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General introduction

HEADACHE DISORDERS are called ‘primary’ when no causal underlying struc-
tural lesion is present. The diagnostic criteria of the International Headache Society 

(IHS) define four groups of primary headaches, that is (1) migraine, (2) tension-type 
headache, (3) cluster headache and other trigeminal autonomic cephalalgias, and (4) 
other primary headaches, examples of which are hemicrania continua and hypnic head-
ache.1 These main categories of primary headaches are thought to consist of multifacto-
rial diseases, meaning that they are likely caused by a combination of multiple environ-
mental and genetic factors. Whereas not much is known about genetic factors in cluster 
headache and tension-type headache, there is growing body of knowledge on the genetics 
of migraine and its variants. In this section, first genetic knowledge on migraine and 
cluster headache will be summarized, followed by a description of our research strategies 
and populations.

Migraine
Clinical aspects of migraine 
Migraine is a paroxysmal neurovascular disorder that is characterized by recurrent attacks 
of throbbing, unilateral headache of moderate to severe intensity. Attacks are aggravated 
by physical exercise and last 4-72 hours and are often accompanied by nausea, vomiting, 
photophobia, and/or phonophobia. One-year migraine prevalence in the general popu-
lation is 11%, with a clear female preponderance (males 6-8% and females 15-18%).2-5 
Due to the lack of objective reliable biomarkers, such as measurements of specific 
compounds in blood, migraine diagnoses are currently based on questionnaires and/or 
interviews using consensus criteria of the International Classification of Headache Disor-
ders (ICHD-3beta) from the International Headache Society (IHS)  (table 1).1 Approx-
imately one-third of migraine patients experience transient focal neurological symptoms, 
known as migraine auras, which can precede attacks of headache. Auras develop gradually 
and have duration of 5 to 60 minutes and include (in decreasing order of prevalence) 
visual, sensory, speech and/or motor symptoms.6 Based on the presence or absence of the 
aura phase two main migraine subtypes are distinguished, migraine with aura and migraine 
without aura, which can co-occur in the same patient.5,7 

Migraine pathophysiology
The prevailing view is that migraine is a neurovascular disorder.8 The migraine aura is 
caused by cortical spreading depression (CSD), a wave of neuronal and glial depolariza-
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Table 1 - International headache criteria for migraine without and migraine with aura (ICHD-3beta).
Migraine without aura
A. At least five attacks fulfilling criteria B-D
B. Headache attacks lasting 4 to 72 hours (untreated or unsuccessfully treated)
C. Headache has at least two of the following four characteristics:

1. Unilateral location
2. Pulsating quality
3. Moderate or severe pain intensity
4. Aggravation by or causing avoidance of routine physical activity (e.g., walking or climbing 

stairs)
D. During headache at least one of the following;

1. Nausea and/or vomiting
2. Photophobia and phonophobia

E. Not better accounted for by another ICHD-3 diagnoses

Migraine with aura
A. At least two attacks fulfilling criteria B-C
B. One or more of the following fully reversible aura symptoms:

1. Visual
2. Sensory
3. Speech and/or language
4. Motor
5. Brainstem
6. Retinal

C. At least two of the following characteristics:
1. At least one aura symptom spreads gradually over ≥5 minutes, and/or two or more symptoms 

occur in succesion
2. Each individual aura symptom lasts 5-60 minutes
3. At least one aura symptom is unilateral
4. The auro is accompanied, or followed within 60 minutes, by headache

D. Not better accounted for by another ICHD-3 diagnoses, and transient ischemic attack has been 
excluded

tion that moves slowly over the cortex.9 Using functional MRI to study the aura in patients 
with migraine with aura, Hadjikhani and colleagues10 were able to detect local increases 
in blood oxygen level-dependent signal that spread through the visual cortex at a rate of 
approximately 3 mm/min, a speed similar to what is seen when a CSD is evoked in an 
experimental animal. The headache itself is caused by activation of the trigeminovascular 
system which consists of the meningeal and superficial cortical blood vessels that are 
innervated by the trigeminal nerve and that project to the trigeminal nucleus caudalis in 
the brainstem, which in turn projects to higher-order pain centers (thalamus and cortex) 
leading to pain.11 

Migraine is a genetic disorder
Migraine shows strong familial aggregation and is a multifactorial complex genetic 
disorder.12-14 Such complex disorders are likely caused by a combination of environmental 
factors and multiple genetic factors, each with a small effect size meaning that the indi-
vidual genetic factors increase disease risk only slightly. Population-based family studies 
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revealed that the relative risk of migraine for a first-degree relative of the index patient is 
1.5 to 4 times higher compared to the general population. The risk is highest for patients 
with migraine with aura, an early age of onset, and high attack severity and disease 
disability.12 Twin studies also revealed a higher genetic load in migraine with than migraine 
without aura.15,16 A large study of approximately 30,000 twins from six different countries 
showed that genetic and environmental factors play an almost equal role in migraine 
susceptibility.17 Heritability, which is defined as the contribution of genetic factors to 
susceptibility for a disease, was estimated to range from 34 to 57% in that study. Shared 
environmental factors seemed to play a minor role, as migraine prevalence was similar 
in twins raised together and twins raised apart.18,19 
 There is debate whether migraine with and migraine without aura are two separate 
disease entities or merely different expressions of the same disease. The first view is 
supported by observations that there is no increased co-occurrence of both types of 
migraine in Danish twins20 and the general Danish population.6,12 In contrast, a study 
of 210 Finnish migraine families suggested the existence of a migraine continuum with 
pure migraine with aura and pure migraine without aura on both ends of the spectrum 
and a combination of both types of attacks in between.21 The idea that migraine indeed 
is a continuum is supported by other studies22,23 as well as by clinical observations that 
headache characteristics are identical in both migraine with and without aura and that a 
large number of patients experience both types of attacks.24 

Approaches to Discover Migraine Genes
Hemiplegic migraine as a monogenic model for common 
migraine
Identifying genes and biological pathways of a monogenic subtype of a disease is likely 
to provide useful insight into the pathophysiology of the complex disease form. Gene 
mutations underlying monogenic disease have a large effect size and are expected to have 
clear consequences on either the level or the amino acid sequence of the affected protein, 
which can be investigated in cellular and animal disease model systems. With respect to 
genetic migraine research, Familial Hemiplegic Migraine (FHM) is a rare monogenic 
subtype of migraine with aura and insight into its pathophysiology may therefore serve 
to help unraveling part of the pathophysiology of common forms of migraine as well. 
 FHM is characterized by a transient hemiparesis during the aura phase, which may 
last several days. Diagnostic criteria for FHM were determined by the IHS1 (table 2). 
Hemiplegic migraine occurring in isolated cases is called Sporadic Hemiplegic Migraine 
(SHM) and apart from the absence of an affected first-degree relative, diagnostic criteria 
are identical to those in FHM. Because of its clinical presentation, a significant number 
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Table 2 - International headache criteria for familial hemiplegic migraine (IHS 2013).
Hemiplegic migraine
A. At least two attacks fulfilling criteria B and C
B. Aura consisting of both of the following:

1. Fully reversible motor weakness
2. Fully reversible visual, sensory and/or speech/language symptoms

C. At least two of the following four characteristics:
1. At least one aura symptoms develops gradually over ≥ 5 minutes, and/or different aura 

symptoms occur in succession 
2. Each individual non-motor aura symptom lasts 5–60 minutes, and motor symptoms last <72 

hours
3. At least one aura symptom is unilateral
4. The aura is accompanied, or followed within 60 minutes, by headache

D. Not better accounted for by another ICHD-3 diagnosis, and transient ischaemic attack and stroke have 
been excluded.

of patients with hemiplegic migraine initially are diagnosed with stroke or epilepsy. Except 
for the hemiparesis, the visual and sensory aura symptoms are identical to those seen in 
migraine with aura, although duration of the aura often is significantly longer than in 
migraine with aura patients.25 The headache characteristics in hemiplegic migraine patients 
and patients with the common forms of migraine are identical. Moreover, the majority 
of hemiplegic migraine patients experience attacks of common migraine in addition to 
their hemiplegic attacks.26 Thus, from a clinical perspective hemiplegic migraine seems 
to be a valid model to study the common forms of migraine.7 

Hemiplegic migraine genes
Genetic studies in FHM resulted in the discovery of three genes.27 As several FHM fami-
lies do not have a gene mutation in one of the known genes, likely more FHM genes 
exist. CACNA1A, the first FHM gene (FHM type 1; FHM1) is located on chromosome 
19p13 and encodes the α1 pore-forming subunit of CaV2.1 calcium channels.28 Some 
FHM1 mutations lead to pure hemiplegic migraine, whereas other mutations are asso-
ciated with additional clinical symptoms such as cerebellar ataxia or epilepsy and have 
been shown to cause gain-of-function of CaV2.1 channel activity.27,29 FHM1 is allelic 
with two other monogenic disorders: episodic ataxia type-2 (EA2)28, and spinocerebellar 
ataxia type-6 (SCA6).30 EA2 is a paroxysmal disorder that is characterized by vertigo, 
ataxia and nausea and approximately half of the patients suffer from migraine headaches 
and attacks can be accompanied by hemiplegia. EA2 mutations cause loss-of-function 
of CaV2.1 channel activity. SCA6 is a late-onset cerebellar ataxia disorder caused by 
moderate polyglutamine repeat expansion in the carboxyl-terminal part of the α1 pore-
forming subunit.30 It is still unclear how expansion of the glutamine stretch causes SCA6 
and to what extent the pathoanatomical consequences of the different types of CACNA1A 
mutations overlap. 
 The second FHM gene (FHM2), ATP1A2, is located on chromosome 1q23 and encodes 
the α2 subunit of sodium-potassium pumps.31 In contrast to FHM1 mutations, hardly 
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Table 3 - Monogenic Disorders Associated with Migraine.

Syndrome Symptoms
Migraine 
subtype Gene References

CADASIL (cerebral 
autosomal dominant 
arteriopathy with 
subcortical infarcts and 
leukoencephalopathy)

Recurrent stroke
Cognitive deterioration
Psychiatric disease

MA NOTCH3
Encodes a cell surface receptor 
on vascular smooth muscle cells

Joutel et al. 199652

Dichgans et al. 199851

Liem et al. 201053

RVCL (Retinal 
Vasculopathy 
with Cerebral 
Leukodystrophy)

Retinopathy
Cognitive disturbances
Depression
Raynaud phenomenon
Liver and kidney 
dysfunction

MO TREX1
Encodes the major mammalian 
3’-5’ exonuclease, involved 
in DNA repair and apoptosis 
after DNA damage. Evidence 
is accumulating for additional 
functions

Grand et al. 1988132

Jen et al. 1997133

Terwind et al. 199858

Richards et al. 200756

MELAS (Mitochondrial 
Encephalopathy, Lactic 
Acidosis and Stroke-like 
episodes)

Stroke-like episodes
Encephalopathy 
with seizures and/or 
dementia
Myopathy (lactic 
acidosis and/or ragged 
red fibers (RRF) on 
muscle biopsy)

MA Specific mutations in 
mitochondrial genes

Montagna et al.198873

HIHRATL (Hereditary 
Infantile Hemiparesis, 
Retinal Arteriolar 
Tortuosity and 
Leukoencephalopathy)

Porencephaly
Cerebral and retinal 
microangiopathy

MA COL4A1
Encodes a collagen IV 
alpha chain in the basement 
membrane

Gould et al. 200661

Vahedi et al. 2007134

POLG-related disorders Ataxia
Ophthalmoplegia
Epilepsy
Liver failure

MA and MO POLG
Encodes the mitochondrial 
DNA polymerase gamma that is 
important for ATP homeostasis 
and normal cellular function

Winterthun et al.200576

Tzoulis et al. 200675

TGFR2-related disorder Aortic dissection
Joint hypermobility
Skin abnormalities
Arthralgia

Unspecified TGFR2
Encodes the transforming growth 
factor beta receptor 2, which is 
involved in regulation of cellular 
processes and formation of 
extracellular matrix

Law et al. 200663

Episodic ataxia type 
6 (EA6)

Episodic ataxia
Epilepsy

Hemiplegic 
migraine

SLC1A3
Encodes the excitatory amino 
acid transporter 1 (EAAT1) which 
removes glutamate from the 
synaptic cleft

Jen et al.200571

Proximal renal tubular 
acidosis (pRTA)

Renal dysfunction
Ocular abnormalities

Hemiplegic 
migraine, 
MA, MO

SLC4A4
Encodes a sodium bicarbonate 
cotransporter involved in 
regulating intracellular pH

Suzuki et al. 201072

Advanced sleep phase 
syndrome

Early sleep time
Early morning 
awakening

MA and MO CSNK1D
Encodes the casein kinase 1δ 
that phosphorylates the human 
circadian clock protein PER2

Brennan et al. 2013135

Note: MA = migraine with aura; MO = migraine without aura.
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any recurrent mutations were reported for ATP1A2.32,33 Another striking difference with 
FHM1 mutations is that almost all ATP1A2 mutations are associated with pure hemi-
plegic migraine, that is without any additional clinical symptoms,31,34-37 although some 
mutations are associated with epileptic seizures,35,38 benign familial childhood convul-
sions,39 febrile seizures40 and mental retardation.35 FHM2 mutations cause loss-of-func-
tion of the Na+,K+ ATPase.27,29

 The third FHM gene (FHM3), SCN1A, is located on chromosome 2q24 and encodes 
the α1 subunit of neuronal NaV1.1 sodium channels.41 SCN1A mutations seem to account 
for only a small proportion of FHM families. Interestingly, the SCN1A gene is a well-
known epilepsy gene with many mutations causing monogenic forms of childhood 
epilepsy, i.e. Dravet syndrome (also known as severe myoclonic epilepsy of infancy (SMEI)) 
or generalized epilepsy with febrile seizures (GEFS+).42 At the start of the research described 
in this thesis, only five FHM3 mutations had been reported,41,43-46 although from the 
clinical description in patients it is far from certain that one of them, mutation T1174S, 
is an FHM3 mutation as patients with the mutation may not have hemiplegic migraine.45 
Mutations L1649Q and Q1489K are associated with pure familial hemiplegic migraine,43 
whereas mutations Q1489H, and L263V have been associated with childhood epilepsy 
and generalized tonic-clonic seizures41,44,46 in addition to FHM, at least in some of the 
mutation carriers. Some patients with FHM3 mutations Q1489H and F1499L were also 
reported to suffer from ‘elicited repetitive daily blindness’ (ERDB), which occurred apart 
from their hemiplegic migraine attacks.46,47 FHM3 mutations seem to cause either gain 
or loss of function of NaV1.1 channel activity.27 
 The first screens of FHM genes in hemiplegic migraine patients without a positive 
family history of other patients with hemiplegic migraine (so-called sporadic hemiplegic 
migraine = SHM) revealed mutations, predominantly in ATP1A2, in only a small propor-
tion of patients.48-50 Riant and coworkers, however, recently identified mutations in 
CACNA1A and ATP1A2 in 23 out of 25 SHM patients with an age-of-onset before 16 
years, of which most had additional symptoms such as epilepsy, learning difficulties, 
cerebellar ataxia and/or coma.33 Three-quarter of the mutations had occurred de novo and 
mutation carriers thus represent the first patients of new FHM families. The question 
remains what is causing SHM in the patients that do not have an FHM gene mutation, 
which is a rather large proportion of patients in most studies.48-50 Possibilities are that 
either other FHM genes may cause hemiplegic migraine in those patients or that SHM 
(especially when the phenotype is not severe) is due to a combination of multiple low-risk 
genetic variants, similar to what is predicted to occur in common forms of migraine. 
Support for the latter hypothesis comes from the observation that migraine with aura is 
frequent in families of SHM patients.24 Also it would fit a view of migraine being a spec-
trum of disorders. 
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Investigating Monogenic Disorders in which Migraine is a Part of 
the Phenotype
Migraine can also be part of non-FHM monogenic disorders, which may be a useful 
source for identifying genes that may shed light on the pathophysiological mechanisms 
involved in migraine. In fact, the number of examples that are relevant to migraine is 
increasing (table 3). 

Migraine as part of the phenotype of monogenic vasculopathies
Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoenceph-
alopathy (CADASIL) is a monogenic syndrome characterized by recurrent stroke, cogni-
tive deterioration, and psychiatric disease.51 CADASIL is caused by mutations in the 
NOTCH3 gene,52 which encodes a cell surface receptor that is expressed in vascular 
smooth muscle cells. About one-third of CADASIL patients also suffer from migraine, 
predominantly migraine with aura, often with migraine as the presenting clinical symptom.53 
Whether there is a genetic link between migraine and Notch3 is still under debate, also 
because genetic association studies investigating NOTCH3 polymorphisms gave conflicting 
results.54,55

 Retinal Vasculopathy with Cerebral Leukodystrophy (soon to be renamed to Cerebral 
Hereditary Angiopathy with Vascular Retinopathy and Impaired Organ Function caused 
by TREX1 Mutations (abbreviated as CHARIOT)) is a monogenic vascular syndrome 
caused by mutations in the TREX1 gene56 that encodes the major 3’-5’-mammalian 
exonuclease, an enzyme thought to be involved in clearing cytosolic DNA.57 RVCL 
patients suffer from a number of features that can include pronounced retinopathy, kidney 
and liver dysfunction, Raynaud phenomenon and various neurological features such as 
cognitive disturbances, depression and migraine.58 In advanced stages of the disease, brain 
imaging shows characteristic contrast-enhancing white matter lesions.58 A small genetic 
family-based study seemed to suggest a potential role for the RVCL gene as a suscepti-
bility gene in migraine and Raynaud phenomenon.59 
 An increased prevalence of migraine with aura was reported in a rare angiopathy that 
can be described as Heriditary Infantile Hemiparesis, Retinal Arteriolar Tortuosity, and 
Leucoencephalopathy (or its acronym HIHRATL) with clinical symptoms of porencephaly 
and cerebral and retinal microangiopathy, hemiparesis, and stroke.60 The causal gene is 
COL4A1, which encodes type IV collagen, an integral component of the vascular base-
ment membrane.61 The association adds to growing evidence for a link between migraine 
and early-onset cerebral angiopathies that is remarkable, but the mechanisms underlying 
this association are still poorly understood.62 An additional piece of information that 
links affected blood vessels with migraine comes from a genetic study in a large pedigree 
in which patients suffer from familial aortic dissection and several other blood vessel 
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abnormalities.63 Ten out of 14 carriers of the R460H mutation in the transforming growth 
factor factor-β receptor 2 (TGFBR2) gene also suffer from migraine.
 In particular it needs to be further investigated whether endothelial dysfunction, which 
was also observed for migraine in several studies,64-67 may underlie the extensive vascu-
lopathy seen with CADASIL and RVCL. Given the high occurrence of migraine with 
aura in CADASIL patients, increased susceptibility for CSD may well explain the link 
with migraine. For RVCL this explanation seems unlikely, since the disease seems to be 
linked with both migraine without and with aura. Interestingly, prevalence of cardiovas-
cular disease is increased in common forms of migraine, especially in migraine with aura 
patients. The basis for the comorbidity of migraine and cardiovascular disease is yet 
unknown, but these findings support the notion that shared pathophysiological processes 
could be involved.68,69

Other monogenic disorders in which migraine is part of the phenotype 
There are several other monogenic disorders in which migraine can be prominent (table 
3). First of all, in Familial Advanced Sleep Phase Syndrome (FASPS) there is a severe 
disruption of the sleep-wake cycle and other circadian rhythms. The disease is caused by 
missense mutations in the CSNK1D gene encoding Casein Kinase 1d (CK1δ), which is 
involved in the phosphorylation of the circadian clock protein Per2.70 In two independent 
families a pathogenic CSNK1D mutation co-segregated with both FASPS and migraine 
with aura. Second, a complex monogenic phenotype of episodic ataxia, hemiplegic 
migraine, and seizures was reported for a 10-year-old boy with a P290R mutation in 
SLC1A3 that encodes the excitatory amino acid transporter 1 (EAAT1), which removes 
glutamate from the synaptic cleft.71 The missense mutation causes a dramatic loss in 
glutamate uptake in a cellular assay. Third, Suzuki and co-workers72 reported various 
homozygous mutations in the Na+ -HCO3

– co-transporter NBCe1 in patients with 
proximal renal tubular acidosis and ocular anomalies and, in addition, various clinical 
presentations of migraine, that is migraine without or with aura, hemiplegic migraine, 
and even episodic ataxia. Although the mutations themselves clearly are pathogenic in 
the sense that they are the cause of the renal and ocular problems, it is less obvious why 
they would cause the migraine and hemiplegia phenotypes that are very common and 
sometimes hard to diagnose. 
 A fourth monogenic syndrome that is associated with migraine is MELAS (Mitochon-
drial Encephalomyopathy, Lactic Acidosis, and Stroke-like syndrome) which is caused 
by a mitochondrial DNA (mtDNA) 3243 A>G tRNALeu point mutation.73 Fifth, many 
carriers of mutations in the POLG gene, which encodes the nuclear polymerase-γ that is 
essential for the maintenance of mitochondrial DNA, suffer from migraine as well.74-76 
Lastly, Alternating Hemiplegia of Childhood (AHC) can be considered a monogenic 
model that has relevance to migraine. AHC is a rare syndrome characterised by recurrent 
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hemiplegic attacks, movement disorders, seizures, and developmental delay starting before 
the age of 18 months.1 Due to the considerable clinical overlap in severely affected hemi-
plegic migraine patients and AHC patients, it is sometimes impossible to establish the 
correct diagnosis.77 The clinical overlap prompted investigating the FHM genes CACNA1A 
and ATP1A2 in AHC patients. A CACNA1A mutation was found in monozygous twins 
with overlapping clinical features of both disorders78 and an ATP1A2 mutation was iden-
tified in a Greek atypical AHC family.79,80 No CACNA1A or ATP1A2 mutations were 
found in any of the patients meeting all diagnostic criteria.81,82 Due to the overlapping 
clinical and genetic features, advances in genetic research of AHC may also provide 
important information about the genetics of monogenic and complex forms of migraine.

Genetic Studies in Common Forms of Migraine
Identifying genes involved in complex disorders has proven difficult, especially before 
the era of genome-wide association studies (GWAS) (see below). Two main hypotheses 
are used to explain the genetic origin of complex diseases.83 One hypothesis proposes that 
common disease is caused by common variants (CD-CV), which means that relatively 
frequent genetic variants cause disease, each with a small effect size cause disease but none 
of them is sufficient. In contrast, the common disease - rare variant (CD-RV) hypothesis 
assumes that multiple, relatively rare variants with a larger effect size may explain suscep-
tibility to disease. To date, most findings in complex diseases test the first hypothesis only 
although a few rare variants with a moderate effect have been detected, such as Factor V 
Leiden in deep venous thrombosis.84 

Linkage and candidate gene association studies in migraine
Until a few years ago, the main approach used in genetic studies of common migraine 
was family-based linkage analysis, which led to the identification of many chromosomal 
susceptibility regions, but did not result in the discovery of migraine genes. A second 
popular approach consisted of candidate gene association studies that search for signifi-
cant differences in allele frequencies between migraine cases and controls in genes that 
had emerged from other knowledge of migraine pathophysiology. These association studies 
tested only one or at best a few DNA polymorphisms in such a gene. Candidate gene-
based association studies in theory are a powerful tool, if carefully designed to overcome 
methodological issues regarding sample size, selection of cases and controls, selection of 
variants, correction for multiple testing, and replication of findings in independent popu-
lations. Unfortunately, the great majority of candidate gene association studies performed 
in migraine suffered from one or more methodological weakness and led to the conclu-
sion that most results must be false positives.85 Among the selected candidate genes that 
were most often tested are genes in the dopaminergic and serotonergic systems, hormone 
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receptors, and inflammatory pathways (for review see De Vries et al, 200927). The best 
replicated finding is the association with the C677T polymorphism in the 5’,10’-meth-
ylenetetrahydrofolate reductase (MTHFR) gene that increases the risk of migraine in 
carriers of the T-allele,86-91 although other large and well-designed studies could not find 
such association.92,93 Two meta-analyses showed an association of this polymorphism with 
migraine with aura, but not with migraine without aura.94,95 MTHFR codes for an enzyme 
with an important role in homocysteine and folate metabolism.96 Carriers of the T-allele 
have increased homocysteine concentrations, which is a well-known risk factor for cardio-
vascular disease. It is hypothesized that high homocysteine levels may induce vascular 
endothelial dysfunction and thereby increase migraine risk. 

Genome-wide association studies in migraines
Over the last few years, genome-wide association studies (GWAS) have become the most 
used approach to identify genes that confer susceptibility to complex disorders. In a 
GWAS, hundreds of thousands of SNPs that are distributed over the genome are tested 
in a hypothesis-free manner for association with a disease trait. For each SNP, the allele 
frequencies are compared between cases and controls. Significant differences in allele 
frequency either pinpoint the SNP itself as a genetic susceptibility factor or provide 
statistical evidence that a causal gene variant is in close vicinity, i.e. is the causal variant 
is in linkage disequilibrium. Several major migraine GWA studies have been performed 
investigating so-called end-diagnoses migraine with aura97 or migraine without aura98 in 
two well-defined clinic-based studies, migraine in a population-based cohort99, and, most 
recently, a systematic migraine meta-analysis.97 Over a dozen migraine susceptibility gene 
variants have been identified that point to genes that cluster into five main different 
pathways related to (i) glutamatergic neurotransmission; (ii) synapse development and 
plasticity; (iii) pain sensing; (iv) metalloproteinases; and (v) vasculature & metabolism. 
The pathophysiological and clinical implications of these variants, however, still have to 
be determined. 

Reduction of clinical heterogeneity for genetic studies of common migraine 
Apart from genetic heterogeneity, the gene hunt in common migraine is also complicated 
by extensive clinical heterogeneity regarding for instance presenting symptoms or age-of-
onset in addition to the lack of reliable biomarkers to establish a migraine diagnosis. 
Clearly, diagnostic criteria of the IHS that are useful to diagnose attacks in the clinic are 
less suited for genetic research, because multiple combinations of symptoms lead to the 
same end-diagnosis, not necessarily through the same pathophysiological mechanism. 
Two types of strategies can be applied to reduce clinical heterogeneity among participants 
of genetic studies in migraine. The first approach takes advantage of the well-known 
comorbidity of migraine with various disorders.100 Although the observation can be 
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spurious due to selection bias or reflect a unidirectional causal relationship, that is migraine 
causes (or is caused by) the co-morbid disorder, it may also be that shared genetic and/
or environmental factors underlie both migraine and the co-morbid disorder.101 Migraine 
patients are at increased risk of epilepsy, ischemic stroke, myocardial infarction, major 
depressive disorder, anxiety disorders, bipolar disorder, asthma, and chronic pain disor-
ders102,103 and genetic heterogeneity might be reduced by selecting those migraine patients 
that also suffer from the co-morbid disorder. The second type of approach uses other 
classification than the ICHD-2 criteria1 as a trait in genetic analysis. Two examples of 
this latter strategy are trait component analysis104,105 (TCA; using individual symptoms 
instead of ICHD-2 diagnosis as traits in the analysis)) and latent class analysis106-108 (LCA, 
using different classes of patients based on clustering of symptoms), which led to the 
discovery of various chromosomal regions potentially harboring migraine susceptibility 
genes. Until now, no susceptibility genes have been found using TCA or LCA. 
 An attractive alternative could be the use of a (set of ) migraine biomarker(s) as a trait 
in genetic studies to search for novel migraine susceptibility genes. Past research on 
migraine biomarkers was hypothesis-driven and tested a small number of metabolites in 
small study populations66,109-117 and failed to identify a clinically useful migraine biomarker. 
Current high-throughput proton nuclear magnetic resonance (1H NMR) spectroscopy 
enables generating a profile of tens to hundreds low-molecular-weight metabolites from 
a blood sample in a single measurement.118,119 Interestingly, GWAS using metabolite 
concentrations have led to the identification of genetic variants with much larger effect 
sizes than commonly encountered in GWAS using ‘just’ clinical diagnoses.120 Combining 
the existing knowledge on genetics of metabolites with yet unidentified migraine biomarkers 
could be an attractive approach to identify novel migraine susceptibility genes.

Studying the genetics of cluster headache
Cluster headache is a rare, disabling, primary headache disorder.1 Clinical characteristics 
and treatment options partly overlap with migraine and involvement of the trigemino-
vascular system may be a key feature of both disorders.11,121,122 Cluster headache is much 
rarer than migraine and has a lifetime prevalence of only 0.12%.123 In contrast to migraine, 
there is a striking male preponderance with a male-to-female ratio of 3:1.123,124 Cluster 
headache is characterised by attacks of unilateral severe (supra)orbital and/or temporal 
pain accompanied by restlessness and/or ipsilateral autonomic symptoms, that is eyelid 
oedema, conjunctival injection, miosis, ptosis, lacrimation, nasal congestion, rhinorrhoea, 
forehead and facial sweating. Attacks have duration from 15 to 180 minutes and occur 
up to eight times a day.1 Approximately 90% of patients have the episodic form of the 
disease. Patients with episodic cluster headache experience bouts of frequent attacks 
lasting weeks to months, followed by remission lasting several months to years. The 
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remaining 10% has chronic cluster headache, characterised by short (less than one month) 
or absent periods of remission.
 Cluster headache is considered a complex genetic disorder, although an autosomal 
dominant pattern of transmission has been suggested in some cases.124 The relative risk 
for family members of cluster headache patients is estimated to be 5-18 for first-degree 
relatives and 1-3 for second-degree relatives. Due to the low prevalence of the disorder, 
no large cohorts of patients are available for large-scale genetic studies such as GWAS. 
Therefore, genetic research in cluster headache has been limited mainly to candidate gene 
studies. Multiple small-scale studies have been performed, but many of them lack a repli-
cation sample, thereby precluding a final conclusion regarding the association of the 
reported genes with cluster headache. To date, only one genetic factor (i.e. a missense 
variant in the hypocretin type 2 receptor gene HCRTR2) was found to be associated with 
cluster headache in two of the three small conducted studies and in a meta-analysis of 
these studies.125-128

Study populations 
Leiden University Migraine Neuro-Analysis (LUMINA) 
population
The Leiden University Migraine Neuro-Analysis LUMINA program was initiated in 
March 2008 and inclusion is still ongoing. The aim of the program is to enroll a large 
number of self-reported migraine patients for genetic and epidemiological studies through 
the project’s website (www.lumc.nl/hoofdpijn). Self-reported migraine patients from the 
Dutch population were invited to complete a validated screening questionnaire. Screen-pos-
itives were subsequently asked to complete a newly developed extended web-based ques-
tionnaire aiming to diagnose migraine based on the ICHD-2 criteria. Many previously 
developed questionnaires are good at assessing headache characteristics, but fail to make 
reliable aura diagnoses. Discriminating between migraine with and without aura is of 
particular interest in genetic studies and such migraine type information can be reliably 
obtained using questionnaire-based aura diagnoses with our LUMINA questionnaire. 
Five years after the start of the project, approximately 5,000 migraine patients have been 
collected and have contributed to the identification of susceptibility genes for common 
forms of migraine in various GWAS.97,98,129

Leiden University Cluster headache Analysis (LUCA) population
The Leiden University Cluster headache Analysis (LUCA) program is the cluster headache 
counterpart of the LUMINA study and started in April 2010. Genetic studies in cluster 
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headache are greatly hampered by the combination of low prevalence and putative complex 
genetic background of the disorder. The LUCA study aimed to collect a large group of 
self-reported cluster headache patients for genetic and epidemiological studies. Self-re-
ported cluster headache patients were invited to complete a screening questionnaire. 
Screen-positive participants were asked to complete the newly developed web-based 
extended questionnaire to enable diagnosing cluster headache for genetic and epidemi-
ological studies. Three years after the start of the project, 917 patients cluster headache 
patients were enrolled in the program, of which 560 provided a DNA sample, resulting 
in the largest single sample set of cluster headache patients to date. 

Erasmus Rucphen Family (ERF) Study
The ERF population originates from a genetically isolated region in the southwest of the 
Netherlands.130 The study population consists of the 3,465 living descendants of 22 
founder couples that had at least six children baptized in the community church between 
1850 and 1900. The pedigree of this large family is characterized by multiple consan-
guinity and increased inbreeding. The occurrence of disease in isolated populations is 
influenced by a less heterogeneous genetic and environmental background than the 
occurrence of disease in the general outbred population. Identification of susceptibility 
genes in isolated populations is therefore considered easier because genetic drift (that is 
rare variants tend to disappear or become overrepresented), facilitates investigating rare 
variants underlying common disease, while isolated populations are equally well suited 
to detect common variants associated with disease, as these variants in general have similar 
allele frequencies in genetic isolates and the general outbred population.131 

Scope and outline of the thesis
The studies presented in this thesis aim to advance genetic knowledge of primary head-
ache disorders with a focus on migraine and cluster headache. 

In Chapter 2 the identification is reported of two novel mutations in the SCN1A gene 
in Spanish families with familial hemiplegic migraine. The identification of such muta-
tions is important as the overwhelming majority of mutations in this gene cause epilepsy 
and it is still unclear why certain SCN1A mutations cause FHM instead. Chapter 3 
describes a mutation in the SLC2A1 gene in a patient that links hemiplegic migraine 
with alternating hemiplegia of childhood, which may be of use to understand how one 
mutation causes features of both monogenic disorders and may be of relevance in dissecting 
mechanisms of migraine pathophysiology. Also attempts were made to investigate the 
possible role of the SLC2A1 and ATP1A3 genes in familial and sporadic hemiplegic 
migraine. 
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Chapters 4 and 5 are dedicated to the validation of extended web-based questionnaires 
that were developed to enrol self-reported headache patients for large-scale genetic studies. 
Chapter 4 focuses on the LUMINA program that aims to recruit migraine patients and 
addresses the difficulties in obtaining reliable aura diagnoses using questionnaire data. In 
Chapter 5 a similar approach was applied to recruit patients with cluster headache for 
the LUCA (Leiden University Cluster headache Analysis) program. One aim was to select 
which questions are best predictors for cluster headache diagnosis in the Dutch cluster 
headache population, generating a shorter questionnaire suitable for case-finding in large 
population-based studies. 

Chapter 6 contains the results of a candidate gene study and subsequent meta-analysis 
investigating the role of a missense variant in the HCRTR2 gene in cluster headache 
susceptibility. That variant had been associated with cluster headache in several small-
scale association studies and HCRTR2 is considered the only replicated cluster headache 
susceptibility gene. Using patients recruited in the LUCA program this association was 
re-investigated, now including the LUCA population as the largest single sample set of 
patients with cluster headache to date. 

Chapter 7 contains the results of a genetic epidemiology investigation using the geneti-
cally isolated population of the Erasmus Rucphen Family study that aimed to investigate 
whether atherosclerosis is the cause of the previously observed increased rate of cardio-
vascular disease in migraine patients. The study also addresses, to certain extent, the 
question how useful it can be to select migraine patients that have a comorbid disease, 
in this case cardiovascular disease. In Chapter 8 the same ERF cohort was used for meta-
bolic profiling in serum using nuclear magnetic resonance (NMR) spectroscopy in a first 
attempt to identify molecular biomarkers for migraine. This study aims to identify a set 
of metabolites that may predict disease status.

Finally, Chapter 9 provides a general discussion of the main findings presented in this 
thesis in relation to current literature, their implications and possibilities for future 
research. 
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