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SECTION 1: GENERAL INTRODUCTION






CHAPTER 1

Challenges in the assessment and prediction of safety

pharmacology and drug toxicity in humans

Tarjinder Sahota, Meindert Danhof and Oscar Della Pasqua



Abstract

Despite ongoing efforts to better understand the mechanisms underlying safety and toxicity,
approximately 30% of the attrition in drug discovery and development is still due to safety
concerns. Changes in current practice regarding the assessment of safety and toxicity are
required to reduce late stage attrition and enable effective development of novel medicines.
This review focuses on the implications of empirical evidence generation for the evaluation
of safety and toxicity during drug development. A shift in paradigm is proposed to 1) ensure
that pharmacological concepts are incorporated into the evaluation of safety and toxicity; 2)
facilitate the integration of historical evidence and thereby the translation of findings across
species; and 3) promote the use of experimental protocols tailored to address specific safety

and toxicity questions.

Based on historical examples, we highlight the challenges for the early characterisation of
the safety profile of a new molecule and discuss how model-based methodology can be
applied for the design and analysis of experimental protocols. Issues relative to the scientific
rationale are categorised and presented as a hierarchical tree describing the decision making
process. Focus is given to four different areas, namely, optimisation, translation, analytical
construct, and decision criteria. From a methodological perspective, nonlinear-mixed effects
modelling is recommended as a tool to account for such requirements. Its use in the
evaluation of pharmacokinetics (PK) and pharmacokinetic-pharmacodynamic relationships
(PKPD) has enabled the advance of quantitative approaches in pharmacological research in
recent decades. Comparable benefits can be anticipated for the assessment of safety and

toxicity.
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1. Introduction

The assessment of the safety and toxicity profile of new chemical or biological entities is an
integral part of drug development. Despite ongoing efforts to better understand the
mechanisms underlying safety and toxicity, approximately 30% of the attrition in drug
discovery and development is still due to safety concerns (1,2). Such a high attrition rate is
further compounded by the empiricism and entrenched belief which prevails among
industry scientists and regulators about the level of evidence and requirements for

determining acceptable risk in humans.

In addition to its contribution to the attrition rate, safety and toxicity findings have business,
legal and societal consequences, which often lead to speculations and even more empiricism
in the evaluation and interpretation of experimental data. Whilst a positive benefit-risk ratio
should be anticipated and subsequently demonstrated when administering new drugs to
humans, the basis upon which inferences are made still lacks the scientific clarity and rigour
one would endeavour. The efficiency and value of current paradigm for the evaluation of
safety and toxicity, which relies primarily on standard battery tests at supra-therapeutic
exposure levels of the investigational drug, is not questioned by the scientific community.

Rather, it is mandated by regulators as a mechanism to minimise liabilities.

A shift in paradigm is required that 1 ) enables the introduction of pharmacological concepts
to the evaluation of safety and toxicity; 2) facilitates the integration of historical evidence
and thereby the translation of findings across species; and 3) promotes the value of

experimental protocols tailored to address specific safety and toxicity questions.

In this review we will focus on the implications of current practice for drug development and
consider the scientific and ethical requirements for the evaluation of safety and toxicity. Of
particular interest for us is to demonstrate that despite the assumption that preclinical
safety testing, toxicity findings are generally seen as predictive of human toxicity (3),

inefficiencies in the experimental design violate the principle of the 3 Rs (reduction,
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refinement and replacement) (4). Empirical evidence must be replaced by a model-based

approach.

Two recent examples can be used to illustrate the issues with the current paradigm for the
evaluation of safety and toxicity, namely the serious adverse events observed with TGN1412
and the increased incidence of myocardial infarction in patients who were prescribed
rofecoxib. These two cases encompass most of the critical issues one attempts to address
prior to making a commitment to clinical development and subsequently to regulatory
submission and marketing of a medicinal product. Albeit neglected in the assessment of the
clinical findings and in the subsequent reports in the published literature, the use of a
mechanism-based approach in conjunction with some basic pharmacology concepts would
be sufficient to predict the consequences of the treatment, whether given as single dose to
healthy subjects or chronically to patients; i.e., both examples reflect the immediate
consequences of target engagement and the corresponding changes due to the mechanism
of action and (patho)physiological pathways. Yet, the experimental evidence generated pre-
clinically for these two compounds does not take into account target engagement or
exposure-response relationships as the basis for the interpretation of the findings. Instead, it
is the characterisation of the maximum tolerated dose (MTD) and /or no-adverse effect level
(NOAEL) that ultimately drives the design of safety pharmacology and toxicity experiments.
The empirical evidence of MTD and NOAEL does not provide insight into the underlying

mechanisms and often obscures the translation of findings across species.

According to published reports, the serious adverse events observed after intravenous
administration of TGN1412, a novel monoclonal T-cell agonist, could not have been
“predicted” or inferred from non-clinical data. The empiricism in the design of the
experimental protocol and in the interpretation of the findings clearly shows the
disconnection between pharmacology and toxicology, despite extremely high degree of
selectivity and specificity of the biologicals. The failure to predict a systemic inflammatory
response by rapid induction of cytokines (a “cytokine storm”) with catastrophic multi-organ

failure (5) is not surprising when structure homology, target occupancy and pharmacokinetic
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principles are disregarded. Despite the availability of in vitro binding assays, there was no
attempt to correlate or integrate the results from different experiments with each other.
Most importantly, the effects observed with the proposed dosing regimen could have been
anticipated even without any experimental data. Knowledge of receptor agonism theory and
drug disposition properties would have been sufficient to make inferences about target

activation and pharmacological effects.

Tragedies like this provoke reactive measures from industry and regulator (6-11). New
guidelines for the assessment of preclinical data were released by regulatory authorities.
However, none of them tackle the problem from a scientific, mechanistic perspective.
Similarly, changes have been introduced to the design of first-in-man studies (6), which
reflect mitigation measures for process-related consequences of safety and toxicity findings.
A framework that ensures critical appraisal of the scientific rationale, based on
pharmacological concepts and expected biological activity (i.e., target engagement) is still

missing.

Rofecoxib, a selective COX-2 inhibitor prescribed to more than 107 million patients in the US
(12), is another example of withdrawal from the market because of so-called “unexpected”
long-term safety findings. Despite the debate that followed the evidence from clinical trial
data on the increased risk of myocardial infarction (13), little effort was made to incorporate
very basic pharmacological concepts into the evaluation of the findings and provide a
mechanism-based interpretation, which could easily disentangle the core issue: whether this
is a class-effect or whether that was a compound specific toxicity. Paracelsus highlighted the
importance of the dose more than 500 years ago, and yet none of the published reports
considered this critical question: were patients receiving the optimal dose and dosing
regimen for the proposed indications? Clinical and scientific experts dwelled on the realm of
toxicity as the result of an off-target event, without exploring in a systematic manner the
(obvious) connection to dosing regimen, target exposure, the time course of
pharmacological effect, the duration of treatment and physiological role of the substrates

for COX2 in the heart and other tissues. Evidence of concentration-effect relationship was
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not gathered, neither used as basis for interpreting those findings. Instead, allegations of

misconduct followed that overruled any comprehensive scientific debate (12).

From a clinical pharmacology perspective, the aforementioned examples reflect the failure
in exploring causality and anticipating the biological consequences of target engagement,
i.e., in establishing the correlation between target-related events and drug exposure, as
defined by the evidence of pharmacokinetic-pharmacodynamic relationships. Post-market
withdrawals are not an uncommon occurrence: between 1975 and early 2000 there have
been 26 withdrawals from the US market due to safety issues (14). In fact, the withdrawal of
a medicinal product seems to have become the expected course of action for regulators and
industry who are faced with ‘unexpected’ safety findings. Interestingly, dosage changes, due
to safety occurred in approximately one out five drugs in the period from 1980 to 1999
(15,16). On the other hand, from a clinical perspective, the aforementioned landscape
appears to result from the lack of a formalised assessment of the benefit-risk ratio in which
efficacy and safety are evaluated in an integrated manner. Different stakeholders appraise
the problem from a distinct point-of-view without acknowledging the intrinsic, albeit

indirect, link between dosing regimen, exposure, target engagement and clinical events.

The incorporation of model-based concepts and pharmacokinetic-pharmacodynamic
relationships into the rationale for the design, analysis and interpretation of safety
pharmacology and toxicology protocols is vital for the future of screening of novel
compounds and for an effective shift in the assessment of safety and acceptable risk in drug
discovery and development. More than just enabling a framework for modernisation of
outdated methods and techniques, a model-based approach challenges the mainstream
scientific views about the role of experimental evidence as the sole basis for the assessment

of non-clinical safety; it unravels the strength of inferential methods and evidence synthesis.

In this review, we aim therefore at identifying the pitfalls in current approaches to
estimating and predicting safety pharmacology and toxicity in humans. Focus is given to the

estimation of safety thresholds and decision making, with special emphasis on the
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underlying methodological issues. Our objectives may intersect with the message from
other reviews of safety in humans (17,18). However, our concerns go beyond technical
aspects of experimental and statistical methods; the objective of the larger research to be
presented in this thesis, is to detail improved techniques for data analysis and study design,
as well as to illustrate how a mechanism-based approach for risk assessment can formally be

applied to support more accurate decision making.

In the subsequent sections, we will cover a wide range of methodological and conceptual
issues, starting with low level problems, which usually comprise experimental aspects or
relate to the statistical methods. Given their technical nature, implementation of the
proposed recommendations requires little effort and can be relatively straightforward, as
compared to higher level problems, which involve conceptual features and require a
different attitude towards the generation, analysis and interpretation of experimental data
regarding safety and toxicity. From a theoretical perspective, different facets of the same
problem will be discussed, which relate to four seminal areas of scientific research: 1.
optimisation (e.g., accuracy, precision), 2. translation (e.g., sensitivity, biological substrate,
relevance), 3. analytical construct (e.g. choice of parameterisation) and 4. decision criteria

(e.g., acceptable risk level). Each of these points will be addressed separately.

As shown in Figure 1, on the most basic level of the hierarchical tree is the choice of the
measure of drug exposure and endpoint selected for the assessment of safety. These issues
are compounded by the use of point estimates and by statistical inferences regarding the
reporting of safety thresholds. Experimental design considerations in relation to type | and Il
errors constitute the next level of attention. The drawbacks of the use of empirical
approaches as opposed to mechanism-based approaches will be covered. Empiricism here
relates to data analysis methods which are primarily descriptive rather than explanatory of
the observed phenomena. Of particular interest is the current dichotomisation of the
problem using safety thresholds. This will be followed by a critique of allometric scaling to
predict exposure in humans and then more generally the manner in which risk is translated

into decisions.
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Figure 1: A hierarchical tree describing the different levels and issues underpinning decision making
during the assessment of safety and toxicity profile of a new chemical entity.
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2. Nonclinical evaluation of safety and toxicity

2.1. Defining variables of interest.

The development of a pharmaceutical is a stepwise process involving an evaluation of both
animal and human efficacy and safety information. The goals of the nonclinical safety
evaluation generally include a characterisation of toxic effects with respect to target organs,
dose dependence, relationship to exposure, and, when appropriate, potential reversibility.
This information is used to estimate an initial safe starting dose and dose range for the
human trials and to identify parameters for clinical monitoring for potential adverse effects.
Toxicity occurs when the drug-induced alteration of biological function overcomes normal
repair and homeostatic mechanisms. Toxicity can be measured by its effects on the target
(organism, organ, tissue or cell) or indirectly by measuring altered biological function
downstream after acute, sub-chronic or chronic exposure to a chemical or biological entity.
Drug exposure is then used as a proxy or surrogate for the undesirable effects. It should be
noted that an adverse event is any undesirable experience associated with the use of a
medical product, irrespective of the evidence of a causal relationship between drug and
adverse event. However, from a drug development perspective, different aspects of safety
and toxicity need to be evaluated experimentally, which encompass the expected
therapeutic and supra-therapeutic dose levels. Although different experimental protocols
must be implemented during the development of a new compound, the evaluation of
immunotoxicity, genotoxicity, carcinogenicity, phototoxicity, abuse liability and reproductive
performance and developmental toxicity are beyond the scope of this review. The
nonclinical safety and toxicity studies should be adequate to characterise potential adverse
effects that might occur under the conditions of the clinical trial to be supported. Serious
nonclinical findings can influence the continuation of the development programme and of

clinical trials.

Despite the different protocols for the assessment of safety and toxicity and the myriad of
adverse events one may come across, a common practice in this field of research is the

assessment of empirical safety thresholds such as the no observed adverse effect level
17



(NOAEL), which are no more than qualitative indicators of acceptable risk. Support for the
existence of thresholds has been argued on biological grounds (19-21). The argument is that
although any exposure to a chemical will cause some change in the biological system, the
change must override homeostatic mechanisms in order for it to be biologically significant.
In contrast to the maximum tolerated dose (MTD), which remains the primary endpoint of
choice in the evaluation of chronic toxicity, the NOAEL is one of the main indicators of risk in
nonclinical safety assessment. Definitions of the NOAEL vary from source to source,
however the basis behind all of them is the estimation of “the highest experimental point,
without biologically significant adverse effects that are above baseline” (22). In fact, the
experimental findings are used to reflect another threshold, i.e., the underlying no adverse
event level (NAEL). The calculation involves determination of the lowest observed adverse
effect level (LOAEL) which is the lowest observed dosing level for which AEs are recorded.
The NOAEL is the dosing level below this. If no LOAEL is found, then the NOAEL cannot be

determined. In these cases the LOAEL/10 is sometimes used in place of the NOAEL.

Drug exposure and risk can be represented by a variety of different experimental measures.
Usually, in the NOAEL approach, the measures used are dosing level, area-under-
concentration-time-curve (AUC) and/or maximum concentration (CMAX). On the other
hand, the benchmark dose (BMD) is an alternative to the NOAEL. The method involves the
construction of a model of the exposure-AE relationship to predict the dosing level that
corresponds to the threshold between non-significant and significant risk of AEs. The
quantity is usually expressed as a dose level rather than an AUC or CMAX, but the BMD

remains of limited use in Industry (23).

Another common measure is the human equivalent dose (HED), which represents the
estimated dose level in humans yielding equivalent drug exposure as observed in animals at
the safety threshold (23). In addition, recommendations have been made for the use of the
maximum recommended starting dose (MRSD) for the selection of the starting doses in first-
in-human studies. The MRSD is believed to minimise the chance of serious adverse events in

early clinical studies (7,23). Recently, the minimum anticipated biological effect level
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(MABEL) has also been introduced to assist in selection of doses for first in man studies and
to supplement existing approaches. MABEL describes the exposure that is anticipated, prior

to clinical testing, to produce a minimum biological effect level (24,25).

Given the empirical nature of such safety thresholds, errors in the prediction of safety may
arise. Despite the various options, there is still a real safety concern when using these
thresholds to extrapolate drug exposure levels from animals to humans and to make
inferences from short to long term effects. Unfortunately, instead of pursuing a more
mechanistic approach, empirical methods continue to be used. To cope with inaccuracy and
poor precision, safety factors, also known as uncertainty factors, have been incorporated on
the top of empirical thresholds. Their application in drug development has become
widespread (26) and is detailed within the regulatory guidelines. The purpose of such safety
factors is to account for variability potentially greater toxicity in humans than predicted by
the HED using existing approaches. This is to ensure that the safety threshold is beneath the
true threshold. The default safety factor is 10, but it can by modified by considering it as a
product of more refined uncertainty factors. These comprise; interspecies uncertainty, UF,,
interindividual uncertainty UFy, subchronic to chronic uncertainty, UFs, LOAEL to NOAEL
uncertainty, UF,, and data adequacy UFp, for when chronic toxicity studies in at least two
different species are unavailable (27,28). There is also a modification factor where there is a

perceived greater risk of toxicity in humans.

It should be noted that even when safety factors are factored into the estimation of
thresholds, the actual risk a treatment represents to humans can be overlooked. Over-
conservative attitude may give the wrong perception of caution. Accurate assessment of risk
can simply not be performed without some degree of understanding of target engagement

and nature of the ligand (i.e., agonistic or antagonistic interaction with the target).
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2.2 Measures of drug exposure used as descriptors of acceptable risk

A consequence of the use of safety thresholds is the estimation of drug exposure or dose
levels that can be correlated with the adverse events observed beyond that specific
threshold, for which the risk for humans is deemed unacceptable. Numerous assumptions
are however required to ensure accurate translation of such findings from animals to
humans. To be predictive, the exposure levels and the adverse events must reflect

pathophysiological processes and pharmacokinetics in humans.

Different measures of exposure are used in reports. The most basic of these is dosing level,
which is usually expressed in terms of daily dose (e.g., mg/day). Dose, however may be a
poor indicator of response since it does not account for confounders such as bioavailability,
differences in metabolic capacity, or other pharmacokinetic processes that alter target
exposure despite comparable dose. For this reason, parameters derived from the
assessment of systemic drug concentrations are preferred (e.g., AUC and Cyax). The choice
for those parameters relies on the assumption that rapid equilibration occurs between
systemic circulating drug and the target tissue. Given the fragmented process used for the
evaluation of pharmacology and toxicology data, the validity of this assumption is
guestioned even when evidence from pharmacological and pharmacokinetic data indicates
otherwise. Nonlinearity in drug disposition is another important pharmacokinetic aspect
which is not accurately captured by the use of dose as a measure of drug exposure.
Differences in systemic and target exposure can be large in the case of metabolic saturation,
when small increments in dose can produce disproportionately large increases in AUC. This
can lead to deceptively safe estimates even if the dose is divided by a safety factor.
Conversely, the occurrence of metabolic induction may lead to overly conservative dose

selection.

In addition to the aforementioned points, it is also critical to understand the implications of
the use of systemic levels as compared to target tissue or target organ exposure. Time-
dependent processes take place which cannot be neglected or inferred from conventional

measures of exposure. First, one should realise that given that pharmacokinetic equilibration
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between plasma and tissue may not always be assumed. Unbound drug concentrations are
primarily distributed into tissues. The extent and rate of distribution depend on
physicochemical as well as receptor binding properties. The implications of such processes
are that irreversible binding, slowly reversible binding and tissue accumulation may not be
easily correlated with circulating total concentrations. From a pharmacodynamic
perspective, the same considerations must be made when signal transduction and
downstream mechanisms are rate limiting for the onset and maintenance of effects (i.e.,
adverse events). Consequently, the use of AUC and Cwax, expressed over a single day may
not accurately reflect the underlying relationship between exposure and adverse event. The
implicit assumption that there is a correlation between “daily” drug exposure and risk is
suitable mainly for direct and reversible processes; however it is insufficient to account for

the complex nature of indirect effects, slowly reversible and irreversible binding.

These complexities can be illustrated by permetrexed-induced neutropenia. Absolute
neutrophil count (ANC) is reduced by inhibition of thymidylate synthase, dihydrofolate
reductase and glycinamide ribonucleotide formyltransferase (29). The trough of the ANC
curve occurs between 8 and 9.6 days after dosing (30), and is followed by an overshoot
effect once levels return to baseline (Figure 2). Empirical approaches are in principle able to
guantify the PK exposure associated with a particular ANC minimum, however this ignores
the complexity of the ANC-curve. The time below a threshold ANC may be a more relevant
descriptor of risk and will require a different measure (i.e., parameterisation) of drug
exposure. Most importantly, in these circumstances the time course of drug effects (onset,

duration and washout) often does not correlate with daily systemic exposures.
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Figure 2. Time course of predicted absolute neutrophil counts (PRED) following 500 mg/m’
pemetrexed. Lines: Solid black curve the overall “typical” patient in the analysis dataset (i.e., median
values for each of the covariates contained in the final PKPD model); gray shading predictions based
on the population PKPD model for each of the patients in the analysis dataset, assuming a 500 mg/m”
dose; dashed horizontal lines hematologic toxicity grades (grade 1 <2, grade 2 <1.5, grade 3 <1, grade
4 <0.5) (30).

Likewise, irreversible binding mechanisms cause drug accumulation at the effect site yielding
adverse events that depend primarily on the treatment duration, rather than on daily
exposure. Measures that do not capture the cumulative nature of these processes may lead
to poor correlation between species. Measures such as cumulative AUC may provide better
prediction than 24-hour AUC since the entire dosing history is used. Figure 3 shows an

example of such an effect is tardive dyskinesia produced by neuroleptic drugs (31).
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Figure 3. Curve showing incidence of tardive dyskinesia given cumulative neuroleptic exposure.
Patients with more than 30 days of neuroleptic use at baseline had a trend for a greater cumulative
incidence of tardive dyskinesia than those with 0-30 days of neuroleptic use (31).

Although safety factors have been used to account for possible inaccuracies in the estimates
of safety thresholds, there are translational aspects that cannot be factored in by such an
empirical approach. A systematic, rational translation of findings across species requires the
use of mechanism-based approaches to assess the implications of differences in
pharmacokinetics, pharmacodynamics as well as in pathophysiology. Of particular
importance is the fact that between species variability in metabolic rate and capacity can
lead to completely different safety profiles across specie if metabolites are the moiety
underlying adverse events. Likewise, molecules that are substrate to active transporters,
carrier-mediated processes and other distribution mechanisms with known species-specific

differences will show discrepancies in safety profile.

2.3 Statistical and biological limitations of point estimates
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From a statistical perspective, safety thresholds are often presented as point estimates to
describe the population. This ignores variability which can be decomposed into two parts;
variability associated with estimation methods and real variability in response between and
within subjects. There is also lack of best practice in statistical inference. Risk is inferred
from toxicology results using statistics that may be imprecise or inaccurate. A statistic is a
random variable which is typically a function of the experimental data (such as, e.g., a mean
or an observed rate). Statistics are intended to provide an estimate of underlying
parameters reflecting physiological processes and/or pharmacokinetics. The implications of
such practice can be illustrated by the comparison between sample standard deviation and
population standard deviation. The former is a statistic and the latter is the inferred
parameter. The equivalent for NOAEL is the no adverse effect level (NAEL). The term
“NOAEL estimate” is a misnomer in that it is the NAEL, which is being estimated by the
NOAEL (see figure 4). Based on statistical concepts, it can be shown that meaningful and
useful reporting of toxicology findings should be of the estimate of NAEL with its precision
(standard errors). However, an empirical approach prevents the estimation of uncertainty in

the NAEL.

The use of statistics, in place of model parameters for decision making can treat the estimate
as if it were of sufficient precision to give sufficiently narrow confidence intervals. This
limitation is believed to be mitigated by the incorporation of safety factors, an assumption
which we dispute. As can be seen in Table 1, the parameter precision for the probability of
an AE varies from 1587 to 67%, depending on group size and risk. The number of animals in
a group exhibiting an adverse event is often reported however, the performance of this
estimator is highly dependent on the underlying risk of the AE in question and the sample

size.
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100 — — e
L e P w o
= FEE S 4
/
= =/ z
./
r/
754 /
/.‘
/
/
g ‘f’ TYPE
B 50 / toxicity
] ‘
B / — efficacy
/
/
/
/
/
/
/'/
25+ /
J/
/
6'— N AE L?2——
L7
0 -

T T
100 10000
Dose/Exposure

Figure 4. Relationship between MABEL and NOAEL/HED. Shaded region indicates the expected
therapeutic range.

Table 1: Parameter precision for probability of adverse events

Risk of AE n=4 n=8 n=10 n=16 n=20
0.10% 1578.77% 1116.75% 998.08% 790.59% 707.92%
1.00% 497.41% 351.67% 314.71% 248.64% 222.50%
5.00% 217.98% 154.14% 137.83% 108.98% 97.46%
10.00% 150.03% 106.07% 94.87% 74.99% 67.08%

AEs were assumed to be independent binary events. The estimator is the number of animals as a percentage of
n. Values depicted coefficients of variation.
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The other aspect to missing variability is the real variability in the data. Since sampling in
toxicology is often very sparse, exposure levels are calculated from satellite groups which
mirror dosing of the animals assigned to the primary treatment group. This ignores real
differences that may be present between the two groups. It is equivalent to assuming that
all animals have the same exposure and variability in exposure or the underlying

physiological processes is not responsible for variability in response.

Given that human variability is typically larger, it is important to understand the role of the
different sources of variability. Without quantification of variability and identification of
covariates it becomes difficult to predict which groups are more prone to overexposure or
more sensitive to adverse events. Furthermore, depending on the actual distribution of drug
exposure, the distribution of AEs in this group may not be representative of the risk posed to
the overall target population. This is not limited to pharmacokinetics, pharmacodynamic
differences have the greater potential for harm and can be more variable than
pharmacokinetic differences. In this case, hypersensitive subpopulations can be completely
missed. This is the case of abacavir-induced rash and other dose-independent reactions

associated with receptor or target polymorphism.

Finally, it should be noted that empirical approaches remain prone to bias. For example, the
mean NOAEL is only unbiased if its underlying distribution is symmetrical. This practice
ignores that such a summary violates current understanding of pharmacokinetic processes,
which are best described by lognormal distributions. Without clear assumptions of the
underlying distribution, the choice of measure for central tendency remains unjustifiable and

may lead to bias.

2.4 Mechanism-based assessment of safety, toxicity and risk
Whilst the introduction of regulatory policies for the non-clinical evaluation of medicinal
products in humans, at a time when understanding about receptor pharmacology and

pathophysiology was very limited, partly explains the historical evolution of current
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standards and practice in safety and toxicity research, its perpetuation is no longer
justifiable. It is evident that the concept of safety thresholds as well as the measures of
exposure used as proxy for acceptable risk cannot be deemed absolute: they rely upon
numerous assumptions, which may not hold true in a considerable number of cases. In
principle, information regarding the causal chain between target engagement and adverse
events should be used as basis for relevant measures of exposure and risk. This concept can
be implemented even in the absence of evidence for the actual target or mechanism
underlying a given adverse event or undesirable effect. Sufficient evidence exists to support
the use of concentration-effect relationships to identify the rate limiting step in the chain of
events from dose to response. In conjunction with tailored experimental protocols and
pharmacokinetic-pharmacodynamic modelling, a mechanism-based evaluation of safety
findings provides the basis for characterising safety and toxicity. Moreover, it should be
noted that safety and toxicity findings may not solely depend on pharmacokinetic drug
exposure, but also on the extent of target activation or inhibition, post-receptor
amplification and signal transduction processes as well as homeostatic mechanisms. For
instance, drug concentrations may be a poor predictor of risk relative to the relevant
biomarker concentrations when signal transduction is the rate limiting step for a given
response. It is unfortunate that despite the wide discussion regarding the use of biomarkers
in the literature (32-35), the focus has primarily been on the assessment of efficacy, not

safety.

In addition, experimental protocols and data analysis have not advanced in the same way
risk management concepts have evolved over the last decade. Causality has become pivotal
for the characterisation of adverse drug reactions, which in contrast to adverse events, are
defined as any noxious unintended and undesired effects of a drug that occur at doses used
for prevention, diagnosis or treatment. This subtle difference in definition has major
consequences for the evaluation of safety, toxicity and risk, including experimental protocol
requirements. Rawlins and Thompson devised a classification scheme in 1991, which
continues to be the most frequently used in clinical research, which could be used as the

basis for the assessment of nonclinical safety. Their scheme, shown in Table 2, defines
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adverse drug reactions according to seven different categories, which account for the
underlying chain of events. The different categories nicely match the mechanistic
classification of biomarkers proposed by Danhof et al., and could form the basis for a new

paradigm for the evaluation of nonclinical safety and toxicity (34).

Table 2. Classification of adverse drug reactions, as proposed by Rawlins and Thompson.

Type “A”: Predictable, common and related to Pharmacological action of the drug

Toxicity of overdose: e.g. hepatic failure paracetamol

Side effects: e.g sedation Antihistaminergic drugs
Secondary effects: e.g. development of antibiotic therapy

Drug interaction: e-:g. TheopHyIIine tbxicity erythromycin therapy

Type “B”: Unpredictable, uncommon, usually not directly related to the mechanism or
pharmacological actions of the drug.

Intolerance: e.g. tinnitus Aspirin

Hypersensitivity: e.g. anaphylaxis penicillin

Pseudoallergic: (Non-Immunological) radio contrast dye reaction
Idiosyncratic reaction: e.g. anaemia due to glucose- anti-oxidant drugs

Type “C”: These reactions are associated with long-term drug therapy e.g. Benzodiazepine
dependence and Analgesic nephropathy. They are well known and can be anticipated.

Type “D”: These reactions refer to carcinogenic and teratogenic effects. These reactions are
delayed in onset and are very rare since extensive mutagenicity and carcinogenicity studies
are done before drug is licensed.

Type “E” : The end of treatment or rebound effects

Type “F” : Failure of treatment

Type “G” : due to genetic polymorphism, not immunologically mediated
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As it can be seen from Figure 5, biomarkers can be associated or linked to one of the
reaction types in Rawlins and Thompson’s classification. Undoubtedly, these concepts allow
the causal chain of events to be correlated to the time course of overt symptoms and signs
in a quantitative manner. Such an integrated approach is essential for accurate
(mechanistic) interpretation of risk in humans. In the next paragraphs, we will highlight how
distant these concepts are from the approaches currently used in the assessment of

nonclinical safety and toxicity.
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Figure 5. Mechanistic classification of biomarkers.

2.5 Minimum Anticipated Biological Effective Level

A first attempt to implement mechanism-based measures of exposure has evolved over the
last decade, which relies on the assessment of the minimum anticipated biological effect
level (MABEL). In the calculation of the MABEL any biomarker can be used, for example
receptor occupancy or even downstream markers such as physiological mediators (25). This
has the advantage of allowing measures that correlate to any target-related toxicity (i.e.,
including off-target or secondary target) when pharmacokinetic processes are not the rate
limiting step. The concept relies on the assumption of some knowledge of the putative
targets underlying the adverse event to accurately interpret (patho)physiological response
and assess causality. However, since the MABEL is defined in terms of biological effect, not
toxicity, it is not a measure of risk and not a replacement of the NOAEL. Current practice is
therefore to use the NOAEL as a measure of risk to guide maximum doses in dose escalation
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studies, but the maximum recommended starting dose in FTIH should now be no higher than
both the MABEL and the NOAEL-derived MRSD. If the NOAEL with the addition a safety
factors were indeed protective, such a measure would be an unnecessary. Yet, one needs to
acknowledge that the MABEL is simply a retrospective risk-mitigation measure that can

account for some of the deficiencies of the NOAEL approach.

2.6. Limitations in experimental design

There are methodological aspects that need to be addressed to allow wider use of MABEL or
any other mechanism-based measures of ‘acceptable risk’. The predictive or prognostic
value of statistical correlations depends on satisfying five important criteria, namely:
selectivity, specificity, sensitivity, reproducibility and clinical relevance. Currently, despite
the characterisation of a correlation between biomarker and response, very little effort has
been made to quantify estimators such as false positive and false negative rates. For
instance, liver enzyme levels provide an example of a biomarker which has high sensitivity
but poor specificity. Interestingly, despite the aforementioned limitations clinical scientists
and pathologists will defend the value of ALT, AST and bilirubin as better predictors of risk,
as compared to drug exposure. Another aspect of interest is the fact that according to
current practice, if e.g., elevated liver enzymes are observed in one individual and acute liver
failure in another, an empirical framework ignores the correlation between these adverse
events. It may be treated as the same adverse event (i.e., 100% correlation), or a two
different adverse events (i.e., uncorrelated). The statistical methods and summary measures
of toxicity are unable to account for partial correlation or interaction between events within

or between individuals.

So the question is why does one not go further along the causal chain of toxicity for all
adverse events, instead of relying on measures of systemic exposure? The answer probably
lies in that pharmacokinetics is seen as the primary step along the way for most adverse

drug reactions. It is a simple, general purpose measure which fits the criterion of providing
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predictive value for many adverse events, despite the exceptions, for which it will perform

poorly, with low predictivity.

From a theoretical point of view, it should be highlighted that empirical approaches perform
poorly when incidence of a type of adverse event is low (Table 3). This means that pooling
data across different types of adverse events is necessary, and this is the root cause behind

the choice for a single measure of exposure, rather than more predictive ones.

Table 3: Probability of detection of adverse events with low incidence. Summary data is reflect the
occurrence of adverse events according to a Bernoulli random variable. For different incidence rates,
value depicts its probability of occurrence given an experimental group size of n.

Risk of adverse n=4 n=8 n=10 n=16 n=20
events
0.10% 0.40% 0.80% 1.00% 1.59% 1.98%
1.00% 3.94% 7.73% 9.56% 14.85% 18.21%
5.00% 18.55% 33.66% 40.13% 55.99% 64.15%
10.00% 34.39% 56.95% 65.13% 81.47% 87.84%

As indicated previously, empirical data analysis does not provide uncertainty estimates to
properly account for Type | (false positive) and Type Il (false negative). In addition,
experimental findings are evaluated in an experiment by experiment basis. This leads to
misrepresentation of the estimated population characteristics, which imposes the need for
conservative safety factors to account for bias and uncertainty. An immediate consequence
of this is illustrated by safety levels identified for tolcapone (36), cerevastin (37), and
ximelagatran (38), which were deemed “well-tolerated” at the predefined dose levels, but
were later shown to be unsafe (39). It should therefore become clear that the use of the

term tolerability ignores the high incidence of false negative results in standard designs.
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Based on empirical methods, the absence of adverse events within the experimental group

implies that risk is not present all.

Another problem is the fixed design used for in the estimation of the safety thresholds,
which relies on a set of arbitrary selection of the dose levels. Consequently, the NOAEL is
limited to one of the experimental dose levels. This results in the dose selection having a
heavy influence on the precision and accuracy of the NOAEL estimate. Unfortunately,
attempts to overcome the uncertainty and bias in the results may prove ineffective even if
the number of animal is increased per group. In addition to the dose selection, the duration
of the experiments also requires careful consideration and must be factored accordingly into
the estimation of safety thresholds. Current approaches consider treatment duration as a
constant factor, irrespective of the nature of the underlying adverse event. In general, high
doses administered over shorter periods of time are deemed comparable to therapeutic
doses administered chronically. This has little pharmacological foundation where time-to-
onset may bear little relationship to dose (e.g. neutropenia). At high doses, effects may
merely be due to secondary pharmacology. On the other hand, certain effects that can occur
at therapeutic levels may be overlooked at higher exposures. Furthermore, if toxicity is
delayed, then the likelihood of false negatives will increase if recording of adverse events
stops at the end of dosing. A historical example is the case of methylmercury-induced
dendritic degeneration in cats (40). Daily dosing for two months results in no differences
from control groups, up to month five, when a significant difference becomes evident. If
observations had ceased at month two, this effect would have been missed. In brief, the
experimental limitations of current approaches can be summarised not only in terms of
imprecision and inaccuracy, but also in terms of the lack of integration of the information

contained within and between experiments.

From a statistical perspective, the occurrence of an adverse event can be viewed as a
multidimensional random process over time, with one dimension for each type of adverse
event. In practice, these dimensionalities are reduced to binary processes, leading to loss of

information for data arising from continuous processes. Data loss also occurs when all these
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binary processes are combined and reduced to a single binary number for each individual:
the animal either had an adverse event or it didn’t. Information about which adverse event
occurred, the time-to-onset, duration, frequency and severity is all lost. On top this a further
reduction happens at group level whereby the binary numbers for each individual are
combined and reduced to a single binary number: an adverse event occurs at a given dosing
level, or it does not. This approach prevents the use of quantitative methods, as it removes
the evidence arising from the number of animals which exhibited adverse events. Data are
further reduced by the very definition of NOAEL, which requires only the lowest dose to be
considered in the estimation of the NOAEL: the NOAEL is highest treatment level exhibiting
no adverse events. As a consequence of all the aforementioned steps, important
information about the relationship between dose and exposure and adverse events may be

lost.

By contrast, an approach which involves longitudinal statistical modelling of continuous and
categorical data has the potential use all information in the production of estimates without
any loss in information. However, an alternative to the NOAEL, the benchmark dose (BMD)
approach has been proposed (41), which permits better use of experimental data. The BMD
yields evidence about the entire dose-response curve, rather than a single point. Typically
there are also large reductions at an individual and group level, but on a smaller scale.

Relevant data across experimental groups are not collated and analysed together (42).

2.7. Additional flaws in the empirical evaluation of safety and toxicity

From a scientific and clinical point of view, one of the main disadvantages of empirical
approaches is that extrapolation beyond experimental setting is often unreliable.
Paradoxically, the ability to extrapolate or make inferences is central for the evaluation of
safety and toxicity. Nonclinical data are generated with the primary objective of data

extrapolation in mind.
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Another limitation which cannot be easily circumvented is the inability to parameterise risk
in a systematic manner, accounting for what is observed and what can be inferred from an
intervention, irrespectively of the experimental evidence. Consequently, for instance, one
fails to assess the implications of an adverse event arising from two different mechanisms of
actions. To make accurate extrapolations, any relevant differences in the mechanism of
action must be incorporated into the analysis and interpretation of the data. A similar
problem arises in the case of nonlinear kinetics, when extrapolation to dose ranges outside
of experimental ranges can lead to very different exposure levels, as compared to those
expected from linear kinetics. Hence, it is evident that extrapolations derived from safety
factors are doomed to remain inaccurate without further understanding of the mechanisms

underlying the overt symptoms and signs.

Lastly, it is important to bear in mind that empirical methods often do not lend themselves
well to integrating data and combining results from multiple experiments. This situation
forces one to rely on clinical judgment to decide which findings can be deemed relevant.
This inflexibility represents another inherent weakness of current approaches for the
evaluation of safety, which clashes with one of the primary objectives of the drug
development process, i.e., to reduce uncertainty about the safety and efficacy of a
compound (43). In theory, more information should to lead to improve precision rather

bias.

2.8. Safety threshold vs. risk or hazard surface

Currently, the use of fixed thresholds as a metric of safety ignores the variable nature of
continuous processes and potentially prevents accurate interpretation of the underlying
phenomena. For example, gastric ulceration is dependent on membrane permeability.
Interindividual differences in tissue permeability are perceived as interindividual differences
in sensitivity to drug effects, i.e., in the exposure which is required to reach a threshold.

Based on current practice, the factor driving such differences often remains obscure. More
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sophisticated approaches have been proposed to incorporate toxicodynamic differences
through use of a sensitivity parameter (44). However, this suffers from the same weakness
as the use of a threshold. Furthermore, thresholds offer no mechanistic basis for
extrapolation across species. For example, there is no way to account for interspecies
differences in membrane permeability. As such, interspecies differences can only be

handled by safety factors.

Another immediate difficulty is the lack of consensus on what is defined as adverse events
and how definitions vary across species. These definitions lead to different safety levels,
meaning that safety thresholds are sensitive to definitions of events as adverse or non-
adverse rather than the risk associated with them. Therefore, it should be noted that even
with agreed definitions, the relevance of a threshold for the assessment of risk is
guestionable since it mostly relates only to the presence of an adverse event, rather than its
severity. In this context, the shape and slope of the exposure-risk relationship is an
important consideration. Yet, the use of thresholds incurs the danger that risk is treated and
thought of as a binary endpoint. Since the only way to truly eliminate risk is to cease the
hazard-causing activity, this is at odds with the binary treatment of it. Safety thresholds can
also obfuscate more complicate U-shaped or bell-shaped relationships which may be

relevant characteristics for consideration in a risk-benefit analysis.

In summary, it should be clear that despite the dichotomous nature of thresholds, all
(patho)physiological processes underlying an adverse event are continuous processes. In
fact, increasing understanding of the mechanisms underlying drug-target interactions (e.g.
receptor pharmacology theory) as well as the identification of downstream pathways (i.e.,
factors determining post-receptor events) imposes revisiting the utility and relevance of
thresholds as basis for the evaluation of drug response, irrespective of whether it involves
efficacy or safety. The continuous nature of ligand-target relationships, based upon which
target exposure must approach a certain order or magnitude in order to block or transducer
a signal, offers the possibility of exploring signal using multidimensional response surfaces,

rather than thresholds.
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2.9. Translational toxicology: allometric scaling

All the undertaking required to implementing experimental protocols in safety
pharmacology and toxicity implies the validity of a set of assumptions regarding the
correlation between findings in animals and humans. Unfortunately, these assumptions do
not take into account the prerequisite of construct validity to ensure direct comparability of

the findings across species.

As indicated previously, uncertainty about differences between species and lack of
understanding about the relevance of certain effects in humans, have lead to the
introduction of safety factors the estimation of safety thresholds. Whilst many supporters of
the approach envisage this as a plausible, cautionary measure, it cannot be ignored that in
many cases over-conservatism will prevent the development of compounds that otherwise
could be innocuous in humans. The challenge is therefore to identify a mechanistic basis for
translating nonclinical safety findings or at least making inferences about drug action based
on the results in a different species or experimental system (e.g., in vitro or cell culture).
Five different dimensions need to be considered for that purpose: 1) differences in
pharmacokinetics (i.e., accounting for physiological processes determining drug absorption,
distribution, metabolism and elimination); 2) differences in pharmacodynamics (i.e.,
accounting for variation or differences in receptor engagement, activation and downstream
amplification of the biosignal); 3) differences in homeostasis (i.e., accounting for functional
capacity and feedback mechanisms which may compensate for drug-induced changes in
physiological processes); 4) differences in response during health vs. disease conditions and

5) differences due to drug delivery properties.

It can be anticipated that accurate assessment of causality is essential for making inferences
from one species to another. Furthermore, it is rather evident that in most cases all five
dimensions need to be factored in the interpretation of nonclinical findings. However,
currently, more focus is given to differences in pharmacokinetics more than any other
aspect. As a matter of fact, extrapolation of findings between species often relies on the use

of allometric scaling principles (45,46). Allometry requires assumptions about the
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relationships between physiological function (e.g., metabolic capacity) and body size. In
principle, this concept can also be applied to differences in pharmacodynamics (46,47), but
the use of this technique in drug development is usually restricted to pharmacokinetic

parameters, and more specifically to volume of distribution and clearance.

Despite its wide use in drug development, one needs to be aware of the limitations
allometric methods represent to the prediction of pharmacokinetics and pharmacodynamics
in humans. The first point relates to the unawareness of the underlying differences
between-species. For example, total clearance can result from multiple routes; metabolism
by oxidation and glucuronidation, biliary excretion, and/or renal excretion. The use of
allometry assumes that when multiple physiological processes are involved, processes are
scaled solely based on size differences and processes that do not scale well are considered
clinically irrelevant (48). Biliary excretion is known not to scale well due to the role of ABC
transporters expression levels. As such the decision to use scaling is dependent on an
overall judgement of its ability to be scaled. For volume of distribution, the assumption is
that distribution of drug outside system circulation occurs primarily due to passive diffusion;
active transport is not accounted for either. Scaling via the more realistic physiologically
based pharmacokinetic (PBPK) models (49), has been shown to account for both size-

dependent and size-independent differences.

The second source of error in allometric scaling relate to the use of allometry as a monolithic
extrapolation strategy: allometric relationships, even if correct, only relate to size
differences between species. It is functionally equivalent to assuming that a human is a
large rodent or another non-clinical species. Furthermore, the scaling of parameters
assumes that size-related factors influencing systemic exposure are the only important

covariate relationships governing drug effects.

Despite the clear flaw in this approach, the evaluation of alternative methods for scaling or
translating pharmacokinetics and PKPD relationships remains limited. In fact, size-

independent differences compose a much larger part of the differences in
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pharmacodynamics and this is not accounted for with allometry. Paradoxically, there is also
support for the view that size-independent differences are usually small given that adverse
events in humans are predictable in the majority of cases (75%) from information obtained
from preclinical experiments (50). This leads to the apparent conclusion that mechanisms of
action in animals are similar to humans, however potentially serious differences may exist
(51). A related problem is that clinical outcome is dependent on the underlying disease
process, which may be different between species. Differences in baseline (physiological)
response and in variability due to disease conditions in humans can confound the
measurement of drug-induced effects, as compared to animals. Likewise, differences in
target distribution can also complicate the interpretation and translation of non-clinical
findings. For example, anaphylaxis is observed in the intestine and liver of rats, but in
humans these symptoms are primarily observed in the lungs and blood vessels (52). The
translational gap becomes even larger if one considers psychiatric or other neurological

adverse events, which may not be detected in animals.

2.10. Translation of Risk

Translation of the risk associated with the experimental evidence observed in animals is the
ultimate step triggering decisions related to nonclinical safety and toxicity of a novel
molecule. Thus far, expert judgment is used by decision makers, which ultimately consists in
the use of qualitative criteria for the assessment of risk. These criteria informally include
some measure of overall uncertainty, but such an approach makes it difficult to understand
the propagation of uncertainty. For instance, to infer that small physiological changes to the
binding levels across species can lead to large changes the estimates of safe exposure.
Clearly, accurate judgment is even more difficult when dependent on parameters for which

uncertainty is unknown or not quantifiable.

Whilst the aforementioned issues have been recognised as important, regulators remain

reluctant about the use of quantitative methods for risk assessment (53). There are various

38



reasons why qualitative risk assessment has been advocated over quantitative methods.
However, many of the argued limitations do not necessarily apply when more modern
statistical techniques are considered. We will address some of these points later in the next

section, where model-based approaches are discussed.

The danger with a qualitative analysis is that the extent of any overall benefit will be left to
human intuition. Informed decisions involve taking both benefits and risks of the drug into
account. Yet, the consideration of risks and benefits based on safety thresholds is
dependent on the nature of the risks in question and as such do not account for the
underlying mechanisms, which in turn could be used for subsequent clinical interpretation.
An encompassing inferential method is needed which accounts for underlying mechanisms
and balance them against benefits. Most importantly, decision making regarding risk should

include the contribution of historical data in a statistically and clinically formal manner.

3. Non-linear mixed effects modelling

The use of model-based methods has the ability to address many of the aforementioned
criticisms pertinent to the design and analysis of safety pharmacology and toxicology
protocols. Nonlinear-mixed effects models are a particular class of models that allow one to
handle a variety of parameterisations by integrating stochastic and deterministic
components of a problem. Although such models are often referred to as population
models, they provide insight at the individual level, separating real variability from
estimation uncertainty. They contain the necessary complexities required to assess risk in a
manner that translates into scientifically rigorous decisions. In pharmacokinetic-
pharmacodynamic data analysis, the use of a parametric approach based on nonlinear
mixed-effects models provides a tool for handling repeated-measurement data in which the
relationship between the explanatory variable and the response variable can be described

by a single function, allowing model parameters to differ between subjects (54). An
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immediate advantage of the approach is that the within-subject variability for a given
individual can be distinguished from the differences between subjects even in the absence

of balanced or frequent sampling of the data.

In hierarchical modelling, the term “mixed” refers to the use of both fixed effects
(characterising the typical individual in the population) and random effects (describing the
parameter distribution). The latter are divided into two levels: the difference between the
individual prediction and the observation (residual error) and the variability between
subjects (BSV). There may also be circumstances in which individual parameters vary
longitudinally between occasions, randomly or due to some unknown physiological process.
In such cases, a third level of variability can be introduced, i.e. the inter-occasion variability

(Iov).

The general structure of a hierarchical model is as follows:
Vijk = f(Xijio Pix) + €ijier €ijx~N(0,02) Eq.1

where yji is the j™ observation at occasion k in individual i. f{ ) is typically a nonlinear
function of individual parameter Py and independent variables Xjx. In PKPD modelling, f( ) is
usually then individual prediction of the observation. Independent variables are usually time,
dose or drug exposure and demographic covariates. The g forms the residual variability
with variance 02. When the variance is independent off(Xl-jk,Pik), the model is said to
have additive variability. On the other hand, when o is proportional to f( ), we have a

proportional error model (55).
For the iy, individual, the individual parameters Pj can by the expression:
Py =0-e", n,~N(0,e?) Eq.2

This describes a log-normal variation of the individual parameter P, which has a typical value,

O. The n; and k; are the random effects describing the differences between the typical
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(population) value and the individual parameter value. n; is assumed to be normally

distributed with mean zero and variance @?.

Among other applications, the use of hierarchical models is justified and appropriate when
the data available per individual are sparse. In addition, it is recognised as the most effective
method to perform meta-analysis of data arising from different studies and to incorporate
prior knowledge to the estimation of model parameters. It allows one to adjust for different
variances (e.g. presence of influential factor in a given subgroup in the population) and to
explore confounding correlations, when the design of the study correlates with the outcome

(e.g., effect of weight vs. sex).

3.1. Estimation methods

The field statistical modelling field has developed well-established parameter estimation
methods which provide the means not only to estimate the most likely value of the
parameters given the data, but also to quantify uncertainty and correlation in estimated
parameters and model (mis)specification. This ultimately provides us the opportunity to
account for limited information and gaps in our knowledge. For example, if there is little
information on the relationship between level of target occupancy and target activation, the
corresponding parameters will have an appropriately high uncertainty. This feature is
particularly relevant for the estimation and translation of risk as uncertainty can be
propagated as high imprecision in exposure-risk relationships. Moreover, the calculation of
the propagation of model uncertainty to uncertainty in the risk-benefit profile offers the

prospect of efficient data collection.

The standard method for parameter estimation for nonlinear mixed effects models has been
the maximum likelihood approach (56-59). This is where parameters are treated as random
variables with distribution governed by the likelihood function p(y|®), which represents the
probability of the total data arising given the value of the parameters. The reported value

for each parameter is the parameter at the maximum of the distribution, and associated
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uncertainty given by the variance of the distribution. No data reduction is required; each
raw data point directly informs parameter estimation thereby making maximal use of the
available data. When multiple studies have been performed in populations which share
common physiological processes or treatments, datasets may be aggregated to support
integrated analyses across these studies. Furthermore, model-based analysis can handle
multiple types of observations (e.g., pharmacokinetics and pharmacodynamics) as well as

multiple data types (e.g., continuous and categorical).

Of particular interest for the assessment of safety and toxicity is the possibility of applying
extensions of the maximum likelihood, which enable mathematically rigorous incorporation
of prior parameter information (e.g., receptor occupancy or blood to plasma binding ratio in
vitro to describe in vivo data). The two main methods for achieving this are the penalised
likelihood method (49,60) and Bayesian estimation (61). It should also be noted that the
advent of exact likelihood methods such as expectation maximisation (EM) methods (62) has
provided increased reliability of PKPD analyses, especially in the presence of sparse data,

often available from general toxicity protocols.

We should also emphasise that in the context of safety pharmacology and toxicity studies,
trial optimisation represents proper adherence to the three R’s (reduction, refinement and
replacement). When prior information is available for class-specific parameters, a model-
based analysis may benefit from this allowing for a reduction experimental cohort sizes or

burden to animals. This is possible because model-based analyses are inferential in nature.

3.2. Model parameterisation: empirical vs. mechanistic models

Despite the increasing number of modelling examples in biomedical and pharmaceutical
research, the use of pharmacokinetic and pharmacokinetic-pharmacodynamic models has
remained primarily descriptive. However, the application of such models for the evaluation
of safety requires further consideration of its biological plausibility and predictive or

prognostic value. For example, instead of using a simple compartmental model to describe
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the observed phases of drug elimination, one may need to consider a physiologically-based
pharmacokinetic model (PBPK) (63). Such models can be developed by integrating prior in

vitro data and literature information.

On the other hand, it is not unusual for components of PKPD models to be statistically
correlated to some degree. Therefore, it is important that when identifying at-risk
subpopulations based on collected data, covariate selection is guided by a mechanistic or
physiological evaluation. There are several methods that allow such an approach (64-67).
More recently, these methods have also been applied to describe disease processes (33).
Statistically, these models include a response variable that characterises the disease status

and its progression over time.

3.3. Simulations, experimental design and optimisation

Model predictions, simulated outside the experimental context are extrapolations subject to
model specification bias. Since our primary goal is to show the relevance of such models to
analyse data arising from pre-clinical species and eventually from healthy subjects to assess
safety and toxicity in patients who will be receiving these drugs, this point is of special
importance. In PKPD modelling, computer simulation involves using statistical models to
predict the behaviour of the biological system described by the model (68). Clinical trial
simulations (CTS) i.e. computer simulation of trials, allows for the investigation of the impact
of different design characteristics on the outcome of a trial. It can also be used to
investigate the implications of uncertainty and variability in pharmacokinetic and
pharmacological processes for recruited individuals, thereby allowing the prior assessment
of the robustness of the protocol to known uncertainty and variability (69). More generally,
in a CTS it is possible to test the influence of any modelling assumption and design factor

beforehand (Figure 6).
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Figure 6: The diagram depicts the major components of a clinical trial simulation (CTS). In model-
based drug development, CTS can be used to characterise the interactions between drug and
disease, enabling among other things the assessment of disease-modifying effects, dose selection
and covariate effects. In conjunction with a trial model, CTS allows the evaluation of such
interactions, taking into account uncertainty and trial design factors, including the implications of
different statistical methods for the analysis of the data.

Trial design can also benefit from the use of optimal design methodology. The goal of
optimal design, specifically the procedure known as D-optimality, is to determine design
variables (such as sampling times and dose selection) that optimise the expected
information content (usually by maximising the determinant of the Fisher Information
Matrix (FIM)) within the desired resource constraints. A variety of software programs exist
purpose built for the estimation of PK/PD models (70). Optimal sampling schedules for
toxicity experiments can help increase the precision by which drug specific parameters can
be estimated and/or reduce the burden to animals by minimising the number of samples
needed. This is desirable from an ethical and scientific perspective, as poor experimental
design is known to result in biased estimates. Among other advantages, optimal sampling
may facilitate the collection of biomarkers in conjunction with pharmacokinetic data when

blood volume is limited.
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Conclusions

High attrition rates due to a poor safety profile combined with inability to correctly identify
risk demand revisiting of concepts and modernisation of the approaches currently used for
the assessment of toxicity. Current practices fail to support decision making on multiple
levels. Firstly, the parameterisation of drug exposure and available metrics of risk are often
justified by historical precedent rather than by an informed scientific rationale. These
measures are assumed to be predictive of drug effects in humans, despite the fact that in
many cases known pharmacokinetic and pharmacological drug properties contradict such
assumptions. Evidence clearly shows that empirical protocols remain primarily descriptive
rather than explanatory of the observed phenomena and are therefore unsuitable for
extrapolation, an important point to consider when analysing and interpreting safety
pharmacology and toxicology data. Moreover, statistically, the use of point estimates and
thresholds prevents understanding of the consequences of between subject variability and
identification of at-risk subpopulations. Additionally, type | and Il errors are also not
accounted for in the design or analysis of toxicity data, both of which are critical informed

decision making.

In summary, our review has highlighted the implications of empirical data generation for the
evaluation of safety and toxicity during drug development. A shift in paradigm was
proposed to ensure that pharmacological concepts are incorporated into the evaluation of
safety and toxicity. Moreover, we indicate the urgent need to integrate historical evidence,
so that findings across species can be effectively translated. Based on historical examples,
we have shown some important challenges for the early characterisation of the safety
profile of a new molecule and discuss how model-based methodologies can be applied for
better design and analysis of experimental protocols. From a methodological perspective,
nonlinear-mixed effects modelling is recommended as a tool to account for such
requirements. Its use in the evaluation of pharmacokinetics (PK) and pharmacokinetic-
pharmacodynamic relationships (PKPD) has enabled the advance of quantitative approaches
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in pharmacological research in recent decades. Comparable benefits can be anticipated for

the assessment of safety and toxicity.
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CHAPTER 2

Scope and intent of investigation

Historically, the evaluation of safety pharmacology and toxicity of drugs has largely relied on
research in animal models, of which results have been used to extrapolate to potentially
harmful events in humans. The research in these models has been developed to evaluate
specific toxicological endpoints, (such as oral, dermal and ocular toxicity, immunotoxicity,
genotoxicity, reproductive and developmental toxicity and carcinogenicity) rather than
specifically designed to understand the exposure response relationships associated with the
anticipated adverse event or toxicity (1). Furthermore, even if one considers the information
obtained from these experiments useful, they are low throughput and inconsistently
predictive of human pharmacology and pathophysiology. Some of these limitations persist in

spite of the recognition of toxicokinetics as an important part of the safety assessment (2-3).

More recently, several major new initiatives have begun to utilise in vitro methods and a
variety of new technologies to develop in vitro signatures and computational models
predictive of in vivo response. These initiatives provide insight and tools to identify a battery
of in vitro assays to detect perturbations in cellular pathways that are expected to contribute
to or result in adverse health effects (4,5). Furthermore, these initiatives represent a

welcome movement away from traditional in vivo high-dose hazard studies (6,7).

Despite such a continuing improvement in methods to characterise the safety and toxicity of
novel medicines, uptake of these new approaches by regulatory agencies remains limited,
with quantitative pharmacology concepts still being rarely applied to address clinical and
regulatory questions on the safety pharmacology and toxicity of a novel compound.
Evidence of the relevance of such concepts has been highlighted with the introduction of

structure-activity relationships (SAR) in the absence of adequate toxicity data on the
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chemical under certain circumstances, such as when the extent of exposure of humans is
extremely low and toxicokinetic data cannot be easily generated (8). Clearly, the lack of a
stronger pharmacological basis for the assessment of safety has prevented the
implementation of a model-based approach aimed at the characterisation in a strict
guantitative manner of the relationship between drug exposure and effects. To date, efforts
have been limited to physiologically-based pharmacokinetic modelling, but it is mostly

applied to environmental toxicology, rather than to pharmaceutical R&D (9).

Irrespective of the urgently needed changes in regulatory guidance, methodologies that
support the translation and prediction of safety pharmacology and toxicity in humans are
still required. To this purpose, more than novel experimental protocols and technologies are
required. We strongly believe in integrative approaches that enable efficient use of available
evidence and facilitate the assessment of pharmacokinetic-pharmacodynamic relationships.
Of special importance is the possibility to evaluate and predict long term or rare adverse
events, which continue to contribute to high attrition in drug discovery and development
(10). In light of the known limitations of current experimental protocols and the implications
they represent for hazard characterisation in humans, a range of different approaches is
necessary to ensure that the appropriate endpoint is detected and risk evaluated in a precise

and accurate manner.

The scientific and regulatory communities should acknowledge that most toxicity tests, as
currently designed, are aimed solely at hazard identification at supratherapeutic levels. Data
produced using current testing guidelines are not always suitable for robust mathematical
exposure—response modelling. We recognise therefore that adequate characterisation of the
exposure—response relationship requires a number of doses giving a range of different
response levels. On the other hand, mathematical modelling of the exposure-response

relationship would represent an important improvement to the risk assessment process.

Here we tackle a number of issues that need to be considered during the course of drug

discovery and development to ensure more efficient use of the evidence on safety
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pharmacology and toxicity which is generated. Four central questions will form the basis for

the work to be presented in the subsequent chapters in this thesis:

1. Can current experimental protocols for safety pharmacology and toxicology evaluation be
optimised to support the characterisation of pharmacokinetic-pharmacodynamic

relationships?

2. Does a meta-analytical approach based on nonlinear mixed effects modelling provide

more precise and accurate estimates of safety thresholds than current methodologies?

3. Can mechanism-based models be used for accurate inferences about safe drug exposure

for low frequency, delayed (long term) or rare adverse events?

4. Should biomarkers be used in conjunction with pharmacokinetic data to enable accurate
estimation of the safe drug exposure (and consequently of safety thresholds) during chronic

therapy?

Our work is presented in a way that both conceptual and practical issues are addressed
concurrently. After revisiting the requirements for the implementation of quantitative
pharmacology concepts in the evaluation of safety pharmacology and toxicology, we
highlight how existing protocols should be redesigned to obtain accurate results from the
modelling and emphasise that an appropriate design might even result in a reduction in the
total number of animals studied. Moreover, we show that biomarker data may allow
translation of the external dose to an internal dose (or target-organ dose), as it reflects a
compounds pharmacology. In fact, using naproxen as a paradigm compound for the acute
and chronic effects of cyclo-oxygenase inhibition, we explore how biomarkers could be used
to provide a full pharmacologically-based exposure-response model, i.e., a PBPKPD model.
Our endeavour is complemented by further insight into the implications of modelling for risk
prediction purposes, as described by logistic, hazard models. Clear recommendations are

provided about the requirements for future refinements regarding the characterisation of
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exposure—response relationships, which need to account for the extent of uncertainty and

variability in modelling and simulation output.

Section I: General introduction

In Chapter 1, we have described the problems with existing practices from a methodological
point of view and highlighted the value of mechanism-based PKPD modelling as a tool for
the evaluation of safety pharmacology and toxicology. From a methodological perspective,
we show that the parameterisation of drug exposure and available metrics of risk are often
justified by historical precedent rather than by an informed scientific rationale. These
measures are assumed to be predictive of drug effects in humans, despite the fact that in
many cases known pharmacokinetic and pharmacological drug properties contradict such
assumptions. Evidence clearly shows that empirical protocols remain primarily descriptive
rather than explanatory of the observed phenomena and are therefore unsuitable for
extrapolation, which is an important point to consider when analysing and interpreting
safety pharmacology and toxicology data. Moreover, statistically, the use of point estimates
and thresholds prevents understanding of the consequences of between subject variability
and identification of at-risk subpopulations. Additionally, type | and Il errors are also not
accounted for in the design or analysis of toxicity data, both of which are critical informed

decision making.

A shift in paradigm is proposed to 1) ensure that pharmacological concepts are incorporated
into the evaluation of safety and toxicity; 2) facilitate the integration of historical evidence
and thereby the translation of findings across species; and 3) promote the use of
experimental protocols tailored to address specific safety and toxicity questions. Three
important components have been identified, which will form the framework proposed
throughout this thesis., namely, model based optimisation of experimental design, data

integration, and incorporation of biomarkers as a way towards the implementation of a
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pharmacology-based approach for the characterisation of safety and toxicity in drug

discovery and development.

Of particular interest for us is to demonstrate that inefficiencies in the experimental design
violate the principle of the 3 Rs (reduction, refinement and replacement) (11,12). Optimality
concepts are available that could be implemented even when terminal sampling procedures
are used, as is the case of histopathological measures. Using examples, we show that the
poor predictive value of experimental data reflects the failure in anticipating the biological
consequences of target engagement, i.e., in establishing the correlation between target-
related events and drug exposure, as defined by the evidence of pharmacokinetic-

pharmacodynamic (PKPD) relationships.

Based on the requirements for the implementation of a pharmacology-based approach,
specific issues have been identified which underpin the scope and intent of the
investigations described here in Chapter 2. Nonlinear-mixed effects modelling will be
recommended as a tool for protocol optimisation and knowledge integration (i.e., evidence
synthesis). Its use in the evaluation of pharmacokinetics and pharmacokinetic-
pharmacodynamic relationships has enabled the advance of quantitative approaches in
pharmacological research in recent decades. As shown in the subsequent chapters of this

thesis, comparable benefits can be anticipated for the assessment of safety and toxicity.

The overall focus of the work presented in the following sections of this thesis is therefore to
illustrate how the proposed methodology can be applied prospectively during the evaluation
of a novel molecule in the early stages of development. We also attempt to demonstrate
the need and added value of an integrative approach to predict potential long term AEs with
respect to performance metrics commonly used in safety pharmacology and toxicology
experiments. Where possible, proposals to amend study protocols are kept to a minimum to

facilitate acceptance of the proposal by industry and regulatory bodies.
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Section ll: Conceptual framework

In the section, different aspects, including advantages and limitations of a model-based
approach are evaluated. Of interest is the fact that despite the increased attention to the
importance of toxicokinetics, the extrapolation and prediction of a safe exposure range in
humans from preclinical experiments continues to be based on the assessment of empirical
safety thresholds, in particular the no observed adverse effect level (NOAEL), which is a
qualitative indicator of acceptable risk. In addition, pharmacokinetic data generated from
different experiments are not evaluated in an integrated manner, whereby drug disposition
(e.g., clearance) can be described mechanistically or at least compartmentally in terms of
both first and zero order processes. As a consequence, safety thresholds are primarily
derived from inferences about the putative pharmacokinetic profiles in the actual treatment
group. Such an experimental setting has far reaching consequences for the assessment of
risk, given the assumption that inter-individual differences are implied to result from
residual variability. Pharmacokinetic and pharmacokinetic-pharmacodynamic parameters
are treated as point estimates. Factors such as within- and between-subject variability or
uncertainty in estimation are not accounted for. This is further complicated by another
major limitation in the way exposure is described by naive pooling approaches, i.e., the
impossibility to accurately derive parameters such as cumulative exposure, indirect or
delayed effects, which may be physiologically more relevant depending on type of drug and

the mechanism of action.

Therefore, focus is initially given to the opportunities for optimisation of experimental
protocols supporting the characterisation of pharmacokinetic properties at therapeutic and
supratherapeutic levels. In Chapter 3, we show that the estimation of safety thresholds such
as the NOAEL can be optimised (13). Using simulation scenarios in which hypothetical
compounds with different disposition properties are evaluated, our analysis shows the
feasibility and relative performance of a model-based analysis for the characterisation of
systemic exposure as compared to empirical, non-compartmental analysis (NCA) methods
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currently used in general toxicity protocols. Simulation scenarios are used to illustrate which
changes are required in experimental protocols with respect to standard non-
compartmental analysis. Expected bias and precision of parameters of interest, such as
systemic exposure (AUC) and peak concentrations (Cuax), are then computed with both
methodologies. In addition, we also assess the predictive accuracy of cumulative exposure
estimates up to three months beyond the study duration. It should be noted that such an
extrapolation represents an important advantage of model-based methods, which cannot be
derived by descriptive methods such as non-compartmental analysis. Overall, the scope of
this evaluation was to show that, despite the need for an iterative process, modelling

provides the basis for experimental protocol optimisation.

Given the assumption of unbiased parameter estimation when using a model-based
approach for the characterisation of pharmacokinetic properties, a natural question arises
with respect to the principle of the 3 Rs in pre-clinical research. Irrespective of the
availability of alternative methods that allow evaluation of drug disposition properties in
vitro, can experimental protocols be optimised to ensure a significant reduction in the
number of animals required, whilst still providing sufficient estimation precision for

measures of exposure such as AUC and Cyax?

This question is addressed in Chapter 4, where an important methodological challenge is
overcome, namely the possibility to optimise secondary pharmacokinetic parameters such as
AUC and Cuax. In contrast to existing optimality software and algorithms, which support
optimisation of experimental design with respect to primary parameter precision, we show
that secondary parameters can be optimised without the resource-intensive procedures
imposed by D-optimality. Using a range of hypothetical drugs with different
pharmacokinetic profiles, we illustrate the implementation of optimisation procedures to
select sampling times and define the minimal number of animals per treatment group. By
combining the expected Fisher information matrix (FIM) with simulations from uncertainty,
this exercise ultimately shows that the precision of secondary parameters can be assessed

and minimally sufficient designs obtained, in line with the principle of the 3 Rs. The method
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is computationally inexpensive and can provide potential savings to numbers of animals

without compromising study objectives.

Still within the scope of protocol optimisation, we also explore the implications of
introducing biomarkers into the evaluation of a drug’s safety toxicity profile, as biomarkers
of pharmacological activity can be crucial for the prediction of long term adverse events and
toxicity. In contrast to traditional protocols, which imply a direct relationship between
observed systemic exposure and adverse events, in Chapter 5 we apply a model-based
approach to characterise the PKPD correlations and the time course of biomarker responses
associated with long-term safety. Our evaluation also compares the analysis of biomarker
data based on standard non-compartmental methods. In brief, we propose the collection of
biomarkers at the scheduled pharmacokinetic sampling points to facilitate the

characterisation of pharmacokinetic-pharmacodynamic relationships.

Study data are simulated for four hypothetical drugs, each with a different mechanism of
delayed toxicity. For the purposes of our evaluation, delayed toxicity was parameterised in
terms of i) an indirect response mechanism, ii) an indirect response mechanism preceded by
biophase equilibration, iii) cumulative effects as a consequence of chronic dosing and iv)
formation of a toxic metabolite after repeated dosing. Given the often unknown mechanism
of toxicity, model misspecification is also considered to ensure that accurate conclusions are
drawn from experimental protocols. Finally, bias and precision of parameter estimates were

used as metrics of interest to compare model-based and non-compartmental methods.

The utility of model-based approaches to predict the risk of adverse events from preclinical
toxicology protocols is subsequently explored in Chapter 6, where pharmacokinetic,
biomarker and adverse event data are integrated into a PKPD model. In this investigation,
simulation scenarios are used to generate drug-induced adverse events for reversible and
irreversible drug effects according to three different pharmacological mechanisms (direct,
indirect, and irreversible binding). To ensure real-life conditions, assumptions are made with

regard to 1) the presence of background adverse events, including the situation in which
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drug-induced and background adverse events are indistinguishable from each other, 2)
events occur with low frequency, including rare events, 3) the symptoms evolve over time
but can only be detected once per animal during histological examination and 4) adverse

events are described by binary data.

Whereas typical toxicology experiments are designed to show evidence of safety thresholds,
it can be anticipated that they may not fully support the identification of the underlying
mechanisms for adverse drug reactions. Therefore, we show the importance of prior
information and more specifically of background rates from placebo and control-treated
animals. We also make the effort to quantify model and parameter uncertainty as the basis
for subsequent risk assessment. At the same time, we show the technical challenges for
characterising exposure-response relationships, which make the validity and reproducibility

of models derived by empirical experimentation questionable for predictive purposes.

Section lll: Case study and practical application

The third part of the thesis aims to illustrate the implementation of experimental protocols
suitable for model-based analysis. Given the ongoing debate of the benefit-risk balance of
chronic treatment with non-steroidal anti-inflammatory drugs, naproxen is used as a
paradigm compound with known acute and chronic toxicities. Naproxen is a non-selective
cyclo-oxygenase inhibitor, whose activity results in the suppression of pro-inflammatory
mediators such as prostaglandins and thromboxanes (14). By considering the requirements
for a suitable experimental protocol, we also attempt to identify practical challenges and

difficulties that one may face for the prospective use of the methodology.

From a clinical pharmacology perspective, the rationale for selecting naproxen is based on
the differences in housekeeping function of both isozymes and their contribution to the
inflammatory response in acute and chronic inflammatory conditions (15-17). Unfortunately,
at present the dose selection of COX inhibitors disregards whether maximum, long-lasting

blockade of either enzyme systems is strictly required for anti-inflammatory, analgesic
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response and how its pharmacology relates the observed adverse events (18). These
considerations become essential when evaluating the side effects associated with long term
use of COX inhibitors, which include gastric and cardiac adverse events. Whilst the lack of
selectivity of naproxen and the evidence for distinct mechanisms underpinning acute effects
(such as bleeding and ulceration) and long term effects (such as renal and cardiovascular
damage) have evolved over the years and might not have been understood at time of the
development of the compound, such understanding makes it quite didactic in that it
demonstrates how human safety and toxicity may require characterisation of drug effects at
exposure levels corresponding to the therapeutic doses. Toxicity, and in particular, long term
safety is not a matter of supra-therapeutic exposure: it may be determined by time-

dependent pharmacological activity.

Using a typical toxicology protocol in rats, in Chapter 7 naproxen, a non-selective cyclo-
oxygenase inhibitor is used as paradigm compound to demonstrate the concept of
biomarker-guided safety assessment (19-21). Using pharmacokinetic-pharmacodynamic
techniques, we subsequently illustrate how modelling and simulation techniques can be
used to ensure accurate estimation of the safe dose levels of naproxen after chronic
exposure. Furthermore, the pharmacokinetics of naproxen is evaluated in conjunction
thromboxane (TXB,) and prostaglandin (PGE,) over short, moderate and long-term
treatment. It is assumed that gastrointestinal bleeding is due continuous COX-1 inhibition,
whereas ulceration results primarily from the suppression of COX-2, which is known to have
an important role in the repair of gastric mucosa. PK and biomarker findings are then
integrated with experimental data from historical protocols and published literature to
ensure characterisation of drug properties at putative therapeutic levels. From a
methodological perspective, it is our endeavour to quantify the impact of nonlinearity in
pharmacokinetics and in biomarker response. Given the wealth of clinical data from the
published literature, we also take the opportunity to evaluate the predictive value of
nonclinical findings and explore whether species differences exist for naproxen effects on

TXB; and PGE;.
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This evaluation is complemented in Chapter 8 by further integrating the histological data
obtained at completion of treatment to the observed biomarker effects. Here we emphasise
the need for evidence synthesis to quantify and explain the risks associated with long term
drug exposure. Clearly, efforts are required to ensure the availability of tissue- and
mechanism-specific data for accurate interpretation of acute and long term safety findings.
Such an objective may be hampered by the use of empirical experimental protocols, as they
render the extrapolation of findings across species rather difficult, preventing accurate
translation of the pharmacological properties to man. In the current investigation we show
therefore how pharmacokinetic-pharmacodynamic (PKPD) modelling can be used to unravel
the relationship between chronic drug exposure, pharmacodynamic effects and overt
symptoms and signs. The concept is illustrated by the correlation between naproxen
concentrations, PGE, and TXB, inhibition, and gastric ulceration in rats. Through the use of
bootstrapping procedures in combination with covariate analysis, we show how model
diagnostics can be used for model selection as well as for potential identification of the

explanatory factors for the observed gastric ulceration.

Section IV: Conclusions and Perspectives

An overview of the results and conclusions drawn from the various chapters is provided in
Chapter 9. Most importantly, recommendations are provided for physiologically based
guantitative toxicity assessment. Here we also summarise the answers to the initial
questions set up at the beginning of this chapter, which underpin the research developed
throughout the thesis. We anticipate that the examples used in Section Il will make clear
that there are numerous opportunities for optimisation of experimental protocols for safety
pharmacology and toxicology. The approach should also shed light on the advantages of
including biomarkers and characterising PKPD relationships, instead of relying solely on

safety thresholds.
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Lastly, the issues identified in the various simulation scenarios and the challenges
experienced during the implementation of an integrated experimental protocol are
discussed. Our findings should make clear that inferences about safe exposure as well as the
risk associated with long term use of a compound cannot be achieved by scattered empirical
experimentation. Given the increased relevance of evidence synthesis as the basis for
decision-making within regulatory and clinical settings, we expect that some of the meta-
analytical elements presented across the various simulation scenarios will become
embedded into daily practice in safety pharmacology and toxicology. Irrespective of the
advancements in the understanding of the mechanisms of toxicity, we envisage that a
pharmacology or biomarker-based approach will always be required to allow accurate
inferences about safe drug exposure for low frequency, delayed (long term) and rare
adverse events. Future perspectives are then presented taking into account ongoing
developments in the field of systems pharmacology and its relevance for the prediction of
drug toxicity and risk assessment in humans. The work is concluded with a new question
being asked with regard to the scientific and ethical basis for current experimental designs in

toxicology.
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Abstract

Purpose: Current toxicity protocols relate measures of systemic exposure (i.e. AUC, Cmax)
as obtained by non-compartmental analysis to observed toxicity. A complicating factor in
this practice is potential bias in the exposure estimates. Moreover, it prevents the
assessment of variability. The objective of the current investigation was therefore a) to
demonstrate the feasibility of applying nonlinear mixed effects modelling for the evaluation
of toxicokinetics and b) to assess the bias and accuracy of systemic exposure for each

method.

Methods: Simulation scenarios were evaluated, which mimic standard toxicology protocols
in rodents. To ensure differences in pharmacokinetic properties were accounted for,
hypothetical drugs with varying disposition properties were considered, including a one-
compartment pharmacokinetics with linear and nonlinear elimination as well as a two-
compartment pharmacokinetics. Data analysis was performed using non-compartmental
methods and nonlinear mixed effects modelling. Exposure levels were summarised as area
under the concentration vs. time curve (AUC), peak concentrations (Cmax) and time above a
predefined threshold (TAT). Results were then compared with the reference values to

assess the bias and precision of parameter estimates.

Results: Population pharmacokinetic modelling yields higher accuracy and precision of
estimates for AUC, CMAX and TAT irrespective of group or treatment duration, as compared
with non-compartmental analysis. Moreover, population pharmacokinetics modelling

constitutes a basis for PKPD based analysis of safety outcomes.

Conclusions: Despite the focus of toxicology guidelines on establishing safety thresholds for
the evaluation of new molecules in humans, current methods neglect uncertainty, lack of
precision and bias in parameter estimates. The use of nonlinear mixed effects modelling in
toxicology provides insight into variability and should be considered for predicting safe

exposure in humans.
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Abbreviations:

AUC - area under the concentration vs. time curve

Cmax — peak concentrations

PD - pharmacodynamics

PK — pharmacokinetics

TAT — time above a concentration threshold
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Introduction

The purpose of toxicokinetic studies in the evaluation of safety pharmacology and toxicity is
the prediction of the risk that exposure to a new chemical or biological entity represents to
humans (1,2). Understanding of the relationships between drug exposure, target
engagement (i.e., activation or inhibition) and downstream biological effects of a given
physiological pathway can provide insight into the mechanisms underlying both expected
and ‘unexpected’ toxicity (3) (Figure 1). In addition, the use of a mechanism-based approach
has allowed better interpretation of time-dependencies in drug effect, which are often

observed following chronic exposure to a drug (e.g., delayed toxicity) (4,5).

Compound Pharmacoklnetlcs/—\

Toxicity
Expected Toxicity _ Central nervous
Unexpected Toxicity Ezrri[;jnigsgaslcﬁar\rfous
\ l Respiratory
Target Efficacy | What is the toxicological Digestive
endpaint Ezpfﬂllﬂ
na
Endocrinology
l / Sensory
i i ici Skeletal
L Relationship between toxicity
and toxicokinetics \— "~/ Muscular
Toxicity /| ete.

under the extension \

of pharmacological effect \ /
KToxicoki netics \/
Safety / risk assessment

Figure 1 — Safety risk assessment based on toxicokinetics and pharmacological basis for target-
related adverse events. Target efficacy: target engagement endpoint on in vitro or in vivo screening.
Reprinted with permission from Horii, 1998 (3).
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Despite the increased attention to the importance of toxicokinetics in drug discovery and
during the early stages of clinical development, the extrapolation and prediction of a safe
exposure range in humans from preclinical experiments continues to be one of the major
challenges in R&D (Figure 2) (71). Irrespective of the choice of experimental protocol, a
common practice in toxicology remains the assessment of empirical safety thresholds, in
particular the no observed adverse effect level (NOAEL), which is a qualitative indicator of
acceptable risk. Even though support for the existence of thresholds has been argued on
biological grounds (19-21), the NOAEL has been used to establish safe exposure levels in
humans. In fact, this threshold represents a proxy for another threshold, i.e., the underlying

no adverse event level (NAEL).

The definition of the NOAEL varies from source to source (22). Its calculation involves the
determination of the lowest observed adverse effect level (LOAEL), which is the lowest
observed dose level for which AEs are recorded. The NOAEL is the dose level below this. If
no LOAEL is found, then the NOAEL cannot be determined. Usually, in the assessment of the
LOAEL measures of systemic exposure are derived, such as area under the concentration vs.
time curve (AUC) and peak concentrations (Cmax), which serve as basis for the maximum
allowed exposure in dose escalation studies in humans (10). The aforementioned practices
in safety and toxicity evaluation are driven by regulatory guidance (72). The scope of these
guidances is to ensure that the systemic exposure achieved in animals is assessed in
conjunction with its relationship to dose level and the time course of the toxicity or adverse
events (Figure 2). Another important objective is to establish the relevance of these findings
for clinical safety as well as to provide information aimed at the optimisation of subsequent

non-clinical toxicity studies.
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Figure 2 — TK; toxicokinetic study in drug-development process. IND; investigational new drug
application, NDA; new drug application. Reprinted with permission from Horii, 1998 (3). General
toxicity data used for supporting early clinical trials is gathered in the pre-IND stage. After IND
submission, the FDA will confirm whether adequate evidence of safety has been generated for
human trials.

Whilst the scope and intent of such guidance are well described since 1994, when it was
introduced by ICH, there has been much less attention to requirements for the analysis and
interpretation of the data. In fact, precise details on the design of toxicokinetic studies or
the statistical methods for calculating or estimating the endpoints or variables of interest,
are not specified (13-15). Instead, the assessment of exposure often takes places in satellite

groups, which may not necessarily present the (same) adverse events or toxicity observed in
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the main experimental group. This is because of interferences associated with blood
sampling procedures, which may affect toxicological findings. For this same reason, blood

sampling for pharmacokinetics is often sparse (73).

As a consequence, safety thresholds are primarily derived from inferences about the
putative pharmacokinetic profiles in the actual treatment group. Furthermore, these
thresholds rely on the accuracy of composite profiles obtained from limited sampling in
individual animals. Composite profiles consist of pooled concentration data, which is
averaged per time point under the assumption that inter-individual differences are simply
residual variability, rather than intrinsic differences in pharmacokinetic processes (74).
Pharmacokinetic parameters such as area-under-concentration-time (AUC) and observed
peak concentrations (Cuax) can then be either derived from the composite profile or by
averaging individual estimates from serial profiles in satellite animals when frequent
sampling schemes are feasible. Given that the parameters of interest are expressed as point
estimates, within- and between-subject variability as well as uncertainty in estimation are
not accounted for. In addition, pharmacokinetic data generated from different experiments
are not evaluated in an integrated manner, whereby drug disposition (e.g., clearance) can be
described mechanistically or at least compartmentally in terms of both first and zero order
processes. This is further complicated by another major limitation in the way exposure is
described by naive pooling approaches, i.e., the impossibility to accurately derive
parameters such as cumulative exposure, which may be physiologically a more relevant
parameter for cumulative effects (e.g. lead toxicity, aminoglycosides) (18-19). Time spent
above a threshold concentration may also bear greater physiological relevance for drugs
which cause disruption of homeostatic feedback mechanisms. Such parameters cannot be

described by empirical approaches due to limitations in sampling frequency.

By contrast, population pharmacokinetic-pharmacodynamic methodologies have the
potential to overcome most of the aforementioned problems. Whilst the application of
modelling in the evaluation of efficacy is widespread and well-established across different

therapeutic areas (20-22), current practices have undoubtedly hampered the development
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of similar approaches for the evaluation of adverse events, safety pharmacology and toxicity.
It should be noted that in addition to the integration of knowledge from a biological and
pharmacological perspective, population models provide the basis for the characterisation of
different sources of variability, allowing the identification of between-subject and between-
occasion variability in parameters (23). These random effects do not only reflect the
evidence of statistical distributions. They can be used for inference about the mechanisms
underlying adverse events and toxicity. In fact, recent advancements in environmental
toxicology have shown the advantages of PBPK/PD modelling as a tool for quantifying target

organ concentrations and dynamic response to arsenic in preclinical species (24).

The aim of this investigation was therefore to assess the relative performance of model-
based approaches as compared to empirical methods currently used to analyse toxicokinetic
data. We show that, modelling is an iterative process which allows further insight into
relevant biological processes as well as into data gaps, providing the basis for experimental
protocol optimisation. We illustrate the concepts by exploring a variety of scenarios in

which hypothetical drugs with different disposition properties are evaluated.

Methods

A model-based approach was used to simulate the outcomes of a 3-month study protocol, in
which toxicokinetic data for three hypothetical drugs were evaluated. Experimental
procedures were defined according to current guidelines for the assessment of toxicity.
Given the pre-defined pharmacokinetic parameters used in the simulations, true exposure
and biomarker levels for each individual animal were computed in accordance with Table 3.
These values were subsequently used as reference for comparison of the methodologies and
assessment of bias and precision of the parameters of interest. The sampled data obtained
according to a sampling matrix was analysed using non-compartmental methods and by
nonlinear mixed effects modelling. All simulations and fitting procedures described below
were performed in NONMEM 7.1 (25). Data manipulation and statistical and graphical

summaries were performed in R 3.0.0 (26).
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Pharmacokinetic models: The impact of differences in drug disposition on bias and precision
of the typical measures of systemic exposure was explored by including three different
scenarios based on a one-compartment pharmacokinetics with linear and nonlinear
(Michaelis-Menten) elimination as well as a two-compartment pharmacokinetics. Parameter
values for each scenario are shown in Table 1. In all scenarios, residual variability was
assumed to be 15%. For the purposes of this exercise, we have assumed a homogeneous

population, avoiding the need to explore covariate relationships in any of the models.

Table 1 - Pharmacokinetic models used to assess the implications of molecules with varying
disposition properties.

Model A: One-compartment model (1 CMT)

Parameter Pop Estimate BSV
KA 13.46 h™ 50%
Vv 49.4 ml/kg 16%
CL 2.72 ml/hr 20%

Model B: One compartment model with Michaelis-Menten elimination (1 CMT + MM). Parameter
values were chosen to ensure departure from dose proportionality at the highest dose.

Parameter Pop Estimate BSV
Vmax 2.72 mg/hr 20%
Km 1 mg/ml -

Ka 13.46 h™ 50%
Vv 49.4 ml/kg 16%
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Model C: Two-compartment model (2 CMT). The values for the absorption and elimination rate
constants were selected in such a way that slow accumulation of drug is observed at stead-state
conditions after daily dosing for approximately two weeks.

Parameter Pop Estimate BSV

\' 49.4 ml/kg 16%
CL 2.72 ml/hr 20%
K12 03h* -

K21 0.05h™ 32%

Experimental design: A summary of the sampling schemes and experimental conditions is
shown in Table 2. The protocol design for each experiment with the three hypothetical
drugs was based on protocols typically used for chronic toxicity evaluation. Four treatment
groups receiving oral daily doses of vehicle, 10, 30, and 100 mg/kg/day were tested
throughout this set of virtual experiments. The same treatment groups were present in all
duration cohorts (one week, one month or three months). Satellite groups each were used
to characterize the pharmacokinetics under the dosing conditions in the animals used for the
assessment of toxicity. This procedure ensures the availability of more frequent blood
samples for toxicokinetics, while not influencing the assessment of the toxicity. Two
different sampling schedules were investigated, namely, composite sampling and serial
sampling. For the sake of comparison, the same number of samples was collected in both
cases. For composite sampling, blood was collected from three animals in the satellite group
at predetermined sampling time points, namely, 0.1, 0.4, 1, 1.5, 4, 8, 24 hours after drug

administration on sampling days (see Table 2). The allocation of animals to each sampling
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time point was random within the constraint that all animals was sampled an equal number

of times. Figure 3 shows PK observations from a typical dataset.

Table 2 - Experimental design of satellite groups in a general toxicity study with serial and composite

sampling
Duration Numbers of animals
1 week Toxici.ty: 4 per dose group
Satellite: 3 per dose group
1 month Toxicitty: 10 per dose group
Satellite: 3 per dose group
3 months Toxicity: 12 per dose group

Satellite: 3 per dose group
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Sampling scheme

Toxicity: Composite 2 per animal
Satellite: Serial profiles from Day 1 only

Toxicity: Composite 2 per animal
Satellite: Serial profiles from Day 1 and 28

Toxicity: Composite: Wk 4, wk 13
Satellite: Serial profiles from Day 1, Wk 4,
wk 13.
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Figure 3 — Overview of a simulated dataset for each of the experimental scenarios, in which 3
animals/sampling time point design are assessed. Dots represent simulated concentrations at the
pre-defined sampling times, whereas the solid black line depicts the population predicted profile
after a dose of 30 mg/kg for hypothetical drugs with different pharmacokinetic characteristics.

Exposure calculations: Five different measures of exposure were used for calculation of
exposure, using the predicted concentration profiles obtained from the models used for
simulation. These exposure measures can be seen alongside the formula used for their
calculation in Table 3. The simulations (n = 200 replicates) were performed assuming repeat
dosing for up to six months (three months beyond the treatment duration presented the
investigated studies) in order to evaluate the implications of longer periods of drug

exposure.
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Table 3 - Individual predicted drug concentrations are denoted by C,(t).

Covariate name Model based exposure calculation
24-hour AUC t
[ e

t—24
24-hour Cyax max ({C,(s):t — 24 < s < t})
24-hour time above threshold t

1Cp>threshdt
drug concentration. (TAT) t-24
Predicted 6-month cumulative 6 months

[

AUC 0
Predicted 6-month Cyax max ({Cp(s): 0<s<6 months})

For composite sampling, non-compartmental analysis was used to determine overall drug
exposure, which consisted in averaging the simulated concentrations at each sampling time
point. For serial sampling, drug exposure was calculated for each individual animal and then
averaged over the cohort. In both cases, the arithmetic mean and geometric mean were
calculated. Three different non-compartmental exposure measures were derived, the AUC,
estimated using the linear-logarithmic trapezoidal rule, the Cuax, and the time above
threshold drug concentration, 0.01mg/ml. This value was used based on the assumption

that adverse events were likely to occur above those levels.

Population pharmacokinetic modelling: Drug concentration profiles were fitted to
pharmacokinetic models using first-order conditional estimation method with

interaction, as implemented in NONMEM. Model building steps were limited to the
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same structural models used for the initial simulations under the assumption that
pharmacokinetic properties of the drugs are known at the time toxicology
experiments are performed. Model convergence was determined by successful
minimisation and estimation of the covariance step. Data below the lower
guantification limit (BQL) were omitted to mimic experimental conditions in which
imputation methods are not applied. Estimates for all three measures of exposure
were calculated by using same procedures applied for the reference values obtained

during the initial simulation step (see Table 3) .

Comparison: To ensure accurate estimates of bias and precision of the two
methodologies, the process of simulation and estimation of exposure (using non-
compartmental vs. model-based methods) was repeated 200 times. Bias and
precision were assessed by the relative error, scaled relative mean error (SRME) and

the coefficient of variation (CV) respectively (27):

N .
1 (estimated; — true)

SMRE = — x 100
N ¢ true
=1
N . 2
1 estimated; — mean
CV =— x 100
N |« - mean
=

Results

The use of simulated data for the evaluation of hypothetical scenarios provided clear insight
of the impact of current practices on the accuracy and precision of safety thresholds, and in
particular of the NOAEL. Irrespective of the use of serial or sparse sampling schemes for the
characterisation of the concentration vs. time profiles, model convergence rates were
usually high, with successful completion of the covariate step. An overview of the

convergence rates is presented in Table 4.
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Table 4 — Rates of successful model convergence and successful covariance (parameter precision)
estimation.

Model Successful convergence Successful covariance step
1CMT 99.75 99.75

1CMT + MM 99.75 99.75

2CMT 100 100

To facilitate the comparison of the magnitude of bias and precision, results from modelling
are shown together with the parameter values obtained from non-compartmental analysis
where applicable. Due to the large number of experimental conditions to be summarised,
here we present a brief description of the relative errors obtained in the 3-month protocol,
for AUC, Cmax and TAT. All other experimental conditions, including an overview of the
scaled relative mean error (SRME) and the coefficient of variation (CV) are presented in

tabular format as supplemental material (Table 5).

In Figure 4, the relative errors are presented for the estimates for AUC, Cyax and TAT. The
relative errors were clearly smaller when measures of exposure were derived by modelling,
as compared to the results obtained by non-compartmental analysis. In fact, the accuracy
and precision of model-based estimates for all three measures of exposure were similar
across the different dosing groups and treatment durations. Non-compartmental estimates
of exposure showed significantly higher bias and less precision in all scenarios. The
performance for model-based exposure estimates obtained in the 3-month protocol is

summarised in figure 5.

Our results also reveal the impact of composite versus serial sampling on bias and precision.
For both model-based and NCA methods, the coefficient of variation increased with
composite designs (with 8 animals) compared to serial sampling designs (with 3 animals),

however the increase in precision for NCA method was larger than for model-based
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estimates. It should also be noted that Cyax Was consistently over-estimated by the non-
compartmental method. We also demonstrate that the use of arithmetic and geometric

means for NCA had minor impact in these relatively small groups.

Lastly, it was found that that nonlinearity in pharmacokinetics also has an important effect
on bias and precision when sparse samples and limited number of dose levels are evaluated
experimentally. Model-based estimates in the 1CMT+MM scenario showed increased bias

compared to the 1CMT and 2CMT scenarios.
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Figure 4 — Relative errors of parameter estimates for AUC (A, left panel), Cuax (B, mid panel) and TAT (C, right panel). Data refers only to the 3-month
toxicology protocol design following administration of 30 mg/kg/day of three hypothetical drugs with different pharmacokinetic profiles. Similar results
were found for other cohorts in which 10 and 100 mg/kg/day were evaluated. Dots represent the median, boxes show the 25" and 75" percentiles, and
error bars denote the 5™ and 95™ percentiles. The horizontal line shows the reference level for relative error equal to zero. Composite — composite
sampling; GEOMEAN — geometric mean; MEAN — arithmetic mean; MODEL- nonlinear mixed effects modelling; NCA — non-compartmental analysis and
Serial — serial sampling.
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Figure 5 — Overview of the relative errors of model-based estimators of long-term exposure, as
determined by a 3-month toxicology protocol following administration of 30 mg/kg/day of three
hypothetical drugs with different pharmacokinetic profiles. Similar results were found for other
cohorts in which 10 and 100 mg/kg/day were evaluated. Dots represent the median, boxes show the
25" and 75" percentiles, and error bars denote 1.5 times the interquartile range from the median.

The horizontal line shows the reference level for relative error equal to zero.
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Discussion

In this investigation we have attempted to identify important limitations in existing
methodologies for the analysis of toxicokinetic data. Most importantly, we have illustrated
the feasibility of a model-based approach for the estimation of toxicokinetic profile using a
well-established parameterisation for drug disposition processes. Furthermore, given that
model performance of toxicokinetic data has been previously evaluated (75), we have been
able to focus the performance of measures of exposure that cannot be derived from

empirical approaches, i.e., non-compartmental methods (29).

The chosen models for the hypothetical drugs reflect the likely toxicokinetic profile of many
compounds in general toxicology studies. Taking into account the sampling schemes, the
choice of one- and two-compartment models may apply to the majority compounds
exhibiting linear pharmacokinetics. Moreover, consideration was given to the implications
that high doses may have on drug metabolism and elimination. A pharmacokinetic model
with Michaelis-Menten elimination was also included to ensure accurate characterisation of
dose- and concentration-dependent pharmacokinetics, which is likely to occur for many
compounds at least in one experimental dose level. The results presented here should
therefore be indicative of the most common toxicokinetic profiles and as such we anticipate
the possibility to generalise the lessons learned to a much wider range of drugs, for which

pharmacokinetic parameter values may differ considerably from those presented here.

Parameter precision and bias

As shown in Table 4, the high convergence rates of models and high success rate of
computation of the covariance matrix for the scenarios tested here confirm the feasibility
and reliability of results obtained using nonlinear mixed-effects modelling. Despite
variations in bias and precision parameter precision was consistently high. The model-based
approach performed particular well (CV<10% and SRME < 10% for within study exposure

predictions and SRME < 15% for long term exposure predictions). Such high levels of
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precision may not be required for safe exposure evaluation where between subject
variability in humans is expected to be larger and comparatively large uncertainty factors are
routinely used. This suggest that a model-based approach may enable the reductions to the
numbers of animals and/or samples whilst still providing acceptable parameter precision.
Moreover since optimal design methodologies for model-based analysis are well established,
further refinement of the experimental protocol design is feasible if experimentalists and

statisticians choose nonlinear mixed effects modelling as the primary method of analysis.

On the other hand, the presence of bias in some of the experimental conditions presented
here has clear implications for the so-called safety margin and toxicological cover to be used
as proxy for risk during clinical development, especially for Cyax, Which is consistently over-
estimated. The cause is due to the definition of the NCA-based Cmax, max; Cp(t) being
necessarily greater than or equal to Cp(t = Tyax), Where Tyax represents the time point
which maximises the true concentration-time profile. When the sampling scheme contains
other observations in the region of Tyax there is potential for neighbouring sampling times
to produce higher than predicted concentrations due to natural variability. This is a
fundamental limitation in the methodology in that more samples around Tmax Which
intuitively should increase confidence leads, actually lead to more bias. In other words, with
NCA analysis, precisely estimating Tyax comes at the unavoidable cost of biased estimation
of Cmax. Model based analysis has an additional advantage in this respect. Without model
misspecification issues, maximum likelihood estimates are (asymptotically) unbiased and
have the property of that increased sampling uniformly increases precision. Model
specification issues which is discussed further in the limitations sections. Given that the
residual variability in the scenarios was not large (i.e., fixed at 15%), the bias seen here may

increase with larger residual noise, which may occur in real life.

Data integration

90



In contrast to non-compartmental methods, the data was analysed in an integrated manner,
by combining the results from all experimental cohorts. This is undoubtedly the primary
driver of the increased accuracy and precision in model-based estimates (30-32). In fact, we
envisage further improvement by incorporating pharmacokinetic data from other
experiments in the same species, which are normally collected during preclinical evaluation
of the molecule, as for instance during the characterisation of drug metabolism. Such an
increase in precision would represent further adherence to the reduction, refinement and
replacement principle (3 Rs) in ethical animal studies (4). It should also be noted that the
possibility of data integration provides the basis for combining safety pharmacology and
adverse event data, enabling the development of toxicokinetic-toxicodynamic models and
consequently allowing for the evaluation of exposure-response relationships in a continuous
manner. Such models would represent advancements in toxicology, as they provide the
basis for mechanism-based inferences about unwanted effects, irrespective of their

incidence or occurrence in the actual experimental protocol (4, 35).

It is important to realise that the typical point estimates of parameters derived from
empirical methods to describe drug exposure give an undue measure of certainty, allowing
for the propagation of uncertainty from estimation to uncertainty in safety thresholds such
as NOAEL. Whilst there exist methods for estimating uncertainty in a composite or
destructive sampling approach (76-78), their adoption in experimental research has not
been widespread due in part to the requirement of normality assumptions on toxicokinetic
parameters, and an acceptance in guidelines towards possibly large amounts of imprecision

(79).

As demonstrated here, model-based methods allow simulations to be performed in
conjunction with estimation procedures, enabling the assessment of uncertainty associated
with a variety of causes such as uninformative study design, large variability and/or
unknown covariates. This entails an increase in the quality of the decision-making process

and ultimately in the interpretation of the estimated safety thresholds (39).

91



Given the success of PKPD modelling to aid in drug development (40-42), some attention
must be paid to why the field of toxicology has yet to embrace it. There is sometimes
scepticism of model based approach from a view they require knowing the model in advance
(80). This argumentation is however flawed. The inference principles used for hypothesis
generation and characterisation of PKPD relationships relies on the use of statistical criteria
that are sophisticated enough to allow model identification and its suitability for subsequent
parameter estimation purposes, irrespective of amounts of data available. Moreover, it
should be noted that non-compartmental methods also make implicit assumptions about
the underlying concentration vs. time profile. For instance, with a linear-logarithmic analysis
of AUC, first-order elimination kinetics is assumed. The suitability of measures of central
tendency will also depend on the assumed distribution characteristics and on residual
variability. These assumptions are often implicit and the validity of these assumptions for

the dataset at hand cannot be checked during the analysis.

However, NLME is specifically intended to efficiently process sparse data. The performance

of the NLME-based PK exposure estimates in the composite designs is illustrative of this.

Potential limitations

In the present investigation, the impact of model misspecification in the analysis of general
toxicity data was not investigated. For exposure measures which have a corresponding
estimate based on non-compartmental methods (e.g. AUC and Cuax), the impact is likely to
be small as long as the model fit to the data is good. This is because these exposure
measures are highly dependent on the observations. Therefore, accurate prediction of the
observed profiles during model evaluation is likely to result in accurate prediction of these
exposure variables. Model misspecification however, may lead to significant bias when
exposure predictions are made outside the experimental context (i.e. longer timescales or
different dosing regimens) (44,45) . This is a particular risk when the pharmacokinetics of

the drug is nonlinear or shows metabolic saturation. To mitigate such effects we
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recommend that model selection criteria take into account not only the ability to describe
data, but also the physiological relevance of model assumptions. When model development
ends in multiple competing models performing similarly with respect to the above model
selection criteria, clear reporting of such model uncertainty is necessary. Model averaging
should be discouraged when predictions arising from different model differ significantly
(64). Finally, parameter uncertainty should be incorporated into the predictions of exposure

to ensure accurate evaluation of risk and potential therapeutic window of the compound.

In summary, evaluation of safety is paramount for the progression of new molecules into
humans. Historically, toxicology experiments have evolved based the assumption that
experimental findings suffice to demonstrate the absence of presence of risk. This
assumption disregards growing evidence of bias and poor precision of the derived measures
of exposure, which should be avoided if data are subsequently used to define safety margins
or thresholds. Whilst the challenges R&D faces to translate toxicity findings from animals to
humans may remain, the use of an integrated approach to the analysis and interpretation of
toxicokinetic data will be essential to ensure experimental data is unbiased. Most
importantly, it represent further adherence to the 3Rs principle, enabling significant

reduction in number of animals required for the evaluation of toxicokinetics.
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Appendix

The following tables contain all SRME and CV values for all scenarios, cohorts and analysis methods.

MODEL

1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT

SAMP

SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE

LABEL

24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC

DOSE

10
10
10
30
30
30
100
100
100
10
10
10
30
30
30
100
100
100

WEEK

4
12

[EY

12

[EY

12

[EY

12

[EY

12

[EY

12

SRME% :
MODEL

0.8066
1.403
0.784

0.8066
1.403
0.784

0.8066
1.403
0.784

0.4114

0.6365
1.115

0.4114

0.6365
1.115

0.4114

0.6365
1.115
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CV% :
MODEL

2.787
2.982
2.822
2.787
2.982
2.822
2.787
2.982
2.822
4.651
4.324
4.373
4.651
4.324
4.373
4.651
4.324
4.373

SRME% :
NCA-MEAN

3.993
5.107
3.055
4.565
3.721
3.065
4.615
3.02
4.038
5.245
5.634
3.815
6.231
5.212
3.564
5.29
4.209
4.564

CV%:
NCA-
MEAN

10.74
9.256
9.367
9.472
9.74
9.873
9.845
9.474
9.928
13.41
12.73
13.17
12.56
12.68
13.24
12.85
12.18
12.71

SRME% :
NCA-
GEOMEAN

4.15
4.053
3.948
4.298
4.934
4.258
3.538
3.939
3.59
4.815
3.838
4.564
4.027
4.35
4.632
4.466
3.833
3.903

CV%:
NCA-
GEOMEAN

9.824
10.26
9.826
9.344
10.58
10.48
9.214
8.846
10.71
12.93
13.51
12.98
13.28
12.98
12.19
13.68
13.03
13.63



MODEL

1CMT+MM
1ICMT+MM
1ICMT+MM
1ICMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1ICMT+MM
1ICMT+MM
1ICMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1ICMT+MM
1ICMT+MM
1ICMT+MM
1CMT+MM
1CMT+MM

SAMP

SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE

LABEL

24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC

DOSE

10
10
10
30
30
30
100
100
100
10
10
10
30
30
30
100
100
100

WEEK

12

SRME% :
MODEL

3.454
3.177
3.457
3.165
3.416
3.572
2.993
3.369
3.459
3.176
3.192
3.399
4.214
3.262
3.496
3.868
3.502
3.312
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CV% :
MODEL

3.152
3.255
3.167
3.309
3.281
3.226
3.069
3.37
3.024
4.932
4.768
4.88
5.316
5.196
5.407
5.214
4.82
4.733

SRME% :

NCA-
MEAN

4.042
3.784
4.354
3.883
4.477
3.282
4.03
4.945
3.657
3.502
3.777
3.864
3.68
5.853
3.888
4.33
5.149
3.812

CV% :
NCA-
MEAN

9.245
9.352
9.667
10.35
10.15
11.27
9.883
9.871
9.409
12.07
12.38
13.15
13.83
12.8
13.18
12.11
13.12
12.58

SRME% :
NCA-
GEOMEAN

4.066
5.347
3.889
3.277
3.199
4.358
3.608
3.363
5.191
5.057
4.02
4.442
3.438
4.427
7.559
3.738
2.725
5.262

CV% :
NCA -GEOMEAN

9.429
8.897
9.966
9.953
10.62
9.756
10.66
9.435
9.725
13.09
12.54
12.16
12.73
12.42
13.46
13.41
13.61
12.38



MODEL

2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT

SAMP

SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE

LABEL

24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC
24hr AUC

DOSE

10
10
10
30
30
30
100
100
100
10
10
10
30
30
30
100
100
100

WEEK

SRME% :
MODEL

0.5484
0.8587
0.5528
0.5484
0.8587
0.5528
0.5484
0.8587
0.5528
0.6988
0.8458
0.5273
0.6988
0.8458
0.5273
0.6988
0.8458
0.5273
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CV% :
MODEL

2.819
3.256
2.943
2.819
3.256
2.943
2.819
3.256
2.943
4.286
4.847
4.514
4.286
4.847
4.514
4.286
4.847
4.514

SRME% :
NCA-
MEAN

3.009
4.84
3.429
4.379
3.079
3.966
4.732
2.261
4.047
2.96
5.062
5.177
4.258
3.757
4.381
5.057
3.908
4.586

CV%:
NCA-
MEAN

10.21
10.01
9.583
10.31
10.8
10.32
10.38
9.635
10.43
13.31
12.59
12.45
13.9
12.9
12.81
13.23
14.25
12.94

SRME% :
NCA-
GEOMEAN

4.508
5.346
3.767
3.721
3.865
4.311
3.649
3.11
3.432
4.885
6.413
4.647
4.463
2.889
4.018
3.703
6.301
4.2

CV%:
NCA-
GEOMEAN

9.854
9.577
10.48
9.561
9.479
9.826
10.28
9.859
9.983
13.99
12.44
13.75
12.16
14.08
12.59
13.07
13.07
12.94



MODEL

1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT

SAMP

SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE

LABEL

24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX

DOSE

10
10
10
30
30
30
100
100
100
10
10
10
30
30
30
100
100
100

WEEK

[EY

12

12

[E

12

=

12

[EY

12

12

SRME% :

MODEL

0.7306
0.5798
0.8339
0.7306
0.5798
0.8339
0.7306
0.5798
0.8339
0.6322
0.647
0.3693
0.6322
0.647
0.3693
0.6322
0.647
0.3693

110

CV%:

MODEL

2.899
2.893
3.045
2.899
2.893
3.045
2.899
2.893
3.045
4.557
4.659
4.73
4.557
4.659
4.73
4.557
4.659
4.73

SRME% :
NCA-
MEAN

11.54
10.74
11.58
11.72
10.6
9.94
11.92
11.55
12.1
10.61
9.818
9.869
12.7
12.34
12.21
12.12
11.19
9.968

CV%:
NCA-
MEAN

9.945
9.382
10.51
8.873
9.846
10.25
8.828
10.67
10.27
12.68
12.3
13.41
12.29
12.77
13.67
12
13.89
13.04

SRME% :
NCA-
GEOMEAN

10.8
11.41
10.32
11.42
12.38
11.82
11.23
12.12
11.61
11.85
11.59
10.37
10.56
11.76
13.15

10.8
12.08
11.67

CV%:
NCA-
GEOMEAN

9.747
10.37
9.832
9.831
10.74
10.21
10.8
9.98
9.536
12.11
14.16
13.76
13.33
13.51
13.48
12.03
12.21
12.97



MODEL

1CMT+MM
1ICMT+MM

1ICMT+MM
1CMT+MM
1ICMT+MM
1CMT+MM
1CMT+MM
1ICMT+MM
1CMT+MM
1ICMT+MM
1ICMT+MM
1CMT+MM
1ICMT+MM
1CMT+MM
1CMT+MM
1ICMT+MM
1CMT+MM

SAMP

SERIAL
SERIAL

SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE

LABEL

24hr
24hr

24hr
24hr
24hr
24hr
24hr
24hr
24hr
24hr
24hr
24hr
24hr
24hr
24hr
24hr
24hr

DOSE WEEK
10 4
10 12
30 1
30 4
30 12
100 1
100 4
100 12
10 1
10 4
10 12
30 1
30 4
30 12
100 1
100 4
100 12

SRME% :
MODEL

3.916
1.814

2.997
2.195
2.997
2.539
2.236
3.108
4.193
3.428
3.076
3.89
2.88
4.101
5.108
0.8694
2.504
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CV%:
MODEL

3.461
2.586

2.533
3.013
4.675
2.99
4.535
3.104
3.414
6.017
4.608
4.507
3.301
7.039
3.725
3.595
6.026

SRME% :
NCA-MEAN

7.387
15.26

12.89
11.01
12.79
9.542
13.72
8.219
22.85
13.7
14.43
16.05
17.05
12.73
15.38
10.94
8.776

CV% : NCA-
MEAN

13.15
6.701

9.863
12.71
7.512
6.405
9.105
10.94
17.18
14.06
17.99
12.46
12
17.45
10.59
9.899
13.82

SRME% :
NCA-
GEOMEAN

14.32
11.92

6.667
13.32
11.2
4.643
13.44
16.4
12.08
13.61
13.83
17.38
17.62
14.67
14.11
10.14
13.18

CV%:
NCA-
GEOMEAN

15.12
8.455

7.948
8.925
9.27
10.42
11.59
9.72
13.98
14.29
15.88
18.27
10.72
10.93
16.02
8.477
17.37



MODEL

2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT

SAMP

SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE

LABEL

24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX
24hr CMAX

DOSE

10
10
10
30
30
30
100
100
100
10
10
10
30
30
30
100
100
100

WEEK

0/ .
SRME% : CV%: SRI:IVClEAf) )

MODEL MODEL MEAN
0.7472 3.015 10.9

0.8701 2.938 11.06
0.6139 2.959 11.32
0.7472 3.015 11.35
0.8701 2.938 11.19
0.6139 2.959 11.19
0.7472 3.015 10.86
0.8701 2.938 11.34
0.6139 2.959 10.53
0.9441 4.693 10.16
0.7777 4,718 10.49
0.6393 5.002 11.36
0.9441 4.693 11.82
0.7777 4,718 12.67
0.6393 5.002 11.43
0.9441 4.693 11.76
0.7777 4,718 12.52
0.6393 5.002 10.43

112

CV%:
NCA-
MEAN

10.33
10.1
104

9.376

10.82
9.61

8.862

9.274

10.36
14.9

12.52

14.06

14.28

12.09

13.28

11.98

13.27

13.29

SRME% :
NCA-
GEOMEAN

12.4
11.89
10.68
10.76
10.64
11.63
11.59
10.92
10.95
9.881
11.22
11.31
13.13
12.69
11.23

11.6
12.34
12.31

CV%:
NCA-
GEOMEAN

9.994
9.653
10.7
10.76
9.939
9.976
9.721
9.915
10.01
12.51
12.73
13.68
12.84
12.89
12.88
14.2
11.92
13.51



MODEL

1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT

SAMP

SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE

LABEL

24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT

DOSE

10
10
10
30
30
30
100
100
100
10
10
10
30
30
30
100
100
100

WEEK

SRME% :
MODEL

1.104
0.9731
0.7183

1.104
0.9731
0.7183

1.104
0.9731
0.7183
0.1905

1.022
0.1963
0.1905

1.022
0.1963
0.1905

1.022
0.1963
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CV% :

MODEL

2.855
2.95
2.738
2.855
2.95
2.738
2.855
2.95
2.738
4511
4.251
4.784
4,511
4.251
4.784
4511
4.251
4.784

SRME% :

NCA-MEAN

3.516
3.725
3.945
3.846
3.112
3.944
5.182
4.906
3.106
3.011
4.875
6.422
2.807
6.049
3.696
3.725
4.092
2.898

CV% : NCA-
MEAN

10.72
9.746
9.307
10.61
10.22
10.07
10.92
10.05
10.58
12.53
12.75
12.15
13.83
12.4
11.97
11.97
13.38
13.19

SRME% :
NCA-
GEOMEAN

3.06
4.782
3.261
3.263
4.793
4.197
4.328
3.802
4.077
3.635
5.447
4.639
4.701
2.792
4.605

3.86
5.199
3.727

CV%:
NCA-
GEOMEAN

9.718
9.684
10.24
9.204
10.36
9.843
9.798
10.18
9.474
12.95
12.87
12.27
13.07
13.49
14.31
12.92
13.95
12.68



MODEL

1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM

SAMP

SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE

LABEL

24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT

DOSE

10
10
10
30
30
30
100
100
100
10
10
10
30
30
30
100
100
100

WEEK

SRME% :
MODEL

3.51
3.492
2.956
3.473
3.747
2.577
2.873
3.447
3.263
3.786
3.544
3.001
3.472
3.562
3.763
3.168
3.176
3.286
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CV%:
MODEL

2.891
3.447
3.273
3.036
3.168
3.079
3.179
2.947
3.185
4.678
4.288
4.644
4.949
4.826
5.2
4.877
5.163
5.171

SRME% :
NCA-MEAN

3.178
4.244
3.632
2.326
4.568
3.717
3.713
3.826
3.388
4.308
5.699
4.643
2.865
4.148
5.31
3.489
3.82
3.485

CV%:
NCA-
MEAN

10.52
10.57
10.48
10.07
10.9
9.856
10.02
10.31
10.08
13.54
13.18
13.52
14.24
13.6
13.39
14.78
13.59
13.09

SRME% :
NCA-
GEOMEAN

5.906
4.249
4.573
4.185
3.938
2.89
4.367
4.132
3.888
2.909
4.995
3.367
5.8
2.608
4.779
5.073
5.091
4.549

CV%:
NCA-
GEOMEAN

9.741
10.57
10.21
9.986
10.14
10.71
9.592
9.726
104
11.91
12.28
11.96
12.81
12.83
13.14
11.72
13.09
12.53



MODEL

2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT

SAMP

SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE

LABEL

24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT
24hr TAT

DOSE

10
10
10
30
30
30
100
100
100
10
10
10
30
30
30
100
100
100

WEEK

12

[E

12

[EEN

12

[EY

12

[EEN

12

[E

12

SRME% :
MODEL

0.7214
0.5198
0.7113
0.7214
0.5198
0.7113
0.7214
0.5198
0.7113
0.63
0.9004
1.214
0.63
0.9004
1.214
0.63
0.9004
1.214
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CV%:
MODEL

3.072
2.962
2.8
3.072
2.962
2.8
3.072
2.962
2.8
4.583
4.939
4.747
4.583
4.939
4.747
4.583
4.939
4.747

SRME% :
NCA-MEAN

5.377
4.408
2.965
3.161
3.984
3.268
3.36
5.182
3.436
4.218
4.626
3.387
3.724
5.745
4.28
3.513
4.212
2.435

CV% :
NCA-
MEAN

10.74
10.03
10.73
9.763
9.413
9.713
10.37
9.81
10.14
11.94
14.21
14.45
12.65
12.5
12.28
12.72
11.98
13.04

SRME% :
NCA-
GEOMEAN

4.592
4.979
5.301
3.817
4.117
4.137
4.292
2.393
3.129
3.532
3.189
4.046
4.101
5.615
4.449
5.004
4.553
5.184

CV%:
NCA-
GEOMEAN

10.37
9.128
10.43
9.643
9.773
9.669
10.07
10.03
9.555
13.95
12.9
12.71
12.58
13.23
13.19
11.98
12.29
14.3



MODEL

1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT
1CMT

SAMP

SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE

LABEL

6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
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DOSE

10
10
10
30
30
30
100
100
100
10
10
10
30
30
30
100
100
100
10
10
10
30
30
30
100
100
100
10
10
10
30
30
30
100
100
100

WEEK

1
4
12
1
4
12
1
4
12
1
4
12
1
4
12
1
4
12
1
4
12
1
4
12
1
4
12
1
4
12
1
4
12
1
4
12

SRME% :
MODEL

0.3527
0.4266
0.5896
0.3527
0.4266
0.5896
0.3527
0.4266
0.5896
0.6984
0.7434
0.8577
0.6984
0.7434
0.8577
0.6984
0.7434
0.8577
1.031
0.8082
0.7882
1.031
0.8082
0.7882
1.031
0.8082
0.7882
0.1272
0.808
0.7279
0.1272
0.808
0.7279
0.1272
0.808
0.7279

CV%:
MODEL

2.86
3.159
3.19
2.86
3.159
3.19
2.86
3.159
3.19
2.862
3.223
3.317
2.862
3.223
3.317
2.862
3.223
3.317
4.775
4.768
4.773
4.775
4.768
4.773
4.775
4.768
4.773
4.794
4.862
4.937
4.794
4.862
4.937
4.794
4.862
4.937



MODEL

1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM
1CMT+MM

SAMP

SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE

LABEL

6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
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DOSE

10
10
10
30
30
30
100
100
100
10
10
10
30
30
30
100
100
100
10
10
10
30
30
30
100
100
100
10
10
10
30
30
30
100
100
100

WEEK

1
4
12
1
4
12
1
4
12
1
4
12
1
4
12
1
4
12
1
4
12
1
4
12
1
4
12
1
4
12
1
4
12
1
4
12

SRME% :
MODEL

12.84
12.57
13.02
12.78
13.11
12.6
12.62
13.14
13.02
3.455
3.266
3.178
3.387
3.396
2.9
3.306
3.021
2.919
12.83
13.02
12.93
12.9
13.25
12.7
12.74
12.55
12.34
3.005
3.895
3.81
3.572
3.798
3.044
3.439
3.656
3.076

CV%:
MODEL

2.748
2.88
3.121
3.111
3.019
3.09
3.252
2.978
3.437
3.015
3.138
3.18
3.581
3.254
3.18
3.238
3.041
3.32
5.214
5.138
5.137
5.171
4.735
5.002
5.135
4.757
4913
4.78
4.873
5.018
4.78
5.084
4.721
4.822
5.019
5.491



MODEL

2CMT
2CMT

2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT
2CMT

SAMP

SFRIA|
SERIAL

SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
SERIAL
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE
COMPOSITE

LABEL

6 mth CMAX
6 mth CMAX

6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth CMAX
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
6 mth cum.AUC
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DOSE

10
10

10
30
30
30
100
100
100
10
10
10
30
30
30
100
100
100
10
10
10
30
30
30
100
100
100
10
10
10
30
30
30
100
100
100

WEEK

1
4

12
1
4

12
1
4

12
1
4

12
1
4

12
1
4

12
1
4

12
1
4

12
1
4

12
1
4

12
1
4

12
1
4

12

SRME% :
MODEL
0.A298

1.158
0.6211
0.6298

1.158
0.6211
0.6298

1.158
0.6211
0.3169

0.811
0.6379
0.3169

0.811
0.6379
0.3169

0.811
0.6379

0.611
0.4159
0.8378

0.611
0.4159
0.8378

0.611
0.4159
0.8378
0.9684

1.059
0.6126
0.9684

1.059
0.6126
0.9684

1.059
0.6126

CV% :
MODEL
7 ]03
3.014
3.021
2.803
3.014
3.021
2.803
3.014
3.021
2.891
3.139
2.703
2.891
3.139
2.703
2.891
3.139
2.703
4.481
4.665
4.972
4.481
4.665
4.972
4.481
4.665
4.972
4.76
4.849
4.281
4.76
4.849
4.281
4.76
4.849
4.281
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CHAPTER 4

Application of optimal design concepts to experimental protocols

for the evaluation of toxicokinetics and safety thresholds
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Abstract

Purpose: In toxicology experiments measures of drug exposure are calculated using non-
compartmental methods, despite evidence that population pharmacokinetic (PK) modelling
can provide accurate estimates of the parameters of interest. Here we explore the utility of
optimised protocol design and PK modelling on the precision of exposure measures for a

variety of hypothetical compounds.

Methods: Optimal design concepts were applied to a range of hypothetical drugs with
different pharmacokinetic profiles. Protocol designs were optimised both in terms of
sampling schedule and number of animals per group. The precision of secondary
parameters, namely AUC and Cyax Was used as target for optimization purposes. Adequate
precision levels were defined as expected CV% < 40%. Absolute changes in expected

precision of less than 10% were deemed acceptable.

Results: Independent of differences in drug disposition, our results show that the number of
animals used in experimental protocols can be reduced by 2/3 with acceptable loss of
precision in AUC and Cyax estimates. Even though some PK parameters were found to be
imprecisely estimated when drug disposition involves more than one compartment, this
does not significantly affect the secondary parameters describing systemic exposure, which

showed adequate precision (all CVs <36%).

Conclusions: The accuracy and precision of measures of systemic exposure such as AUC and
Cmax are essential to ensure appropriate interpretation of experimental findings and make
inferences about safety risk in humans. However, our analysis reveals that for composite
methods, which are commonly used in toxicology protocols, sample size does not determine
the precision of the pharmacokinetic parameters of interest. Rather, it is the sampling
scheme and dose levels which matter. In contrast to current practice, precise calculation of
safety thresholds can be obtained with a considerable reduction in the number of animals

used in a typical protocol.
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Introduction

Despite the evidence for important limitations in the assessment of non-clinical safety and
toxicology, experimental protocols and data analysis have not advanced in the same way risk
management concepts have evolved over the last decade (81). Drug exposure remains a
proxy for risk even when other markers of safety and toxicity might be better predictors of
adverse drug reactions (5). In fact, the establishment of safe exposure levels prior to first
time in human studies is still one of the most important milestones in drug development
(6,7). Yet, the reliability of these estimates depends on the quality, accuracy and precision
of the data obtained from preclinical toxicology experiments. Even though statistical
considerations are described in current guidelines, these methodological aspects appear to

remain beyond the scope of the scientific debate on the relevance of safety thresholds.

Undoubtedly, prediction of safety thresholds is fraught with various challenges from a
scientific, statistical and practical perspective. As shown in Table 1, strengths and
weaknesses exist for the different methods currently used for the assessment of safe
exposure, whether based on thresholds or not (8). These challenges are often compounded
by the restrictive nature of regulatory guidelines for the evaluation of safety pharmacology
and toxicity. Typically, experimental protocols for general toxicity used for defining safe
exposure ranges in dose escalation (i.e., first-time-in-humans) studies rely on sparse
sampling of pharmacokinetic data and other relevant safety measures. Samples are
collected according to a pre-defined sampling matrix with a fixed number of animals per
time point. Measures of drug exposure are then derived by naive pooling of the data to
generate using composite parameters such as AUC and Cyax. Subsequently, these
parameters are used to establish the no-adverse-event-level (NOAEL), which determines the

maximum allowed exposure during dose escalation in clinical trials (82).
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Table 1 Safety thresholds and prediction of risk in humans. Reprinted with permission from Edler et

Limitations and Weakness

Assumes that structure predicts toxicity

Depends on current exposure estimates
for the population

Assumes the existence of a threshold
The NOAEL does not exclude biologically
significant effects below the sensitivity
of the test

The value of the NOAEL depends on
experimental conditions such as group
size, sensitivity of measurement of the
adverse effect, and dose spacing.

Does not make full use of the dose-
response information

Uses default UFs

Depends on the validity of the
subdivision of the 10-fold factors

Is a data intensive method

Linear extrapolation is thought to be
highly conservative.

LMS cannot be validated as a model for
low doses and extrapolation is model
dependent

Differing balances between reactivity
and repair between low and high doses
are not accommodated.

al. (7).
Strengths
* Avoids unnecessary animal testing
SAR and TTC
* |ssimple to apply and readily
understood
Threshold
* Chemical specific data can be
CSAF .
. incorporated to reduce
modelling )
uncertainty
* Linear extrapolation is simple to
apply
Non-
threshold
* Makes full use of the dose-
response data
* Allows confidence limits for point
BMD estimates

* An optimal experimental design
may allow reduction of the
number of animals tested (does
not require a large number of

123

Obtaining  consensus  defining a
benchmark response level for the
adverse effect (e.g. 5 or 10%) is difficult
Is not applicable to studies with few
dose groups



animals per group)

Probabilistic
RA

Uncertainties associated with all
aspects of the quantitative
methods of the RA process can be
taken into account

Appropriate chemical specific
information can be incorporated
to reduce uncertainty

Provides effect estimates at actual
exposure levels

* Requires use of default distributions in
most cases

Categorical
regression

Takes all studies into account and
not only the most sensitive one
Allows the prediction of a severity
effect category at a particular
dose (e.g. above ADI)

* Requires toxicological judgement for the
categorisation.

e The interpretation of fitted model
(different endpoints, observer variation
etc.) is difficult

PBTK

Is able to model the time course
of the amount of the active
compound at the target site

Is possible for any species and for
different exposure (e.g. route to
route extrapolation) and lifetime
conditions

Allows extrapolation from animal
to human without having to have
human exposure data

Allows target organ dose-
response relationships to be used
for low-dose extrapolation
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* |s a data intensive method

* Does not address the dynamics




Given the importance to explore pharmacologically relevant exposure levels in humans, it
should be clear that the accuracy of such estimates can become a critical factor during the
dose escalation. To date, current guidelines do not describe the implications of variability or
bias in these estimates. Yet, the NOAEL is often presented as point estimates to describe the
population (22). This ignores variability which can be decomposed into two parts; variability
associated with estimation methods and biological variation in pharmacokinetics which
arises from inter- and intra-individual differences. Most importantly the exposure estimates
from composite measures such as AUC do not allow accurate inferences about the

underlying pharmacokinetic processes and individual concentration-effect relationships.

In a previous investigation we have shown that lack of precision exists in exposure
estimates derived from the empirical methods currently used for the estimation of
toxicokinetic (Sahota et al, unpublished results). One of the main problems is that drug
exposure levels observed in satellite animals do not necessarily mirror those assigned to the
primary treatment group, in which safety pharmacology and toxicity are evaluated.
Evidence form long-standing pharmacokinetic research in pre-clinical species clearly shows
that such an approach ignores important differences that may exist between the two
experimental groups (11, 12). It is equivalent to assuming that all animals have the same
exposure and variability in exposure, i.e., that the underlying physiological processes do not
vary between animals. By contrast, the use of a model-based approach enables one to
incorporate prior knowledge and additional data from other experiments into the analysis,
providing accurate estimates of between- and within-subject variability. This information is
essential to ensure a more quantitative, unbiased evaluation of safety pharmacology and

toxicology findings.

Arguably, one should not consider only the implications of the statistical method for the
analysis and interpretation of safety thresholds, but also question whether experimental

protocols are informative enough to allow accurate estimation of the parameters of interest.

In this context, there has been an increase in the awareness about the relevance of

optimality concepts for the optimisation and selection of suitable protocol designs for the
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evaluation of pharmacokinetic data in conjunction with non-linear mixed-effects modelling.
The statistical method was first proposed by Fedorov and later adopted into the PKPD field
(83). The approach enables the prospective prediction of parameter precision in the
protocol development phase using the expected fisher information matrix (FIM). Variations
or adaptations to the original methods have been introduced, which have enable further use
of optimality concepts in experimental protocols involving different types of continuous,
repeated measurements (84,85). In addition to enhancing the informative value of
experimental protocols, the use of optimal design has proven to be an opportunity for
reduction in total sample size and consequently in the number of animals required for an
experiment (86). Of particular relevance for the evaluation of safety protocols is the
possibility of building robust designs to prior uncertainty in pharmacokinetic parameters.
Model uncertainty can be explored via sensitivity analysis or by of applying ED-optimality

which assumes a prior distribution around the parameters of interest (87).

In the current investigation, simulations are used to illustrate how a model-based approach
can be implemented in conjunction with D-optimality software to improve the design of
protocols for safety pharmacology and toxicology experiments. It can be anticipated that
improved parameter precision and accuracy will allow appropriate dose escalation with less
uncertainty about the safety thresholds (20). In fact, our analysis includes an evaluation of
the sensitivity to model and parameter uncertainty (21). Furthermore, we also show how to
account for the principle of the 3 Rs to ensure that the optimisation procedures do not

represent an additional burden to animals required for the experiments (4).

Methods

Currently available software programs have two major limitations for optimising general
toxicity protocols. The first is that optimisation is performed with respect to primary model

parameters (e.g. CL, Vd). This is restrictive because measures of interest in toxicology are
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secondary parameters such AUC and Cyax. For instance, for AUC estimation, the precision of
KA is of little importance. Similarly, for most drugs, precise estimation of Cyax will not
depend on the precision of CL and peripheral compartment parameters. An optimisation
routine that optimises over all parameters may not be suitable either. Ideally, it would be
useful to reparameterise the model so that derived measures of exposure are treated as
optimisation variables, but this is not always possible as there may be no closed form

solution relating primary and secondary model parameters.

The second problem arises from the tendency of software to only provide optimal solutions.
In practice there are many other factors to consider (e.g. logistical, ethical, financial, and/or
minimal false positive rate) which can be difficult to account for within the optimisation
options in a software program. For example, there may be suboptimal designs (in terms of
expected parameter precision) that are much more cost effective or ethical. It is therefore
important to be able to explore the space of candidate study designs achieving a desired

level of precision.

To address the aforementioned problems we proposed to use a simulation-re-estimation
approach to study design. However, this is computationally intensive and can quickly
become unfeasible when applied to variety of candidate designs and proposal models. For
this reason, here we employ a hybrid approach where candidate designs are evaluated in
PopED v. 2.10 (University of Uppsala, Sweden) and then expected primary parameter
(co)variances are converted to secondary parameter variances using traditional PKPD
simulation procedures, as implemented in NONMEM v.6.2 (ICON Development Solutions.

Hanover, Maryland).

The studies under consideration were a one week, one month, and three-month general
toxicology protocol, in which toxicokinetic data for three different hypothetical drugs were
evaluated. Given the pre-defined pharmacokinetic parameters used in the simulations, the
true exposure for each individual animal was computed using a variety of measures which
were subsequently set as reference for further assessment of the no adverse effect level

(NOAEL).
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Finally, it should be noted that one of the main issues with the estimation of the NOAEL is
that it is limited to the computed exposure at one of the pre-specified experimental doses
(22). Consequently, the estimated exposure at any one of the dose levels is a candidate
threshold depending on the observed adverse events. To overcome this limitation, the
assessment of experimental designs was primarily based on the estimates from secondary
parameters (AUC and Cwax) across all treatment groups. In addition, our design space was
limited to sampling schedule and number of animals per group to ensure that the NOAEL
estimates could be obtained both by NCA and non-linear mixed effects methods. In fact,
only experimental designs which allowed for the analysis of the data according to both

methods were evaluated.

Given that in typical experimental protocols, three animals are sampled per time point for
toxicokinetic analysis, alternative candidate designs were aimed at reducing total sample
size, including two or even one animal per sampling time point. These alternative designs
represent therefore a reduction in the total number of samples and in the number of
animals required per study. Details of the experimental protocols, pharmacokinetic models

and optimisation procedures are described in details in the next paragraphs.

Experimental protocols: Three hypothetical drugs were considered to account for differences
in disposition properties. We assumed the availability of prior information in the form of
single dose pharmacokinetic experiments performed across a range of doses with putative
pharmacological activity (1, 3, and 10 mg/kg), in which 8 animals were tested per cohort.
The toxicology protocol design was based on an initial set-up commonly used for chronic
toxicity evaluation. Four treatment groups (N= 8 per group) receiving oral daily doses of
vehicle, 10, 30, and 100 mg/kg/day were tested throughout this set of virtual experiments,
which lasted either one week, one month or three months. Satellite groups with 3
animals/time point were used to mimic the dosing conditions in the animals used for the
assessment of toxicity (see Figure 1 for a simulation of typical satellite group data). This
procedure ensures the availability of more frequent blood samples for toxicokinetics. Blood

sampling scheme included four occasions based on feasibility, namely days 1, 8, 25, and 89.
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Sampling times on those days were determined by ED-optimality. For the purposes of
optimisation, we assumed that all three hypothetical drugs could be fitted by a one-
compartment model (model Al) and assumed a 50% CV on all parameters. This was
intended to represent standard use of ED-optimality for the optimisation of sampling times.

Sampling times were rounded to the nearest 15 minutes.

Pharmacokinetic models: To ensure accurate evaluation of the impact that differences in
drug disposition may have on the requirements for experimental design optimisation, three
different scenarios were considered in which hypothetical drugs showing on a one-
compartment pharmacokinetics with linear and nonlinear (Michaelis-Menten) elimination as
well as a two-compartment pharmacokinetics were tested. Parameter values for each
scenario are shown in Table 2. In all scenarios, residual variability was assumed to be 15%.
Moreover, for the purposes of this exercise, we have assumed a homogeneous population,

avoiding the need to explore covariate relationships in any of the models.

Optimisation criteria: See the appendix for background information on the optimality
concepts used in this investigation. ED-optimality can be used to incorporate parameter
uncertainty into the optimisation process. However, ED optimality only provides an
assessment of expected parameter precision and provides no basis for exploration of
suboptimal, yet sufficient designs, i.e. reduced designs. Therefore, our decision to use the
expected FIM explicitly for the prediction of parameter precision is motivated by a need to
have a fast, reliable and flexible method to assess and optimise experimental designs for a
model-based analysis whilst adhering to the principle of the 3 Rs. The expected FIM
provides a close approximation of expected parameter uncertainty (23,24). In addition, we
have favoured the practice of explicitly running the optimisation at different perturbations in
model parameters (Table 3). Model parameters were changed in the three PK models tested
(one compartment with linear and nonlinear elimination and two compartments), yielding to

a total of 27 different models. These models are labelled A1...9, B1....9 and C1....9.
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Figure 1: Plots of simulated data for scenarios Al, B1, and C1 overlaid with population prediction
(black line). Top panel shows 10mg/kg dosing group using the 3 samples per time point. Bottom
panel shows pharmacokinetic profiles at the lower dose level (1 mg/kg) with 8 animals per cohort.
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Table 2: Parameters and corresponding between-subject variability used to characterise the
pharmacokinetic profiles of hypothetical compounds showing one-compartment, two-compartment
and Michaelis-Menten disposition in rats. Doses were defined according to a general toxicology
protocol design. Ke: first order rate constant of elimination, Ka: first order rate constant of
absorption V: volume of distribution, Ki,: hybrid constant, K,;: hybrid constant; Vmax: maximum
metabolic rate ; Km: Michaelis-Menten constant (substrate concentration corresponding to 0.5 V)

MODEL A:
Parameter Value BSV (%)
CL (ml/h) 10 20
Ka (h-1) 14.82 50
V (mL) 49 16
MODEL B:
Parameter Value BSV (%)
CL (ml/h) 10 20
Ka (h-1) 14.82 50
V (mL) 49 16
K12(h-1) 2.17 16
K21(h-1) 3.554 69
MODEL C:
Parameter Value BSV (%)
Vmax (mg/h) 0.3 20
Ka (h-1) 14.82 50
V (mL) 49 16
Km(mg/L) 30 0 FIX
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Table 3: Perturbations in the parameters for the three different pharmacokinetic models. CL: clearance, Ka: first order rate constant of absorption V: volume
of distribution, Vmax: maximum metabolic rate.

Model KA \" CL Model KA \" CL Model KA \" VMAX
Al - - - B1 - - - Cc1 - - -
A2 - +50% +50% B2 - +50% +50% Cc2 - +50% +50%
A3 - +50% -50% B3 - +50% -50% C3 - +50% -50%
A4 - -50% +50% B4 - -50% +50% c4 - -50% +50%
A5 - -50% -50% B5 - -50% -50% C5 - -50% -50%
A6 -80% +50% +50% B6 -80% +50% +50% cé6 -80% +50% +50%
A7 -80% +50% -50% B7 -80% +50% -50% c7 -80% +50% -50%
A8 -80% -50% +50% B8 -80% -50% +50% Cc8 -80% -50% +50%
A9 -80% -50% -50% B9 -80% -50% -50% 9 -80% -50% -50%
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All evaluations were performed in PopED v.2.10 (University of Uppsala, Sweden) (88), a
software developed in O-Matrix® (Harmonic Software Inc., Seattle, WA, USA). Data
manipulation and statistical and graphical summaries were performed in R 2.10.0 (26). In
our analysis, the expected FIM was used to compute the expected covariance matrix from
which, the expected precision of primary pharmacokinetic parameters was quantified

(89,90).

The expected precision of the derived parameters of interest, namely AUC and Cyax, Were
calculated from the expected covariance matrix of primary parameters in NONMEM 6.2
(ICON Development Solutions. Hanover, Maryland) (27). First, 1000 pharmacokinetic
profiles were simulated from the primary parameters uncertainty distributions by including
the covariance information in the SPRIOR subroutine. For each pharmacokinetic profile, the

AUC and Cyax were calculated as follows:
t
AUC= [~ Cydt
Cmax = max ({Cp(s): t—24<s< t})
where individual predicted drug concentrations are denoted by Cp(t).

The expected precision (standard error) of the parameters was then summarised. Adequate
precision was defined as expected CV% < 40%. Absolute changes in expected precision of

less than 10% were deemed biologically irrelevant.

Results

Our analysis shows that optimal design concepts can be used in toxicology research to
improve the precision of the parameters of interest whilst allowing for a reduction in the

total number of animals required per experiment. As shown in figure 1, plots of the
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simulated profiles for a typical individual together with simulated samples, representing
“observed” data are depicted to illustrate the impact of different disposition characteristics

on the concentration vs. time profiles.

The optimised sampling times for all scenarios were 0.25, 0.5,0.75, 1, 1.5, 2, 8 and 24 hours
after dosing. Results show that for all designs the precision of AUC and Cyax associated with
a reduced sample size of 2/3 from the initial sample size resulted in an acceptable loss of
precision (the absolute difference in expected precision was <10% for all scenarios for
sample size reduction of 2/3). Therefore, optimised protocols result in a reduction of up to

2/3 in the number of animals utilised in toxicokinetic experiments.

An overview of the point estimates and coefficient of variation (CV%) obtained for AUC and
Cwmax is presented in Table 5. The differences in parameter precision associated with varying
sample size, including the NOAEL, is summarised for each model in Figures 2, 3 and 4). We
show how precision changes when one or two animals are sampled at each time point
instead of using 3 animals per sampling time point. Interestingly, the expected precision was
very high for the one-compartmental model but there was less precision for the two-
compartmental model, where a distribution phase is evident. In addition, our analysis
reveals that metabolic saturation, as described by Michaelis-Menten kinetics does not
further affect the precision of parameter estimates. Further assessment of the precision of
the primary parameters indicates that the parameters governing peripheral compartment
distribution will be the least precisely estimated, with a loss of precision as high as 75% for
some parameter perturbations. Between-subject variability was also found to be
imprecisely estimated and would have to be fixed to 0 for some parameters during data
analysis. Yet, despite these differences, AUC and Cyax imprecision was <36% for the two-

compartmental models.
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Discussion

Experimental protocols based on repeated-dose treatment arms are essential for accurate
inferences about the risk associated with the exposure to new chemical entities in the early
phase of clinical development. These studies provide the basis for the calculation of safety
thresholds such as the no-observed-adverse-effect level (NOAEL) or lowest-observed-
adverse-effect level (LOAEL), which are used to extrapolate the concentration or exposure

above which adverse effects can be expected in humans (82,91).

Despite the efforts and attention given to different methodologies for the estimation of such
safety thresholds, it is now acknowledged that the use of NOAEL or LOAEL as traditional
thresholds or point of departure for risk assessment has significant limitations. The NOAEL
and LOAEL are determined by the selected dose levels and intervals used in an experimental

protocol.

To date, these measures remain a requirement for regulatory purposes (2). However, there
is a wide consensus that they do not mathematically relate to the underlying exposure-
response curve (92). In addition, it has been shown that differences in protocol design can
influence the precision and accuracy of the parameters of interest, yielding biased NOAEL
and LOAEL estimates. In fact, the bench mark dose (BMD) as the threshold or point of
departure has been proposed as an alternative method to avoid many of these pitfalls (41).
Unfortunately, similar challenges exist with regard to the accuracy and precision of
estimates obtained by the BMD (18,93). The experimental data are not integrated nor
parameterised in a mechanistic manner so as to benefit from the advantages of a model-

based approach.

Whilst risk assessment methods need undoubtedly to incorporate mechanistic aspects of
drug action to ensure better characterisation of potential hazards to humans, it should be
noted that improvements are also required from a statistical perspective. Thus far

empiricism and regulatory-related issues have dominated traditional toxicological testing
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paradigms (32-35). Minimal efforts have been made to introduce optimality concepts in
experimental design as a means to increase accuracy and precision of the parameters of

interest.

In this investigation we have attempted to show the feasibility of implementing a model-
based approach in conjunction with optimal design based on techniques, which have been
developed for the field of pharmacokinetics for more than two decades ago (13,36,37). By
considering a number of hypothetical scenarios in which drugs with different disposition
properties were simulated, we have demonstrated that accurate estimates of AUC and Cyax
can be obtained for drugs showing different pharmacokinetic profiles. Our results also
highlight the impact of optimisation procedures on the estimation of secondary parameters.
We have shown that even when precision of the primary pharmacokinetic parameter is
poor, as in the case of parameters governing distribution into peripheral compartments, the
precision of the secondary parameters remains unaffected. This can be attributed to the
fact that the selected candidate designs systematically yield estimates of clearance and
volume of distribution with acceptable precision. These two parameters ultimately

determine systemic exposure and peak concentrations, respectively.

Although it may seem a disadvantage to use model-dependent estimates for the assessment
of safety thresholds, this approach presents various important advantages (38-39). First, it is
unbiased and predictive, allowing for the incorporation of the physiological factors
underlying the pharmacokinetic properties of the drug under investigation. Moreover, it
enables ne to integrate prior information, including data from other experiments. We
anticipate that many areas in toxicology research which can benefit from such an approach.
New methodology does not necessarily mean that human safety will be placed at risk. On
the contrary, newer methods provide an opportunity to remove much of the guess work
involved with older methodologies, which rely on assumptions which clearly prevent the
uptake of evolving knowledge about pharmacokinetic and pharmacodynamic properties of a

drug.
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Methodological aspects

In assessing and optimising the protocol we found that existing routines in optimality
software were insufficient to meet our assessment criteria. In particular, existing software
did not enable the assessment and optimisation over arbitrary secondary parameters, and
did not allow for the impact of parameter perturbations on expected precision to be
assessed. The alternative brute force approach to account for these limitations would have
been to perform multiple simulation-re-estimation procedures across our design and model
space. However, this would have involved extensive computation times. Our approach
instead consisted of FIM evaluations followed by calculation of the expected secondary
parameter precision. This exercise ultimately showed that optimisation can be performed
on secondary parameters of interest, and minimally sufficient designs can be obtained. Both
of these procedures are computationally inexpensive. Our approach therefore enables
exploration of large design and model spaces without the aforementioned limitations in

current optimality software.

Limitations

Our work does involve a number of assumptions, which may represent potential theoretical
and practical limitations. First, it should be noted that we have constrained ourselves to
candidate designs that enable estimation of exposure using non-compartmental methods for
each treatment group. Further gains in terms of reduced burden and/or parameter
precision are likely to be achieved if a model-based analysis was the only intended analysis

of the data.

Another requirement is the availability of a well-defined population pharmacokinetic model,
which is feasible, but in practice not used in routine pre-clinical research. It should be clear
that the computation of expected (co)variance by means of the FIM, cannot directly account
for the possibility of unidentifiably of parameters. Hence, the validity of any optimisation
procedures implies accurate knowledge of the pharmacokinetic properties and

corresponding parameterisation. Parameter unidentifiability will likely manifest in terms of
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large standard errors, high correlations in the correlations and/or large differences in
eigenvalues. On the other hand, optimal design does tackle another common issue
observed during data fitting and parameter estimation, i.e., numerical unidentifiability,

which may be caused by poor experimental design.

An additional assumption is that parameter estimates will be unbiased. This assumption may
not hold true for more complex models, but the reader should be aware that this issue may
be equally important when non-compartmental methods are used to describe complex
pharmacokinetic profiles, as for instance in the case of metabolic inhibition or drugs with
long elimination half-life (40). To ensure further characterisation of bias, a full bootstrap
(simulation-re-estimation) procedure is recommended. Lastly, one should realise the
implications of our own objectives, i.e., to compare designs which are suitable for both non-
compartmental and model-based methods. Further gains in terms of reduced burden
and/or parameter precision are likely to be achieved if a model-based analysis was the only

intended analysis of the data.

In summary, it can be concluded that despite the biological debate about the relevance of
safety thresholds, the accuracy and precision of estimates are essential to ensure
appropriate interpretation of experimental findings and make inferences about risk in
humans. We have shown that the use of a model-based approach is critical for appropriate
data integration and informative value of experimental protocols. Our work also
demonstrates that population size is not the critical variable when evaluating precision and
accuracy of the parameters of interest. This feature allows for comparable results to be
obtained with considerable lower number of animals and consequently reduction in the cost
of experiments. Overall, these results make the need to explore the requirements for
further implementation of optimal design in toxicology research an ethical and scientific

imperative.
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Appendix

In an optimal design exercise, design variables are variables that describe properties of the
biological system, drug or experimental protocol which can be changed to explore their
impact on the information contents of the experiment. Typically these include dose,
sampling scheme, number of samples, number of individuals or other covariates (94). Even
though the number of animals is constrained (88), the main use of this technique is to
optimise sampling times. It has been shown that sample times can have significant influence
in the accuracy and precision of parameters (95,96). By optimising sampling times it is

possible therefore to improve the overall efficiency of PK experiments (96,97).

Here we summarise the statistical framework for the evaluation and optimisation of
experimental designs using D-optimality. There are various software programs for optimal
design, making them equally suitable for the purposes of this type of analysis. They differ

primarily in the features available for optimisation and in the optimisation method.

Statistical summary
There are various numerical methods to fit a model to data. The mostly commonly used is
the maximum likelihood (ML) estimator. The maximum likelihood is calculated by

maximising the following likelihood function (L):

L) = p(DI6)

where 0O is the vector of parameters, D is the data. The results of a maximum likelihood
estimation are 8, the maximum likelihood estimate and cov(d), the covariance matrix
determining the parameter precision. The information contents within the study data, D is
what determines cov(8). Prior to running the experiment, assuming the availability of a
model, it is possible to compute an expected covariance matrix by the use of the Cramer-Rao

inequality:
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cov(8) = m

where the Fisher Information Matrix (FIM) is given by

0) = g aTa 0
FIM(D) =E %L() a—HL()

Although this function constrains the lower bound of cov(d), in practice such a lower bound
is reached as indicated by comparisons with bootstrapped expected covariance estimates
(98,99). Thus, by computing the FIM of a given design, under the assumption of no or minor
model and parameter misspecification, one can estimate the covariance matrix and
consequently assess parameter precision values. By maximising the determinant of the FIM
over design variables, such, as for instance the sampling schedule, it is possible to identify

experimental conditions or design(s) that maximise the expected parameter precision.
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Abstract

Purpose: Toxicology assessment relies on the evidence of a direct relationship between
observed systemic exposure and adverse events. This empirical approach prevents the
identification and the use of suitable biomarkers associated with the underlying
pharmacodynamic processes, which ultimately determine delayed toxicity. The objective of
this investigation was therefore to explore the feasibility of applying a model-based
approach to characterise the PKPD correlations and the time course of biomarker responses

associated with long-term safety as compared to standard non-compartmental methods.

Methods: A hypothetical toxicology protocol was designed by simulating the
pharmacokinetics and pharmacodynamics (biomarkers responses) of four different drugs,
each with a different mechanism of delayed toxicity. The mechanisms of delayed toxicity
were: i) indirect response mechanism, ii) indirect response mechanism preceded by
biophase equilibration, iii) cumulative effects of chronic dosing and iv) formation of a toxic
metabolite. In the simulations data were sampled according to standard experimental
designs. Data for each drug were then analysed using non-compartmental methods and by
nonlinear mixed effects modelling, as implemented in NONMEM v7.1. Given the often
unknown mechanism of toxicity, a variety of models was evaluated to explore model
misspecification. Finally, bias and precision of parameter estimates were compared for each

method.

Results: The true underlying model was often unidentifiable. However, model
approximations were identified for each scenario with satisfactory performance. NCA-
derived estimates showed more bias and less precision for all methods in all scenarios. The

relative errors were smaller for parameter estimates obtained by data fitting.

Conclusions: Integration of toxicokinetic and biomarker data is essential for the evaluation
of long-term safety and toxicity. Despite issues due experimental protocol design, the use of
a model-based approach enables the assessment of putative mechanisms of toxicity.
Traditional techniques, such as non-compartmental methods are unsuitable for the

characterisation of long term, delayed effects.
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Introduction

Understanding of toxicokinetics during the evaluation of safety pharmacology and
nonclinical toxicity has been considered essential for accurate prediction of safety thresholds
for a new chemical or biological entity (1,2) (Figure 1). Increasingly, however, it has become
evident that characterisation of the relationship between drug exposure, target engagement
(i.e., activation or inhibition) and downstream biological effects associated with a given
physiological pathway can provide further insight into the mechanisms underlying both
expected and ‘unexpected’ toxicity. In fact, several novel toxicity biomarkers have emerged
as sensitive tools for detection, monitoring, quantification and prediction of organ toxicity
(3-5) (Figure 2). In addition, the use of a more mechanism-based approach for the
evaluation of drug effects has allowed better interpretation of time-dependencies, which are

often observed following chronic exposure to a drug (e.g., delayed toxicity) (6).

Whilst the availability of tissue-specific data can provide valuable information for decision
making during toxicological assessment (7), empirical safety thresholds based on systemic
drug exposure continue to prevail as the mainstream approach for assessing the safety
profile of new chemical entities, preventing wider use of biomarkers and potential
translation of pharmacological properties of a molecule from animals to man (8,9). These
hurdles are perpetuated by the existing view or notion that experimental data represent the
basis for characterising phenomena arising from causes that are unknown or uncertain, as is

often the case in early drug development.

Thus far, little attention has been given to the possibility of evaluating toxicity using a
mechanism-based approach whereby adverse events are assessed from a pharmacological
perspective. Such an approach would allow information from putative biomarkers to be
integrated with pharmacokinetic data to support inferences about observed and unobserved
adverse events (10-12). In addition, the use of modelling and simulation would provide the
opportunity to predict sub chronic and chronic safe exposure range in humans from

preclinical experiments as well as investigate short and long term treatment effects.

150



Drug Discovery (Exploratory Research)
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Figure 1 TK toxicokinetic studies in drug-development process. IND; investigational new drug
application, NDA; new drug application. Reprinted with permission from Toxicology Letters 102-103,
pages: 657-664 (1998)
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One of the problems non-clinical scientists face when considering the implementation of
alternative methodologies is, however, the fact that pre-clinical toxicity studies are not
designed for the assessment of concentration-effect relationships, i.e., they are aimed
primarily at establishing a safety threshold (e.g., NOAEL) (13, 14). A common justification for
current experimental protocol designs is often the complexity and limited understanding of
the biological processes involved on one hand and the challenges to obtain regulatory
acceptance of an alternative method on the other (15). This is further compounded by the
shortcomings of non-compartmental data analysis methods, which are currently
recommended for estimating and summarising measures of exposure such area under the
concentration vs. time curve (AUC) or peak concentrations (Cyax). These methods cannot be
easily adapted to account for nonlinearities in the time course of drug effects, nor allow for
extrapolation or interpolation procedures. Such limitations pose important questions about
the rationale and relevance of such experiments for the translation of findings across species
and accurate inferences about the risk associated with the proposed treatment or

intervention in humans.

In the current investigation we explore the feasibility of using a model-based approach to
describe time-dependent pharmacokinetic-pharmacodynamic relationships and incorporate
biomarkers as a proxy of drug exposure in general toxicity studies. In addition, we show how
the accuracy and precision of experimental parameters compare when analysing data based
on nonlinear mixed effects modelling instead of the traditional non-compartmental
methods. We illustrate the concepts using simulations in which hypothetical drugs with
different pharmacological properties are tested in a variety of scenarios. For the sake of
simplicity, in all scenarios the biomarker is assumed to be inhibited by the active treatment.
Although a myriad of pathological mechanisms may exist, our scenarios are limited to a few
examples, including biophase equilibration, (re)active metabolite formation, irreversible
binding and indirect response mechanisms, which can be easily expanded or generalised,
enabling accurate inferences about known causes of nonlinearity and time-dependencies

regarding the onset, maintenance and waning of unwanted drug effects.
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Methods

A model-based approach was used to generate drug exposure and safety biomarker data for
five hypothetical drugs. Experimental protocols were defined according to current
guidelines for the evaluation of toxicity and safety pharmacology with the exception of
additional safety biomarker data collected in parallel to the scheduled pharmacokinetic
sampling points. All simulations and fitting procedures described below were performed in
NONMEM 7.1 (ICON Development Solutions. Hanover, Maryland) (16). Data manipulation

and statistical and graphical summaries were performed in R 3.0.0 (17).

For the purposes of our investigation, pharmacokinetic and pharmacodynamic parameters
were considered to accurately reflect the risk of adverse events and toxicity. Whilst all drugs
were assumed to have the same pharmacokinetic characteristics, different scenarios were
used to explore five toxicodynamic mechanisms leading to biomarker inhibition. No
covariate relationships were included in any of the models to facilitate the interpretation
and comparison of the results. Data was subsequently analysed using standard non-
compartmental methods and by nonlinear mixed effects modelling. The estimates obtained
from these virtual experiments were then compared to the true values used initially to allow
the assessment of bias and precision. Methods regarding the simulation and reanalysis of
the PK data can be found in Chapter 3 of this thesis, in which the feasibility of PK modelling

in general toxicity study is evaluated (18).

Experimental design: The protocol design used for each of the hypothetical drugs was based
on an initial set-up commonly used for chronic toxicity evaluation. Four treatment groups
(N= 8 per group) receiving oral daily doses of vehicle, 10, 30, and 100 mg/kg/day were tested
throughout this set of virtual experiments, which lasted either one week, one month or
three months. Satellite groups with 24 animals each were used to mimic the dosing

conditions in the animals used for the assessment of toxicity. This procedure ensures the
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availability of more frequent blood samples for toxicokinetics. The sampling schedule
investigated was composite sampling where blood was collected from three animals in the
satellite group at predetermined sampling time points, namely 0.1, 0.4, 1, 1.5, 4, 8, 24 hours
after dosing. It was assumed that sufficient blood could be collected for plasma drug
concentration and biomarker measurements. The allocation of animals to each sampling
time point was random within the constraint that all animals must be sampled an equal
number of times. An overview of the experimental conditions is summarised in Table 1.

Table 1: Experimental design of treatment and satellite groups in a general toxicity study with serial

and composite sampling of blood for the evaluation of drug concentrations and biomarker levels in
plasma.

No. of
Sampling animals

Duration approach per dose Sampling scheme Sampling time
group
1 week Composite: 8 3 per animal. 3 per time point 0.1,04,1,1.5,
4,8, 24 hours

Serial: 3 Serial profiles from Day 1 only after dose
Composite: 8 3 per animal. 3 per time point 0.1,04,1,1.5,

1 month 4, 8, 24 hours
Serial: 3 Serial profiles from Day 1 and 12 after dose
Composite: 8 3 per animal. 3 per time point 0.1,04,1,1.5,

3 month 4, 8, 24 hours
Serial: 3 Serial profiles from Day 1, Wk 4, 12.  after dose

Pharmacokinetics: The pharmacokinetic model for all scenarios was a one-compartment
pharmacokinetic model with first order absorption and first order elimination. This
corresponded to Model A in Chapter 3 of this thesis (18). Parameter values for each
scenario shown in table 2. Residual variability for pharmacokinetic data was assumed to be

15%.
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Table 2: Pharmacokinetic model used to simulate concentrations and derive measure of drug
exposure in the experimental groups. For the sake of simplicity, a one-compartment model
(1 CMT) was selected for the purpose of this analysis. Parameters reflect data previously
reported in Chapter 3 of this thesis (18).

Parameter Pop Estimate BSV
KA 13.46 h™ 50%
\' 49.4 ml/kg 16%
CL 2.72 ml/hr 20%

Pharmacodynamic effects: Five hypothetical mechanisms of drug-induced toxicity were
simulated. Their parameterisation is summarised in Table 3. In brief, a number of scenarios
were included, which are representative of onset and dynamics of the effect, i.e., that take
into account the time dependencies and delays between the start of treatment, the onset,
maintenance and waning of the pharmacodynamic effects: 1) a direct Iyax model, describing
immediate onset of effect and direct relationship between drug exposure and biomarker
inhibition at the target site; 2) an indirect response model, describing the presence of
turnover mechanisms with a delayed onset of effect and disconnect between drug exposure
and biomarker inhibition; 3) indirect response model preceded by biophase equilibration
processes, which emphasise the role of tissue kinetics for the characterisation of
pharmacodynamic effects; 4) a model describing the cumulative effects of chronic dosing
regimen associated with slow-offset and irreversible binding and 5) a model describing
delays due to metabolite formation with immediate inhibitory effects on biomarker levels.
All scenarios were evaluated under the assumption that assay error was small in relation to

the magnitude of the drug effects on biomarker levels.
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Figure 3 Diagrams depict the different pharmacokinetic-pharmacodynamic models associated with
the hypothesised pharmacological mechanisms leading to toxicity.
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Table 3: Simulation scenarios modelled a range of pharmacological mechanisms. Base: baseline effect, ICso: concentration required for 50%
inhibition of biomarker response, Kout: first order elimination of biomarker response, Kelm: first order elimination rate of metabolite, Kon:
receptor-ligand association rate: Imax: maximum inhibitory effect; CAOC: cumulative area above the effect (biomarker) vs. time curve.

P P
Simulation Scenario arameter arameter Rationale Modelling strategies
names values
Base 1 - 1Cgg similar to Cirougn at
. Imax 1 lowest dosing level. .
1) Direct effect ICs0 (Mmg/ml) 0.1 -Normalised biomarker 1) Direct Imax
concentrations.
Base 1
2) Indirect response Kout (h-1) 1 -Fast elimination of 1) Indirect
P ICs0 (Mmg/ml) 0.1 biomarker 2) Direct Imax
Imax 1
3) Biophase Imax 1 - Keo selected to give 1) Biophase + Indirect response
equilibration + Imax ICs0 (mg/ml) 0.1 similar biomarker levels to  2) Indirect response
q KeO (h-1) 0.25 indirect response model 3) Direct Imax
Kelm (h-1 . - 1009 iont
4) Metabolite elm (h-1) 0.0866 00% c_onver5|on © 1) Metabolite + Imax
formation + Imax Imax L metabolite assumed. 2) Direct Imax
ICs0 (Mmg/ml) 3 metabolite t,n= 8h
Kout (h-1) 0.029 - 24 hr turnover for 1) Irreversible binding
I ible bindi ICs0 (mg/ml 0.2 off)target assumed
5) Irreversible binding ch:')\( g/mi) 0.0005 (off)targ ! 2) Cumulative AOC (CAOC) + Imax
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Biomarker exposure measures: Five different measures of biomarker exposure were used
for calculation of the true pharmacodynamic effects, as determined by the simulated
profiles. These measures can be seen in Table 4 alongside their calculation method. AOCy,
and Cuinz4 are intended to mimic the AUCT and Cyax: exposure variables typically calculated
for the analysis of pharmacokinetic data. They provide a measure biomarker inhibition on
the final day of measurement (i.e., at steady state conditions). On the other hand, time
under threshold biomarker concentration (TUT) is a measure of time spent, on final day of
measurement, under a clinically significant threshold. The threshold in this case was
0.2mg/ml, which represents 20% change from baseline and which was assumed to be
physiologically meaningful. Given that at three months the scenario describing slow-offset
and irreversible binding is not at steady-steady at the end of treatment, simulations were
performed assuming repeat dosing up to six months (three months beyond the time frames
of the investigated studies). This procedure was required to ensure comparability of the

results obtained for all five mechanisms of action.

Non-compartmental analysis: Biomarker exposures were calculated on the composite
profile. Two different, commonly used, averages were investigated, the arithmetic mean
and geometric mean. Since the standard sampling scheme is limited to a particular day
during the course of treatment, composite profiles over six months cannot be estimated.

Therefore, only AOC, Cuin, TUT (in Table 4) were calculated by non-compartmental analysis.

Model-based estimates: Each simulated dataset was an integration of all pharmacokinetic
and pharmacodynamic data for all experimental groups. Then drug concentration and
biomarker profiles were fitted to multiple PKPD models (as shown by the multiple modelling
strategies in Table 3) using the FOCEI estimation method. In Table 3, modelling strategies
for each scenario are ordered by decreasing numbers of parameters, starting with the true
model. Model convergence for each modelling strategy was determined by standard
minimisation success criteria. Below quantification limit (BQL) data were omitted to mimic

experimental conditions in which imputation methods are not applied. The model-based
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calculation of biomarker and exposures measures are summarised in Table 4. Estimates of
exposure were all calculated by using same methods as for the true exposure calculation but
with the estimated model. Overall performance of competing modelling strategies was

assessed by convergence rate and bias/precision of exposure/biomarker level.

Bias/precision of exposure/biomarker levels: The process of simulation and estimation of
exposure (using non-compartmental and model-based methods) was repeated 200 times.
Bias and precision were assessed via the scaled relative mean error (SRME) and the
coefficient of variation (%CV), respectively. Relative error was also calculated for graphical

comparison.

Table 4: Measures of biomarker exposure obtained with the simulated and estimated models for
calculation of the true pharmacodynamic effects

Covariate name Symbol Model based biomarker level
calculation
Area above biomarker levels vs. AO0C24 0 t 4
time profile Ber (0) - Berdt
t—24
Minimum biomarker level over Cyinza min ({Bcr(s):t —24 <s <t}

24 hour period

Time under threshold (80% TUT t

inhibition) jo g p<Bep(dt

Predicted 6-month cumulative CAOC 6 months

area above biomarker Bcv (0) » 6months _fo Berdt
concentration vs. time profile

Predicted 6-month  trough Cun min ({B¢r(s):0 < s < 6 months})

biomarker levels

Individual predicted biomarker levels are denoted by Bv(t).
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Table 5: Convergence rate of different modelling strategies (as determined by NONMEM
minimization success criteria).

Simulation Scenario Modelling strategies Convergence rate (%)
1) Direct effect 1) Direct Imax 94.2
) 1) Indirect 100
2) Indirect response .
2) Direct Imax 13.5
1) Biophase + Indirect response 0
3) Biophase equilibration + Imax 2) Indirect response 88.5
3) Direct Imax 100
) ) 1) Metabolite + Imax 0
4) Metabolite formation + Imax .
2) Direct Imax 100
1) Irreversible bindin 0
5) Irreversible binding ) ] &
2) Cumulative AOC (CAOC) + Imax 100

Results

As described below, the use of simulated data for the evaluation of hypothetical scenarios
provided clear insight of the impact of current practices on the identification of putative
mechanisms underlying the observed pharmacological effects as well as on the accuracy and
precision of safety thresholds, and in particular of the NOAEL. Results from modelling are
shown together with the parameter values obtained from naive pooling and non-

compartmental analysis where applicable.

It is clear from the different profiles (Figure 4) that not only the dose level under
investigation, but also the mechanism of action underlying drug toxicity, contribute to

differences in the onset, magnitude and duration of the effects. Moreover, these

162



differences may or may not be evident depending on the dose rationale and sampling

scheme used in the experimental protocol (Figure 5).
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Figure 4: Full pharmacokinetic and pharmacodynamic profiles observed for each hypothetical
mechanisms on selected sampling days. Lines represent the typical population estimates. Dots
represent simulated concentrations at the pre-defined sampling times. Since all simulation scenarios
share the same pharmacokinetics, PK is only shown for scenario 1.

As can be observed from the summary of convergence rates in Table 5, the inability to
discriminate the underlying mechanism of action based on the available experimental data

can lead to obvious issues with model identifiability. On the other hand, despite this
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limitation, the large differences in convergence rate suggest that model-based estimates

might be suitable to explore or exclude possible or plausible causes of toxicity.

Despite variations in bias and precision between analysis methods and sampling schemes,
parameter precision was relatively high (<30%). This suggests that when bias is acceptable,
reductions in numbers of animals may be possible whilst still achieving study objectives. For
all scenarios tested, we have assumed that the safety biomarkers levels are closely related to
target engagement of targets relevant to downstream toxicity findings. In other words, the
safety biomarkers are in the causal pathway between drug exposure and manifest toxicity.
Therefore, for all scenarios, AOC, Cyin, TOT, CAOC are expected to be more highly correlated
with toxicity than their pharmacokinetic equivalents (AUC, Cwuax, TUT and CAUC,
respectively). The relative relevance of AOC, Cyin, TUT and CAOC will depend on the
downstream pathway between target engagement and toxicity finding. For chronic enzyme
inhibitors and receptor antagonists and/or long term toxicity, cumulative biomarker
inhibition is likely to be more pharmacologically relevant. For toxicity that involves
overriding homeostatic control, TUT using a physiologically relevant threshold may be most

relevant.

With regard to the method of analysis, our results show that the accuracy and precision of
model-based estimates for AOC, Cyyy and TUT were similar across different dosing groups
and treatment durations. Non-compartmental estimates showed more bias and less
precision in all scenarios. In addition, relative errors were also smaller for model-based
estimates (Figure 5). For both model-based and compartmental methods, the coefficient of
variation increased with composite designs (with 8 animals), as compared to serial sampling
designs (with 3 animals). Interestingly, the use of arithmetic and geometric means for non-
compartmental methods had minor impact on the parameter estimates. Cyn was

consistently over- estimated by non-compartmental methods.
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Figure 5. Relative errors of model-based and NCA estimators of exposure obtained for the different
models: Iyax model (a) Imax (b), indirect model (c), biophase equilibration + lyax model (d)
prodrug+lvax, (e), the irreversible binding. X-axis shows the different measures of exposure, as
described in Table 1. NCA estimates are repeated in each panel for comparison purposes. For the

sake of clarity, only data from the 30mg/kg/day following 3-month treatment are summarised.
Similar results were observed across other cohorts.
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Discussion

Any drug can produce an adverse response at therapeutic or supratherapeutic exposures. It
is imperative therefore to identify not only the response but also the exposure at which the
effect is observed (19). Yet, over the past decade, it has also become clear that detection of
organ-specific toxicity is critical, both for improved preclinical/clinical translatability and
accurate prediction of toxicity at early stages of development. Despite the scientific
rationale, few successful examples exist that demonstrate the development and consequent
use of specific markers of organ toxicity during preclinical safety evaluation (20, 21). The
limited impact of biomarkers has been associated with the fact that early prediction of
specific organ function, such as hepatic, dermal or immunologic, is not well established. With
the possible exception of cardiac function, very few novel biomarkers have been identified
and accepted over the past decade. On the other hand, markers of tissue injury have been
identified, but they are not predictive of overall organ function and often do not correlate
with overt pathology (22). These conclusions have been drawn without -careful
consideration of the impact current experimental protocol designs and data analysis
methods have on the characterisation of the underlying pharmacokinetic-pharmacodynamic
relationships. Instead, here we have shown how a model-based approach can be used to
integrate toxicokinetic and biomarker data for the evaluation of long-term safety and
toxicity. Based on a series of hypothetical drugs, simulation scenarios have been used to
show the feasibility of introducing biomarkers as a proxy of drug exposure in general toxicity
studies. Furthermore, our work highlights the impact that modelling can have on the

evaluation of exposure measures that cannot be derived from empirical protocols.

From a conceptual perspective, the evaluation of hypothetical compounds whose
mechanisms of action reflect nonlinearity and time-dependencies in the onset, maintenance
and waning of drug effects also sheds light on the shortcomings of current protocols and
data analysis methods, for which data and knowledge integration have remained marginal.

Current mainstream research in toxicology and safety pharmacology is performed under the
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assumption that evidence from data or lack thereof is sufficient to make inferences about
the risk or hazard in humans. Our approach comes from a quite different perspective, in
that it incorporates oncoming data into a modelling framework, i.e., a mathematical
representation of existing knowledge. Whilst scepticism exists about the predictive
reliability of models due to uncertainties (23), they facilitate the assessment of causation
and provide the basis for the exploring the plausibility of alternative mechanisms or causes
(24). Most importantly, models when used as an ancillary tool during planning and design of
experimental protocols can significantly increase the informative value and reduce bias. In
fact, mechanism-based pharmacokinetic-pharmacodynamic modelling has evolved
successfully as an important tool for the evaluation of exposure-response relationships and
as such has represented a major contribution to the dose rationale in clinical research
(25,26). In conjunction with nonlinear mixed effects techniques, it has become possible to
integrate efficacy and safety measures under the assumption that wanted and unwanted
pharmacological activity is directly or indirectly associated with drug action on primary or
secondary targets, rather than treating such effects by default as the result of an unknown
off-target binding site, which is often assumed to be the cause of toxicity (27,28). It should
be noted, however, that thanks to the use of model parameterisation describing
(patho)physiological phenomena in terms of zero, first and second order processes, it is
possible to establish correlations between drug exposure, biomarkers and effects even if the

underlying mechanisms are not fully understood.

As indicated by the differences in convergence rate (table 5), our findings reveal that even
with the incorporation of biomarkers, it may be sometimes impossible to identify the true
model and consequently, characterise the true mechanism of toxicity. Yet, despite model
identifiability issues, these results also show the potential benefits of model parameters to
rank compounds (e.g., by differences in potency) and quantify the effects associated with a
given exposure or effect. Moreover, the various scenarios can be used to elucidate how
differences in mechanism of action may lead to biased estimation of the relationship
between drug exposure and toxicity, as well as to inaccurate safety thresholds. We believe,

therefore, that greater awareness is required about the limitations of current experimental
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protocols, particularly in a period in which long-term safety have become a major clinical
and regulatory concern (29-31). On the other hand, model misspecification, even when
convergence is successful, may lead to significant bias when predictions are made beyond
the experimental context (i.e., longer timescale or different dosing regimens). To mitigate
such effects we recommend careful consideration of model selection during model
development and model uncertainty (32-34). Model selection criteria should be guided not
only by ability to describe data but also by assessing the physiological relevance of model
assumptions. When model development ends in multiple competing models performing
similarly with respect to the above model selection criteria, clear reporting of such model
uncertainty is necessary. In any case, model averaging should be discouraged when
predictions arising from different model differ significantly (35). Finally, parameter
uncertainty should be incorporated when performing simulations or using the model to

make predictions.

Since the model-based methods outperformed non-compartmental analysis, further
refinement of experimental protocols can be achieved if the data are analysed using
nonlinear mixed effects modelling. Despite the conceptual challenges, maximum likelihood
based model estimates, statistically speaking, are asymptotically efficient. This means that
model parameters extract maximum information from the dataset when compared to any
other statistical technique. In this respect, the use of a model-based approach is not only an
improvement on non-compartmental methods in terms bias and precision, but is optimal for

the datasets under consideration.

Limitations

All scenarios depicted here corresponded to the case where substantial inhibition of a
biomarker, relative to assay and normal physiological variability, was correlated with
toxicity. In the present study we focused on biological systems with built in control for
minor fluctuations in biomarker levels so that substantial inhibition could be seen in the
data. An example of such a biomarker and system would be prostaglandins, which exert

their protective role in conjunction with other mediators (36-39). The findings presented
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here are expected to also reflect other mechanisms such as induction or tolerance, if the

profiles and magnitude of effect are similarly large relative to the assay error.

We also acknowledge that detection of signals above variability may not always be possible
due to a variety of factors, including large between or within subject variability or poor assay
precision. In this case non-compartmental analysis and model-based approaches will fail to

detect systematic variations without additional information.

Lastly, we believe that complex systems pose little problem to estimation procedures as long
as viable simplifications are available and able to describe important trends in the data.
Clearly, there may be instances where the biological response to drug exposure manifest in
trends in data which cannot be described accurately by more simplistic models. In these
circumstances, knowledge that an experiment cannot be used to describe the underlying
exposure-effect relationships could be invaluable as the basis for further improvement of

experimental design in subsequent phases of drug development.

In summary, toxicology need to evolve from a discipline largely devoted to routine
performance and interpretation of safety tests, to a quantitative discipline in which advances
in pharmacology and molecular biology can be applied in an integrated manner, enabling
better understanding the nature and mechanism of adverse effects caused by chemicals.
Model-based analysis of biomarkers and toxicokinetic data provides the basis for
differentiating settled toxicological knowledge of risk from mere possibility, and facilitating

the translation of safety thresholds and safe exposure from animals to humans.
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CHAPTER 6

Utility of model based approaches to predict the risk of adverse

events from preclinical toxicology protocols.
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Abstract

Purpose: Current toxicity protocols use the NOAEL approach to relate observed systemic
exposure to the observed AEs. However, biomarker data can provide information on
mechanisms of toxicity and historical placebo data can help distinguish non-drug induced
AEs to ADRs. The objective here is to determine the feasibility of model-based risk

assessment with the aforementioned data and to compare this with the NOAEL approach.

Methods: An in-silico approach based on simulation scenarios and nonlinear mixed effects
models was used to generate drug-induced and background adverse events. The test species
was rats and data was generated according to standard preclinical toxicological designs. A
total of six scenarios were simulated, in which reversible and irreversible drug effects were
evaluated under the assumption of three different pharmacological mechanisms (direct,
indirect, and irreversible binding). Data was then analysed using standard NOAEL approach

and by nonlinear mixed effects modelling in NONMEM 7.1 and WinBUGS 1.4.3.

Results: Three out of six scenarios had a viable therapeutic window. The NOAEL approach
showed significant bias by overestimation of toxicity. The potential impact of bias to drug
development programs is summarised for each scenario. Model-based approaches showed
high convergence rates, however model identifiability prevented model discrimination
indicating that although risk can be predicted the underlying causes of risk cannot be

determined.

Conclusions: Our results indicate that standard toxicology experiments are likely to provide
enough information to detect drug related ADRs with a model based approach, but are
unlikely to have the power to precisely indentify the mechanisms of AE formation for rare
events. Quantifying model uncertainty enables this uncertainty to be reported to aid project
teams in future study planning. A model-based approach outperforms the NOAEL
methodology in terms bias and precision and should therefore be recommended as method

of choice for the purposes of safety assessment.
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Introduction

One of the main purposes of safety pharmacology and toxicology screening is the prediction
of risk that exposure to a new chemical or biological entity represents to humans. A major
challenge in this endeavour is the prediction of the safe exposure in humans based on
preclinical experiments. Historically, numerous approaches have been considered for the
assessment of safety and risk, which differ in their data requirements, degree of complexity,
their applicability in different situations and the type and quality of resulting risk estimates
(100). Among the accepted methods, safety thresholds have been derived under the
assumption that there is a level of exposure below which a biologically significant effect is
unlikely to occur, i.e.,, no-observed adverse- effect level (NOAEL) (2,3). Even though
estimation of such a threshold has little or no mechanistic basis and is greatly influenced by
experimental design factors, it has become one of preferred methods for regulatory
evaluation of risk. This choice has been made irrespective of the frequency of the events of
interest or whether the occurrence of events is delayed relative to the duration of
treatment. In these circumstances the evidence generated from small experiments may be
affected by censoring or other shortcomings in the experimental design (4,5). As a

consequence, derived measures of safe exposure may become biased and imprecise.

By contrast, a model-based analysis rooted in statistical inference and mechanistic
description of physiological processes can have several advantages over safety thresholds,
but its uptake has been very limited (6). Another important point to consider is that the
application of pharmacokinetic-pharmacodynamic modelling and simulation concepts
enables one to explore the relationship between drug exposure and pharmacological or
toxicological effects in a mechanistic manner, relating experimental findings to target
engagement (See Figure 1) (7). By using pharmacokinetic models, factors that are known or
expected to influence the relationship between the administered dose and the target
exposure may be accounted for (8). Pharmacokinetic models may also be used to optimize

protocol design and strengthen the extraction of information from experimental results by
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linking data obtained under different experimental conditions in a uniform model (9,10).
Thus, modelling is often hypothesis generating and may have utility for discriminating
between markers of exposure and markers of risk (Figure 2). Thereby, some of the
uncertainty factors associated with the true hazard or risk may be reduced. Furthermore,
specific questions on mode of action may be addressed, and these models can provide a
stronger basis for extrapolation across species, routes of exposure, dosing patterns, and

ultimately human risk assessment.

Systems
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Figure 1 The diagram illustrates different steps that lead to disruptions of biologic pathways:
“biologic responses are results of an intersection of exposure and biologic function. The intersection
results in perturbation of biologic pathways. When perturbations are sufficiently large or when the
host is unable to adapt because of underlying nutritional, genetic, disease, or life-state status,
biological function is compromised; this leads to toxicity and disease’’. A model-based approach can
be used to parameterised both pharmacokinetic and pharmacodynamic processes. Of particular
interest is the evaluation of the outcome from function impairment when incidence of events is low
or processes rate are such that the events are delayed relative to the period of intervention. (From
Anderson et al.,2005 (7))
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Figure 2 Inferences from risk of toxicity or disease from drug exposure data. Different approaches
can be considered in which markers of exposure are used in conjunction or independently of markers
of risk to predict safe exposure in humans. This diagram clearly indicates the need to discriminate
drug reactions from adverse events during drug screening and early characterisation of the safety
profile of a new chemical or biological entity.




Despite the aforementioned advantages, regulatory agencies still tend to favour the view
that risk assessment should remain qualitative until important issues, primarily those related
to quantitative decision-making concepts, have been addressed (101). From a scientific and
clinical perspective, the main concern, however, is the potential for overconfidence in the
numerical answers obtained from small experiments. At the same time, it must be
acknowledged that characterising exposure-response relationships does face technical
challenges when data is too uninformative (12). One of the issues is model and parameter
identifiability, which make the validity and reproducibility of models derived by empirical
experimentation questionable for predictive purposes. Another important point to consider

is that toxicology studies are designed to show evidence for safety not for risk.

To address the issue of uncertainty and data sparseness arising from safety pharmacology
and toxicology screening, here we illustrate how population pharmacokinetic-
pharmacodynamic modelling can be implemented to characterise the relationship between
drug exposure and the risk of adverse events. The ultimate goal of our investigation is to
demonstrate how limitations in the informative value of experimental data can be overcome
by integrating non-linear mixed effects modelling with MCMC sampling algorithms. An
important advantage is that by simulating from uncertainty, one can eliminate the need for
empirical safety factors when scaling up findings from animals to humans. In addition,
relevant biomarker data can be integrated into the analysis either as priors or as historical
baseline data, allowing incorporation of pharmacodynamic processes and other covariates in
the overall estimates of drug-induced risk (13-15). Focus is given to the evaluation of events
with low incidence under the assumption of different mechanisms of action for the observed
events. For the sake of completeness, model-based estimates are subsequently compared

with the results based on the traditional NOAEL approach.
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Methods

Overview

A model-based approach was used to generate three month toxicokinetic data for a variety
of hypothetical drugs. The experimental protocols for simulation were defined according to
current guidelines for the evaluation of toxicity and safety pharmacology with the one
exception that data characterising a safety biomarker be collected at the scheduled
pharmacokinetic sampling points. Information on the occurrence of adverse events was
assumed to be limited to terminal observations upon post-mortem examination. Each
simulation scenario, detailed below, was intended to detect the NOAEL in an unbiased
manner, i.e. when the computed NOAEL was most likely to be associated with the treatment
group receiving the lowest dose level being testOed. In this respect, the experimental design
and the selection of the dose levels were such that further analysis could be performed

using standard methods, i.e., the NOAEL approach.

The proposed scenarios have taken into account conditions in which adverse events are rare
or have very low incidence. In this respect, this also represents a challenge for model-based
analysis techniques due to low information content of the datasets. Two different PKPD
models were used for the simulation of pharmacokinetic and biomarker data. On the other
hand, a variety of models were considered for the simulation of adverse events, based on
different incidence rates and mechanisms for the onset and cessation of adverse events.
Data was then analysed using standard NOAEL approach and by a variety of model-based
analysis techniques. Results were assessed for accuracy, precision and suitability for

informed decision making. A schematic showing the general workflow is shown in Figure 3.

Data

Toxicology Protocols: The experimental design of the general toxicity studies was chosen to
mimic existing practices including treatment and satellite groups, as shown in Table 1.

Different treatment durations were evaluated, in which four dose levels are considered
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(vehicle, 3, 10, and 30 mg/kg/day). The experimental protocol was based on the assumption
that all animals are dosed daily via oral administration. Animals in the treatment groups are
sacrificed at the end of the experiment, after the last sampling time. Satellite animals receive
the same dose levels used in the main experimental groups. AE information from these
groups is not used due to the potential confounding effect of frequent blood sampling. In
contrast to the traditional sampling schemes for pharmacokinetics, biomarkers of
pharmacology are also sampled at pre-defined 0.1, 0.4, 1,1.5, 4, 8, 24 hours after dosing) and

random time points so that an equal number samples are taken at each time point.

Table 1: Experimental design of general toxicity study

Duration = Sampling No. of Sampling scheme Sampling
approach animals time
per dose
I )
1 week Treatment: 4 Composite with 2 animals pertime 0.1, 04, 1,
Satellite: 3 point 1.5, 4, 8, 24
Serial profiles from Day 1 only hours  after
dose
1 month Treatment: 10 Composite with 2 animals pertime 0.1, 04, 1,
Satellite: 3 point 1.5, 4, 8, 24
Serial profiles from Day 1 and 28 hours  after
dose
3 month Treatment: 12 Composite with 2 animals per time 0.1, 04, 1,
Satellite: 3 point on Week 4 and Week 13. 1.5, 4, 8, 24
Serial profiles from Day 1, Week 4 hours  after
and Week 13. dose

Ancillary pharmacology protocols (PK): It was assumed that additional data was available
from drug metabolism and pharmacokinetics studies. Typical experimental protocols were
assumed which provided serial blood sampling based on eight animals per dose level, which
received a for single dose oral administration (0.3, 1, and 3 mg/kg). Only drug

concentrations were obtained from these animals, no biomarker concentrations.
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Ancillary pharmacology protocols (placebo AE): Monitoring of placebo animals enables the
assessment of non-drug induced risk. However, the quantification of rare adverse events
requires a far larger database than general toxicity studies provide. Therefore, it was
assumed that historical placebo datasets were also available from acute and chronic general
toxicity experiments consisting of 400 animals for each type of study and treatment

duration.

Simulation scenarios:  All simulations and fitting procedures described below were
performed in NONMEM 7.1 (ICON Development Solutions. Hanover, Maryland ) (25). Data
manipulation and statistical and graphical summaries were performed in R 3.0.0 (26). We
assumed a population with high homogeneity and therefore no covariate relationships were

included in any of the models. 200 simulated datasets were produced per scenario.

Simulation of PK data: The pharmacokinetic model for all scenarios was a one-compartment
pharmacokinetic model with first order absorption and first order elimination. Parameter
values for each scenario shown in Table 2. Residual variability for PK observations was

assumed to be 15%.

Table 2: Pharmacokinetic model used to simulate concentrations and derive measure of drug
exposure in the experimental groups. For the sake of simplicity, a one-compartment model (1 CMT)
was selected for the purpose of this analysis.

Parameter Pop Estimate BSV
KA 13.46h™ 50%
\' 49.4 ml/kg 16%
CL 2.72 ml/hr 20%

Simulation of biomarker data: Two different pharmacodynamic models were investigated
which related drug concentration to safety biomarker to risk of adverse events. A schematic
diagram of the two models is shown in Figure 4. The rationale was to see how both
empirical and model-based methodologies performed when time dependencies exist, i.e.,

the onset of the adverse events is delayed with regard to the start of treatment. The first
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model was an indirect response model where the biomarker was assumed to be directly
related to risk of adverse events. The second was an irreversible binding model where the

formation of an unmeasured biomarker was assumed to be related to risk of adverse events.

DMPK data (PK) . Toxicology data (PK/Biomarker + AE) «, Placebo data (AEs)

.
SN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE® 4,

.
»
.

.lllllllllll“llllllll

o Apply mechanism-based PK/PD/RISK model « Obtain NOAEL E

¥ S NN FEEEEENEESEEEEENE

o I .lllllllllllll:llllllll

N Simulate with model and parameter uncertainty = Apply safety factor E

x v -IIIIIIIIIIIII:IIIIIIII.
Population safe AUC E NOAEL/SF E

Compare with “true” safe AUC for acceptable population risk

Figure 3 Schematic representation of the simulations performed for the evaluation and comparison
of model-based vs. standard approach.

Simulation of adverse event data: In total, six scenarios were investigated (Table 3). All
adverse events were modelled as a two state continuous time Markov process, in which a
state O corresponds to health and a state 1 corresponds to the presence of toxicity. This
assumption provided for simulated data yielding low information for subsequent model-
based analyses. For both hypothetical mechanisms, multiple Markov models were used to
define different types of adverse events. These adverse events were classified into
reversible and irreversible. Irreversible adverse events were events for which the remission
rate was set to zero. On the other hand, reversible adverse events always maintained a non-
zero probably of spontaneous remission. The irreversible adverse event scenarios also

happen to reflect a reversible event with left censored observation time, e.g. where
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histological examination provides evidence of incidence (e.g. scarred tissue). For all adverse
events, it was assumed that symptoms and signs could only be detected at the end of the
study duration. This further challenges a model-based approach to analyse the data without

compromising the standard methods.

Indirect

Ka

Biomarker

Cumulative effect (irreversible binding)

Central

v Complex Biomarker

Figure 4 Diagrams depict the different pharmacokinetic-pharmacodynamic models associated with
the hypothesised pharmacological mechanisms leading to toxicity.
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Table 3: Summary of simulation scenarios for a range of putative mechanisms associated with
reversible and irreversible adverse events. None corresponds to conditions in which the compound is
not toxic; Low corresponds to scenarios in which the occurrence of false positives and false negative
is most relevant. Here the probability of NOAEL being the lowest dose level in the 1 month study is
maximised.

Drug toxicity

Scenario PKPD model AE type

nl NA Reversible None
n2 NA Irreversible None
al Indirect Reversible Low
a2 Indirect Irreversible Low
bl Irreversible Reversible Low
b2 Irreversible Irreversible Low

With regard to the assessment of the relationship between exposure and drug-induced risk,
two possibilities were considered. A category “none” corresponded to drug effect having no
influence on toxicity, so only non-adverse events were observed. For the purposes of
subsequent data analysis, it was assumed that drug-induced and non-drug induced adverse
events were indistinguishable from each other. The NOAEL analysis therefore treated all
events as adverse drug reactions. The second category was “low” toxicity. Here, the drug
effect parameters governing the simulation of adverse events in these scenarios were
optimised so that the likelihood of the low dose of the 1 month study being the NOAEL dose
was maximised. The maximisation of NOAEL likelihood was performed by the R function

optimise().

For each scenario the occurrence of adverse events was described by a time-inhomogeneous

Markov model for transition rates (Ry):

1
Ro, =B, | 1- (BIO(0) - BIO) —————
01 01[ ( ( ) ) EBSO + Bloj
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R _{Bm reversible

10 irreversible
where BIO is an independent variable representing putative (bio)markers. Bo; and Big
correspond to baseline transition rates. For irreversible adverse events, B;gwas fixed to 0.
For reversible adverse events it was set to 1/168, so that mean duration of an adverse event
was 1 week. Bjgwas fixed to a value which corresponded to a prevalence of adverse events
of 1% at three months. Transition times were simulated by sampling from their cumulative
distributions (i.e. cumulative hazard function) to obtain a continue state vs. time relationship

for all subjects.

Estimation steps

Estimation of NOAEL: A NOAEL was obtained for each study duration. It corresponded to the
maximum daily dosing level for which no adverse event were observed. The NOAEL was
expressed as the area under the concentration vs. time curve (AUC) at that dosing level, as
determined by the composite method. Calculation of composite AUC values entails naive
pooling of drug concentration data on the day of sacrifice. AUCs were calculated by the

trapezoidal rule using mean concentrations for each sampling time point.

Model-based risk assessment: Pharmacokinetics and biomarker concentration-effect
relationships were refitted using NONMEM 7.1 with FOCEI estimation. Predicted
exposure and biomarker estimates were obtained using empirical Bayes estimates
(EBEs). Derived exposure and biomarker variables were then used independent
variables for the characterisation of the relationship between exposure and risk of

adverse events.

A logit transformation was used to describe the incidence of AEs. The general equation

describing the incidence of ulcers is given by:
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EXP(01+6,+COV ; ,
PU;;j=1)= 01+ ) (equation 5)

 1+EXP(81+6,CO0V; )

where P(U;;) represents the probability of the presence of ulceration in individual i at time
ti. COV;; is the aforementioned independent variable individual i and time t;. Possible
values for COV were 24 hour AUC (AUC24), cumulative AUC (CAUC), 24hr area under
biomarker-time curve (AUEC24) and cumulative AUEC (CAUEC). 0, is a parameter governing
the background logit probability and 6, is the slope parameter. A basic model was also

tested where 6 , was fixed to 0 and no covariate was used.

All adverse events were modelled in WinBUGS 1.4.3 with time, exposure and biomarker
levels as independent variables using a proportional hazards model for left censored adverse
events and an exponential model for current state observations. To assess the implications
of different strategies for the analysis of adverse event data, multiple strategies were used
to refit the data. These are listed in Table 5. In addition to the five covariates models, two
different averaged models were attempted on each simulated dataset. The first averaging
approach was where model predictions from all five covariate models were weighted
equally. The second approach was to use the Bayesian information criterion (BIC) to weight
models. This is consistent with weighting according to posterior model probability assuming
a uniform prior weighting of models. The unweighted average equally weighted all models

ignoring model performance for the weighting scheme.

For each model refit, prediction intervals for the risk of each observation were obtained, for
plotting and calculation of predicted coverage. Predictive coverage was defined as the
number of observations where the true simulated risk falls within the 95% prediction
interval. Model convergence was determined by stationarity of the MCMC chain for all
parameters by calculation of the Geweke statistic. Unsuccessful runs were given a 0 weight

in all average and discarded from summaries.
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Table 5: Overview of the methods and measurements applied to the different scenarios. The table also summarises how data are integrated to distinguish
between adverse drug reactions (ADRs) and adverse events (AEs).

Assessment

Data to be generated

Data contributing to
evidence synthesis

Estimation of
uncertainty

Separation of
ADR and AE
risk

Quantification
of delayed
effects

(Biomarker)

Biomarkers (over course
of therapy) + variability

N2
ADR risk

- Predicted AE incidence

rate in experimental
cohorts

- AE incidence rate
in historical
placebo

Current Observed PK exposure | - PK (satellite groups) - None No No No
approach (over 1-day snapshot)
J - Presence/absence
(NOAEL) Observed AEs (binary) of AEs in
experimental cohorts
Model- PK  exposure  (over |- PK (satellite groups + |- Historical PK data | Parameter Yes Yes
based course of therapy) + PK toxicology groups) and  model
approach variability - AE incidence rate | uncertainty
J - Predicted AE in historical
(PK) ADR risk incidence rate in placebo
experimental cohorts
PK exposure (over |- PK + biomarkers | - Historical PK data | Parameter Yes Yes
Model- course of therapy) + PK (satellite  groups + and  model
based variability toxicology groups) - Historical uncertainty
approach J biomarker data
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Results

As described below, the use of simulated data for the evaluation of hypothetical scenarios
provided further insight into the limitations of current practices for the assessment of safety
thresholds, and in particular of the NOAEL when taking into account differences in the
underlying mechanisms of toxicity. Results from modelling are shown together with the
parameter values obtained from naive pooling and non-compartmental analysis where

applicable.

It is clear from the profiles observed for scenario al (Figure 5) that the risk of adverse events
changes in a time-dependent manner, irrespectively of the point estimates for drug
exposure or effect, as determined by pharmacodynamics (biomarker levels). Such time-
dependencies impose further attention to the experimental design as not only the dose level
under investigation, but also the mechanism of action underlying drug toxicity will
contribute to the experimental results. Moreover, these differences may or may not be
captured by typical variables of interest (Table 6). The inability to discriminate the
underlying mechanism of action based on the available experimental data can lead to
obvious issues with model identifiability. On the other hand, despite this limitation, the
large differences in convergence rate suggest that model-based estimates might be suitable

to explore or exclude possible or plausible causes of toxicity.
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Table 6: Overview of the predicted coverage (%) for model predictions, and corresponding
model selection rates (%) for each of the scenarios (lower panel). The basic model was not
included in tests for model selection.

BMA -
excluding
BMA -all basic

Scenario models model Basic AUC24 CAUC CAUEC AUEC24
al 65 78 48 78 65 65 78
a2 65 78 48 48 65 65 96
bl 48 65 30 65 65 78 78
b2 48 78 30 48 30 48 96
nl 78 78 91 78 78 78 78
n2 96 96 96 96 96 96 96

Scenario AUC24 CAUC CAUEC AUEC24

nl 23 29 40 22
n2 61 25 22 6
al 11 0 13 76
a2 0 29 28 43
bl 3 0 10 87
b2 24 36 40
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Figure 5. Plot of study data for scenario al. This increase in risk represents approximately a 10-fold
increase from baseline risk, however, overall risk is low (risk = 13% per individual; expected number
of events per cohort = 1.04).

With regard to the method of analysis, our results show that the accuracy and precision of
model-based estimates for AUC24, CAUC, AUEC24 and CAUEC were similar across different
dosing groups and treatment durations. For all scenarios, BICs for competing models with
different covariate relationships (AUC24, AUC, AUEC and AUEC24) were broadly similar. This
suggests that whilst the parameters of a given model may be estimated accurately, the
binary adverse events datasets simulated here provide insufficient information for model

discrimination between competing models.
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The success rates for convergence of models was high, the success rate being less than 100%
was due to false negatives in the Geweke diagnostics. Given the alpha level of 0.05, this
would result in a 9.8% failure by random chance for a model including two parameters. On
the other hand, the observation that the BIC, AIC and DIC tend to overweight models
without drug affect for rare adverse events implies that a conservative approach should be
taken where the weighting of models should be decided by a priori confidence in a model
specification rather than data fitting criteria (Table 6). A general strategy, supported by our
results, to account for model uncertainty is model averaging with model weighting being
independent of data fitting criteria (such as the BIC). Modellers should define models to fit
to the data before conducting the analysis focusing on physiologically plausible
specifications. Prior model weights should be assigned and reflect the prior belief in a model
specification. Deviation from these model weights should only take place when it is strongly

justified by the data (i.e. a large drop in BIC).

Safety threshold vs. exposure-risk relationships

NOAEL probability distributions are depicted in figure 6. The mostly likely outcome for the
NOAEL is the peak of the distributions. An overview of the most likely outcome of the

analysis of each scenario is shown in Table 7.

Lastly, Table 8 shows the likelihood for each scenario, of concluding that the compound is
safe, given that based on the lack evidence of adverse events by traditional methods would
imply progression of the compound. The results show that despite the characterisation of a
viable therapeutic window for scenarios n1, n2, and al, a different conclusion would be
drawn by empirical methods. In fact, scenario n2 is only 43% likely to be deemed safe,
whereas this figure would be even lower for scenario al (27%). This is likely due to the

inability of these methods to quantitative account for background adverse events.
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Table 7 - Likely study outcome using a standard approach (NOAEL) for a range of putative
mechanisms associated with reversible and irreversible adverse events.

Scenario Likelihood outcome given strict adherence to NOAEL approach

nl No adverse events will be observed. Drug will appear safe at all duration
levels.

n2 Drug will appear safe at 1 month and below, but at three months, the

NOAEL will most likely fall below the lowest tested dose

al Most likely NOAEL dose at 1 week treatment is overestimated, i.e., it
appears to be the mid dose level.
Most likely NOAEL dose at 1 month is the low dose, but it has only 47%
chance of being selected.
At three months, the NOAEL will most likely fall below the lowest tested
dose .

a2 At 1 week no NOAEL can be established due to lack of adverse events.
Most likely NOAEL dose at 1 month is the low dose, but it has only 47%
chance of being selected.

At three months, the NOAEL will most likely fall below the lowest
tested dose

bl At 1 week no NOAEL can be established due to lack of adverse events.
Although low dose at 1 month has been maximised, the NOAEL will
most likely fall below the lowest tested dose for treatment duration >
1month.

b2 At 1 week no NOAEL can be established due to lack of adverse events.
Although low dose at 1 month has been maximised, the NOAEL will
most likely fall below the lowest tested dose for treatment duration >
1month

197



Table 8. Expected probability (%) of progression beyond the different stages of development
assuming an empirical analysis where AEs observed at the low dose would lead to the compound
being discontinued. To better interpret these figures, the reader is advised to compare the results
presented in Figure 6, where the true NOAEL levels are presented. As it can be noticed scenarios
nl,n2 and al are shown to have a viable therapeutic window and therefore high probability of
progression. Scenarios a2, b1, and b2 are not deemed safe and therefore have low probability of
progression into further development.

SCENARIO 1 week 1 month 3 months total

nl 97.37 90.14 87.98 77.22
n2 98.14 83.76 52.73 43.34
al 87.87 59.74 51.02 26.79
a2 95.26 61.29 15.68 9.156
bl 94.44 50.06 8.076 3.818
b2 96.85 52.49 3.757 1.91
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Discussion

Empirical experimental protocols are used to evaluate safety pharmacology and toxicity in
preclinical species as the basis for defining safe exposure in humans. These protocols are
not designed to understand toxicological mechanisms or provide insight into mechanism-
based extrapolation across species (2,16,17). Such a limitation in experimental protocols can
lead to biased conclusions about drug safety especially when the events of interest occur at
low frequency or are delayed. In these circumstances, shortcomings in current approaches

cannot be ignored.

In the current investigation we have illustrated the implication of low incidence adverse
events on the estimates of a safety threshold (i.e., NOAEL) as compared to those obtained by
the characterisation of the relationship between drug exposure and risk of adverse events.
Although there may be fundamental differences in toxicity pathways at different parts of the
exposure—response curve, we have assumed that examples based on a single mechanism
would be sufficiently realistic to introduce the concept. The phenomenon of exposure-
dependent transitions in mechanisms of toxicity can be explored in a similar manner by
introducing interaction factors (18,19). Thanks to the statistical features of nonlinear mixed
effects modelling, we have also shown how individual susceptibility can be incorporated into
the evaluation of the exposure-response relationships, whilst taking into account differences
in the underlying mechanisms involved in the continuum between exposure and adverse

events.

In this regard, it is helpful to think of a multistage process, which starts with systemic
exposure and progresses through target exposure, yielding early biological effects (e.g., at
the sub-cellular level), altered structure or function and subsequently clinical disease (20-
22). The introduction of biomarkers of pharmacology can therefore not only contribute to
further understanding of target exposure, but it also enables discrimination between dose-
dependency, class effects and regimen-related mechanisms without the risk of inaccuracies

and poor precision which seem to prevail when relying on NOAEL estimates (23).
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From a pharmacological perspective, the selection of exposure measures (i.e. the parameter
of interest) forms the basis for defining “safe exposure”. Arbitrary selection of the measure
of exposure to be used as a marker of safety can add unnecessary, correlated noise into the
data, which may subsequently lead to bias and loss of precision (24,25). In this context, our
analysis has shown that toxicity findings associated with direct effects were most accurate
represented by AUC or Cyax. Moreover, in these cases, it appears that performance relative
to the NOAEL approach is improved even when biomarker data was not available. By
contrast, the availability of biomarker data was shown to help in the estimation of adverse
events when delays occur between the beginning of treatment and onset of the effects.
Other measures of exposure such as cumulative AUC proved more effect with indirect

mechanisms.

The results presented here also provide guidance for prospective use of model-based
approaches in the evaluation of safety pharmacology and toxicology. In contrast to current
practice, in which experimental data is generated to define a safety threshold, we have
shown how current understanding pharmacokinetic processes can be integrated with
knowledge about the putative mechanisms of action to characterise exposure-risk
relationships during safety screening in early drug development. In fact, we demonstrate
how important additional, ancillary data can be when dealing with rare or low frequency
events. Statistical methods are available that enable formal inclusion of such knowledge as
informative priors (26, 27). However, prior distributions need be defined in advance of the
analysis to minimise subjective bias. The alternative strategy of aggregating datasets is also
useful if additional study data is available from a population which is exchangeable with
experimental data under investigation. This underpinned the use of the aggregated placebo

data set in our analysis.

From a methodological perspective, the various scenarios have shown that despite the
known advantages of parametric, model-based approaches, model identifiability can be an
important issue. The inability to separate models based on diagnostic criteria may lead to

bias in predicted risk. Care therefore needs to be taken not to over-interpret good
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performance on model diagnostics as an indication of a well specified structural model. The
specification of the structural models for rare adverse events needs to be primarily justified
on biological grounds. It is also important to emphasise that reporting of model outputs
(e.g. parameters, model predictions) should clearly incorporate parameter and model
uncertainty. Clear and accurate reporting of uncertainty enables us to understand and
formally account for uncertainties arising from limitations in data collection and model
estimation.

One last methodological aspect that deserves attention concerns the accuracy and precision
of the estimates of safe exposure. The incorporation of placebo aggregated data allowed for
guantification of baseline and drug-induced risk in a similar manner to what is currently
performed for the clinical evaluation of drug safety (28,29). Parameters for baseline risk
were likely to be large without sufficiently large amounts of placebo data. This would in turn
inflate uncertainty around remaining parameters determining drug-induced risk. Therefore,
we have modelled both components of risk together. Nevertheless, it is also feasible to
model baseline risk a priori to ensure the uncertainty distributions will be narrow enough to

precisely estimate drug-induced risk.

The high success rates observed with a model-based approach also shows that incorporating
model uncertainty is feasible. In turn, realistic estimation of uncertainty enables more
informed decision-making with regard to risk. There is a caveat that outside the
experimental range, the positioning of the 95% risk bound will likely depend on a single
model if equal weighting is used. This will be the model that produces highest predictions of
risk at low exposures. If this proposed model is physiologically plausible and a priori equally
likely to other proposed models, then this is appropriate (30). However, a linear model in
this context was the least plausible and provided overly conservative estimates. A way of
handling plausible, but a priori unlikely mechanisms would be to assign appropriately small

model priors.

Finally, it should be noted that missed adverse events were also easily quantified using the

proposed strategies. Differently, from the empirical approach to treating missing events as
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absent, the use of MCMC methods provides evidence of the parameter distribution,

enabling imputation of the events, even if they have not been observed.

Limitations

The scenarios used in this investigation were not intended to provide a comprehensive
review of all possible toxicological mechanisms. Therefore, it should be noted that no
covariate effects other than baseline incidence and treatment itself were considered to drive
adverse events. As the number of potential covariates increases, the chance of selecting a
false positive covariate relationship increases. This is an important consideration whenever
several competing models perform similarly. Our recommendation is a pragmatic approach
of restricting the model search to physiologically plausible models and the use statistical
tools to guard against over-fitting (31). In the present study, this would have involved an

increase in computational time by a factor of more 1000 times.

The simulated adverse events were related to descriptors of occurrence such as incidence
and prevalence. These were idealised situations that represent two extremes, either where
none or complete information was available. In reality adverse event data will contain a
spectrum of varying degrees of information on incidence for example with interval censoring
or imperfect sensitivity in detection. For instance, gastric ulceration may form and heal
before the end of treatment, making histological data inaccurate for the estimation of risk.
Poor specificity in detection for another adverse event may similarly overestimate risk.
Resolving this uncertainty, however, is only possible with additional information regarding
the pathophysiology, sensitivity and specificity of detection of the methods used to

investigate these events.

In conclusion, evaluation of safety is paramount for the progression of new molecules into

humans. However, current methods in preclinical toxicology do not support the integration

204



of pharmacokinetic and pharmacodynamic data as basis for predicting safe exposure in
humans. By contrast, a model-based approach represents a viable tool for characterising
risk-exposure relationships, including estimates of parameter and model uncertainty. A
benefit this strategy lends to decision-making is that clinical judgment can be applied to
consider the entire risk-response relationship of each adverse event, rather than a point

estimate or threshold.
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Abstract

The assessment of safety in traditional toxicology protocols rely on evidence arising from
observed adverse events (AEs) in animals and on establishing their correlation with different
measures of drug exposure (e.g., Cmax and AUC). Such correlations, however, ignore the
role of biomarkers, which can provide further insight into the underlying pharmacological
mechanisms. Here we use naproxen as a paradigm drug to explore the feasibility of a
biomarker-guided approach for the prediction of AEs in humans. A standard toxicology
protocol was set up for the evaluation of effects of naproxen in rat, in which four doses were
tested (7.5, 15, 40 and 80mg/kg). In addition to sparse blood sampling for the assessment of
exposure, thromboxane B2 and prostaglandin E2 were also collected in satellite groups.
Nonlinear mixed effects were performed to evaluate the predictive performance of the
approach. A one-compartmental model with first order absorption was found to best
describe the pharmacokinetics of naproxen. A nonlinear relationship between dose and
bioavailability was observed which leads to a less than proportional increase in naproxen
concentrations with increasing doses. The PD of TXB and PGE was described by direct
inhibition models with maximum pharmacological effects achieved at doses > 7.5 mg/kg.
The predicted PKPD relationship in humans was within 10-fold of the previously published
values. Moreover, our results indicate that biomarkers can be used to assess interspecies
differences in PKPD and extrapolated data from animals to humans. Biomarker sampling

should be used systematically in general toxicity studies.
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Introduction

Long term safety issues have increasingly become a cause of late stage attrition (1),
prompting regulatory authorities to increase requirements for sponsors to demonstrate a
favourable benefit-risk balance for new medicines. Such a prerequisite has implications for
current practices in early drug discovery and development. Thus far, pharmaceutical
companies seem to have adopted the concept of measuring any markers based on known
pharmacology of the drug under development. One challenge is the expectation/early
identification of unknown mechanisms and the timely implementation of the assessment,

the other challenge is the effective translation or interpretation of the data accumulated.

Both from a clinical perspective and a pharmacological perspective, the demonstration of
safety can only be tackled by a strategy that ensures the characterisation, in a mechanistic
manner, of the relation between drug dosing and response (Danhof et al., 2008). The vast
majority of experimental protocols currently used for the evaluation of toxicity and safety
pharmacology use dose and systemic drug exposure as a proxy for risk. However, other
markers of safety and toxicity may be better predictors of adverse drug reactions. This is
particularly important given the high degree of nonlinearity in the relation between
pharmacokinetics and pharmacodynamics as well as the potential interspecies differences in
these relations. Ultimately, these nonlinearities may cause downstream biomarkers, other
than target or systemic exposure to a drug, to better describe and predict the outcome or

response to treatment (Bai et al., 2013).

There is therefore an urgent need to evaluate and refine the methodology for the
assessment of safety. To this purpose, the classification scheme devised by Rawlins and
Thompson, 1991, constitutes a scientific basis for the establishing correlations between
adverse drug reactions and pharmacological effects. Briefly, this scheme defines adverse
drug reactions according to seven different categories, which correspond to the underlying
pharmacological effects. As shown in Figure 1, the different categories nicely match the

mechanistic classification of biomarkers proposed by Danhof et al., 2005, which defines the
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requirements for establishing further correlations with drug exposure. As such, this
mechanistic classification could be used for the evaluation of safety and toxicity and

consequently for the accurate assessment of (long term) risk in humans.

Type-0 Type-2 Type-3 Type-4 Type-5 Type-6
Patho-
Phenotype/ Target Target Physiological physiaoloogical Clinical
genotype occupancy activation response response

response

Figure 1. Mechanistic classification of biomarkers (Reprinted with permission from Danhof et al.,
2005). This concept can be linked to the classification for adverse events proposed by Rawlins and
Thompson, which clusters unwanted pharmacological effect into seven types, based on their
mechanism of action or characteristics of their manifestation. A type A event is one that is due to an
extension of the active pharmacologic properties of the drug (A indicates augmented). They are also
called predictable or anticipated events. They are generally less severe and more frequent than type
B events. This augmented pharmacologic action may occur at the targeted receptors or at other
nontargeted receptors producing lateral effects, parallel effects, or side effects. Types C, D, E, Fand G
are not mechanisms but characteristics of their manifestations. Type C refers to reactions associated
with long-term drug therapy. Type D is linked to carcinogenic and teratogenic effects. These
reactions are delayed in onset and are very rare since extensive mutagenicity and carcinogenicity
studies are done before drug is licensed. Type E refers to end of use or rebound effects. Type “F”
reactions indicate failure of treatment. Type “G” reactions are due to genetic polymorphism.

In the current investigation we therefore explore the feasibility of a model-based approach
for the evaluation of long term adverse events in which biomarkers of pharmacology are
used as proxy of drug exposure. Naproxen, a non-selective cyclo-oxygenase inhibitor is used
as paradigm compound to demonstrate the concept of biomarker-guided safety assessment
(Berger et al., 2011; Bai et al., 2013). Using pharmacokinetic-pharmacodynamic techniques,
we subsequently illustrate how modelling and simulation techniques can be used to ensure

accurate estimation of the safe dose levels of naproxen after chronic exposure.

Non steroidal anti-inflammatory drugs exert their actions though an interaction with cyclo-
oxygenase (COX). Selective blockade of COX-1 and COX-2 activity results in direct

suppression of the formation of pro-inflammatory mediators such as thromboxanes (TXB)
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and prostaglandins (PG) (102). The perceived role of COX-2 in inflammation has
substantiated the extensive use of selective COX-2 inhibitors as analgesic drugs in acute and
chronic inflammation. Yet, despite a putative reduction in gastrointestinal bleeding and
ulceration by selective inhibition (13,103), cardiovascular events have arisen after prolonged
use of rofecoxib, a selective COX-2 inhibitor which led to its withdrawal from the market,
followed by considerable changes in the regulatory requirements for approval of novel non-

steroidal anti-inflammatory drugs (Fitzgerald, 2007).

Continuous COX-1 inhibition following prolonged administration of non-selective COX
inhibitors is known to induce gastrointestinal adverse effects, in particular ulcerations and
haemorrhagic bleeding. Unfortunately, at present the dose selection of COX inhibitors
disregards whether maximum, long-lasting blockade of either enzyme is strictly required for
response (Huntjens et al., 2005). An important question that needs to be answered is
therefore how much and how long COX-2 and COX-1 should be inhibited to ensure an
optimal risk-benefit balance allowing for a sustained analgesic response and an appropriate
safety margin in the treatment of chronic inflammatory conditions. Given the mechanism of
COX inhibition and the nature of the inflammatory response, PG and TXB can be used as

biomarkers of pharmacological effects (Huntjens et al., 2006).

Using the biomarker classification proposed by Danhof at al., 2005 and a model-based
approach for the analysis and interpretation of the results, we show how a relationship can
be established between drug exposure, biomarkers and safety findings (i.e., gastric

ulceration).
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Methods

In this investigation the safety of the non-selective COX inhibitor naproxen was evaluated at
three different treatment durations using a slightly modified version of a typical general
toxicology protocol. Endpoints included adverse events, including Gl histology,
pharmacokinetics and pharmacodynamics. The intent of the study was explore the
feasibility and impact of proposed methodology. Briefly, rats received varying daily oral
doses of naproxen. A predefined sampling scheme was used to monitor for adverse events,
which included sacrifice of individual animals for histopathology of the Gl tract. Satellite
animals receiving identical doses had blood samples collected at various time points during
the course of treatment for the assessment of both pharmacokinetics in plasma and
biomarkers (TXB, and PGE;). An overview of the study protocol is depicted in Figure 2. The
diagram shows a typical experimental protocol including different treatment duration and

satellite animals sampled according to composite sampling scheme.

Animals

The experimental protocol was approved by the Ethical Committee on Animal
Experimentation of the University of Leiden. Experiments were performed on male Sprague-
Dawley (SD) rats (Charles River B.V., Maastricht, The Netherlands) with an initial weight of
256 + 19 g. The animals, 4 per cage, were housed in standard plastic cages with a normal 12-
hour day/night schedule (lights on 07.00 a.m.) and a temperature of 21°C. The animals had
access to standard laboratory chow (RMH-TM; Hope Farms, Woerden, The Netherlands) and

acidified water ad libitum.

Drug administration
Naproxen Sodium (Sigma Aldrich BV, Zwijndrecht, The Netherlands) was dissolved in sterile
Millipore distilled H,O. The animals received daily doses via oral gavage for periods of

between 1 and 4 weeks at dose levels of 0, 7.5, 15, 40 and 80 mg/kg.
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Figure 2: Schematic representation of the experimental protocol design. As the primary purpose of
the study was to investigate the utility of biomarker data collection, modifications were made to a
standard toxicology protocol. Only male animals were investigated and organ histology and
pathology were limited to the known drug-induced toxicology findings, i.e., stomach ulceration. The
use of an integrated approach implied the combination of additional data from (standard)
pharmacokinetic experimental data (DMPK experiments). Animals were stratified into groups by
treatment duration and dose level. Treatment duration varied between one, two and four weeks. For
each treatment duration, four groups were tested each of which received four different dose levels
(n = 8 animals/dose level in the toxicology group and n= 24 animals /dose level in the satellite arm,
i.e., 3 animals/sampling time point).

Study Design

As the primary purpose of the study was to investigate the utility of biomarker data
collection, modifications were made to a standard toxicology protocol. Only male animals
were investigated and organ histology and pathology were limited to the known drug-
induced toxicology findings, i.e., stomach ulceration. Animals were stratified into groups by

treatment duration and dose level. Treatment duration varied between one, two and four
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weeks. For each treatment duration, four groups were tested each of which received four
different dose levels (n = 8 animals/dose level in the toxicology group and n= 24 animals
/dose level in the satellite arm, i.e., 3 animals/sampling time point). Details of the final
experimental protocol are depicted in Figure 2. It should be noted that the initial regimens
included oral daily doses of 0, 15, 40 and 80 mg/kg naproxen. However due to adverse
events observed in the 1-week 80 mg/kg group, the protocol was amended to 0, 7.5, 15, and
40 mg/kg cohorts. The animals receiving 80 mg/kg suffered from unacceptable weight loss
and were sacrificed immediately after the first week on treatment. Unacceptable weight
loss was defined as either a weight loss on three or more consecutive day or a total weight
loss of more than 10% relative to the baseline value. Histological evaluation of the stomach
was performed to establish a correlation between acute and long term adverse events.
After euthanasia, stomachs were removed immediately and were cut open along the greater
curvature and washed with warm saline. The inner surface was photographed to allow the
measurement of the area covered by hemorrhagic ulceration. The area of ulceration was
determined under a dissecting microscope. Gastric ulceration was measured as percentage
stomach surface area affected by ulceration. A software (Image J version 1.43) was used for
calculating ulcer area and total stomach surface area. The person who performed the

ulceration measurement was blinded as to treatment group.

Given the need to establish a correlation between drug exposure, biomarkers, and adverse
events, optimality concepts were used to ensure accurate characterisation of
pharmacokinetics and biomarkers. In addition, an integrated approach was used which
takes into account the pharmacokinetics of the naproxen at putative therapeutic levels (i.e.,
the so-called DMPK group). In contrast to standard protocols, sparse and serial blood
sampling schemes were considered. For the DMPK group, serial samples were collected at 0,
0.25, 0.75, 1.5, 8, 24 hours after dosing. The sampling times in this set of animals were not
optimised for subsequent modelling. On the other hand, optimal design methodology was
used to select a sampling scheme and individual sampling times for satellite and toxicity
animals (Josa et al., 2001). Optimisation of the sampling scheme has been performed

according to D-optimality principles, as implemented in PopED (University of Uppsala,
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Sweden). Due to practical constraints, optimized sampling time points were rounded to the
nearest 15 min after dosing. The final schedule included therefore the following sampling
times: 0, 0.25,0.5,0.75, 1, 1.5, 2, 8, 24 hours post dose. Blood samples of 250ul were taken
from the tail vein and split into aliquots, namely 100ul for naproxen concentrations and
PGE2 and 50ul for TXB,. Animals allocated to the toxicology groups were sampled only at
the beginning and end of the treatment, prior to sacrifice. Satellite animals were each
sampled four times throughout the study after dosing on day 1, 7, 14 and 28. Blood samples
for pharmacokinetics were placed into heparinised tubes and centrifuged at 5000 rpm for 10
min. Plasma was stored at —20°C until analysis. Blood samples for TXB, analysis were placed
into tubes and allowed to clot for 1 hour at 37°C in a stirring water bath. Serum was
collected after centrifugation and stored at —20°C until analysis. Tubes for the analysis of
PGE, were prepared by evaporating aspirin (10 pg/ml in methanol and heparin (10 IU)).
Blood samples were placed in tubes together with 10 pg/ml lipopolysaccharide (LPS).
Samples were incubated and stirred for 24 hours at 37°C in a water bath. Plasma was

separated by centrifugation and stored at -20°C until analysis.

Bioanalysis of naproxen

Naproxen concentrations were analysed via HPLC in accordance with the method described
by Satterwhite and Boudinot (1988). 50ul Plasma samples were spiked with 50ul internal
standard (1000mg/ml ketoprofen in methanol). The pH was then adjusted via addition of
0.2ml 1M phosphate solution at pH 2. The extraction process was performed with 5ml
diethyl ether, after which the residue was then dissolved in 100ul mobile phase and then
50ul of this solution was injected into the HPLC system. The HPLC system consisted of a
Water 501 solvent pump, a Waters 717plus autosampler (Millipore-Waters, Milford, MA,
USA), Superflow 757 Kratus UV absorbance detector (Shimadzu, Kyoto, Japan). A C18 3um
cartridge column (100 x 4.6mm i.d., Chrompack, Bergen op Zoom, The Netherlands) was
equipped with a guard column for the chromatography process. Mobile phase was made up

of an 82:18v/v of 0.02M phosphate buffer (pH 7.0) and acetonitrile and was set to a flow
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rate of 1.0ml/min. Measurement of ultraviolet absorbance was performed at a wavelength
of 258nm. The data was acquired and processed using a Chromatopac CR3A integrator
(Shimadzu, Kyoto, Japan). The calibration curves showed linearity over range of known
concentrations (250-100,000ng/ml). Validation was carried out and the analytical process
was shown to have a mean accuracy and precision of 96.3% and 2.94%, respectively. The

intra-assay variability was shown to be 2.97%.

Analysis of TXB, and PGE,

PGE, and TXB, were quantified by an in vitro whole blood assay (WBA) using a validated
enzyme immunoassay (Amersham Biosciences Europe GmbH, Freiburg, Germany). Samples
were diluted in assay buffer (2-50 times for PGE,, 200-2000 times for TXB,) and a 50 pl
sample was transferred into a coated well plate. After addition of 50 pl antibody and 50 pl
peroxidase conjugate, samples were incubated for 1 hour, washed four times and incubated
for 15 min (TXB,) or 30 min (PGE,) after which 150 pl substrate was added. The enzyme
reaction was halted by addition of 100 ul 1M sulphuric acid and optical density was

measured in a plate reader at 450 nm.

Data analysis

Pharmacokinetic and biomarker data from all experimental groups were combined for an
integrated analysis of pharmacokinetics and pharmacodynamics of naproxen using nonlinear
mixed effects modelling, as implemented in NONMEM version 7.2.0. Convergence was
determined by successful minimisation and covariance step. Final model parameters were
estimated by the first order conditional estimation method with interaction (FOCEI). This
approach allows the estimation of inter- and intraindividual variability in model parameters.
All fitting procedures were performed on a computer (AMD-Athlon XP-M 3000+) running

under Windows XP with a FORTRAN compiler (Compaq Visual Fortran, version 6.1). Data
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processing, management and graphical display were performed in R (R Development Core
Team, 2012). Model diagnostics and validation were performed according to graphical and
statistical criteria. Goodness-of-fit plots, including observed (OBS) versus individual
prediction (IPRED), OBS versus population prediction (PRED), conditional weighted residuals
(CWRES) versus time and CWRES versus OBS were used for diagnostic purposes (104).
Model validation included numerical predictive checks (NPC), visual predictive checks (VPC)
and normalised prediction distribution errors (NPDE). If shrinkage was found to be high
(>20%), diagnostics using empirical Bayes estimates (EBEs), e.g. plots involving IPRED or

individual parameter estimates, were not performed due to their reduced diagnostic value.

Pharmacokinetic (PK) model: The pharmacokinetics of naproxen was described initially by a

one-compartmental model with first order absorption and first order elimination assuming a
(relative) bioavailability of 1. Additional compartments and dose-dependent kinetics were
also evaluated during model building. Model selection and identification was based on the
likelihood ratio test, parameter point estimates and their respective 95% confidence
intervals, parameter correlations and goodness-of-fit plots. For the likelihood ratio test, the
significance level was set at p<0.01, which corresponds with a decrease of 6.6 points, after
the inclusion of one parameter, in the minimum value of the objective function (MVOF)
under the assumption that the difference in MVOF between two nested models is )(2

distributed.

Based on model selection criteria, naproxen pharmacokinetics was best described by a one
compartment model including absorption rate constant (Ka), clearance (CL) and volume of
distribution (V) as primary parameters. The analysis was performed by use of the ADVAN13
routine in NONMEM. Variability in pharmacokinetic parameters was assumed to be log-
normally distributed in the population. An exponential distribution model was used to

account for inter-individual variability:

P=4 @xdm) equation (1)
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where 0 is the population estimate for parameter P, P; is the individual estimate and n; is the
normally distributed interindividual random variable with mean zero and variance «’. The
coefficient of variation (CV %) of the structural model parameters is expressed as percentage

of the root mean square of the interindividual variance term.

Selection of an appropriate residual error model was based on inspection of the goodness-
of-fit plots. A combination of a proportional and an additive error model was then proposed

to describe residual error in the plasma drug concentration:

C = Coreji [(1"' gij,1)+ Eij 2 equation (2)

obs,ij

where Cobs,ij is the jth observed concentration in the i individual, Cpred,ij is the predicted
concentration, and €jj is the normally distributed residual random variable with mean zero
and variance 6°. The residual error term contains all the error terms that cannot be
explained by other fixed effects including experimental error (e.g., error in recording

sampling times) and structural model misspecification.

Pharmacokinetic-pharmacodynamic  (PKPD) model: The PKPD data were analysed

sequentially using the so-called PPP&D approach (105,106). In the PPP&D sequential
analysis, population pharmacokinetic parameters are fixed, but individual pharmacokinetic
parameters are estimated simultaneously with pharmacodynamic parameters based on both
PK and PD data. Even though more computationally intensive, we have preferred this
strategy to the more common usage of simulated plasma concentration from empirical
Bayes estimates as an independent variable since the high expected shrinkage would result

in overestimation of the variance of PKPD random effects parameters (Karlsson et al., 2007).

PGE, and TXB, concentrations were used in this study as markers of the underlying
pharmacological effects with the aim of identifying their relevance as a proxy for safety after
naproxen exposure. The sigmoid ln.x model was used to relate naproxen plasma

concentration (C) to the drug effect by the equation:

Effect=1,-(1,—1,,)*(C"/(C" +ICL)) equation (3)
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where |, represents the maximal inhibitory effect to naproxen, Iy the baseline production
of PGE2 or TXB, and nthe Hill coefficient. This equation is an adaptation from the E,, model
in order to obtain the absolute values for lp and |ax for the direct calculation of maximal
inhibition in percentages. To allow for further comparison with historical data, the model
was re-parameterised during the final analysis to obtain estimates of ICg, i.e., the
concentration corresponding to 80% biomarker inhibition. The relationship between ICsg

and ICgg can be implemented by the following equation:

|C80 = |C50 @/Z equation (4)

Covariates: The role of potential covariate factors on PK and PKPD model parameters was
evaluated using the stepwise covariate method (SCM) in PsN (107). Potential influential
factors included clock time, body weight, age and biomarker levels at baseline. Covariates
were incorporated into the model by stepwise forward inclusion. A significance level of
p<0.01 was used for inclusion, which represented a drop of least 6.63 units in the objective
function for each additional parameter. A final evaluation of the statistical significance of all
factors identified during the previous step was performed by subtracting each covariate
individually (backward elimination). The final structural model (i.e., fixed effects model)
included only those covariates whose subtraction resulted in a decrease of at least 3.84 units

in the objective function (p<0.05).

Posterior predictive performance evaluation: The performance of the population PK and

PKPD models were assessed by numerical and visual predictive checks. To that purpose,
1000 data sets were simulated with the final model parameter estimates. The mean and the
95 % confidence intervals were calculated for naproxen, PGE, and TXB, concentrations at the
pre-defined sampling time points used in the experimental protocols. Validation procedures
also included normalised prediction distribution errors (NPDE), which are based on the
assumption that the normalised (decorrelated) prediction distribution errors (discrepancies)

are normally distributed (Comets et al., 2008). One hundred datasets were simulated using
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the final model, which was then tested for the assumption of normality of the prediction

distribution errors.

Exposure calculation: In addition to the use of a model-based approach to estimate relevant

pharmacokinetic parameters, naproxen plasma data from the satellite groups were also
analysed using traditional non-compartmental (NCA) methods for comparison with the
predicted values of systemic exposure. Data for each cohort was aggregated by time point
to produce composite, geometric mean naproxen concentrations at each time point.
Summary statistics were performed on this composite profile for the peak concentrations
(Cwmax) and area under the concentration vs. time curve (AUC). Composite Cyax Was taken to
be the highest point on the composite profile (at time Tyax). Composite AUC was calculated
via the log-linear trapezoidal rule where a linear increase in the concentration vs. time

profile was assumed till Tyax, and a log-linear decline thereafter.

Model performance was first assessed by means of a predictive check using 1000
simulations. Composite AUCs and composite Cyax values were calculated on each simulated
dataset and then compared to the observed values. The model performing well on this
predictive check was used to compute model-based AUC and Cyax. To ensure higher
precision of the predicted measures of systemic exposure, 100 animals were simulated per

cohort. Empirical exposure calculations were then compared to model-based results.

Simulations: As described previously, inferences about the safety profile of a drug in humans
may be more accurate if biomarkers are considered in conjunction with or eventually as
proxy for naproxen exposure. Extrapolation of preclinical findings into drug effects in
humans was therefore based on the predicted exposure-biomarker relationships in humans
(108) Using the PKPD models developed for PGE, and TXB, inhibition, simulation scenarios
were evaluated for wide range of naproxen concentrations. Despite some evidence of
differences in the homeostasis of prostacyclins in rats, for the purpose of this investigation
downstream effects were assumed to reflect the mechanisms by which adverse drug
reactions emerge both in rats and humans. The inhibition levels were then compared to

previously reported data on the PKPD relationship obtained in vitro by Huntjens et al., 2006
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using healthy subject blood and to the AUC and Cyax observed after the recommended
500mg b.i.d. dose, as described in the naproxen prescriber information (Roche

Pharmaceuticals Australia, 2012).

Results

In total, the dataset consists of 550 samples were collected for the evaluation of the
pharmacokinetics (n=113) and toxicokinetics of naproxen (n=437). 16.7% of the samples had
concentrations below the lower limit of quantification. Due to calibration curve issues, not
all samples could be evaluated in a pairwise manner with the pharmacokinetic data. In total,
65 samples were analysed for PGE, and 73 TXB, levels, none falling below the limit of

guantification.

As shown in Figure 3, histological examination revealed gastric ulceration in all dose levels;
therefore no NOAEL could be obtained for any of the treatment durations. Ulceration
occurred at an incidence of 11% after administration of the 7.5 mg/kg dose, which was

defined as the lowest observed adverse effect level (LOAEL).

All animals receiving 80 mg/kg in the 1 week cohorts suffered from unacceptable weight
loss. The animals in this cohort were immediately sacrificed, and due to ethical reasons this
dose level was discontinued. Different dose levels of naproxen were considered for the two-
week and one-month cohorts, which received lower doses (7.5, 15, and 40mg/kg).
Histological examination and terminal blood samples were performed on these animals. No

other adverse events were reported.
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Figure 3. Plots of gastric ulcer incidence and severity after oral administration of 7.5,
15 and 40 mg/kg naproxen to rats. Ulcer severity is measured as % of stomach area
covered in ulcers. The dots in the upper panel represent observed events in individual
animals, whereas the solid line and shaded grey area represent the regression line and
95% confidence interval.
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Pharmacokinetic model

Naproxen pharmacokinetics in plasma was best described by a one-compartment model
with first order absorption, first order elimination and dose-dependent bioavailability (Figure
4). Interindividual variability was identified on all model parameters, whereas residual
variability was described by a combined proportional error model. As expected, n and €
shrinkage was high (>20%) due to the sparseness of the data. Weight was found to show a
statistically significant effect on both clearance and volume of distribution. An overview of

the final parameter estimates is presented in Table 1.

7.5 mg/kg 15 mg/kg ' 40 mg/kg

0.10-

Naproxen concentration (mg/mL)
5
|

T T T T T T T T T T T T
0 5 10 15 20 250 5 10 15 20 250 5 10 15 20 25
Time afer dose (hrs)

Figure 4: Naproxen concentrations vs. time profiles after oral administration of 7.5, 15 and 40 mg/kg
to rats. The dots represent observed concentrations, whereas the solid line represents the
population predicted profiles.
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Table 1. Final parameter estimates

PK Parameter

Ka (h™)
CL/F (L/h)

V/F (L)

F1yifr
SLOPEWT,CL/Fa
SLOPEwr v/ °

BSV in Ka (%CV)
BSV in CL/F (%CV)
BSV in V/F (%CV)

Residual variability

PGE Parameter

10 (ng/ml)
IC50 (mg/L)

HILL
BSV in 10 (%CV)
BSV in 1C50 (%CV)

Residual variability

Residual variability (additive)

TXB Parameter

10 (ng/ml)
IC50 (mg/L)

HILL
BSV in 10 (%CV)

Residual variability

Residual variability (additive)

Final estimate

3.7
6.42

67

2.47
0.00531
0.00229
15.8
43.0
12.7
41.59

Final estimate

57.97
0.0132

1.51
12.69
33.91
14.76
1.43

Final estimate

192.48
0.000599

1 FIX
42.78
14.76
33.62

Precision (CV%)

14.95
7.85

7.43
5.75

196
13.46
66.25
8.97

Precision (CV%)

5.09
8.27

49.3
63.0
41.4
354

Precision (CV%)

®Covariate relationship was modelled as CL/F*(1 + SLOPEwr ci/r *(WT - 296.60))
®Covariate relationship was modelled as V/F*(1 + SLOPEwrv/r *(WT - 296.60))
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Pharmacokinetic-pharmacodynamic models

Given the fast onset of effect, the naproxen-induced inhibition of PGE, and TXB, could be
characterised by direct sigmoid Iyax models. The final model for PGE; included estimates of
Hill coefficient different from 1, whereas for the TXB this parameter was fixed to 1. Clearly,
the doses used in this experimental protocol has led to considerable level of inhibition of
TXB,, which nears complete suppression at the highest concentrations. A similar pattern
was observed for PGE,, but the profiles are much more variable (Figure 5). No relevant
deviation or model misspecification was observed in any of the diagnostics measures. In
addition, NPDE plots suggested no significant discrepancies across the range of predicted
concentrations (Figure 1S, supplemental material). Yet, it should be noted that 24-hour TXB,
samples were not well predicted due to a rebound effect at the end of treatment, which

could not be captured by the model.

39d

Biomarker concentration (ng/mL)

axL

T
. 0.02 0.04 0.06 0.08
Naproxen concentration (mg/mL)

Figure 5: Pharmacokinetic-pharmacodynamic relationships for PGE, and TXB,, after administration of
increasing doses of naproxen (7.5, 15 and 40 mg/kg). Data pooled from animals treated during 1, 2
and 4 weeks. Pharmacological effects are assumed to be time independent, i.e., no tolerance or
hypersensitisation is observed at the different durations of treatment. Dots represent observed
levels of PGE, and TXB,, whereas the solid line depicts the population predicted inhibition.
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Exposure calculation

The predictive check shown in Figure 6 was performed to assess the model’s ability to
accurately predict drug exposure, as defined non-compartmentally in terms of AUC and Cyax.
It shows that model predictions are slightly different from the observed exposure estimates
obtained parametrically. As depicted in the predictive check for derived measure of
exposure (see Figure 2S, supplemental material), this bias may remain undetectable when
data analysis is performed by non-compartmental methods, which handle variability as
random noise. By contrast, hierarchical modelling of pooled data assumes part of variation
to be caused by inter-individual differences in the underlying parameters that determine the
time course of drug concentrations. With the exception of the last time point of the 40
mg/kg dose group, Cuax and AUC values derived by NCA are systematically overestimated.
In addition, it should be noted that one cannot discriminate the impact of drug accumulation
based on NCA results. Naproxen accumulation over time upon repeated dosing is evident
from the model-predicted. Model predicted-curves shows also reveal a risk of significantly

higher than average AUCs for some individuals in the 40 mg/kg group.

Simulations

Figure 7 shows the PKPD relationship for PGE, and TXB, obtained from the pooling of data
from the present study as compared to the ex vivo results published by Huntjes and
collaborators (Huntjes et al., 2006). In contrast to the observed pharmacological profile
using human blood, which suggests similar 1Cgos for the inhibition of both PGE, and TXB,,
naproxen was found to show higher potency in terms of TXB inhibition in rats. These
differences strengthen our assumption that the differences in homeostasis in pre-clinical
species must be considered when interpreting toxicology and safety pharmacology findings.
On the other hands, the PKPD curves reveal two important features of the safety
pharmacology of naproxen. First, it can be observed that the exposure range associated
with the LOAEL dose, where Gl toxicity was evident in rats lies above the predicted ICg
values in rats. Second, one can see that the exposure range observed after the currently

recommended doses of naproxen also lies above the 1Cgg estimates in humans. This finding
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is in agreement with the assumption that Gl toxicity is induced by high degree of COX-1

inhibition.
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Figure 6: Model-based predictions and estimated non-compartmental values for systemic exposure
(AUC) and peak concentrations (Cyax) after single and repeated oral administration of 7.5, 15 and 40
mg/kg naproxen to rats. Observed exposure (triangles and dotted line) is shown together with model
predicted parameter estimates. Solid line represents the predicted median values, whereas the
shaded area indicates the 95% prediction intervals. The discrepancy between model predictions and
observed AUC and Cyax values is not a result of model misspecification. It is caused by the bias from

non-compartmental analysis.
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Figure 7: Estimated PKPD relationships for TXB, and PGE, in rats. The solid curve with shaded area
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terms of the sensitivity to the thromboxane (anti-platelet aggregation) effects. The orange-shaded
bar corresponds to therapeutic levels (Css to Cmax) observed at the approved doses of naproxen.
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Discussion

Historically, general toxicity experiments have been designed with the primary objective of
deriving estimates of systemic drug exposure and a safety threshold, i.e., the NOAEL
(Parasuraman, 2011). Another major goal of repeat-dose general toxicology experiments is
to identify target organs. However, important limitations in protocol design such as the
sparseness of the data collected, the inferences made from separate satellite groups and the
descriptive nature of the data analysis preclude their use for further characterisation of
concentration-effect relationships. There is barely any consideration about the degree of
receptor occupancy or target engagement at tissue and organ levels. In addition,
experimental and statistical methods rely on sparse sampling schemes which prevent the
identification of the different sources of variability at the proposed dosing regimens (Chain
and Dubois et al., 2013). Here we have attempted to circumvent these conceptual and
experimental limitations using a biomarker guided approach in which the primary objective
is not to obtain a NOAEL, but rather to characterise the exposure-effect relationships

associated with the observed adverse events.

Firstly, it should be noted that by incorporating data from typical pharmacokinetic studies at
pharmacological levels with serial sampling we were able to accurately describe the changes
in drug absorption and disposition which occur with increasing dose levels. Secondly, we
have analysed all the data generated on toxicokinetics and toxicodynamics in a single,
integrated model, rather than separately according to the traditional group by group
comparison. Finally, we performed sequential pharmacokinetic-pharmacodynamic
modelling of the data using the so called PPPD approach, which ensures that
pharmacodynamic parameter estimation properly accounts for the individual uncertainty in
pharmacokinetics (due to sparse sampling) in those animals where biomarkers information
was available (105). In summary, this approach combines the necessary statistical rigour for

accurate characterisation of the exposure-effect relationship.
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From a conceptual point of view, it is worth mentioning that despite current understanding
about the contribution of drug target to the safety profile of a compound, chronic toxicology
protocols still rely on the assumption that unwanted events will occur at some frequency,
making the conclusions about risk highly dependent on the experimental conditions (Lazarou
et al.,, 1998; Guzelian et al., 2005; van Vliet, 2011). We understand that during drug
development there will be instances in which the mechanisms of toxicity may not or cannot
be established. In fact, from a regulatory perspective, this information is actually only very
rarely obtained. In addition, in many cases toxicity may result from off-target effects and
biomarkers may not be available. This is a common feature in some therapeutic areas where
intended pharmacology does not involve host targets (e.g., antiviral drugs, antibiotics). In
such circumstances, a model-based approach would still be preferred to standard methods,
but drug exposure rather than biomarkers should be considered. Yet, these limitations
should not preclude us from advancing developing more integrated protocols, incorporating
measures of primary and secondary pharmacological activity into the assessment of safety

and toxicity.

Our experiments yielded suitable data for modelling of the inhibitory effects of naproxen on
TXB, and PGE; as shown by the goodness of fit diagnostics. Moreover, our analysis enabled
the incorporation of non-linearity in the pharmacokinetics of naproxen, which occurs at high
dose levels (Runkel et al.,, 1974; Josa et al., 2001). Unfortunately, due to the lack of
intravenous data, it was not possible to establish whether dose-dependent
pharmacokinetics results from incomplete absorption, possibly limited by surface area,
saturations of transporters or by first-pass metabolism. Our findings also corroborate the
data published previously by Huntjens et al. (2006). Moreover, the characterisation of the
PKPD relationships for TXB, and PGE, provides a more useful summary of findings than one
normally can deduce from the reporting of observed drug exposure, NOAEL and LOAEL,
which, in general, are gender and strain-dependent (Urushidani et al., 1978; Nicolson et al.,
2010). The predicted levels of biomarker inhibition across a wide concentration range and

the evidence from human in vitro experiment indicates how interspecies differences in the
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underlying pharmacological effects may be used to translate safety findings. The incidence
of adverse events at exposure levels that correspond to ICgo values suggests a possible causal
association between adverse events and prostanoids (Laine et al., 2008). Hence, it can be
concluded that both analgesia and gastrointestinal adverse events seem to occur at

therapeutic drug levels.

Biomarkers of drug effects as proxy of drug exposure

Here we make a plea for the use of biomarkers of pharmacology as the basis for defining
interspecies validity and interpreting risk in humans. Our investigation shows how a model-
based approach can be used to integrate pharmacokinetic and pharmacodynamic data for
the evaluation of safety pharmacology and long term toxicity, enabling the incorporation of
biomarkers of pharmacological activity into the assessment of safety margin and other
measures of risk. In addition, these results emphasise the role of construct validity to
account for the potential impact of interspecies differences in the underlying exposure-
response relationships (Knight, 2007). As indicated by the level of biomarker inhibition
observed at the selected doses inferences from the preclinical data may be used to infer
drug effects at comparable levels of inhibition in humans. Naproxen’s prescriber
information provides data on the incidence of gastro-intestinal side effects varying between
1 and 4% with increasing doses. Despite comparable drug concentrations in rats receiving
doses up to 40 mg/kg naproxen and in patients taking therapeutic doses, interspecies
differences in the sensitivity to the effects of naproxen on TXB, may explain the lower

incidence of adverse events in humans as compared to the findings in rats.

Clearly strategies are needed in the evaluation of long term safety and toxicity that increase
full and impartial examination of existing data before generating new evidence using
experimental protocols. Understanding of the underlying pharmacokinetic-
pharmacodynamic (PKPD) relationships becomes therefore a pre-requisite to improve the

methodological quality and minimise the consumption of animal and other resources within
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experiments of questionable utility. As stated by Perel et al. (2007), the failure of animal
models to adequately represent chronic disease processes in humans may be one of the
fundamental causes of the poor predictive value of preclinical data. Yet, the authors seem
to overlook the relevance of the underlying PKPD relationships to explain concordance or
discrepancy between animal and clinical data. In addition establishing the correlation
between drug exposure and pharmacodynamics, another advantage of a biomarker-guided
evaluation of safety is the possibility to make inferences about long term effects. The
implications of chronic treatment, expressed in terms of total daily dose or systemic
concentrations may not be as sensitive to allow characterisation of risk. In our investigation
with naproxen, one of the major concerns has been the potential for cardiovascular risk
associated with the chronic use of COX inhibitors (Figure 3S). More specifically, an issue that
remains unanswered is how to best predict the implications of long term suppression of
COX-2 activity. Evidence exists for the role of PGE, and other prostanoids, which suggests
their contribution to tissue healing and repair (109). Information on the levels of PGE2
inhibition (instead of systemic concentrations or dose level) may facilitate the interpretation

and translation of chronic safety data.

Integrated design and analysis of safety pharmacology and toxicology protocols

Several challenges exist to successfully translating the outcomes from animal research to
humans in a clinical setting. Despite the efforts to account for biological and genetic
differences between species and strains in the interpretation of findings, these differences
are often disregarded in the design of animal studies (Hooijmans et al., 2013). In addition,
the statistical methods used to analyse results are often questionable (Kilkenny et al., 2009).
These failures have prompted to the use of systematic reviews to assess the predictive value
of non-clinical experiments. Yet these reviews have not provided a solution to the source

problem, i.e., the rationale for evidence generation in safety pharmacology and toxicology.

238



There are a few additional limitations in the current investigation which have not been
previously mentioned. Some mechanisms of action may be too complex or poorly
understood to be characterised by PKPD modelling of data arising from a general toxicity
study, even if biomarkers have been collected. Multiple downstream markers may present a
significant confounder problem which cannot be avoided without additional data. This
cannot be easily addressed by the proposed analysis method and becomes a drug
development issue. Yet, the use of a parametric approach, and more specifically of
hierarchical mixed-effects modelling, to inform experimental design and dose selection
represents an important step in the advancement of translational toxicology, both from a
biological and statistical perspective. In this context, the design of the present study was not
intended to replicate a full toxicology programme for a new chemical entity. Our intent was
to show how data obtained from different experimental protocols can be integrated to
optimise the design of new experimental protocols as well as to characterise drug exposure
and the underlying pharmacological effects in a strict quantitative manner. In fact, we
acknowledge that evaluation of the gastrointestinal effects without prior consideration of

expected pharmacology and available assays would have been far less informative.

Important lessons and recommendations can however be derived from our study which are
applicable other compounds across a wide range of mechanisms of action. First is the need
to revisit the dose rationale for the evaluation of safety pharmacology and toxicity. Whilst
the concept of safety margin is appealing, it does not address the main issue one faces with
regard to the therapeutic use of drugs, which is the understanding of the impact of sustained
pharmacological effects associated with the primary target or receptor system on which the
drug acts. Currently, doses are selected in experimental protocols, which exceed by far the
levels required to achieve maximum pharmacological effects and often even the levels
required for maximum receptor binding. Secondly, safety pharmacology and toxicity
findings are analysed independently from existing data on the pharmacokinetics and
pharmacodynamics of the compound of interest, making the interpretation of findings an
empirical process. Pharmacokinetic and pharmacokinetic-pharmacodynamic modelling

provides a framework for data integration, enabling a distinction between drug- and system

239



specific properties (Danhof et al., 2008). Of relevance is the possibility to accurately
characterise background adverse event rates as well as to establish correlations between
primary and secondary adverse events. Lastly, the use of different measures of (systemic)
exposure as a proxy for the underlying risk or hazard needs to be revisited. Advancements in
imaging, pathology, genetic and genomic research clearly show that overt symptoms and
signs arise from drug action as well as from the pharmacological effects induced at cellular
and tissue levels. The availability of physiologically-based or semi-mechanistic
pharmacokinetic and pharmacokinetic-pharmacodynamic models may provide a stronger
basis for the assessment of risk in humans. In addition to gaining further understanding of
possible nonlinearity in drug disposition, the possibility to estimating drug-specific
parameters, such as the estimates of potency or ICg values, offers measures of the
pharmacological activity during the course of treatment, which cannot be intuitively derived

from systemic exposure data, such as Cmax or AUC values.

In summary, we have shown the benefits of implementing a model-based approach for the
evaluation of the safety profile of naproxen after chronic administration. Furthermore, our
investigation illustrates how PKPD relationships can be used to translate pre-clinical findings

taking into account interspecies differences in the underlying pharmacological effects.
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Supplemental material

Figure 1S: Population pharmacokinetics and pharmacokinetic-pharmacodynamic modelling of TXB, and PGE, inhibition by naproxen. For each biomarker,
goodness-of-fit plots show observed vs. population predicted concentrations (upper left) and conditional weighted residuals vs. time (upper right). Mid and
lower panels depict the NPDE summary, including QQ plot and histogram of the normalised discrepancy between observed and predicted values. X denotes
the independent variable, i.e., time. Samples are clustered around 0, 1, 2, and 4 weeks.
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Supplemental material

Figure 2S. Predictive check for derived measures of exposure, as determined by non-compartmental
analysis. Observed values (triangles and dotted line) are shown to occur within the 95% prediction
intervals. Solid line depicts the predicted median, whereas shaded region indicates the 2.5" and
97.5%" percentiles. Note that predicted and observed estimates obtained by non-compartmental
analysis differ from model-based predictions shown in Figure 6.
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Figure 3S: Schematic representation of COX-2 selectivity with incidence of cardiovascular (CV) and
gastrointestinal (Gl) risk. Increasing degrees of selectivity for COX-2 are associated with augmented
CV risk, whereas increasing degrees of selectivity for COX-1 are associated with augmented Gl risk.
The relative size of the circles indicates the variation in sample sizes among the trials. The average
selectivity for each drug is presented ranging from drugs that are highly selective for inhibition of
COX-2 (e.g., etoricoxib) to those that are more selective for COX-1 (e.g., naproxen). Given the
interindividual variability in response to these drugs, selectivity is a continuous variable at the
individual level. ETORIOVER, VIGOR, MEDAL, TARGET and CLASS refer to the overview of Phase Il and
Il trials with COX inhibitors. (Reprinted with permission from Fitzgerald, 2007)
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Abstract

Despite increasing relevance of the use of biomarkers as predictors of drug effects,
traditional toxicology protocols continue to rely on the experimental evidence of the link
between adverse events (AEs) in animals and estimates of systemic drug exposure (e.g.,
Cmax and AUC). Furthermore, biomarkers may facilitate the translation of findings from
animals to humans. Thus, combined with a model-based approach, biomarker data has the
potential to predict long term pharmacodynamic effects arising from prolonged drug
exposure. Here, we use naproxen as a paradigm drug to explore the feasibility of a
biomarker-guided approach for the prediction of long term AEs in humans. An experimental
toxicology protocol was set up for the evaluation of effects of naproxen in rats, in which four
doses were tested (7.5, 15, 40 and 80mg/kg). In addition to AE monitoring and histology,
sparse blood sampling for the assessment of exposure, thromboxane B2 and prostaglandin
E2 were also collected. Nonlinear mixed effects modelling was used to analyse the data and
identify covariate factors on the incidence and severity of AEs. Modelling results show that
besides drug exposure, maximum PGE; inhibition and treatment duration are also predictors
of Gl ulceration. Although PGE, levels were clearly linked to the incidence rates, it appears
that ulceration severity is better predicted by measures of drug exposure. These results
show that the use of a model-based approach provides the opportunity to integrate
pharmacokinetics, pharmacodynamics and toxicity data, enabling optimisation of the design,

analysis and interpretation of toxicology experiments.

250



Introduction

A key purpose of preclinical general toxicity and safety pharmacology studies is to support
the safe dose selection in humans. In particular, the need to understand the risks associated
with long term drug exposure falls within the remit of these two disciplines. Preclinical
toxicity data consists of a mixture of acute, mid-term and chronic toxicity data, however,
identification of long term risks often happens in Phase IV post marketing surveillance.
Earlier identification of potential risks would enable the use of evidence-based risk
mitigation strategies. However, understanding of time-dependent physiological changes
arising from repeated exposure to a drug is required to identify and assess risks associated
with long term use of medicinal products. Such an objective may be hampered by the use of
empirical experimental protocols, as they render the extrapolation of findings across species
and across molecules rather difficult, preventing accurate translation of the pharmacological
properties to man (Bai et al. 2013, Della Pasqua, 2013). Among other things, differences in
sensitivity and target organ specificity continue to represent drawbacks for most clinical
pathology parameters traditionally used for monitoring organ integrity both during
preclinical toxicological assessment and clinical safety testing (Connelly et al., 1991). Clearly,
efforts are required to ensure the availability of tissue- and mechanism-specific data for
accurate interpretation of acute and long term safety findings. Over the last few years,
several novel toxicity biomarkers have emerged as sensitive tools for detection, monitoring,
quantification and prediction of safety and toxicity (O’Brien, 2008, Xie et al., 2013).
Nevertheless, little attention has been given to the possibility of evaluating safety and
toxicity using a mechanism-based approach whereby adverse events are assessed taking into
account the underlying pharmacokinetic-pharmacodynamic (PKPD) properties of the
molecule (McGonigle et al., 2013). In this context biomarkers can be of great relevance for
drug discovery and development as they offer the possibility to discriminate between acute

and chronic term treatment effects.
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In the current investigation we show therefore how pharmacokinetic-pharmacodynamic
(PKPD) modelling can be used to unravel the relationship between chronic drug exposure,
pharmacodynamic effects and overt symptoms and signs. The concept is illustrated by the
correlation between naproxen concentrations, inhibition of prostaglandin E, (PGE,) and
thromboxane B, (TXB,) and gastric ulceration in rats. Non-selective NSAIDs, such as
naproxen, act by blocking cyclo-oxygenase (COX), which catalyses the rate-limiting step in
the formation of prostanoids from arachidonic acid (Chakraborti et al., 2010). Continuous
COX-1 inhibition following prolonged administration of non-selective COX inhibitors is known
to induce gastrointestinal adverse effects, especially ulceration and haemorrhagic bleeding.
Unfortunately, at present the dose selection of COX inhibitors disregards whether maximum,
long-lasting blockade of either enzyme systems is strictly required for anti-inflammatory,
analgesic response and how its pharmacology relates the observed adverse events (Huntjens
et al.,, 2006). These considerations become essential when evaluating the side effects
associated with long term use of COX inhibitors, which include gastric and cardiac adverse
events. From a pharmacological perspective, various investigations have shown that both
COX-1 and COX-2 mRNA and protein are either constitutive or inducible in specific areas of
the stomach of animals and humans (Morita, 2002, Coruzzi et al., 2007) (Figure 1). Hence, it
can be anticipated that some balance between the activity of either isoform may be required
to ensure normal physiological function. On the other hand, COX-1-deficient mice show no
evidence of spontaneous gastric injury despite the absence of COX-1-derived prostaglandins
(Langenbach et al., 1999). Yet, the administration of NSAIDs-induced gastric damage can be
invariably related to COX-2 inhibition (Loftin et al., 2002, Wallace, 2008, Takeuchi, 2012). In a
previous investigation, we have shown how these safety biomarkers can be used in
conjunction with general toxicity protocols to predict the safety window in humans using an
empirically derived safety threshold; the no-observed adverse- effect level (NOAEL) (Sahota
et al., 2014). The NOAEL approach has many statistical and experimental limitations which
have been documented elsewhere (Dorato et al.,2005, Sahota et al., 2014). Most
importantly, by dichotomising the exposure-risk relationship using a threshold, the NOAEL
approach precludes quantitative risk assessment. Here we demonstrate that the availability

of a mechanism-based PKPD model together with the application of probabilistic modelling
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to the adverse event data not only provides a quantitative rationale for determining

effective and safe dosages following chronic treatment in humans, it also enables effective

data integration, offering a stronger basis for extrapolating pre-clinical findings into humans

(Rohatagi et al.,, 2007). Moreover, predictive modelling enables testing of different

parameterisations of biomarker response and drug exposure to enable exploration of causal

factors driving risk. This is ultimately provides a flexible evidence-based framework for risk

management and risk mitigation strategies in humans.

Luminal factors: acid, pepsin, mucus, and bicarbonate
Growth factors: bFGF, EGF, TGF-a, etc.
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(Upper panel) Diagrammatic presentation of ulcer healing and factors affecting ulcer

healing. In the intact mucosa, cyclooxygenase 1 (COX-1) is the predominant COX isoform in the

gastrointestinal tract. In contrast, during wound healing, expression of cyclooxygenase 2 (COX-2),
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rather than COX-1, is strongly increased in the repair zone. (Lower panel) Gastric effects of non-
selective and COX-2 selective NSAIDs in normal or damaged gastric mucosa. The different effects of
non-selective or selective COX-2 inhibition are explained by differences in COX-2 tissue expression
(printed with permission from Halter et al., 2001, Coruzzi et al., 2007)

In contrast to traditional safety extrapolation methods such as allometric scaling, which
relies primarily on the estimation of safe exposures based on the human equivalent dose
(HED), a mechanism-based approach can account for the variability in drug elimination or
differences with respect to physiological, biochemical (e.g., expression of drug metabolizing
enzymes), and other time-variant factors (e.g., disease). These time-variant factors may
become more important as clinical trials move from acute to chronic interventions in

patients (in Phase Il and Ill).

In spite of known interspecies differences exist in Gl-related morbidity, we hypothesise that
the characterisation of the relationship between markers of COX inhibition and adverse
events enables the prediction of safety windows for chronic treatment with selective and
non-selective COX inhibitors. In fact, various studies provide further evidence of a
multistage pathogenic mechanism for NSAID enteropathy by which the topical action of
NSAIDs may initiate mucosal damage, which is then converted to macroscopic damage by
the concomitant inhibition of COX, with decreased mucosal prostaglandins, presumably

because of their effect on the microvasculature (Fornai et al., 2014).

Methods

The present investigation is based on a previously published general toxicity study in rats by
Sahota et al. (2014), with the non-selective COX inhibitor naproxen. Detailed description of
the study design, strain of rats, sample collection and analysis and PKPD modelling details

can be found in Sahota et al. (2014).
Summary of study design: Three different treatment durations were investigated (1 week, 2
weeks and 4 weeks). Rats were given daily doses of naproxen by oral gavage. There were

four cohorts per treatment duration receiving 0, 15, 40 and 80 mg/kg/day doses. Satellite
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animals received identical doses to toxicology groups and were used for plasma drug
concentration (PK) and biomarker (PD) data measures, TXB, and PGE,. A optimised
composite sampling scheme was used and sampling too place on days 1, 7, 14 and 28.
Details regarding sample analysis can be found in Sahota et al. (2014). Endpoints in
toxicology groups included adverse events, including Gl histology and terminal PK and PD

measurements. An overview of the study protocol is depicted in Figure 2.

1wk  2wks 4wks

1wk
1mg/kg Placebo @
3mg/kg
7.5mg/kg
10mg/kg

©) 010204 115 2 8 24 15mg/kg

Time (h)

DMPK (group 1)
40mg/kg

© Samples (DMPK)

@ Toxicology (group 2)

71\47 Samples (toxicology)

‘ Satellite (group 3)
4

Samples (satellite) time

Figure 2 : Schematic representation of general toxicity study.

Histology: Histological evaluation of the stomach was performed to establish a correlation
between acute and long term adverse events. After euthanasia, stomachs were removed
immediately and were cut open along the greater curvature and washed with warm saline.
The inner surface was photographed to allow the measurement of the area covered by
hemorrhagic ulceration. The area of ulceration was determined under a dissecting

microscope. Gastric ulceration was measured as percentage stomach surface area affected
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by ulceration the software Image J version 1.43 (Abramoff et al., 2004) was used for
calculating ulcer area and total stomach surface area. The person who performed the

ulceration measurement was blinded as to animal ID and treatment group.

PKPD model: The PK and PD data of naproxen were assessed by nonlinear mixed effects
modelling, as implemented in NONMEM version 7.2.0. The pharmacokinetics of naproxen in
plasma were best described by a one-compartment model with first order absorption, first
order elimination and nonlinear dose-dependent bioavailability. Weight was included as a
significant covariate on clearance and volume of distribution. The PK/PD models for both
biomarkers, PGE, and TXB, were characterised by direct sigmoid Iyax models. Parameter
values, precision estimates and goodness of fit diagnostics are described in Sahota et al. (in

press).

Data analysis

Final model parameters describing the gastric ulceration incidence and percentage gastric
area affected were performed via the numerical integration routine ADVAN13 in NONMEM
7.2.0 using FOCE with Laplacian estimation. Convergence was determined by successful
minimisation and covariance step. All fitting procedures were performed on a computer
(AMD-Athlon XP-M 3000+) running under Windows XP with a FORTRAN compiler (Compaq
Visual Fortran, version 6.1). Data processing, management and graphical display were
performed in R (R Development Core Team, 2012). Model diagnostics and validation were
performed according to graphical and statistical criteria. Goodness-of-fit plots, including
observed (OBS) versus individual prediction (IPRED), OBS versus population prediction
(PRED), conditional weighted residuals (CWRES) versus time and CWRES versus OBS were

used for diagnostic purposes (104).

Given the purpose of the study in discriminating between acute and long term effects of
naproxen, different parameterisations were considered for describing drug effects during

the course of treatment. Model-based exposure and biomarker levels from the final PKPD
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model were calculated for each individual animal using post-hoc empirical Bayes estimates

(using MAXEVAL=0). Details of the calculation methods are described in Table 1.

Table 1: Calculation of biomarker response and exposure variables. Individual predicted naproxen
concentrations and biomarker levels are denoted by C,, (t) and BC,(t), respectively.

Parameter name

Area under drug concentration vs. time profile

Area above biomarker concentration vs. time

profile

Time under threshold (80% inhibition)

Cumulative area under drug concentration vs.

time profile

Cumulative area over biomarker concentration

vs. time profile

Maximum drug concentration over 24 hour

period

Maximum biomarker inhibition over 24 hour

period

Symbol

257

AUC

AOC

TUT

CAUC

CAOC

CMAX

CMIN

Calculation

t
[ e
t—24

t
BC,(0)— |  BCydt

t—24

t
f 1pc,<28c,0)dt
0

t
[
0

t
BC,(0) — JO BC,dt

max ({Cp(s): t—24<s<t}

min ({BCp(s): t—24<s<t}



Ulceration model: Since each histological examination was performed once per

animal, no between-subject variability could be estimated. All random effects are
therefore accounted for with the residual variability structure. Nevertheless, both
the incidence and severity of ulceration were considered during modelling.
Incidence was modelled as the probability of occurrence of ulceration, U; ; at the
time of sacrifice, t;, and severity was modelled as PER;.q, j, the % gastric surface

area affected, when ulceration is observable at the time of assessment .

A logit transformation was used to describe the incidence of stomach ulcers. The general

equation describing the incidence of ulcers is given by:

EXP(91+Zk Bk*COVi,]-,k)
1+EXP(91+Zk Bk*COViljlk)

PU;; =1)= (equation 5)

where P(U;;) represents the probability of the presence of ulceration in individual i at time
tj. COVij« is the K™ covariate value for individual i and time tj. 01 is a parameter governing

the baseline logit probability and 0 \is the coefficient of the K" covariate relationship.

For technical reasons, the severity of ulceration, i.e., percentage gastric surface area affected
was log-transformed. The basic model did not include any covariates on response. Two
fixed effect model parameters were used, 8, and 6,.

PU,; = 1) = EXP(6;)

= T1EXP (0L (equation 6)

0, lf Ul',]' = 0

PERpred,ij = {92’ if U =1 (equation 7)

log(PERobs,i,j) = log(PERpred,i,j) + Ei,]' (equation 8)
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where PERgys;j and PERpq,; represent observed and predicted percentage ulceration,
respectively, in individual i at time ti. €jlis the random effect describing residual variability

with mean 0 and estimated standard deviation.

Covariates: To explore the relationship between drug exposure, biomarkers and adverse
events over the course of treatment, different secondary pharmacokinetic and
pharmacodynamic parameters expressing systemic exposure and pharmacological activity
were explored as covariates on the logistic model parameters using the stepwise covariate
method (SCM) in PsN (107). Potential influential factors on the incidence of ulcers included
body weight, age. Time measured in days (DAY) was also tested used as a covariate as
surrogate for time-dependent effects such as healing, tolerance or other mechanisms
influencing ulceration incidence and/or severity. For the percentage gastric area affected,
PER, the specification of the covariate relationship was based on the diagnostic plots of the
basic model. Linear, exponential and hyperbolic (sigmoid Emax) functions were considered
during covariate model building. A hockey-stick function was also tested to describe toxicity
only manifesting above a threshold exposure/biomarker level. The linear relationship was

characterised by:

0, lf Ui,j = 0

PER edii =
pred.ij {91 + (6sL0pE * (COV — median(COV))), if U;j =1

where 6, is population prediction and 8y, is the slope of relationship between parameter

and (centred) covariate

The exponential relationship was similarly characterised by:

0, lf Ui,j == 0

pred,ij {01 * eXP(HSLOPE * (COV — median(COV))) ’ if Ui,j =1

Since data were sparse and maximum effect may not have been reached, maximum effect

was fixed to 100% during the evaluation of the sigmoid Emax function.
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O, lf Ui,j =0

PER L= 100+COVY
pred,i,j 1

0, ¥ ————, if U;; =
27 covsoY +covy’ f Ui
where Yis an estimated Hill coefficient.

Covariate relationships were centred by the median value of the covariate so that in this

case PERpeq,ij = 02, as in the basic model.

(100-8)median(cov)Y
0

COVSOV =

The hockey stick function was implemented according to the following function:

91, lf Ui,j = 0 and COV < HTHRESH

PER ij = i
pred,ij {91 + (HSLOPE « (COV — GTHRESH)) ) if Ujj =1and COV = Oryresy

where Oryresy is the threshold value of the covariate where toxicity begins.

Covariates were incorporated into the model by stepwise forward inclusion. A significance
level of p<0.01 was used for inclusion, which represented a drop of least 6.63 units in the
objective function for each additional parameter. A final evaluation of the statistical
significance of all factors identified during the previous step was performed by subtracting
each covariate individually (backward elimination). The final structural model (i.e., fixed
effects model) included only those covariates whose subtraction resulted in a decrease of at
least 6.63 units in the objective function (p<0.01). Finally, to investigate model uncertainty a

bootstrap SCM was performed to estimate covariate inclusion probabilities.

Model validation: The performance of the ulceration models were assessed by numerical

and visual predictive checks. To that purpose, 1000 data sets were simulated with the final
model parameter estimates. The mean and the 95 % confidence intervals were calculated
for the incidence and percentage gastric area affected. Validation procedures also included

normalised prediction distribution errors (NPDE), which are based on the assumption that
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the normalised (de-correlated) prediction distribution errors (discrepancies) are normally
distributed (Comets et al., 2008). One hundred datasets were simulated using the final
model, which was then tested for the assumption of normality of the prediction distribution

errors.

Results

In total, 80 histological examinations were performed on ontoxicology group animals. These
revealed gastric ulceration in all dose levels; therefore no NOAEL could be obtained for any
of the treatment durations (Figure 3). All animals receiving 80 mg/kg in the 1 week cohorts
suffered from moderate weight loss. The animals in this cohort were immediately sacrificed,
and due to ethical reasons this dose level was discontinued. Different dose levels of
naproxen were considered for the two-week and one-month cohorts, which received lower
doses (7.5, 15, and 40mg/kg). Histological examination and terminal blood samples were

performed on these animals. No other adverse events were reported.

Logistic models for gastric ulcerations

Empirical analysis of this data revealed some peculiarities in data where there was no
significant dose-response until week 4. In fact, the data revealed a possible negative dose-
response relationship before week 4. Moreover, the incidence of ulcers was much lower in
the week 4 cohort than in shorter treatment durations. Furthermore, exploratory evaluation
of the relationship between naproxen exposure and biomarker levels instead of dose did not
provide further evidence of an apparent relationship. Physiologically, interpreting such data
is difficult. However, it is plausible that the ulcerative effect is acute and diminishes with
sustained long term exposure. After an initial attempt to describe the data without the use
of covariates, a clear model misspecification was observed. As shown in Figure 4, the
apparent negative dose-toxicity relationship for week 1 and week 2 was not replicated by

final model predictions.
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Figure 3. Plots of the observed ulcer incidence (left) and severity (right). Dots in the left plot show observed percentage of
total animals in each cohort manifesting Gl toxicity. Ulcer severity is measured as % of stomach area affected by ulceration.

Given the time-dependent effect on the accuracy of this measure, the uncertainty (shaded area) of the regression line is also
shown together with the data.
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Stepwise model building combined with bootstrap methods showed a possible negative
correlation between the incidence of ulceration and treatment duration, indicating an acute
effect dissipating over time (see Figure 5). By contrast, upon incorporation of this time-
dependent effect into the final model, the overall fit improved (Figure 6). CMAX and AUC
were shown not be the primary drivers of toxicity, although these parameters may be

indirectly correlated with risk.

Our attempt to establish a relationship between drug exposure/ biomarker levels and
adverse events revealed clear differences in the sensitivity of explanatory variables used to
describe the incidence of ulcers and ulceration severity. Out of tested relationships, the
maximum inhibition of PGE, was the best predictor of adverse event incidence, with the
bootstrap SCM showing low model uncertainty. On the other hand, cumulative TXB,
inhibition was found to be the best explanatory variable for the severity of ulceration (Figure
7). Other physiologically plausible explanatory factors, such as maximum PGE, inhibition or
DAY (treatment duration) were found to be fraught with significant model uncertainty. The

model parameters for the final model are summarised in Table 2 and figure 5.

Table 2: Logistic model parameters. SE = standard error.

Relationship Description Parameter value  SE

LOGIT Typical value: -0.226 0.305
Logit (P(U;; = 1))

LOGIT — IMAXpge  Covariate: 0.042 64.8%
Logit (additive)

LOGIT — DAY Covariate: -0.066 0.022
Logit (additive)

PER Typical value: 0.21% 17.2%

% gastric area affected
PER — CAUCxs Covariate: Hockey stick  Threshold=94.3% 13%
Slope = 149.9 74%
Residual Proportional error 78% 16%
variability (%)
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Figure 4: Plots of the observed and predicted ulcer incidence (left) and severity (right). Dots in the left plot show observed percentage of total
animals in each cohort manifesting Gl toxicity. Ulcer severity is measured as % of stomach area affected by ulceration. The shaded area is depicts
the 95% uncertainty in population prediction of the model (dotted lines depict the 50th percentile). The model is unable to describe the apparent
negative dose-response trend observed after short treatment durations (i.e., 1 and 2 weeks), indicating that time-independent, long-lasting or
irreversible processes may appear only after long term treatment.
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Figure 5: Model specification uncertainty. Results of boostrap SCM. Bars indicate model selection
probability as determined by the bootstrap SCM ordered from most to least probable. Only top 5
most probable displayed. A wider, flatter distribution reflects high model specification uncertainty,
i.e., two or more different models may be indistinguishable. The overlaid table in the insert shows
numerical details of model selection probability.
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Figure 6: Visual predictive checks. Left panel depicts the prediction distribution for the incidence of ulcers, whereas the solid line indicates the
observed percentage of total animals manifesting Gl toxicity. Right panel shows ulceration severity against predicted normalised
exposure for different variables of interest (AUC= area under the concentration vs. time curve; AOC= area above biomarker concentration vs.
time profile; CAUC= cumulative area under the concentration vs. time curve; CAOC= cumulative area over biomarker concentration vs. time
profile; CMAX = maximum drug concentration over the period of 24h; CMIN= maximum biomarker inhibition over the period of 24h). The shaded
area represents the 95% prediction interval; points represent the actual data. PGE = prostaglandin E,; PK= naproxen concentrations; TXB=
thromboxane E,.
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Figure 7: Differences in the sensitivity of explanatory variables describing the relationship between drug exposure/ biomarker levels and adverse
events, as determined by the incidence of ulcers and ulceration severity. Dashed lines represented median profile of simulated values using the
final model, whereas shaded represents the 95% prediction intervals. AUC= area under the concentration vs. time curve; AOC= area above
biomarker concentration vs. time profile; CAUC= cumulative area under the concentration vs. time curve; CAOC= cumulative area over biomarker
concentration vs. time profile; CMAX = maximum drug concentration over the period of 24h; CMIN= maximum biomarker inhibition over the
period of 24h; IMAX= maximum biomarker inhibition; TOT= time over threshold (i.e., 80% biomarker inhibition); PGE = prostaglandin E,; TXB=
thromboxane E,). See text for details on the units of the independent variables (x-axis). Based on statistical criteria, it appears that maximum

inhibition of PGE, was the best predictor of adverse event incidence. On the other hand, cumulative TXB, inhibition was found to be the best
explanatory variable for the severity of ulceration.
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Discussion

Current practices in toxicology and safety pharmacology rely on the concept of thresholds of
drug exposure (e.g., NOAEL) as a proxy for the risk of adverse events, which are treated in a
mechanism- and time-independent manner. The disadvantage of such an approach is that
long term toxicity can become conflated with acute toxicity, which in turn could be mitigated
or related to entirely different physiological mechanisms (Blantz, 1996, Dom et al., 2012).
Another hurdle to overcome in the assessment of risk is that general toxicity studies are not
designed to characterise the relationship between drug exposure and toxicity, but rather to
explore the boundary between therapeutic and toxic exposures. As such, data can be
uninformative with respect to understanding the causal factors and underlying mechanisms
associated with unwanted pharmacological effects. Clearly, these inefficiencies in
experimental protocol design also violate the principle of the 3 Rs (reduction, refinement
and replacement) and ultimately contribute to biased conclusions about the long term
benefit-risk ratio of an intervention (Balls, 1994). By contrast, the use of a model-based
approach provides the opportunity to integrate safety and toxicity data and assess in a
strictly quantitative manner the contribution of influential factors, namely drug exposure
and biomarkers of pharmacological activity to potential adverse events (Danhof et al., 2005,

Danhof et al., 2008, Bai et al., 2013).

Mechanism-based analysis of long-term safety and toxicology data

From a methodological perspective, general toxicology studies represent a challenge for
model-based analysis techniques since sparse pharmacokinetic data, which are often
derived from satellite animals, need to be linked to adverse event data, which are also
typically sparse. In addition, lack of individual exposure profiles often prevents further
evaluation of the role of relevant physiological or pathophysiological measures, such as
biochemistry, haematology or biomarker data as influential covariates on treatment

outcome. Typical experimental protocols in toxicology research vyield therefore less
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informative datasets, as compared to studies aimed at the characterisation of PKPD
relationships, which are now commonly used in early drug development (Knight, 2007). In
fact, the impact of such limitations has been highlighted in a separate investigation, where
focus is given to the statistical aspects of protocol optimisation and to the use of nonlinear
mixed effects modelling of safety data (Sahota et al., unpublished results). Among other
things, we have identified important design requirements for ensuring accuracy and

precision of parameter estimates for safety thresholds.

An important aspect our analysis was to show that without major modification to existing
general toxicity protocols, it is possible to explore and eventually elucidate the causal
relationship between drug administration, exposure and the incidence and severity of
adverse events associated with chronic therapy. In addition to the integrated analysis of
pharmacokinetic, pharmacodynamic and toxicity data, here we have shown that the lack of
NOAEL in the present study (due the presence of adverse events at all tested dosing levels)
has not prevented us from further characterising the exposure-adverse event relationships.
Yet, the proposed modifications to the study protocol were designed not to prevent existing
empirical analysis methods, including the estimation of non-compartmental parameters
such as composite AUCs. The main modifications consisted in the additional collection of
biomarker data from animals and the choice for treating histological observations as a
continuous data type. The incorporation of biomarkers into the assessment of long term
toxicity enables us to further understand time dependencies and nonlinearities in down-
stream effects related to the primary pharmacological target (Huntjens et al., 2010). Here
we have characterised COX-1 (TXB assay) and COX-2 (PGE assay) activity given their role in
maintaining the homeostasis and integrity of the gastric mucosa (Jackson et al., 2000). As
shown in Sahota et al. (2014), considerable inhibition of both isoforms occurs at all

experimental dose levels.

PKPD relationships as translational factor for the evaluation of risk in humans.
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Characterisation of the relationship between chronic exposure and the incidence and
severity of adverse events is a critical but not sufficient requirement to predict safety and
toxicity in humans. PKPD models need to be parameterised in such a way that it is possible
to discriminate between drug-specific and system-specific parameters. Understanding of
pharmacokinetic differences in conjunction with detailed information on potential system
specific differences, such as varying metabolic capacity, are sine qua non conditions to
translate and accurately interpret safety findings (Zuideveld et al., 2007, Chain and Dubois et
al., 2013). Even when estimation of such parameters may be impractical, inferences can be
made about their magnitude. Undoubtedly, a mechanism-based approach is likely to yield
more reliable predictions than the currently accepted use of empirical cover or safety margin
which disregard any possible pharmacological basis for both observed and unobserved

adverse events.

Specifically with regard to naproxen-induced ulceration, our results need to be interpreted
with caution. First, it should be noted that formal extrapolation of our findings requires
further information on system-specific properties, including potential differences in gastric
mucosa susceptibility to ulceration and expression and activity of isozymes during
maintenance and repair processes. Rats appear to be more susceptible to Gl toxicity than
humans and show gender specific differences in ulceration, so any prediction without
correcting for such differences is therefore likely to overestimate risk (Urushidani et al.,
1978, Lanza et al., 1979). In addition, from a methodological perspective, the use of non-
linear mixed effects modelling as a tool to characterise the determinants of drug effects and
concurrently explain variability, imposes a different approach to statistical inference and
interpretation of experimental results. Here we have shown that multiple models, with
different explanatory variables meet the statistical criteria used for fitting procedures.
These apparently conflicting findings can be interpreted as model uncertainty due to design
or even imprecision in parameter estimation. On the other hand, these same results can
also be considered hypotheses generating, i.e., they shed light into the possible or even
plausible combination of mechanisms underpinning the causal path(s) between drug

exposure and toxicity. This latter aspect is essential for extrapolating data from animals to
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humans. In fact, a study performed by Huntjens et al. (Huntjens et al., 2006). The authors
conclude that the main determinant of the primary anti-inflammatory, analgesic effect is the
degree of target engagement at the tested dose ranges, as defined by the inhibition e of

PGE; and TXB,.

It is known that inhibition of both isoforms is required for Gl toxicity. Hence, despite our
attempt to identify a single biomarker as explanatory variable or covariate on the incidence
of ulceration is likely a result of the interaction between them (White, 2004). However, our
model was unable to estimate interaction terms. Given that selective COX-2 inhibitors cause
less Gl toxicity than non-selective inhibitors (Brzozowski et al., 2001, Rostom et al., 2007),
this limitation could be overcome by incorporation of toxicity data from compounds with
high selectivity for COX-2. Accounting for this interaction will allow prospective prediction of
new compounds with varying selectivity for COX-1 and COX-2. Such integration could be
achieved either within a Bayesian framework through the use of informative prior
distributions, or through simultaneous analysis of the aggregated dataset. Ultimately, such
an analysis may shed light on the optimum degree of selectivity to be obtained for the
selection of future compounds with a superior risk-benefit profile. Moreover, we anticipate
the possibility to extend the approach for the evaluation of NSAID-induced cardiovascular
effects (McGettigan et al., 2006, Schneeweiss et al., 2006, Fitzgerald, 2007). A
comprehensive risk management strategy prior to market authorisation is now in place for
the development of new selective and non-selective COX-inhibitors, which is aimed at the
detection of late onset cardiovascular events associated with long term use of a compound
(Solomon et al., 2004; Motsko et al., 2006). As such, these adverse drug reactions are not
likely to be observed pre-clinically in a traditional chronic toxicity protocol. Efforts are
required to predict the implications of continuous target engagement, instead of simply
exploring safety signals in wide cohorts of patients (Mukherjee et al., 2001, Solomon et al.,

2004).

Potential limitations
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The findings of this study demonstrate the feasibility and potential benefits of proposed
model-based approach for the evaluation of chronic safety pharmacology and toxicity.
However, it should be noted that the accuracy, precision and validity of the method still
relies on the experimental data, which is maximised in terms of its informative value. The
adverse events we have assessed in this study were relatively frequent. Characterisation of
rare or low frequency events may still be difficult, particularly if one cannot make use of
historical data (e.g., unprecedented mechanism) or make inferences about class effects.
The quantification of model uncertainty is not currently routine practice in traditional PKPD
analyses. The present work has shown that even for relatively frequent adverse events,
model uncertainty can be significant and therefore one should quantify it. This likely arises
from the fact that toxicity studies are generally designed to find safety windows and not to
explore the entire exposure-risk profile. We also acknowledge that the absence of
ulcerations in vehicle treated animals and the lack of additional cohort with lower exposure
levels may represent a weakness in our investigation. True baseline rates for ulceration
could not be factored into the analysis, nor was it possible to accurately establish the

adverse event rates at lower doses.

In summary, identification of long term adverse events often arises in Phase IV post
marketing surveillance. Our investigation has shown how a model-based approach can be
used to support early identification of long term adverse events, enabling further integration
and translation of pre-clinical data. Our results also illustrate the importance of quantitative
methods for further understanding of the mechanisms of toxicity. Moreover, the availability
of PKPD relationships may allows us to make inferences about untested doses and dosing
regimens, providing an opportunity for risk mitigation, independently from available

experimental data.
Conflict of interest

The authors declare that there are no conflicts of interest.

272



References

Abramoff MD, Magalhaes PJ, Ram SJ, 2004. Image Processing with Imagel". Biophotonics

International. 11, 36-42.

Bai JP, Fontana RJ, Price ND, Sangar V, 2013. Systems pharmacology modeling: an approach
to improving drug safety. Biopharm Drug Dispos. doi: 10.1002/bdd.1871.

Balls M, 1994. Replacement of animal procedures: alternatives in research, education and

testing. Lab Anim. 28, 193-211.

Blantz RC, 1996. Acetaminophen: acute and chronic effects on renal function. Am J Kidney

Dis., 28(1 Suppl 1):S3-6

Brzozowski T, Konturek PC, Konturek SJ, Sliwowski Z, Pajdo R, Drozdowicz D, Ptak A, Hahn
EG, 2001. Classic NSAID and selective cyclooxygenase (COX)-1 and COX-2 inhibitors in healing

of chronic gastric ulcers. Microsc Res Tech. 53,343-353.

Chain A, Dubois V, Danhof M, Sturkenboom M, Della Pasqua O, 2013. Identifying the
translational gap in the evaluation of drug-induced QTc-interval prolongation. Br J Clin

Pharmacol. 76, 708-24.

Chakraborti AK, Garg SK, Kumar R, Motiwala HF, Jadhavar PS, 2010. Progress in COX-2
inhibitors: a journey so far. Curr Med Chem. 17(15), 1563-93.

Capone ML, Tacconelli S, Sciulli MG, Anzellotti P, Di Francesco L, Merciaro G, Di Gregorio P,
Patrignani P, 2007. Human pharmacology of naproxen sodium. J Pharmacol Exp Ther. 322,

453-60.

Comets E, Brendel K, Mentre F, 2008. Computing normalised prediction distribution errors
to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput.

Methods Programs Biomed. 90, 154-166.

273



Connelly JC, Bridges JW, 1991. Species variation in target organ toxicity. In: Target Organ
Toxicity. Cohen GM (ed). CRC Press, Boca Raton, Florida, 89-115.

Coruzzi G, Venturi N, Spaggiari S, 2007. Gastrointestinal safety of novel nonsteroidal

antiinflammatory drugs: selective COX-2 inhibitors and beyond. Acta Biomed. 78, 96-110

Danhof M, Alvan G, Dahl SG, Kuhlmann J, Paintaud G, 2005. Mechanism-based
pharmacokinetic-pharmacodynamic modeling-a new classification of biomarkers. Pharm Res.

22,1432-7.

Danhof M, de Lange EC, Della Pasqua OE, Ploeger BA, Voskuyl RA, 2008. Mechanism-based
pharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drug research. Trends

Pharmacol Sci. 29, 186-91.

Della Pasqua O, 2013. Translational pharmacology: from animal to man and back. Drug

Discov Today Technol. 10(3), e315-7.

Dom N, Knapen D, Blust R, 2012. Assessment of aquatic experimental versus predicted and

extrapolated chronic toxicity data of four structural analogues. Chemosphere. 86, 56-64.

Dorato MA, Engelhardt JA. The no-observed-adverse-effect-level in drug safety evaluations:

use, issues, and definition(s). Regul Toxicol Pharmacol 2005; 42(3):265-74.

Famaey JP, 1997. In vitro and in vivo pharmacological evidence of selective cyclooxygenase-2

inhibition by nimesulide: an overview. Inflamm Res. 46, 437-46.

Fitzgerald GA, 2007. COX-2 in play at the AHA and the FDA. Trends Pharmacol Sci. 28, 303-
307.

Fornai M, Antonioli L, Colucci R, Pellegrini C, Giustarini G, Testai L, Martelli A, Matarangasi A,
Natale G, Calderone V, Tuccori M, Scarpignato C, Blandizzi C, 2014. NSAID-Induced
Enteropathy: Are the Currently Available Selective COX-2 Inhibitors All the Same? )
Pharmacol Exp Ther. 348, 86-95.

274



Halter F, Tarnawski AS, Schmassmann A, Peskar BM, 2001. Cyclooxygenase 2—implications
on maintenance of gastric mucosal integrity and ulcer healing: controversial issues and

perspectives. Gut 49, 443-53.

Hooker AC, Staatz CE, Karlsson MO, 2007. Conditional weighted residuals (CWRES): a model
diagnostic for the FOCE method. Pharm Res. 24, 2187-97.

Huntjens, D. R., D. J. Spalding, M. Danhof, and O. E. Della Pasqua, 2006. Correlation between
in vitro and in vivo concentration-effect relationships of naproxen in rats and healthy

volunteers. Br J Pharmacol. 148,396-404.

Jackson LM, Wu KC, Mahida YR, Jenkins D, Hawkey CJ, 2000. Cyclooxygenase (COX) 1 and 2

in normal, inflamed, and ulcerated human gastric mucosa. Gut 47, 762-770.

Josa M, Urizar JP, Rapado J, Dios-Viéitez C, Castafieda-Hernandez G, Flores-Murrieta F,
Renedo MJ, Trocdniz IF, 2001. Pharmacokinetic/pharmacodynamic modeling of antipyretic

and anti-inflammatory effects of naproxen in the rat. J Pharmacol Exp Ther. 297, 198-205.

Kargman, S, Charleson S, Cartwright M, Frank M, Riendeau M, Mancini J, Evans J, O'Neill G,
1996. Characterization of Prostaglandin G/H Synthase 1 and 2 in rat, dog, monkey, and

human gastrointestinal tracts. Gastroenterology 111,445-454,

Karlsson MO, Savic RM, 2007. Diagnosing model diagnostics. Clin Pharmacol Ther. 82, 17-20.

Knight A, 2007. Animal experiments scrutinised: systematic reviews demonstrate poor

human clinical and toxicological utility. ALTEX 24, 320-5.

Lacroix BD, Friberg LE, Karlsson MO, 2012. Evaluation of IPPSE, an alternative method for

sequential population PKPD analysis. J. Pharmacokinet Pharmacodyn. 39, 177-93.

Langenbach R, Loftin C, Lee C, Tiano H, 1999. Cyclooxygenase knockout mice: models for

elucidating isoform-specific functions. Biochem Pharmacol. 58, 1237-46.

275



Lanza FL., Royer Jr GL., Nelson RS, Chen TT, Seckman CE, Rack MF, 1979. The effects of
ibuprofen, indomethacin, aspirin, naproxen, and placebo on the gastric mucosa of normal

volunteers. Digest Dis Sci. 24:823-828.

Lindbom L, Pihlgren P, Jonsson EN, 2005. PsN-Toolkit--a collection of computer intensive
statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods

Programs Biomed. 79, 241-57.

Loftin CD, Tiano HF, Langenbach R, 2002. Phenotypes of the COX-deficient mice indicate
physiological and pathophysiological roles for COX-1 and COX-2. Prostaglandins Other Lipid
Mediat. 68-69, 177-85.

McGettigan P, Henry D, 2006. Cardiovascular risk and inhibition of cyclooxygenase: A
systematic review of the observational studies of selective and nonselective inhibitors of

cyclooxygenase 2. JAMA 296, 1633-1644.

McGonigle P, Ruggeri B, 2014. Animal models of human disease: Challenges in enabling

translation. Biochem Pharmacol. 87, 162-171.

Morita I, 2002. Distinct functions of COX-1 and COX-2. Prostaglandins Other Lipid Mediat.
68-69, 165-75.

Motsko S, Rascati K, Busti A, Wilson J, Barner J, Lawson K, Worchel J, 2006. Temporal
Relationship between Use of NSAIDs, Including Selective COX-2 Inhibitors, and
Cardiovascular Risk. Drug Safety 29, 621-632.

Mukherjee D, Nissen SE, Topol EJ, 2001. RiIsk of cardiovascular events associated with

selective cox-2 inhibitors. JAMA 286, 954-959.

Nyman AM, Schirmer K, Ashauer R, 2012. Toxicokinetic-toxicodynamic modelling of survival
of Gammarus pulex in multiple pulse exposures to propiconazole: model assumptions,

calibration data requirements and predictive power. Ecotoxicology 21, 1828-1840.

276



O'Brien PJ, 2008. Cardiac troponin is the most effective translational safety biomarker for

myocardial injury in cardiotoxicity. Toxicology 245, 206-18.

R Development Core Team. R: A language and Environment for Statistical computing. In R

Foundation for Statistical Computing. Vienna Austria, 2012.

Reagan-Shaw S, Nihal M, Ahmad N. 2008. Dose translation from animal to human studies

revisited. FASEB J. 22, 659-661.

Rohatagi S, Kastrissios H, Gao Y, Zhang N, Xu J, Moberly J, Wada R, Yoshihara K, Takahashi M,
Truitt K, Salazar D, 2007. Predictive population pharmacokinetic/pharmacodynamic model

for a novel COX-2 inhibitor. J Clin Pharmacol. 47, 358-370.

Rostom A, Muir K, Dubé C, Jolicoeur E, Boucher M, Joyce J, Tugwell P, Wells GW, 2007.
Gastrointestinal Safety of Cyclooxygenase-2 Inhibitors: A Cochrane Collaboration Systematic

Review. Clin Gastroenterol Hepatol. 5, 818-828.

Satterwhite JH, Boudinot FD, 1988. High-performance liquid chromatographic determination

of ketoprofen and naproxen in rat plasma. J Chromatogr. 431, 444-9.

Schneeweiss S, Solomon DH, Wang PS, Rassen J, Brookhart MA, 2006. Simultaneous
assessment of short-term gastrointestinal benefits and cardiovascular risks of selective
cyclooxygenase 2 inhibitors and nonselective nonsteroidal antiinflammatory drugs: An

instrumental variable analysis. Arthrit Rheumat 54, 3390-3398.

Solomon DH, Schneeweiss S, Glynn RJ, KiyotaY, Levin R, Mogun H, Avorn J, 2004.
Relationship between selective cyclooxygenase-2 inhibitors and acute myocardial infarction

in older adults. Circulation 109, 2068-2073.

Sahota T, Sanderson |, Danhof M, Della Pasqua O. Model-based analysis of thromboxane B,
and prostaglandin E, as biomarkers in the safety evaluation of naproxen. Toxicol Appl

Pharmacol. in press, 2014

277



Sahota T, Danhof M, Della Pasqua O. Utility of model based approaches to predict the risk of
adverse events from preclinical toxicology protocols. In: Pharmacology-based assessment of
adverse drug effects. A quantitative approach to the prediction of risk in humans. PhD Thesis

University of Leiden, 2014.

Takeuchi K, 2012. Pathogenesis of NSAID-induced gastric damage: Importance of

cyclooxygenase inhibition and gastric hypermotility. World J Gastroenterol. 18, 2147-2160.

Urushidani T, Okabe S, Takeuchi K, Takagi K, 1978. Strain differences in aspirin-induced

gastric ulceration in rats. Jpn J Pharmacol. 28, 569-578.

Xie HG, Wang SK, Cao CC, Harpur E, 2013. Qualified kidney biomarkers and their potential

significance in drug safety evaluation and prediction. Pharmacol Ther. 137, 100-7.

Wallace JL, 2008. Prostaglandins, NSAIDs, and gastric mucosal protection: Why doesn’t the
stomach digest itself? Physiol Rev. 88, 1547-1565.

Whittle B J, 2004. Mechanisms underlying intestinal injury induced by anti-inflammatory COX
inhibitors. Eur J Pharmacol. 500, 427-439.

Zhang L, Beal SL, Sheiner LB, 2003. Simultaneous vs. sequential analysis for population PK/PD

data I: best-case performance. J Pharmacokinet Pharmacodyn. 30, 387-404.

Zhang L, Beal SL, Sheinerz LB, 2003. Simultaneous vs. sequential analysis for population

PK/PD data Il: robustness of methods. J Pharmacokinet Pharmacodyn. 30, 405-16.

Zuideveld KP, Van der Graaf PH, Peletier LA, Danhof M, 2007. Allometric scaling of
pharmacodynamic responses: application to 5-HTa receptor mediated responses from rat to

man. Pharm Res. 24, 2031-9

278



279



SECTION 4: CONCLUSIONS AND PERSPECTIVES

280



281



CHAPTER 9

Pharmacology-based assessment of toxicity: towards quantitative

risk prediction in humans

Undoubtedly, the main objective of toxicology studies during the course of drug discovery
and development is to support scientists, clinicians and regulators in establishing the likely
risks posed to humans and more specifically to patients. Challenges exist not only when
interpreting the results and making extrapolations to predict risk, but also at the planning
and design stage, including the choice of most relevant species, choice of the doses to be

investigated and duration of treatment.

Despite the requirement for extrapolations and more quantitative measures of what
represents safe exposure, limited attention has been given to the role of alternative
methodologies that have emerged in pharmacological sciences. Over the last decades, most
of the empirical evidence generated as part of general toxicity package in drug development
has been treated in a descriptive manner. Yet, numerous statistical modelling tools have
been developed over that same period that have substantially improved our understanding

of human exposure, pharmacokinetics, pharmacodynamics and disease processes (32-35).

Opportunities exist for toxicology to transition from a qualitative science to a discipline
capable of quantitatively describing relevant biological and pharmacological processes that
determine the exposure-effect relationships in animals and in humans. However, there are
multiple methodological obstacles to overcome before efficient and early prediction of
chronic toxicity of new chemical and biological entities becomes routine practice in
pharmaceutical R&D. First of all, the application of quantitative modelling concepts to

toxicology imposes the need for an integrative approach in that the evaluation of toxicity
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and adverse events become part of continuum that encompasses primary and secondary

pharmacology as start point (5,6).

Integration of quantitative tools within experimental design, data collection, analysis and
interpretation has become more important than ever in pharmacology research. Evidence so
far supports the use of such tools to 1) optimise experimental protocols, 2) refining and
reducing the burden and number animals required and most importantly 3) translating drug

effects from animals to humans.

The scientific and regulatory communities should acknowledge that most toxicity tests, as
currently designed, provide only a qualitative estimate of the hazard associated with
supratherapeutic exposure (7). This is clearly not the most important question that needs to
be addressed from a clinical perspective. The safety and toxicity profile of a medicinal
product needs to include an assessment of the risk at therapeutic levels, especially in chronic
disease conditions (8). Yet, data produced using current testing guidelines are not always
suitable for robust mathematical exposure—response modelling. As stated at the beginning
of this thesis, we recognise therefore that adequate data integration and optimised
protocols are required before quantitative modelling can be applied as mainstream tool for

the analysis and interpretation of toxicity and adverse events.

The research performed in this thesis is therefore focused on a number of issues that need
to be considered during the course of drug discovery and development to ensure more
efficient use of the data generated in safety pharmacology and toxicology protocols. We
have attempted to address four questions that can be considered enablers for the
implementation of a systems approach for the characterisation of physiological and

pharmacological responses induced by chronic exposure to a drug.

In Chapter 1 we reviewed mainstream safety assessment practices in drug development and
the consequences of empirical evidence generation. Based on historical examples we

identified methodological flaws in the current paradigm and categorised issues relative to

283



the scientific rationale as a hierarchical tree describing the decision making process. From a
theoretical perspective, different facets of the same problem were discussed, which relate
to four seminal areas of scientific research: 1. optimisation, 2. translation, 3. analytical
construct and 4. decision criteria. The implications of each of these points for the
implementation of model-based methods were addressed separately. We showed that
errors in the prediction of safety may arise due to the use of empirical safety thresholds,
which are used as a proxy or surrogate for toxicity or undesirable effects. Published data
make it clear that instead of pursuing a more mechanistic approach, empirical methods
continue to be used. To cope with inaccuracy and poor precision, safety factors, also known
as uncertainty factors, have been incorporated on the top of empirical thresholds. Their
application in drug development has become widespread and is detailed within the
regulatory guidelines. Based on historical examples, we have shown some important
challenges for the early characterisation of the safety profile of a new molecule and discuss
how model-based methodologies can be applied for better design and analysis of
experimental protocols. An initial conclusion can be drawn in support of the efforts
presented throughout the thesis, in that current practices fail to support decision making on

multiple levels.

A shift in paradigm was then proposed to ensure that pharmacological concepts are
incorporated into the evaluation of safety and toxicity. In chapter 2, we presented the
conceptual and methodological aspects that underpin the work presented in the subsequent
chapters of this thesis. Our goal was to explore the feasibility of pharmacologically based
guantitative toxicology assessment and risk prediction in humans and, where possible, to
compare the performance of this approach to traditional safety assessment approaches. We
have also highlighted an important difference in the objective of current experimental
protocols, which are aimed at confirming safety rather than characterising the range of
toxicity. Four important questions were highlighted which define the scientific framework
presented in the subsequent chapters, which can be defined as opportunities for
optimisation and knowledge integration. We set a constraint that existing experimental

protocols would be viewed as a starting point, and any proposals to deviate from these
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protocols would be minimal. Although similarities exist between efficacy and toxicology
assessment from a pharmacological point of view, here we proposed an investigational plan
to determine the methodological requirements of toxicological data analysis. Furthermore,
we set an often forgotten objective in non-clinical research, i.e., the ethical duty to refine,
reduce and replace the use of animals in experimental protocols (9). The investigational
plan of the thesis was detailed and divided into two distinct sections (sections 2 and 3), in

which the development of methodology is followed by a case study with real data.

Conceptual framework

In Section Il, the advantages and limitations of a model-based approach were evaluated.
Conceptually, we have demonstrated how factors such as within- and between-subject
variability or uncertainty in estimation can be accounted for when descriptive statistics are
replaced by pharmacokinetic and pharmacokinetic-pharmacodynamic parameters. Using
simulations to replicate experimental protocols we have illustrated how different measures
of exposure can be obtained which may be physiologically more relevant for the
characterisation of delayed or late onset adverse events. Particular focus was given to the
feasibility of assessing long term risk from shorter duration studies. In addition, we have
identified alternative options for the design and analysis of preclinical general toxicology

protocols.

Initially, focus was given to the use of non-linear mixed-effect (NLME) modelling as a data
analysis tool for the evaluation of toxicokinetic experiments and parametric estimation of
safety thresholds. In Chapter 3 we simulated toxicokinetic data from satellite treatment
groups in general toxicity protocols using three hypothetical drugs, with distinctly different
pharmacokinetic properties. Analysis of the simulated datasets with traditional non-
compartmental analysis and NLME models allowed us to measure the performance of both
methodologies and compare them in terms of bias and precision. The main source of the
bias in the parameters of interest was found to be intrinsic to the non-compartmental

method, especially when looking at the estimation of Cmax. Our results also revealed the
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typical point estimates of parameters derived from empirical methods to describe drug
exposure give an undue measure of certainty, allowing for the propagation of uncertainty
from estimation to uncertainty in safety thresholds such as NOAEL. As demonstrated by the
simulations, this issue could be circumvented by model-based methods, which enable the
assessment of uncertainty associated with a variety of causes such as uninformative study
design, large variability and/or unknown covariates. The use of hypothetical drugs with
different pharmacokinetic properties also allowed us to illustrate how obtaining a
pharmacokinetic model provides opportunities for different parameterisations or metrics of
drug exposure, as for example, the estimation of cumulative AUC to describe irreversible or
chronic toxicity, including predictions beyond the study duration. This entails an increase in
the quality of the decision-making process and ultimately in the interpretation of the

estimated safety thresholds.

Since experimental protocols for the evaluation of general toxicity are not optimised for
model-based analysis, and more specifically for population pharmacokinetic modelling, an
important question to be addressed is whether they can be optimised to ensure a reduction
in the number of animals required, whilst still providing sufficient estimation precision for
measures of exposure, which are often secondary pharmacokinetic parameters, such as AUC
and Cmax. In contrast to existing optimality software and algorithms, which support
optimisation of experimental design with respect to primary parameter precision, in Chapter
4 we show that secondary parameters can be optimised without the resource-intensive
procedures imposed by D-optimality. Our approach instead consisted of FIM evaluations
followed by calculation of the expected secondary parameter precision. Both of these
procedures were found to be computationally inexpensive. Most importantly, our results
highlight the impact of optimal protocol design on parameter estimation. The proposed
method for optimisation of sampling time and group size indicates that a reduction of
approximately 30% in the number of animals can be obtained for composite sampling
designs without significant loss of precision in the estimates of interest. This improvement
was found to be independent of differences in drug disposition, as assessed by the different

profiles derived for the hypothetical compounds. Our analysis also suggests that for
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composite methods sample size does not determine the precision of the pharmacokinetic
parameters of interest. Rather, it is the sampling scheme and dose levels which matter.
Interestingly, we have observed that the precision of the secondary parameters remains
unaffected even when some of the primary pharmacokinetic parameters are poorly

estimated.

Whereas the use of model-based estimates for the assessment of safety thresholds may be
perceived as complicated, this approach was shown to be unbiased and predictive, allowing
for the incorporation of the physiological factors underlying the pharmacokinetic properties
of the drug under investigation, such as metabolic saturation. Moreover, our simulation
scenarios provided evidence of the feasibility to integrate prior information, including data

from other experiments.

Still within the scope of protocol optimisation, in Chapter 5 we explored the implications of
introducing biomarkers into the evaluation of a drug’s safety toxicity profile. Here we
emphasised the fact that accurate prediction of long term adverse events and toxicity may
require one to identify not only the exposure at which the effects are observed, but also
biomarkers of pharmacological activity. In contrast to traditional protocols, which imply a
direct relationship between observed systemic exposure and adverse events, we have
proposed the collection of biomarkers at the scheduled pharmacokinetic sampling points to
facilitate the characterisation of pharmacokinetic-pharmacodynamic relationships. Our
evaluation also compared the analysis of biomarker data based on standard non-
compartmental methods. We simulated toxicokinetic and biomarker data from satellite
groups using a variety of hypothetical drugs. The analysis of the simulated data showed that
the true underlying model was often unidentifiable particularly in scenarios with delayed PD
effects (hysteresis). However, in all scenarios, model approximations could be made which
led to satisfactory performance in predicting biomarker levels. We believe, therefore, that
greater awareness is required about the limitations of current experimental protocols,
particularly in a period in which long-term safety have become a major clinical and

regulatory concern. To mitigate such effects we recommend careful consideration of model
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uncertainty. Our analysis showed that model selection criteria should be guided not only by
ability to describe data but also by assessing the physiological relevance of model
assumptions. When model development ends in multiple competing models performing
similarly with respect to model selection criteria, clear reporting of such model uncertainty is
necessary. In any case, model averaging should be discouraged when predictions arising
from different model differ significantly. Finally, parameter uncertainty should be

incorporated when performing simulations or using the model to make predictions.

Our goal with Chapter 6 was to investigate the feasibility of integrating the aforementioned
mechanistic PKPD models with adverse event data for model-based toxicology assessment.
Similar in silico methods used in chapters 3 and 5 were used to simulate drug induced and
background adverse events according to three different pharmacological mechanisms
(direct, indirect, and irreversible binding). We focused on rare and chronic adverse drug
reactions to provide the largest methodological challenge, including reversible and
irreversible drug effects. To ensure real-life conditions, assumptions were made with regard
to situations 1) in which drug-induced and background adverse events are indistinguishable
from each other, 2) the time interval elapsed between onset and diagnosis was large and
symptoms can be detected only once per animal during histological examination and 3) the
adverse event can be treated as binary data. Our results showed that estimation of safety
thresholds, as determined by the NOAEL, was highly biased and imprecise. Moreover, in two
out of three scenarios where the effects of safe and effective hypothetical compounds were
simulated, we found that strict use of the NOAEL as go/no-go criteria would lead to a more
than 50% probability of concluding that the compound is unsafe and consequently leading to
wrongful termination of the development program. Upon investigating the feasibility of
model-based analysis, we found that we required two important components for successful
guantification of rare drug-induced effects: a) the availability of prior information on
background adverse events and b) MCMC-based estimation algorithms. Regarding the first
requirement, we showed that without prior information, adverse drug reactions are
confounded with background incidence rates, preventing parameter identifiability. We

found that an aggregated historical placebo data was sufficient to resolve this confounding.
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On the other hand, when evaluating the performance of available parameter estimation
methods, we found that maximum likelihood algorithms are unstable and unreliable. By
contrast, MCMC-based estimation provided stable and accurate measures of parameter
uncertainty. The use of the BIC as a model comparison and averaging criteria showed
consistently high model specification uncertainty. Our results highlighted that traditional
model selection and averaging techniques based on the penalizing models for complexity
were not appropriate as they heavily weighted models featuring no drug effect. Finally, it
should be noted that missed adverse events were also easily quantified using the proposed
strategies. Differently, from the empirical approach to treating missing events as absent, the
use of MCMC methods provided evidence of the parameter distribution, enabling

imputation of the events, even if they have not been observed.

In summary, the conceptual framework presented throughout this section provides
evidence regarding the feasibility and relevance of a model-based approach for the,
evaluation of safety pharmacology and toxicology profile of new molecules prior to their
progression into humans. It has become clear that current methods in preclinical toxicology
do not support the integration of pharmacokinetic and pharmacodynamic data as basis for
predicting safe exposure in humans. By contrast, a model-based approach represents a
viable tool for characterising PKPD relationships, including estimates of parameter and
model uncertainty. A benefit this strategy lends to decision-making is that clinical judgment
can be applied to consider the entire relationship between drug exposure and adverse

event, rather than a point estimate or threshold.

In the third part of the thesis (Section Ill) we attempted to illustrate the implementation of
experimental protocols that meet the requirements for model-based analysis. Given the
continuous debate regarding the benefit-risk balance of chronic treatment with non-
steroidal anti-inflammatory drugs, naproxen was used as a paradigm compound to evaluate
the known acute and chronic toxicities. Whilst the lack of selectivity of naproxen and the
evidence for distinct mechanisms underpinning acute effects (such as bleeding and

ulceration) and long term effects (such as renal and cardiovascular damage) have evolved
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over the years and might not have been understood at time of the development of the
compound, our investigation made it quite didactic in that it demonstrates how human
safety and toxicity may require characterisation of drug effects at exposure levels
corresponding to the therapeutic doses. Furthermore, by considering the requirements for a
suitable experimental protocol, we also took the opportunity to identify practical challenges

and difficulties that one may face for the prospective use of the methodology.

Practical application

Using a typical toxicology protocol in rats, in Chapter 7 we have explored how two
biomarkers, namely thromboxane (TXB,) and prostaglandin (PGE;), can be used in
conjunction with drug exposure data to evaluate short, moderate and long-term treatment
effect. It was assumed that gastrointestinal bleeding is due continuous COX-1 inhibition,
whereas ulceration results primarily from the suppression of COX-2. Pharmacokinetic and
biomarker data were integrated with data from historical protocols and published literature
to ensure characterisation of drug properties at putative therapeutic levels. We found that
the pharmacokinetics were best described a one-compartmental model with first-order
absorption. A nonlinear relationship between dose and bioavailability was included into the
model which led to a less than proportional increase in exposure with respect to dose.
Toxicity findings showed gastric ulceration at all tested dosing levels (7.5, 15, 40 and 80
mg/kg) meaning that no NOAEL could be established. Despite the lack of a safety threshold,
we have demonstrated that experimental data can be used to characterise the underlying
PKPD relationships for both TXB, and PGE,, which were best described by direct inhibition
models. Estimation of all parameters was precise and models performed well in diagnostics
and predictive checks, confirming the feasibility claims of chapters 3 and 5. In addition, our
results emphasised the role of construct validity to account for the potential impact of
interspecies differences in the underlying exposure-response relationships. As indicated by
the level of biomarker inhibition observed at the selected doses, inferences from the

preclinical data can be made to predict drug effects at comparable levels of inhibition in
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humans. In fact, we found that the PKPD relationship was within 10-fold range of published
human values, raising questions about differences in the sensitivity of rats to the cyclo-

oxygenase inhibition.

Whereas the use of a parametric approach and more specifically of hierarchical mixed-
effects modelling to inform experimental design and dose selection represents an important
step in the advancement of translational toxicology, both from a biological and statistical
perspective, we have also identified a few limitations that are worth mentioning. Some
mechanisms of action may be too complex or poorly understood to be characterised by
PKPD modelling of data arising from a general toxicity study, even if biomarkers are
collected. Multiple downstream markers may present a significant confounder problem
which cannot be avoided without additional data. This cannot be easily addressed by the

proposed analysis method and becomes a drug development issue.

Our feasibility evaluation was complemented in Chapter 8 by further integrating the
histological data obtained at completion of treatment to the observed biomarker effects. In
this investigation we showed how the pharmacokinetic-pharmacodynamic (PKPD) model
obtained in the previous chapter can be incorporated into a formal analysis to describe
adverse event incidence and severity. The adverse events (gastric ulceration) were
guantified as continuous measures of ulcerative area. Ulceration incidence (binary) and
severity (severity) were modelled as two separate variables or endpoints of interest. The
final model parameters describing the incidence of adverse events showed that ulceration
was an acute effect driven primarily by maximum inhibition of PGE, levels corresponding to
maximum blockade of COX-2. The implications of model uncertainty highlighted in chapter 6
prompted us to combine model selection criteria with bootstrap methodology to obtain
model uncertainty estimates. We found that there was minimal model uncertainty with
regard to the characterisation of ulceration incidence but high specification uncertainty
when describing ulceration severity. Despite such high uncertainty, cumulative suppression
of TXB; levels, assumed to result from to long term blockade of constitutive COX-1 could be

identified as an influential covariate of ulceration severity. In summary, our investigation has
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shown how a model-based approach can be used to support early identification of long term
adverse events, enabling further integration and translation of pre-clinical data. Our results
also illustrated how the availability of PKPD relationships may allows us to make inferences
about untested doses and dosing regimens, providing an opportunity for risk mitigation,

independently from available experimental data.

From a methodological perspective, the findings arising from this experimental protocol
demonstrated the feasibility and potential benefits of proposed model-based approach for
the evaluation of chronic safety pharmacology and toxicity. However, it should be noted that
the accuracy, precision and validity of the method still relies on the experimental data. The
adverse events we have assessed in this study were relatively frequent. Characterisation of
rare or low frequency events may still be difficult, particularly if one cannot make use of
historical data (e.g., unprecedented mechanism) or make inferences about class effects. We
also acknowledge that the absence of ulcerations in vehicle treated animals and the lack of
additional cohort with lower exposure levels may represent a weakness in our investigation.
True baseline rates for ulceration could not be factored into the analysis, nor was it possible

to accurately establish the adverse event rates at lower doses.

Practical recommendations for safety assessment

Given the challenges and limitations for the characterisation of exposure-effect relationships
using data arising from typical experimental protocols, we have compiled a list of points to
consider regarding methodological and practical issues, including recommendations for
further protocol optimisation which may facilitate the implementation of model-based

techniques in safety pharmacology and toxicology research.
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. Sampling scheme and dose selection to be used in the safety pharmacology and
toxicology protocols need to take into account the underlying mechanism or mode of action
associated with the primary pharmacological target or receptor system. It is imperative to
ensure that different levels of target engagement (i.e., receptor occupancy) within and
beyond the expected therapeutic exposure are included.

. Study protocols should be analysed in an integrated manner to ensure accurate
conclusions are drawn about the safety and toxicity profile of the compound. This implies
the combination of data arising from all experimental protocols where pharmacokinetic and
biomarker data are collected.

. Integration of historical data as priors (describing parameter distributions) may be
required to reduce the degree of uncertainty associated with models predictions across the
exposure-response curve describing the adverse event or toxicity.

J Better, continuous inference metrics (e.g., ECyo, cumulative biomarker levels and
other derived parameters from the underlying PKPD relationship), are required to
extrapolate findings from toxicological dose levels to clinically relevant therapeutic exposure
ranges. Safety thresholds are conservative and biased.

. Optimisation of study design should be performed on parameters of interest (i.e.
AUC< Cmax) rather than primary model parameters. Standard optimality algorithms (e.g. D-
optimality) are not suitable for that purpose, as current software programs maximise the
overall expected parameter precision within design constraints (10). Acceptability criteria
for precision of parameters of interest should be defined in advance and evaluated within
the design space taking into account feasibility aspects. Selected designs should be
parsimonious in that further reduction does not produce a sufficient design.

. The impact of prior model and parameter uncertainty should be investigated during
the study design phase (e.g., by simulation) to ensure uncertainty is factored accordingly
into the expected study outcomes.

. Lack of model identifiability represents a risk for PKPD analyses based on standard
experimental toxicology and safety pharmacology protocols. Therefore, to ensure model and

parameter identifiability, simulation re-estimation (SSE), bootstrapping and sensitivity
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analysis with respect to initial estimates are essential steps to be considered throughout
model development and validation (11, 12).

. Maximum likelihood methodology is insufficient to model rare adverse events. The
use of a Monte Carlo-Markov Chain algorithm is required for stability and accurate
parameter uncertainty estimation (13).

. Model uncertainty is a likely outcome of adverse event modelling. Model uncertainty
should therefore be accounted for and quantified e.g. using the bootstrap covariate method.
Final model predictions should also be displayed along with prediction intervals to account
for parameter uncertainty (14-16).

. Traditional model selection and averaging criteria which penalise for model
complexity (e.g. BIC and AIC) are inappropriate when modelling rare adverse event data as
models without drug effects are overweighed. A conservative approach to model selection
should instead be guided by pharmacological plausibility and data fitting metrics without

penalisation (e.g. -2 log likelihood).

Future perspectives

The methodological issues identified through simulation scenarios and the lessons learned
from the integrated experimental protocol developed for naproxen have highlighted the
limitations of current practice in the evaluation of the safety profile of new chemical entities.
More specifically, our findings reveal that inferences about safe exposure as well as the risk
associated with long term use of a compound cannot be achieved by scattered empirical
experimentation. A framework is required that enables integration, in a parametric manner,
of experimental data and theoretical knowledge. As shown in figure 1, such a framework
would encompass multidimensional data, allowing for the incorporation of not only in vivo,

but also in vitro data as input for computational models.
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Figure 1: Integration of in vitro and in vivo data as input for in silico models. A model’s ability to
predict toxicity in humans is used as reference for further refinement of the model as well as of the
experimental design (modified with permission from 17).

In order for computational models to be used to predict long term safety and toxicity in
humans, methods are required that incorporate the mechanisms associated with primary
and known secondary targets. In addition, general parameterisations also need be
considered to describe drug action beyond the receptor or target level, including broader
concepts, such as inappropriate cell signalling, mutagenesis and carcinogenesis (17). The
emerging field of systems pharmacology could hold promise in this respect by providing a
systematic framework which accounts for all relevant processes from target-drug interaction
at the biophase to downstream cellular and organ level processes (110). In fact, one of the
first examples of the approach for the characterisation of general toxicity is the case of
vitamin D, which has been used to establish target tissues for 1,25-(OH), vitamin D3 (19).
Systems pharmacology makes evident that the actions of most of the target tissues are
unrelated to systemic calcium regulation and are instead related to the regulation of
endocrine and exocrine secretion, cell proliferation and cell differentiation. It can be easily

seen that many, if not all, target tissues of the vitamin D system will be activated in patients
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treated with a vitamin D-related compound — whether taken against osteoporosis, tumour
growth or any other single condition. However, physiologic dosing of vitamin D does not

cause hypercalcemia — hypercalcemia is related to overdosing only (19, 20).

More recent developments have allowed for a more quantitative characterisation of system
and drug behaviour in vivo. Quantitative systems pharmacology represents a convergence of
systems biology and pharmacology, combining computational and experimental methods to
elucidate and predict disease progression and drug effects. The approach does not only take
into account the underlying pharmacokinetic-pharmacodynamic relationships, but also
potentially multiple components of the biological systems leading to changes in biological or
disease state. This feature is particularly relevant, both from a clinical and methodological
perspective, for the parameterisation of long term adverse events, which may originate
from a perturbation of homeostatic mechanisms, from cellular changes or cell injury (21). In
contrast to empirical and probabilistic models, in systems pharmacology one can introduce
both mechanistic and physiological elements as parameters for the characterisation of
acute, delayed or late safety signals, which in turn can be correlated with global clinical
measures, such as morbidity (figure 2). In conjunction with physiologically-based
pharmacokinetic (PBPK) models, systems pharmacology can provide the basis for
determining the impact of observed variations in physiological and biochemical factors, as
well as discriminate pharmacokinetic from pharmacodynamic or biological variability.
Instead of compartments defined solely by experimental kinetic data, compartments in a
PBPK model are based on realistic organ and tissue groups, with weights and blood flows
obtained from the literature. Moreover, instead of compartmental rate constants
determined solely by fitting data, actual physicochemical and biochemical properties of the
compound can often be used to define parameters in the model. In particular, a properly
validated PBPK model can be used to perform the high-to-low dose, dose-route, and
interspecies extrapolations necessary for estimating human risk on the basis of experimental

protocols in animals.
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Figure 2. Dose-exposure-response paradigm for toxic effects, relating observed response as
consequence of perturbations of the normal control processes in the cell. Low doses are largely
without functional consequences; intermediate doses activate adaptive stress responses with
attendant homeostatic controls; and high-enough exposures lead to overt toxicity (reprinted with
permission from 22).

One example of modelling incorporating systems pharmacology, which can be deemed
relevant for the evaluation of target-mediated efficacy and safety, regards the effects of
steroids. The work developed by Ramakrishnan and collaborators shows how experimental
data, including transcription and gene mediated effects can be parameterised to describe
the binding of steroidal drugs to the cytosolic glucocorticoid receptor and subsequent
translocation of the complex into the nucleus where it binds as a dimer to the glucocorticoid
responsive element (GRE) in the DNA (23) (Figure 3). This leads to the enhanced or repressed
expression of numerous genes. At the same time, binding of the activated steroid-receptor
complex to the GRE results in reduced levels of receptor mRNA. This further leads to
decrease in the free receptor density in the cytosol. The concept nicely illustrates how long
term use of corticosteroids may lead to suppression of normal physiological function at

cellular and whole organ levels.
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Figure 3 — Schematic representation of the cellular/molecular mechanism of steroid action in the
hepatocyte. The thick open and solid arrows indicate induction and repression of gene transcription
(reprinted with permission from 23)

Whilst there are relatively few examples specific to safety pharmacology and toxicology,
Berger et al. have recently shown how a systems pharmacology approach can be used to
characterise and predict QT prolongation (111). Their work shows that the QT prolonging
effects of multiple drugs targeting very different indications could be estimated with a
network analysis approach. They were also able to account for multiple off-target binding
sites for each drug showing that target related and off-target effects could be assessed
within the same framework. It should be noted that the model was Boolean in nature,
which implies the need for further refinement for quantitative toxicological predictions.
Another interesting application has been shown by Timchalk et al., who illustrate the
development of a model-based approach to describe the pharmacodynamics of
cholinesterase inhibiting compounds (25). Their model accounts for the synthesis and loss

rates of the enzyme in vivo, enabling prediction of the brain synthesis.

298



Still in the realm of systems pharmacology, attention should be given to the contribution of
mechanism-based models describing biomarkers as predictors of drug response, even when
the underlying toxicological mechanisms are poorly understood. Increasing emphasis has
been given by academic researchers and regulators on the relevance of biomarker selection
and early risk prediction (112-114). In fact, the use of biomarkers to predict liver and kidney
toxicity has been the subject of numerous public-private initiatives. Unfortunately, little has
been done to integrate biomarkers as covariates or into PKPD models. In principle, one could
consider the prediction of acute and chronic toxicity by parameterising biomarker response

in a similar manner to what creatinine clearance currently represents in renal impairment.

In addition to the development of more physiological, mechanism-base models, another
avenue for future extension of the proposed methodology in this thesis lies in risk-benefit
analysis. There are numerous examples of risk-benefit assessment in the published
literature in which pharmacological and physiological models have been applied. Yassen et
al. (2008) performed an analysis on buprenorphine and fentanyl to assess risk benefit for
antinociceptive and respiratory depressant effects (115). The development of a population
PKPD model enabled both effects to be probabilistically modelled as a function of the
predicted biophase concentrations. By constructing a clearly defined utility function, they
were able to obtain therapeutic indices consistent with known literature at the time. The
most difficult hurdle to overcome with the acceptance of utility functions is in demonstrating
construct validity. Ultimately, it should function as a mathematical description of the
subjective risk-benefit criteria held by patients and physicians. Methods to assess the
degree of construct validity however are not currently well established and widespread
acceptance of utility functions to define therapeutic windows is still lacking. When utility
functions are too subjective, overlaying exposure-benefit and exposure-risk relationships will

possibly aid in the selection of safe and efficacious doses.

The advantages of quantitative models in toxicology are unquestionable, as they facilitate
the characterisation of exposure, biomarkers, and pharmacodynamics both at organ, tissue

and cellular levels. However, a model can only be validated for its predictive performance for
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some aspects/ modules, but not for other due to the difficulty in obtaining experimental
measures (e.g., free concentration in a given organ). Yet, the primary advantage of a
biologically based model is the possibility to make predictions of variables that cannot be
easily accessed with the available methodologies or that are impossible to measure in an

intact biological system using current technologies.

Efforts must therefore be made to define the endpoints as well as the purpose of the
biological model even before its development. In this context, one last aspect that deserves
further attention is the need to replace uncertainty factors by a more formal, systematic
measure of the lack of construct validity or discrepancy between experimental conditions
and the expected therapeutic use of a drug. The predictive performance of a model must
include the uncertainty about the model itself (e.g., identifiability) and about the
translational gap (e.g., differences between species or experimental conditions). A central
premise of toxicology has been that adverse effect are examined on the basis of higher
doses and then extrapolated to lower doses. There is enough evidence showing that
responses occurring a lower exposure may not be predicted from higher doses when
homeostatic regulation (e.g., oscillatory, antagonistic balance) is involved (7,31). Dose and
time considerations in the development and use of a drug are important for assessing
actions and side effects, as well as predictions of safety and toxicity. We believe that lack of
observance of this axiom will probably be the main source of uncertainty in any integrative
approach, such as proposed throughout this thesis. This point has been raised by the Swiss-
German physician, Theophrastus of Hohenheim in 1538, who stated that all things are
poison and nothing is without poison: only the dose makes a thing not to be poison (20).

(Figure 4)
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Figure 4 — Statement by the Swiss-German physician, Theophrastus of Hohenheim (Paracelsus). What
is not a poison? All things are poison and nothing is without poison. Only the dose makes a thing not
to be poison (reprinted with permission from 20).

Given the increased relevance of evidence synthesis as the basis for decision-making within
regulatory and clinical practice, we anticipate that some of the meta-analytical elements
presented across the various simulation scenarios will become embedded into daily practice
in safety pharmacology and toxicology. Irrespective of the degree of understanding of the
mechanisms of toxicity, a model-based approach appears to outperform standard methods
for the prediction of the safe drug exposure of novel molecules in early drug development,
especially those events that show low frequency or have delayed onset. Despite the narrow
scope of the scenarios and limitations intrinsic to the selected experimental protocols
presented in this thesis, our findings raise a new, potentially even more important question
regarding the ethical basis for using empirical protocols in safety pharmacology and

toxicology.
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CHAPTER 10

Nederlandse Samenvatting (Synopsis in Dutch)

De toxiciteit en veiligheid van nieuwe geneesmiddelen wordt voornamelijk bestudeerd in
proefdier modellen. De resultaten verkregen met deze modellen worden vervolgens
geéxtrapoleerd om bijwerkingen in de mens te voorspellen. Bij dit onderzoek richt men zich
vooral op lever en nierschade, schade aan het oog, immuno- en genotocixiteit alsmede aan
carcinogeniteit. Daarbij wordt slechts beperkt aandacht besteed aan de analyse van de
relatie tussen de blootstelling (in termen van het beloop van de geneesmidelconcentratie in
het lichaam) en de toxiciteit. Zelfs in het geval dat resultaten van het veiligheidsonderzoek
bruikbaar zijn voor een dergelijke analyse, is het uitvoeren van dit type experimenten
tijdrovend en zijn extrapolaties van dier naar de mens vaak niet robuust, accuraat en/of
precies. Een aantal van deze beperkingen is blijven bestaan ondanks het feit dat
toxicokinetiek wordt beschouwd als een essentieel onderdeel van de beoordeling van de

veiligheid van nieuwe farmaca.

In dit proefschrift laten we zien dat het mogelijk is om kennis uit farmacologische
experimenten te combineren met specifieke informatie uit in vitro test systemen en
computer modellen om zowel de werkzaamheid als de veiligheid in vivo te voorspellen.
Daarbij is het ook mogelijk om verstoringen in vitro te bestuderen die de oorzaak zijn van
bijwerkingen van een geneesmiddel of die daaraan een bijdrage leveren. Dit heeft als
belangrijk extra voordeel dat de focus van traditionele toxicologie studies, waar risico’s van
een hoge dosis van een stof in vivo bestudeerd worden, vervangen kunnen worden door
experimentele protocollen waarin de de veiligheid van geneesmiddelen wordt bestudeerd

bij een klinisch relevante blootstelling.

Op dit moment zijn er methodologische en conceptuele ontwikkelingen voor het

bestuderen van de veiligheid en de toxiciteit van nieuwe farmaca, waardoor de risico’s van
g ,
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het gebruik bij de therapeutische toepassing efficiénter kunnen worden gekarakteriseerd.
Helaas worden deze methoden nog niet vaak toegepast om bij de registratie van nieuwe
geneesmiddelen, belangrijke vragen op het gebied van de veiligheid en toxiciteit te
beantwoorden. De betekenis van kwantitatieve concepten is eerder aangetoond oa. voor de
structuur-werkingsrelaties, als basis voor het voorspellen van de toxiciteit van een
chemische verbinding onder bepaalde omstandigheden. Op basis daarvan kan men
uitspraken doen over de mogelijke effecten van een behandeling zelfs wanneer de
blootstelling in de mens erg laag is en toxicokinetische gegevens niet gemakkelijk verkregen

kunnen worden.

Door het ontbreken van een sterke farmacologische basis voor de experimentele protocollen
heeft de implementatie van een modelmatige benadering voor het karakteriseren van de
veiligheids- en toxiciteitsprofiel van een nieuw geneesmiddel nooit op grote schaal
plaatsgevonden. Daardoor is de analyse van de relatie tussen blootstelling en effect nog
steeds niet het primaire doel van de desbetreffende protocollen. Men gaat ervan uit dat
veiligheid gekarakteriseerd kan worden door een veiligheidsdrempel. Ook het concept van
op fysiologie-gebaseerde farmacokinetische (PBPK) modellering voor het voorspellen van de
blootstelling wordt nog niet veel toegepast en wanneer het wordt toegepast is dit
voornamelijk op het terrein van milieu-toxicologische vraagstukken en in mindere mate voor

de ontwikkeling van geneesmiddelen.

Methoden die veiligheid en de toxicologische effecten van geneesmiddelen in de mens
kunnen voorspellen of op basis waarvan een vertaling vanuit in vivo diermodellen of in-vitro
modellen naar de mens kan worden gemaakt, zijn van erg groot belang. Er is een grote vraag
naar de ontwikkeling van deze methoden, ongeacht de huidige richtlijen voor toxicologisch
onderzoek of de urgentie voor verandering van de eisen die gesteld worden door de
registratie autoriteiten. Om dit te kunnen bewerkstelligen is er meer nodig dan de
ontwikkeling nieuwe experimentele protocollen en technologieén. Een integrale benadering
waar efficiént gebruik wordt gemaakt van de beschikbare informatie en de toepassing van

farmacokinetische-farmacodynamische modellering kan van grote betekenis zijn. Hierbij is
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het essentieel dat ook bijwerkingen die op lange termijn optreden en zeldzame bijwerkingen
bestudeerd kunnen worden, omdat die nog steeds een belangrijke oorzaak zijn van het falen
van nieuwe medicijnen. Daarnaast ontbreekt er ook een geintegreerde benadering om de
juiste eindpunten te kiezen om zo de risico’s die het gebruik van het geneesmiddel met zich

meebrengt nauwkeurig en precies te kunnen beoordelen.

De huidige toxiciteit testen zijn voornamelijk bedoeld om de gevaren van het gebruik van
een geneesmiddel op supraherapeutisch niveau te kunnen bestuderen. De data die wordt
gegenereerd op basis van de bestaande richtlijnen is daardoor niet altijd geschikt om de
relatie tussen blootstelling en effect vast te stellen. Noch om deze relatie op basis van
wiskundige modellen te kunnen karakteriseren. Om de relatie tussen blootstelling en
respons te bestuderen zou er eerst aan enkele voorwaarden moeten worden voldaan. Ten
eerste, zouden verschillende doses moeten worden toegediend, waardoor een breed bereik
kan worden verkregen in termen van blootstelling niveaus en respons. Daarbij moet men
ook de samenhang tussen de primaire en secondaire farmacologische mechanismen en de

gewenste en ongewenste effecten proberen te identificeren.

Het onderzoek dat is beschreven in dit proefschrift heeft betrekking op een aantal
onderdelen in het proces van de ontwikkeling van nieuwe geneesmiddelen, die overwogen
dienen te worden om dit efficiénter te laten verlopen. De nadruk ligt bij het efficiént gebruik
van data die worden verkregen bij het veiligheids- en toxiciteitsonderzoek. Vier
onderzoeksvragen vormen de basis van het werk zoals gepresenteerd in de volgende

hoofdstukken:

1. Kunnen experimentele protocollen voor veiligheids- en toxiciteitsevaluaties worden
geoptimaliseerd om de relaties tussen farmacokinetiek en farmacodynamiek te

karakteriseren?

2. Kan het gebruik van meta-analytische methoden gebaseerd op niet-lineair gemengde
effecten modellen bijdragen aan een verhooging van de nauwkeurigheid en precisie van

veiligheidsdrempels in vergelijking met de methoden die thans worden toegepast?
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3. Kan een op mechanisme gebaseerd model worden gebruikt om de veilige blootstelling aan
een geneesmiddel nauwkeuriger te definiéren, waardoor vertraagde (lange termijn) of

zeldzame bijwerkingen voorspeld en voorkomen kunnen worden?

4. Kunnen biomarkers gecombineerd met farmacokinetische data bijdragen aan het

vastellen van de veilige blootstelling bij langdurig gebruik van een geneesmiddel?

Het proefschrift heeft betrekking op de hierboven benoemde onderzoeksvragen zowel van

conceptueel als van praktisch oogpunt.

Sectie I: Algemene inleiding

In Hoofdstuk 1 wordt een overzicht gepresenteerd van de gangbare veiligheid toetsen en
methoden die worden toegepast bij de ontwikkeling van nieuwe geneesmiddelen. Hierbij
wordt er aandacht besteed aan de gevolgen van het genereren van empirisch bewijs.
Vervolgens worden methodologische beperkingen voor het vastellen van de relatie tussen
blootstelling en ongewenste effecten (bijwerkingen) geidentificeerd op basis van
voorbeelden. Tevens wordt een hiérarchische beslisboom ontwikkeld die het
beslissingsproces weergeeft en de daarbij behorende experimentele data samenvat. Vanuit
een theoretisch perspectief worden verschillende facetten van hetzelfde vraagstuk
besproken, die gerelateerd kunnen worden aan vier aspecten van wetenschappelijk
onderzoek, te weten: 1. optimalisatie 2. vertaling 3. analyse en 4. beslissingscriteria. De
relevantie van deze punten voor de implementatie van experimentele protocollen en voor
de schatting en interpretatie van parameters die de veiligheid en toxiciteit van een
geneesmiddel beschrijven wordt apart besproken. We hebben laten zien dat foutieve
voorspellingen van veiligheid kunnen ontstaan door gebruik te maken van empirische
veiligheidsdrempelwaarden, indien die beschouwd worden als voorspellend voor toxiciteit
of ongewenste effecten. Om rekening te kunnen houden met slechte precisie en vertekende
nauwkeurigheid van deze methodes worden in de praktijk veiligheidsfactoren (ook wel
bekend als onzekerheidsfactoren) geimplementeerd bovenop de empirische criteria. We

laten ook zien dat ondanks bovengenoemde beperkingen het gebruik van een
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veiligheidsdrempel binnen de ontwikkeling van geneesmiddelen breed geaccepteerd is en

gedetailleerd wordt beschreven in de richtlijnen van registratie autoriteiten.

Op basis van historische voorbeelden hebben wij een aantal belangrijke uitdagingen
geidentificeerd om het karakteriseren van een veiligheids profiel van een nieuw molecuul in
een vroeg stadium mogelijk te maken. Voor de toepassing van farmacologische concepten
in het onderzoek naar de veiligheid en de toxiciteit van nieuwe geneesmiddelen werd een

nieuw paradigma voorgesteld.

In Hoofdstuk 2 presenteren wij de conceptuele en methodologische aspecten die op de
daaropvolgende hoofstukken worden uitgewerkt. Het doel van het onderzoek was om de
uitvoerbaarheid van op farmacologische concepten gebaseerde analyse van toxicologische
gegevens het risico van een behandeling in de mens te voorspellen, en waar mogelijk de
uitkomsten te vergelijken met die verkregen met traditionele veiligheidstoetsen en
methoden. Daarbij komt een fundamenteel verschil in het doel van de veiligheidsevaluatie
aan de orde. Het doel van de nieuwe benadering is om de veiligheid van een nieuw
geneesmiddel bij normaal gebruik vast te stellen. Dat is een belangrijk verschil met de
huidige praktijk die erop gericht is om vast te stellen dat een bepaalde toxische limiet niet
wordt overschreden. Vier belangrijke vragen die het wetenschappelijke raamwerk vormen
van het onderzoek, worden in de hieropvolgende hoofdstukken besproken, tegen de
achtergrond van de mogelijkheden voor optimalisatie en integratie van kennis. De in de
praktijk gehanteerde experimentele protocollen vormden daarbij het uitgangspunt. Hoewel
er, vanuit een farmacologische perspectief, overeenkomsten bestaan tussen de toetsing van
de werkzaamheid enerzijds en toetsing van de toxiciteit anderzijds stellen wij uitsluitend
een onderzoeksplan voor de analyse van toxicologische data voor. Verder hebben wij een
vaak vergeten aspect van het pre-klinisch onderzoek gedefinieerd: het ethische belang van

het verfijnen, reduceren en vervangen van experimenten met proefdieren.

Sectie Il: Conceptueel kader

De voordelen en beperkingen van een modelmatige benadering voor veiligheids- en

toxiciteitsonderzoek werden geévalueerd in Sectie Il. Binnen een conceptueel kader laten
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we zien hoe er rekening kan worden gehouden met de variabiliteit binnen en tussen
patiénten en met de onzekerheid in de respons (bijwerkingen) door gebruik te maken van
farmacokinetische en farmacokinetisch-farmacodynamische modellering in plaats van
beschrijvende statistische methoden. Op basis van simulaties van experimentele protocollen
wordt aangetoond hoe waarden van de blootstelling kunnen worden verkregen die
fysiologisch relevant zijn voor het karakteriseren van vertraagde of late bijwerkingen. De
nadruk lag hier vooral op de uitvoerbaarheid van het voorspellen van lange termijn
bijwerkingen gebruik makend van de gegevens uit een studie met een korte duur. Verder
wordt er een alternatieve manier beschreven om pre-klinische algemene toxicologische

protocollen te ontwerpen en analyseren.

In eerste instantie werd er gefocused op niet-lineair gemengde effecten modellen als een
data analyse methode voor de evaluatie van toxicokinetische gegevens en het vaststelllen
van (parametrische) veiligheidsdrempels. In hoofdstuk 3 werd voor drie hypothetische
geneesmiddelen, met verschillende farmacokinetische eigenschappen, toxicokinetische data
gesimuleerd voor dieren in de satellietgroepen van een algemene toxiciteitsstudie. Deze
analyse maakte het mogelijk om de juistheid en nauwkeurigheid van zowel de
veiligheidsdrempels als de secondaire farmacokinetische parameters zoals de opervlakte
onder de concentratie vs. tijd curve (AUC) te vergelijken en de beperkingen van de
traditionele niet-compartmentele analyse methode aan te tonen, ten opzichte van de
resultaten die verkregen zijn op basis van populatie farmacokinetische modellen. De
grootste foutmarges in de geschatte farmacokinetische parameters bleken intrinsiek
verbonden te zijn met de niet-compartmentele analyse methode, vooral als de maximale
concentratie (Cmax) geschat moeten worden. Deze resultaten laten ook zien dat de typische
puntschatter afgeleid van empirische methoden om medicijn blootstelling te beschrijven een
te grote mate van onzekerheid bevatten, die ongeidentificeerd blijft. Dit onderstreept het
belang van de toepassing van benaderingen voor het vaststellen van de onzekerheid in
veiligheidsdrempels zoals de drempel voor het niet-ongewenst effect (no adverse effect
level), oftewel de NOAEL. Met de simulaties werd aangetoond dat dit fenomeen kan worden

omzeild door gebruikt te maken van modelmatige methoden, die de onzekerheid
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parametrisch beschrijven ongeacht of deze als gevolg van een ongeschikt protocolontwerp,
een grote biologische variabiliteit en/of onbekende covariaten voorkomt. De analyse op
basis van de drie hypothetische geneesmiddelen heeft ook aangetoond hoe een
farmacokinetisch model mogelijkheden biedt om de blootstelling op verschillende manieren
parametrisch af te leiden. Een voorbeeld daarvan is de cumulatieve operviak onder de
concentratie vs. tijd curve (CAUC) bij de beschrijving van toxiciteit na langdurige
behandeling, die ook gebruikt kan worden om voorspellingen te maken buiten de studie
duur. Dit draagt bij aan een toename in kwaliteit van het beslissingsproces en uiteindelijk in

de klinische interpretatie van de veiligheidsdrempels.

Data uit in de praktijk gehanteerde experimentele protocollen voor de evaluatie van
algemene toxiciteit zijn niet geoptimaliseerd voor de analyse met behulp van modelmatige
methoden, inclusief populatie farmacokinetisch modellen. De vraag is of protocollen zo
kunnen worden geoptimaliseerd dat een vermindering van het aantal benodigde
proefdieren kan worden bereikt zonder dat dit gepaard gaat met een verlies van de juistheid
en de nauwkeurigheid van farmacokinetische parameters (zoals AUC en Cmax). Anders dan
door gebuik te maken van bestaande optimalisatie software en algoritmes, waar de
optimalisatie van het experimenteel ontwerp wordt bereikt op basis van de precisie van de
primaire parameters, wordt in Hoofdstuk 4 een methode voorgesteld die het mogelijk maakt
om secundaire parameters te optimaliseren. Onze benadering bestond uit evaluaties van de
Fisher informatiematrix gevolgd door berekeningen van verwachte juistheid of
betrouwbaarheid van de secundaire parameter, zonder de nadelen van intensieve
procedures zoals D-optimality. De resultaten laten zien dat de opzet van de studie, inclusief
de keuze van de doses en het aantal monsters, grote invloed heeft op de juistheid van de
parameter schattingen. De voorgestelde methode om de tijdstippen voor het nemen van
bloedmonsters en de groepsgrootte te optimaliseren kan leiden tot een afname van het
benodigde aantal proefdieren (ongeveer 30%) zonder verlies van de juistheid van de
parameters die relevant zijn voor het karakteriseren van de veiligheidsdrempels. Deze
verbetering was onafhankelijk van de verschillen in de farmacokinetiek sche profielen, zoals

bestuudeerd op basis van de drie hypothetische geneesmiddelen. Tevens suggereert onze
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analyse dat de juistheid van de farmacokinetische parameters niet door de groepsomvang
wordt beinvloedt maar dat het juist de tijdstippen van bloedafname en de toegediende
doses zijn, die dit bepalen. Daarnaast laten deze resultaten zien dat de betrouwbaarheid van
de secundaire parameters niet beinvloed wordt als een aantal primaire parameters met

onvoldoende nauwkeurigheid geschat wordt.

Hoewel het gebruik van een modelmatige benadering voor de evaluatie van de
veiligheidsdrempels als gecompliceerd wordt gezien bleek onze methode juist te beschikken
over een goed voorspellend vermogen zonder veel fouten of problemen met de
identificeerbaarheid van het model en de daarbij behorende parameters. Verder laten we
zien hoe bestaande kennis, inclusief data van andere experimenten, op een formele manier
opgenomen kan worden tijdens de analyse en intrepretatie van de resultaten. De
mogelijkheid om zgn. ‘priors’ te gebruiken voor het schatten van parameters in een model
biedt vele kansen om oa. fysiologische factoren, die ten grondslag liggen aan
farmacokinetische eigenschappen, mechanistisch te bestuderen. Men zou bijvoorbeeld de
invloed van de verzadiging van metaboliserende enzymen kunnen evalueren, ongeacht de

doses die gebruikt zijn tijdens een experiment.

Hoofdstuk 5 heeft betrekking op het gebruik van biomarkers in de evaluatie van de
veiligheid en toxiciteit van nieuwe geneesmiddelen. Hier ligt de nadruk op het feit dat voor
een nauwkeurige voorspelling van de veiligheid en toxiciteit na langdurig gebruik van een
geneesmiddel, biomarkers belangrijke informatie kunnen opleveren voor het voorkomen
van een bijwerking. In tegenstelling tot traditionele protocollen, die een directe relatie
tussen de blootstelling en de bijwerking veronderstellen, hebben wij het voorgesteld om het
nemen van bloedmonsters voor de bepaling van de farmacokinetiek te combineren met de
bepaling van biomarkers. Het uiteindelijk doel van zo’n aanpak is het ontrafelen van de vaak
vertraagde of indirecte relatie tussen de farmacokinetiek in plasma en de bijwerkingen of
ongewenste effecten. Om de voordelen van een modelmatige aanpak te kunnen aantonen
werden farmacokinetische en biomarker data gesimuleerd voor een aantal hypothetische

geneesmiddelen met verschillende PKPD relaties. Nog eens proberen we de voordelen en
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nadelen van de voorgestelde benadering te vergelijken met een analyse van de data op basis
van een standaard niet-compartmentele methode. De analyse van de gesimuleerde data laat
zien dat, op basis van gegevens verkregen met een traditioneel monsterafname schema, het
echte onderliggende PKPD model vaak niet identificeerbaar is. Dat is in het bijzonder het
geval wanneer er sprake is van een complexe PKPD relatie (0.m. door het optreden van
hysterese). Niettemin werden in alle gevallen bevredigende resultaten verkregen met
betrekking tot de geschatte biomarker concentraties. Wij zijn daarom van mening dat men
zich meer bewust moet zijn van de beperkingen die de huidige experimentele protocollen
met zich mee brengen. Dit is vooral van belang omdat de veiligheid van geneesmiddelen na
langdurig gebruik steeds meer een prominente rol krijgt binnen de ontwikkeling en toelating
van nieuwe medicijnen. Om de gevolgen van zo’n vertekening te beperken benadrukken wij
de behoefte aan methoden die de mate van onzekerheid bepalen en daardoor modellen en

voorspellingen betrouwbaarder kunnen maken.

Een andere bevinding van onze analyse is dat de criteria voor de selectie van parameters
tijdens het ontwikkelen van een model niet alleen aan statistische eisen moeten voldoen
maar ook de mogelijkheid moeten bieden om de fysiologische relevantie van bepaalde
aannames te kunnen beoordelen. Duidelijke rapportage van alle modellen is van belang
wanneer de ontwikkeling van het hierarchische model eindigt in een verzameling van

modellen met vergelijkbare selectie criteria.

Het doel van het onderzoek dat in Hoofdstuk 6 is beschreven was om de uitvoerbaarheid te
evalueren van de integratie van mechanistische PKPD modellen met toxicologische
gegevens uit standaard experimentele protocollen. Rekening houdende met de achtergrond
incidentie van verschijnselen en fysiologische veranderingen die op lange termijn voorkomen
en vaak met bijwerkingen kunnen worden verwisseld, werden vergelijkbare in silico
methoden zoals eerder beschreven in hoofdstukken 3 en 5 toegepast om door
geneesmiddelen geinduceerde bijwerkingen te simuleren voor drie verschillende
farmacologische mechanismen (directe werking, indirecte werking en irreversibele binding).

Wij hebben ons hierbij geconcentreerd op zeldzame en chronische bijwerkingen die pas na
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langdurige inname van een geneesmiddel ontstaan, inclusief het onderscheid tussen
reversibele en irreversibele effecten, om de grootste methodologische uitdaging aan te
gaan. Om er zeker van te zijn dat realistische condities werden gecreéerd zijn verschillende
scenario’s getoetst, namelijk: 1) de door het geneesmiddel geinduceerde bijwerking en het
achtergrond fysiologische verschijnsel waren niet van elkaar te onderscheiden. 2) het
tijdsinterval tussen het begin van de behandeling en de diagnose was groot en de
symptomen konden per proefdier maar een keer worden vastgesteld op basis van
histologisch onderzoek (na afloop van het experiment). 3) de bijwerking kon beschreven
worden als binaire respons. Onze resultaten lieten zien dat veiligheidsdrempels, zoals
vastgesteld door de NOAEL, onbetrouwbaar en onnauwkeurig zijn. In twee van de drie
scenario’s, waar het effect van veiligheid en effectiviteit van de hypothetische
geneesmiddelen was gesimuleerd, vonden wij dat het rigoureus toepassen van de NOAEL als
beslissingscriterium zou leiden tot een foutieve classificatie in 50% van de gevallen. Dit zou
vervolgens leiden tot een onterechte beeindiging van de ontwikkeling van het geneesmiddel.
Tijdens het vastellen van de haalbaarheid van de toepassing van modelmatige methoden
voor de analyse van toxicologische gegevens hebben wij twee belangrijke componenten
geidentificeerd, die essentieel zijn voor de voorspelling van de geinduceerde effecten: a) de
beschikbaarheid van onafhankelijke informatie over achtergrond verschijnselen en
verandering die meegeteld kunnen worden als bijwerkingen en b) het gebruik van Markov
keten Monte Carlo (MCMC)-gebaseerde algorithmen. Zo hebben wij laten zien dat
historische placebo data doeltreffend genoeg is om achtergrond verschijnselen en andere
fysiologische veranaderingen te kunnen onderscheiden van de onderliggende
farmacologische effecten en bijwerkingen. Aan de andere kant, toen de prestatie van
statistische methoden geévalueerd werd, vonden wij dat modellen die gebaseerd zijn op het
‘maximum waarschijnlijkheid’kriterium onstabiel en onbetrouwbaar zijn. Daarentegen,
bleken de MCMC-gebasseerde resultaten stabieler en nauwkeuriger, inclusief het schatten
van de model- en parameteronzekerheid. Door gebruik te maken van het Bayes informatie
criterium, oftewel BIC, om modellen te vergelijken konden wij de hoge mate van model
onzekerheid blootleggen. Onze resultaten tonen aan dat traditionele technieken die gebruikt

worden voor de selectie van een model en de daarbij behorende parameter verdelingen niet
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geschikt waren om modellen met een zekere mate van complexiteit te identificeren. Het
dient verder gezegd te worden dat gemiste bijwerkingen ook gemakkelijk gekwantificeerd
konden worden middels de voorgestelde modelmatige aanpak. Door MCMC methoden toe
te passen was het mogelijk om verschijnselen en bijwerkingen te beschrijven zelfs als deze

niet waren waargenomen tijdens het experiment.

Het conceptuele raamwerk gepresenteerd in deze sectie van het proefcshrift draagt het
bewijs aan voor de uitvoerbaarheid van een modelmatige benadering voor de evaluatie van
de veiligheid en toxiciteit van nieuwe moleculen voordat ze in de mens worden getest. De
integratie van farmacokinetische en farmacodynamische data als basis voor het voorspellen
van de veilige blootstelling in de mens vereist enkele belangrijke voorwaarden waaraan de
huidige methoden voor pre-klinische toxicologisch onderzoek niet voldoen. Een
modelmatige benadering is daarvoor de geschikte oplossing. In plaats van het vastellen van
de correlatie tussen één enkele waarde en de geschatte veiligheidsdrempel, biedt deze
strategie het voordeel dat het klinische oordeel over de kans op toxiciteit wordt gebaseerd

op de gehele relatie tussen blootstelling en bijwerkingen.

In het derde deel van dit proefschrift (Sectie Ill) hebben wij geprobeerd de implementatie
van experimentele protocollen die voldoen aan de eisen van modelmatige dataanalyse
methoden te illustreren op basis experimentele studies. Vanwege de lopende discussies over
de risico’s en de baten omtrent de chronische behandeling met niet-steroidale
ontstekingsremmers hebben wij naproxen gebruikt als voorbeeldstof om de bekende acute
en chronische toxiciteit van deze klasse geneesmiddelen te evalueren. Gedurende de
afgelopen jaren en tijdens de ontwikkeling van naproxen was men niet op de hoogte van het
gebrek aan de selectiviteit van werking. Daarnaast ontbrak ook het bewijs voor de
mechanismen, die de effecten na acuut gebruik (zoals bloedingen en maagzweren) en
langdurige behandeling (zoals renale en cardiovasculaire schade) onderschrijven.
Desalnietemin, laat onze analyse zien dat kennis over de farmacokinetiek en de blootstelling
aan naproxen die bereikt wordt na de toediening van therapeutische doses van belang zijn

voor het karakteriseren van het veiligheids- en toxiciteitsprofiel. Verder hebben wij ook
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praktische uitdagingen geidentificeerd, die men tegenkomt bij het gebruik van nieuwe

experimentele protocollen.

Sectie Ill: Toepassing in de praktijk

In Hoofdstuk 7 wordt een typisch toxicologie protocol gebruikt om de effecten van acute,
middellange en langdurige behandeling aan naproxen te bestuderen. Naast het
karakteriseren van de blootstelling in plasma worden twee biomarkers gemeten, namelijk
thromboxane (TXB2) en prostaglandin (PGE2). Er werd vanuit gegaan dat gastro-intestinale
bloedingen veroorzaakt werden door continue remming van cyclo-oxygenase 1 (COX-1),
terwijl zweren voornamelijk door de inhibitie van cyclo-oxygenase 2 (COX-2) onstaan.
Farmacokinetische en biomarker data werden geintegreerd met gegevens uit de literatuur
om de vermeende therapeutische effecten te correleren met zowel de blootstelling als de
veranderingen in de biomarkers thromboxane en prostaglandin. De farmacokinetiek van
naproxen werd het best beschreven met een een-compartiment model met eerste-orde
absorptie. Er werd een niet-lineaire relatie vastgesteld tussen de dosis en biologische
beschikbaarheid, die ertoe leidde dat de toename van de blootstelling in plasma minder dan
proportinieel was met toenemende doses van naproxen. In tegenstelling tot eerdere
bevindingen werd zweer vorming in de maag gezien bij alle doses (7.5, 15, 40, 80 mg/kg),
waardoor geen NOAEL vastgesteld kon worden. Desalniettemin, hebben wij aangetoond dat
de beschikbare experimentele data gebruikt kan worden om de onderliggende PKPD relaties
for TXB2 en PGE2 te karakteriseren. Door middel van inibitiemodellen hebben we de
dalende bloedspiegels van zowel thromboxane als prostaglandin kunnen correleren met
naproxen concentraties. Er waren geen problemen met de identificeerbaarheid van de
modellen en de schatting van parameters was precies, overeenkomend met de resultaten
van hoofdstukken 3 en 5. Daarnaast toonden onze resultaten aan, dat farmacokinetische-
pharmacodynamische relaties het mogelijk maken om potentiele verschillen tussen
diersoorten te onderscheiden en desnoods daarvoor te corrigeren. De bijwerkingen van
naproxen in de mens kunnen worden voorspeld op basis van pre-klinische data mits
rekening wordt gehouden met de onderliggende blootstelling-effect relaties. Eigenlijk

hebben wij gevonden dat bij de rat de PKPD relaties ongeveer tienvoud afwijken van de
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waardes die verkregen zijn voor de mens. Hierdoor ontstaat de vraag over de vertaling naar
de mens en de geschiktheid van de zogenoemde “meest gevoelige species” bij toxicologisch
onderzoek als de gevoeligheid van ratten voor cyclo-oxygenase inhibitie aanzienlijk verschilt

van de mens.

De toepassing van een parametrische aanpak en meer specifiek, van niet-lineair gemengde
effecten modellen om experimenten te ontwerpen en de keuze voor een dosis te kunnen
onderbouwen kan een belangrijke stap zijn voor translationeel toxicologisch onderzoek
vanuit zowel het biologisch als statistisch perspectief. Tegelijkertijd hebben wij ook een
aantal beprekingen kunnen vaststellen. De werkingsmechanismen van sommige
geneesmiddelen zijn niet voldoende onderzocht of begrepen om op een parametrische
manier vertaald te kunnen worden in een PKPD model, zelfs als biomarkers beschikbaar zijn.
Daarnaast is het beschrijven van effecten die via meerdere pathways tot stand komen
buitengewoon moeilijk. Zo’n situatie kan een significant probleem blootleggen dat niet

voorkomen kan worden zonder extra experimentele data.

De uitvoerbaarheid en geschiktheid van een modelmatige benadering voor het bestuderen
van het veiligheids- en toxiciteitsprofiel van een geneesmiddel is in hoofdstuk 8 aangevuld
door histologische data te integreren met de PKPD relaties die op het voorafgaande
hoofdstuk zijn beschreven. Hier lieten wij zien dat het mogelijk is om farmacokinetische-
farmacodynamische modellen, die de relatie tussen blootstelling en het effect of biomarkers
beschrijven, te koppelen aan de analyse van de frequentie en intensiteit van bijwerkingen.
In dit experiment werd de ernst van een zweer gecorreleerd met het oppervlak daarvan en
als een continue variabele uitgedrukt. Daarnaast werd de frequentie van maagzweren als
een discrete variabele geanalyseerd. De modelparameter die de frequentie van bijwerkingen
beschreef wijst aan dat zweer vorming na toediening van naproxen een acuut effect is dat
gepaard gaat met de maximale inhibitie van PGE,, welke een maat is van de blokkade van
COX-2. Gegeven de implicaties van model onzekerheid, zoals beschreven in hoofdstuk 6, zijn
we gedwongen geweest om bootstrap methodes te gebruiken om zo de onzekerheid te

kunnen schatten. De onzekerheid met betrekking tot de karakterisatie van de frequentie van
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zweren was aanzienlijk lager dan wanneer de ernstigtheid van zweren werd beschreven.
Ondanks de hoge mate van onzekerheid hebben we kunnen vaststellen dat het opperviak
van maagzweren het gevolg is van cumulatieve remming van TXB,. Samengevat, ons
onderzoek laat zien hoe een modelmatige benadering gebruikt kan worden om
bijwerkingen die zowel na acute als langdurige behandeling voorkomen, vroeg te kunnen
identificeren en zo pre-klinische data als basis te kunnen gebruiken voor de vertaling van het
veiligheids en toxiciteitsprofiel naar de mens. Verder illustreren onze resultaten ook hoe
PKPD relaties het mogelijk maken om conclusies te trekken over doses and dosis schema’s

die niet experimenteel geévalueerd zijn.

Vanuit een methodologisch oogpunt hebben de bevindingen van dit onderzoeksprotocol de
haalbaarheid en voordelen van een modelmatige benadering voor de evaluatie van
chronische veiligheid en toxiciteit onderschreven. Hierbij dient echter de kanttekening te
worden gemaakt, dat precisie, nauwkeurigheid en validiteit van de voorgestelde methoden
nog altijd afhankelijk zijn van de experimentele data. In deze studie waren de bijwerkingen
die wij beschreven hebben relatief frequent. Het karakteriseren van effecten die met lage
frequentie voorkomen kan aanzienlijk moeilijker zijn, vooral als historische data ontbreken
of waaruit ook maar enige gevolgtrekking gemaakt kan worden met betrekking tot klasse
effecten. Wij erkennen ook dat de afwezigheid van zweer vorming in de controlegroep en
het gebrek aan een cohort met lagere blootstelling een zwak punt in ons onderzoek is.
Daardoor kon de echte basislijn voor het onstaan van maagzweren niet worden vastgesteld.
Als gevolg daarvan was het ook niet mogelijk om de frequentie van bijwerkingen bij lagere

dosissen nauwkeurig te voorspellen.

Sectie IV: Conclusies, aanbevelingen en perspectieven

Een overzicht van de resultaten en conclusies zoals beschreven in de verschillende
hoofdstukken is samengevat in Hoofdstuk 9. Het meest belangrijk is dat aanbevelingen
verstrekt zijn voor de analyse van veiligheids en toxicologie protocollen met behulp van
farmacologisch gebaseerde kwantitatieve methoden. Hier hebben wij de antwoorden op de

initiele vragen zoals beschreven aan het begin van dit proefschrift samengevat. Er is een lijst
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is samengesteld van punten, die overwogen dienen te worden, gezien de uitdagingen en
beperkingen die men tegenkomt bij het kakrakteriseren van relatie tussen blootstelling en
effect wanneer er gebruik gemaakt wordt van traditionele toxicologische
onderzoeksprotocollen. Deze lijst bevat aanbevelingen met betrekking tot methodologische
en praktische aspecten die die ertoe leiden dat modelmatige data analyse technieken,

toegepast kunnen worden bij veiligheids en toxicologisch onderzoek.

Noemenswaardig is de rol van het primaire (farmacologische) werkingsmechanisme en de
daarbij betrokken receptorsystemen, die overwogen dienen te worden bij de keuze van de
dosis en bij het vaststellen van het benodigde tijdschema voor monster afname. Daarnaast
kan het gebruik van historische data (die de distributie van parameters kan bescrijven) van
belang zijn om de onzekerheid omtrent de relatie tussen blootstelling en bijwerkingen of
toxiciteit te reduceren. Vanuit een statistisch oogpunt, kan het gebrek aan model en
parameter identificeerbaarheid een risico zijn voor de interpretatie van resultatent uit een
PKPD analyse. Daarom zijn techknieken zoals simulaties, bootstrap en gevoeligheidsanalyse
essentieel om zowel de betrouwbaarheid als de nauwkeurigheid van de voorspelingen te
kunnen waarborgen. Tenslotte, benadrukken wij de relevantie van de zogenoemde selectie
criteria op de identificeerbaarheid van een model. Onze bevindingen wijzen er op dat
traditionele criteria, die gebruikt worden om de complexiteit van een model beoordelen
zoals BIC en AIC, ongeschikt zijn voor het modelleren van effecten die met lage of zeer lage
frequentie voorkomen. Daarom stellen wij voor om farmacologische plausibiliteit naast

minder conservatieve statistische criteria toe te passen bij de selectie van een PKPD model.

Het hoofdstuk wordt afgerond met een beknopte discussie over de ontwikkelingen op het

terrein van PKPD modellering en hoe de methodologische problemen die wij geidentificeerd

hebben verholpen kunnen worden. Onze bevindingen onthullen dat gevolgtrekkingen over
de zogenoemde “veilige blootstelling” en de daarop geassocieerde risico’s niet geschat of
voorspeld kunnen worden op basis van losse empirische experimenten waarin uitsluitend

het effect van supratherapeutische concentraties is bestudeerd. Het gebruik van een
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computationeel modelmatig raamwerk is onvermijdelijk als men data en kennis over het

lotgeval en de farmacologische eigenschappen van een stof tracht te integreren.

Om het lange termijn veiligheids en toxiciteitsprofiel van een geneesmiddel in mensen te
kunnen voorspellen zijn methodes nodig die de werkingsmechanismen geassocieerd met
zowel primaire als secundaire receptorsystemen verbinden. Verder moet er rekening
worden gehouden met de factoren die deel uitmaken van het biologische systeem na de
receptor. Daarbij zal kwantitatieve systeem farmacologie een belangrijk rol kunnen spelen.
Dit vakgebid vertegenwoordigd de integratie van systeem biologie en farmacologie waar
computationele en experimentele methoden gecombineerd kunnen worden om de
progressie van ziekten en effecten van geneesmiddelen te bestuderen en/of voorspellen.
Deze aanpak is met name relevant, zowel vanuit klinisch als methodologisch perspectief,
voor de parameterisatie van lange termijn bijwerkingen, die hun oorsprong vinden in de
pertubatie van homeostatische mechanismen, door cellulaire veranderingen of bij weefsel

en cel schade.

Naast het ontwikkelen van meer fysiologisch en mechanistisch-gebasseerde modellen dient
ook de toekomstige uitbreiding van de risico-baten analyse zoals voorgesteld in dit
proefschrift overwogen te worden. Er zijn verschillende voorbeelden gepubliceerd van risico-
baten analyses waarin gebruik wordt gemaakt van PKPD modellen. Het is aannemelijk dat de
integratie van deze methoden tot een veel betrouwbaarder raamwerk kan leiden, dat
vervolgens gebruikt zou kunnen worden ter beoordeling van nieuwe en bestaande
geneesmiddelen, alsmede het optimale gebruikt ervan. Bij de evaluatie van het veiligheids
en toxiciteitsprofiel van een geneesmiddel dienen de dosis en de tijd als bepalende factoren
te worden overwogen. Dit punt werd aangehaald al in 1538 door de Zwits-Duitse arts,
Theophrastus of Hohenheim, die stelde dat alles giftig is en dat niets niet giftig is: alleen de

dosis maakt iets niet giftig.

Ter conclusie: ondanks het gebrek aan een breed scala van scenario’s en beprekingen die
intrinsiek verbonden zijn aan het selecteren van experimentele protocollen zoals

gepresenteerd in dit proefschrift, werpen onze bevindingen een nieuwe, wellicht
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belangrijkere vraag op met betrekking tot de ethische basis voor het gebruik van proefdieren
bij empirische experimentele protocollen, met als rechtvaardiging dat daarmee de veiligheid

en toxiciteit van een geneesmiddel gekarakteriseerd kunnen worden.
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