashed vertical line). The 

distance between the solid and dashed lines shows the magnitude of inter-species differences in 

terms of the sensitivity to the thromboxane (anti-platelet aggregation) effects.  The orange-shaded 

bar corresponds to therapeutic levels (Css to Cmax) observed at the approved doses of naproxen. 
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Discussion 

 

Historically, general toxicity experiments have been designed with the primary objective of 

deriving estimates of systemic drug exposure and a safety threshold, i.e., the NOAEL 

(Parasuraman, 2011).  Another major goal of repeat-dose general toxicology experiments is 

to identify target organs.  However, important limitations in protocol design such as the 

sparseness of the data collected, the inferences made from separate satellite groups and the 

descriptive nature of the data analysis preclude their use for further characterisation of 

concentration-effect relationships.  There is barely any consideration about the degree of 

receptor occupancy or target engagement at tissue and organ levels. In addition, 

experimental and statistical methods rely on sparse sampling schemes which prevent the 

identification of the different sources of variability at the proposed dosing regimens (Chain 

and Dubois et al., 2013).  Here we have attempted to circumvent these conceptual and 

experimental limitations using a biomarker guided approach in which the primary objective 

is not to obtain a NOAEL, but rather to characterise the exposure-effect relationships 

associated with the observed adverse events.   

Firstly, it should be noted that by incorporating data from typical pharmacokinetic studies at 

pharmacological levels with serial sampling we were able to accurately describe the changes 

in drug absorption and disposition which occur with increasing dose levels.  Secondly, we 

have analysed all the data generated on toxicokinetics and toxicodynamics in a single, 

integrated model, rather than separately according to the traditional group by group 

comparison.  Finally, we performed sequential pharmacokinetic-pharmacodynamic 

modelling of the data  using the so called PPPD approach,  which ensures that 

pharmacodynamic parameter estimation properly accounts for the individual uncertainty in 

pharmacokinetics (due to sparse sampling) in those animals where biomarkers information 

was available (105).  In summary, this approach combines the necessary statistical rigour for 

accurate characterisation of the exposure-effect relationship.  



 236 

 

From a conceptual point of view, it is worth mentioning that despite current understanding 

about the contribution of drug target to the safety profile of a compound, chronic toxicology 

protocols still rely on the assumption that unwanted events will occur at some frequency, 

making the conclusions about risk highly dependent on the experimental conditions (Lazarou 

et al., 1998; Guzelian et al., 2005; van Vliet, 2011).  We understand that during drug 

development there will be instances in which the mechanisms of toxicity may not or cannot 

be established. In fact, from a regulatory perspective, this information is actually only very 

rarely obtained.  In addition, in many cases toxicity may result from off-target effects and 

biomarkers may not be available.  This is a common feature in some therapeutic areas where 

intended pharmacology does not involve host targets (e.g., antiviral drugs, antibiotics).  In 

such circumstances, a model-based approach would still be preferred to standard methods, 

but drug exposure rather than biomarkers should be considered.  Yet, these limitations 

should not preclude us from advancing developing more integrated protocols, incorporating 

measures of primary and secondary pharmacological activity into the assessment of safety 

and toxicity.   

Our experiments yielded suitable data for modelling of the inhibitory effects of naproxen on 

TXB2 and PGE2, as shown by the goodness of fit diagnostics.  Moreover, our analysis enabled 

the incorporation of non-linearity in the pharmacokinetics of naproxen, which occurs at high 

dose levels (Runkel et al., 1974; Josa et al., 2001).  Unfortunately, due to the lack of 

intravenous data, it was not possible to establish whether dose-dependent 

pharmacokinetics results from incomplete absorption, possibly limited by surface area, 

saturations of transporters or by first-pass metabolism.  Our findings also corroborate the 

data published previously by Huntjens et al. (2006).  Moreover, the characterisation of the 

PKPD relationships for TXB2 and PGE2 provides a more useful summary of findings than one 

normally can deduce from the reporting of observed drug exposure, NOAEL and LOAEL, 

which, in general, are gender and strain-dependent (Urushidani et al., 1978; Nicolson et al., 

2010).  The predicted levels of biomarker inhibition across a wide concentration range and 

the evidence from human in vitro experiment indicates how interspecies differences in the 
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underlying pharmacological effects may be used to translate safety findings.  The incidence 

of adverse events at exposure levels that correspond to IC80 values suggests a possible causal 

association between adverse events and prostanoids (Laine et al., 2008).  Hence, it can be 

concluded that both analgesia and gastrointestinal adverse events seem to occur at 

therapeutic drug levels.   

 

Biomarkers of drug effects as proxy of drug exposure 

Here we make a plea for the use of biomarkers of pharmacology as the basis for defining 

interspecies validity and interpreting risk in humans.  Our investigation shows how a model-

based approach can be used to integrate pharmacokinetic and pharmacodynamic data for 

the evaluation of safety pharmacology and long term toxicity, enabling the incorporation of 

biomarkers of pharmacological activity into the assessment of safety margin and other 

measures of risk. In addition, these results emphasise the role of construct validity to 

account for the potential impact of interspecies differences in the underlying exposure-

response relationships (Knight, 2007).  As indicated by the level of biomarker inhibition 

observed at the selected doses inferences from the preclinical data may be used to infer 

drug effects at comparable levels of inhibition in humans.  Naproxen’s prescriber 

information provides data on the incidence of gastro-intestinal side effects varying between 

1 and 4% with increasing doses.  Despite comparable drug concentrations in rats receiving 

doses up to 40 mg/kg naproxen and in patients taking therapeutic doses, interspecies 

differences in the sensitivity to the effects of naproxen on TXB2 may explain the lower 

incidence of adverse events in humans as compared to the findings in rats.   

Clearly strategies are needed in the evaluation of long term safety and toxicity that increase 

full and impartial examination of existing data before generating new evidence using 

experimental protocols.  Understanding of the underlying pharmacokinetic-

pharmacodynamic (PKPD) relationships becomes therefore a pre-requisite to improve the 

methodological quality and minimise the consumption of animal and other resources within 
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experiments of questionable utility.  As stated by Perel et al. (2007), the failure of animal 

models to adequately represent chronic disease processes in humans may be one of the 

fundamental causes of the poor predictive value of preclinical data.  Yet, the authors seem 

to overlook the relevance of the underlying PKPD relationships to explain concordance or 

discrepancy between animal and clinical data.  In addition establishing the correlation 

between drug exposure and pharmacodynamics, another advantage of a biomarker-guided 

evaluation of safety is the possibility to make inferences about long term effects.  The 

implications of chronic treatment, expressed in terms of total daily dose or systemic 

concentrations may not be as sensitive to allow characterisation of risk. In our investigation 

with naproxen, one of the major concerns has been the potential for cardiovascular risk 

associated with the chronic use of COX inhibitors (Figure 3S).  More specifically, an issue that 

remains unanswered is how to best predict the implications of long term suppression of 

COX-2 activity. Evidence exists for the role of PGE2 and other prostanoids, which suggests 

their contribution to tissue healing and repair (109). Information on the levels of PGE2 

inhibition (instead of systemic concentrations or dose level) may facilitate the interpretation 

and translation of chronic safety data. 

 

Integrated design and analysis of safety pharmacology and toxicology protocols 

Several challenges exist to successfully translating the outcomes from animal research to 

humans in a clinical setting.  Despite the efforts to account for biological and genetic 

differences between species and strains in the interpretation of findings, these differences 

are often disregarded in the design of animal studies (Hooijmans et al., 2013).  In addition, 

the statistical methods used to analyse results are often questionable (Kilkenny et al., 2009).  

These failures have prompted to the use of systematic reviews to assess the predictive value 

of non-clinical experiments.  Yet these reviews have not provided a solution to the source 

problem, i.e., the rationale for evidence generation in safety pharmacology and toxicology.   
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There are a few additional limitations in the current investigation which have not been 

previously mentioned.  Some mechanisms of action may be too complex or poorly 

understood to be characterised by PKPD modelling of data arising from a general toxicity 

study, even if biomarkers have been collected.  Multiple downstream markers may present a 

significant confounder problem which cannot be avoided without additional data.  This 

cannot be easily addressed by the proposed analysis method and becomes a drug 

development issue.  Yet, the use of a parametric approach, and more specifically of 

hierarchical mixed-effects modelling, to inform experimental design and dose selection 

represents an important step in the advancement of translational toxicology, both from a 

biological and statistical perspective.  In this context, the design of the present study was not 

intended to replicate a full toxicology programme for a new chemical entity.  Our intent was 

to show how data obtained from different experimental protocols can be integrated to 

optimise the design of new experimental protocols as well as to characterise drug exposure 

and the underlying pharmacological effects in a strict quantitative manner.  In fact, we 

acknowledge that evaluation of the gastrointestinal effects without prior consideration of 

expected pharmacology and available assays would have been far less informative.   

Important lessons and recommendations can however be derived from our study which are 

applicable other compounds across a wide range of mechanisms of action.  First is the need 

to revisit the dose rationale for the evaluation of safety pharmacology and toxicity.  Whilst 

the concept of safety margin is appealing, it does not address the main issue one faces with 

regard to the therapeutic use of drugs, which is the understanding of the impact of sustained 

pharmacological effects associated with the primary target or receptor system on which the 

drug acts.  Currently, doses are selected in experimental protocols, which exceed by far the 

levels required to achieve maximum pharmacological effects and often even the levels 

required for maximum receptor binding.  Secondly, safety pharmacology and toxicity 

findings are analysed independently from existing data on the pharmacokinetics and 

pharmacodynamics of the compound of interest, making the interpretation of findings an 

empirical process.  Pharmacokinetic and pharmacokinetic-pharmacodynamic modelling 

provides a framework for data integration, enabling a distinction between drug- and system 
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specific properties (Danhof et al., 2008).  Of relevance is the possibility to accurately 

characterise background adverse event rates as well as to establish correlations between 

primary and secondary adverse events. Lastly, the use of different measures of (systemic) 

exposure as a proxy for the underlying risk or hazard needs to be revisited.  Advancements in 

imaging, pathology, genetic and genomic research clearly show that overt symptoms and 

signs arise from drug action as well as from the pharmacological effects induced at cellular 

and tissue levels.  The availability of physiologically-based or semi-mechanistic 

pharmacokinetic and pharmacokinetic-pharmacodynamic models may provide a stronger 

basis for the assessment of risk in humans. In addition to gaining further understanding of 

possible nonlinearity in drug disposition, the possibility to estimating drug-specific 

parameters, such as the estimates of potency or IC80 values, offers measures of the 

pharmacological activity during the course of treatment, which cannot be intuitively derived 

from systemic exposure data, such as Cmax or AUC values.  

In summary, we have shown the benefits of implementing a model-based approach for the 

evaluation of the safety profile of naproxen after chronic administration.  Furthermore, our 

investigation illustrates how PKPD relationships can be used to translate pre-clinical findings 

taking into account interspecies differences in the underlying pharmacological effects.  
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TXB2 PGE2PK

Supplemental material         

Figure 1S: Population pharmacokinetics and pharmacokinetic-pharmacodynamic modelling of TXB2 and PGE2 inhibition by naproxen. For each biomarker, 

goodness-of-fit plots show observed vs. population predicted concentrations (upper left) and conditional weighted residuals vs. time (upper right). Mid and 

lower panels depict the NPDE summary, including QQ plot and histogram of the normalised discrepancy between observed and predicted values. X denotes 

the independent variable, i.e., time.  Samples are clustered around 0, 1, 2, and 4 weeks. 
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Supplemental material 

Figure 2S. Predictive check for derived measures of exposure, as determined by non-compartmental 

analysis. Observed values (triangles and dotted line) are shown to occur within the 95% prediction 

intervals. Solid line depicts the predicted median, whereas shaded region indicates the 2.5th and 

97.5th percentiles. Note that predicted and observed estimates obtained by non-compartmental 

analysis differ from model-based predictions shown in Figure 6.  
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Supplemental material 

Figure 3S: Schematic representation of COX-2 selectivity with incidence of cardiovascular (CV) and 

gastrointestinal (GI) risk. Increasing degrees of selectivity for COX-2 are associated with augmented 

CV risk, whereas increasing degrees of selectivity for COX-1 are associated with augmented GI risk. 

The relative size of the circles indicates the variation in sample sizes among the trials. The average 

selectivity for each drug is presented ranging from drugs that are highly selective for inhibition of 

COX-2 (e.g., etoricoxib) to those that are more selective for COX-1 (e.g., naproxen). Given the 

interindividual variability in response to these drugs, selectivity is a continuous variable at the 

individual level. ETORIOVER, VIGOR, MEDAL, TARGET and CLASS refer to the overview of Phase II and 

III trials with COX inhibitors. (Reprinted with permission from Fitzgerald, 2007) 
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Abstract 

Despite increasing relevance of the use of biomarkers as predictors of drug effects, 

traditional toxicology protocols continue to rely on the experimental evidence of the link 

between adverse events (AEs) in animals and estimates of systemic drug exposure (e.g., 

Cmax and AUC). Furthermore, biomarkers may facilitate the translation of findings from 

animals to humans. Thus, combined with a model-based approach, biomarker data has the 

potential to predict long term pharmacodynamic effects arising from prolonged drug 

exposure. Here, we use naproxen as a paradigm drug to explore the feasibility of a 

biomarker-guided approach for the prediction of long term AEs in humans. An experimental 

toxicology protocol was set up for the evaluation of effects of naproxen in rats, in which four 

doses were tested (7.5, 15, 40 and 80mg/kg). In addition to AE monitoring and histology, 

sparse blood sampling for the assessment of exposure, thromboxane B2 and prostaglandin 

E2 were also collected. Nonlinear mixed effects modelling was used to analyse the data and 

identify covariate factors on the incidence and severity of AEs. Modelling results show that 

besides drug exposure, maximum PGE2 inhibition and treatment duration are also predictors 

of GI ulceration.  Although PGE2 levels were clearly linked to the incidence rates, it appears 

that ulceration severity is better predicted by measures of drug exposure. These results 

show that the use of a model-based approach provides the opportunity to integrate 

pharmacokinetics, pharmacodynamics and toxicity data, enabling optimisation of the design, 

analysis and interpretation of toxicology experiments.  
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Introduction 

 

A key purpose of preclinical general toxicity and safety pharmacology studies is to support 

the safe dose selection in humans. In particular, the need to understand the risks associated 

with long term drug exposure falls within the remit of these two disciplines.  Preclinical 

toxicity data consists of a mixture of acute, mid-term and chronic toxicity data, however, 

identification of long term risks often happens in Phase IV post marketing surveillance.  

Earlier identification of potential risks would enable the use of evidence-based risk 

mitigation strategies.  However, understanding of time-dependent physiological changes 

arising from repeated exposure to a drug is required to identify and assess risks associated 

with long term use of medicinal products. Such an objective may be hampered by the use of 

empirical experimental protocols, as they render the extrapolation of findings across species 

and across molecules rather difficult, preventing accurate translation of the pharmacological 

properties to man (Bai et al. 2013, Della Pasqua, 2013). Among other things, differences in 

sensitivity and target organ specificity continue to represent drawbacks for most clinical 

pathology parameters traditionally used for monitoring organ integrity both during 

preclinical toxicological assessment and clinical safety testing (Connelly et al., 1991). Clearly, 

efforts are required to ensure the availability of tissue- and mechanism-specific data for 

accurate interpretation of acute and long term safety findings. Over the last few years, 

several novel toxicity biomarkers have emerged as sensitive tools for detection, monitoring, 

quantification and prediction of safety and toxicity (O’Brien, 2008, Xie et al., 2013). 

Nevertheless, little attention has been given to the possibility of evaluating safety and 

toxicity using a mechanism-based approach whereby adverse events are assessed taking into 

account the underlying pharmacokinetic-pharmacodynamic (PKPD) properties of the 

molecule (McGonigle et al., 2013). In this context biomarkers can be of great relevance for 

drug discovery and development as they offer the possibility to discriminate between acute 

and chronic term treatment effects. 
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In the current investigation we show therefore how pharmacokinetic-pharmacodynamic 

(PKPD) modelling can be used to unravel the relationship between chronic drug exposure, 

pharmacodynamic effects and overt symptoms and signs. The concept is illustrated by the 

correlation between naproxen concentrations, inhibition of prostaglandin E2 (PGE2) and 

thromboxane B2 (TXB2) and gastric ulceration in rats. Non-selective NSAIDs, such as 

naproxen, act by blocking cyclo-oxygenase (COX), which catalyses the rate-limiting step in 

the formation of prostanoids from arachidonic acid (Chakraborti et al., 2010). Continuous 

COX-1 inhibition following prolonged administration of non-selective COX inhibitors is known 

to induce gastrointestinal adverse effects, especially ulceration and haemorrhagic bleeding. 

Unfortunately, at present the dose selection of COX inhibitors disregards whether maximum, 

long-lasting blockade of either enzyme systems is strictly required for anti-inflammatory, 

analgesic response and how its pharmacology relates the observed adverse events (Huntjens 

et al., 2006). These considerations become essential when evaluating the side effects 

associated with long term use of COX inhibitors, which include gastric and cardiac adverse 

events. From a pharmacological perspective, various investigations have shown that both 

COX-1 and COX-2 mRNA and protein are either constitutive or inducible in specific areas of 

the stomach of animals and humans (Morita, 2002, Coruzzi et al., 2007) (Figure 1). Hence, it 

can be anticipated that some balance between the activity of either isoform may be required 

to ensure normal physiological function.  On the other hand, COX-1-deficient mice show no 

evidence of spontaneous gastric injury despite the absence of COX-1-derived prostaglandins 

(Langenbach et al., 1999). Yet, the administration of NSAIDs-induced gastric damage can be 

invariably related to COX-2 inhibition (Loftin et al., 2002, Wallace, 2008, Takeuchi, 2012). In a 

previous investigation, we have shown how these safety biomarkers can be used in 

conjunction with general toxicity protocols to predict the safety window in humans using an 

empirically derived safety threshold; the no-observed adverse- effect level (NOAEL) (Sahota 

et al., 2014).  The NOAEL approach has many statistical and experimental limitations which 

have been documented elsewhere (Dorato et al.,2005, Sahota et al., 2014). Most 

importantly, by dichotomising the exposure-risk relationship using a threshold, the NOAEL 

approach precludes quantitative risk assessment. Here we demonstrate that the availability 

of a mechanism-based PKPD model together with the application of probabilistic modelling 
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to the adverse event data not only provides a quantitative rationale for determining 

effective and safe dosages following chronic treatment in humans, it also enables effective 

data integration, offering a stronger basis for extrapolating pre-clinical findings into humans 

(Rohatagi et al., 2007).  Moreover, predictive modelling enables testing of different 

parameterisations of biomarker response and drug exposure to enable exploration of causal 

factors driving risk.  This is ultimately provides a flexible evidence-based framework for risk 

management and risk mitigation strategies in humans.   

 

 

 

Figure 1:  (Upper panel) Diagrammatic presentation of ulcer healing and factors affecting ulcer 

healing. In the intact mucosa, cyclooxygenase 1 (COX-1) is the predominant COX isoform in the 

gastrointestinal tract. In contrast, during wound healing, expression of cyclooxygenase 2 (COX-2), 
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rather than COX-1, is strongly increased in the repair zone. (Lower panel) Gastric effects of non-

selective and COX-2 selective NSAIDs in normal or damaged gastric mucosa. The different effects of 

non-selective or selective COX-2 inhibition are explained by differences in COX-2 tissue expression 

(printed with permission from Halter et al., 2001, Coruzzi et al., 2007) 

In contrast to traditional safety extrapolation methods such as allometric scaling, which 

relies primarily on the estimation of safe exposures based on the human equivalent dose 

(HED), a mechanism-based approach can account for the variability in drug elimination or 

differences with respect to physiological, biochemical (e.g., expression of drug metabolizing 

enzymes), and other time-variant factors (e.g., disease).  These time-variant factors may 

become more important as clinical trials move from acute to chronic interventions in 

patients (in Phase II and III).  

In spite of known interspecies differences exist in GI-related morbidity, we hypothesise that 

the characterisation of the relationship between markers of COX inhibition and adverse 

events enables the prediction of safety windows for chronic treatment with selective and 

non-selective COX inhibitors.  In fact, various studies provide further evidence of a 

multistage pathogenic mechanism for NSAID enteropathy by which the topical action of 

NSAIDs may initiate mucosal damage, which is then converted to macroscopic damage by 

the concomitant inhibition of COX, with decreased mucosal prostaglandins, presumably 

because of their effect on the microvasculature (Fornai et al., 2014).   

Methods 

 

The present investigation is based on a previously published general toxicity study in rats by 

Sahota et al. (2014), with the non-selective COX inhibitor naproxen.  Detailed description of 

the study design, strain of rats, sample collection and analysis and PKPD modelling details 

can be found in Sahota et al. (2014). 

 

Summary of study design: Three different treatment durations were investigated (1 week, 2 

weeks and 4 weeks).  Rats were given daily doses of naproxen by oral gavage.  There were 

four cohorts per treatment duration receiving 0, 15, 40 and 80 mg/kg/day doses.  Satellite 
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animals received identical doses to toxicology groups and were used for plasma drug 

concentration (PK) and biomarker (PD) data measures, TXB2 and PGE2. A optimised 

composite sampling scheme was used and sampling too place on days 1, 7, 14 and 28.  

Details regarding sample analysis can be found in Sahota et al. (2014).  Endpoints in 

toxicology groups included adverse events, including GI histology and terminal PK and PD 

measurements.  An overview of the study protocol is depicted in Figure 2. 
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Figure 2 : Schematic representation of general toxicity study.  

 

Histology: Histological evaluation of the stomach was performed to establish a correlation 

between acute and long term adverse events.  After euthanasia, stomachs were removed 

immediately and were cut open along the greater curvature and washed with warm saline.  

The inner surface was photographed to allow the measurement of the area covered by 

hemorrhagic ulceration. The area of ulceration was determined under a dissecting 

microscope.  Gastric ulceration was measured as percentage stomach surface area affected 
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by ulceration the software Image J version 1.43 (Abramoff et al., 2004) was used for 

calculating ulcer area and total stomach surface area.  The person who performed the 

ulceration measurement was blinded as to animal ID and treatment group. 

PKPD model: The PK and PD data of naproxen were assessed by nonlinear mixed effects 

modelling, as implemented in NONMEM version 7.2.0.  The pharmacokinetics of naproxen in 

plasma were best described by a one-compartment model with first order absorption, first 

order elimination and nonlinear dose-dependent bioavailability.  Weight was included as a 

significant covariate on clearance and volume of distribution.  The PK/PD models for both 

biomarkers, PGE2 and TXB2 were characterised by direct sigmoid IMAX models.  Parameter 

values, precision estimates and goodness of fit diagnostics are described in Sahota et al. (in 

press). 

Data analysis 

Final model parameters describing the gastric ulceration incidence and percentage gastric 

area affected were performed via the numerical integration routine ADVAN13 in NONMEM 

7.2.0 using FOCE with Laplacian estimation.  Convergence was determined by successful 

minimisation and covariance step.  All fitting procedures were performed on a computer 

(AMD-Athlon XP-M 3000+) running under Windows XP with a FORTRAN compiler (Compaq 

Visual Fortran, version 6.1).  Data processing, management and graphical display were 

performed in R (R Development Core Team, 2012).  Model diagnostics and validation were 

performed according to graphical and statistical criteria.  Goodness-of-fit plots, including 

observed (OBS) versus individual prediction (IPRED), OBS versus population prediction 

(PRED), conditional weighted residuals (CWRES) versus time and CWRES versus OBS were 

used for diagnostic purposes (104).  

Given the purpose of the study in discriminating between acute and long term effects of 

naproxen, different parameterisations were considered for describing drug effects during 

the course of treatment.  Model-based exposure and biomarker levels from the final PKPD 
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model were calculated for each individual animal using post-hoc empirical Bayes estimates 

(using MAXEVAL=0).  Details of the calculation methods are described in Table 1.   

 

 

Table 1: Calculation of biomarker response and exposure variables. Individual predicted naproxen 

concentrations and biomarker levels are denoted by ��(�) and g��(�), respectively. 

Parameter name Symbol Calculation 

Area under drug concentration vs. time profile AUC � �� �!
!"�#  

Area above biomarker concentration vs. time 

profile 

AOC g��(0) − � g�� �!
!"�#  

Time under threshold (80% inhibition) TUT � 1l01n.�l01(;) �!
;  

Cumulative area under drug concentration vs. 

time profile 

CAUC � �� �!
;  

Cumulative area over biomarker concentration 

vs. time profile 

CAOC g��(0) − � g�� �!
;  

Maximum drug concentration over 24 hour 

period 

CMAX max	('��((): � − 24 < ( < �.) 
Maximum biomarker inhibition over 24 hour 

period 

CMIN min	('g��((): � − 24 < ( < �.) 
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Ulceration model: Since each histological examination was performed once per 

animal, no between-subject variability could be estimated.  All random effects are 

therefore accounted for with the residual variability structure.  Nevertheless, both 

the incidence and severity of ulceration were considered during modelling.  

Incidence was modelled as the probability of occurrence of ulceration, q�,� at the 

time of sacrifice, ��, and severity was modelled as 
DC�45|,�,�, the % gastric surface 

area affected,  when ulceration is observable at the time of assessment . 

A logit transformation was used to describe the incidence of stomach ulcers.  The general 

equation describing the incidence of ulcers is given by: 

 

          
(q�,� = 1) = rst(uvw∑ u~∗0yz�,{,~~ )Lwrst(uvw∑ u~∗0yz�,{,~~ )    (equation 5) 

 

where  P(Ui,j) represents the probability of the presence of ulceration in individual i at time   ��.  COVi,j,k is the Kth covariate value for individual i and time ��. �L  is a parameter governing 

the baseline logit probability and θ k is the coefficient of the Kth covariate relationship. 

For technical reasons, the severity of ulceration, i.e., percentage gastric surface area affected 

was log-transformed.  The basic model did not include any covariates on response.  Two 

fixed effect model parameters were used, �L and ��.  

 
(q�,� = 1) = rst(uv)Lwrst(uv)   (equation 6) 

 PER����,�,� = � 0, F�	q�,� = 0��, F�	q�,� = 1�   (equation 7) 

 log�PER���,�,�� = log�PER����,�,�� + ε�,� (equation 8) 



 259 

where  PERobs,i,j and PERpred,i,j represent observed and predicted percentage ulceration, 

respectively, in individual i at time ��.  εi,j is the random effect describing residual variability 

with mean 0 and estimated standard deviation. 

Covariates: To explore the relationship between drug exposure, biomarkers and adverse 

events over the course of treatment, different secondary pharmacokinetic and 

pharmacodynamic parameters expressing systemic exposure and pharmacological activity 

were explored as covariates on the logistic model parameters using the stepwise covariate 

method (SCM) in PsN (107).  Potential influential factors on the incidence of ulcers included 

body weight, age.  Time measured in days (DAY) was also tested used as a covariate as 

surrogate for time-dependent effects such as healing, tolerance or other mechanisms 

influencing ulceration incidence and/or severity. For the percentage gastric area affected, 

PER, the specification of the covariate relationship was based on the diagnostic plots of the 

basic model.  Linear, exponential and hyperbolic (sigmoid Emax) functions were considered 

during covariate model building.  A hockey-stick function was also tested to describe toxicity 

only manifesting above a threshold exposure/biomarker level. The linear relationship was 

characterised by: 

 PER����,�,� = � 0, F�	q�,� = 0�L +	����ytr ∗ (��N −=� FG?(��N))� , F�	q�,� = 1� 
where �� is population prediction and �6�9�5 is the slope of relationship between parameter 

and (centred) covariate 

The exponential relationship was similarly characterised by: 

 PER����,�,� = � 0, F�	q�,� = 0�L ∗ exp����ytr ∗ (��N −=� FG?(��N))� , F�	q�,� = 1� 
 

Since data were sparse and maximum effect may not have been reached, maximum effect 

was fixed to 100% during the evaluation of the sigmoid Emax function.   
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 PER����,�,� = � 0, F�	q�,� = 0�� ∗ L;;∗0yz�0yz���w0yz� , F�	q�,� = 1� 
where γ is an estimated Hill coefficient. 

Covariate relationships were centred by the median value of the covariate so that in this 

case PER����,�,� = ��, as in the basic model. 

 ��N�;� = (L;;"u)85|��:(0yz)�u  

The hockey stick function was implemented according to the following function: 

PER����,�,� = � �L, F�	q�,� = 0	and	COV < 	�e£¤r�£�L +	����ytr ∗ (��N − �e£¤r�£)� , F�	q�,� = 1	and	COV ≥ 	�e£¤r�£ � 
where �e£¤r�£ is the threshold value of the covariate where toxicity begins. 

Covariates were incorporated into the model by stepwise forward inclusion.  A significance 

level of p<0.01 was used for inclusion, which represented a drop of least 6.63 units in the 

objective function for each additional parameter.  A final evaluation of the statistical 

significance of all factors identified during the previous step was performed by subtracting 

each covariate individually (backward elimination).  The final structural model (i.e., fixed 

effects model) included only those covariates whose subtraction resulted in a decrease of at 

least 6.63 units in the objective function (p<0.01).  Finally, to investigate model uncertainty a 

bootstrap SCM was performed to estimate covariate inclusion probabilities. 

 

Model validation: The performance of the ulceration models were assessed by numerical 

and visual predictive checks.  To that purpose, 1000 data sets were simulated with the final 

model parameter estimates.  The mean and the 95 % confidence intervals were calculated 

for the incidence and percentage gastric area affected.  Validation procedures also included 

normalised prediction distribution errors (NPDE), which are based on the assumption that 



 261 

the normalised (de-correlated) prediction distribution errors (discrepancies) are normally 

distributed (Comets et al., 2008).  One hundred datasets were simulated using the final 

model, which was then tested for the assumption of normality of the prediction distribution 

errors. 

Results 

 

In total, 80 histological examinations were performed on ontoxicology group animals.  These 

revealed gastric ulceration in all dose levels; therefore no NOAEL could be obtained for any 

of the treatment durations (Figure 3).  All animals receiving 80 mg/kg in the 1 week cohorts 

suffered from moderate weight loss.  The animals in this cohort were immediately sacrificed, 

and due to ethical reasons this dose level was discontinued.  Different dose levels of 

naproxen were considered for the two-week and one-month cohorts, which received lower 

doses (7.5, 15, and 40mg/kg).  Histological examination and terminal blood samples were 

performed on these animals.  No other adverse events were reported. 

Logistic models for gastric ulcerations  

Empirical analysis of this data revealed some peculiarities in data where there was no 

significant dose-response until week 4.  In fact, the data revealed a possible negative dose-

response relationship before week 4.  Moreover, the incidence of ulcers was much lower in 

the week 4 cohort than in shorter treatment durations. Furthermore, exploratory evaluation 

of the relationship between naproxen exposure and biomarker levels instead of dose did not 

provide further evidence of an apparent relationship.  Physiologically, interpreting such data 

is difficult.  However, it is plausible that the ulcerative effect is acute and diminishes with 

sustained long term exposure. After an initial attempt to describe the data without the use 

of covariates, a clear model misspecification was observed.  As shown in Figure 4, the 

apparent negative dose-toxicity relationship for week 1 and week 2 was not replicated by 

final model predictions.   
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Figure 3. Plots of the observed ulcer incidence (left) and severity (right).  Dots in the left plot show observed percentage of 

total animals in each cohort manifesting GI toxicity. Ulcer severity is measured as % of stomach area affected by ulceration. 

Given the time-dependent effect on the accuracy of this measure, the uncertainty (shaded area) of the regression line is also 

shown together with the data. 
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Stepwise model building combined with bootstrap methods showed a possible negative 

correlation between the incidence of ulceration and treatment duration, indicating an acute 

effect dissipating over time (see Figure 5).  By contrast, upon incorporation of this time-

dependent effect into the final model, the overall fit improved (Figure 6). CMAX and AUC 

were shown not be the primary drivers of toxicity, although these parameters may be 

indirectly correlated with risk.  

Our attempt to establish a relationship between drug exposure/ biomarker levels and 

adverse events revealed clear differences in the sensitivity of explanatory variables used to 

describe the incidence of ulcers and ulceration severity.  Out of tested relationships, the 

maximum inhibition of PGE2 was the best predictor of adverse event incidence, with the 

bootstrap SCM showing low model uncertainty.  On the other hand, cumulative TXB2 

inhibition was found to be the best explanatory variable for the severity of ulceration (Figure 

7).  Other physiologically plausible explanatory factors, such as maximum PGE2 inhibition or 

DAY (treatment duration) were found to be fraught with significant model uncertainty.  The 

model parameters for the final model are summarised in Table 2 and figure 5. 

Table 2: Logistic  model parameters. SE = standard error.  

Relationship Description Parameter value SE 

LOGIT Typical value: 

Logit (
(q�,� = 1)) -0.226 0.305 

LOGIT – IMAXPGE Covariate: 

Logit (additive) 

0.042 64.8% 

LOGIT – DAY Covariate: 

Logit (additive) 

-0.066 0.022 

PER Typical value:  

% gastric area affected 

0.21% 17.2% 

PER – CAUCTXB Covariate: Hockey stick Threshold= 94.3% 

Slope = 149.9 

13% 

74% 

Residual 

variability (%) 

Proportional error 78% 16% 
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Figure 4: Plots of the observed and predicted ulcer incidence (left) and severity (right).  Dots in the left plot show observed percentage of total 

animals in each cohort manifesting GI toxicity. Ulcer  severity is measured as % of stomach area affected by ulceration. The shaded area is depicts 

the 95% uncertainty in population prediction of the model (dotted lines depict the 50th percentile). The model is unable to describe the apparent 

negative dose-response trend observed after short treatment durations (i.e., 1 and 2 weeks), indicating that time-independent, long-lasting or 

irreversible processes may appear only after long term treatment. 
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Figure 5: Model specification uncertainty. Results of boostrap SCM.   Bars indicate model selection 

probability as determined by the bootstrap SCM ordered from most to least probable.  Only top 5 

most probable displayed.  A wider, flatter distribution reflects high model specification uncertainty, 

i.e., two or more different models may be indistinguishable.  The overlaid table in the insert shows 

numerical details of model selection probability. 
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Figure 6: Visual predictive checks. Left panel depicts the prediction distribution for the incidence of ulcers, whereas the solid line indicates the 

observed percentage of total animals manifesting GI toxicity. Right panel shows ulceration severity against predicted normalised 

exposure for different variables of interest (AUC= area under the concentration vs. time curve; AOC= area above biomarker concentration vs. 

time profile; CAUC= cumulative area under the concentration vs. time curve; CAOC= cumulative area over biomarker concentration vs. time 

profile; CMAX = maximum drug concentration over the period of 24h; CMIN= maximum biomarker inhibition over the period of 24h). The shaded 

area represents the 95% prediction interval; points represent the actual data. PGE = prostaglandin E2; PK= naproxen concentrations; TXB= 

thromboxane E2. 
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Figure 7: Differences in the sensitivity of explanatory variables describing the relationship between drug exposure/ biomarker levels and adverse 

events, as determined by the incidence of ulcers and ulceration severity.  Dashed lines represented median profile of simulated values using the 

final model, whereas shaded represents the 95% prediction intervals.  AUC= area under the concentration vs. time curve; AOC= area above 

biomarker concentration vs. time profile; CAUC= cumulative area under the concentration vs. time curve; CAOC= cumulative area over biomarker 

concentration vs. time profile; CMAX = maximum drug concentration over the period of 24h; CMIN= maximum biomarker inhibition over the 

period of 24h; IMAX= maximum biomarker inhibition; TOT= time over threshold (i.e., 80% biomarker inhibition); PGE = prostaglandin E2; TXB= 

thromboxane E2). See text for details on the units of the independent variables (x-axis). Based on statistical criteria, it appears that maximum 

inhibition of PGE2 was the best predictor of adverse event incidence. On the other hand, cumulative TXB2 inhibition was found to be the best 

explanatory variable for the severity of ulceration. 
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Discussion 

 

Current practices in toxicology and safety pharmacology rely on the concept of thresholds of 

drug exposure (e.g., NOAEL) as a proxy for the risk of adverse events, which are treated in a 

mechanism- and time-independent manner.  The disadvantage of such an approach is that 

long term toxicity can become conflated with acute toxicity, which in turn could be mitigated 

or related to entirely different physiological mechanisms (Blantz, 1996, Dom et al., 2012).  

Another hurdle to overcome in the assessment of risk is that general toxicity studies are not 

designed to characterise the relationship between drug exposure and toxicity, but rather to 

explore the boundary between therapeutic and toxic exposures.  As such, data can be 

uninformative with respect to understanding the causal factors and underlying mechanisms 

associated with unwanted pharmacological effects.  Clearly, these inefficiencies in 

experimental protocol design also violate the principle of the 3 Rs (reduction, refinement 

and replacement) and ultimately contribute to biased conclusions about the long term 

benefit-risk ratio of an intervention (Balls, 1994).  By contrast, the use of a model-based 

approach provides the opportunity to integrate safety and toxicity data and assess in a 

strictly quantitative manner the contribution of influential factors, namely drug exposure 

and biomarkers of pharmacological activity to potential adverse events (Danhof et al., 2005, 

Danhof et al., 2008, Bai et al., 2013).  

 

Mechanism-based analysis of long-term safety and toxicology data  

From a methodological perspective, general toxicology studies represent a challenge for 

model-based analysis techniques since sparse pharmacokinetic data, which are often 

derived from satellite animals, need to be linked to adverse event data, which are also 

typically sparse.  In addition, lack of individual exposure profiles often prevents further 

evaluation of the role of relevant physiological or pathophysiological measures, such as 

biochemistry, haematology or biomarker data as influential covariates on treatment 

outcome. Typical experimental protocols in toxicology research yield therefore less 
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informative datasets, as compared to studies aimed at the characterisation of PKPD 

relationships, which are now commonly used in early drug development (Knight, 2007).  In 

fact, the impact of such limitations has been highlighted in a separate investigation, where 

focus is given to the statistical aspects of protocol optimisation and to the use of nonlinear 

mixed effects modelling of safety data (Sahota et al., unpublished results).  Among other 

things, we have identified important design requirements for ensuring accuracy and 

precision of parameter estimates for safety thresholds. 

An important aspect our analysis was to show that without major modification to existing 

general toxicity protocols, it is possible to explore and eventually elucidate the causal 

relationship between drug administration, exposure and the incidence and severity of 

adverse events associated with chronic therapy.  In addition to the integrated analysis of 

pharmacokinetic, pharmacodynamic and toxicity data, here we have shown that the lack of 

NOAEL in the present study (due the presence of adverse events at all tested dosing levels) 

has not prevented us from further characterising the exposure-adverse event relationships.  

Yet, the proposed modifications to the study protocol were designed not to prevent existing 

empirical analysis methods, including the estimation of non-compartmental parameters 

such as composite AUCs.  The main modifications consisted in the additional collection of 

biomarker data from animals and the choice for treating histological observations as a 

continuous data type.  The incorporation of biomarkers into the assessment of long term 

toxicity enables us to further understand time dependencies and nonlinearities in down-

stream effects related to the primary pharmacological target (Huntjens et al., 2010).  Here 

we have characterised COX-1 (TXB assay) and COX-2 (PGE assay) activity given their role in 

maintaining the homeostasis and integrity of the gastric mucosa (Jackson et al., 2000).  As 

shown in Sahota et al. (2014), considerable inhibition of both isoforms occurs at all 

experimental dose levels.  

 

PKPD relationships as translational factor for the evaluation of risk in humans.  
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Characterisation of the relationship between chronic exposure and the incidence and 

severity of adverse events is a critical but not sufficient requirement to predict safety and 

toxicity in humans. PKPD models need to be parameterised in such a way that it is possible 

to discriminate between drug-specific and system-specific parameters.  Understanding of 

pharmacokinetic differences in conjunction with detailed information on potential system 

specific differences, such as varying metabolic capacity, are sine qua non conditions to 

translate and accurately interpret safety findings (Zuideveld et al., 2007, Chain and Dubois et 

al., 2013).  Even when estimation of such parameters may be impractical, inferences can be 

made about their magnitude.  Undoubtedly, a mechanism-based approach is likely to yield 

more reliable predictions than the currently accepted use of empirical cover or safety margin 

which disregard any possible pharmacological basis for both observed and unobserved 

adverse events.  

Specifically with regard to naproxen-induced ulceration, our results need to be interpreted 

with caution.  First, it should be noted that formal extrapolation of our findings requires 

further information on system-specific properties, including potential differences in gastric 

mucosa susceptibility to ulceration and expression and activity of isozymes during 

maintenance and repair processes.  Rats appear to be more susceptible to GI toxicity than 

humans and show gender specific differences in ulceration, so any prediction without 

correcting for such differences is therefore likely to overestimate risk (Urushidani et al., 

1978, Lanza et al., 1979).  In addition, from a methodological perspective, the use of non-

linear mixed effects modelling as a tool to characterise the determinants of drug effects and 

concurrently explain variability, imposes a different approach to statistical inference and 

interpretation of experimental results.  Here we have shown that multiple models, with 

different explanatory variables meet the statistical criteria used for fitting procedures.  

These apparently conflicting findings can be interpreted as model uncertainty due to design 

or even imprecision in parameter estimation.  On the other hand, these same results can 

also be considered hypotheses generating, i.e., they shed light into the possible or even 

plausible combination of mechanisms underpinning the causal path(s) between drug 

exposure and toxicity.  This latter aspect is essential for extrapolating data from animals to 
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humans.  In fact, a study performed by Huntjens et al. (Huntjens et al., 2006). The authors 

conclude that the main determinant of the primary anti-inflammatory, analgesic effect is the 

degree of target engagement at the tested dose ranges, as defined by the inhibition e of 

PGE2 and TXB2.  

It is known that inhibition of both isoforms is required for GI toxicity.  Hence, despite our 

attempt to identify a single biomarker as explanatory variable or covariate on the incidence 

of ulceration is likely a result of the interaction between them (White, 2004).  However, our 

model was unable to estimate interaction terms. Given that selective COX-2 inhibitors cause 

less GI toxicity than non-selective inhibitors (Brzozowski et al., 2001, Rostom et al., 2007), 

this limitation could be overcome by incorporation of toxicity data from compounds with 

high selectivity for COX-2.  Accounting for this interaction will allow prospective prediction of 

new compounds with varying selectivity for COX-1 and COX-2.  Such integration could be 

achieved either within a Bayesian framework through the use of informative prior 

distributions, or through simultaneous analysis of the aggregated dataset.  Ultimately, such 

an analysis may shed light on the optimum degree of selectivity to be obtained for the 

selection of future compounds with a superior risk-benefit profile.  Moreover, we anticipate 

the possibility to extend the approach for the evaluation of NSAID-induced cardiovascular 

effects (McGettigan et al., 2006, Schneeweiss et al., 2006, Fitzgerald, 2007).  A 

comprehensive risk management strategy prior to market authorisation is now in place for 

the development of new selective and non-selective COX-inhibitors, which is aimed at the 

detection of late onset cardiovascular events associated with long term use of a compound 

(Solomon et al., 2004; Motsko et al., 2006).  As such, these adverse drug reactions are not 

likely to be observed pre-clinically in a traditional chronic toxicity protocol.  Efforts are 

required to predict the implications of continuous target engagement, instead of simply 

exploring safety signals in wide cohorts of patients (Mukherjee et al., 2001, Solomon et al., 

2004).  

 

Potential limitations 
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The findings of this study demonstrate the feasibility and potential benefits of proposed 

model-based approach for the evaluation of chronic safety pharmacology and toxicity. 

However, it should be noted that the accuracy, precision and validity of the method still 

relies on the experimental data, which is maximised in terms of its informative value. The 

adverse events we have assessed in this study were relatively frequent.  Characterisation of 

rare or low frequency events may still be difficult, particularly if one cannot make use of 

historical data (e.g., unprecedented mechanism) or make inferences about class effects.  

The quantification of model uncertainty is not currently routine practice in traditional PKPD 

analyses.  The present work has shown that even for relatively frequent adverse events, 

model uncertainty can be significant and therefore one should quantify it.  This likely arises 

from the fact that toxicity studies are generally designed to find safety windows and not to 

explore the entire exposure-risk profile.  We also acknowledge that the absence of 

ulcerations in vehicle treated animals and the lack of additional cohort with lower exposure 

levels may represent a weakness in our investigation.  True baseline rates for ulceration 

could not be factored into the analysis, nor was it possible to accurately establish the 

adverse event rates at lower doses. 

In summary, identification of long term adverse events often arises in Phase IV post 

marketing surveillance.  Our investigation has shown how a model-based approach can be 

used to support early identification of long term adverse events, enabling further integration 

and translation of pre-clinical data.  Our results also illustrate the importance of quantitative 

methods for further understanding of the mechanisms of toxicity.  Moreover, the availability 

of PKPD relationships may allows us to make inferences about untested doses and dosing 

regimens, providing an opportunity for risk mitigation, independently from available 

experimental data.   
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CHAPTER 9 

Pharmacology-based assessment of toxicity: towards quantitative 

risk prediction in humans  

 

Undoubtedly, the main objective of toxicology studies during the course of drug discovery 

and development is to support scientists, clinicians and regulators in establishing the likely 

risks posed to humans and more specifically to patients. Challenges exist not only when 

interpreting the results and making extrapolations to predict risk, but also at the planning 

and design stage, including the choice of most relevant species, choice of the doses to be 

investigated and duration of treatment.   

Despite the requirement for extrapolations and more quantitative measures of what 

represents safe exposure, limited attention has been given to the role of alternative 

methodologies that have emerged in pharmacological sciences. Over the last decades, most 

of the empirical evidence generated as part of general toxicity package in drug development 

has been treated in a descriptive manner.  Yet, numerous statistical modelling tools have 

been developed over that same period that have substantially improved our understanding 

of human exposure, pharmacokinetics, pharmacodynamics and disease processes (32-35).  

Opportunities exist for toxicology to transition from a qualitative science to a discipline 

capable of quantitatively describing relevant biological and pharmacological processes that 

determine the exposure-effect relationships in animals and in humans. However, there are 

multiple methodological obstacles to overcome before efficient and early prediction of 

chronic toxicity of new chemical and biological entities becomes routine practice in 

pharmaceutical R&D. First of all, the application of quantitative modelling concepts to 

toxicology imposes the need for an integrative approach in that the evaluation of toxicity 
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and adverse events become part of continuum that encompasses primary and secondary 

pharmacology as start point (5,6).  

 

Integration of quantitative tools within experimental design, data collection, analysis and 

interpretation has become more important than ever in pharmacology research. Evidence so 

far supports the use of such tools to 1) optimise experimental protocols, 2) refining and 

reducing the burden and number animals required and most importantly 3) translating drug 

effects from animals to humans.   

The scientific and regulatory communities should acknowledge that most toxicity tests, as 

currently designed, provide only a qualitative estimate of the hazard associated with 

supratherapeutic exposure (7). This is clearly not the most important question that needs to 

be addressed from a clinical perspective. The safety and toxicity profile of a medicinal 

product needs to include an assessment of the risk at therapeutic levels, especially in chronic 

disease conditions (8).  Yet, data produced using current testing guidelines are not always 

suitable for robust mathematical exposure–response modelling. As stated at the beginning 

of this thesis, we recognise therefore that adequate data integration and optimised 

protocols are required before quantitative modelling can be applied as mainstream tool for 

the analysis and interpretation of toxicity and adverse events.  

The research performed in this thesis is therefore focused on a number of issues that need 

to be considered during the course of drug discovery and development to ensure more 

efficient use of the data generated in safety pharmacology and toxicology protocols. We 

have attempted to address four questions that can be considered enablers for the 

implementation of a systems approach for the characterisation of physiological and 

pharmacological responses induced by chronic exposure to a drug. 

In Chapter 1 we reviewed mainstream safety assessment practices in drug development and 

the consequences of empirical evidence generation.  Based on historical examples we 

identified methodological flaws in the current paradigm and categorised issues relative to 
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the scientific rationale as a hierarchical tree describing the decision making process.  From a 

theoretical perspective, different facets of the same problem were discussed, which relate 

to four seminal areas of scientific research: 1. optimisation, 2. translation, 3. analytical 

construct and 4. decision criteria.  The implications of each of these points for the 

implementation of model-based methods were addressed separately. We showed that 

errors in the prediction of safety may arise due to the use of empirical safety thresholds, 

which are used as a proxy or surrogate for toxicity or undesirable effects. Published data 

make it clear that instead of pursuing a more mechanistic approach, empirical methods 

continue to be used. To cope with inaccuracy and poor precision, safety factors, also known 

as uncertainty factors, have been incorporated on the top of empirical thresholds.  Their 

application in drug development has become widespread and is detailed within the 

regulatory guidelines.  Based on historical examples, we have shown some important 

challenges for the early characterisation of the safety profile of a new molecule and discuss 

how model-based methodologies can be applied for better design and analysis of 

experimental protocols. An initial conclusion can be drawn in support of the efforts 

presented throughout the thesis, in that current practices fail to support decision making on 

multiple levels.   

A shift in paradigm was then proposed to ensure that pharmacological concepts are 

incorporated into the evaluation of safety and toxicity. In chapter 2, we presented the 

conceptual and methodological aspects that underpin the work presented in the subsequent 

chapters of this thesis. Our goal was to explore the feasibility of pharmacologically based 

quantitative toxicology assessment and risk prediction in humans and, where possible, to 

compare the performance of this approach to traditional safety assessment approaches. We 

have also highlighted an important difference in the objective of current experimental 

protocols, which are aimed at confirming safety rather than characterising the range of 

toxicity. Four important questions were highlighted which define the scientific framework 

presented in the subsequent chapters, which can be defined as opportunities for 

optimisation and knowledge integration. We set a constraint that existing experimental 

protocols would be viewed as a starting point, and any proposals to deviate from these 
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protocols would be minimal.  Although similarities exist between efficacy and toxicology 

assessment from a pharmacological point of view, here we proposed an investigational plan 

to determine the methodological requirements of toxicological data analysis.  Furthermore, 

we set an often forgotten objective in non-clinical research, i.e., the ethical duty to refine, 

reduce and replace the use of animals in experimental protocols (9).  The investigational 

plan of the thesis was detailed and divided into two distinct sections (sections 2 and 3), in 

which the development of methodology is followed by a case study with real data. 

  

Conceptual framework 

In Section II, the advantages and limitations of a model-based approach were evaluated.  

Conceptually, we have demonstrated how factors such as within- and between-subject 

variability or uncertainty in estimation can be accounted for when descriptive statistics are 

replaced by pharmacokinetic and pharmacokinetic-pharmacodynamic parameters. Using 

simulations to replicate experimental protocols we have illustrated how different measures 

of exposure can be obtained which may be physiologically more relevant for the 

characterisation of delayed or late onset adverse events. Particular focus was given to the 

feasibility of assessing long term risk from shorter duration studies.  In addition, we have 

identified alternative options for the design and analysis of preclinical general toxicology 

protocols. 

Initially, focus was given to the use of non-linear mixed-effect (NLME) modelling as a data 

analysis tool for the evaluation of toxicokinetic experiments and parametric estimation of 

safety thresholds. In Chapter 3 we simulated toxicokinetic data from satellite treatment 

groups in general toxicity protocols using three hypothetical drugs, with distinctly different 

pharmacokinetic properties.  Analysis of the simulated datasets with traditional non-

compartmental analysis and NLME models allowed us to measure the performance of both 

methodologies and compare them in terms of bias and precision.  The main source of the 

bias in the parameters of interest was found to be intrinsic to the non-compartmental 

method, especially when looking at the estimation of Cmax. Our results also revealed the 
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typical point estimates of parameters derived from empirical methods to describe drug 

exposure give an undue measure of certainty, allowing for the propagation of uncertainty 

from estimation to uncertainty in safety thresholds such as NOAEL. As demonstrated by the 

simulations, this issue could be circumvented by model-based methods, which enable the 

assessment of uncertainty associated with a variety of causes such as uninformative study 

design, large variability and/or unknown covariates. The use of hypothetical drugs with 

different pharmacokinetic properties also allowed us to illustrate how obtaining a 

pharmacokinetic model provides opportunities for different parameterisations or metrics of 

drug exposure, as for example, the estimation of cumulative AUC to describe irreversible or 

chronic toxicity, including predictions beyond the study duration. This entails an increase in 

the quality of the decision-making process and ultimately in the interpretation of the 

estimated safety thresholds. 

Since experimental protocols for the evaluation of general toxicity are not optimised for 

model-based analysis, and more specifically for population pharmacokinetic modelling, an 

important question to be addressed is whether they can  be optimised to ensure a reduction 

in the number of animals required, whilst still providing sufficient estimation precision for 

measures of exposure, which are often secondary pharmacokinetic parameters, such as AUC 

and Cmax.  In contrast to existing optimality software and algorithms, which support 

optimisation of experimental design with respect to primary parameter precision, in Chapter 

4 we show that secondary parameters can be optimised without the resource-intensive 

procedures imposed by D-optimality.  Our approach instead consisted of FIM evaluations 

followed by calculation of the expected secondary parameter precision.  Both of these 

procedures were found to be computationally inexpensive. Most importantly, our results 

highlight the impact of optimal protocol design on parameter estimation. The proposed 

method for optimisation of sampling time and group size indicates that a reduction of 

approximately 30% in the number of animals can be obtained for composite sampling 

designs without significant loss of precision in the estimates of interest. This improvement 

was found to be independent of differences in drug disposition, as assessed by the different 

profiles derived for the hypothetical compounds. Our analysis also suggests that for 
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composite methods sample size does not determine the precision of the pharmacokinetic 

parameters of interest. Rather, it is the sampling scheme and dose levels which matter. 

Interestingly, we have observed that the precision of the secondary parameters remains 

unaffected even when some of the primary pharmacokinetic parameters are poorly 

estimated.   

Whereas the use of model-based estimates for the assessment of safety thresholds may be 

perceived as complicated, this approach was shown to be unbiased and predictive, allowing 

for the incorporation of the physiological factors underlying the pharmacokinetic properties 

of the drug under investigation, such as metabolic saturation. Moreover, our simulation 

scenarios provided evidence of the feasibility to integrate prior information, including data 

from other experiments. 

Still within the scope of protocol optimisation, in Chapter 5 we explored the implications of 

introducing biomarkers into the evaluation of a drug’s safety toxicity profile. Here we 

emphasised the fact that accurate prediction of long term adverse events and toxicity may 

require one to identify not only the exposure at which the effects are observed, but also 

biomarkers of pharmacological activity. In contrast to traditional protocols, which imply a 

direct relationship between observed systemic exposure and adverse events, we have 

proposed the collection of biomarkers at the scheduled pharmacokinetic sampling points to 

facilitate the characterisation of pharmacokinetic-pharmacodynamic relationships. Our 

evaluation also compared the analysis of biomarker data based on standard non-

compartmental methods. We simulated toxicokinetic and biomarker data from satellite 

groups using a variety of hypothetical drugs. The analysis of the simulated data showed that 

the true underlying model was often unidentifiable particularly in scenarios with delayed PD 

effects (hysteresis). However, in all scenarios, model approximations could be made which 

led to satisfactory performance in predicting biomarker levels.   We believe, therefore, that 

greater awareness is required about the limitations of current experimental protocols, 

particularly in a period in which long-term safety have become a major clinical and 

regulatory concern.  To mitigate such effects we recommend careful consideration of model 
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uncertainty. Our analysis showed that model selection criteria should be guided not only by 

ability to describe data but also by assessing the physiological relevance of model 

assumptions.  When model development ends in multiple competing models performing 

similarly with respect to model selection criteria, clear reporting of such model uncertainty is 

necessary.  In any case, model averaging should be discouraged when predictions arising 

from different model differ significantly.  Finally, parameter uncertainty should be 

incorporated when performing simulations or using the model to make predictions. 

Our goal with Chapter 6 was to investigate the feasibility of integrating the aforementioned 

mechanistic PKPD models with adverse event data for model-based toxicology assessment.  

Similar in silico methods used in chapters 3 and 5 were used to simulate drug induced and 

background adverse events according to three different pharmacological mechanisms 

(direct, indirect, and irreversible binding).  We focused on rare and chronic adverse drug 

reactions to provide the largest methodological challenge, including reversible and 

irreversible drug effects. To ensure real-life conditions, assumptions were made with regard 

to situations 1) in which drug-induced and background adverse events are indistinguishable 

from each other, 2) the time interval elapsed between onset and diagnosis was large and 

symptoms can be detected only once per animal during histological examination and 3) the 

adverse event can be treated as binary data.  Our results showed that estimation of safety 

thresholds, as determined by the NOAEL, was highly biased and imprecise.  Moreover, in two 

out of three scenarios where the effects of safe and effective hypothetical compounds were 

simulated, we found that strict use of the NOAEL as go/no-go criteria would lead to a more 

than 50% probability of concluding that the compound is unsafe and consequently leading to 

wrongful termination of the development program. Upon investigating the feasibility of 

model-based analysis, we found that we required two important components for successful 

quantification of rare drug-induced effects: a) the availability of prior information on 

background adverse events and b) MCMC-based estimation algorithms.  Regarding the first 

requirement, we showed that without prior information, adverse drug reactions are 

confounded with background incidence rates, preventing parameter identifiability. We 

found that an aggregated historical placebo data was sufficient to resolve this confounding. 
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On the other hand, when evaluating the performance of available parameter estimation 

methods, we found that maximum likelihood algorithms are unstable and unreliable.  By 

contrast, MCMC-based estimation provided stable and accurate measures of parameter 

uncertainty.  The use of the BIC as a model comparison and averaging criteria showed 

consistently high model specification uncertainty. Our results highlighted that traditional 

model selection and averaging techniques based on the penalizing models for complexity 

were not appropriate as they heavily weighted models featuring no drug effect. Finally, it 

should be noted that missed adverse events were also easily quantified using the proposed 

strategies.  Differently, from the empirical approach to treating missing events as absent, the 

use of MCMC methods provided evidence of the parameter distribution, enabling 

imputation of the events, even if they have not been observed. 

In summary, the conceptual framework presented throughout this section  provides 

evidence regarding the feasibility and relevance of  a model-based approach for the, 

evaluation of safety pharmacology and toxicology profile of new molecules prior to their 

progression into humans. It has become clear that current methods in preclinical toxicology 

do not support the integration of pharmacokinetic and pharmacodynamic data as basis for 

predicting safe exposure in humans. By contrast, a model-based approach represents a 

viable tool for characterising PKPD relationships, including estimates of parameter and 

model uncertainty.  A benefit this strategy lends to decision-making is that clinical judgment 

can be applied to consider the entire relationship between drug exposure and adverse 

event, rather than a point estimate or threshold. 

In the third part of the thesis (Section III) we attempted to illustrate the implementation of 

experimental protocols that meet the requirements for model-based analysis. Given the 

continuous debate regarding the benefit-risk balance of chronic treatment with non-

steroidal anti-inflammatory drugs, naproxen was used as a paradigm compound to evaluate 

the known acute and chronic toxicities. Whilst the lack of selectivity of naproxen and the 

evidence for distinct mechanisms underpinning acute effects (such as bleeding and 

ulceration) and long term effects (such as renal and cardiovascular damage) have evolved 
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over the years and might not have been understood at time of the development of the 

compound, our  investigation made it quite didactic in that it demonstrates how human 

safety and toxicity may require characterisation of drug effects at exposure levels 

corresponding to the therapeutic doses. Furthermore, by considering the requirements for a 

suitable experimental protocol, we also took the opportunity to identify practical challenges 

and difficulties that one may face for the prospective use of the methodology.   

 

Practical application 

Using a typical toxicology protocol in rats, in Chapter 7 we have explored how two 

biomarkers, namely thromboxane (TXB2) and prostaglandin (PGE2), can be used in 

conjunction with drug exposure data to evaluate short, moderate and long-term treatment 

effect. It was assumed that gastrointestinal bleeding is due continuous COX-1 inhibition, 

whereas ulceration results primarily from the suppression of COX-2.  Pharmacokinetic and 

biomarker data were integrated with data from historical protocols and published literature 

to ensure characterisation of drug properties at putative therapeutic levels. We found that 

the pharmacokinetics were best described a one-compartmental model with first-order 

absorption.  A nonlinear relationship between dose and bioavailability was included into the 

model which led to a less than proportional increase in exposure with respect to dose.  

Toxicity findings showed gastric ulceration at all tested dosing levels (7.5, 15, 40 and 80 

mg/kg) meaning that no NOAEL could be established. Despite the lack of a safety threshold, 

we have demonstrated that experimental data can be used to characterise the underlying 

PKPD relationships for both TXB2 and PGE2, which were best described by direct inhibition 

models.  Estimation of all parameters was precise and models performed well in diagnostics 

and predictive checks, confirming the feasibility claims of chapters 3 and 5.  In addition, our 

results emphasised the role of construct validity to account for the potential impact of 

interspecies differences in the underlying exposure-response relationships.  As indicated by 

the level of biomarker inhibition observed at the selected doses, inferences from the 

preclinical data can be made to predict drug effects at comparable levels of inhibition in 
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humans. In fact, we found that the PKPD relationship was within 10-fold range of published 

human values, raising questions about differences in the sensitivity of rats to the cyclo-

oxygenase inhibition.     

Whereas the use of a parametric approach and more specifically of hierarchical mixed-

effects modelling to inform experimental design and dose selection represents an important 

step in the advancement of translational toxicology, both from a biological and statistical 

perspective, we have also identified a few limitations that are worth mentioning.  Some 

mechanisms of action may be too complex or poorly understood to be characterised by 

PKPD modelling of data arising from a general toxicity study, even if biomarkers are 

collected. Multiple downstream markers may present a significant confounder problem 

which cannot be avoided without additional data. This cannot be easily addressed by the 

proposed analysis method and becomes a drug development issue.  

Our feasibility evaluation was complemented in Chapter 8 by further integrating the 

histological data obtained at completion of treatment to the observed biomarker effects.  In 

this investigation we showed how the pharmacokinetic-pharmacodynamic (PKPD) model 

obtained in the previous chapter can be incorporated into a formal analysis to describe 

adverse event incidence and severity. The adverse events (gastric ulceration) were 

quantified as continuous measures of ulcerative area.  Ulceration incidence (binary) and 

severity (severity) were modelled as two separate variables or endpoints of interest.  The 

final model parameters describing the incidence of adverse events showed that ulceration 

was an acute effect driven primarily by maximum inhibition of PGE2 levels corresponding to 

maximum blockade of COX-2.  The implications of model uncertainty highlighted in chapter 6 

prompted us to combine model selection criteria with bootstrap methodology to obtain 

model uncertainty estimates.  We found that there was minimal model uncertainty with 

regard to the characterisation of ulceration incidence but high specification uncertainty 

when describing ulceration severity.  Despite such high uncertainty, cumulative suppression 

of TXB2 levels, assumed to result from to long term blockade of constitutive COX-1 could be 

identified as an influential covariate of ulceration severity. In summary, our investigation has 
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shown how a model-based approach can be used to support early identification of long term 

adverse events, enabling further integration and translation of pre-clinical data. Our results 

also illustrated how the availability of PKPD relationships may allows us to make inferences 

about untested doses and dosing regimens, providing an opportunity for risk mitigation, 

independently from available experimental data.   

From a methodological perspective, the findings arising from this experimental protocol 

demonstrated the feasibility and potential benefits of proposed model-based approach for 

the evaluation of chronic safety pharmacology and toxicity. However, it should be noted that 

the accuracy, precision and validity of the method still relies on the experimental data. The 

adverse events we have assessed in this study were relatively frequent. Characterisation of 

rare or low frequency events may still be difficult, particularly if one cannot make use of 

historical data (e.g., unprecedented mechanism) or make inferences about class effects. We 

also acknowledge that the absence of ulcerations in vehicle treated animals and the lack of 

additional cohort with lower exposure levels may represent a weakness in our investigation. 

True baseline rates for ulceration could not be factored into the analysis, nor was it possible 

to accurately establish the adverse event rates at lower doses. 

 

Practical recommendations for safety assessment 

 

Given the challenges and limitations for the characterisation of exposure-effect relationships 

using data arising from typical experimental protocols, we have compiled a list of points to 

consider regarding methodological and practical issues, including recommendations for 

further protocol optimisation which may facilitate the implementation of model-based 

techniques in safety pharmacology and  toxicology research. 
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• Sampling scheme and dose selection to be used in the safety pharmacology and 

toxicology protocols need to take into account the underlying mechanism or mode of action 

associated with the primary pharmacological target or receptor system. It is imperative to 

ensure that different levels of target engagement (i.e., receptor occupancy) within and 

beyond the expected therapeutic exposure are included. 

• Study protocols should be analysed in an integrated manner to ensure accurate 

conclusions are drawn about the safety and toxicity profile of the compound. This implies 

the combination of data arising from all experimental protocols where pharmacokinetic and 

biomarker data are collected. 

•  Integration of historical data as priors (describing parameter distributions) may be 

required to reduce the degree of uncertainty associated with models predictions across the 

exposure-response curve describing the adverse event or toxicity. 

• Better, continuous inference metrics (e.g., EC10, cumulative biomarker levels and 

other derived parameters from the underlying PKPD relationship), are required to 

extrapolate findings from toxicological dose levels to clinically relevant therapeutic exposure 

ranges. Safety thresholds are conservative and biased. 

• Optimisation of study design should be performed on parameters of interest (i.e. 

AUC< Cmax) rather than primary model parameters.  Standard optimality algorithms (e.g. D-

optimality) are not suitable for that purpose, as current software programs maximise the 

overall expected parameter precision within design constraints (10).  Acceptability criteria 

for precision of parameters of interest should be defined in advance and evaluated within 

the design space taking into account feasibility aspects. Selected designs should be 

parsimonious in that further reduction does not produce a sufficient design. 

• The impact of prior model and parameter uncertainty should be investigated during 

the study design phase (e.g., by simulation) to ensure uncertainty is factored accordingly 

into the expected study outcomes. 

• Lack of model identifiability represents a risk for PKPD analyses based on standard 

experimental toxicology and safety pharmacology protocols. Therefore, to ensure model and 

parameter identifiability, simulation re-estimation (SSE), bootstrapping and sensitivity 
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analysis with respect to initial estimates are essential steps to be considered throughout 

model development and validation (11, 12). 

• Maximum likelihood methodology is insufficient to model rare adverse events.  The 

use of a Monte Carlo-Markov Chain algorithm is required for stability and accurate 

parameter uncertainty estimation (13). 

• Model uncertainty is a likely outcome of adverse event modelling.  Model uncertainty 

should therefore be accounted for and quantified e.g. using the bootstrap covariate method.  

Final model predictions should also be displayed along with prediction intervals to account 

for parameter uncertainty (14-16). 

• Traditional model selection and averaging criteria which penalise for model 

complexity (e.g. BIC and AIC) are inappropriate when modelling rare adverse event data as 

models without drug effects are overweighed.  A conservative approach to model selection 

should instead be guided by pharmacological plausibility and data fitting metrics without 

penalisation (e.g. -2 log likelihood). 

Future perspectives 

 

The methodological issues identified through simulation scenarios and the lessons learned 

from the integrated experimental protocol developed for naproxen have highlighted the 

limitations of current practice in the evaluation of the safety profile of new chemical entities. 

More specifically, our findings reveal that inferences about safe exposure as well as the risk 

associated with long term use of a compound cannot be achieved by scattered empirical 

experimentation. A framework is required that enables integration, in a parametric manner, 

of experimental data and theoretical knowledge.  As shown in figure 1, such a framework 

would encompass multidimensional data, allowing for the incorporation of not only in vivo, 

but also in vitro data as input for computational models. 
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Figure 1:  Integration of in vitro and in vivo data as input for in silico models. A model’s ability to 

predict toxicity in humans is used as reference for further refinement of the model as well as of the 

experimental design (modified with permission from 17). 

 

In order for computational models to be used to predict long term safety and toxicity in 

humans, methods are required that incorporate the mechanisms associated with primary 

and known secondary targets. In addition, general parameterisations also need be 

considered to describe drug action beyond the receptor or target level, including broader 

concepts, such as inappropriate cell signalling, mutagenesis and carcinogenesis (17). The 

emerging field of systems pharmacology could hold promise in this respect by providing a 

systematic framework which accounts for all relevant processes from target-drug interaction 

at the biophase to downstream cellular and organ level processes (110).  In fact, one of the 

first examples of the approach for the characterisation of general toxicity is the case of 

vitamin D, which has been used to establish target tissues for 1,25-(OH)2 vitamin D3 (19). 

Systems pharmacology makes evident that the actions of most of the target tissues are 

unrelated to systemic calcium regulation and are instead related to the regulation of 

endocrine and exocrine secretion, cell proliferation and cell differentiation.  It can be easily 

seen that many, if not all, target tissues of the vitamin D system will be activated in patients 
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treated with a vitamin D-related compound – whether taken against osteoporosis, tumour 

growth or any other single condition. However, physiologic dosing of vitamin D does not 

cause hypercalcemia – hypercalcemia is related to overdosing only (19, 20). 

More recent developments have allowed for a more quantitative characterisation of system 

and drug behaviour in vivo. Quantitative systems pharmacology represents a convergence of 

systems biology and pharmacology, combining computational and experimental methods to 

elucidate and predict disease progression and drug effects. The approach does not only take 

into account the underlying pharmacokinetic-pharmacodynamic relationships, but also 

potentially multiple components of the biological systems leading to changes in biological or 

disease state. This feature is particularly relevant, both from a clinical and methodological 

perspective,  for the parameterisation of long term adverse events, which may originate 

from a perturbation of homeostatic mechanisms, from cellular changes or cell injury (21). In 

contrast to empirical and probabilistic models, in systems pharmacology one can introduce 

both mechanistic and physiological elements as parameters for the characterisation of 

acute, delayed or late safety signals, which in turn can be correlated with global clinical 

measures, such as morbidity (figure 2). In conjunction with physiologically-based 

pharmacokinetic (PBPK) models, systems pharmacology can provide the basis for 

determining the impact of observed variations in physiological and biochemical factors, as 

well as discriminate pharmacokinetic from pharmacodynamic or biological variability.  

Instead of compartments defined solely by experimental kinetic data, compartments in a 

PBPK model are based on realistic organ and tissue groups, with weights and blood flows 

obtained from the literature. Moreover, instead of compartmental rate constants 

determined solely by fitting data, actual physicochemical and biochemical properties of the 

compound can often be used to define parameters in the model.  In particular, a properly 

validated PBPK model can be used to perform the high-to-low dose, dose-route, and 

interspecies extrapolations necessary for estimating human risk on the basis of experimental 

protocols in animals. 
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Figure 2. Dose-exposure-response paradigm for toxic effects, relating observed response as 

consequence of perturbations of the normal control processes in the cell. Low doses are largely 

without functional consequences; intermediate doses activate adaptive stress responses with 

attendant homeostatic controls; and high-enough exposures lead to overt toxicity (reprinted with 

permission from 22). 

 

One example of modelling incorporating systems pharmacology, which can be deemed 

relevant for the evaluation of target-mediated efficacy and safety, regards the effects of 

steroids. The work developed by Ramakrishnan and collaborators shows how experimental 

data, including transcription and gene mediated effects can be parameterised to describe 

the binding of steroidal drugs to the cytosolic glucocorticoid receptor and subsequent 

translocation of the complex into the nucleus where it binds as a dimer to the glucocorticoid 

responsive element (GRE) in the DNA (23) (Figure 3). This leads to the enhanced or repressed 

expression of numerous genes. At the same time, binding of the activated steroid-receptor 

complex to the GRE results in reduced levels of receptor mRNA. This further leads to 

decrease in the free receptor density in the cytosol. The concept nicely illustrates how long 

term use of corticosteroids may lead to suppression of normal physiological function at 

cellular and whole organ levels. 
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Figure 3 – Schematic representation of the cellular/molecular mechanism of steroid action in the 

hepatocyte. The thick open and solid arrows indicate induction and repression of gene transcription 

(reprinted with permission from 23) 

 

Whilst there are relatively few examples specific to safety pharmacology and toxicology, 

Berger et al. have recently shown how a systems pharmacology approach can be used to 

characterise and predict QT prolongation (111). Their work shows that the QT prolonging 

effects of multiple drugs targeting very different indications could be estimated with a 

network analysis approach. They were also able to account for multiple off-target binding 

sites for each drug showing that target related and off-target effects could be assessed 

within the same framework.  It should be noted that the model was Boolean in nature, 

which implies the need for further refinement for quantitative toxicological predictions. 

Another interesting application has been shown by Timchalk et al., who illustrate the 

development of a model-based approach to describe the pharmacodynamics of 

cholinesterase inhibiting compounds (25). Their model accounts for the synthesis and loss 

rates of the enzyme in vivo, enabling prediction of the brain synthesis.  
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Still in the realm of systems pharmacology, attention should be given to the contribution of 

mechanism-based models describing biomarkers as predictors of drug response, even when 

the underlying toxicological mechanisms are poorly understood. Increasing emphasis has 

been given by academic researchers and regulators on the relevance of biomarker selection 

and early risk prediction (112-114). In fact, the use of biomarkers to predict liver and kidney 

toxicity has been the subject of numerous public-private initiatives. Unfortunately, little has 

been done to integrate biomarkers as covariates or into PKPD models. In principle, one could 

consider the prediction of acute and chronic toxicity by parameterising biomarker response 

in a similar manner to what creatinine clearance currently represents in renal impairment. 

In addition to the development of more physiological, mechanism-base models, another 

avenue for future extension of the proposed methodology in this thesis lies in risk-benefit 

analysis.  There are numerous examples of risk-benefit assessment in the published 

literature in which pharmacological and physiological models have been applied. Yassen et 

al. (2008) performed an analysis on buprenorphine and fentanyl to assess risk benefit for 

antinociceptive and respiratory depressant effects (115). The development of a population 

PKPD model enabled both effects to be probabilistically modelled as a function of the 

predicted biophase concentrations.  By constructing a clearly defined utility function, they 

were able to obtain therapeutic indices consistent with known literature at the time. The 

most difficult hurdle to overcome with the acceptance of utility functions is in demonstrating 

construct validity.  Ultimately, it should function as a mathematical description of the 

subjective risk-benefit criteria held by patients and physicians.  Methods to assess the 

degree of construct validity however are not currently well established and widespread 

acceptance of utility functions to define therapeutic windows is still lacking. When utility 

functions are too subjective, overlaying exposure-benefit and exposure-risk relationships will 

possibly aid in the selection of safe and efficacious doses. 

The advantages of quantitative models in toxicology are unquestionable, as they facilitate 

the characterisation of exposure, biomarkers, and pharmacodynamics both at organ, tissue 

and cellular levels. However, a model can only be validated for its predictive performance for 
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some aspects/ modules, but not for other due to the difficulty in obtaining experimental 

measures (e.g., free concentration in a given organ). Yet, the primary advantage of a 

biologically based model is the possibility to make predictions of variables that cannot be 

easily accessed with the available methodologies or that are impossible to measure in an 

intact biological system using current technologies.   

Efforts must therefore be made to define the endpoints as well as the purpose of the 

biological model even before its development.  In this context, one last aspect that deserves 

further attention is the need to replace uncertainty factors by a more formal, systematic 

measure of the lack of construct validity or discrepancy between experimental conditions 

and the expected therapeutic use of a drug. The predictive performance of a model must 

include the uncertainty about the model itself (e.g., identifiability) and about the 

translational gap (e.g., differences between species or experimental conditions). A central 

premise of toxicology has been that adverse effect are examined on the basis of higher 

doses and then extrapolated to lower doses. There is enough evidence showing that 

responses occurring a lower exposure may not be predicted from higher doses when 

homeostatic regulation (e.g., oscillatory, antagonistic balance) is involved (7,31). Dose and 

time considerations in the development and use of a drug are important for assessing 

actions and side effects, as well as predictions of safety and toxicity. We believe that lack of 

observance of this axiom will probably be the main source of uncertainty in any integrative 

approach, such as proposed throughout this thesis. This point has been raised by the Swiss-

German physician, Theophrastus of Hohenheim in 1538, who stated that all things are 

poison and nothing is without poison: only the dose makes a thing not to be poison (20). 

(Figure 4)  
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Figure 4 – Statement by the Swiss-German physician, Theophrastus of Hohenheim (Paracelsus). What 

is not a poison? All things are poison and nothing is without poison. Only the dose makes a thing not 

to be poison (reprinted with permission from 20). 

 

Given the increased relevance of evidence synthesis as the basis for decision-making within 

regulatory and clinical practice, we anticipate that some of the meta-analytical elements 

presented across the various simulation scenarios will become embedded into daily practice 

in safety pharmacology and toxicology. Irrespective of the degree of understanding of the 

mechanisms of toxicity, a model-based approach appears to outperform standard methods 

for the prediction of the safe drug exposure of novel molecules in early drug development, 

especially those events that show low frequency or have delayed onset. Despite the narrow 

scope of the scenarios and limitations intrinsic to the selected experimental protocols 

presented in this thesis, our findings raise a new, potentially even more important question 

regarding the ethical basis for using empirical protocols in safety pharmacology and 

toxicology.  
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CHAPTER 10 

Nederlandse Samenvatting (Synopsis in Dutch)  

 

De toxiciteit en veiligheid van nieuwe geneesmiddelen wordt voornamelijk bestudeerd in 

proefdier modellen. De resultaten verkregen met deze modellen worden vervolgens 

geëxtrapoleerd om bijwerkingen in de mens te voorspellen. Bij dit onderzoek richt men zich 

vooral op lever en nierschade, schade aan het oog, immuno- en genotocixiteit alsmede aan 

carcinogeniteit. Daarbij wordt slechts beperkt aandacht besteed aan de analyse van de 

relatie tussen de blootstelling (in termen van het beloop van de geneesmidelconcentratie in 

het lichaam) en de toxiciteit. Zelfs in het geval dat resultaten van het veiligheidsonderzoek 

bruikbaar zijn voor een dergelijke analyse, is het uitvoeren van dit type experimenten 

tijdrovend en zijn extrapolaties van dier naar de mens vaak niet robuust, accuraat en/of 

precies. Een aantal van deze beperkingen is blijven bestaan ondanks het feit dat 

toxicokinetiek wordt beschouwd als een essentieel onderdeel van de beoordeling van de 

veiligheid van nieuwe farmaca. 

In dit proefschrift laten we zien  dat het mogelijk is om kennis uit farmacologische 

experimenten te combineren met specifieke informatie uit in vitro test systemen en 

computer modellen om zowel de werkzaamheid als de veiligheid in vivo te voorspellen. 

Daarbij is het ook mogelijk om verstoringen in vitro te bestuderen die de oorzaak zijn van 

bijwerkingen van een geneesmiddel of die daaraan een bijdrage leveren. Dit heeft als 

belangrijk extra voordeel dat de focus van traditionele toxicologie studies, waar risico’s van 

een hoge dosis van een stof  in vivo bestudeerd worden, vervangen kunnen worden door 

experimentele protocollen  waarin de de veiligheid van geneesmiddelen wordt bestudeerd 

bij een klinisch relevante blootstelling. 

Op dit moment zijn er methodologische en conceptuele ontwikkelingen  voor het 

bestuderen van de veiligheid en de toxiciteit van nieuwe farmaca, waardoor  de risico’s van 
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het gebruik bij de therapeutische toepassing efficiënter kunnen worden gekarakteriseerd. 

Helaas worden deze methoden nog niet vaak toegepast om bij de registratie van nieuwe 

geneesmiddelen, belangrijke vragen op het gebied van de veiligheid en toxiciteit te 

beantwoorden. De betekenis van kwantitatieve concepten is eerder aangetoond oa. voor de 

structuur-werkingsrelaties, als basis voor het voorspellen van de toxiciteit van een 

chemische verbinding onder bepaalde omstandigheden. Op basis daarvan kan men 

uitspraken doen over de mogelijke effecten van een behandeling zelfs wanneer de 

blootstelling in de mens erg laag is en toxicokinetische gegevens niet gemakkelijk verkregen 

kunnen worden. 

Door het ontbreken van een sterke farmacologische basis voor de experimentele protocollen 

heeft de implementatie van een modelmatige benadering voor het karakteriseren van de 

veiligheids- en toxiciteitsprofiel van een nieuw geneesmiddel nooit op grote schaal 

plaatsgevonden. Daardoor is de analyse van de relatie tussen blootstelling en effect nog 

steeds niet het primaire doel van de desbetreffende protocollen. Men gaat ervan uit dat 

veiligheid gekarakteriseerd kan worden door een veiligheidsdrempel. Ook het concept van 

op fysiologie-gebaseerde farmacokinetische (PBPK) modellering voor het voorspellen van de 

blootstelling  wordt nog niet veel toegepast en wanneer het wordt toegepast is dit 

voornamelijk op het terrein van milieu-toxicologische vraagstukken en in mindere mate voor 

de ontwikkeling van geneesmiddelen. 

Methoden die veiligheid en de toxicologische effecten van geneesmiddelen in de mens 

kunnen voorspellen of op basis waarvan een vertaling vanuit in vivo diermodellen of in-vitro 

modellen naar de mens kan worden gemaakt, zijn van erg groot belang. Er is een grote vraag 

naar de ontwikkeling van deze methoden, ongeacht de huidige richtlijen voor toxicologisch 

onderzoek of de urgentie voor verandering van de eisen die gesteld worden door de 

registratie autoriteiten. Om dit te kunnen bewerkstelligen is er meer nodig dan de 

ontwikkeling nieuwe experimentele protocollen en technologieën. Een integrale benadering 

waar efficiënt gebruik wordt gemaakt van de beschikbare informatie en de toepassing van 

farmacokinetische-farmacodynamische modellering kan van grote betekenis zijn. Hierbij is 
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het essentieel dat ook bijwerkingen die op lange termijn optreden en zeldzame bijwerkingen 

bestudeerd kunnen worden, omdat die nog steeds een belangrijke oorzaak zijn van het falen 

van nieuwe medicijnen. Daarnaast ontbreekt er ook een geïntegreerde benadering  om de 

juiste eindpunten te kiezen om zo de risico’s die het gebruik van het geneesmiddel met zich 

meebrengt nauwkeurig en precies te kunnen beoordelen.  

De huidige toxiciteit testen zijn voornamelijk bedoeld om de gevaren van het gebruik van 

een geneesmiddel op supraherapeutisch niveau te kunnen bestuderen. De data die wordt 

gegenereerd op basis van de bestaande richtlijnen is daardoor niet altijd geschikt om de 

relatie tussen blootstelling en effect vast te stellen. Noch om deze relatie op basis van 

wiskundige modellen te kunnen karakteriseren. Om de relatie tussen blootstelling en 

respons te bestuderen zou er eerst aan enkele voorwaarden moeten worden voldaan.  Ten 

eerste, zouden verschillende doses moeten worden toegediend, waardoor een breed bereik 

kan worden verkregen in termen van blootstelling niveaus en respons. Daarbij moet men 

ook de samenhang tussen de primaire en secondaire farmacologische mechanismen en de 

gewenste en ongewenste effecten proberen te identificeren.  

Het onderzoek dat is beschreven in dit proefschrift heeft betrekking op een aantal 

onderdelen in het proces van de ontwikkeling van nieuwe geneesmiddelen, die overwogen 

dienen te worden om dit efficiënter te laten verlopen. De nadruk ligt bij het efficiënt gebruik 

van data die worden verkregen bij het veiligheids- en toxiciteitsonderzoek. Vier 

onderzoeksvragen vormen de basis van het werk zoals gepresenteerd in de volgende 

hoofdstukken: 

1. Kunnen experimentele protocollen voor veiligheids- en toxiciteitsevaluaties worden 

geoptimaliseerd om de relaties tussen farmacokinetiek en farmacodynamiek te 

karakteriseren? 

2. Kan het gebruik van meta-analytische methoden gebaseerd op niet-lineair gemengde 

effecten modellen bijdragen aan een verhooging van de nauwkeurigheid en precisie van 

veiligheidsdrempels in vergelijking met de methoden die thans worden toegepast?  
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3. Kan een op mechanisme gebaseerd model worden gebruikt om de veilige blootstelling aan 

een geneesmiddel nauwkeuriger te definiëren, waardoor vertraagde (lange termijn) of 

zeldzame bijwerkingen voorspeld en voorkomen kunnen worden? 

4. Kunnen biomarkers gecombineerd met farmacokinetische data bijdragen aan het 

vastellen van  de veilige blootstelling bij langdurig gebruik van een geneesmiddel?   

Het proefschrift heeft betrekking op de hierboven benoemde onderzoeksvragen zowel van 

conceptueel als van praktisch oogpunt. 

Sectie I: Algemene inleiding 

In Hoofdstuk 1 wordt een overzicht gepresenteerd van de gangbare veiligheid toetsen en 

methoden die worden toegepast bij de ontwikkeling van nieuwe geneesmiddelen. Hierbij 

wordt er aandacht besteed aan de gevolgen van het genereren van empirisch bewijs. 

Vervolgens worden methodologische beperkingen voor het vastellen van de relatie tussen 

blootstelling en ongewenste effecten (bijwerkingen) geïdentificeerd op basis van 

voorbeelden. Tevens wordt een hiërarchische beslisboom ontwikkeld die het 

beslissingsproces weergeeft en de daarbij behorende experimentele data samenvat. Vanuit 

een theoretisch perspectief worden verschillende facetten van hetzelfde vraagstuk 

besproken, die gerelateerd kunnen worden aan vier aspecten van wetenschappelijk 

onderzoek, te weten: 1. optimalisatie 2. vertaling 3. analyse en 4. beslissingscriteria. De 

relevantie van deze punten voor de implementatie van experimentele protocollen en voor 

de schatting en interpretatie van parameters die de veiligheid en toxiciteit van een 

geneesmiddel beschrijven wordt apart besproken.  We hebben laten zien dat foutieve 

voorspellingen van veiligheid kunnen ontstaan door gebruik te maken van empirische 

veiligheidsdrempelwaarden, indien die beschouwd worden als voorspellend  voor toxiciteit 

of ongewenste effecten. Om rekening te kunnen houden met slechte precisie en vertekende 

nauwkeurigheid van deze methodes worden in de praktijk veiligheidsfactoren (ook wel 

bekend als onzekerheidsfactoren) geïmplementeerd bovenop de empirische criteria. We 

laten ook zien dat ondanks bovengenoemde beperkingen het gebruik van een 
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veiligheidsdrempel binnen de ontwikkeling van geneesmiddelen breed geaccepteerd is en 

gedetailleerd wordt beschreven in de richtlijnen van registratie autoriteiten.  

Op basis van historische voorbeelden hebben wij een aantal belangrijke uitdagingen 

geïdentificeerd om het karakteriseren van een veiligheids profiel van een nieuw molecuul in 

een vroeg stadium mogelijk te maken.  Voor de toepassing van farmacologische concepten 

in het onderzoek naar de veiligheid en de toxiciteit van nieuwe geneesmiddelen werd een 

nieuw paradigma voorgesteld.  

In Hoofdstuk 2 presenteren wij de conceptuele en methodologische aspecten die op de 

daaropvolgende hoofstukken worden uitgewerkt. Het doel van het onderzoek was om de 

uitvoerbaarheid van op farmacologische concepten gebaseerde analyse van toxicologische 

gegevens het risico van een behandeling in de mens te voorspellen, en waar mogelijk de 

uitkomsten te vergelijken met die verkregen met traditionele veiligheidstoetsen en 

methoden.  Daarbij komt een fundamenteel verschil in het doel van de veiligheidsevaluatie 

aan de orde. Het doel van de nieuwe benadering is om de veiligheid van een nieuw 

geneesmiddel bij normaal gebruik vast te stellen. Dat is een belangrijk verschil met de 

huidige praktijk die erop gericht is om vast te stellen dat een bepaalde toxische limiet niet 

wordt overschreden. Vier belangrijke vragen die het wetenschappelijke raamwerk vormen 

van het onderzoek, worden in de hieropvolgende hoofdstukken besproken, tegen de 

achtergrond van de mogelijkheden voor optimalisatie en integratie van kennis. De in de 

praktijk gehanteerde experimentele protocollen vormden daarbij het uitgangspunt. Hoewel 

er, vanuit een farmacologische perspectief,  overeenkomsten bestaan tussen de toetsing van 

de  werkzaamheid enerzijds en toetsing  van de toxiciteit anderzijds stellen wij uitsluitend 

een onderzoeksplan voor de analyse van toxicologische data voor. Verder hebben wij een 

vaak vergeten aspect van het pre-klinisch onderzoek gedefinïeerd: het ethische belang van 

het verfijnen, reduceren en vervangen van experimenten met proefdieren.  

Sectie II: Conceptueel kader 

De voordelen en beperkingen van een modelmatige benadering voor veiligheids- en 

toxiciteitsonderzoek werden geëvalueerd in Sectie II. Binnen een conceptueel kader laten 



 325 

we zien hoe er rekening kan worden gehouden met de variabiliteit binnen en tussen 

patiënten en met de onzekerheid in de respons (bijwerkingen) door gebruik te maken van 

farmacokinetische en farmacokinetisch-farmacodynamische modellering in plaats van 

beschrijvende statistische methoden. Op basis van simulaties van experimentele protocollen 

wordt aangetoond hoe waarden van de blootstelling kunnen worden verkregen die 

fysiologisch relevant zijn voor het karakteriseren van vertraagde of late bijwerkingen. De 

nadruk lag hier vooral op de uitvoerbaarheid van het voorspellen van lange termijn 

bijwerkingen gebruik makend van de gegevens uit een studie met een korte duur. Verder 

wordt er een alternatieve manier beschreven om pre-klinische algemene toxicologische 

protocollen te ontwerpen en analyseren.  

In eerste instantie werd er gefocused op niet-lineair gemengde effecten modellen als een 

data analyse methode voor de evaluatie van toxicokinetische gegevens en het vaststelllen 

van (parametrische) veiligheidsdrempels. In hoofdstuk 3 werd voor drie hypothetische 

geneesmiddelen, met verschillende farmacokinetische eigenschappen, toxicokinetische data 

gesimuleerd voor dieren in de satellietgroepen van een algemene toxiciteitsstudie. Deze 

analyse maakte het mogelijk om de juistheid en nauwkeurigheid van zowel de 

veiligheidsdrempels als de secondaire farmacokinetische parameters zoals de opervlakte 

onder de concentratie vs. tijd curve (AUC) te vergelijken en de beperkingen van de 

traditionele niet-compartmentele analyse methode aan te tonen, ten opzichte van de  

resultaten die verkregen zijn op basis van populatie farmacokinetische modellen. De 

grootste foutmarges in de geschatte farmacokinetische parameters bleken intrinsiek 

verbonden te zijn met de niet-compartmentele analyse methode, vooral als de maximale 

concentratie (Cmax) geschat moeten worden. Deze resultaten laten ook zien dat de typische 

puntschatter afgeleid van empirische methoden om medicijn blootstelling te beschrijven een 

te grote mate van onzekerheid bevatten, die ongeïdentificeerd blijft. Dit onderstreept het 

belang van de toepassing van benaderingen voor het vaststellen van de onzekerheid in 

veiligheidsdrempels zoals de drempel voor het niet-ongewenst effect (no adverse effect 

level), oftewel de NOAEL. Met de simulaties werd aangetoond dat dit fenomeen kan worden 

omzeild door gebruikt te maken van modelmatige methoden, die de onzekerheid 
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parametrisch beschrijven ongeacht of deze als gevolg van een ongeschikt protocolontwerp, 

een grote biologische variabiliteit en/of onbekende covariaten voorkomt. De analyse op 

basis van de drie hypothetische geneesmiddelen heeft ook aangetoond hoe een 

farmacokinetisch model mogelijkheden biedt om de blootstelling op verschillende manieren 

parametrisch af te leiden. Een voorbeeld daarvan is de  cumulatieve opervlak onder de 

concentratie vs. tijd curve (CAUC) bij de beschrijving van toxiciteit na langdurige 

behandeling, die ook gebruikt kan worden om voorspellingen te maken buiten de studie 

duur. Dit draagt bij aan een toename in kwaliteit van het beslissingsproces en uiteindelijk in 

de klinische interpretatie van de veiligheidsdrempels. 

Data uit in de praktijk gehanteerde experimentele protocollen voor de evaluatie van 

algemene toxiciteit zijn niet geoptimaliseerd voor de analyse met behulp van modelmatige 

methoden, inclusief populatie farmacokinetisch modellen. De vraag is of protocollen zo 

kunnen worden geoptimaliseerd dat een vermindering van het aantal benodigde 

proefdieren kan worden bereikt zonder dat dit gepaard gaat met een verlies van de juistheid 

en de nauwkeurigheid van  farmacokinetische parameters (zoals AUC en Cmax). Anders dan 

door gebuik te maken van bestaande optimalisatie software en algoritmes, waar de 

optimalisatie van het experimenteel ontwerp wordt bereikt op basis van de  precisie van de 

primaire parameters, wordt in Hoofdstuk 4 een methode voorgesteld die het mogelijk maakt 

om secundaire parameters te optimaliseren. Onze benadering bestond uit evaluaties van de 

Fisher informatiematrix gevolgd door berekeningen van verwachte juistheid of 

betrouwbaarheid van de secundaire parameter, zonder de nadelen van intensieve 

procedures zoals D-optimality. De resultaten laten zien dat de opzet van de studie, inclusief 

de keuze van de doses en het aantal monsters, grote invloed heeft op de juistheid van de 

parameter schattingen. De voorgestelde methode om de tijdstippen voor het nemen van 

bloedmonsters en de groepsgrootte te optimaliseren kan leiden tot een afname van het 

benodigde aantal proefdieren (ongeveer 30%) zonder verlies van de juistheid van de 

parameters die relevant zijn voor het karakteriseren van de veiligheidsdrempels.  Deze 

verbetering was onafhankelijk van de verschillen in de farmacokinetiek sche profielen, zoals 

bestuudeerd op basis van de drie hypothetische geneesmiddelen. Tevens suggereert onze 
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analyse dat de juistheid van de farmacokinetische parameters niet door de groepsomvang 

wordt beïnvloedt maar dat het juist de tijdstippen van bloedafname en de toegediende 

doses zijn, die dit bepalen. Daarnaast laten deze resultaten zien dat de betrouwbaarheid van 

de secundaire parameters niet beïnvloed wordt als een aantal primaire parameters met 

onvoldoende nauwkeurigheid geschat wordt. 

Hoewel het gebruik van een modelmatige benadering voor de evaluatie van de 

veiligheidsdrempels als gecompliceerd wordt gezien bleek onze methode juist te beschikken 

over een goed voorspellend vermogen zonder veel fouten of problemen met de 

identificeerbaarheid van het model en de daarbij behorende parameters. Verder laten we 

zien hoe bestaande kennis, inclusief data van andere experimenten, op een formele manier 

opgenomen kan worden tijdens de analyse en intrepretatie van de resultaten.  De 

mogelijkheid om zgn. ‘priors’ te gebruiken voor het schatten van parameters in een model 

biedt vele kansen om oa. fysiologische factoren, die ten grondslag liggen aan 

farmacokinetische eigenschappen, mechanistisch te bestuderen. Men zou bijvoorbeeld de 

invloed van de verzadiging van metaboliserende enzymen kunnen evalueren, ongeacht de 

doses die gebruikt zijn tijdens een experiment. 

Hoofdstuk 5  heeft betrekking op  het gebruik van biomarkers in de evaluatie van de 

veiligheid en toxiciteit van nieuwe geneesmiddelen. Hier ligt de nadruk op het feit dat voor 

een nauwkeurige voorspelling van de veiligheid en toxiciteit na langdurig gebruik van een 

geneesmiddel, biomarkers belangrijke informatie kunnen opleveren voor het voorkomen 

van een bijwerking. In tegenstelling tot traditionele protocollen, die een directe relatie 

tussen de blootstelling en de bijwerking veronderstellen, hebben wij het voorgesteld om het 

nemen van bloedmonsters voor de bepaling van de farmacokinetiek te combineren met de 

bepaling van biomarkers. Het uiteindelijk doel van zo’n aanpak is het ontrafelen van de  vaak 

vertraagde of indirecte relatie tussen de farmacokinetiek in plasma en de bijwerkingen of 

ongewenste effecten. Om de voordelen van een modelmatige aanpak te kunnen aantonen 

werden farmacokinetische en biomarker data gesimuleerd voor een aantal hypothetische 

geneesmiddelen met  verschillende PKPD relaties. Nog eens proberen we de voordelen en 
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nadelen van de voorgestelde benadering te vergelijken met een analyse van de data op basis 

van een standaard niet-compartmentele methode. De analyse van de gesimuleerde data laat 

zien dat, op basis van gegevens verkregen met een traditioneel monsterafname schema,  het 

echte onderliggende PKPD model vaak niet identificeerbaar is. Dat is in het bijzonder het 

geval wanneer er sprake is van een complexe PKPD relatie (o.m. door het optreden van 

hysterese). Niettemin werden in alle gevallen bevredigende resultaten verkregen met 

betrekking tot de geschatte biomarker concentraties. Wij zijn daarom van mening dat men 

zich meer bewust moet zijn van de beperkingen die de huidige experimentele protocollen 

met zich mee brengen. Dit is vooral van belang omdat de veiligheid van geneesmiddelen na 

langdurig gebruik steeds meer een prominente rol krijgt binnen de ontwikkeling en toelating 

van nieuwe medicijnen. Om de gevolgen van zo’n vertekening te beperken benadrukken wij 

de behoefte aan methoden die de mate van onzekerheid bepalen en daardoor modellen en 

voorspellingen betrouwbaarder kunnen maken.  

Een andere bevinding van onze analyse is dat de criteria voor de selectie van parameters 

tijdens het ontwikkelen van een model niet alleen aan statistische eisen moeten voldoen 

maar ook de mogelijkheid moeten bieden om de fysiologische relevantie van bepaalde 

aannames te kunnen beoordelen. Duidelijke rapportage van alle modellen is van belang 

wanneer de ontwikkeling van het hierarchische model eindigt in een verzameling van 

modellen met vergelijkbare selectie criteria.  

Het doel van het onderzoek dat in Hoofdstuk 6 is beschreven was om de uitvoerbaarheid te 

evalueren van de integratie van  mechanistische PKPD modellen met toxicologische 

gegevens uit standaard experimentele protocollen. Rekening houdende met de achtergrond 

incidentie van verschijnselen en fysiologische veranderingen die op lange termijn voorkomen 

en vaak met bijwerkingen kunnen worden verwisseld, werden vergelijkbare in silico 

methoden zoals eerder beschreven in hoofdstukken 3 en 5 toegepast om door 

geneesmiddelen  geïnduceerde bijwerkingen te simuleren voor drie verschillende 

farmacologische mechanismen (directe werking, indirecte werking en irreversibele binding). 

Wij hebben ons hierbij geconcentreerd op zeldzame en chronische bijwerkingen die pas na 
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langdurige inname van een geneesmiddel ontstaan, inclusief het onderscheid tussen 

reversibele en irreversibele effecten, om de grootste methodologische uitdaging aan te 

gaan. Om er zeker van te zijn dat realistische condities werden gecreëerd zijn  verschillende 

scenario’s getoetst, namelijk: 1) de door het geneesmiddel geïnduceerde bijwerking en het 

achtergrond fysiologische verschijnsel waren niet van elkaar te onderscheiden. 2) het 

tijdsinterval tussen het begin van de behandeling en de diagnose was groot en de 

symptomen konden per proefdier maar een keer worden vastgesteld  op basis van 

histologisch onderzoek (na afloop van het experiment). 3) de bijwerking kon beschreven 

worden als binaire respons. Onze resultaten lieten zien dat veiligheidsdrempels, zoals 

vastgesteld door de NOAEL, onbetrouwbaar en onnauwkeurig zijn. In twee van de drie 

scenario’s, waar het effect van veiligheid en effectiviteit van de hypothetische 

geneesmiddelen was gesimuleerd, vonden wij dat het rigoureus toepassen van de NOAEL als 

beslissingscriterium zou leiden tot een foutieve classificatie in 50% van de gevallen. Dit zou 

vervolgens leiden tot een onterechte beeïndiging van de ontwikkeling van het geneesmiddel. 

Tijdens het vastellen van de haalbaarheid van de toepassing van modelmatige methoden 

voor de analyse van toxicologische gegevens hebben wij twee belangrijke componenten 

geïdentificeerd, die essentieel zijn voor de voorspelling van de geïnduceerde effecten: a) de 

beschikbaarheid van onafhankelijke informatie over achtergrond verschijnselen en 

verandering die meegeteld kunnen worden als bijwerkingen  en b) het gebruik van Markov 

keten Monte Carlo (MCMC)-gebaseerde algorithmen. Zo hebben wij laten zien dat  

historische placebo data doeltreffend genoeg is om achtergrond verschijnselen en andere 

fysiologische veranaderingen te kunnen onderscheiden van de onderliggende 

farmacologische effecten en bijwerkingen. Aan de andere kant, toen de prestatie van 

statistische methoden geëvalueerd werd, vonden wij dat modellen die gebaseerd zijn op het 

‘maximum waarschijnlijkheid’kriterium onstabiel en onbetrouwbaar zijn. Daarentegen, 

bleken de MCMC-gebasseerde resultaten stabieler en nauwkeuriger, inclusief  het schatten 

van de model- en parameteronzekerheid. Door gebruik te maken van het Bayes informatie 

criterium, oftewel BIC, om modellen te vergelijken konden wij de hoge mate van model 

onzekerheid blootleggen. Onze resultaten tonen aan dat traditionele technieken die gebruikt 

worden voor de selectie van een model en de daarbij behorende parameter verdelingen niet 
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geschikt waren om modellen met een zekere mate van complexiteit te identificeren. Het 

dient verder gezegd te worden dat gemiste bijwerkingen ook gemakkelijk gekwantificeerd 

konden worden middels de voorgestelde modelmatige aanpak. Door MCMC methoden toe 

te passen was het mogelijk om verschijnselen en bijwerkingen te beschrijven zelfs als deze 

niet waren waargenomen tijdens het experiment. 

Het conceptuele raamwerk gepresenteerd in deze sectie van het proefcshrift draagt het 

bewijs aan voor de uitvoerbaarheid van een modelmatige benadering voor de evaluatie van 

de veiligheid en toxiciteit van nieuwe moleculen voordat ze in de mens worden getest. De 

integratie van farmacokinetische en farmacodynamische data als basis voor het voorspellen 

van de veilige blootstelling in de mens vereist enkele belangrijke voorwaarden waaraan de 

huidige methoden voor pre-klinische toxicologisch onderzoek niet voldoen. Een 

modelmatige benadering is daarvoor de geschikte oplossing. In plaats van het vastellen van 

de correlatie tussen één enkele waarde en de geschatte veiligheidsdrempel, biedt deze 

strategie het voordeel dat het klinische oordeel over de kans op toxiciteit wordt gebaseerd 

op de gehele relatie tussen blootstelling en bijwerkingen.  

In het derde deel van dit proefschrift (Sectie III) hebben wij geprobeerd de implementatie 

van experimentele protocollen die voldoen aan de eisen van modelmatige dataanalyse 

methoden te illustreren op basis experimentele studies. Vanwege de lopende discussies over 

de risico’s en de baten omtrent de chronische behandeling met niet-steroïdale 

ontstekingsremmers hebben wij naproxen gebruikt als voorbeeldstof om de bekende acute 

en chronische toxiciteit van deze klasse geneesmiddelen te evalueren. Gedurende de 

afgelopen jaren en tijdens de ontwikkeling van naproxen was men niet op de hoogte van het 

gebrek aan de selectiviteit van werking. Daarnaast ontbrak ook het bewijs voor de 

mechanismen, die de effecten na acuut gebruik (zoals bloedingen en maagzweren) en 

langdurige behandeling (zoals renale en cardiovasculaire schade) onderschrijven. 

Desalnietemin, laat onze analyse zien dat kennis over de farmacokinetiek en de blootstelling 

aan naproxen die bereikt wordt na de toediening van therapeutische doses van belang zijn 

voor het karakteriseren van het veiligheids- en toxiciteitsprofiel. Verder hebben wij ook 
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praktische uitdagingen geïdentificeerd, die men tegenkomt bij het gebruik van nieuwe 

experimentele protocollen.  

Sectie III: Toepassing in de praktijk 

In Hoofdstuk 7 wordt een typisch toxicologie protocol gebruikt om de effecten van acute, 

middellange en langdurige behandeling aan naproxen te bestuderen. Naast het 

karakteriseren van de blootstelling in plasma worden twee biomarkers gemeten, namelijk 

thromboxane (TXB2) en prostaglandin (PGE2). Er werd vanuit gegaan dat gastro-intestinale 

bloedingen veroorzaakt werden door continue remming van cyclo-oxygenase 1 (COX-1), 

terwijl zweren voornamelijk door de inhibitie van cyclo-oxygenase 2 (COX-2) onstaan. 

Farmacokinetische en biomarker data werden geïntegreerd met  gegevens uit de literatuur 

om de vermeende therapeutische effecten te correleren met zowel de blootstelling als de 

veranderingen in de biomarkers thromboxane en prostaglandin. De farmacokinetiek van 

naproxen werd het best beschreven met een een-compartiment model met eerste-orde 

absorptie. Er werd een niet-lineaire relatie vastgesteld tussen de dosis en biologische 

beschikbaarheid, die ertoe leidde dat de toename van de  blootstelling in plasma minder dan 

proportinieel was met toenemende doses van naproxen. In tegenstelling tot eerdere 

bevindingen werd zweer vorming in de maag gezien bij alle doses (7.5, 15, 40, 80 mg/kg), 

waardoor geen NOAEL vastgesteld kon worden. Desalniettemin, hebben wij aangetoond dat 

de beschikbare experimentele data gebruikt kan worden om de onderliggende PKPD relaties 

for TXB2 en PGE2 te karakteriseren. Door middel van  inibitiemodellen hebben we de 

dalende bloedspiegels van zowel thromboxane als prostaglandin kunnen correleren met 

naproxen concentraties.  Er waren geen problemen met de identificeerbaarheid van de 

modellen en de schatting van parameters was precies, overeenkomend met de resultaten 

van hoofdstukken 3 en 5. Daarnaast toonden onze resultaten aan, dat farmacokinetische-

pharmacodynamische relaties het mogelijk maken om potentiele verschillen tussen 

diersoorten te onderscheiden en desnoods daarvoor te corrigeren. De bijwerkingen van 

naproxen in de mens kunnen worden voorspeld op basis van pre-klinische data mits 

rekening wordt gehouden met de onderliggende blootstelling-effect relaties. Eigenlijk 

hebben wij gevonden dat bij de rat de PKPD relaties ongeveer tienvoud afwijken van de 
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waardes die verkregen zijn voor de mens. Hierdoor ontstaat de vraag over de vertaling naar 

de mens en de geschiktheid van de zogenoemde “meest gevoelige species” bij toxicologisch 

onderzoek als de gevoeligheid van ratten voor cyclo-oxygenase inhibitie  aanzienlijk verschilt 

van de mens. 

De toepassing van een parametrische aanpak en meer specifiek, van niet-lineair gemengde 

effecten modellen om experimenten te ontwerpen en de keuze voor een dosis te kunnen 

onderbouwen kan  een belangrijke stap zijn voor translationeel toxicologisch onderzoek  

vanuit zowel het biologisch als statistisch perspectief. Tegelijkertijd hebben wij ook een 

aantal beprekingen kunnen vaststellen. De werkingsmechanismen van sommige 

geneesmiddelen zijn niet voldoende onderzocht of begrepen om op een parametrische 

manier vertaald te kunnen worden in een PKPD model, zelfs als biomarkers beschikbaar zijn. 

Daarnaast is het beschrijven van effecten die via meerdere pathways tot stand komen 

buitengewoon moeilijk. Zo’n situatie kan een significant probleem blootleggen dat niet 

voorkomen kan worden zonder extra experimentele data. 

De uitvoerbaarheid en geschiktheid van een modelmatige benadering voor het bestuderen 

van het veiligheids- en toxiciteitsprofiel van een geneesmiddel is in hoofdstuk 8 aangevuld 

door histologische data te integreren met de PKPD relaties die op het voorafgaande 

hoofdstuk zijn beschreven. Hier lieten wij zien dat het mogelijk is om farmacokinetische-

farmacodynamische modellen,  die de relatie tussen blootstelling en het effect of biomarkers 

beschrijven, te koppelen aan de analyse van de frequentie en intensiteit van bijwerkingen.  

In dit experiment werd de ernst van een zweer gecorreleerd met het oppervlak daarvan en 

als een continue variabele uitgedrukt. Daarnaast werd de  frequentie van maagzweren als 

een discrete variabele geanalyseerd. De modelparameter die de frequentie van bijwerkingen 

beschreef wijst aan dat zweer vorming na toediening van naproxen een acuut effect  is  dat 

gepaard gaat met de maximale inhibitie van PGE2, welke een maat is van de blokkade van 

COX-2. Gegeven de implicaties van model onzekerheid, zoals beschreven in hoofdstuk 6, zijn 

we gedwongen geweest om bootstrap methodes te gebruiken om zo de onzekerheid te 

kunnen schatten. De onzekerheid met betrekking tot de karakterisatie van de frequentie van 
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zweren was aanzienlijk lager dan wanneer de ernstigtheid van zweren werd beschreven. 

Ondanks de hoge mate van onzekerheid  hebben we kunnen vaststellen dat het oppervlak 

van maagzweren het gevolg is van cumulatieve remming van TXB2. Samengevat, ons 

onderzoek laat zien hoe een modelmatige  benadering gebruikt kan worden om 

bijwerkingen die zowel na acute als langdurige behandeling voorkomen, vroeg te kunnen 

identificeren en zo pre-klinische data als basis te kunnen gebruiken voor de vertaling van het 

veiligheids en toxiciteitsprofiel naar de mens. Verder illustreren onze resultaten ook hoe 

PKPD relaties het mogelijk maken om conclusies te trekken over doses and dosis schema’s 

die niet experimenteel geëvalueerd zijn.  

Vanuit een methodologisch oogpunt hebben de bevindingen van dit onderzoeksprotocol de 

haalbaarheid en voordelen van een modelmatige benadering  voor de evaluatie van  

chronische veiligheid en toxiciteit  onderschreven. Hierbij dient echter de kanttekening te 

worden gemaakt, dat precisie, nauwkeurigheid en validiteit van de voorgestelde methoden 

nog altijd afhankelijk zijn van de experimentele data. In deze studie waren de bijwerkingen 

die wij beschreven hebben relatief frequent. Het karakteriseren van effecten die met lage 

frequentie voorkomen kan aanzienlijk moeilijker zijn, vooral als historische data ontbreken 

of waaruit ook maar enige gevolgtrekking gemaakt kan worden met betrekking tot klasse 

effecten. Wij erkennen ook dat de afwezigheid van zweer vorming in de controlegroep en 

het gebrek aan een cohort met lagere blootstelling een zwak punt in ons onderzoek is. 

Daardoor kon de echte basislijn voor het onstaan van maagzweren niet worden vastgesteld. 

Als gevolg daarvan was het ook niet mogelijk om de frequentie van bijwerkingen bij lagere 

dosissen nauwkeurig te voorspellen. 

Sectie IV: Conclusies, aanbevelingen en perspectieven 

Een overzicht van de resultaten en conclusies zoals beschreven in de verschillende 

hoofdstukken is samengevat in Hoofdstuk 9. Het meest belangrijk is dat aanbevelingen 

verstrekt zijn voor de analyse van veiligheids en toxicologie protocollen met behulp van 

farmacologisch gebaseerde kwantitatieve methoden. Hier hebben wij de antwoorden op de 

initiele vragen zoals beschreven aan het begin van dit proefschrift samengevat. Er is een lijst 
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is samengesteld van punten, die overwogen dienen te worden, gezien de uitdagingen en 

beperkingen die men tegenkomt bij het kakrakteriseren  van relatie tussen blootstelling en 

effect wanneer er gebruik gemaakt wordt van traditionele toxicologische 

onderzoeksprotocollen. Deze lijst bevat aanbevelingen met betrekking tot methodologische 

en praktische aspecten die die ertoe leiden dat modelmatige data analyse technieken, 

toegepast kunnen worden bij veiligheids en toxicologisch onderzoek.  

Noemenswaardig is de rol van het primaire (farmacologische) werkingsmechanisme en de 

daarbij betrokken receptorsystemen, die  overwogen dienen te worden bij de keuze van de 

dosis en bij het vaststellen van het benodigde tijdschema voor monster afname. Daarnaast 

kan het gebruik van historische data (die de distributie van parameters kan bescrijven) van 

belang zijn om de onzekerheid omtrent de relatie tussen blootstelling en bijwerkingen of 

toxiciteit te reduceren.  Vanuit een statistisch oogpunt, kan het gebrek aan model en 

parameter identificeerbaarheid  een risico zijn voor de interpretatie van resultatent uit een 

PKPD analyse. Daarom zijn techknieken zoals simulaties, bootstrap en gevoeligheidsanalyse  

essentieel om zowel de betrouwbaarheid als de nauwkeurigheid van de voorspelingen te 

kunnen waarborgen. Tenslotte, benadrukken wij de relevantie van de zogenoemde selectie 

criteria op de identificeerbaarheid van een model. Onze bevindingen wijzen er op dat 

traditionele criteria, die gebruikt worden om de complexiteit van een model beoordelen 

zoals  BIC en AIC, ongeschikt zijn voor het modelleren van effecten die met lage of zeer lage 

frequentie voorkomen. Daarom stellen wij voor om farmacologische plausibiliteit naast 

minder conservatieve statistische criteria toe te passen bij de selectie van een PKPD model. 

Het hoofdstuk wordt afgerond met een beknopte discussie over de ontwikkelingen op het 

terrein van PKPD modellering en hoe de methodologische problemen die wij geïdentificeerd 

hebben verholpen kunnen worden. Onze bevindingen onthullen dat gevolgtrekkingen over 

de zogenoemde “veilige blootstelling” en de daarop geassocieerde risico’s niet geschat of 

voorspeld kunnen worden op basis van losse empirische experimenten waarin uitsluitend 

het effect van supratherapeutische concentraties is bestudeerd. Het gebruik van een 
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computationeel modelmatig raamwerk is onvermijdelijk als men  data en kennis over het 

lotgeval en de farmacologische eigenschappen van een stof tracht te integreren. 

Om het lange termijn veiligheids en toxiciteitsprofiel van een geneesmiddel in mensen te 

kunnen voorspellen zijn methodes nodig die de werkingsmechanismen geassocieerd met 

zowel primaire als secundaire receptorsystemen verbinden. Verder moet er rekening 

worden gehouden met de factoren die deel uitmaken van het biologische systeem na de 

receptor. Daarbij zal kwantitatieve systeem farmacologie een belangrijk rol kunnen spelen. 

Dit vakgebid vertegenwoordigd de integratie van systeem biologie en farmacologie waar 

computationele en experimentele methoden gecombineerd kunnen worden om de 

progressie van ziekten en effecten van geneesmiddelen te bestuderen en/of voorspellen.  

Deze aanpak is met name relevant, zowel vanuit klinisch als methodologisch perspectief, 

voor de parameterisatie van lange termijn bijwerkingen, die hun oorsprong vinden in de 

pertubatie van homeostatische mechanismen, door cellulaire veranderingen of bij weefsel 

en cel schade.  

Naast het ontwikkelen van meer fysiologisch en mechanistisch-gebasseerde modellen dient 

ook de toekomstige uitbreiding van de risico-baten analyse zoals voorgesteld in dit 

proefschrift overwogen te worden. Er zijn verschillende voorbeelden gepubliceerd van risico-

baten analyses waarin gebruik wordt gemaakt van PKPD modellen. Het is aannemelijk dat de 

integratie van deze methoden tot een veel betrouwbaarder raamwerk kan leiden, dat 

vervolgens gebruikt zou kunnen worden ter beoordeling van nieuwe en bestaande 

geneesmiddelen,  alsmede het optimale gebruikt ervan. Bij de evaluatie van het veiligheids 

en toxiciteitsprofiel van een geneesmiddel dienen de dosis en de tijd als bepalende factoren 

te worden overwogen. Dit punt werd aangehaald al in 1538 door de Zwits-Duitse arts, 

Theophrastus of Hohenheim, die stelde dat alles giftig is en dat niets niet giftig is: alleen de 

dosis maakt iets niet giftig. 

Ter conclusie: ondanks het gebrek aan een breed scala van scenario’s en beprekingen die 

intrinsiek verbonden zijn aan het selecteren van experimentele protocollen zoals 

gepresenteerd in dit proefschrift, werpen onze bevindingen een nieuwe, wellicht 
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belangrijkere vraag op met betrekking tot de ethische basis voor het gebruik van proefdieren 

bij empirische experimentele protocollen, met als rechtvaardiging dat daarmee de veiligheid 

en toxiciteit van een geneesmiddel gekarakteriseerd kunnen worden. 
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