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Chapter 2

Abstract

Since confounding obscures the real effect of the exposure, 

it is important to adequately address confounding for 

making valid causal inferences from observational data. 

Directed Acyclic Graphs (DAGs) are visual representations 

of causal assumptions that are increasingly used in modern 

epidemiology. They can help to identify the presence of 

confounding for the causal question at hand. This structured 

approach serves as a visual aid in the scientific discussion 

by making underlying relations explicit. This article explains 

the basic concepts of DAGs and provides examples in the field 

of nephrology with and without the presence of confounding. 

Ultimately, these examples will show that DAGs can be 

preferable to the traditional methods to identify sources of 

confounding, especially in complex research questions. 
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Introduction

Traditionally, the gold standard of investigating a causal 

relationship is an experiment. For example, to investigate 

the effect of erythropoietin on blood pressure in patients 

with chronic kidney disease (CKD), the ideal experiment 

would be a randomized controlled trial. Randomization is 

especially important when investigating intended treatment 

effects to avoid confounding by indication.1 By randomly 

assigning erythropoietin versus control treatment, we aim to 

make groups that are comparable with respect to their risk of 

developing hypertension. Provided the study is of sufficient 

size, all other factors influencing blood pressure, will be more 

or less equally distributed between erythropoietin and control 

groups and therefore any difference in blood pressure at the 

end of the study can be attributed to the erythropoietin. 

However, most questions on causal mechanisms of disease 

cannot be studied in randomized trials and we must rely on 

results of observational studies.2 For instance, it is unethical 

to randomly expose people to cigarette smoke or lead exposure 

to study their effect on kidney function, as negative effects 

can be foreseen. Other determinants of interest, like sex, 

cannot be assigned. But unlike well-performed randomized 

trials, observational studies often suffer from an inherent 

incomparability between the exposed and the unexposed. For 

example, when studying the effect of smoking on the risk of 

renal disease, the tendency of smokers having an unfavorable 

lifestyle, like high alcohol or salt intake, could distort the 

comparison. If these other factors are also causes of renal 

disease, the effect of the exposure, in this case smoking, is 

easily confounded by the effect of those other factors. This 

mixing of effects is better known as confounding.3 

For making valid causal inferences from observational data, 

it is important to adequately address confounding. However, 

confounding is not always easy to recognize. In the traditional 
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definition a confounder is a factor that is associated with 

the exposure, with the outcome and it is not in the causal 

path between the exposure and outcome.4 Although this 

definition of a confounder is clear, we will show later that 

it may be insufficient in practice. Causal diagrams called 

Directed Acyclic Graphs (DAGs) are increasingly used in 

modern epidemiology, mainly due to the popularization of this 

technique by Sander Greenland and more recently Miguel 

Hernan.5-9 DAGs provide a structured way to present an 

overview of the causal research question and its context. They 

serve as a visual representation of causal assumptions by 

making underlying relations explicit.8 DAGs can therefore help 

to identify the presence of confounding and ways to resolve it. 

This article aims to introduce DAGs as a useful tool to present 

a causal research question and to identify confounding.

First, the traditional definition of a confounder will be 

discussed. Then the basic aspects of DAGs will be explained 

using several examples with and without the presence of 

confounding. In addition, we will discuss how DAGs can be 

used to determine the most efficient way to deal with the 

identified confounding. For educational purposes, the DAGs 

in this article are used as simple examples and are assumed 

to represent the truth.

Traditional definition of confounding

Example 1:
We are assessing the causal relationship between 
CKD and mortality. Is confounding by age present?
Traditionally, a confounder is defined by three criteria. First, 

it must have an association with the outcome, meaning that it 

should be a risk factor for the outcome. Second, it must be 

associated with the exposure. Last, it must not be in the 

causal path from exposure to outcome, thus not be a 

consequence of the exposure.4 Using these criteria, age 
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classifies as a confounder in the relationship between CKD 

and mortality. In the general population, people with CKD are 

on average older than people without CKD. Among elderly 

subjects, the risk of mortality is also higher. Therefore, if we 

would just compare mortality risk in patients with CKD to 

patients without CKD, we would indirectly compare old with 

The structure of confounding in DAGs is shown in Figure 1a. Since age 

is a common cause of chronic kidney disease and mortality (Figure 1b), 

confounding is present when we want to assess the causal relationship 

between the exposure chronic kidney disease and the outcome mortality. 

The backdoor path from chronic kidney disease via age to mortality can 

be blocked by conditioning on age, as depicted by a box around age in 

Figure 1c. Similarly, ethnicity is a common cause of obesity and decline in 

kidney function (Figure 1d). The backdoor path from obesity via ethnicity 

to decline in kidney function can be blocked by conditioning on ethnicity. If 

ethnicity is not measured or not properly measured, residual confounding 

remains present.

Figure 1. A graphical presentation of confounding in DAGs
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Figure 1    A graphical presentation of confounding in DAGs
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young people. Age is associated with the exposure CKD, is a 

risk factor for the outcome, but is not a consequence of the 

exposure. As identified with the traditional method, the effect 

of CKD on mortality is mixed with the effect of age, and 

confounding by age is present. Usually we would want to 

remove this confounding effect of age, and in order to do so, 

we must first have identified potential confounding. We will 

show that DAGs provide an extension and more formalized 

way of the traditional method to identify confounding.

DAGs: Directed Acyclic Graphs

A DAG is a Directed Acyclic Graph (Figure 1). A graph is called 

directed if all variables in the graph are connected by arrows. 

Arrows in DAGs represent direct causal effects of one factor 

on another, either protective or harmful.9 A cause is a factor 

that produces an effect on another factor. The causal nature 

of such a factor is inferred from the fact that the effect is no 

more observed when the factor in question is (hypothetically) 

removed. Causes are seldom sufficient or necessary, especially 

in a multifactorial disease such as CKD. An arrow reflects a 

causal pathway: one factor causes the other and not the other 

way around. The arrows and their direction are based on a 

priori knowledge. A path in a DAG is a sequence of arrows 

connecting the exposure and outcome studied, irrespective of 

the direction of the arrows. A directed path is a sequence of 

arrows in which every arrow points in the same direction. The 

graphs are acyclic because causes always precede their effects, 

i.e. the future cannot cause the past. In DAGs this means that 

no directed path can form a closed loop.8 Thus one can never 

start from one factor, follow the direction of the arrows and 

then end up at the same factor.9 To increase the readability 

of a DAG, it is therefore good practice to insert a chronology, 

with causes left from their effects. For clarity and explanatory 

purposes we indicate the research question at hand with a 

question mark above the arrow from exposure to outcome.
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Confounding in DAGs

Figure 1a shows the general structure of confounding in a DAG 

and Figure 1b shows the DAG of the first example, in which 

confounding by age was identified in the causal relationship 

between CKD and mortality. The arrows are drawn based on a 

priori knowledge. In this case, age is a cause of both CKD and 

mortality. Therefore, the arrows point away from age towards 

CKD, as well as towards mortality. Age is thus a common 

cause of CKD and mortality. The presence of a common cause 

in a DAG is equivalent to the presence of confounding. The 

DAG in Figure 1b indicates two paths from CKD to mortality. 

One path leads directly from CKD to mortality, representing 

the effect of CKD on mortality, which is the research question 

at hand. There is however another path from CKD to mortality, 

via their common cause age. In DAG terms this path is called 

a backdoor path, because it starts with an arrowhead towards 

CKD, the exposure. Thus, the presence of a common cause or 

backdoor path in a DAG identifies the presence of confounding. 

A DAG represents an overview of all causes in the causal 

mechanism under study. When a DAG contains all relevant 

variables and their causal relationships, that is the exposure, 

outcome and their context, the presence of ‘confounding’ in 

general can be identified. This is inherently different from the 

traditional three criteria approach, in which every factor is 

judged as a ‘confounder’ separately. Therefore, in DAGs we do 

not speak of ‘confounders’ but only of ‘confounding’. 

How to deal with confounding and its 
representation in DAGs

Since confounding obscures the real effect of an exposure, the 

effect of confounding should be removed as much as possible. 

In the analysis phase, this can be done by means of restriction, 

stratification and subsequent pooling, or by adjusting in 

multivariable regression analysis. For instance in the previous 
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example, the relationship between CKD and mortality could 

be assessed in different age categories separately. In these 

separate groups with the same age, confounding by age 

cannot be present. All methods accomplish the same: they 

allow the estimation of the causal effect of the exposure on 

the outcome in the absence of confounding effects. In DAG 

terms, adjusting for confounding by means of restriction, 

stratification or multivariable analysis is called conditioning. 

In a DAG, conditioning on a factor is often depicted by a box 

around this factor, which is a graphic indication that the 

backdoor path from the exposure to the outcome that went 

through the common cause is blocked. Since this backdoor 

path is blocked, the confounding has been removed. An 

example of this is shown in Figure 1c. In the remainder of 

this article the terms ‘adjusting for’ and ‘conditioning on’ a 

factor are used interchangeably to indicate that this factor is 

included in the analysis in order to reduce confounding.

Residual confounding

Example 2:
We are assessing the causal relationship 
between obesity and decline in kidney function.  
Is confounding by ethnicity present?
Suppose the aim is to study the causal relationship between 

obesity and decline in kidney function. It has been shown that 

black patients have a faster decline in kidney function and 

progression to end-stage renal disease.10 Also obesity rates are 

higher in African American patients than in white patients.11 

Ethnicity could therefore be regarded as a cause of decline in 

kidney function and a cause of obesity. Therefore, in the DAG 

in Figure 1d the arrows point away from ethnicity towards 

obesity and decline in kidney function. Ethnicity is thus a 

common cause of obesity and decline in kidney function, 

and a backdoor path from obesity via ethnicity to decline in 

kidney function is identified. We conclude that confounding 
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is present and we should condition on ethnicity to remove 

confounding. It is however possible to identify confounding in 

a DAG that is impossible to adjust for. For instance, it could 

be that physicians did not record ethnicity and ethnicity is 

thus unavailable in the data analyses. The investigator cannot 

adjust for a factor that is not measured. Similarly, it is possible 

that adjustments are only partly successful in controlling for 

confounding. For example, even if ethnicity was recorded and 

adjusted for in the analyses, some residual confounding can 

remain present. The reason for this is that self-reported or 

physician-reported race does not always completely represent 

the racial background of an individual. When confounding 

is unknown, unmeasured or even partially measured and 

adjusted for, residual confounding will remain present. 

This is also the problem with confounding by indication. A 

physician’s treatment decision is based on many factors, 

including the physician’s preference and estimation of the 

patient’s outcome, and it is almost impossible to completely 

measure all these factors. Randomized controlled trials are 

therefore the best way to avoid confounding by indication.1;12

No confounding: mediation

Example 3:
We are assessing the causal relationship 
between ethnicity and decline in kidney function. 
Is confounding by obesity present?
Suppose this time we want to study the causal relationship 

between ethnicity and decline in kidney function and want to 

determine if confounding by obesity is present. In the DAG, 

ethnicity is the exposure and decline in kidney function the 

outcome. Again, the arrow from ethnicity to obesity is drawn, 

because obesity rates are higher in African American patients 

than in white patients. Furthermore, a higher BMI is 

associated with a faster decline in kidney function,13 so an 

arrow from obesity to decline in kidney function can be drawn. 
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The DAG in Figure 2a shows that obesity is not a common 

cause of ethnicity and decline in kidney function and we can 

conclude that there is no confounding by obesity. The path 

from ethnicity via obesity to decline in kidney function is not 

a backdoor path, as the first arrow points away from the 

exposure ethnicity. Obesity is not a cause of ethnicity, but 

ethnicity can be regarded as a cause of obesity. Obesity is 

therefore in the causal pathway between ethnicity and decline 

in kidney function. Part of the effect of ethnicity on the decline 

in kidney function is via obesity, thus the effect of ethnicity is 

mediated by obesity. This is also captured in the last part of 

the traditional definition of a confounder: it should not be in 

the causal path between exposure and outcome. If we would 

adjust for obesity (sometimes called ‘overadjustment’),4 

thereby comparing black with white patients within the same 

level of obesity, we would take away the effect of obesity on 

the decline of kidney function. Then part of the effect of 

ethnicity that is mediated through obesity is not accounted 

for and the total effect of ethnicity on decline of kidney 

function would be underestimated. Of course, these decisions 

on modelling depend on the research question being asked. 

We are interested in the total causal effect of ethnicity on 

decline of kidney function and therefore do not adjust for 

obesity, since there is no confounding by obesity. If one wants 

to know why ethnicity has an effect on decline of kidney 

function, we could deliberately adjust for obesity to see which 

part of the effect of ethnicity is mediated by obesity or perform 

more advanced mediation analysis.14;15 Importantly, the 

interpretation of results should be consistent with the 

performed analyses and a DAG can be a useful tool in this 

process. In our specific example, the DAG shows that obesity 

is a mediator and therefore there is no confounding by obesity 

present in the causal relationship between ethnicity and 

decline in kidney function. This is in contrast to the previous 

example, in which confounding by ethnicity was identified 

in the causal relationship between obesity and decline in 

kidney function.

The path from the exposure to outcome via mediator (Figure 2a) is not a 

backdoor path, because it does not start with an arrowhead towards the 

exposure. Therefore, no confounding by obesity is present in the causal 

relation between ethnicity and decline in kidney function (Figure 2b). 

Figure 2. No confounding: mediation

ethnicity

obesity

decline in
kidney function

Figure 2  No confounding: mediation

a.
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exposure

mediator

outcome?
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A collider is a common effect (Figure 3a). Glomerular filtration rate (GFR) is 

a common effect of lead poisoning and polycystic kidney disease (Figure 3b). 

The path from lead poisoning to polycystic kidney disease via GFR is not 

a backdoor path, it is blocked by collider GFR. Therefore, no confounding 

by GFR is present in the causal relationship between lead poisoning and 

polycystic kidney disease.

Figure 3. No confounding: collider

Figure 3  No confounding: collider

a. exposure outcome collider?

b. lead poisoning polycystic 
kidney disease

GFR?
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The DAG in Figure 2a shows that obesity is not a common 

cause of ethnicity and decline in kidney function and we can 

conclude that there is no confounding by obesity. The path 

from ethnicity via obesity to decline in kidney function is not 

a backdoor path, as the first arrow points away from the 

exposure ethnicity. Obesity is not a cause of ethnicity, but 

ethnicity can be regarded as a cause of obesity. Obesity is 

therefore in the causal pathway between ethnicity and decline 

in kidney function. Part of the effect of ethnicity on the decline 

in kidney function is via obesity, thus the effect of ethnicity is 

mediated by obesity. This is also captured in the last part of 

the traditional definition of a confounder: it should not be in 

the causal path between exposure and outcome. If we would 

adjust for obesity (sometimes called ‘overadjustment’),4 

thereby comparing black with white patients within the same 

level of obesity, we would take away the effect of obesity on 

the decline of kidney function. Then part of the effect of 

ethnicity that is mediated through obesity is not accounted 

for and the total effect of ethnicity on decline of kidney 

function would be underestimated. Of course, these decisions 

on modelling depend on the research question being asked. 

We are interested in the total causal effect of ethnicity on 

decline of kidney function and therefore do not adjust for 

obesity, since there is no confounding by obesity. If one wants 

to know why ethnicity has an effect on decline of kidney 

function, we could deliberately adjust for obesity to see which 

part of the effect of ethnicity is mediated by obesity or perform 

more advanced mediation analysis.14;15 Importantly, the 

interpretation of results should be consistent with the 

performed analyses and a DAG can be a useful tool in this 

process. In our specific example, the DAG shows that obesity 

is a mediator and therefore there is no confounding by obesity 

present in the causal relationship between ethnicity and 

decline in kidney function. This is in contrast to the previous 

example, in which confounding by ethnicity was identified 

in the causal relationship between obesity and decline in 

kidney function.

The path from the exposure to outcome via mediator (Figure 2a) is not a 

backdoor path, because it does not start with an arrowhead towards the 

exposure. Therefore, no confounding by obesity is present in the causal 

relation between ethnicity and decline in kidney function (Figure 2b). 

Figure 2. No confounding: mediation
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obesity

decline in
kidney function

Figure 2  No confounding: mediation
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A collider is a common effect (Figure 3a). Glomerular filtration rate (GFR) is 

a common effect of lead poisoning and polycystic kidney disease (Figure 3b). 

The path from lead poisoning to polycystic kidney disease via GFR is not 

a backdoor path, it is blocked by collider GFR. Therefore, no confounding 

by GFR is present in the causal relationship between lead poisoning and 

polycystic kidney disease.

Figure 3. No confounding: collider

Figure 3  No confounding: collider

a. exposure outcome collider?

b. lead poisoning polycystic 
kidney disease

GFR?
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No confounding: common effect

Example 4:
Assessing the causal effect of lead poisoning on 
developing polycystic kidney disease. Is confounding 
by glomerular filtration rate present? 
Before we knew that polycystic kidney disease (PKD) was 

a genetic disorder, we could have hypothesized that lead 

poisoning could cause PKD. Of course now we know that these 

two are not causally related, but in reality also sometimes 

without knowing it we study a causal relationship that at a 

later stage turns out to be absent. In this case, the question 

is whether confounding by glomerular filtration rate (GFR) is 

present. A valid question it seems, since a priori knowledge 

shows that GFR is associated with both lead poisoning and 

PKD and not in the causal path between lead poisoning and 

PKD. By drawing a DAG, the causal assumptions about the 

underlying relations are being made explicit. In this case, lead 

poisoning is a cause of renal failure, affecting GFR. GFR is 

thus an effect of lead poisoning and the arrow points from 

lead poisoning, our exposure, to GFR. PKD is also a cause of 

renal failure. Again the arrow is drawn from PKD to GFR. The 

resulting DAG is depicted in Figure 3a. There is no backdoor 

path via GFR, because GFR is not a common cause of lead 

poisoning and PKD. The DAG therefore shows that GFR does 

not cause confounding. The traditional definition would also 

not identify GFR as a confounder, because although GFR is 

associated with the outcome, GFR is not a risk factor for, or 

cause of PKD. In contrast, the DAG clearly shows that GFR is 

a common effect of lead poisoning and PKD. In DAG terms, a 

common effect is called a collider, because two arrowheads 

collide at this factor. A collider blocks a path. So, before 

we knew about genetics, what would have happened if we 

wanted to investigate the causal relationship between lead 

poisoning and PKD and we would falsely adjust for GFR? 

In the extreme case, imagine that lead poisoning and PKD 

are the only two causes of kidney disease. If we would only 



Graphical presentation of confounding in Directed Acyclic Graphs

2

35

conduct our study in patients with a low GFR, then absence 

of lead poisoning would perfectly predict the presence of PKD, 

because otherwise the patient would not have had a low GFR. 

In addition, the absence of PKD would perfectly predict the 

presence of lead poisoning. So restricting our study to only 

those patients with a low GFR leads to an inverse association 

between lead poisoning and PKD. We would have concluded 

that lead poisoning has a protective effect on PKD, although 

we know now that PKD is a genetic disorder and there is 

actually no causal effect. This demonstrates that adjusting 

for a variable that is a common effect of the exposure and 

outcome -a collider- can introduce erroneous results. In DAG 

terms, conditioning on a collider opens a path. This bias is 

called collider-stratification bias and is extensively discussed 

in the literature.16;17 Collider-stratification bias is an example 

of selection bias, which will be discussed and explained in 

DAGs in a separate paper. We refer to Textbox 1 for a more 

technical overview of confounding in DAGs. 

Use of DAGs to identify a minimum set 
of factors to eliminate confounding 

So far, the traditional approach identified the same sources of 

confounding as with the DAG approach. So how do DAGs 

improve on the traditional approach? In the traditional 

approach the three criteria are applied for each ‘potential 

confounder’ separately. In DAGs, all assumptions on all factors 

and their relationships in a causal mechanisms are made 

explicit in order to identify confounding in general. As a 

consequence, DAGs allow the investigator to oversee all 

information needed to judge whether conditioning on a certain 

factor might introduce collider-stratification bias. This is not 

possible in the traditional three criteria approach, which only 

focuses on a single factor. Furthermore, because DAGs provide 

an overview of the causal relationships, they allow the 

investigator to identify a minimum but sufficient set of factors 
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to adjust for in the analysis to remove confounding.18 For 

illustration, let us go back to the first simple example in which 

the relationship between CKD and mortality was confounded 

by age. This DAG could be extended as presented in Figure 

4a. In this example, the effect of age on mortality is caused 

through two mechanisms, i.e. a higher incidence of cancer 

and dementia in the elderly. In the traditional definition of a 

confounder, we would probably conclude that we should 

adjust for age, cancer and dementia, since all three are 

associated with the exposure, are risk factors for the outcome 

and are not in the causal path between CKD and mortality. 

However, the DAG shows that it is sufficient to only adjust for 

age to eliminate the confounding, because the backdoor path 

is blocked by adjusting for the common cause age. Note, this 

is only true in this simplified example in which we assume 

that cancer and dementia do not directly affect the presence 

of CKD. It can be argued that cancer also causes CKD, which 

could be a valid assumption for renal cancer or other types of 

cancer that will be treated with nephrotoxic chemotherapy. 

Then an arrow should also be drawn from cancer to CKD, as 

depicted in Figure 4b. In that case two backdoor paths would 

be identified: the first via age and then cancer and dementia, 

as in Figure 4a, and the second via common cause cancer. 

Although in Figure 4a it is sufficient to adjust for age to block 

the backdoor paths and eliminate confounding, in Figure 4b it 

is necessary to adjust for two factors to eliminate confounding. 

The two backdoor paths can be blocked by either adjusting for 

age and cancer, or by adjusting for cancer and dementia. The 

use of DAGs allows for better insight in the assumed causal 

mechanisms and can aid in the discussion and selection of 

factors to adjust for in order to remove the confounding. 

Readers interested in examples of more complex causal 

mechanisms can refer to articles of Hernan or Shrier.9;19 DAGs 

can be drawn by hand, but several computer-based 

approaches, such as DAGitty and dagR, have been developed 

to identify the minimal sufficient adjustment set.20;21 If drawn 

and discussed prior to data collection, DAGs may help identify 
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the best and most parsimonious set of factors to be measured 

and adjusted for. This will prevent loss of statistical power 

and funds, but also avoids problems such as collider-

stratification bias and collinearity.18;22;23 

In Figure 4a the backdoor path from chronic kidney disease to mortality 

can be blocked by just conditioning on age, as depicted by the box around 

age. However if we assume that cancer also causes chronic kidney disease 

(Figure 4b) the backdoor paths can only be closed by conditioning on two 

factors, either age and cancer (as depicted) or cancer and dementia. 

Figure 4. Identification of a minimal set of factors to resolve confounding
Figure 4  Identi�cation of the minimal set of factors to resolve confounding   

age
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Conclusions

In the above examples we demonstrated the use of DAGs 

as a visual aid in identifying the presence of confounding. 

For explanatory purposes, the examples were relatively easy 

with limited factors. Examples of more complex DAGs can be 

found elsewhere.9;19 Especially in more complex situations, 

DAGs can be preferable over the traditional definition 

of confounding as they allow to identify the presumed 

causal mechanism and thereby the possibility of collider-

stratification bias with certain adjustments, as well as a 

minimum set of factors to adjust for to remove the unwanted 

confounding. These attributes are derived from the fact 

that all relevant factors and their causal relationships are 

depicted in DAGs in a chronologic order, with the question 

whether confounding is present. As a result, relevant paths 

can be blocked whereas others will not be unblocked, all to 

remove confounding without inducing collider-stratification 

bias. In contrast, the traditional three criteria approach is 

based on a case-by-case judgement of whether a factor is a 

confounder, without any acknowledgement of the context. The 

use of DAGs in identifying confounding still relies on prior 

knowledge and assumed causal effects. It does therefore not 

tell anything about the truth of your assumptions. It may well 

be possible that different physicians have different beliefs on 

which factor causes the other and this may result in different 

choices regarding factors to adjust for. DAGs can aid in this 

discussion among physicians and researchers, by providing 

a visual representation to discuss causal research questions 

and making the underlying assumptions about causal 

mechanisms explicit.

Textbox 1. DAG definitions

DAG: Directed Acyclic Graph

Directed  The factors in the graph are connected with arrows, the 

arrows represent the direction of the causal relationship

Acyclic  No directed path can form a closed loop, as a factor cannot 

cause itself

DAG definitions and identifying confounding22

•  A path is a sequence of arrows, irrespective of the direction of the 

arrows

•  A directed path is a sequence of arrows in which every arrow 

points in the same direction, representing the causal relationship

•  A backdoor path is a sequence of arrows from exposure to outcome 

that starts with an arrowhead towards the exposure and ends 

with an arrowhead towards the outcome (Figure 1a-1b)

•  Two factors are associated if they are connected by an open path

•  A collider is a common effect; a factor on which two arrowheads 

collide (Figure 3a)

•  A collider blocks a path

•  A collider that has been conditioned on no longer blocks a path; 

conditioning on a collider could therefore introduce a form of 

selection bias and should be done with caution (see also 16;17)

•  Any path that contains non-colliders is open, unless a non-collider 

has been conditioned on, then it is blocked (Figure 1c)

•  Blocked paths do not affect the direct causal relationship between 

the exposure and the outcome

•  Confounding is identified by an open backdoor path

•  The causal relationship between exposure and outcome will be 

unconfounded if the only open paths from exposure to outcome 

are directed paths from exposure to outcome22
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Conclusions

In the above examples we demonstrated the use of DAGs 

as a visual aid in identifying the presence of confounding. 

For explanatory purposes, the examples were relatively easy 

with limited factors. Examples of more complex DAGs can be 

found elsewhere.9;19 Especially in more complex situations, 

DAGs can be preferable over the traditional definition 

of confounding as they allow to identify the presumed 

causal mechanism and thereby the possibility of collider-

stratification bias with certain adjustments, as well as a 

minimum set of factors to adjust for to remove the unwanted 

confounding. These attributes are derived from the fact 

that all relevant factors and their causal relationships are 

depicted in DAGs in a chronologic order, with the question 

whether confounding is present. As a result, relevant paths 

can be blocked whereas others will not be unblocked, all to 

remove confounding without inducing collider-stratification 

bias. In contrast, the traditional three criteria approach is 

based on a case-by-case judgement of whether a factor is a 

confounder, without any acknowledgement of the context. The 

use of DAGs in identifying confounding still relies on prior 

knowledge and assumed causal effects. It does therefore not 

tell anything about the truth of your assumptions. It may well 

be possible that different physicians have different beliefs on 

which factor causes the other and this may result in different 

choices regarding factors to adjust for. DAGs can aid in this 

discussion among physicians and researchers, by providing 

a visual representation to discuss causal research questions 

and making the underlying assumptions about causal 

mechanisms explicit.

Textbox 1. DAG definitions

DAG: Directed Acyclic Graph

Directed  The factors in the graph are connected with arrows, the 

arrows represent the direction of the causal relationship

Acyclic  No directed path can form a closed loop, as a factor cannot 

cause itself

DAG definitions and identifying confounding22

•  A path is a sequence of arrows, irrespective of the direction of the 

arrows

•  A directed path is a sequence of arrows in which every arrow 

points in the same direction, representing the causal relationship

•  A backdoor path is a sequence of arrows from exposure to outcome 

that starts with an arrowhead towards the exposure and ends 

with an arrowhead towards the outcome (Figure 1a-1b)

•  Two factors are associated if they are connected by an open path

•  A collider is a common effect; a factor on which two arrowheads 

collide (Figure 3a)

•  A collider blocks a path

•  A collider that has been conditioned on no longer blocks a path; 

conditioning on a collider could therefore introduce a form of 

selection bias and should be done with caution (see also 16;17)

•  Any path that contains non-colliders is open, unless a non-collider 

has been conditioned on, then it is blocked (Figure 1c)

•  Blocked paths do not affect the direct causal relationship between 

the exposure and the outcome

•  Confounding is identified by an open backdoor path

•  The causal relationship between exposure and outcome will be 

unconfounded if the only open paths from exposure to outcome 

are directed paths from exposure to outcome22
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