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ABOUT THIS THESIS 

This thesis focuses on a new approach in drug discovery, the so-called drug-target residence 

time. Next to more traditional drug discovery efforts, which are based on structure-affinity 

relationships, this thesis describes the use of an additional parameter – the structure-kinetic 

relationships. Knowledge of this additional parameter at the early stages of drug discovery 

may help the pharmaceutical industry to generate better drug candidates. Additionally, it 

could save big expenses in the later stages of drug discovery by minimizing the attrition rate 

of drug candidates due to efficacy problems. In more detail, this thesis focuses on the 

synthesis of new high affinity and long residence time small molecule antagonists for the 

chemokine receptor CCR2 - a potential target for the treatment of various inflammatory 

diseases.  

THE BEGINNINGS OF DRUG DISCOVERY 

Already in the early days of human civilization men used different plants as healing agents. 

These early drugs were most probably discovered through trial and error experimentation by 

observing the reactions of human and animal as a result of consumption of such products. 

Folk medicines derived from these “clinical trials” were the only available treatments until 

recent times. Scientific techniques in drug discovery started to emerge only in the late 1800s. 

Oswald Schmiedeberg was one of the first scientists to describe the correlation between the 

chemical structure of substances and their effectiveness.1 It was an early attempt to describe 

structure-activity relationships (SAR). At the beginning of the 1900s chemical methods were 

developed to produce synthetic drugs, marking the beginnings of pharmaceutical industry.  

DRUG DISCOVERY AND DEVELOPMENT 

With the increasing knowledge and understanding of diseases, scientists started to 

hypothesize that modulation of a specific biological target may have therapeutic value in the 

treatment of a disease. This was the beginning of a paradigm shift in drug discovery from 

file:///I:/Documents/Dokumenti/Darbs/PhD/My%20theses_MV/For%20reading%20commite/Chapter%201.docx%23_ENREF_1
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“trial and error experiments” to “rational drug design”. In rational drug design, the biological 

target must fulfill two criteria. First, modulation of a given biological target must show 

evidence of therapeutic value. Second, the target must be “druggable”, i.e. the target is able 

to bind to a small molecule and the small molecule can modulate the target’s activity. When a 

suitable target is identified, the search for small molecules that bind to the target can begin. 

In pharmaceutical industry such small molecules (‘hit’ compounds) usually are found by 

screening libraries of potential drug compounds in high-throughput screening assays of the 

desired targets. Another option is to perform a virtual screening of libraries, if the structure of 

the target is available. Binding affinity is the main criterion in these screenings. Afterwards, 

the affinity of the initial hits is improved through further synthetic efforts and structure-

affinity relationships are generated, a concept that was already used in the 19th century. After 

this ‘lead’ identification comes the lead optimization process in which a drug candidate is 

generated. Ideally, the drug candidate should not only have good binding affinity for the 

target, but also be "drug-like". It should possess properties that are predicted to lead to 

adequate chemical and metabolic stability, oral bioavailability and minimal toxicity, which in 

turn would result in a safe and efficacious drug. However, these characteristics are still 

difficult to optimize using rational drug design techniques. So, often scientists are forced to 

return to the “trial and error” experimentation in the late stages of the drug development 

process. A survey of phase II clinical trials in 2008 - 2010 done by Thomson Reuters2 revealed 

that less than a fifth (18%) of phase II clinical trials were successful. Half of the reported 

failures were due to insufficient efficacy and another fifth due to safety concerns (Figure 1). 

This indicates that more predictive models in earlier stages of drug development are still 

needed. 

file:///I:/Documents/Dokumenti/Darbs/PhD/My%20theses_MV/For%20reading%20commite/Chapter%201.docx%23_ENREF_2


GENERAL INTRODUCTION 

13 

 

Figure 1. Phase II failures: 2008 – 2010. The failures are divided according to failure reasons. Adopted 

from Arrowsmith, 2011.2 

RESIDENCE TIME IN DRUG DISCOVERY 

As mentioned above, in current drug discovery the lead compounds are selected based on 

their affinity towards the desired target. Usually, affinity is determined using e.g., a 

radioligand displacement assay, which is an in vitro experiment based on binding equilibrium 

between a known radioligand and the compound in question. However, in the human body 

the concentrations of the drug and the endogenous competitor are constantly changing. 

Therefore, affinity that has been determined in vitro under equilibrium conditions does not 

necessarily translate in in vivo efficacy. To tackle the efficacy issue we need to improve and 

optimize the drug candidates on additional parameters. The past few years witnessed an 

increased interest in a new parameter, the so called drug-target residence time. More and 

more evidence suggests that drug efficacy may be associated with the time the drug remains 

on its target.3, 4 Copeland et al5 already demonstrated that the drug–target residence time is, 

in some cases, a better predictor of in vivo efficacy than the binding affinity. However, it 

depends on the physiological context and the nature of drug–target interactions whether a 

long or short residence time is needed to yield a better drug. Thus the additional knowledge 

of drug-target residence time already at the early stage of drug development could help to 
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address the afore mentioned efficacy problem, thus potentially decreasing the attrition rate 

of drug candidates in the more expensive phase II clinical trials. 

CHEMOKINES, CHEMOKINE RECEPTORS 

Chemokines (chemoattractant cytokines) are a family of small and structurally similar proteins 

of 70-120 amino acids (MW = 8-14 kDa).
6-8

 They were first discovered in 1977
9
 and initially 

identified as controllers of immune cell migration.7 Chemokines are split into two main 

categories according to their biological actions – the inflammatory chemokines and 

homeostatic chemokines.
10

 The inflammatory chemokines are released under pathological 

conditions. The concentration gradient of chemokines recruits the immune cells towards the 

site of inflammation. Homeostatic chemokines are continuously produced and are involved in 

housekeeping functions such as recruiting leukocytes during hematopoiesis.  

The chemokine receptors are members of the G protein-coupled receptor (GPCR) 

superfamily. This protein family has proven to be one of the most fruitful target classes for 

therapeutics. It constitutes a class of membrane-bound proteins, with a conserved 

transmembrane heptahelical fold, which respond to a whole spectrum of different 

endogenous and synthetic agonist ligands ranging from light and cations, biogenic amines, 

fragrances, pheromones and lipids to peptides and globular proteins. The whole GPCR family 

comprises three major classes, termed A, B and C. The chemokine receptors belong to class A 

GPCRs, also known as rhodopsin-like receptors (after the visual pigment) whose members 

form the largest group of GPCRs. The axis of chemokines and chemokine receptors mediates a 

vast number of physiological effects making the receptors of great interest as possible drug 

targets. However, the development of chemokine receptor antagonists has been very 

challenging. Only two compounds have successfully completed phase III clinical trials and are 

now marketed: maraviroc, a CCR5 antagonist for the treatment of HIV/AIDS, and plerixafor, a 

CXCR4 antagonist for the mobilization of stem cells prior to collection and subsequent 

transplantation after chemotherapy.  

file:///I:/Documents/Dokumenti/Darbs/PhD/My%20theses_MV/For%20reading%20commite/Chapter%201.docx%23_ENREF_6
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CHEMOKINE RECEPTOR 2 AND THE RATIONALE FOR TARGETING IT IN DISEASE 

In the last decade there has been profound interest in the chemokine receptor 2 (CCR2) and 

its endogenous ligand CCL2 (also known as MCP-1). CCR2 is the only characterized high 

affinity receptor for CCL2, although CCR2 can be activated by other chemokines (e.g. CCL7, 

CCL8 and CCL13),
11

 albeit with lower affinity. Studies of CCR2- and CCL2-deficient animals 

have revealed the critical role of this axis in monocyte recruitment in a number of 

inflammatory conditions such as delayed-type hypersensitivity reactions, antigen-induced 

granuloma formation, non-infectious peritonitis and also in infectious diseases.
12, 13

 Next to 

monocytes, CCR2 is located also on basophils, activated T cells, NK cells, and dendritic cells.
11, 

14, 15 However, most of the interest in CCR2 antagonism was due to the intention to inhibit 

monocytes/macrophages and their products, which are thought to be involved in damaging 

effects of inflammation in a number of disease states (e. g. rheumatoid arthritis (RA), multiple 

sclerosis (MS), atherosclerosis).16-18 Early studies showed TAK-779 (Figure 2), a small molecule 

CCR2 antagonist, inhibited collagen-induced arthritis.19 Additionally, use of the CCR2 

antagonist INCB3344 (Figure 2) showed improvement in adjuvant-induced arthritis in rats.20 

Recently Lebre et al.21 described that blockade of CCR2 with an antibody prevented monocyte 

chemotaxis when it was induced by CCL2, however, it failed when chemotaxis was induced 

with synovial fluid, suggesting that CCR2 is the wrong target for the treatment of RA. Also in 

the case of MS, blockade of CCR2 drew a lot of enthusiasm. The preclinical data supported the 

role of the CCR2/CCL2 axis in a mouse model of MS with experimental autoimmune 

encephalitis.17 However, CCR2 antagonist MK-0812 (Figure 2), which worked in the murine 

model, failed in a phase II clinical trial due to lack of efficacy.  

file:///I:/Documents/Dokumenti/Darbs/PhD/My%20theses_MV/For%20reading%20commite/Chapter%201.docx%23_ENREF_11
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Figure 2. CCR2 antagonists. 

Additionally, humanized anti-CCR2 antibody (MLN-1202) did not show efficacy in clinical trials 

of rheumatoid arthritis or multiple sclerosis.22 Another victim of the efficacy problem was 

AZD-2423 (a potent, orally bioavailable, non-competitive, negative allosteric modulator of the 

CCR2 chemokine receptor) which failed in a clinical trial of posttraumatic neuralgia.
23

 

However, many other preclinical studies indicated promise in asthma,24 metabolic disease,25 

fibrosis, pain,26, 27 and COPD.28. Hence, the development of new efficacious CCR2 antagonists 

is warranted. 

AIM AND CONTENT 

In the previous sections, a short history on the evolution of the drug discovery process was 

presented with a further emphasis on the more recent challenges in the development of 

efficacious treatments for CCR2-related diseases. Modern drug discovery has evolved 

tremendously to understand the molecular causes of different diseases and how these can be 

treated. However, the 21st century drug discovery of new treatments is still mostly based on 

the principles suggested in the 19
th

 and 20
th

 century, for example the strict focus on target 

affinity. This is a very important parameter indeed as a drug can be effective only when it is 

bound to its target. It is, however, not the only criterion to yield a successful drug. Several 

CCR2 antagonists, all with high binding affinity, were discussed as examples of failures due to 

efficacy issues. These are only a few out of many failures that we cannot afford to have, 
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especially in the late and costly clinical stages of the drug discovery process. We made a plea 

to consider at least one other parameter, i.e. residence time. Thus, the aim of this thesis is to 

develop a path towards high affinity and long residence time (RT) CCR2 antagonists in the 

very early stages of drug discovery, thus helping to proceed in the next phases of drug 

development with potentially better drug candidates.  

In chapter 2 we review the literature on a chemical substructure that proved to be important 

in our work. It is the indane ring system and we analyzed its properties, preparation, and 

presence in ligands for GPCRs. We then describe our subsequent discovery of new indane-

containing CCR2 antagonists (chapter 3). The additional knowledge of the binding kinetics of 

several known CCR2 antagonists allowed us to reevaluate and choose a structure for further 

optimizations that other researchers had abandoned due to it having only modest binding 

affinity. The decision to determine in parallel both affinity and RT yielded the discovery of 

new high affinity and long residence time CCR2 antagonists. Furthermore (chapter 4), the 

indane containing CCR2 antagonists went into another cycle of optimization based on affinity 

and RT and yielded compounds with even longer RT. 

Chapter 5 describes the structure-kinetic relationship for CCR2 receptor antagonists based on 

derivatives of MK-0483, a CCR2 antagonist from Merck, Inc. with slow binding kinetics. The 

structure of MK-0483 was altered step by step to reveal the crucial structural components 

that yield the long RT for the CCR2 receptor. 

Chapter 6 describes our medicinal chemistry efforts to explore chemical space even more and 

develop CCR2 antagonists based on a new piperidinediamide scaffold. Series of new 

structures were synthesized to evaluate SAR of the substituents on the N-piperidinediamide 

moiety revealing the specificity of substituents and spacer types needed for affinity in the 

case of this scaffold.  

Finally, a general discussion of the results of this thesis and a future outlook of CCR2 

antagonists as potential treatments is presented, concluding this thesis. 
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ABSTRACT 

The indane (2,3-dihydro-1H-indene) ring system is an attractive scaffold for biologically active 

compounds due to the combination of aromatic and aliphatic properties fused together in 

one rigid system. This bicyclic structure provides a wide range of possibilities to incorporate 

specific substituents in different directionalities, thus being an attractive scaffold for 

medicinal chemists. Notably, many indane-based compounds are being used in the clinic to 

treat various diseases, such as indinavir, an HIV-1 protease inhibitor, indantadol, a potent 

MAO-inhibitor, the amine uptake inhibitor indatraline, and the ultra–long–acting β-

adrenoceptor agonist indacaterol. Given the diversity of targets these drugs act on, one could 

argue that the indane ring system is a privileged substructure, just like indole, the nitrogen 

atom containing unsaturated version of it. In the present review the synthetic and medicinal 

chemistry of the indane ring system is described. In more detail, it contains a comprehensive 

overview of compounds bearing the indane substructure with G protein-coupled receptor 

(GPCR) activity, with particular emphasis on their structure–activity relationships (SAR). 
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INTRODUCTION 

In the 1920’s many compounds containing the 1,3-diketo-group or the enolic form of it were 

discovered to bear physiological activity, and combining this group with a phenol in the early 

1930’s resulted in a series of indan-1,3-diones showing bacteriostatic activity.1 The 

compounds inhibited the proliferation of gram–positive bacteria and are very early 

representatives of pharmacologically active molecules based on the 2,3-dihydro-1H-indene 

structure 1 (also known as indane), which is also commonly found in indanones (such as 

indan-1-one 2) or indandiones (such as indan-1,3-dione 3) (Figure 1).  

 
Figure 1. Chemical structures of indane ring system 1, indan-1-one 2, indan-1,3-dione 3. 

The indane ring system can be regarded as a fusion product of aromatic benzene and the 

aliphatic cyclopentane ring in one. This combination provides a broad diversity of chemical 

entities with indane as a core structure. Many different synthetic methods for the synthesis 

and diversification of indanes have been reported, which will be described below. 

Additionally, the ring system can accommodate substituents in six different directions on its 

aliphatic part and an additional four on the aromatic ring (see Figure 1, 3D view of indane) to 

add desired properties to such a molecule.  
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The indane substructure occurs in many natural products like pterosins,2 or more 

hydrogenated forms of it in ionophores such as indanomycin,3 and stawamycin.4 This 

structural motif is also present in many marketed drugs, such as indinavir 4,5 an HIV-1 

protease inhibitor, indantadol 5,6 a potent MAO-inhibitor, the amine uptake inhibitor 

indatraline 6,7 the anti-inflammatory clidinac 7, antiarrhythmic agent indecainide 8,8 diuretic 

indacrinone 99 and the anticoagulant hedulin 1010 (Figure 2). Given the big diversity of targets 

these drugs act on, one could argue that the indane ring system is a “privileged” substructure, 

just like indole, a nitrogen atom containing unsaturated version of it.11 The activity of indane 

derivatives in biological systems and the wide variety of their actions make them an 

interesting moiety for medicinal chemistry. 

 
Figure 2. Examples of marketed drugs containing the indane ring system. 

In this review, we aim to present the key chemical and pharmacological information on the 

indane ring system. In more detail, we will look at the activity of indanes on targets that have 

considerable importance in drug development – G protein–coupled receptors (GPCRs). The 

report is divided in the following sections: first the preservation and occurrence of the indane 

scaffold will be shown by discussing some of the natural products that contain this moiety. 

Additionally, synthetic routes to indanes are described as well as the possibilities of 
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incorporating the indane system into a compound’s chemical structure. Finally, an overview is 

given of compounds bearing the indane substructure with GPCR activity and inferences are 

made regarding their structure-activity relationships (SAR). This review excludes unsaturated 

indanes and polycyclic ring systems containing indane (e.g., 9H-fluorene, 1,2-

dihydroacenaphthylene, indacenes and hydrogenated forms of these). SciFinder and Reaxys 

databases were used for a literature search based on the indane substructure. To retrieve the 

relevant literature on indanes with GPCR activity the following terms were used in different 

combinations as additional filters in the SciFinder database: target, protein, G protein-coupled 

receptor. 

NATURAL OCCURRENCE OF INDANES 

The indane scaffold is present across a wide range of species. One of the largest resources are 

Pteridophyta (ferns). Ferns produce more than 60 different structures that contain the 

indanone 2 scaffold, called pterosins. The structures and biological properties of these 

pterosins were first reviewed by Syrchina and Semenov.12 The first identified pterosin is 

pterosin B 11 (Figure 3) with antimicrobial properties. Other compounds from the pterosin 

family have also been reported to have biological activity such as cytotoxicity against cancer 

cell lines13 and antidiabetic activity.14 Some of the pterosins have been used for centuries in 

oriental medicine like onitin 12. Ho et al.15 showed that onitin possesses smooth-muscle 

relaxant properties, suggested to take place through inhibition of a serotonin 5-HT receptor. 

More than a decade later Sheridan et al.16 proposed that pterosin Z 13 (the dehydroxylated 

form of onitin) is acting through the inhibition of extracellular calcium influx through calcium 

channels or by interference with the calcium/calmodulin cascade of reactions within the cell. 

 
Figure 3. Indane derivatives found in Pteridophyta. 
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The indane system is also found in the stem bark of Vatica pauciflora as part of resveratrol 

oligomers (pauciflorol D and pauciflorol F)17 where it is formed by polymerization of 

resveratrol.18 Recently a new indanone containing compound has been isolated from the 

roots of Uvaria afzelii, named afzeliindanone 14 (Figure 4).19 Another source of naturally 

occurring indanes are fungi and bacteria. For example, the fomajorins D 15 and S 16 were 

isolated from the fungus Heterobasidion annosum. Tripartin 17 containing a dichlorinated 

methyl group and inhibiting histone H3 lysine 9 demethylase (KDM4) was isolated from a 

culture broth of a Streptomyces species associated with larvae of the dung beetle Copris 

tripartitus.20 

 
Figure 4. Indane derivatives found in Uvaria afzelii (afzeliindanone 14), Heterobasidion annosum 
(fomajorins D 15 and S 16), a culture broth of a Streptomyces species (tripartin 17). 

SYNTHESIS OF INDANE RING SYSTEM 

As mentioned above the indane ring system is present in nature, but before it was identified 

in natural products, several synthetic routes had already been developed to produce indane-

based structures. The first synthesis of an indandione, i.e. 3, was described by Wislicenus in 

1888 21 and soon after the synthesis of indanone 2 by Gabriel and Hausmann22 and indane 1 

by Kramer and Spilker23 was reported. However, nowadays more recent synthetic approaches 

are used to obtain indane compounds. The methods described below show different routes 

how to synthesize, modify and incorporate various substituents on the desired location of the 

indane ring system. 
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The unsubstituted indane can be acquired using a palladium–catalyzed cross–coupling 

reaction with B-alkyl-9-borabicyclo[3.3.1]nonane (Scheme 1) as reported by Miyaura et al.24 A 

more general method for the formation of different cyclic systems including indane (Scheme 

2) was developed by Katritzky et al.25 

Scheme 1. 

 

These authors used (benzotriazol-1-yl)-methanes to act as 1,1-dipole synthon equivalents. 

With this method 1-monosubstituted or 1,1-disubstituted indanes can be synthesized. 

However, a significant formation of alkenes was observed during five-membered ring 

annulations.  

Scheme 2. 

 

Bailey and Longstaff26 reported another method to arrive at the indane ring system and 

simultaneously incorporated a variety of different electrophiles selectively on the 4 position 

via an organolithium intermediate (Scheme 3). 
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Scheme 3. 

 

Indanes with substitution on the 5 position are usually acquired either via a direct 

halogenation (used in the synthesis of mGluR2 modulators)27 (Scheme 4a) or via 

deoxygenation of 5-substituted indanones (Scheme 4b).28 Mathison et al.29 developed another 

method (Scheme 5) which allows to introduce an aldehyde group directly on the indane ring 

where it can be modified further on. However, this method yields a mixture of 4- and 5-

substituted indanes in a 1:4 ratio. 

Scheme 4. 
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Scheme 5. 

 

The indanone structure 2 is much more versatile as a building block in medicinal chemistry. 

The ketone functional group can be directly used as the reactive center for different 

modifications or coupling reactions. A typical method for indan-1-one synthesis is based on 

intramolecular Friedel-Crafts acylation of phenylpropanoic acids. In this approach 

substituents on the propyl chain are translated into the corresponding 2- or 3-substituents on 

the indan-1-one. Recently Kangani and Day30 reported conditions in which indan-1-ones are 

formed in high yields and short reaction times at room temperature in the presence of 

cyanuric chloride/pyridine/AlCl3 (Scheme 6). 

Scheme 6. 

 

Very recently, Wang et al.31 described selective syntheses of indan-1-ones and indan-2-ones 

from 2-ethynylbenzyl ethers with suitable catalysts and solvents (Scheme 7). Using 

[tris(pentafluorophenyl)phosphine]gold hexafluoroantimonate [(C6F5)3PAuSbF6] in 

nitromethane (MeNO2) preferably yielded indan-1-ones whereas [(ortho-biphenyl)di(tert-

butyl)phosphine]gold triflimide [(t-Bu)2(o-biphenyl)PAuNTf2] in dichloroethane tended to 

form indan-2-one derivatives. 
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Scheme 7. 

 

Another method worth mentioning is how to incorporate substituents on 3 position of 

already made indan-1-ones. Azemi et al. described that 3-(t-butyldimethylsilyloxy)indene 

(generated from indanone) can be selectively deprotonated with lithium diisopropylamide 

and then reacted with an alkylating agent.32 The silyl ether can be removed by quenching it 

with acid (Scheme 8). This approach was used by Vilums et al.33 to generate the desired 

indanones as building blocks for CCR2 antagonists. 

Scheme 8. 

 

Incorporation of substituents on the phenyl ring of the indane system is usually done via 

Friedel–Crafts acylation; however, it can result in mixtures of regioisomers. 

INDANES AND G PROTEIN-COUPLED RECEPTORS 

In a recent review Garland34 discusses that 26% (437 of 1663) of marketed drugs that are 

listed in DrugBank are targeting G protein-coupled receptors. However, GPCRs or GPCR 
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related (e.g., receptor-activity modifying proteins or RAMPs) targets make only 7% (109 of 

1479) of all the drugged targets. Apparently, GPCRs are privileged targets. GPCRs are very 

similar in overall structure, but the binding sites are tailored to accommodate their individual 

endogenous ligands, and, additionally, synthetic ligands, giving rise to ligand diversity. Ligands 

containing the indane substructure are among the ones with highest affinities for GPCRs and 

these are the subject of this review.  

TARGETS IN DISEASES OF THE CENTRAL NERVOUS SYSTEM (CNS) 

α2-Adrenoceptor  

Alpha–2 adrenergic receptors (α2–adrenoceptors) are involved in several central and 

peripheral nervous system processes, such as alertness, heart rate regulation, vasomotor 

control and nociceptive processing. Recent studies suggest that α2–adrenoceptors are targets 

for the treatment of L–dopa–induced dyskinesia in Parkinson’s disease. For example, 

fipamezole 18 (Figure 5) can be co–administered with the anti-parkinsonian drug L–dopa.35 

Fipamezole reduces the L–dopa–induced dyskinesia without affecting any other parkinsonian 

action of the drug; it even elongates the duration of L–dopa’s action. It has high affinity for 

the human α2A (Ki = 9.2 nM), α2B (Ki = 17 nM), and α2C (Ki = 55 nM) receptors, with lower 

affinity for the GPCRs histamine H1 and H3 and the non–GPCR serotonin transporter.36 Its 

non–fluorinated analogue atipamezole 19, which is used as an agent in reversing 

medetomidine–induced sedation–analgesia in veterinary practice, has an approximately 4–

fold higher affinity for the α2A (Ki = 2.2 nM), α2B (Ki = 3.9 nM), and α2C (Ki = 12 nM) receptors. 
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Figure 5. α2 adrenoceptor ligands. 

Another structurally similar α2 adrenoceptor antagonist was designed to combine the 

properties of 18 with the monoamine uptake inhibition properties of napamezole 20, thereby 

creating anti-depressant effects.37 Compound 21 had the best balance between affinity for α2 

adrenoceptors and serotonin–norepinephrine reuptake inhibitor properties. The change from 

indane to indene affected only the α2 adrenoceptors while a further change to benzofuran 

solely affected the serotonin reuptake inhibition. Additionally, the indane system displayed a 

much higher affinity (at least 8–fold) for the α2 adrenoceptor compared to other bicyclic 

systems such as dihydronaphtalene, naphthalene and tetralin containing the same 4(5)-

imidazoline substituent. 

In contrast to these antagonists, fadolmidine 22 is an agonist of α2 adrenoceptors38 being 

developed for post-operative pain treatment (currently phase IIb).39 Structurally, this agonist 

is very similar to the antagonists with the indane system as a core. The main difference is the 

position of the imidazole/imidazoline on the cyclopentane ring. The affinity of the compound 

is similar to that of the antagonists, with 2.5 nM, 0.6 nM and 0.3 nM for the human α2A, α2B 

and α2C receptors, respectively. Fadolmidine is also a full agonist for α1A and α1B 

adrenoreceptors with EC50 values of 22 nM and 3.4 nM, respectively.40  
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Thus, the indane system seems to be a preferred structure for α2 adrenoceptor affinity and 

the location of imidazole/imidazoline rings determines the agonistic/antagonistic activity of 

the structures. 

Dopamine Receptors 

Central dopaminergic receptors are involved in many CNS diseases such as schizophrenia, 

depression and Parkinson’s disease. The development of drugs targeting this receptor-type 

has therefore been a goal for several decades. 

One of the earlier investigations was performed by Hacksell et al.41 identifying 4-hydroxy-2-

(dipropylamino)indan 23 (Figure 6) as a potent dopamine receptor agonist. When its 

biochemical and behavioral effects in rats and emesis in dogs were measured, this compound 

was found to have similar potency compared to the known highly active dopamine agonist 

apomorphine, but it was considerably less potent than its tetralin analogue. In the indane 

series, potency was significantly reduced when the hydroxyl group was placed at the 6-

position, or when a methyl–spacer was positioned between the indane and amine. 

Another agonist, RDS-127 24, was identified to preferentially activate dopamine 

autoreceptors as opposed to the post-synaptic dopamine receptors (D2).42 It was found to 

have a Ki of 10 nM when incubated with rat striatal membrane preparations, and was shown 

to be more potent than its tetralin analogue. Its structure is based on the core of 23, only the 

7-hydroxy substituent was replaced by a methoxy group and a 4-methoxygroup was added. 

This compound also has some serotonin (agonist) receptor activities. 
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Figure 6. Dopamine receptor ligands. 

When the methoxy groups were moved from the 4,7- to 5,6-positions the compound behaved 

as a postsynaptic dopamine receptor antagonist (PNU 99194) 25.43 This compound selectively 

binds to the D3 receptor and thereby predominantly has an effect on locomotor activity. Its Ki 

value for this receptor is 78 nM, 20 fold lower than for the D2 receptor (1572 nM).44  

A slightly bulkier molecule, tefludazine 26, was found in a 1-piperazino-3-phenylindane series 

as a dopamine antagonist with high affinity.45 These compounds have methyl phenidate and 

amphetamine antagonist activity and induce catalepsy in rats, indicating their antipsychotic 

activity, through D1 and D2 antagonism. Tefludazine has a Ki of 8.8 nM in rat striatal 

membranes, a binding affinity slightly higher than that of chlorpromazine, a known 

antipsychotic. Bogeso et al. showed that substituents such as chlorine, methyl or CF3 and to a 

lesser extent fluorine at the indane 6-position are crucial for affinity. A variety of substituents 

on the piperazine moiety is tolerated, but the hydroxyethyl showed the best activity. The 4-

fluoro substitution on the phenyl ring is important for the in vivo activity, most probably due 
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to increased metabolic stability. None of the cis-isomers were active dopamine antagonists, 

and only trans-isomers bound with high affinity to the dopamine receptor. At the same time it 

was found that many of the compounds in this series were potent dopamine uptake inhibitors 

and had high affinity for the 5HT2 receptor as an antagonist 26 with a Ki of 8.6 nM while 

having only sub–micromolar affinity for the α1-adrenoceptor (IC50 = 670 nM).46 

Another series from the same research group showed high affinity for the D1 and D2 

receptors, next to 5HT2 and α–adrenoceptors.47 In this series the trans-isomers were the 

active species. It was concluded that for the chiral center at the amine, one enantiomer 

contains the receptor blocking activity, whereas the other enantiomer is active as 

dopamine/norepinephrine uptake inhibitor. One of the most potent compounds in this series 

(27) was identified as a potential antipsychotic agent. D1 and D2 affinity were highest for small 

substituents on the 6-position of the indane moiety and much higher compared to 4-, 5- or 7-

substituted structures. In addition, compounds with 6-fluoro and 6-chloro substituents 

preferred the D1 receptor, whereas 6-CH3 and 6-CF3 favored the D2 receptor. Exploration of 

the piperazine ring revealed that its optimal substituent is 3-Me. However, to avoid creating 

an additional chiral center, the 3 position was dimethylated, which yielded an increase in 

selectivity for the D1 receptor. Formation of spirocycles at this position gave similar affinities, 

but a loss of selectivity for D1/D2. Larger substituents on the nitrogen atom such as i-propyl, 

hydroxy-ethyl and propyl did not markedly affect affinity for the dopamine receptors, in 

accordance with the tefludazine series. Finally, substitutions at the indane 3 position should 

be trans- oriented bulky groups, with the highest D1 and D2 affinity for the phenyl, 4-

fluorophenyl and 3-thienyl moieties. Compound 27 had a Ki value of 0.84 nM and 7.1 nM for 

the D1 and D2 receptors, respectively. Affinities for the 5HT2A (antagonist), 5HT2C and α1–

adrenoceptors were also high with 1.9 nM, 0.28 nM and 25 nM, respectively. 

In summary, a typical high affinity dopamine receptor ligand based on the indane scaffold 

contains an amine on the pentane ring and on the phenyl ring an electron donating group 

(EDG) – in the case of agonists 23, 24, and an electron withdrawing group (EWG) – in the case 
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of antagonists 26, 27. The optimal distance between the two appears to be four carbon 

atoms. 

Serotonin Receptors 

The serotonin receptor family (5HT receptor) is involved in a wide range of CNS processes and 

is a target for several diseases including anxiety, depression, psychosis and cognitive 

impairment. Therefore, investigations to develop ligands for these receptors have produced a 

plethora of compounds with affinity for one or several of the subtypes 5HT1 through 5HT7. 

Millan et al.48 reported S15535 28 (Figure 7) as a highly selective 5HT1A receptor ligand which 

acts as weak partial agonist with high affinity (Ki = 0.8 nM). However, this compound was 

rapidly metabolized in vivo and more stable compounds were searched for. A decade later 

Peglion et al.49 described 2-(arylcycloalkylamine)-indan-1-ols as ligands of the 5HT1A receptor 

for treatment of anxiety. Additional substituents on the indane system improved selectivity 

and oral bioavailability while keeping the high affinity. Substitutions at the 6 position of the 

indane yielded the highest affinity. With a methoxy group a Ki value of 0.45 nM was obtained, 

two- to threefold better than 6-NO2 or 6-F, or the 5-OMe analogue. However, the 5-OMe 

compound 29 (Ki = 1 nM) was selected for further investigations due to its better metabolic 

bioavailability. In the case of substituents on the 2 position a 4-substituted-piperidin-4-ol was 

deleterious for the affinity. However, piperazine or piperidine moieties substituted with 

benzodioxane or benzopyran maintained the high affinity for the receptor. Similar to 

dopamine receptor ligands 26 and 27 the trans-isomers were most active on the 5HT1A 

receptor. 
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Figure 7. Serotonin receptor ligands. 

YM992 30 (Figure 7) was developed as a selective serotonin reuptake inhibitor (SSRI) with 

moderate (Ki = 86 nM) 5HT2A affinity. Submicromolar (Ki = 200 nM and 680 nM) affinity was 

observed for the α1–adrenoceptor and 5HT2C receptor, respectively.50 The substitutions on the 

indane system are located on positions 4 and 7 compared to positions 1, 2 and 5 in 29, 

potentially explaining the lower receptor affinities. Additionally, the basic nitrogen in 

compound 30 is located much further form the indane than in other serotonin receptor 

ligands described in this review. 

A mescaline analogue was synthesized to develop a 5HT2A receptor agonist, and the 

conformationally restricted 31 was found to have a Ki value of 69 nM at cloned human 

receptors.51 The more recently identified family of 5HT6–receptors was investigated as a 

target for indenes/indanes.52 The SAR revealed compound 32 to have the highest affinity in 

the indane series for the human receptor (Ki = 1.2 nM). The 6-chloroimidazo[2,1-

b][1,3]thiazole structural motif coupled to the sulfonamide in this compound was important 

for affinity, as the naphthyl and 4-methyl-3,4-dihydro-2H-1,4-benzoxazine analogues had over 

20 fold lower affinity. The sulfonamide was preferentially located at the 5 or 6 position, as the 
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4 position abolished affinity. The guanylhydrazone could be replaced by an 

imidazolinylhydrazone group with only a marginal loss in affinity.  

Melatonin Receptors 

Melatonin (N-acetyl-5-methoxytryptamine) is a hormone that is secreted during darkness. It 

regulates the circadian rhythm and analogues of melatonin can be used to control diseases 

associated with circadian rhythm disorders. 

Compounds 33 and 34 (Figure 8) were developed as melatonin analogues,53 with binding 

affinities on chicken brain melatonin (MT) receptors of 16 nM and 7.6 nM, respectively. Their 

tetralin analogues had approximately 20 fold higher affinity, and the benzocycloheptane 

analogues had similar affinity, whereas the cyclobutane analogues had a lower affinity. 

Compounds with a butyramido substituent (such as 34) had higher affinity than when 

substituted with a propionamido (33) or acetamido moiety, indicating the receptor favors 

longer lipophilic side chains. Moreover, as for the serotonin and dopamine receptors, the 

melatonin receptor has marked enantioselectivity for these compounds. The (+)-enantiomer 

of 33 had a Ki value of 3 nM, compared to 456 nM for the (-)-enantiomer. These features 

seem to be important for melatonin receptor affinity as an agonist, as will also become 

apparent in the next examples. 
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Figure 8. Melatonin receptor ligands. 

Drijfhout et al. tested several compounds for melatonin receptor agonism.54 GG-012 

(compound 35) was a partial agonist with high binding affinity (Ki = 9.5 nM) for the chicken 

retina melatonin receptors, 5–fold higher than its tetralin analogue. Additionally, in another 

paper,55 a derivative of compound 35 that is lacking the methylene spacer between the 

indane and amide was found to have no affinity for the receptors, stressing the importance of 

the distance between the amide and methoxy group, equal to the distance seen in 33 and 34.  

Mattson et al. reported on piperazine amides attached to benzyl, indenyl and naphthalene 

groups as MT2 receptor selective agents.56 Compound 36 was reported to have high affinity 

and the best selectivity for the cloned human MT2 receptor (hMT1, IC50 = 200 nM, hMT2, IC50 = 

1.7 nM). The indanes in general had higher affinity than the more flexible benzyl or the 

bulkier tetralin and naphthyl analogues (20-30 fold). The compounds showed stereospecificity 

in their binding. Only R-enantiomers were active, whereas the S-enantiomers showed no 

activity at the MT receptors. The n-, c- and i-propyl substituents instead of ethylamine on the 

carbonyl piperazine yielded the highest affinity for the MT2 receptor; however, the selectivity 

for the MT1 receptor was decreased. Smaller substituents, such as methyl and ethyl, or larger 

substituents such as n-butyl reduced affinity. 
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Two other series of indanes were synthesized as therapeutic agents for sleep disorders, one 

describing the SAR of indane derivatives57 the other the SAR of indeno–furans,58 both yielding 

agonists with very high affinity. The Ki values on human melatonin receptors (MT1) were 0.041 

nM and 0.014 nM for 37 and 38, respectively, even higher than that of melatonin itself (0.082 

nM). Again, the geometry of substituents on the 1 position of the indane system plays an 

important role in binding affinity. The same configuration as in 36 is preferred for 37 and 38.  

In the indane series, the S-enantiomers had more than 100–fold higher affinity than the R-

enantiomers. The indane system itself provided twofold higher affinity over a similar tetralin 

series, and more than 70–fold higher affinity than the 6,7,8,9-tetrahydro-5H-

benzo[7]annulene derivative. The amide alkyl group should be ethyl or propyl, as seen before, 

whereas iso-propyl resulted in a decrease in affinity. Exchanging -CH3 to -CF3 on the amide led 

to a 5–fold increased affinity, yielding the most potent compound in the series with a Ki value 

of 0.012 nM. The length of the spacer between the indane and amide was also of importance, 

with optimal affinity provided by an ethyl spacer. Propyl and methyl spacers reduced affinity 

20–fold and 1000–fold, respectively. Lastly, the methoxy group was substituted for ethoxy, 

propoxy and iso-propoxy groups, but this decreased affinity in this order. The 6-methoxy 

group yields a 7–fold increase in affinity. The authors argued that the H–bond can be formed 

only if the methyl group on the oxygen points towards the 7 position of the indane, giving 

access of the oxygen’s lone pair for hydrogen bonding. It was concluded that substitution on 

the 7 position (but not the 5 position) prevents this conformation from occurring and 

therefore reduces affinity markedly.  

Using this finding, Uchikawa et al. developed the second series of tricyclic indanes, such as 

compound 38.58 The methoxy group was fixed into the preferred position by incorporating it 

in a furan, 1,3-dioxolane, oxazole, pyran, morpholine, or 1,4-dioxane ring systems. In order to 

maintain affinity, the tricyclic system with the oxygen at the 6 position needed to be angular 

(6,7 position), not linear (5,6 position), underlining the hypothesis of the lone pair on the 

oxygen being accessible for hydrogen bonding as described before. The 1,6,7,8-tetrahydro-

2H-indeno[5,4-b]furan ring system (compound 38) resulted in the highest affinity. According 
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to the docking study,58 an additional positive feature of compound 38 over melatonin is the 

indane system, which is located in the hydrophobic pocket at the bottom of the binding site, 

contributing to the high affinity of the MT1 receptor.  

Metabotropic Glutamate Receptor 

There are three groups of metabotropic glutamate receptors, of which group one (mGluR1 

and 5) is involved in increasing NMDA receptor activity while group two (mGluR2 and 3) and 

three (mGluR4, 6-8) inhibit neurotransmission. The mGluR1 is a potential target for 

neuroprotection via inhibition by an antagonist.59 Pellicciari et al. 60 developed an mGluR1 

selective antagonist called 1-aminoindan-1,5-dicarboxylic acid (AIDA, 39) (Figure 9) which is a 

conformationally restricted analogue of the (carboxyphenyl) glycine derivatives. It inhibited 

glutamate-stimulated phosphoinositide hydrolysis in BHK cells expressing mGluR1 with an IC50 

of 7 µM. From the very limited SAR performed it became apparent that one of the two 

carboxylic acids should be at the 5 position of the indane in order to give the antagonistic 

effect on mGlu1. However, the compound showed also modest agonist action on mGlu5 

receptors. 

 
Figure 9. Metabotropic glutamate receptor ligands. 

The group two receptors might act as a target for epilepsy, anxiety and schizophrenia 

treatment, especially through selective targeting of mGluR2.61 However, one of the main 

problems in the development of selective compounds for mGluR2 over mGluR3 is the high 

degree of sequence homology between group two mGluRs, especially at the (extracellular) 

glutamate binding site. Therefore, instead of targeting the orthosteric (glutamate) binding 
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site, emphasis these days is on allosteric modulators binding into the transmembrane domain 

of the receptor. Bonnefous et al. have reported a new class of selective mGluR2 positive 

allosteric modulators (PAM`s) based on biphenyl–indanones. Compound 40 was identified to 

have the highest potency for the human mGluR2, with an EC50 value of 5 nM.62 The indanone 

moiety provided receptor selectivity; for high potency there must be substitutions on the 6 

and/or 7 position of the indanone and a cyclopentyl at the α-position of the ketone. 

Additionally, in the biphenyl system, the central phenyl and methylene group are best 

unsubstituted. The acid on the second phenyl is preferentially at the meta-position, and 

electron–withdrawing substituents on the para position improve affinity additionally. 

Vasoactive Intestinal Polypeptide Receptor 2 

 
Figure 10.Vasoactive intestinal polypeptide receptor 2 ligands. 

Vasoactive intestinal polypeptide receptor 2 (VAPC2) is a member of the secretin receptor 

family (class B GPCRs). VAPC2 is involved in sustaining circadian rhythm,63 regulation of 

immune responses,64 schizophrenia65, 66 and upregulation of basal metabolic rate.67 Thus far 

there are only two known small molecule ligands for the VAPC2 receptor discovered by Chu et 

al.68 Compound 41 (Figure 10) was the only hit from a high-throughput screen of 1.67 million 

compounds. After a structure similarity search another analog, compound 42, was found. 

Both compounds showed antagonistic activity on the VAPC2 receptor. Compound 41 was the 

more potent inhibitor with an IC50 value of 2.3 µM and selective towards the VAPC2 receptor. 

The change of the electron–withdrawing nitro group to the lipophilic, electron–donating t-
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butyl group in 42 led to a small degree of activation of VAPC1 receptors at higher 

concentrations, while maintaining the antagonist activity on the VAPC2 receptor. 

INFLAMMATORY DISEASE TARGETS 

β2–Adrenergic Receptor 

One of the beta-adrenergic receptors is the β2–adrenoreceptor, involved in smooth–muscle 

relaxation, blood vessel dilation, control of the heart rate and the digestive system among 

others. It is especially of interest in asthma and COPD as a target for bronchodilation.  

In 1980 indane derivative ICI-118,551 43 (Figure 11) was identified as a selective antagonist 

for the β2–adrenoreceptor, and has mostly served as a research tool ever since as β2–

adrenoreceptor blockade is not regarded as therapeutically useful.69 43 is quite similar to 

propranolol, a non–selective beta blocker, and is the indane analogue of α-methyl substited 

propranolol (44). It is thought that the structure gets its selectivity and potency through three 

aspects. Firstly, 43 is as potent as its naphthalene analogue α-methylpropranolol, but is five 

times more selective for the β2–adrenoreceptor. The indane ring therefore must give a 

preference to the β2–adrenoreceptor over the β1–adrenoreceptor. Secondly, the 

oxymethylene bridge between the ring and the propanolamine is of importance for potency 

as the same structure is seen in propranolol and other potent beta–blockers, but not in the 

less potent ethanolamine compounds H35/25 and butoxamine. Lastly, selectivity for the β2–

adrenoreceptor is enhanced through the additional methyl group in the propanolamine 

moiety, as α-methylpropranolol, H35/25 and butoxamine are more selective than propranolol 

and contain this feature too. 

file:///I:/Documents/Dokumenti/Darbs/PhD/My%20theses_MV/For%20reading%20commite/Chapter%202.docx%23_ENREF_69


CHAPTER 2 

44 

 
Figure 11. β2 adrenergic receptor ligands. 

Recently, a potent and selective agonist for the β2–adrenoreceptor was developed 

(indacaterol 45).70, 71 It is marketed as an inhaled ultra-long acting bronchodilator, and is 

especially aimed at asthma and COPD treatment. It has the highest affinity for the β2–

adrenoreceptor in the series, however, the affinity values vary in different reports (Ki = 76 and 

16 nM).70, 71 The indane scaffold was chosen for this compound in order to easily substitute 

the phenyl in the indane to regulate lipophilicity (for long–term activity via possible 

membrane binding causing a high local concentration around the receptor). This part of the 

molecule allows big variations due to the remote position from the key epinephrine 

mimicking part. The di-ethyl substitution pattern was chosen to keep the indane part 

symmetrical and a–chiral for simplicity. The SAR can then be broken down into three parts, 

when compared to the non-selective β2–agonist epinephrine. Compound 45 has a 8-

hydroxyquinolinone catechol mimetic, as a replacement for the catechol moiety of 

epinephrine and an ethanolamine linking group, which remained unchanged. These are the 

crucial parts for agonist activity at the β2–receptor. The third part is the amino substituent, in 

which the N-methyl group of epinephrine is replaced by a 5,6-diethyl indanyl moiety. The 5,6-

disubstitutions led to higher affinity than 4,7-disubstitutions. Dimethyl substitution decreased 

affinity compared to the unsubstituted indane, whereas diethyl substitution gave the highest 

affinity, slightly higher than di-n-propyl and di-n-butyl. Lastly, introduction of a methyl group 

at the 2 position of the indane ring increased affinity by 10 fold compared to 45, however, β1–

affinity was increased even more, and thereby selectivity was lost. 
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Chemokine Receptor 2 

Chemokines are a class of chemoattractant cytokines, and their main action is to control the 

activation and trafficking of leukocytes and other cell types in a range of inflammatory and 

non-inflammatory conditions. One of these, chemokine ligand 2 (CCL2), acts on memory T 

cells, monocytes, and basophils.72 It creates a chemotactic gradient and activates the 

movement of immune cells to the site of inflammation by binding to its cell–surface receptor, 

chemokine receptor 2 (CCR2).73 Pre–clinical models of inflammatory diseases (e.g., 

atherosclerosis,74 asthma,75 multiple sclerosis,76 rheumatoid arthritis,77 neuropathic pain78) 

have pointed to a critical role of the CCR2 and CCL2. 

Recently, Vilums et al.79 reported a new approach in hit–to–lead optimization for CCR2 

antagonists. This report suggests that next to SAR, one should also use structure-kinetic 

relationships (SKR) to yield compounds with good affinity and optimal drug-target binding 

kinetics already at the early stages of the drug discovery cycle. It was discovered that the 

constrained indane system yielded better affinity than more flexible alkyl linkers, but the 

affinity was worse than that of aliphatic heterocycles. However, in the SKR study the indane 

derivative showed the longest residence time and was used for further optimization which 

yielded compound 46 (Figure 12) with high affinity and long residence time (Ki = 3.6 nM, RT = 

135 min). Substituents on the 5 position improved affinity in general, but only halogens like Cl 

and Br also prolonged the residence time. 

 
Figure 12. Chemokine receptor 2 antagonists. 

In a patent application80 Bristol–Myers Squibb disclosed several CCR2 antagonists with indene 

and indane (47) structures. Not much has been published yet about these compounds, 
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however, it is anticipated that they will have high affinities due to their resemblance to other 

CCR2 antagonists, such as reported in several GSK patents.81, 82 The indene/indane group 

would fill the needed hydrophobic space of the ‘end group’, which requires at least one 

aromatic ring for affinity at the receptor. 

Protease–Activated Receptor 2 

Four protease–activated receptors (PAR`s) are among the most unusual receptors in the vast 

super–family of GPCR`s due to their manner of activation. There are no known endogenous 

extracellular ligands for these receptors. Instead, they are activated via proteolytic cleavage 

of their N-terminus by serine proteases. The remainder of the N-terminus folds back onto the 

receptor and induces intramolecular activation of the PAR.83 The PAR1 subtype has been most 

investigated, because it is activated by thrombin, suggesting it as a potential target in 

cardiovascular diseases. In contrast, PAR2 is resistant to thrombin, but can be activated by 

trypsin, tryptase or cathepsin G and has been linked to inflammatory and proliferative 

disorders.83, 84 

 

Figure 13. Protease–activated receptor 2 ligands. 

Recently, Barry et al reported the discovery of selective agonists and antagonists of PAR2.85 

The authors truncated the known PAR2 agonist SLIGRL-NH2 by three amino acids and 

derivatized both ends of the tripeptide to yield agonist 48 (Figure 13) with sub-micromolar 

potency (EC50 = 0.28 µM). The removal of the primary amine on the piperidine ring altered the 

agonistic effect into antagonism of PAR2. A spiroindanepiperidine group coupled directly to 

the terminal amide group of the tripeptide yielded the most potent antagonist 49.  
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CARDIOVASCULAR DISEASE TARGETS 

Endothelin Receptor 

The endothelin receptors ETA, ETB and ETC are mainly involved in the cardiovascular system 

regulating vasoconstriction and -dilation. They are used as a target in hypertension86 and 

renal failure87.  

In the 1990’s a research group from SmithKline Beecham Pharmaceuticals developed several 

antagonists for the ETA and ETB receptor with an indane core structure.88, 89 Through molecular 

modeling of the peptide endothelin–1 (ET-1), the natural ligand of these receptors, important 

side chains for binding were identified. The 1 and 3 positions on the indane ring are 

substituted with phenyl groups, possibly mimicking two aromatic side chains of ET-1. 

Additionally, the carboxylic acid at position 2 plays an important role in binding as the 

corresponding methyl ester had no measurable affinity for the ET receptors. Introduction of 

electron–donating substituents on the 1- and 3-phenyl groups improved affinity, with both 

phenyls para-substituted with methoxy groups giving a marked increase in affinity. A 3,4-

methylenedioxy instead of one of these methoxy groups improved the affinity even more, as 

did substitutions at the 6 position of the indane. To mimic the C-terminal carboxylic acid of 

ET-1, a carboxylic acid was introduced with a methylenoxy spacer to the ortho-position of one 

of the phenyl rings. This resulted in structure 50 (SB 209670) (Figure 14), the (+)-enantiomer 

being more potent than the (-)-enantiomer, with a Ki value on human ETA and ETB receptors of 

0.43 nM and 15 nM, respectively. However, despite its high affinity, a shortcoming with this 

compound was its limited bioavailability. Therefore compound 51 (enrasentan) was 

developed, changing only the oxyacetic acid at the 2 position of the phenyl ring into an 

alcohol. This slightly reduced the affinity for ETA, but improved the selectivity over the ETB 

receptor by 10 fold and also improved bioavailability, resulting in binding affinities of 1.1 nM 

and 111 nM for ETA and ETB receptors, respectively. 
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Figure 14. Endothelin receptor ligands 50, 51 and serotonin receptor ligand 52. 

Serotonin Receptor 

Apart from serotonin receptors in the brain as discussed above, there are also peripheral 

receptors, such as peripheral 5HT2 receptors. These receptors could be used as 

antihypertensive targets when blocked with an antagonist. 

 As described for the compounds targeting serotonin receptors in the CNS, several features 

are crucial for affinity to these receptors. All these elements are present in the dopamine and 

5HT2 antagonist tefludazine 26. One of its characteristics, the substitution on the 6 position of 

the indane, is less important for serotonin receptor affinity. Hence, Bogeso et al.90 used 

tefludazine without its 6-CF3 substitution as a starting point to target selectively the 

peripheral 5HT2 receptors. Additionally, their compounds had some α1–adrenoceptor 

antagonistic affinity, although less than for 5HT2. These combined effects may be responsible 

for the antihypertensive effects of these drugs. The SAR showed that the 4-fluoro substituent 

on the phenyl is crucial for activity of the compounds, as in tefludazine, since other 

substituents, including hydrogen, yielded inactive compounds. Substitutions at the piperazine 

ring were important for tuning central and peripheral activity, to the extent that a 1-ethyl-2-

imidazolidinone moiety abolished neuroleptic activity and kept peripheral activity indicated 
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by the compound’s antihypertensive effects in rats. Additionally, the (+)-enantiomer was 

found to be much more active resulting in compound 52 (irindalone) (Figure 14), with IC50 

values of 3.4 nM, 400 nM and 26 nM for 5HT2, dopamine (DA) and α1–receptors, respectively.  

TARGETS OF METABOLIC DISEASES 

Melanin Concentrating Hormone Receptor 

The melanin concentrating hormone receptor exists as two subtypes in humans, MCH-R1 and 

MCH-R2 and is involved in feeding behaviour and energy homeostasis. Inhibition of this 

receptor could therefore be a new way of treating obesity and metabolic syndromes.91, 92 

An indane–derived chemical class was identified as a promising lead for an antagonist of the 

MCH-R193 and its optimization was published recently.94 The indane moiety was found to be 

superior for receptor selectivity over cyclopentyl, cyclobutyl, cyclopropylmethyl and 

dihydrobenzofuran. A bromine or CN at the 6 position of the indane gave higher affinity for 

the MCH-R1, with the CN group giving the highest potency and selectivity. This group was 

then linked to a benzimidazole group by several linkers, the cis-4-

methyleneaminocyclohexane giving the best results. This investigation showed that the cis-

conformation was highly preferred over the trans- conformation and that the methylene 

spacer between the indane and NH is important for activity. The selected compound 53 

(Figure 15) has a Ki value of 3 nM for the human MCH-R1, but was not further developed 

because of potent hERG inhibition, activities which could not be dissociated. 

 
Figure 15. Melanin concentrating hormone receptor antagonist 53 and GPR119 agonist 54. 
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GPR119 

A relatively new GPCR termed GPR119 has been identified as a potential target for the 

treatment of obesity and diabetes. An agonist for this receptor was discovered and after 

optimization indanone 54 was found to have the desired effect of plasma glucose control in 

rodents.95 Different bicyclic scaffolds were investigated and the indanone scaffold was 

identified as giving the highest affinity for GPR119. The nitrogen on the 6 position of the 

indanone was important for agonist activity. In addition, a propyl–spacer to the piperidine 

gave the best affinities. The EC50 value of the most potent compound 54 for human GPR119 

was 51 nM. 

GPR40 

GPR40 (also known as free fatty acid receptor 1) is highly expressed in the pancreas and is a 

potential therapeutic target for diabetes. Itoh et al.96 described that long-chain free fatty acids 

(FFAs) are the endogenous ligands for GPR40. Furthermore, by activating GPR40 FFAs amplify 

glucose–stimulated insulin secretion from pancreatic β cells. Takeda Pharmaceuticals 

developed fasiglifam 55 (Figure 16), a GPR40 agonist that showed significant glucose–

lowering effects in patients with type 2 diabetes by stimulating glucose–dependent insulin 

secretion.97 However, recently Takeda announced termination of fasiglifam development due 

to liver safety concerns.98 Boehringer Ingelheim has filed a patent application that describes 

more potent indanyl analogues of fasiglifam as GPR40 agonists. Compound 56 showed the 

best potency in the series having an EC50 value of 1 nM99 (compared to fasiglifam’s EC50 = 14 

nM).100  
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Figure 16. GPR40 agonists 55, 56 and growth hormone secretagogue receptor inverse agonist 57. 

Growth Hormone Secretagogue Receptor 

Growth hormone secretagogue receptor (GHSR) and its endogenous ligand ghrelin are 

expressed in pancreas where they are involved in regulation of glucose–induced insulin 

release. Blockade of the GHSR/ghrelin axis results in enhancement of glucose–induced insulin 

release from perfused pancreas, whereas addition of exogenous ghrelin suppresses it.101 This 

suggests that antagonism of the ghrelin receptor enhances insulin release thereby 

normalizing the glycemic control in high–fat diet–induced obesity and counteracting the 

progression of type 2 diabetes. Pfizer has developed a series of small–molecule inverse 

agonists for GHSR based on a 2,3-dihydro-1H-inden-1-yl-2,7-diazaspiro[3.6]nonane scaffold as 

potential treatment of type 2 diabetes.102 Compound 57 (Figure 16) had the best affinity in 

the series (Ki = 3.1 nM). This scaffold tolerates a wide variety of different chemical groups on 

the acetamide side, while substituents on the indenyl ring should be aromatic rings with at 

least a nitrogen atom on the 2 position. 

MISCELLANEOUS TARGETS 

α1–Adrenoceptor  

The α1–adrenoceptors have several subtypes that are very similar in structure. The α1A, α1B 

and α1D receptors are all acting mainly on smooth muscle cells leading to vasoconstriction, 
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bronchospasms and decreased motility in the GI–tract. Subtype α1A receptor selective 

agonists have been shown to be efficacious in in vivo models of stress urinary incontinence 

(SUI).103 However, full α1A receptor agonists possess a slender therapeutic index over α1A 

induced cardiovascular effects. Therefore partial agonism and organ specificity are desired 

characteristics in SUI treatment. 

In the search for a compound with these features, indanes and tetrahydronaphthalenes 

coupled to a 2-imidazole were investigated.104 The tetrahydronaphthalene derivative 58 

(Figure 17) had an attractive pharmacological profile, combining good potency, low Emax, good 

selectivity and in vitro metabolic stability. However, according to Conlon et al.105 α1A partial 

agonists mediate their effect via a central pathway rather than directly on the urethral 

smooth muscle, thus CNS penetrant partial agonists are desired for in vivo efficacy. 

Compound 58 has a high total polar surface area (TPSA = 83 Ǻ2) with an associated P-

glycoprotein-mediated efflux, which could have a negative impact on the crossing of the 

blood–brain barrier (BBB).106 As the indane derivatives were found to be more potent than 

the tetrahydronaphthalene congeners, it was decided to continue with the indane core and 

decrease the TPSA value by exchanging the sulfonamide group to an isostere with smaller 

TPSA penalty. After thorough SAR evaluation compound 59 (PF-3774076) was generated 

bearing a 4-methylenemethoxy group (EC50 = 31 nM, TPSA = 38 Ǻ2) instead of sulfonamide. 

Additionally, the chlorine substituent on the 5 position of the indane reduced the compound’s 

Emax value and gave the wanted partial agonism. Unfortunately, 59 did not offer the necessary 

degree of selectivity over cardiovascular events when assessed in in vivo models of 

cardiovascular function. 
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Figure 17. α1–Adrenoceptor ligands. 

The structure of 59 bears resemblance to some of the α2A, dopamine, serotonin and 

melatonin ligands. Fadolmidine 22 for example has the same location for the imidazole on the 

1 position of the indane, only with an additional methyl–spacer. This α2–receptor agonist is 

also a α1 receptor full agonist and the selectivity of 59 compared to 22 seems to be due to the 

bulk of the substitution on position 4. 

Prostaglandin F Receptor 

 
Figure 18. Prostaglandin F receptor ligands. 
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The endogenous ligand of the prostaglandin F receptor (FP receptor) is prostaglandin F2α 

(PGF2α, 60). It is involved in many physiological responses, such as the regulation of 

parturition (including luteolysis),107 intraocular pressure,108 cardiac hypertrophy109 and kidney 

function.110 The FP receptor agonist travoprost 61 (analogue of prostaglandin F2  60) (Figure 

18) is used to treat glaucoma and ocular hypertension. However, the 2-indane analogue of 

prostaglandin F2α (AL-8810, 62) is a low–efficacy FP receptor agonist and can be used as 

selective functional antagonist.111 Although AL-8810 has low potency, it proved useful in 

studying PGF2α-mediated up-regulation of the nerve growth factor IB.112 

CONCLUSIONS 

In the above sections, we summarized the major targets of the GPCR protein superfamily 

where the indane system is used as the core structure in the development of high affinity 

ligands for these targets. Compounds containing this structure are used in the treatment of a 

wide variety of diseases through an even wider variety of mechanisms of action. Some of 

these compounds show very high affinities towards Class A and Class C GPCRs, possibly in part 

because of the good fit of the indane moiety itself. Additionally, the distinct shape of the 

indane, due to the fused aromatic and aliphatic rings, makes it a useful scaffold to orient 

substituents on it. On top of that, the scaffold can be used to mimic constrained alkyl linkers 

between the phenyl ring and other substituents on the 1 and 2 positions of indane. 

Apparently these features can be very well accommodated by many GPCRs, suggesting the 

indane moiety is a privileged structure. Last but not least, using the indane system as the core 

structure provides ‘freedom to operate’ to the medicinal chemist. It allows to introduce 

substituents in ten different directions to find the “perfect–fit” for every substituent, 

generating very selective and high affinity ligands for GPCRs.  
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ABSTRACT 

Preclinical models of inflammatory diseases (e.g. neuropathic pain, rheumatoid arthritis and 

multiple sclerosis) have pointed to a critical role of the chemokine receptor CCR2 and 

chemokine ligand 2 (CCL2). However, one of the biggest problems of high affinity inhibitors of 

CCR2 is their lack of efficacy in clinical trials. We report a new approach for the design of high 

affinity and long residence time CCR2 antagonists. We developed a new competition 

association assay for CCR2, which allows us to investigate the relation of the structure of the 

ligand and its receptor residence time [i.e. structure–kinetic relationship (SKR)] next to a 

traditional structure–affinity relationship (SAR). By applying combined knowledge of SAR and 

SKR we were able to re-evaluate the hit-to-lead process of cyclopentylamines as CCR2 

antagonists. Affinity-based optimization yielded compound 1 with good binding (Ki = 6.8 nM), 

but very short residence time (2.4 min). However, when the optimization was also based on 

residence time, the hit-to-lead process yielded compound 22a – a new high affinity CCR2 

antagonist (3.6 nM) with a residence time of 135 min.  
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INTRODUCTION 

Chemokines are a class of chemoattractant cytokines and their main action is to control the 

trafficking and activation of leukocytes and other cell types for a range of inflammatory and 

noninflammatory conditions. One of these, monocyte chemotactic protein-1 [MCP-1/ 

chemokine ligand 2 (CCL2)], acts on monocytes, memory T cells, and basophils.
1
 It creates a 

chemotactic gradient and activates the movement of immune cells to the site of inflammation 

by binding to its cell-surface receptor, CC chemokine receptor-2 (CCR2).
2
 This CCL2/CCR2 pair 

is overexpressed in several inflammatory conditions in which excessive monocyte recruitment 

is observed. CCR2 and CCL2 knockout mice and CCR2 or CCL2 antibody-treated rodents show 

decreased recruitment of monocytes and produce considerably decreased inflammatory 

responses.3 This indicates CCR2 as potential target for treatment of several immune-based 

inflammatory diseases and conditions, such as multiple sclerosis,4 atherosclerosis,5 

rheumatoid arthritis,6 diabetes,7 asthma,8 and neuropathic pain.9  

In the past decade there has been an increasing interest in the development of small-

molecule antagonists of the CCR2 receptor resulting in the disclosure of many different 

chemical classes. However, there are still no selective CCR2 antagonists on the market for the 

treatment of inflammatory diseases. Clinical trials so far have failed mostly due to lack of 

efficacy, including the one for the CCR2 antagonist MK-0812 (Figure 1).10 

 
Figure 1. CCR2 antagonist MK-0812. 

It has been suggested that binding kinetics, especially the lifetime of the ligand-receptor 

complex can be used as a predictor for drug efficacy and safety.11, 12 The concept of binding 

kinetics is often overlooked in the early phase of drug discovery, however, incorporation of 

this parameter could help to decrease the attrition rate in later stages of drug development.
13
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In this concept of kinetics an additional pharmacological parameter – the ligand-receptor 

residence time (RT, the reciprocal of the dissociation rate constant koff) is defined,
14

 which is a 

measure for the duration that a ligand is bound to its target. 

In this study we first evaluated several reference CCR2 antagonists using a recently developed 

competition association assay for CCR2 that yielded the respective association and 

dissociation rate constants. As our starting point we chose compound 1 which was also the 

lead compound in the process that led to the development of MK-0812 by the Merck group.
10

 

The determination of the binding kinetics of several known structures with this particular 

scaffold subsequently allowed us to generate a new series of high affinity and long residence 

time CCR2 antagonists based on structure 2, which was previously abandoned by other 

groups in optimization steps due to its modest binding affinity (Figure 2).15 

 
Figure 2. Residence time and affinity values are both pharmacological parameters that may, however, 
suggest different lead structures. 

RESULTS AND DISCUSSION 

Chemistry 

Synthesis of (1S,3R)-methyl-3-((tert-butoxycarbonyl)amino)-1-isopropylcyclopentane 

carboxylate 3 was achieved following the synthetic approach reported by Kothandaraman et 

al.
15

 The desired N-Boc protected ester 3 was saponified to yield acid 4. Subsequently acid 4 

was used in peptide coupling reaction with 3,5-bis(trifluoromethyl)benzylamine to yield 
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amide 5 under bromo-tris-pyrrolidino phosphoniumhexafluorophosphate (PyBroP) 

conditions.
16

 Removal of the N-Boc group with trifluoroacetic acid (TFA) in DCM produced 

amine 6. Reductive amination with different ketones under NaBH(OAc)3 conditions afforded 

the desired products 1, 2, and 11, 12. Compounds 7 – 9 were synthesized by alkylating amine 

6 with different alkylating agents. Compounds 10 and 13 – 32 were generated from amine 6 

and an array of different ketones with 5-ethyl-2-methylpyridine borane complex (PEMB) 

under conditions reported by Burkhardt and Coleridge (Scheme 1).
17

 

Scheme 1. Synthesis of CCR2 Antagonistsa 

 
a
Reagents and conditions: a) 4M LiOH aq., MeOH, reflux, 4h, 91%; b) 3,5-Bis(trifluoromethyl)benzylamine, PyBrOP, 

DIPEA, DMAP, DCM, r.t., 24h, 83%; c) TFA, DCM, r.t., 1h, 85%; d) corresponding ketone, (AcO)3BHNa, AcOH, DCE, r.t., 
18h, 21-86% (compounds 1, 2, and 11, 12); e) corresponding alkylating agent, DiPEA, CH3CN, 60 °C, 2h, 14-54% 
(compounds 7 – 9); f) for array synthesis - corresponding ketone, 5-ethyl-2-methylpyridine borane (PEMB), AcOH, 
NMP, 65 °C, 24h, (compounds 10 and 13 – 32). 

Biology 

To determine the binding affinity all compounds were tested in a 125I-CCL2 displacement assay 

on human bone osteosarcoma (U2OS)–CCR2 membrane preparations as described previously 

by our group.18 Several methods can be used to determine ligand binding kinetics [e.g. a 

kinetic radioligand binding assay,19 surface plasmon resonance (SPR),20 “two-step” 

competition binding assay,21 and “Tag-lite” Cisbio22]. Most of these assays require special 

modifications of the target protein or the ligand. Therefore, we chose to use the competition 

association assay, as this assay allowed us to determine the kinetics of unlabeled ligands to 

the receptor expressed in membrane preparations. In our hands this is the most robust and 

accurate assay in order to measure kinetics of unlabeled ligands. 
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Validation of the [3H]INCB3344 Competition Association Assay for CCR2 

A competition association assay was set up to determine the kinetic parameters of unlabeled 

ligands.23 For this assay we used the radiolabeled small molecule CCR2 antagonist 

[3H]INCB334424 instead of the endogenous agonist protein radioligand 125I-CCL2. Because of 

the large size of CCL2 (8600 Da) there is at best only a partial overlap in binding site with small 

molecule antagonists. Because the theoretical model of the competition association assay is 

based on the assumption that unlabeled and radiolabeled ligands should compete for the 

same binding site, we decided to use [
3
H]INCB3344 in our assay. This radioligand bears 

considerable chemical resemblance to the compounds reported in this study. We first 

validated this method by measuring the competition association of [3H]INCB3344 in the 

absence and presence of three different concentrations of INCB3344 (1-, 3- and 10-fold its Ki) 

(Figure 3).  
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Figure 3. Competition association assay with [3H]INCB3344 at 25 oC in the absence or presence of 1.1, 
3.7 and 11 nM of unlabeled INCB3344. 

This resulted in a kon and koff values for unlabeled INCB3344 of 0.035 ± 0.010 nM–1 ·minz–1 and 

0.024 ± 0.002 min–1, respectively, at 25 °C (Table 1). The corresponding residence time was 43 

± 2 min. These results were in good agreement with kon and koff values of [
3
H]INCB3344 

binding from ‘traditional’ association and dissociation experiments, 0.054 ± 0.002 nM
-1 

min
-1

 

and 0.013 ± 0.002 respectively
17

 (Table 1).  
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Table 1. Comparison of equilibrium binding and kinetic parameters of INCB3344 determined using 
different methods.  

Assay KD/Ki (nM) kon (nM
-1

 min
-1

) koff (min
-1

) 
Saturation bindinga 0.90 ± 0.03 NA NA 

Displacementb 1.2 ± 0.1 NA NA 

Association and dissociationc 0.23 ± 0.04 0.054 ± 0.002 0.013 ± 0.002 

Competition associationd 0.72 ± 0.19 0.035 ± 0.010 0.024 ± 0.002 
Data are presented as means ± S.E.M. of three independent experiments performed in duplicate.  
NA, not applicable  
a
Saturation binding of 1- 45 nM [

3
H]INCB3344 to CCR2 at 25°C 

b
Displacement of 3.5 nM [

3
H]INCB3344 from CCR2 at 25°C 

c
Association and dissociation of [

3
H]INCB3344 measured in standard kinetic assays at 25°C  

d
Association and dissociation of INCB3344 measured in competition association assays at 25°C  

Screening of CCR2 Antagonists Using the Dual-Point Competition Association Assay 

The competition association assay described above is laborious and time consuming, and 

hence we developed a so-called dual point competition association assay for CCR2, according 

to principles we recently established for the adenosine A1 receptor.25 To this end we co-

incubated [3H]INCB3344 with unlabeled antagonists at a concentration equal to their Ki value 

that was determined in the 125I-CCL2 displacement assay. The so-called kinetic rate index (KRI) 

was calculated by dividing the specific radioligand binding at 50 min (t1) by the binding at 240 

min. (t2). In this assay antagonists with a slower dissociation rate, and therefore a longer 

residence time than [3H]INCB3344 would result in a KRI > 1 (Figure 4). 

 
Figure 4. Representative competition association assay curves of control and long residence time 
compound 22a. Bt1: specific radioligand binding at the first time point (t1 = 50 min); Bt2: specific 
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radioligand binding at the second time point (t2 = 240 min). Kinetic rate index (KRI) is defined as Bt1/Bt2, 
which equaled to 1.2 for compound 22a. 

Structure – Affinity Relationships Vs Structure – Residence Time Relationships 

The 3-amino-1-isopropylcyclopentanecarboxamide scaffold has been extensively evaluated 

based on binding affinities for CCR2 and selectivity against other chemokine receptors and 

the hERG channel.
15,26,27

 Therefore, we decided to resynthesize several reported derivatives of 

compound 115,28 and determined their binding affinity in radioligand displacement assays 

(Table 2). Introduction of benzyl group yielded compound 7 with affinity of 437nM. When the 

spacer length between phenyl ring and basic nitrogen was extended to ethyl, binding was 

almost lost (compound 8 Ki = 2400 nM). Prolonging the chain to propyl allowed us to regain 

affinity (compound 9 Ki = 134 nM). Combining the knowledge of compounds 7 and 9 in one 

structure yielded the indane derivative compound 2 with even more improved affinity (Ki = 50 

nM). Expanding the ring system to tetrahydronaphthalene resulted in additional increase in 

affinity (compound 10, Ki = 33 nM). Removal of aromatics yielded compound 11 with 

cyclohexane ring which showed decrease in affinity (Ki = 110 nM), but incorporation of 

heteroatoms in 4- position regained affinity (compound 1 and 12, Ki = 6.8 nM and Ki = 31 nM, 

respectively) as it was described by Kothandaraman et al.15 Based on affinity alone, 

compound 1 would be the logical choice for lead optimization which yielded the clinical 

candidate MK-0812 in the case of the Merck research group.10 However, the kinetic 

evaluation of these known structures in a competition association assay allowed us to utilize 

an additional parameter – residence time (RT). In this assay the best affinity compound 1 had 

a RT of 2.4 min, while compound 2 had a 4-fold longer RT of 9.5 min (Table 2). Structurally 

closely related compound 10 had a RT of 5.6 min, which convinced us to continue with 

compounds 2 and 10, as they had longer RT.  

Table 2. Binding affinities and residence time (RT) of compounds 1, 2, 7 – 12. 
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Nr. R Ki (nM) ± SEM 

(n=3) 
RT (min) 

1 

 

6.8 ± 2.2 2.4 ± 0.2 

2 

 

50 ± 8 9.5 ± 1.5 

7 

 

437 ± 62 - 

8 

 

2400 ± 900 - 

9 

 

134 ± 35 - 

10 

 

33 ± 2 5.6 ± 0.5 

11 

 

110 ± 13 1.9 ± 0.4 

12 

 

31 ± 9 4.3 ± 1.4 

Using a number of commercially available indanones we introduced different substituents on 

the indane ring (Table 3) to cover chemical space as broadly as possible. The SAR exploration 

on the 4- position showed that H-bond accepting and hydrophilic groups are tolerated. The 4-

NH2 group led to a minor increase (compound 13, Ki = 43 nM), but 4-OH and 4-CN groups 

showed a decrease in affinity (compound 14, Ki = 86 nM and compound 15, Ki = 70 nM). 4-Me 

(compound 16) and 4-MeO (compound 17) were not tolerated on this position (26% and 30% 
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displacement at 1 µM, respectively). On the 5- position methoxy and hydroxyl groups 

improved the affinity, which had also been suggested for other CCR2 antagonists.
27,29

 The 

methoxy group (compound 18) showed an 8 fold increase in affinity (6.1 nM) while the 

hydroxyl group (compound 19) displayed a less than 2-fold increase compared to the 

unsubstituted indenyl derivative (29 nM and 50 nM, respectively). On the contrary, the 

introduction of fluorine, which was previously reported as best substituent in arylpiperidine 

analogs by Pasternak et al,
27

 resulted in a dramatic decrease in affinity in case of the indenyl 

derivative (compound 20, 30% displacement at 1 µM). 5-Cl substitution yielded better affinity 

than 5-F (compound 21, 18 nM) and 5-Br was better than 5-Cl (compound 22, 7.2 nM). 6-Cl 

(compound 23) led to a dramatic decrease in affinity (28% displacement at 1µM). However, 6-

Me and 6-CN groups were tolerated having similar affinities to unsubstituted indane ring 

(compound 24, Ki = 55 nM and compound 25, Ki = 54 nM). 

Table 3. Binding affinities and Kinetic rate index (KRI) of indenyl derivatives 2 and 13 – 28. 

 
Nr. R Ki (nM) ± SEM (n=3)  KRI (n=2) 
2 H 50 ± 8 0.7 (0.7/0.7) 

13 4-NH2 43 ± 7 0.8 (0.7/0.8) 

14 4-OH 86 ± 8 0.6 (0.5/0.8) 

15 4-CN 70 ± 11 0.8 (0.7/0.8) 

16 4-Me 26 %a - 

17 4-OMe 30 %a - 

18 5-OMe 6.1 ± 0.7 0.6 (0.6/0.6) 
19 5-OH 29 ± 2 0.7 (0.7/0.8) 

20 5-F 30 %a - 

21 5-Cl 18 ± 1 1.1 (1.1/1.2) 

22 5-Br 7.2 ± 0.5 1.1 (1.0/1.1) 

23 6-Cl 28 %a - 

4 6-Me 55 ± 2 0.8 (0.8/0.8) 

25 6-CN 54 ± 4 0.6 (0.6/0.6) 
26 4;5-di OMe 130 ± 6 - 

27 5;6-di OMe 3.9 ± 0.3 0.7 (0.7/0.7) 

28 5;6-(-OCH2O-) 6.3 ± 0.8 0.6 (0.6/0.7) 
a
% displ. at 1µM 

125
I-CCL2 
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We continued the investigation with the analysis of disubstitution, learning that the 

combination of 4,5- substitution resulted in more than 2-fold decrease in affinity (compound 

26, Ki = 130 nM). On the contrary, the 5,6-dimethoxy group yielded compound 27 with a high 

affinity of 3.9 nM. Connecting the dimethoxy groups into a dioxolane ring yielded a small 

decrease in affinity (compound 28, Ki = 6.3 nM).  

Using the knowledge of the best position for substitution we continued the investigation on 

the 1,2,3,4-tetrahydronaphthalene ring by introducing substituents on the 5-position (Table 

4). Electron donating groups showed very similar results to what we found for the indenyl 

moiety. Compounds 29 and 30 showed good affinity (27 nM and 35 nM, respectively), while 

electron withdrawing groups showed a decrease or complete lack of affinity (compounds 31 

and 32).  

After SAR evaluation, the higher affinity compounds were screened in our kinetic assay to 

determine their KRI value (Guo et al.25, see also Figure 2). A KRI value < 1 indicates that the 

residence time of a tested compound is shorter than the residence time of the radioligand 

(less than 43 min in this particular case). A KRI value > 1 reflects a residence time of more 

than 43 min. 
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Table 4. Binding affinities and Kinetic rate index (KRI) of tetrahydronaphthalene derivatives 10 and 29 – 
32. 

 
Nr. R Ki (nM) ± SEM (n=3)  KRI 

10 H 33 ± 2 0.6 (0.6/0.5) 

29 5-OMe 27 ± 1 0.7 (0.7/0.8) 

30 5-OH 35 ± 2 0.8 (0.7/0.8) 
31 5-Br 48%

a
 - 

32 5-COOH 0%
a
 - 

a
% displ. at 1µM 

125
I-CCL2 

Compound 2 in the screen showed a KRI value of 0.7 (RT = 9.5 min). However, compounds 21 

and 22 had higher KRI values (1.1 for both compounds). These compounds were tested in a 

full competition association assay to determine their association and dissociation rate 

constant (Table 5). Increasing the size of the substituent – change from 5-Cl to 5-Br 

(compound 21 Vs compound 22) also yielded longer residence times (56 min and 94 min, 

respectively). Compound 22 was separated in two diastereomers by preparative supercritical 

fluid chromatography (SFC) using Phenomenex Lux-4 column (Phenomenex Inc.). The first 

compound to elute (22a) had an affinity of 3.6 nM. However, the second compound (22b) to 

elute had a 100-fold decreased affinity (Ki = 289 nM). These separated diastereomers had 

very similar koff rates (Table 5) which translated in similar residence times (22a RT = 135 min 

and 22b RT = 77 min), but a significant difference was observed for their kon rates. Apparently, 

the stereochemistry of the indane ring system has a major impact on compound association 

rate to the receptor while the dissociation is not affected. 
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Table 5. Kinetic data of compounds 21, 22, 22a and 22b. 

 
Nr. R Ki (nM) ± SEM 

(n=3) 
kon (nM-1 min-1) koff (min-1) RT (min) 

21 5-Cl 18 ± 1 0.0027 ± 0.0006 0.020 ± 0.004 56 ± 14 

22 5-Br 7.2 ± 0.5 0.010 ± 0.002 0.011 ± 0.0002 94 ± 3 

22a 5-Br 3.6 ± 0.9  0.0053 ± 0.0007 0.0074 ± 0.0004 135 ± 8 

22b 5-Br 289 ± 94 0.00030 ± 0.00007 0.015 ± 0.004 77 ± 18 

CONCLUSIONS 

We have demonstrated that next to affinity, additional knowledge of residence time is useful 

for selecting and developing new CCR2 antagonists. The (1S, 3R)-N-(3,5-

bis(trifluoromethyl)benzyl)-3-((5-bromo-2,3-dihydro-1H-inden-1-yl)amino)-1-

isopropylcyclopentanecarboxamide (22a) had a RT of 135 min. In comparison to the best 

affinity compound from the first SAR screening, i.e. compound 1 (Table 1), 22a had a 56-fold 

increased residence time, while having similar affinity. This indicates that affinity and 

residence time do not correlate; moreover, while SAR driven hit-to-lead optimizations often 

fail in later stages of drug development due to lack of efficacy (e.g. MK-0812), it has been 

shown on other targets that residence time is linked to the duration of the in vivo antagonist 

effect.30-32 Compound 22a may thus be a useful tool to test whether prolonged blockade of 

CCR2 has a beneficial effect on CCR2 related disorders, such as neuropathic pain.  

EXPERIMENTAL SECTION 

Chemistry  
All solvents and reagents were purchased from commercial sources and were of analytical grade. 
Demineralised water is simply referred to as H2O, as it was used in all cases unless stated otherwise (i.e. 
brine). 1H and 13C NMR spectra were recorded on a Bruker AV 400 liquid spectrometer (1H NMR, 400 
MHz; 13C NMR, 100 MHz) or using a Bruker 500 MHz Avance III NMR spectrometer (compound 22a and 
22b) at ambient temperature. Chemical shifts are reported in parts per million (ppm), are designated by 
δ and are downfield to the internal standard tetramethylsilane (TMS). Coupling-constants are reported 
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in Hz and are designated as J. Analytical purity of the final compounds was determined by high-
performance liquid chromatography (HPLC) with a Phenomenex Gemini 3µm C18 110A column (50 x 4.6 
mm, 3 μm), measuring UV absorbance at 254 nm. Sample preparation and HPLC method for compounds 
1, 2, 7 – 9 and 11, 12 were as follows: 0.3-0.8 mg of compound was dissolved in 1 mL of a 1:1:1 mixture 
of CH3CN/H2O/t-BuOH and eluted from the column within 15 minutes at flow rate of 1.0 mL. Elution 
method was set up as follows: 1 – 4 min isocratic system of H2O/CH3CN/1% TFA in H2O, 80/10/10, from 
4th min a gradient was applied 80/10/10 to 0/90/10 within 9 min, followed by one minute of 
equilibration at 0/90/10 and one minute at 80/10/10. All compounds showed a single peak at the 
designated retention time and are at least 95% pure. High Resolution Mass spectral analyses (HRMS) 
were performed on LTQ-Orbitrap FTMS operated in a positive ionization mode with an ESI source. 
Mobile phase A: 0.1% formic acid in water. B: 0.08% formic acid in CH3CN. Gradient: 10% B to 80% B in 
26 min. Flow rate: 0.4 mL/min. Preparative HPLC`s (for compounds 10, 13 – 32) were performed on a 
Waters AutoPurification HPLC-UV system with a diode array detector using a Luna C18 Phenomenex 
column (75mm × 30mm, 5µm), and a linear gradient from 1 to 99% of mobile phase B was applied. 
Mobile phase A consisted of 5 mM HCl solution and mobile phase B consisted of acetonitrile. Flow rate 
was 50 mL/min. LC-MS analyses were performed using an Onyx C18 monolithic column (50mm × 
4.6mm, 5µm), and a linear gradient from 1 to 99% mobile phase B was applied. Mobile phase A 
consisted of 0.05% TFA in water and mobile phase B consisted of 0.035% TFA in acetonitrile. Flow rate 
was 12 mL/min. Separations of enantiomers were accomplished using chiral SFC. The column was 
Phenomenex Lux-4 (250 x 10 mm), 5 µm. The mobile phase condition of 10% MeOH with 20 mM NH3 
and 90% CO2 was applied at a flow rate of 10.0 mL/min. Thin-layer chromatography (TLC) was routinely 
consulted to monitor the progress of reactions, using aluminium-coated Merck silica gel F254 plates. 
Purification by column chromatography was achieved by use of Grace Davison Davisil silica column 
material (LC60A 30-200 micron). The procedure for a series of similar compounds is given as a general 
procedure for all within that series, annotated by the numbers of the compounds.  
Synthesis of (1S,3R)-methyl-3-((tert-butoxycarbonyl)amino)-1-isopropylcyclopentanecarboxylate (3) was 
achieved following the synthetic approach reported by Kothandaraman S. et al.15 
(1S,3R)-3-(tert-butoxycarbonylamino)-1-isopropylcyclopentanecarboxylic acid (4). A solution of ester 3 
(4.20 g, 14.72 mmol) in EtOH (30 mL) and 4 M aqueous lithium hydroxide (LiOHaq, 40 mL) was refluxed 
for 4 hours. After concentration in vacuum, the solution was acidified with aqueous hydrochloric acid 
and extracted with DCM/H2O. The organic layer was dried over MgSO4 and after concentration in 
vacuum, yielded the desired product as a yellow powder (3.62 g, 91%). 1H NMR (400 MHz, CDCl3): δ: 
10.75 (s, 1H), 6.53a (s, 0.5H), 5.05b (s, 0.5H), 3.98 – 3.78 (m, 1H), 2.25 – 1.50 (m, 7H), 1.40 (d, J = 16.8 Hz, 
9H), 0.86 (d, J = 6.8 Hz, 6H); 

13
C NMR (100 MHz, CDCl3): δ: 182.9

a
, 181.7

b
, 157.6

b
, 155.6

a
, 80.4

b
, 79.1

a
, 

56.9, 52.8b, 51.7a, 38.6b, 38.2a, 35.0b, 34.5a, 33.2a, 32.9b, 32.1a, 31.8b, 28.3, 18.7, 18.2b, 18.0a. a and b is 
indicated for different rotamers.  
Tert-butyl(3-((3,5-bis(trifluoromethyl)benzyl)carbamoyl)-3-isopropylcyclopentyl) carbamate (5). 
Compound 4 (1.53 g, 5.65 mmol) was dissolved in 50 ml DCM. To this mixture 3,5 bis(trifluoromethyl) 
benzylamine (1.89 g, 5.65 mmol) was added with DiPEA (2.95 mL, 16.9 mmol), PyBrOP (2.64 g, 5.65 
mmol) and DMAP (0.55 g, 4.5 mmol). The reaction mixture was stirred for 24 hours at room 
temperature. The product was extracted with DCM/citric acid solution in water and then with DCM/1M 
NaOH. The organic layer was dried with MgSO4 and evaporated. The product was purified by column 
chromatography (0-100% ethyl acetate in DCM) to give the product as a yellow oil (2.33 g, 83%). 1H NMR 
(400 MHz, CDCl3): δ: 7.69 (s, 3H), 7.25 (br.s, 1H), 5.17 (br.s, 1H), 4.51 – 4.49 (m, 2H), 3.81 (br.s, 1H), 1.99-
1.90 (m, 4H), 1.69-1.72 (m, 2H), 1.50-1.58 (m, 1H), 1.36 (s, 9H), 0.74-0.77 (m, 6 H). 13C NMR (100 MHz, 
CDCl3): δ: 178.6, 155.6, 142.1, 132.2, 131.8, 131.5, 131.2, 127.4, 127.3, 124.5, 121.8, 121.0, 119.1, 78.9, 
57.6, 51.6, 42.8, 36.3, 34.6, 33.3, 32.6, 28.2, 18.7, 17.5.  
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3-amino-N-(3,5-bis(trifluoromethyl)benzyl)-1-isopropylcyclopentanecarboxamide (6). Trifluoroacetic acid 
(20 mL) was added to a solution of compound 5 (2.33 g 4.6 mmol) in 50 mL DCM. The reaction mixture 
was stirred for 1 hour at room temperature. The reaction mixture was neutralized with 1M NaOH and 
extracted with DCM. The organic layer was dried with MgSO4, filtered and evaporated to give the 
product as a yellow crystals (1.55 g, 85%). 1H NMR (400 MHz, CDCl3): δ: 9.16 (br.s, 1H), 7.70-7.67 (m, 
3H), 4.50-4.39 (m, 2H), 3.61-3.60 (m, 1H), 2.22-2.15 (m, 1H), 2.02-1.95 (m, 1H), 1.85-1.64 (m, 3H), 1.42-
1.37 (m, 2H), 0.82-0.80 (m, 6H). 13C NMR (100 MHz, CDCl3): δ: 179.4, 142.5, 131.8, 131.5, 131.2, 130.9, 
127.3, 127.2 124.6, 121.9, 120.4, 119.2, 57.3, 52.2, 42.4, 39.7, 35.3, 33.9, 33.6, 18.8, 16.9.  
General procedure for the synthesis of compounds 1, 2, and 11, 12.  
Amine 6 was dissolved in 4 mL dichloroethane in a 5 mL reaction tube and the corresponding ketone (1 
eq.) was added. Sequentially acetic acid (1 eq.) and sodium triacetoxyborohoydride (1.5 eq.) were 
added. The reaction mixture was stirred for 18 hours at room temperature and then washed with 1M 
NaOH and H2O. The organic layer was dried with MgSO4, filtered and evaporated. The product was 
purified by column chromatography (0-100% ethyl acetate in DCM) to give the desired product. 
(1S,3R)-N-(3,5-bis(trifluoromethyl)benzyl)-1-isopropyl-3-((tetrahydro-2H-pyran-4-
yl)amino)cyclopentanecarboxamide (1). Yield = 21%. 1H NMR (400 MHz, CDCl3) δ: 9.16 (s, 1H), 7.76-7.73 
(m, 3H), 4.56-4.53 (m, 2H), 3.98-3.89 (m, 2H), 3.57-3.53 (m, 1H), 3.43-3.28 (m, 2H), 2.66-2.61 (m, 1H), 
2.36-2.30 (m, 1H), 2.03-1.80 (m, 2H), 1.78 – 1.6 (m, 5H), 1.49-1.40 (m, 1H), 1.31-1.20 (m, 3H), 0.93-0.89 
(m, 6H); 13C NMR (400 MHz, CDCl3) δ: 179.1, 142.4, 131.8, 131.54, 131.2, 130.9, 127.7, 127.3, 124.6, 
121.8, 121.0, 119.2, 66.9, 66.9, 57.5, 54.8, 51.9, 42.6, 37.1, 35.1, 34.3, 33.7, 33.6, 33.3, 19.5, 17.0; 
LC/MS: 481+; tR = 7.01 min 
(1S,3R)-N-(3,5-bis(trifluoromethyl)benzyl)-3-((2,3-dihydro-1H-inden-1-yl)amino)-1-
isopropylcyclopentanecarboxamide (2). Yield = 25% (mixture of diastereomers). 1H NMR (400 MHz, 
CDCl3) δ: 9.48 (s, 1H), 7.76-7.74 (m, 3H), 7.22 - 7.05 (m, 4H), 4.60-4.50 (m, 2H), 4.28-4.22 (m, 1H), 3.70-
3.60 (m, 1H), 3.00-2.90 (m, 1H), 2.87-2.78 (m, 1H), 2.70-2.34 (m, 3H), 2.1-1.53 (m, 6H), 0.93-0.89 (m, 
6H); 13C NMR (400 MHz, CDCl3) δ: 179.4, 144.5, 144.4, 144.6, 131.8, 131.5, 127.9, 127.6, 126.3, 126.2, 
125.0, 123.5, 123.5, 122.0 121.9, 61.3, 58.0, 56.6, 42.6, 37.2, 36.0, 34.5, 33.9, 33.7, 33.4, 19.6, 17.0; 
LC/MS: 513

+
; tR = 8.12 min 

(1S,3R)-N-(3,5-bis(trifluoromethyl)benzyl)-3-(cyclohexylamino)-1-isopropylcyclopentane-1-carboxamide 
(11). Yield = 76%. 1H NMR (400 MHz, CDCl3) δ: 9.77 (br.s, 1H), 7.73 (s, 3H), 4.58-4.43 (m, 2H), 3.53-3.50 
(m, 1H), 2.43-2.30 (m, 2H), 2.00-1.40 (m, 12H), 1.25-1.10 (m, 3H), 0.93-0.89 (m, 8H); 13C NMR (400 MHz, 
CDCl3) δ: 179.55, 142.64, 132.12, 131.79, 131.46, 131.13, 127.74, 127.63, 124.66, 121.95, 120.81, 
119.10, 57.30, 55.36, 54.48, 42.49, 36.95, 35.41, 34.12, 33.74, 33.37, 32.97, 25.83, 25.02, 19.48, 16.80; 
LC/MS: 479

+
; tR = 7.31 min. 

(1S,3R)-N-(3,5-bis(trifluoromethyl)benzyl)-1-isopropyl-3-((tetrahydro-2H-thiopyran-4-
yl)amino)cyclopentane-1-carboxamide (12). Yield = 86%. 1H NMR (400 MHz, CDCl3) δ: 9.12 (br.s, 1H), 
7.76 (s, 1H) 7.75 (s, 2H), 4.56-4.50 (m, 2H), 2.60-2.57 (m, 4H), 2.42-2.38 (m, 1H), 2.34-2.30 (m, 1H), 2.20-
1.70 (m, 7H), 1.48 – 1.27 (m, 4H), 0.93-0.89 (m, 6H); 13C NMR (400 MHz, CDCl3) δ: 179.08, 142.41, 
131.83, 131.54, 131.16, 130.86, 127.75, 127.31, 124.53, 121.94, 121.05, 119.22, 57.50, 54.85, 53.92, 
42.58, 37.28, 35.21, 35.08, 34.62, 33.53, 33.30, 27.93, 19.49, 17.01; LC/MS: 497

+
; tR = 7.51 min. 

General procedure for the synthesis of compounds 7 – 9. 
Amine 6 (1 eq.) was disolved in 4 mL of acetonitrile and coresponding alkylating agent (1.2 eq.) was 
added. Sequentually DiPEA (1.2 eq.) The reaction mixture was stirred in microwave for 2 hours at 60ºC 
and purified with column chromatography (60% ethylacetate, 20 % DCM, 20% petroleum ether and 0-
3% triethylamine in ethyl acetate). 
(1S,3R)-3-(benzylamino)-N-(3,5-bis(trifluoromethyl)benzyl)-1-isopropylcyclopentane-1-carboxamide (7). 
Yield = 27% (as HCl salt). 1H NMR (400 MHz, CDCl3) δ: 9.40 (br.s, 1H), 7.73 (s, 1H), 7.66 (s, 2H), 7.30 – 
7.24 (m, 3H), 7.16 – 7.13 (m, 2H), 4.44 (d, J = 4.8 Hz, 2H), 3.73 (d, J = 2.4 Hz, 2H), 3.46 – 3.41 (m, 1H), 
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2.41 – 2.33 (m, 1H), 2.02 – 1.90 (m, 4H), 1.85 – 1.78 (m, 2H), 1.59 – 1.52 (m, 1H), 0.91 (dd, J = 10.8 Hz, J2 
= 6.8 Hz, 6H). 13C NMR (100 MHz, CDCl3) δ: 179.4, 142.6, 139.0, 132.0, 131.7, 131.3, 131.0, 128.6, 127.8, 
127.5, 127.3, 124.6, 121.9, 120.8, 58.8, 58.7, 57.3, 51.9, 42.5, 35.3, 33.5, 33.1, 19.5, 16.9; LC-MS: 487

+
; 

tR: 7.40 min 
(1S,3R)-N-(3,5-bis(trifluoromethyl)benzyl)-1-isopropyl-3-(phenethylamino)cyclopentane-1-carboxamide 
(8). Yield = 14% (as HCl salt). 1H NMR (400 MHz, MeOD) δ: 8.01 – 7.84 (m, 3H), 7.43 – 7.23 (m, 5H), 
4.53(dd, J = 22.4 Hz, J2 = 15.2 Hz, 2H), 3.70 – 3.59 (m, 1H), 3.28 – 3.15 (m, 2H), 3.06 – 2.94 (m, 2H), 2.30 – 
1.97 (m, 5H), 1.97 – 1.79 (m, 1H), 1.60 – 1.46 (m, 1H), 0.90 (dd, J = 29.0, J2 = 6.7 Hz, 6H); 13C NMR (101 
MHz, MeOD) δ: 178.60, 142.70, 136.26, 131.49, 131.16, 131.06, 130.66, 128.80, 128.64, 128.40, 127.96, 
127.88, 127.28, 126.92, 124,57, 121.86, 120.47, 118.59, 58.13, 57.98, 48.24, 48.03, 47.82, 47.60, 47.39, 
47.18, 46.97, 42.32, 32.82, 32.44, 32.20, 32.03, 28.94, 17.83, 16.32; LC/MS: 501+; tR = 6.51 min. 
(1S,3R)-N-(3,5-bis(trifluoromethyl)benzyl)-1-isopropyl-3-((3-phenylpropyl)amino)cyclopentane-1-
carboxamide (9). Yield = 54% (as HCl salt). 1H NMR (400 MHz, CDCl3) δ: 9.49 (br.s, 1H), 7.75 (s, 3H), 7.28 
(t, J = 7.6 Hz, 2H), 7.20 (t, J = 7,6 Hz, 1H), 7.08 (d, J = 7,6Hz, 2H), 4.56 – 4.45 (m, 2H), 3.33 – 3.27 (m, 1H), 
2.6 – 2.54 (m, 4H), 2.39 – 2.32 (m, 1H), 2.00 – 1.45 (m, 10H), 0.91 (dd, J = 10.8 Hz, J2 = 6.8 Hz, 6H). 13C 
NMR (100 MHz, CDCl3) δ: 179.4, 142.5, 141.4, 132.0, 131.7, 131.4, 131.1, 128.3, 128.1, 127.4, 125.9, 
124.6, 121.9, 120.7, 59.1, 57.2, 47.5, 42.5, 36.2, 35.2, 33.5, 33.4, 31.6, 19.4, 16.8; LC/MS: 515+; tR = 7.94 
min. 
General procedure for the synthesis of compounds 10 and 13 – 32. 
To a series of 1.5 mL glass tubes was added amine 6 in N-methyl-2-pyrrolidone (NMP) (0.95 M, 0.095 
mmol) followed by solutions of different ketones (0.5 M, 0.1 mmol) in NMP and these mixtures were 
subsequently treated with acetic acid (0.1 mmol) followed by 5-ethyl-2-methyl-pyridine borane (PEMB) 
(0.2 mmol). The reaction mixture was heated at 65 °C on a reaction block for 24 h. The reaction mixtures 
were purified directly using an automated mass-guided reverse phase-HPLC, and product containing 
fractions were concentrated to give final products >90% purity as judged by LC-MS (average of 220 nm 
and 254 nm traces). 
Purity, M+ and retention times of compounds 10, 13 – 32. 

Nr. R % Purity (Average of 220 and 
254 nm) 

Mol 
wt  

M+ Retention 
time (min) 

10 H 95.8 526.6 527.3 1.79 

13 4-NH2 99.7 527.5 528.3 1.48 

14 4-OH 97.4 528.5 529.2 1.64 

15 4-CN 96.4 537.2 538.2 1.69 

16 4-Me 90.4 526.6 527.3 1.81 

17 4-OMe 90.9 542.6 543.2 1.79 
18 5-OMe 95.8 542.6 543.2 1.77 

19 5-OH 95.1 528.5 529.2 1.71 

20 5-F 93.4 530.5 531.3 1.79 

21 5-Cl 94.9 546.9 547.0 1.85 

22 5-Br 92.0 591.4 591.0 1.80 

22a 5-Br 99.5 (99.0% de) 591.4 591.3 1.83 

22b 5-Br 98.5 (96.9% de) 591.4 591.3 1.87 

23 6-CN 97.1 537.5 538.2 1.71 

24 6-Me 93.3 526.6 527.3 1.76 
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25 6-Cl 95.2 546.9 547.0 1.83 

26 4;5-di OMe 94.6 572.6 573.2 1.67 

27 5;6-di OMe 97.2 572.6 573.2 1.64 

28 5;6-(-OCH2O-) 94.8 556.5 557.2 1.68 

29 5-OMe 95.7 556.6 557.2 1.78 

30 5-OH 93.1 542.6 543.1 1.68 

31 5-Br 90.6 605.5 605.1 1.90 

32 5-COOH 94.7 570.6 571.2 1.65 

(1R,3S)-N-[[3,5-bis(trifluoromethyl)phenyl]methyl]-3-[(5-bromoindan-1-yl)amino]-1-isopropyl-
cyclopentanecarboxamide (22a) 

 
1H NMR (500 MHz, DMSO-d6) δ: 8.56 (t, J = 6.0 Hz, 1H), 7.94 (d, J = 4.5 Hz, 3H), 7.38 (d, J = 1.9 Hz, 1H), 
7.26 (dd, J = 8.0, 1.9 Hz, 1H), 7.12 (d, J = 8.0 Hz, 1H), 4.50 (dd, J = 15.6, 5.9 Hz, 1H), 4.43 (dd, J = 15.6, 5.9 
Hz, 1H), 4.03 (t, J = 6.9 Hz, 1H), 3.19 (q, J = 6.7 Hz, 1H), 2.88 (ddd, J = 16.1, 8.4, 4.3 Hz, 1H), 2.69 (dt, J = 
15.9, 7.9 Hz, 1H), 2.29 (m, 1H), 2.13 (ddd, J = 13.1, 7.3, 4.1 Hz, 1H), 2.12 (m, 1H), 1.87 (m, 2H), 1.81 (dtd, 
J = 10.4, 6.8, 3.9 Hz, 1H), 1.66 (dq, J = 12.3, 7.8 Hz, 1H), 1.64 (dq, J = 12.3, 7.8 Hz, 1H), 1.32 (m, 1H), 0.80 
(d, J = 6.1 Hz, 3H), 0.76 (d, J = 6.1 Hz, 3H). 
19F NMR (376 MHz, CDCl3) δ: -62.87. 
13C NMR (125 MHz, DMSO-d6) δ: 177.97, 146.42, 145.85, 144.56, 130.77 (d, JC-F = 32.6 Hz), 130.25 (d, JC-F 
= 32.6 Hz), 129.06, 128.36, 128.36, 127.74, 126.32, 123.77 (q, JC-F = 222.65 Hz), 123.77 (q, JC-F = 222.65 
Hz), 120.72, 120.32, 60.93, 57.27, 56.97, 42.63, 40.13, 34.53, 33.13, 32.90, 30.82, 30.17, 18.83, 18.32. 
HRMS calc. for (C27H29BrF6N2O) [M + H]+ 591.1440, found 591.1444. 

SFC chiral purity: 99.5 (99.0% de), [α]D 
20 = + 12.2 (c = 0.23, CHCl3). 

(1R,3S)-N-[[3,5-bis(trifluoromethyl)phenyl]methyl]-3-[(5-bromoindan-1-yl)amino]-1-isopropyl-
cyclopentanecarboxamide (22b) 

 
1H NMR (500 MHz, DMSO-d6) δ: 8.56 (t, J = 6.0 Hz, 1H), 7.94 (bs, 2H), 7.92 (bs, 1H), 7.38 (d, J = 1.9 Hz, 
1H), 7.26 (dd, J = 8.0, 1.9 Hz, 1H), 7.12 (d, J = 8.0 Hz, 1H), 4.50 (dd, J = 15.6, 5.9 Hz, 1H), 4.43 (dd, J = 15.6, 
5.9 Hz, 1H), 4.13 (t, J = 6.9 Hz, 1H), 3.19 (q, J = 6.7 Hz, 1H), 2.88 (ddd, J = 16.1, 8.4, 4.3 Hz, 1H), 2.69 (dt, J 
= 15.9, 7.9 Hz, 1H), 2.29 (m, 1H), 2.13 (ddd, J = 13.1, 7.3, 4.1 Hz, 1H), 2.12 (m, 1H), 1.82 - 2.00 (m, 2H), 
1.81 (dtd, J = 10.4, 6.8, 3.9 Hz, 1H), 1.66 (dq, J = 12.3, 7.8 Hz, 1H), 1.64 (dq, J = 12.3, 7.8 Hz, 1H), 1.32 (m, 
1H), 0.80 (d, J = 6.1 Hz, 3H), 0.76 (d, J = 6.1 Hz, 3H). 
19F NMR (376 MHz, CDCl3) δ: -62.89. 
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13C NMR (125 MHz, DMSO-d6) δ: 177.97, 146.42, 144.56, 144.50, 130.77 (d, JC-F = 32.6 Hz), 130.25 (d, JC-F 
= 32.6 Hz), 129.06, 128.36, 128.36, 127.74, 126.32, 123.77 (q, JC-F = 222.65 Hz), 123.77 (q, JC-F = 222.65 
Hz), 120.72, 120.32, 60.93, 57.27, 56.97, 42.63, 38.42, 34.53, 33.13, 32.90, 30.82, 30.17, 18.83, 18.32. 
HRMS calc. for (C27H29BrF6N2O) [M + H]+ 591.1440, found 591.1437 

SFC chiral purity: 98.5 (96.9% de), [α]D
20 = - 31.2 (c = 0.17, CHCl3). 

Biology 
Chemicals and reagents. 125I-CCL2 (2200 Ci/mmol) was purchased from Perkin-Elmer (Waltham, MA). 
INCB3344 was synthesized as described previously.

33, 34
 [

3
H]INCB3344 (specific activity 32Ci mmol

-1
) was 

custom-labeled by Vitrax (Placentia, CA) for which a dehydrogenated precursor of INCB3344 was 
provided. TangoTM CCR2-bla U2OS cells stably expressing human CCR2 were obtained from Invitrogen 
(Carlsbad, CA).  
Cell culture and membrane preparation. U2OS cells stably expressing the human CCR2 receptor 
(Invitrogen, Carlsbad, CA) were cultured in McCoys5a medium supplemented with 10% fetal calf serum, 
2 mM glutamine, 0.1 mM non-essential amino acids (NEAA), 25 mM HEPES, 1 mM sodium pyruvate, 100 
IU/ml penicillin, 100 µg/ml streptomycin, 100 µg/ml G418, 50 µg/ml hygromycin and 125 µg/ml zeocin 
in a humidified atmosphere at 37°C and 5% CO2. Cell culture and membrane preparation were 
performed as described previously.18  
125I-CCL2 displacement assay. Binding assays were performed as described previously.18  
[3H]INCB3344 competition association assay. The kinetic parameters of unlabelled ligands at 25ºC were 
determined using the competition association assay described by Motulsky and Mahan.23 At different 
time points 10 µg U2OS-CCR2 membranes were added to 1.8 nM [3H]INCB3344 in a total volume of 100 
µL assay buffer in the absence or presence of competing ligand. To validate the assay three 
concentrations of INCB3344 (1-, 3- and 10-fold its Ki value of [3H]INCB3344 displacement) were used. 
This validation showed that using a single concentration (that equals the Ki) of unlabeled ligand was 
sufficient to accurately measure kon and koff. Incubation was terminated by dilution with ice-cold 50 mM 
Tris-HCl buffer supplemented with 0.05% CHAPS. Separation of bound from free radioligand was 
performed by rapid filtration through a 96-well GF/B filter plate pre-coated with 0.25% PEI using a 
Perkin Elmer Filtermate-harvester (Perkin Elmer, Groningen, the Netherlands). Filters were washed ten 
times with ice-cold wash buffer. 25 μL of Microscint scintillation cocktail (Perkin-Elmer, Waltham, MA) 
was added to each well and the filter-bound radioactivity was determined by scintillation spectrometry 
using the P-E 1450 Microbeta Wallac Trilux scintillation counter (Perkin Elmer). Kinetic parameters of 
unlabeled ligands were calculated by using equation (3) as mentioned below in “Data analysis”. 
[3H]INCB3344 dual point competition association assay. Kinetic rate index (KRI) values of unlabeled 
ligands were determined using the dual-point competition association assay as described previously, in 
which radioligand binding was determined at two different time points.25 Time point t1 represents the 
time at which radioligand binding reached 99.5% of total binding at equilibrium, 
t1 = 8 · t1/2,association. (1) 
The second time point (t2) was arbitrarily set at 4 hrs where little, but reliably measureable, specific 
binding remained. 10 μg of U2OS-CCR2 membranes were incubated for 50 min (t1) or 240 min (t2) in a 
total volume of 100 μL of assay buffer with 1.8 nM [3H]INCB3344 in the absence or presence of 
unlabeled ligands at 25ºC. The amount of radioligand bound to the receptor was measured after co-
incubation of the unlabeled ligands at 1-fold their respective Ki value in the 125I-CCL2 displacement 
assay. Incubations were terminated and samples were obtained as described under “competition 
association assay”. KRI values of unlabeled ligands were calculated by using equation (2) as mentioned 
below in “data analysis”. 

file:///I:/Documents/Dokumenti/Darbs/PhD/My%20theses_MV/For%20reading%20commite/Chapter%203/Chapter%203.docx%23_ENREF_28
file:///I:/Documents/Dokumenti/Darbs/PhD/My%20theses_MV/For%20reading%20commite/Chapter%203/Chapter%203.docx%23_ENREF_17
file:///I:/Documents/Dokumenti/Darbs/PhD/My%20theses_MV/For%20reading%20commite/Chapter%203/Chapter%203.docx%23_ENREF_17
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Data analysis. All experiments were analyzed using the non-linear regression curve fitting program 
Prism 5 (GraphPad, San Diego, CA, U.S.A.). For radioligand displacement data Ki values were calculated 
from IC50 values using the Cheng and Prusoff equation.

35
  

Data of the dual point competition association assay was analyzed as described previously.25  
KRI values were calculated by dividing the specific radioligand binding measured at t1 (Bt1) by its binding 
at t2 (Bt2) in the presence of unlabeled competing ligand as follows: 
KRI = Bt1/ Bt2.  (2) 
Association and dissociation rates for unlabeled ligands were determined by non-linear regression 
analysis of the competition association data as described by Motulsky and Mahan:23 
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 (3) 

where X is the time (min), Y is the specific binding (DPM), k1 the kon (M-1·min-1) of [3H]INCB3344 
predetermined in association experiments, k2 the koff (min-1) of [3H] INCB3344 predetermined in 
dissociation experiments, L the concentration of [3H]INCB3344 used (nM), Bmax the total binding (DPM) 
and I the concentration of unlabeled ligand (nM). Fixing these parameters into equation (3) allows the 
following parameters to be calculated: k3 is the kon (M-1·min-1) of the unlabeled ligand and k4 is the koff 
(min-1) of the unlabeled ligand. The association and dissociation rates were used to calculate the ‘kinetic 
KD’ as follows: 
KD = koff / kon (4) 
The residence time was calculated according to the formula RT = 1/koff . 

Abbreviations 
Boc, tert-Butyloxycarbonyl; CCL2, chemokine ligand 2; CCR2, chemokine receptor 2; CHAPS, 3-[(3-
cholamidopropyl)dimethylammonio]-1-propanesulfonate; DCM, dichloromethane; DiPEA, N,N-
Diisopropylethylamine; DMAP, N,N-Dimethylaminopyridine; DPM, disintegrations per minute; HEPES, 4-
(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid; hERG, human Ether-à-go-go-Related Gene; HPLC, 
High-performance liquid chromatography; HRMS, High Resolution Mass spectral analyses; KRI, kinetic 
rate index NEAA, non-essential amino acids; NMP, N-methylpyrrolidone; NMR, Nuclear magnetic 
resonance; PEI, Polyethylenimine; PyBrOP, Bromo-tris-pyrrolidino phosphoniumhexafluorophosphate; 
RT, residence time; SAR, structure-affinity relationships; SFC, SKR, structure-kinetic relationships; TFA, 
trifluoroacetic acid; TLC, thin layer chromatography; Tris, tris(hydroxymethyl)aminomethane; U2OS, 
Human Bone Osteosarcoma Cells. 
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ABSTRACT 

Chemokine ligand 2 (CCL2) mediates chemotaxis of monocytes to inflammatory sites via 

interaction with its G protein–coupled receptor CCR2. Preclinical animal models suggest that 

the CCL2-CCR2 axis has a critical role in the development and maintenance of inflammatory 

disease states (e.g., multiple sclerosis, atherosclerosis, insulin resistance, restenosis, and 

neuropathic pain), which can be treated through inhibition of the CCR2 receptor. However, in 

clinical trials high-affinity inhibitors of CCR2 have often demonstrated a lack of efficacy. We 

have previously described a new approach for the design of high–affinity CCR2 antagonists, by 

taking their residence time (RT) on the receptor into account. Here, we report our findings on 

both structure–affinity relationship (SAR) and structure–kinetic relationship (SKR) studies for 

a series of 3-((inden-1-yl)amino)-1-isopropyl-cyclopentane-1-carboxamides as CCR2 

antagonists. SAR studies showed that this class of compounds tolerates a vast diversity of 

substituents on the indenyl ring with only small changes in affinity. However, the SKR is 

affected greatly by minor modifications of the structure. The combination of SAR and SKR in 

the hit-to-lead process resulted in the discovery of a new high–affinity and long–residence–

time CCR2 antagonist (compound 15a, Ki = 2.4 nM; RT = 714 min). 
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INTRODUCTION 

Chemokines are a class of endogenous pro-inflammatory proteins that act through activation 

and recruitment of leukocytes and other cell types in a range of inflammatory and non-

inflammatory conditions. However, inappropriate overexpression of such proteins is 

implicated in a variety of disease conditions.
1
 Both C-C Chemokine Ligand 2 (CCL2) and its 

cognate receptor C-C Chemokine Receptor 2 (CCR2) are involved in various autoimmune or 

inflammation-associated diseases. Blockade of the CCL2-CCR2 axis via either genetic or 

pharmacologic intervention has proven efficacious in animal models of multiple sclerosis, 

atherosclerosis, insulin resistance, restenosis, and neuropathic pain.
2-4

  

Fuelled by such promising preclinical data, there has been an increasing interest in advancing 

antagonists of CCR2 into clinical trials. However, till now all small molecules tested have failed 

in clinical trials because of lack of efficacy, e.g., MK-0812 (orthosteric CCR2 antagonist for the 

treatment of rheumatoid arthritis and multiple sclerosis)5 and AZD-2423 (potent, orally 

bioavailable, non-competitive, negative allosteric modulator of the CCR2 chemokine receptor 

for treatment of neuropathic pain).6 A humanized anti-CCR2 antibody (MLN-1202) did not 

show efficacy either in patients with rheumatoid arthritis and multiple sclerosis.7 However, 

administration of the antibody reduced the numbers of circulating monocytes in peripheral 

blood.8 Moreover, a study of MNL-1202 in patients with risk factors for atherosclerosis 

demonstrated that treatment was able to reduce C–reactive protein levels.9 This shows that 

CCR2 antagonism can have important biological effects in humans.  

Apparently, to be efficacious in treatment of CCR2–related diseases, high–affinity antagonism 

is not enough. Moreover, blockade of CCR2 can cause an increase in endogenous CCL2 levels8 

which will compete again with the administered drug. To be able to withstand this increasing 

concentration of endogenous ligand, the drug should be slowly dissociating.  

Previously we reported that by using an additional parameter in drug design, the so-called 

residence time (RT) on the receptor, we generated high–affinity and longer–residence–time 

CCR2 antagonists based on a (1S,3R)-3-amino-N-(3,5-bis(trifluoromethyl)benzyl)-1-
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isopropylcyclopentane-1-carboxamide scaffold.10 We explored different substituents and ring 

systems on the 3-amino group of the scaffold and observed that the longest residence time 

was found with an indane ring system. Although potent and long–residence–time compounds 

were identified in that study, we now sought to prolong the RT and define more detailed 

structure–kinetics relationships for the CCR2 receptor. In the present study we evaluated 

different amide groups for the 3-((inden-1-yl)amino)-1-isopropyl-cyclopentane-1-carboxamide 

scaffold based on their RT and explored a broad chemical space around the indane ring 

system to define the SAR and SKR for 3-((inden-1-yl)amino)-1-isopropyl-cyclopentane-1-

carboxamides as CCR2 antagonists.  

RESULTS AND DISCUSSION 

Chemistry  

The synthesis of N-(3,5-bis(trifluoromethyl)benzyl)-3-((2,3-dihydro-1H-inden-1-yl)amino)-1-

isopropylcyclopentane-1-carboxamide 1 and (1S,3R)-3-((tert-butoxycarbonyl)amino)-1-

isopropylcyclopentane-1-carboxylic acid 2 was achieved following the approach reported 

earlier by our group.10 From acid 2 and 1-(4-(trifluoromethyl)pyridin-2-yl)piperazine or 7-

(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline hydrochloride via a peptide coupling reaction 

were generated amides 3 and 4 under bromo-tris-pyrrolidino 

phosphoniumhexafluorophosphate (PyBroP) conditions.
11
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Scheme 1.a 

 
a
Reagents and conditions: a) 1-(4-(trifluoromethyl)pyridin-2-yl)piperazine or 7-(trifluoromethyl)-1,2,3,4-

tetrahydroisoquinoline hydrochloride, PyBrOP, DIPEA, DMAP, DCM, room temperature, 24 h, 82 - 90%; b) TFA, DCM, 
room temperature, 1 h, 90 - 98%; c) for array synthesis – corresponding indanone (1.05 equiv), 5-ethyl-2-
methylpyridine borane (PEMB) (2.1 equiv), AcOH (1.05 equiv), NMP, 65 

o
C, 24 h, (compounds 7; 9 – 13 and 17 – 22); 

d) i) corresponding indanone (1,1 eq.), Ti(O-i-Pr)4 (3 eq.), THF, 48 h, ii) NaBH4, EtOH 16 h, room temperature, 8 – 41% 
(compounds 8; 14 – 16 and 36 – 40); e) array synthesis - compound 15, corresponding aryl boronic acid, Na2CO3, 
Pd(PPh3)4, toluene/NMP/H2O, 80°C, 24 h, (compounds 23–35). 

Subsequently, a solution of TFA in DCM (1:1) was used to remove the N-Boc protecting group 

which yielded amines 5 and 6. Compounds 7, 9 – 13 and 17a – 22 were generated from 

amines 5 and 6 using an array of different indanones with the 5-ethyl-2-methylpyridine 

borane complex (PEMB) under conditions reported by Burkhardt and Coleridge (Scheme 1).
12

 

In the case of the 5-CF3 derivative (compound 17) diastereomers were separated during the 

purification, however, only the first diastereomer to elute (17a) had a sufficient purity to be 

tested in bioassays. Compounds 8, 14 – 16 and 36 – 40 were synthesized from 6 in a Ti(Oi-Pr)4 

promoted reductive amination reaction with different indanones. Compounds 23 – 35 were 

synthesized via Suzuki–coupling of compound 15 with the corresponding arylboronic acids.  

The synthesis of 3-Me; 5-Br indanone 42 was achieved by intramolecular cyclization of 

commercially available 1-(4-bromophenyl)-4-chlorobutan-1-one 41 following a procedure 

reported in patent literature (Scheme 2).13 
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Scheme 2.a 

 
a
Reagents and conditions: a) i) NaCl, AlCl3, melt at 130 °C, ii) 4`-bromo-4-chloro-butyrophenone, 180 °C, 30 min, 91%. 

The 3-alkyl; 5-Br; 6-OMe indanones were synthesized as shown in Scheme 3. The reaction of 

5-Br; 6-OMe indanone 43 with tert-butyldimethylchlorosilane and DBU in benzene gave ((6-

bromo-5-methoxy-1H-inden-3-yl)oxy)(tert-butyl)dimethylsilane (44). Deprotonation of 44 

with n-BuLi and reaction of the lithium salt with methyl iodide or ethyl iodide in THF and 

subsequent quenching of the reaction mixture with 12 M HCl resulted in 5-bromo-6-methoxy-

3-alkyl-indanones (45, 46). 

Scheme 3.a 

 
a
Reagents and conditions: a) TBDMS-Cl, DBU, 0 °C → room temperature, 99%; b) i)LDA, 1 h, –78 °C → –35 °C, → –78 

°C, 1 h, corresponding alkyliodide; ii) 12 M HCl, 82%.  

The racemic (1S)-5-bromo-3-methyl-2,3-dihydro-1H-indanol (47) and racemic (1R)-5-bromo-3-

methyl-2,3-dihydro-1H-indanol (48) were prepared via catalytic enantioselective reduction of 

racemic 5-bromo-3-methyl-2,3-dihydro-1H-indanone (42) using the (R)-methyl-CBS-

oxazaborolidine and (S)-methyl-CBS-oxazaborolidine catalysts, respectively, with N,N-

diethylaniline borane as reducing agent providing excellent enantioselectivity (Scheme 4).
14
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Scheme 4. a 

 
a
Reagents and conditions: a) (R)-(+)-2-methyl-CBS-oxazaborolidine catalyst, N,N,diethylaniline borane, toluene, 3 h, 

room temperature, 97 %. b) (S)-(+)-2-methyl-CBS-oxazaborolidine catalyst, N,N, diethylaniline borane, toluene, 3 h, 
room temperature, 99 %. 

To prepare for the subsequent coupling, amine 6 was protected as the 2-

nitrobenzenesulfonamide (49) (Scheme 5).15 

Scheme 5. a 

 
a
Reagents and conditions: a) 2-nitrobenzenesulfonyl chloride, DIPEA, CH2Cl2, 1 h, room temperature, 98 %. 

The respective racemic alcohols (47) and (48) when treated with (49) under Fukuyama–

Mitsunobu conditions, resulted in N-alkylation to afford the 2-nitrobenzenesulfonamides (50) 

and (51) (scheme 6).  
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Scheme 6. a 

 
a
Reagents and conditions: a and b) DEAD, PPh3, THF, –78 °C to room temperature. 

Selective deprotection of the 2-nitrobenzenesulfonamides (50) and (51) with thiophenol and 

K2CO3 gave the desired diastereomers 37a, 37b, 37c and 37d (Scheme 7).  

Scheme 7.a 

 
a
Reagents and conditions: a and b) PhSH, K2CO3, DMF, room temperature. 
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Biology 

To determine their binding affinity all compounds were tested in a 125I-CCL2 radioligand 

displacement assay on U2OS-CCR2 membrane preparations as described previously by our 

group.16 Compounds with affinities lower than or equal to 100 nM were subsequently 

screened in a [
3
H]INCB3344 dual point competition association assay on U2OS–CCR2 

membrane preparations to determine their kinetic-rate-index (KRI), which served as an 

indicator for the magnitude of the RT. Compounds with a KRI >1 were finally tested in the full 

competition association assay to determine the RT, as described previously by our group.
10

 

Structure–Affinity Relationships and Structure–Kinetics Relationships 

In the past few years several distinctly different amide groups have been disclosed for the 

general CCR2 scaffold of 3-amino-1-isopropylcyclopentanecarboxamides, with many final 

compounds displaying high and often very similar affinities (Figure 1).17-19  

 
Figure 1. CCR2 antagonists from Merck and Pfizer based on a 3-amino-1-
isopropylcyclopentanecarboxamide scaffold with different amide groups.17-19  

In the current study we decided to keep the 3-((inden-1-yl)amino)-1-isopropyl-cyclopentane-

1-carboxamide scaffold that was central in our previous report,10 and investigated the effect 

on affinity and RT of three different amide groups (Table 1). When we changed the 3,5-

bis(trifluoromethyl)benzyl group (compound 1) to a 1-(4-(trifluoromethyl)pyridin-2-

yl)piperazine group (compound 7) the affinity was improved 3-fold, while a rigidification of 
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the benzyl group into the 7-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline group 

(compound 8) yielded an even higher, 20-fold increase in affinity (compounds 1, 7 and 8; Ki = 

50 nM, 15 nM and 2.2 nM, respectively). 

Table 1. Binding Affinities, KRI and Residence Time of compounds 1; 7 and 8 

 
Nr. R Ki (nM) ± 

SEM (n=3) 
KRI (n=2) RT (min) 

1 

 

50 ± 8 0.8 (0.7/0.8) 9.1 ± 1.7 

7 

 

15 ± 1 0.5 (0.5/0.5) 8.3 ± 2.8 

8 

 

2.2 ± 0.6 1.0 (0.9/1.0) 21 ± 3 

In kinetic tests of these compounds (kinetic rate index (KRI)20 and RT) we learned that for 

longer receptor occupancy smaller and less flexible groups are preferred (KRI = 0.8, 0.5 and 

1.0; RT = 9.1, 8.3 and 21 min, for 1, 7 and 8, respectively).  

Encouraged by these results we decided to continue with compound 8 and investigate 

different substituents on the indenyl group (Table 2).The rigidification of the right-hand side 

of the structure improved the affinity in general, while the order of substituents on the 

indenyl group was hardly affected when compared to our previous findings on the 3,5-

bis(trifluoromethyl)benzylamide derivatives (compound 1).10 Substitution on the 4-position 

decreased the affinity. Introduction of 4-Me (compound 9) led to a 15-fold decrease. 

However, more polar groups were better tolerated. The 4-NH2 substituent (compound 10) led 
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to a 2-fold decrease only, while 4-CN and 4-OH groups caused a 7- and 10-fold decrease 

(compounds 11 and 12; Ki = 15 and 21 nM, respectively). 

Table 2. Binding Affinities, KRI and Residence Time of compounds 8–22 

 
Nr. R Ki (nM) ± 

SEM (n=3) 
KRI (n=2) RT (min) 

8 H 2.2 ± 0.6 1.0 (0.9/1.0) 21 ± 3 

9 4-Me 31 ± 2 0.7 (0.7/0.7) - 

10 4-NH2 4.6 ± 1.0 0.7 (0.7/0.8) - 
11 4-CN 15 ± 5 0.6 (0.6/0.6) - 

12 4-OH 21 ± 3 0.7 (0.7/0.7) - 

13 5-F 4.9 ± 1.6 0.9 (0.9/0.9) 55 ± 6 

14 5-Cl 1.6 ± 0.7 1.2 (1.0/1.3) 100 ± 20 

15 5-Br 2.3 ± 0.6 1.3 (1.3/1.3) 213 ± 32 

16 5-I 4.4 ± 0.9 1.3 (1.3/1.2) 103 ± 9 

17a 5-CF3 13 ± 5 1.4 (1.5/1.3) 667 ± 222 
18 6-Me 23 ± 6 0.6 (0.6/0.5) - 

19 6-CN 13 ± 8 0.6 (0.6/0.7) - 

20 6-Cl 7.9 ± 2.0 0.6 (0.6/0.6) - 

21 5;6-di-OMe 1.2 ± 0.3 1.0 (1.1/0.9) 63 ± 5 

22 4,7-di OMe 49 ± 7 0.8 (0.8/0.8) - 

Substituents on the 5 position had little effect on affinity. 5-F (compound 13) led to a 2-fold 

decrease, but with an increase in the size of the halogen, 5-Cl and 5-Br, the affinity was 

regained (compounds 14 and 15). However, 5-I (compound 16) apparently was too big and 

led to a 2-fold decrease. An even bigger decrease was observed with the introduction of a CF3 

group (compound 17a) often considered as a bioisostere of chlorine. However, this 

substitution pattern resulted in an 8-fold decrease compared to the chloro compound. On the 

6 position neither an electron donating group (compound 18), nor a strongly electron 

withdrawing group (compound 19) was tolerated, while the 6-Cl substituent (compound 20) 

led to a small decrease in affinity. However, the highest affinity compound 21 was obtained 

by double substitution on the 5 and 6 positions with methoxy groups. The corresponding 
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regioisomer with 4,7-di-OMe (compound 22) displayed a 40-fold decrease in affinity 

compared to compound 21.  

Testing these compounds in the high–throughput dual–point competition association assay 

showed that the abovementioned rigidification on the right–hand side of the molecule affects 

RT only for 5-substituted indenyl derivatives, with most of them having KRI values higher than 

unity. These compounds were tested in a full competition association assay and the highest 

affinity compound 21 had a RT of 63 min. Halogen substituents had size–dependent effects 

on KRI values. When tested for RT, indeed, increasing size correlated with longer residence 

times except for 5-I 16 where we observed a decrease in RT, as was the case for its affinity. 

However, compound 17a (single diastereomer) displayed a more than 6-fold increase in RT 

compared to the 5-Cl compound (14). This indicates that affinity does not correlate with the 

residence time in this series of compounds. All other compounds showed KRI values below 

unity and thus showed a behavior comparable to the benzyl derivatives reported earlier.10  

Next, we explored the 5 position by incorporating an additional aromatic system. Previously 

Xue et al21 had shown this approach to be successful in a pyrolidine series of CCR2 

antagonists. However, for our structures, an added unsubstituted phenyl ring (compound 23) 

resulted in a dramatic decrease of affinity (Table 3). Adding a 2-Me group (compound 24) 

yielded a small increase while 3-Me (compound 25) did not improve the affinity compared to 

unsubstituted 23. Incorporation of a cyano group on the 3 or 4 position (compounds 26 and 

27) resulted in a regain of affinity into the nanomolar range. The same effect was observed 

with a methoxy group (compounds 29 and 30). However, 2-OMe (compound 28) was 

detrimental for affinity. 
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Table 3. Binding Affinities, KRI and Residence Time of compounds 23–30 

 
Nr. R Ki (nM) ± SEM (n=3) KRI (n=2) 

23 H 28%a - 

24 2-Me 46% a - 

25 3-Me 24% a - 

26 3-CN 55 ± 14 0.7 (0.7/0.7) 

27 4-CN 11 ± 4.7 0.9 (0.8/1.0) 

28 2-OMe 2% a - 

29 3-OMe 39 ± 6 0.8 (0.8/0.8) 
30 4-OMe 75 ± 23 0.9 (0.9/0.9) 

a
Percent displacement at 1 µM 

125
I-CCL2 

These findings suggest that the space filling and hydrogen–accepting properties are more 

important for binding than the electronic properties of the substituents. Possible hydrogen 

bonding may also play a role when the phenyl ring was exchanged for 3-pyridine (compound 

31; Ki = 10 nM) (Table 4).  

Table 4. Binding Affinities, KRI and Residence Time of compounds 31–35 

 
Nr. R Ki (nM) ± 

SEM (n=3) 
KRI (n=2) 

31 

 

10 ± 4.5 0.7 (0.6/0.7) 

32 

 

41 ± 8 0.8 (0.7/0.8) 
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33 

 

10 ± 4 0.5 (0.4/0.6) 

34 

 

23 ± 7 0.6 (0.6/0.6) 

35 

 

12 ± 1 0.8 (0.8/0.8) 

Incorporation of a 2-OMe group (compound 32) resulted in a decrease of affinity, with an 

affinity comparable to its phenyl analogue 29. Extending the substituent to an ethoxy group 

(compound 33) is in accordance with the idea of space filling properties, as it yielded a gain in 

affinity compared to 32. Changing the location of the nitrogen atom in the pyridine ring to the 

4-position (compound 34) improved the affinity by 2-fold vs 32. An additional gain in affinity 

was reached by incorporating a fluorine atom on the 5 position (compound 35). In general, 

this series of compounds suggests there is enough space in the binding pocket to 

accommodate another aromatic ring with preferably hydrogen bond accepting properties. 

However, when these compounds were tested in the dual-point competition association 

assay none of them showed KRI values above 1. 

Another approach to investigate SAR and SKR in more detail was based on the 

superimposition of structure 8 with the structure of MK-0483, which has been reported as a 

CCR2 antagonist with a receptor dissociation time (T1/2) of over 9 h (Figure 2).22  
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Figure 2. Superimposition of MK-0483 (yellow) with compound 8 (cyan) using “ICM-Pro 3.7b, Molsoft 
LLC”. 

In the superimposition the 3-position of the indane ring of compound 8 overlaps with the 3 

position of the piperidine ring of MK-0483. So we decided to incorporate a methyl group on 

the 3 position of the indenyl system to yield compound 36 (Table 5). 

Table 5. Binding Affinities, KRI and Residence Time of compounds 36–40. 

 
Nr. R Ki (nM) ± 

SEM (n=3) 
KRI (n=2) RT (min) 

36 3-Me 3.4 ± 0.5 0.7 (0.6/0.7) - 

37 5-Br, 3-Me 2.0 ± 0.2 1.3 (1.3/1.2) 345 ± 48 

38 5-Br, 6-OMe 4.5 ± 1.0 1.3 (1.3/1.2) 323 ± 10 
39 5-Br, 3-Me, 6-OMe 13 ± 4 1.5 (1.6/1.3) 238 ± 11 

40 5-Br, 3-Et, 6-OMe 83 ± 5 1.3 (1.3/1.3) 179 ± 10 
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This had a minor effect on the affinity, but caused a significant decrease in KRI value. 

However, the combination of a 3-Me and 5-Br substituent (compound 37) yielded an increase 

in RT while affinity remained unchanged. This is an indication that the 3-Me group per se is 

not in direct contact with the receptor binding site. However, it could play an important role 

in shielding of a sub-pocket in combination with 5-Br; a similar idea was put forward by 

Schmidtke et al.
23

 in calculations on hydrogen bond shielding. Intrigued by our findings, we 

decided to combine the substituents of the long RT compound 15 (5-Br) and highest affinity 

compound 21 (6-OMe) in one structure 38. This combination prolonged the RT, but the 

affinity was decreased by 2-fold. Our next step was to make a hybrid of compounds 37 and 38 

to incorporate 3-Me; 5-Br; 6-OMe substituents on the indenyl group in one compound 39. 

Next to this, we also extended the methyl group into an ethyl group (compound 40). 

Unfortunately, these changes yielded 5- and 40-fold decreases in affinity, respectively, 

however, their RT was not affected when compared to 5-Br (compound 15). 

We then decided to separate compound 15 into diastereomers (Table 6) by preparative 

supercritical fluid chromatography (SFC). Similar to our previous findings10 the first compound 

to elute also showed a higher affinity. However, the difference in affinity between the 

diastereomers was only 10-fold in the case of compounds 15a and 15b. In addition, 

compound 37 was resynthesized using a different method to yield all four diastereomers, 

which were separated (37a-d). R-diastereomers 37a and 37b retained high affinity, while S-

diastereomers 37c and 37d had only sub-micromolar affinity values (Ki = 1.7, 4.6, 199 and 137 

nM, respectively). 
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Table 6. Binding Affinities, KRI and Residence Time of Separated Diastereomers. (15, 15a, 15b, 37, 37a-d) 

 
Nr. R Ki (nM) ± 

SEM (n=3) 
KRI (n=2) RT (min) 

15 5-Br 2.3 ± 0.6 1.3 (1.3/1.3) 213 ± 32 
15a 5-Br 2.4 ± 1.2 1.7 (1.7/1.7) 714 ± 153 

15b 5-Br 24 ± 9 0.8 (0.7/0.9) 15 ± 4 

37 5-Br, 3-Me 2.0 ± 0.2 1.3 (1.3/1.2) 345 ± 48 

37a 5-Br, 3-Me 1.7 ± 0.1 1.4 (1.4/1.4) 588 ± 208 

37b 5-Br, 3-Me 4.6 ± 0.1 1.2 (1.2/1.1) 208 ± 35 

37c 5-Br, 3-Me 199 ± 47 - - 

37d 5-Br, 3-Me 137 ± 15 - - 

In the RT measurements, a distinct difference was observed for the different diastereomers in 

the case of 7-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline compounds on the amide part, 

quite the opposite of our previous findings for the flexible benzylamide derivatives.10 The 

diastereomers of compound 15 had very different dissociation rate constants while the 

association rate constants were similar (Table 7). 

Table 7. Kinetic data of 15a, b, 17a and 37a, b compounds 
Nr. Ki (nM) ± SEM (n=3) kon (nM-1 min-1) koff (min-1) RT (min) 

15a 2.4 ± 1.2 0.0080 ± 0.0011 0.0014 ± 0.0003 714 ± 153 

15b 24 ± 9 0.0059 ± 0.001 0.066 ± 0.017 15± 4 

17a 13 ± 5 0.0032 ± 0.0004 0.0015 ± 0.0005 667 ± 222 

37a 1.7 ± 0.1 0.0044 ± 0.0003 0.0017 ± 0.0006 588 ± 208 

37b 4.6 ± 0.1 0.0026 ± 0.0006 0.0048 ± 0.0008 208 ± 35 

We succeeded in crystalizing compound 15a for single–crystal X-ray diffraction analysis. Based 

on the crystallographic analysis, the absolute configuration of compound 15a was the R-

isomer (Figure 3). Apparently, the rigidification stabilizes specific interactions of the R-isomer 

in the binding site of the CCR2, which results in smaller dissociation rate constants. This is also 

in accordance with 37a and 37b, however, the additional methyl group on the indane ring 
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should be positioned in the 3R-conformation (37a) resulting in an almost 3-fold longer RT 

than the 3S-diastereomer (37b). 

 
Figure 3. X-ray structure of ((1S,3R)-3-(((R)-5-bromo-2,3-dihydro-1H-inden-1-yl)amino)-1-
isopropylcyclopentyl)(7-(trifluoromethyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone (15a). 

CONCLUSION 

We have evaluated the SAR and SKR of 3-((inden-1-yl)amino)-1-isopropyl-cyclopentane-1-

carboxamide derivatives as CCR2 antagonists. On the right-hand side of the molecule the 7-

(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline group is optimal to increase residence time. 

On the left-hand side, the indane ring can accommodate very different substituents, as many 

compounds maintain nanomolar affinity. However, lipophilic and electron-withdrawing 

substituents (e.g. Cl, Br, I, CF3) on the 5-position of the indane ring are crucial for long 

residence time. Moreover, compound 17a (5-CF3) having a modest (compared to other 

compounds in the series) affinity of 13 nM and a long residence time (RT = 667 min) is a good 

example that affinity and residence time do not necessarily. It also stresses the importance of 

additional screening for residence time in the early stages of drug discovery. In addition, small 
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changes of the structure can have a big impact on residence time, e.g., the incorporation of a 

5-Br (15a) substituent yielded a more than 30-fold increase in residence time (714 min). From 

this perspective compound 15a should be evaluated in CCR2–related disease animal models 

to assess the usefulness of prolonged inhibition of CCR2. In general, this work provides 

methodology to retrieve the kinetic parameters from the vast number of high affinity 

compounds in the early stages of the drug discovery, which could help to provide better drug 

candidates for the later stages of drug development. 

EXPERIMENTAL SECTION 

Chemistry  
All solvents and reagents were purchased from commercial sources and were of analytical grade. 
Demineralized water is simply referred to as H2O, because it was used in all cases, unless stated 
otherwise (i.e., brine). 1H and 13C NMR spectra were recorded on a Bruker AV 400 liquid spectrometer 
(

1
H NMR, 400 MHz; 

13
C NMR, 100 MHz) or on a Bruker 500 MHz Avance III NMR spectrometer 

(compounds 15a, b and 37a – d) at ambient temperature. Chemical shifts are reported in parts per 
million (ppm), are designated by δ, and are downfield to the internal standard tetramethylsilane (TMS). 
Coupling constants are reported in hertz and are designated as J. Analytical purity of the final 
compounds was determined by high-performance liquid chromatography (HPLC) with a Phenomenex 
Gemini 3 µm C18 110A column (50 × 4.6 mm, 3 μm), measuring UV absorbance at 254 nm. The sample 
preparation and HPLC method for compounds 8; 14 – 16 and 36 – 40 were as follows: 0.3–0.8 mg of 
compound was dissolved in 1 mL of a 1:1:1 mixture of CH3CN/H2O/t-BuOH and eluted from the column 
within 15 min at a flow rate of 1.3 mL/min. The elution method was set up as follows: 1–4 min isocratic 
system of H2O/CH3CN/1% TFA in H2O, 80:10:10, from the 4th min, a gradient was applied from 80:10:10 
to 0:90:10 within 9 min, followed by 1 min of equilibration at 0:90:10 and 1 min at 80:10:10. All 
compounds showed a single peak at the designated retention time and are at least 95% pure. 
Enantiomeric excess was accomplished using chiral SFC. For 47 and 48 the column was Chiralpak AD-H 
(250 x 4.6mm), 5µm. The mobile phase condition of 10% MeOH with 20 mM NH3 and 90% CO2 was 
applied at a flow rate of 3.0 mL/min at 254 nm. For 37a and 37b the column was Phenomenex Lux-4 
(250 x 4.6 mm), 5 µm. The mobile phase condition of 20% i-propanol (IPA) with 1.0% DEA and 80% CO2 

was applied at a flow rate of 3.0 mL/min at 254 nm. For 37c and 37d the column was Regis RR-Whelko 
(250 x 4.6 mm), 5 µm. The mobile phase condition of 25% IPA with 1.0% diethylamine (DEA) and 75% 
CO2 was applied at a flow rate of 3.0 mL/min at 254 nm. High–resolution mass spectral analyses (HRMS) 
were performed on LTQ-Orbitrap FTMS operated in a positive ionization mode with an electrospray 
ionization (ESI) source, with the following conditions: mobile phase A, 0.1% formic acid in water; mobile 
phase B, 0.08% formic acid in CH3CN; gradient, 10–80% B in 26 min; and flow rate, 0.4 mL/min. 
Preparative HPLC (for compounds 7; 9 – 13 and 18 – 35) was performed on a Waters Auto Purification 
HPLC–ultraviolet (UV) system with a diode array detector using a Luna C18 Phenomenex column (75 × 
30 mm, 5 µm), and a linear gradient from 1 to 99% of mobile phase B was applied. Mobile phase A 
consisted of 5 mM HCl solution, and mobile phase B consisted of acetonitrile. The flow rate was 50 
mL/min. Liquid chromatography–mass spectrometry (LC–MS) analyses were performed using an Onyx 
C18 monolithic column (50 × 4.6 mm, 5 µm), and a linear gradient from 1 to 99% mobile phase B was 
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applied. Mobile phase A consisted of 0.05% TFA in water, and mobile phase B consisted of 0.035% TFA in 
acetonitrile. The flow rate was 1.2 mL/min. Separations of enantiomers were accomplished using chiral 
SFC. The column was Phenomenex Lux-4 (250 × 10 mm, 5 µm). The mobile phase condition of 10% 
MeOH with 20 mM NH3 and 90% CO2 was applied at a flow rate of 10 mL/min. Optical rotations were 
measured in ethanol at 20 

°C on a Perkin-Elmer polarimeter (Wavelength = 589 nm). The single crystal X-
ray diffraction studies were carried out on a Bruker Kappa APEX-II CCD diffractometer equipped with Mo 
K

α
 radiation (λ = 0.71073 Å). Thin-layer chromatography (TLC) was routinely consulted to monitor the 

progress of reactions, using aluminum-coated Merck silica gel F254 plates. Purification by column 
chromatography was achieved by use of Grace Davison Davisil silica column material (LC60A, 30–200 
µm). The procedure for a series of similar compounds is given as a general procedure for all within that 
series, annotated by the numbers of the compounds.  
Synthesis of (1S,3R)-3-(tert-butoxycarbonylamino)-1-isopropylcyclopentanecarboxylic acid (2) was 
achieved following the synthetic approach reported earlier by our group.10  
General Procedure for the Synthesis of Compounds 3 and 4.  
Compound 2 (1 equiv) was dissolved in 25 ml DCM. To this mixture the corresponding amine (1 equiv) 
was added and subsequentaly DiPEA (3 equiv), PyBrOP (1 equiv) and DMAP (0.8 equiv). The reaction 
mixture was stirred for 24 hours at room temperature. The product was partitioned between DCM and 1 
M citric acid solution in water and then with DCM/1M NaOH. The organic layer was dried with MgSO4 
and evaporated. The product was purified by column chromatography (0-100% ethyl acetate in DCM). 
tert-Butyl ((1R,3S)-3-isopropyl-3-(4-(4-(trifluoromethyl)pyridin-2-yl)piperazine-1-
carbonyl)cyclopentyl)carbamate (3).18 Yield = 90%. 1H NMR (400 MHz, CDCl3) δ: 8.22 (d, J = 4.8 Hz, 1H), 
6.77–6.72 (m, 2H), 4.94 (br s, 1H), 3.82 (br s, 1H), 3.70–3.61 (m, 4H), 3.59–3.45 (m, 4H), 2.11–1.90 (m, 
3H), 1.80–1.61 (m, 4H), 1.31 (s, 9H), 0.81–0.72 (m, 6H). 
tert-Butyl ((1R,3S)-3-isopropyl-3-(7-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline-2-
carbonyl)cyclopentyl)carbamate (4).24 Yield = 82%. 1H NMR (400 MHz, CDCl3) δ: 7.45 (d, J = 7.6 Hz, 1H), 
7.40 (s, 1H), 7.28 (d, J = 7.6, 1H), 4.97–4.61 (m, 3H), 4.00–3.73 (m, 3H), 2.94 (br s, 2H), 2.30–2.05 (m, 3H), 
1.88–1.67 (m, 3H), 1.59 (br s, 1H), 1.42 (s, 9H), 0.91–0.84 (m, 6H). 
((1S,3R)-3-Amino-1-isopropylcyclopentyl)(4-(4-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)methanone 
(5).18 Trifluoroacetic acid (4 mL) was added to a solution of compound 3 (1.20 g, 2.48 mmol) in 10 mL of 
DCM. The reaction mixture was stirred for 2 h at room temperature. The reaction mixture was 
neutralized with 1 M NaOH and extracted with DCM. The organic layer was dried with MgSO4, filtered, 
and evaporated to give the product as yellow crystals (0.86 g, 90%). 1H NMR (400 MHz, CDCl3) δ: 8.20 (d, 
J = 4.8 Hz, 1H), 6.77–6.72 (m, 2H), 3.72–3.38 (m, 8H), 3.20–3.10 (m, 1H), 2.45–2.30 (m, 1H), 2.07–1.90 
(m, 2H), 1.80–1.35 (m, 4H), 0.83–0.70 (m, 6H). 
((1S,3R)-3-Amino-1-isopropylcyclopentyl)(7-(trifluoromethyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone 
(6).24 Trifluoroacetic acid (10 mL) was added to a solution of compound 4 (3.27 g, 7.2 mmol) in 10 mL of 
DCM. The reaction mixture was stirred for 1 h at room temperature. The reaction mixture was 
neutralized with 1 M NaOH and extracted with DCM. The organic layer was dried with MgSO4, filtered, 
and evaporated to give the product as yellow crystals (2.50 g, 98%). 1H NMR (400 MHz, CDCl3) δ: 7.40 (d, 
J = 7.6 Hz, 1H), 7.36 (s, 1H), 7.24 (d, J = 7.6, 1H), 4.76 (s, 2H), 3.81 (br s, 2H), 3.32–3.22 (m, 1H), 2.91 (br s, 
2H), 2.53–2.45 (m, 1H), 2.18–1.73 (m, 4H), 1.69–1.60 (m, 1H), 1.40–1.35 (m, 1H), 0.91–0.84 (m, 6H). 
General Procedure for the Synthesis of Compounds 7, 9 – 13 and 18 – 23. 
To a series of 1.5 mL glass tubes was added amine 5 or 6 in NMP (0.95 M, 0.095 mmol), followed by 
solutions of different indanones (0.5 M, 0.1 mmol) in NMP, and these mixtures were subsequently 
treated with acetic acid (0.1 mmol), followed by 5-ethyl-2-methyl-pyridine borane (PEMB) (0.2 mmol). 
The reaction mixture was heated at 65°C on a reaction block for 24 h. The reaction mixtures were 
purified directly using an automated mass-guided reverse-phase HPLC, and product containing fractions 
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were concentrated to give final products of >90% purity as judged by LC–MS (average of 220 and 254 
nm traces). 
((1S,3R)-3-((2,3-dihydro-1H-inden-1-yl)amino)-1-isopropylcyclopentyl)(4-(4-(trifluoromethyl)pyridin-2-
yl)piperazin-1-yl)methanone (7). Purity (Average of 220 and 254 nm) = 95.4, LC-MS = 501+, tR = 1.75 min. 

Table 8. Purity, M+ and Retention Times of Compounds 9-13, 18-22. 

 

Nr. R % Purity (Average of 
220 and 254 nm) 

Mol wt  M
+
 Retention 

time (min) 

9 4-Me 97.3 484.3 485.4 1.70 

10 4-NH2 99.3 485.3 486.4 1.39 

11 4-CN 97.4 495.3 496.3 1.57 

12 4-OH 92.5 486.3 487.3 1.56 

13 5-F 92.5 488.3 489.4 1.67 

18 6-Me 97.9 484.3 485.2 1.72 
19 6-CN 95.1 495.3 496.3 1.62 

20 6-Cl 98.9 504.2 505.3 1.71 

21 5;6-di OMe 96.1 530.3 531.3 1.58 

22 4;7-di OMe 92.3 530.3 531.3 1.74 

General Procedure for the Synthesis of Compounds 8, 14 – 16 and 36 – 40. 
In a 5 mL glass tube, amine 6 (1 equiv) dissolved in 1 mL of dry THF, and the corresponding indanone 
(1.2 equiv) dissolved in 1 mL of dry THF were loaded. Mixture was flushed with nitrogen gas and the 
tube was capped. Through the septa Ti(O-iPr)4 (3 equiv) was added and the reaction mixture was stirred 
for 48 h at room temperature. Then the tube was decapped and NaBH4 (5 equiv) and 0.5 mL of absolute 
EtOH were added, and stirred for 16 h. The reaction mixture was quenched with H2O and resulting 
inorganic precipitate was filtered off and washed with DCM. The filtrate was extracted with DCM/H2O. 
The organic layer was dried with MgSO4 and evaporated. The product was purified by column 
chromatography (40% ethyl acetate in DCM). 
((1S,3R)-3-((2,3-dihydro-1H-inden-1-yl)amino)-1-isopropylcyclopentyl)(7-(trifluoromethyl)-3,4-
dihydroisoquinolin-2(1H)-yl)methanone (8). Yield = 34%. 1H NMR (400 MHz, CDCl3) δ: 7.57–7.37 (m, 2H), 
7.37–7.10 (m, 5H), 4.91–4.75 (m, 2H), 4.37–4.20 (m, 1H), 3.85 (s, 2H), 3.36–3.20 (m, 1H), 3.09–2.88 (m, 
3H), 2.88–2.74 (m, 1H), 2.58 (br s, 1H), 2.49–2.33 (m, 1H), 2.25–1.87 (m, 4H), 1.87–1.72 (m, 2H), 1.72–
1.56 (m, 1H), 1.48–1.35 (m, 1H), 1.01–0.79 (m, 6H). LC–MS: 471+; tR: 9.79 min. 
((1S,3R)-3-((5-chloro-2,3-dihydro-1H-inden-1-yl)amino)-1-isopropylcyclopentyl)(7-(trifluoromethyl)-3,4-
dihydroisoquinolin-2(1H)-yl)methanone (14). Yield = 32%. 1H NMR (400 MHz, CDCl3) δ: 7.53–7.34 (m, 
2H), 7.30–7.18 (m, 4H), 4.90–4.70 (m, 2H), 4.30–4.13 (m, 1H), 3.90–3.75 (m, 2H), 3.30–3.14 (m, 1H), 
3.02–2.84 (m, 3H), 2.82–2.69 (m, 1H), 2.62–2.34 (m, 2H), 2.20–1.54 (m, 7H), 1.38 (br.s, 1H), 0.98–0.76 
(m, 6H). LC–MS: 505+; tR: 9.82 min. 
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((1S,3R)-3-((5-bromo-2,3-dihydro-1H-inden-1-yl)amino)-1-isopropylcyclopentyl)(7-(trifluoromethyl)-3,4-
dihydroisoquinolin-2(1H)-yl)methanone (15). Yield = 14%. 1H NMR (400 MHz, CDCl3) δ: 7.81–7.04 (m, 
6H), 4.79 (br s, 2H), 4.21 (dd, J = 15.3, 8.7 Hz, 1H), 3.85 (br s, 2H), 3.23 (d, J = 6.5 Hz, 1H), 2.94 (d, J = 4.3 
Hz, 2H), 2.89–2.71 (m, 2H), 2.69–2.40 (m, 2H), 2.34 – 1.20 (m, 8H), 1.19–0.73 (m, 6H). LC–MS: 549+; tR: 
10.19 min. 
((1S,3R)-3-(((R)-5-bromo-2,3-dihydro-1H-inden-1-yl)amino)-1-isopropylcyclopentyl)(7-(trifluoromethyl)-

3,4-dihydroisoquinolin-2(1H)-yl)methanone (15a). 1H NMR (500 MHz, DMSO-d6) δ: 9.05 (br s, 1H), 7.70 

(br s, 1H), 7.61 (br s, 2H), 7.54 (d, J = 8.1 Hz, 1H), 7.52 (d, J = 8.1 Hz, 1H), 7.41 (d, J = 8.1 Hz, 1H), 4.85–

4.68 (m, 3H), 3.85–3.70 (m, 2H), 3.20–3.10 (m, 1H), 3.00–2.82 (m, 3H), 2.60–2.32 (m, 4 H), 2.30–2.03 (m, 

4H), 1.70–1.50 (m, 2 H), 0.90 (d, J = 6.1 Hz, 3H) 0.65 (d, J = 6.1 Hz, 3H), 
13C NMR (125 MHz, DMSO-d6) δ: 174.6, 148.3, 148.3, 137.7, 135.3, 129.9, 129.5, 128.5 (d, JC-F = 11.65 

Hz), 128.4, 128.1, 126.7 (q, JC-F = 222.65 Hz), 123.9, 123.7, 123.2, 60.9, 60.9, 57.3, 57.2, 56.2, 35.3, 32.9, 

30.1, 29.9, 28.8, 28.8, 28.2, 18.3, 18.3. 

HRMS calcd for (C28H33BrF3N2O) [M + H]+ 549.1723, found 549.1708. 

SFC chiral purity: 100 % ee. 

15a = [α]D 
20 = - 5.1 (c = 0.65, EtOH). 

((1S,3R)-3-(((S)-5-bromo-2,3-dihydro-1H-inden-1-yl)amino)-1-isopropylcyclopentyl)(7-(trifluoromethyl)-

3,4-dihydroisoquinolin-2(1H)-yl)methanone (15b).1H NMR (500 MHz, DMSO-d6) δ: 9.61 (br s, 1H), 7.70 

(br s, 1H), 7.66 (br s, 2H), 7.54 (d, J = 8.1 Hz, 1H), 7.52 (d, J = 8.1 Hz, 1H), 7.41 (d, J = 8.1 Hz, 1H), 4.85–

4.68 (m, 3H), 3.85–3.70 (m, 2H), 3.20–2.86 (m, 1H), 3.00–2.82 (m, 3H), 2.46–2.32 (m, 4 H), 2.30–2.03 (m, 

4H), 1.70–1.50 (m, 2 H), 0.90 (d, J = 6.1 Hz, 3H) 0.65 (d, J = 6.1 Hz, 3H), 
13C NMR (125 MHz, DMSO-d6) δ: ppm 174.5, 148.3, 148.3, 137.7, 137.7, 130.3, 129.9, 128.5 (d, JC-F = 

11.65 Hz), 128.4, 128.4, 126.7 (q, JC-F = 222.65 Hz), 123.9, 123.6, 123.3, 60.9, 60.9, 57.3, 57.2, 56.2, 35.4, 

32.9, 30.1, 29.9, 28.8, 28.8, 28.2, 18.3, 18.3.  

HRMS calcd for (C28H33BrF3N2O) [M + H]
+
 549.1723, found 549.1718. 

SFC chiral purity: 97.4 % ee. 

15b = [α]D 
20 = -0.9 (c = 0.68, EtOH) 

((1S,3R)-3-((5-iodo-2,3-dihydro-1H-inden-1-yl)amino)-1-isopropylcyclopentyl)(7-(trifluoromethyl)-3,4-
dihydroisoquinolin-2(1H)-yl)methanone (16). Yield = 28%. 1H NMR (400 MHz, CDCl3) δ: 7.55 (s, 1H), 7.48–
7.40 (m, 3H), 7.28 (s, 1H), 7.05 (d, J = 7.9 Hz, 0.5H

a
), 6.99 (d, J = 7.9 Hz, 0.5H

b
), 4.79 (s, 2H), 4.24–4.16 (m, 

1H), 3.84 (br s, 2H), 3.22 (q, J = 6.0 Hz, 1H), 2.93 (s, 3H), 2.82–2.72 (m, 1H), 2.53 (br s, 1H), 2.43–2.34 (m, 
1H), 2.16–1.82 (m, 4H), 1.80–1.60 (m, 3H), 1.38 (br s, 1H), 0.93 (d, J = 5.7 Hz, 3Ha); 0.87 (d, J = 5.7 Hz, 
3Hb). a and b are indicated for different diastereomers. LC–MS: 597+; tR: 10.06 min. 
((1S,3R)-1-isopropyl-3-((3-methyl-2,3-dihydro-1H-inden-1-yl)amino)cyclopentyl)(7-(trifluoromethyl)-3,4-
dihydroisoquinolin-2(1H)-yl)methanone (36). Yield = 41%. 

1
H NMR (400 MHz, CDCl3) δ: 7.58–7.05 (m, 

7H), 4.79 (d, J = 16.5 Hz, 2H), 4.35–4.11 (m, 1H), 3.87 (s, 2H), 3.27 (s, 1H), 3.03 (dd, J = 17.9, 15.0 Hz, 1H), 
2.96 (s, 2H), 2.73–2.61 (m, 2H), 2.32–1.84 (m, 4H), 1.67 (dd, J = 17.8, 11.2 Hz, 2H), 1.55–1.20 (m, 5H), 
1.11–0.75 (m, 6H). LC–MS: 485+; tR: 10.08 min. 
((1S,3R)-3-((5-bromo-3-methyl-2,3-dihydro-1H-inden-1-yl)amino)-1-isopropylcyclopentyl)(7-
(trifluoromethyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone (37). Yield = 8%. 1H NMR (400 MHz, CDCl3) 
δ: 7.52–7.34 (m, 2H), 7.34–7.17 (m, 3H), 7.14 (d, J = 7.8 Hz, 1Ha), 7.08 (d, J = 8.0 Hz, 1Hb), 4.90–4.70 (m, 
2H), 4.20–4.00 (m, 1H), 3.86 (s, 2H), 3.32–3.25 (m, 1H), 3.13–2.84 (m, 3H), 2.81–2.61 (m, 1H), 2.54 (br s, 
1H), 2.28–2.05 (m, 2H), 1.94–1.58 (m, 4H), 1.50–1.16 (m, 5H), 1.03–0.79 (m, 6H). LC–MS: 563

+
, 565

+
; tR: 

10.00 min. 
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((1S,3R)-3-((5-bromo-6-methoxy-2,3-dihydro-1H-inden-1-yl)amino)-1-isopropylcyclopentyl)(7-
(trifluoromethyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone (38). Yield = 27%. 1H NMR (400 MHz, CDCl3) 
δ: 7.54 – 7.18 (m, 4H), 6.92 (s, 1H

a
); 6.84 (s, 1H

b
), 4.90–4.70 (m, 2H), 4.30–4.20 (m, 1H), 3.98–3.66 (m, 

5H), 3.36–3.13 (m, 1H), 3.01–2.81 (m, 3H), 2.80–2.66 (m, 1H), 2.44 (br s, 2H), 2.32–1.98 (m, 4H), 1.98–
1.56 (m, 3H), 1.40 (m, 1H), 0.93 (d, J = 5.7Hz, 3Ha); 0.87 (d, J = 5.7Hz, 3Hb). a and b are indicated for 
different diastereomers. LC–MS: 579+, 581+; tR: 10.06 min.  
((1S,3R)-3-((5-bromo-6-methoxy-3-methyl-2,3-dihydro-1H-inden-1-yl)amino)-1-isopropylcyclopentyl)(7-
(trifluoromethyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone (39). Yield = 20%. 1H NMR (400 MHz, CDCl3) 
δ: 7.54–7.35 (m, 2H), 7.35–7.20 (m, 2H), 6.91 (s, 0.25Ha), 6.84 (s, 0.75Hb), 4.95–4.68 (m, 2H), 4.24–4.03 
(m, 1H), 3.88–3.79 (m, 5H), 3.35–3.16 (m, 1H), 3.07–2.85 (m, 3H), 2.81–2.64 (m, 1H), 2.56 (s, 1H), 2.20–
2.05 (m, 3H), 1.92–1.85 (m, 2H), 1.69–1.64 (m, 1H), 1.55–1.37 (m, 1H), 1.36–1.18 (m, 4H), 1.02–0.78 (m, 
6H). a and b are indicated for different diastereomers. LC–MS: 593+, 595+; tR: 9.35 min. 
((1S,3R)-3-((5-bromo-3-ethyl-6-methoxy-2,3-dihydro-1H-inden-1-yl)amino)-1-isopropylcyclopentyl)(7-
(trifluoromethyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone (40). Yield = 17%. 1H NMR (400 MHz, CDCl3) 
δ: 7.67–7.44 (m, 2H), 7.44–7.34 (m, 1H), 7.30 (s, 1H), 7.14 (s, 1H), 6.46 (s, 2H), 5.01–4.76 (m, 2H), 4.70 
(d, J = 7.3 Hz, 1H), 4.09–3.71 (m, 6H), 3.19–2.64 (m, 4H), 2.51–2.14 (m, 4H), 2.13–1.70 (m, 5H), 1.56–
1.39 (m, 1H), 1.16–0.77 (m, 9H). LC–MS: 607+, 609+; tR: 9.60 min. 
((1S,3R)-1-isopropyl-3-((5-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl)amino)cyclopentyl)(7-
(trifluoromethyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone (17a). In a 50 mL round–bottom flask, to a 
solution of 1 equivalent of amine 6 in anhydrous methanol was added 1 equivalent of 5-
(trifluoromethyl)-2,3-dihydro-1H-inden-1-one which was subsequently treated with 2 equivalents of 
acetic acid, followed by 4 equivalents of 5-ethyl-2-methyl-pyridine borane (PEMB). The reaction mixture 
was heated at 65°C for 24 h. Reaction mixture was monitored by reverse phase UPLC (tR : 0.53) and was 
carefully quenched with concentrated HCl, then water was added to the reaction mixture and extracted 
with dichloromethane. The combined organic layer was washed with brine, dried over Na2SO4, and 
concentrated in vacuo. Reraction mixture was purified by flash chromatography (0-20 % CH2Cl2/MeOH) 
to afford product 17 (mixture of diastereomers). Further purification by reverse-phase HPLC using a 
gradient from 1 to 99% mobile phase B (mobile phase A = 0.1% HCl in water, mobile phase B = 0.1% HCl 
in CH3CN) resulted in the separation of the two diastereomers 17 a and 17 b as HCl salt. Yield: 17a = 19.5 
%, 96% purity,UPLC-MS: 539+; tR: 1.45 min and 17b = 8.0%, 83% purity, UPLC-MS: 539+; tR: 1.48 min. 17a 
: 1H NMR (400 MHz, CDCl3 ) δ 10.09 (s, 1H), 9.24 (s, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.57 (s, 1H), 7.50 (d, J = 
7.7 Hz, 1H), 7.46–7.38 (m, 1H), 7.35 (s, 1H), 7.29–7.20 (m, 1H), 4.90–4.62 (m, 3H), 3.84 (s, 1H), 3.68 (t, J = 
8.7 Hz, 1H), 3.48 (q, J = 7.8, 7.0 Hz, 1H), 2.93 (ddt, J = 19.3, 11.4, 5.0 Hz, 3H), 2.68 (d, J = 14.1 Hz, 1H), 
2.64–2.37 (m, 3H), 2.18–1.97 (m, 3H), 1.92 (dd, J = 14.2, 7.4 Hz, 1H), 1.80 (s, 1H), 1.68 (d, J = 12.1 Hz, 
1H), 0.84 (dd, J = 20.0, 6.6 Hz, 6H). 
General Procedure for the Synthesis of Compounds 23 – 35. 
To a series of 1.5 mL glass tubes was added 15 in toluene ( 0.1 mmol) followed by solutions of different 
aryl boronic acids (0.5 M, 0.2 mmol) in NMP and these mixtures were subsequently treated with Na2CO3 
solution ( 1 M, 0.2 mmol) followed by Pd(PPh3)4 in toluene (0.05 eq, 0.005 mmol). The reaction mixtures 
(0.15 M) were capped and heated at 80°C on a reaction block overnight. The reaction mixtures were 
purified directly using an automated mass–guided reverse phase–HPLC, and product containing 
fractions were concentrated to give final products >90% purity as judged by LC-MS (average of 220 nm 
and 254 nm traces). 

Table 9. Purity, M+ and retention times of compounds 23-30. 
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Nr. R % Purity (Average of 
220 and 254 nm) 

Mol wt  M
+
 Retention 

time (min) 

23 H 96.8 546.29 547.2 1.92 

24 2-Me 91.5 560.3 561.3 1.92 
25 3-Me 99.5 560.3 561.3 1.96 

26 3-CN 99.38 571.3 572.3 1.77 

27 4-CN 99.5 571.3 572.2 1.76 

28 2-OMe 92.9 576.3 577.3 1.89 

29 3-OMe 97.7 576.3 577.3 1.66 

30 4-OMe 99.0 576.3 577.3 1.83 

 

Table 10. Purity, M+ and retention times of compounds 31-35. 
 

 

Nr. R % Purity (Average 
of 220 and 254 nm) 

Mol wt  M+ Retention 
time (min) 

31 

 

99.9 547.3 548.2 1.40 

32 

 

99.9 577.3 578.3 1.45 

33 

 

99.9 591.3 592.3 1.43 
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34 

 

93.7 577.3 578.3 1.66 

35 

 

96.8 595.3 596.3 1.79 

(1S,3R)-N-(3,5-bis(trifluoromethyl)benzyl)-3-(((1S,3R)-5-bromo-3-methyl-2,3-dihydro-1H-inden-1-

yl)amino)-1-isopropylcyclopentanecarboxamide (37a) and (1S,3R)-N-(3,5-bis(trifluoromethyl)benzyl)-3-

(((1S,3S)-5-bromo-3-methyl-2,3-dihydro-1H-inden-1-yl)amino)-1-isopropylcyclopentanecarboxamide 

(37b). In a 20 mL scintillation vial, to a solution of 50 (1.00 g, 1.34 mmol) in DMF (10 mL) was added 

K2CO3 ( 0.55 g, 4.01 mmol) and benzenethiol (274.4 µL, 2.67 mmol), and the reaction mixture was stirred 

at room temperature for 30 min. The reaction was monitored by reverse phase UPLC (tR: 0.73 and 0.74). 

To the reaction mixture was added water (20 mL) followed by extraction with CH2Cl2 (4 × 100 mL). The 

combined organic layer was washed with water, brine, dried over Na2SO4, and concentrated in vacuo. 

The brown residue was purified by flash chromatography (0-10% CH2Cl2/MeOH) to afford 37a (0.10 g) 

and 37b (0.10 g) with 80% diastereomeric excess purity by SFC analysis. Further purification was carried 

out by reverse–phase preparatory HPLC-UV with a gradient from 1 to 99% mobile phase B (mobile phase 

A = 0.1% HCl in water, mobile phase B= 0.1% HCl in CH3CN) resulting in pure 37a HCl salt and 37b HCl 

salt as a white solid. Yield: 37a = 14.7 mg, 1.8%, UPLC-MS: 563+, 565+; tR: 2.45 min. 1H NMR (500 MHz, 

DMSO-d6) δ: 9.06 (br s, 1 H), 7.66 (bs, 1 H), 7.60 (m, 1 H), 7.52 (d, J = 8.1 Hz, 1 H), 7.50 (m, 1 H), 7.47 (m, 

1 H), 7.41 (d, J = 8.1 Hz, 1 H), 4.70 (m, 2 H), 4.69 (dd, J = 15.7, 7.3 Hz, 1 H), 3.77 (m, 2 H), 3.51 (s, 1 H), 

3.16 (dt, J = 14.3, 7.0 Hz, 1 H), 2.91 (m, 2 H), 2.76–1.68 (m, 2 H), 2.39–2.24 (m, 2 H), 2.17–1.59 (m, 2 H), 

2.12 (m, 1 H), 1.64 (m, 2 H), 1.33 (d, J = 6.8 Hz, 3 H), 0.89-0.75 (d, J = 6.1 Hz, 6 H).  
13

C NMR (125 MHz, DMSO-d6) δ: 175.3, 150.9, 144.6, 139.3, 135.0, 130.3, 129.9, 128.6 (d, JC-F = 11.65 

Hz), 126.9, 126.4 (q, JC-F = 222.65 Hz), 126.9, 123.6, 123.3, 120.1, 60.0, 55.7, 57.7, 47.8, 42.8, 38.5, 37.2, 

36.6, 32.9, 29.9, 28.8, 28.8, 19.9, 18.3, 18.3 

ROESY (NOE) (500 MHz, DMSO-d6) δ ppm 7.50 [1.33 (H-30)], 4.69 [2.76 (H-6), 1.68 (H-6 weak), 2.17 (H-

12), 3.16 (H-7)]. 

HRMS calcd for (C29H34BrF3N2O) [M + H]+ 563.1879, found 563.1883. 

SFC chiral purity: 99.1% ee. 

37a = [α]D 
20 = + 12.2 (c = 0.43, EtOH) 

 

37b = 17.3 mg, 2.1%, UPLC-MS: 563+, 565+; tR: 2.49 min. 1H NMR (500 MHz, DMSO-d6) δ: 9.06 (bs, 1 H), 

7.66 (bs, 1 H), 7.60 (m, 1 H), 7.52 (d, J = 8.1 Hz, 1 H), 7.50 (m, 1 H), 7.47 (m, 1 H), 7.41 (d, J = 8.1 Hz, 1 H), 

4.70 (m, 2 H), 4.69 (dd, J = 15.7, 7.3 Hz, 1 H), 3.77 (m, 2 H), 3.52 (m, 1 H), 3.41 (s, 1 H), 2.91 (m, 2 H), 2.91 

(m, 2 H), 2.50–1.98 (m, 2 H), 2.39–2.24 (m, 2 H), 2.17–1.59 (m, 2 H), 2.12 (m, 1 H), 1.64 (m, 2 H), 1.25 (d, 

J = 6.8 Hz, 3 H), 0.89–0.75 (d, J = 6.1 Hz, 6 H).  
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13C NMR (125 MHz, DMSO-d6) δ: 175.3, 150.9, 144.6, 139.3, 135.0, 130.3, 129.9, 128.6 (d, JC-F = 11.65 

Hz), 126.9, 126.9, 126.4 (q, JC-F = 222.65 Hz), 123.6, 123.3, 120.1, 59.89, 57.7, 55.7, 47.8, 42.8, 38.0, 37.4, 

36.6, 32.9, 29.9, 28.8, 28.8, 19.9, 18.3, 18.3 

ROESY (NOE) (500 MHz, DMSO-d6) δ: ppm 7.50 [3.52 (H-7)], 1.25 (H-30 weak)], 4.69 [2.50 (H-6), 1.98 (H-

6 weak)]. 

HRMS calcd for (C29H34BrF3N2O) [M + H]+ 563.1879, found 563.1883. 

SFC chiral purity: 95.2% ee. 

37b = [α]D 
20 = + 13.9 (c = 0.50, EtOH) 

(1S,3R)-N-(3,5-bis(trifluoromethyl)benzyl)-3-(((1R,3R)-5-bromo-3-methyl-2,3-dihydro-1H-inden-1-

yl)amino)-1-isopropylcyclopentanecarboxamide (37c) and (1S,3R)-N-(3,5-bis(trifluoromethyl)benzyl)-3-

(((1R,3S)-5-bromo-3-methyl-2,3-dihydro-1H-inden-1-yl)amino)-1-isopropylcyclopentanecarboxamide 

(37d). In a 20 mL scintillation vial, to a solution of 51 (1.00 g, 1.34 mmol) in DMF (10 mL) was added 

K2CO3 ( 0.55 g, 4.01 mmol) and benzenethiol (274.4 µL, 2.67 mmol), and the reaction mixture was stirred 

at room temperature for 30 min. The reaction was monitored by reverse phase UPLC (tR: 0.76). To the 

reaction mixture was added water (20 mL) followed by extraction with CH2Cl2 (4 × 100 mL). The 

combined organic layer was washed with water, brine, dried over Na2SO4, and concentrated in vacuo. 

The brown residue was purified by flash chromatography (0-10% CH2Cl2/MeOH) to afford 37c (50 mg) 

and 37d (90 mg) both with 50% diastereomeric excess purity. Further purification was carried out by 

reverse–phase preparatory HPLC-UV with a gradient from 1 to 99% mobile phase B (mobile phase A = 

0.1% HCl in water, mobile phase B= 0.1% HCl in CH3CN) resulting in 37c HCl salt and 37d HCl salt as a 

white solid, both again with 70% diastereomeric excess purity. Therefore further purification was carried 

out on a Gilson purification instrument with a normal phase silica column and a diode array detector 

using a Luna Phenomenex column (50mm × 21mm, 5µm), and a linear gradient from 1 to 10% 

(CH2Cl2/MeOH) of mobile phase was applied. Mobile phase A consisted of CH2Cl2 and mobile phase B 

consisted of 10% MeOH/CH2Cl2. Yield: 37c = 13.1 mg, 1.7%, UPLC-MS: 563+, 565+; tR: 2.52 min. 1H NMR 

(500 MHz, DMSO-d6) δ: 7.66 (bs, 1 H), 7.60 (m, 1 H), 7.52 (d, J = 8.1 Hz, 1 H), 7.41 (d, J = 8.1 Hz, 1 H), 7.38 

(m, 1 H), 7.30 (m, 1 H), 4.70 (m, 2 H), 4.01 (m, 1 H), 3.77 (m, 2 H), 3.51 (s, 1 H), 3.14 (m, 1 H), 2.91 (m, 2 

H), 2.57–1.20 (m, 2 H), 2.39–2.24 (m, 2 H), 2.17–1.59 (m, 2 H), 2.12 (m, 1 H), 1.64 (m, 2 H), 1.24 (d, J = 

6.8 Hz, 3 H), 0.89–0.75 (d, J = 6.1 Hz, 6 H).  
13C NMR (125 MHz, DMSO-d6) δ: 175.3, 150.9, 144.6, 139.3, 135.0, 130.3, 129.9, 128.6(d, JC-F = 11.65 Hz), 

126.9, 126.4 (q, JC-F = 222.65 Hz), 123.6, 123.4, 123.3 120.1, 60.0, 58.4, 57.7, 55.7, 47.8, 44.8, 42.8, 36.6, 

32.9, 29.9, 28.8, 28.8, 19.9, 18.3, 18.3 

HRMS calcd for (C29H34BrF3N2O) [M + H]+ 563.1879, found 563.1883. 

SFC chiral purity: 95.0% ee. 

37c = [α]D 
20 

= + 1.9 (c = 1.9, EtOH). 

37d = 12.7 mg, 1.7%, UPLC-MS: 563+, 565+; tR: 2.52 min. 1H NMR (500 MHz, DMSO-d6) δ: 9.06 (bs, 1 H), 

7.66 (bs, 1 H), 7.60 (m, 1 H), 7.52 (d, J = 8.1 Hz, 1 H), 7.50 (m, 1 H), 7.47 (m, 1 H), 7.41 (d, J = 8.1 Hz, 1 H), 

4.70 (m, 2 H), 4.12 (dd, J = 15.7, 7.3 Hz, 1 H), 3.77 (m, 2 H), 3.51 (s, 1 H), 3.23 (dt, J = 14.3, 7.0 Hz,1 H), 

2.91 (m, 2 H), 2.76–1.68 (m, 2 H), 2.39–2.24 (m, 2 H), 2.17–1.59 (m, 2 H), 2.12 (m, 1 H), 1.64 (m, 2 H), 

1.16 (d, J = 6.8 Hz, 3 H), 0.89–0.75 (d, J = 6.1 Hz, 6 H). 
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13C NMR (125 MHz, DMSO-d6) δ: 175.3, 150.9, 144.6, 139.3, 135.0, 130.3, 129.9, 128.6(d, JC-F = 11.65 Hz), 

126.9, 126.9, 126.4 (q, JC-F = 222.65 Hz), 123.6, 123.3 120.1, 60.0, 57.7, 55.7, 47.8, 42.8, 38.5, 37.2, 36.6, 

32.9, 29.9, 28.8, 28.8, 20.9, 18.3, 18.3 

HRMS calcd for (C29H34BrF3N2O) [M + H]+ 563.1879, found 563.1857. 

SFC chiral purity: 95.3% ee. 

37d = [α]D 
20 = - 0.9 (c = 0.9, EtOH). 

5-bromo-3-methyl-2,3-dihydro-1H-inden-1-one (42).13 In a 50 mL round-bottom flask NaCl (3.7 g, 63.0 
mmol) and AlCl3 (15.0 g, 115 mmol) were loaded and heated at 130 °C until completely melted. Next, 4`-
bromo-4-chloro-butyrophenone (41) (3.0 g, 11.5 mmol) was added and the reaction mixture was heated 
at 180 °C for 30 min. After cooling to room temperature, the reaction mixture was slowly poured on an 
ice/1N HCl mixture – an exothermic reaction was observed. The reaction mixture was extracted with 
DCM, dried with MgSO4 and the organic solvent was evaporated to yield 2.35 g (yield 91%, with 90% 
purity) of light brown crystals which were used in the next step without purification. 1H NMR (400 MHz, 
CDCl3) δ: 7.70 (s, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 3.50–3.40 (m, 1H), 2.96 (ABX, J = 
19.2 Hza, J = 7.6 Hzb, 1H), 2.30 (ABX, J = 18.8 Hza, J = 3.6 Hzb, 1H), 1.43 (d, J = 7.2 Hz, 3H). 
((6-bromo-5-methoxy-1H-inden-3-yl)oxy)(tert-butyl)dimethylsilane (44). In a 25 mL round–bottom flask 
5-bromo-6-methoxy-2,3-dihydro-1H-inden-1-one (43) (0.96 g, 4.0 mmol) was dissolved in 8 mL of 
toluene and cooled to 0 °C. TBDMS-Cl solution in toluene (1.95 mL, 6.5 mmol) was added, followed by 
dropwise addition of DBU (1.12 mL, 7.5 mmol). The reaction mixture was stirred at 0 °C for 10 min and 
continued to be stirred at room temperature for 7 days. The reaction mixture was extracted with 
Et2O/H2O, dried with MgSO4, and evaporated. Yield = 1.40 g (98%), which was used in the next step 
without purification. 1H NMR (400 MHz, CDCl3) δ: 7.55 (s, 1H), 6.94 (s, 1H), 5.47 (t, J = 2.4 Hz, 1H), 3.96 
(s, 3H), 3.22 (d, J = 2.4 Hz, 2H), 1.05 (s, 9H), 0.29 (s, 6H). 
5-bromo-6-methoxy-3-methyl-2,3-dihydro-1H-inden-1-one (45). In a 20 mL reaction tube a 2 M solution 
of LDA (0.6 mL, 1.2 mmol) in THF/heptane/ethylbenzene was mixed with 5 mL of dry THF. The reaction 
mixture was cooled down to –78 °C and compound 44 (0.35 g, 1 mmol) (dissolved in 1 mL of dry THF) 
was added. The reaction mixture was warmed to –35 °C during 1 h and then cooled back to –78 °C. 
Methyl iodide (0.08 mL, 1.3 mmol) was added and the reaction mixture was warmed to room 
temperature over 2 h and left stirring overnight. 37% HCl in water (0.27 mL, 3.2 mmol) was added and 
this mixture was stirred for 3 h. The reaction mixture was extracted with DCM/H2O, dried with MgSO4, 
and evaporated. The product was purified by column chromatography with DCM as eluent. Yield = 0.21 
g (82%). 1H NMR (400 MHz, CDCl3) δ: 7.61 (s,1H), 7.03 (s, 1H), 3.83 (s, 3H), 3.35 – 3.25 (m, 1H), 2.85 
(ABX, J = 18.8 Hz

a
, J = 7.6 Hz

b
, 1H), 2.18 (ABX, J = 19.2 Hz

a
, J = 3.2 Hz

b
, 1H), 1.29 (d, J = 7.2 Hz, 3H). 

5-bromo-6-methoxy-3-ethyl-2,3-dihydro-1H-inden-1-one (46). In a 20 mL reaction tube a 2 M solution of 
LDA (0.6 mL, 1.2 mmol) was dissolved in 5 mL of dry THF. The reaction mixture was cooled down to –78 
°C and compound 44 (0.35 g, 1 mmol) (dissolved in 1 mL of dry THF) was added. The reaction mixture 
was warmed to –35 °C during 1 h and then cooled back to –78 °C. Ethyl iodide (0.10 mL, 1.3 mmol) was 
added and the reaction mixture was warmed to room temperature during 2 h and left stirring overnight. 
37% HCl in water (0.27 mL, 3.2 mmol) was added and stirred for 3 h. The reaction mixture was extracted 
with DCM/H2O, dried with MgSO4, and evaporated. The product was purified by column 
chromatography with DCM as eluent. Yield = 0.24 g (89%). 1H NMR (400 MHz, CDCl3) δ: 7.67 (s,1H), 7.11 
(s, 1H), 3.88 (s, 3H), 3.35–3.25 (m, 1H), 2.81 (ABX, J = 19.2 Hza, J = 7.2 Hzb, 1H), 2.32 (ABX, J = 19.2 Hza, J = 
3.2 Hzb, 1H), 1.95–1.85 (m, 1H), 1.55–1.45 (m, 1H), 0.93 (t, J = 7.2 Hz, 3H). 
(1S)-5-bromo-3-methyl-2,3-dihydro-1H-inden-1-ol (47). In a 50 mL round bottom flask under N2 

atmosphere, (R)-(+)-2-methyl-CBS-oxazaborolidine catalyst (73.9 mg, 0.27 mmol, 1 M in toluene) in 
anhydrous toluene (5 mL) was added to N,N-diethylaniline borane (1.58 mL, 8.88 mmol) at room 
temperature (25°C). To this solution 42 ( 0.50 g, 2.22 mmol) in toluene (20 mL) was added dropwise over 
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5 h, and the resulting mixture was stirred overnight at room temperature (25°C). Reaction was 
monitored by reverse phase UPLC (tR : 0.59). The reaction mixture was carefully quenched with 
methanol (5 mL) and 1 M HCl (1 mL) and extracted with ethyl acetate (4 × 50 mL). The combined organic 
layer was washed with brine, dried over Na2SO4, and concentrated in vacuo. The white residue was 
purified by flash chromatography (0-30 % ethyl acetate/hexanes) to afford the white crystalline solid 47 
as a racemic mixture of diastereomers in a ratio 3:5. Yield = 0.49 g, 2.16 mmol (97%). 1H NMR (400 MHz, 
CDCl3) δ: 7.41–7.32 (m, 3H), 7.29–7.22 (m, 3H), 5.20 (dd, J = 6.4, 3.1 Hz, 1H), 5.16–5.08 (m, 1H), 3.43 (h, J 
= 7.0 Hz, 1H), 3.05 (h, J = 7.1 Hz, 1H), 2.76 (dt, J = 12.7, 7.1 Hz, 1H), 2.25 (ddd, J = 13.6, 7.4, 3.1 Hz, 1H), 
1.98 (dt, J = 13.4, 6.6 Hz, 1H), 1.49 (ddd, J = 12.7, 8.9, 7.6 Hz, 1H), 1.34 (d, J = 6.8 Hz, 3H), 1.26 (dd, J = 
7.1, 2.4 Hz, 2H). HPLC (Chiralpak AD-H column, 10% MeOH with 20 nM NH3, 90% CO2, 3.0 mL/min, 254 
nm, ee = 95.8%. UPLC-MS: 209+, 211+; tR: 1.91 min. 
(1R)-5-bromo-3-methyl-2,3-dihydro-1H-inden-1-ol (48). In a 50 mL round bottom flask under N2, (S)-(+)-
2-methyl-CBS-oxazaborolidine catalyst (73.9 mg, 0.27 mmol, 1 M in toluene) in anhydrous toluene (5 
mL) was added to N,N-diethylaniline borane (1.58 mL, 8.88 mmol) at room temperature (25°C). To this 
solution 42 ( 0.50 g, 2.22 mmol) in toluene (20 mL) was added dropwise over 5 h, and the resulting 
mixture was stirred overnight at room temperature (25°C). The reaction was monitored by reverse 
phase UPLC (tR : 0.58). The reaction mixture was carefully quenched with methanol (5 mL) and 1 N HCl (1 
mL) and then extracted with ethyl acetate (4 × 50 mL). The combined organic layer washed with brine, 
dried over Na2SO4, and concentrated in vacuo. The white residue was purified by flash chromatography 
(0-30 % ethyl acetate/hexanes) to afford the white crystalline solid 48 as a racemic mixture in a ratio 
(3:5). Yield = 0.50 g, 2.20 mmol (99%). 1H NMR (400 MHz, CDCl3) δ: 7.37 (dddt, J = 8.4, 5.6, 2.8, 1.2 Hz, 
4H), 7.28–7.22 (m, 2H), 5.20 (dd, J = 6.4, 3.1 Hz, 1H), 5.12 (t, J = 7.3 Hz, 1H), 3.43 (h, J = 7.0 Hz, 1H), 3.12–
2.97 (m, 1H), 2.76 (dt, J = 12.7, 7.1 Hz, 1H), 2.25 (ddd, J = 13.6, 7.4, 3.1 Hz, 1H), 1.98 (dt, J = 13.4, 6.6 Hz, 
1H), 1.49 (ddd, J = 12.7, 8.9, 7.7 Hz, 1H), 1.34 (d, J = 6.8 Hz, 3H), 1.26 (d, J = 7.0 Hz, 2H). HPLC (Chiralpak 
AD-H column, 10% MeOH with 20 nM NH3, 90% CO2, 3.0 mL/min, 254 nm, ee = 96.2%. UPLC-MS: 209+, 
211+; tR: 1.92, 1.95 min. 
N-((1R,3S)-3-isopropyl-3-(7-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)cyclopentyl)-2-

nitrobenzenesulfonamide (49). In a 50 mL round bottom flask, to a solution of amine 6 (1.00 g, 2.82 

mmol) in anhydrous CH2Cl2 (10 mL) was added 2-nitrobenzenesulfonyl chloride (0.75 mg, 3.38 mmol) 

followed by DIPEA (1.70 mL, 9.73 mmol) and stirred at room temperature (25°C) for 1 h. The reaction 

was monitored by reverse phase UPLC (tR : 0.77). The reaction mixture was concentrated in vacuo to 

obtained the crude product (yellow oil). The product was purified by flash chromatography (40-80 % 

ethyl acetate/hexanes) to afford the light yellow foamy solid 49. Yield = 1.50 g (98%).
1
H NMR (400 MHz, 

CDCl3) δ: 8.16–8.09 (m, 1H), 7.82–7.75 (m, 1H), 7.75–7.64 (m, 2H), 7.48–7.40 (m, 1H), 7.36 (s, 1H), 7.27 

(d, J = 4.9 Hz, 1H), 6.05 (s, 1H), 4.81 (s, 1H), 4.71 (d, J = 16.4 Hz, 1H), 3.94 (d, J = 16.7 Hz, 1H), 3.81 (dq, J = 

8.7, 4.3 Hz, 1H), 3.76–3.64 (m, 1H), 2.90 (tt, J = 16.6, 6.4 Hz, 2H), 2.40 (d, J = 12.9 Hz, 1H), 2.14 (pent., J = 

6.7 Hz, 1H), 1.82 (d, J = 16.1 Hz, 3H), 1.67 (dd, J = 8.6, 4.5 Hz, 1H), 1.58–1.40 (m, 1H), 0.87 (d, J = 6.7 Hz, 

3H), 0.76 (d, J = 6.7 Hz, 3H). UPLC-MS: 540+; tR: 2.85 min. 

N-((1R)-5-bromo-3-methyl-2,3-dihydro-1H-inden-1-yl)-N-((1R,3S)-3-isopropyl-3-(7-(trifluoromethyl)-

1,2,3,4-tetrahydroisoquinoline-2-carbonyl)cyclopentyl)-2-nitrobenzenesulfonamide (50). In a 100 mL 

round-bottom flask, to a cooled solution (–78 °C, acetone/dry ice bath) of PPh3 (1.23 g, 4.69 mmol) in 

anhydrous THF (20 mL) was added DEAD (0.82 g, 4.69 mmol) and stirred for 30 min, followed by 

addition of 47 (0.40 g, 1.76 mmol). The pink colored reaction mixture was allowed to stir for 30 min 

maintaining the temperature at –78 °C. To this solution, 49 (0.63 g, 1.17 mmol) was added. The reaction 

mixture was stirred for 6 h at –78 °C and allowed to warm up to room temperature overnight. The 



SAR MEET SKR: DEVELOPMENT OF NEW CCR2 ANTAGONISTS  

113 

reaction was monitored by reverse phase UPLC (tR : 0.93). The reaction mixture was concentrated in 

vacuo to obtained a pink-colored residue. The crude residue was purified by flash chromatography (0-10 

% CH2Cl2/MeOH) to afford the light pink foamy solid 50 ( purity 80%). Yield = 1.00 g (<100%). UPLC-MS: 

540+; tR: 3.53 min. Without further purification, 50 was taken forward in the following deprotection 

step.  

N-((1S)-5-bromo-3-methyl-2,3-dihydro-1H-inden-1-yl)-N-((1R,3S)-3-isopropyl-3-(7-(trifluoromethyl)-

1,2,3,4-tetrahydroisoquinoline-2-carbonyl)cyclopentyl)-2-nitrobenzenesulfonamide (51). In a 100 mL 

round-bottom flask, to a cooled solution (–78 °C, acetone/ dry ice bath) of PPh3 (1.23 g, 4.69 mmol) in 

anhydrous THF (20 mL) was added DEAD (0.82 g, 4.69 mmol) and stirred for 30 min, followed by 

addition of 48 (0.40 g, 1.76 mmol). The pink colored reaction mixture was allowed to stir for 30 min 

maintaining the temperature at –78 °C. To this solution, 49 (0.63 g, 1.17 mmol) was added. The reaction 

mixture was stirred for 6 h at –78 °C and allowed to warm up to room temperature overnight. The 

reaction was monitored by reverse phase UPLC (tR : 0.93). The reaction mixture was concentrated in 

vacuo to obtained a pink color residue. The crude residue was purified by flash chromatography (0-10 % 

CH2Cl2/MeOH) to afford the light pink foamy solid 55 ( purity 80%). Yield = 1.00 g (<100%). UPLC-MS: 

540+; tR: 3.53 min. Without further purification, 51 was taken forward in the following deprotection 

step.  

X_Ray Data 

Experimental Summary for (15a) 

The single crystal X-ray diffraction studies were carried out on a Bruker Kappa APEX-II CCD 

diffractometer equipped with Mo K
α
 radiation (λ = 0.71073 Å). A 0.30 x 0.25 x 0.20 mm colorless block 

was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K 

using φ and ω scans. Crystal-to-detector distance was 40 mm and exposure time was 5 seconds per 

frame using a scan width of 0.5°. Data collection was 98.6% complete to 25.00° in θ. A total of 6816 

reflections were collected covering the indices, -7<=h<=4, -12<=k<=19, -30<=l<=25. 4615 reflections 

were found to be symmetry independent, with a R
int

 of 0.0235. Indexing and unit cell refinement 

indicated a primitive, orthorhombic lattice. The space group was found to be P212121. The data were 

integrated using the Bruker SAINT software program and scaled using the SADABS software program. 

Solution by direct methods (SHELXS) produced a complete phasing model consistent with the proposed 

structure. All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-97). 

All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their 

parent atom using the appropriate HFIX command in SHELXL-97. 

Biology 
Chemicals and reagents. 125I-CCL2 (2200 Ci/mmol) was purchased from Perkin-Elmer (Waltham, MA). 
INCB3344 was synthesized as described previously.25, 26 [3H]INCB3344 (specific activity 32 Ci mmol-1) was 
custom-labeled by Vitrax (Placentia, CA) for which a dehydrogenated precursor of INCB3344 was 
provided. TangoTM CCR2-bla U2OS cells stably expressing human CCR2 were obtained from Invitrogen 
(Carlsbad, CA).  
Cell culture and membrane preparation. U2OS cells stably expressing the human CCR2 receptor 
(Invitrogen, Carlsbad, CA) were cultured in McCoys5a medium supplemented with 10% fetal calf serum, 
2 mM glutamine, 0.1 mM non-essential amino acids (NEAA), 25 mM HEPES, 1 mM sodium pyruvate, 100 
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IU/ml penicillin, 100 µg/ml streptomycin, 100 µg/ml G418, 50 µg/ml hygromycin and 125 µg/ml zeocin 
in a humidified atmosphere at 37°C and 5% CO2. Cell culture and membrane preparation were 
performed as described previously.

16
  

125I-CCL2 displacement assay. Binding assays were performed as described previously.16  
[3H]INCB3344 dual point competition association assay. Kinetic rate index (KRI) values of unlabeled 
ligands were determined using the dual-point competition association assay as described previously.10 
[3H]INCB3344 competition association assay. The kinetic parameters of unlabeled ligands were 
determined using the competition association assay described earlier by our group.10 
Data Analysis. All experiments were analyzed using the nonlinear regression curve fitting program Prism 
5 (GraphPad, San Diego, CA). For radioligand displacement data Ki values were calculated from IC50 
values using the Cheng and Prusoff equation.27  

Abbreviations 
Boc, tert-butyloxycarbonyl; CCL2, chemokine ligand 2; CCR2, chemokine receptor 2; CHAPS, 3-[(3-
cholamidopropyl)dimethylammonio]-1-propanesulfonate; DBU, 1,8-diazabicycloundec-7-ene; DEA, 
diethylamine; DEAD, Diethyl azodicarboxylate; DCM, dichloromethane; DiPEA, N,N-
diisopropylethylamine; DMAP, N,N-dimethylaminopyridine; DMF, dimethylformamide; DPM, 
disintegrations per minute; ESI, electrospray ionisation; FTMS, fourier transform mass spectrometer; 
HEPES, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid; hERG, human Ether-à-go-go-Related Gene; 
HPLC, high-performance liquid chromatography; HRMS, high resolution mass spectral analyses; IPA, iso-
propanol; KRI, kinetic rate index; LDA, lithium diisopropylamide; LC-MS, liquid chromatography – mass 
spectrometer; NEAA, non-essential amino acids; NMP, N-methylpyrrolidone; NMR, nuclear magnetic 
resonance; PEI, polyethylenimine; PEMB, 5-ethyl-2-methylpyridine borane; PyBrOP, bromo-tris-
pyrrolidino phosphoniumhexafluorophosphate; RT, residence time; SAR, structure-affinity relationships; 
SFC, supercritical fluid chromatography; SKR, structure-kinetic relationships; TBDMS-Cl, tert-
butyldimethylsilyl chloride; TFA, trifluoroacetic acid; THF, tetrahydrofuran; TLC, thin layer 
chromatography; TMS, tetramethylsilane; Tris, tris(hydroxymethyl)aminomethane; U2OS, human bone 
osteosarcoma cells; UPLC, ultra performance liquid chromatography; UV, ultraviolet. 
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ABSTRACT 

Preclinical animal models suggest that the CCL2/CCR2 axis plays an important role in the 

development and maintenance of inflammatory disease states (e.g., multiple sclerosis, 

atherosclerosis, asthma, diabetes, and neuropathic pain), which could be treated through 

inhibition of the CCR2 receptor. However, until now all high–affinity CCR2 antagonists that 

were advanced into clinical trials have failed due to the lack of efficacy. We have previously 

described a new approach for the design of CCR2 antagonists by the use of structure–kinetics 

relationships (SKR). Here we report new findings on the SAR and SKR of the reference 

compound MK-0483, its diastereomers, and structural analogues of it as CCR2 antagonists. On 

the “right–hand” side of the molecules the 7-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline 

group generally yields better affinity and longer drug–target residence time (RT). On the 

“left–hand” side SAR of the phenyl ring suggests that lipophilic hydrogen bond accepting 

substituents on the 3-position are favourable. However, SKR suggests that a lipophilic group 

with a certain size is desired (e.g. 3-Br, 3-i-Pr), as present in compounds 21 and 22 (Ki = 2.8 

and 3.6 nM, RT = 243 and 266 min, respectively). Alternatively a shielded hydrogen bond can 

also prolong the residence time; this was most prominently observed in MK-0483 (Ki = 1.2 

nM, RT = 724 min) and its close analogue 26 (Ki = 7.8 nM) with a short residence time.  
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INTRODUCTION 

Chemotactic cytokines (chemokines) play a vital role in the activation and regulation of 

leukocyte trafficking1 and are involved in immunomodulation and host–defence 

mechanisms.2, 3 Their chemoattractant activity is mediated through activation of cell–surface 

seven–transmembrane spanning G protein–coupled receptors (GPCRs). It seems that most of 

the chemokines are promiscuous in their actions since they can bind to numerous receptors.
4
 

However, monocyte chemoattractant protein-1 (MCP-1/CCL2) only binds and activates the 

CC-chemokine receptor 2 (CCR2) and the axis of CCL2/CCR2 has been suggested to be 

involved in various autoimmune and inflammation-associated diseases (e.g. multiple sclerosis, 

atherosclerosis, asthma, diabetes, and neuropathic pain).
5-9

  

As a consequence there has been an increasing interest in advancing CCR2 receptor 

antagonists into clinical studies. However, thus far, high–affinity CCR2 antagonists have failed 

to show efficacy in phase 2 clinical trials. Recently several reviews10-12 have suggested to 

incorporate an additional parameter coined “drug–target residence time (RT)” in the early 

drug discovery process. RT is thought to be correlated to drug efficacy, and could serve as an 

early criterion to diminish the attrition rate in later stages of drug development. We have 

previously described how the implementation of this additional parameter in the hit–to–lead 

optimization process helped us to distinguish between different structures for optimization.13 

Instead of proceeding with the highest affinity hit (1) (Figure 1) having a very short RT (a close 

analogue of MK-0812, which failed to show efficacy in clinical trials) we continued with a 

structure having moderate affinity only but with longer RT on the CCR2 receptor. 
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Figure 1. Structures of CCR2 antagonists 1, 2,13 MK-0812 (Merck`s clinical candidate) 14 and MK0483 
(Merck`s back-up clinical candidate).15 

In the optimization process we improved both parameters simultaneously yielding a high–

affinity and long RT CCR2 antagonist (2). However, the Merck research group has also 

reported on the discovery of MK-0483 (3c) a potent and orally bioavailable CCR2 and CCR5 

dual antagonist, having a very slow dissociation halflife from the CCR2 receptor (T1/2 > 9 h).15 

Struthers and Pasternak14 described MK-0483 (3c) as the backup compound of the clinical 

candidate MK-0812, however, after the failure of MK-0812 in the clinical trials there is no 

information on further advancement of MK-0483 (3c) despite its slow dissociation kinetics.  

In this study, we used the knowledge from our previous findings
13

 to evaluate the binding 

kinetics of MK-0483 (3c), its diastereomers (3a, b, d) and structural analogues that we 

synthesized (4 - 27) and to determine the structure–kinetics relationships (SKR) on the CCR2 

receptor for this class of compounds. In a step–by–step manner we classified substituents on 

the 4 position of the piperidine ring to assess their importance in binding kinetics. In addition, 

we evaluated different amide substituents on the right–hand side of the molecule for the 

same purpose.  
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RESULTS AND DISCUSSION 

Chemistry 

Synthesis of MK-0483 (3c) and its diastereomers (3a, b, d) was achieved following the 

synthetic approach reported by Pasternak et.al.
15

 For the synthesis of MK-0483 analogues (4 - 

18) we designed a new synthetic route, which allowed us to incorporate different 

substituents directly on the cis-cyclopentane isomer in the one before last step of the 

synthesis (Scheme 1). 

Scheme 1.a  

 
a
Reagents and conditions: a) K2CO3, EtOH/H2O (3:1), reflux, 5 h, (25-72%; b) i) LDA, dry THF, –78 °C → –20 °C; ii) N-

phenyl-bis(trifluoromethanesulfonimide), –78 °C → room temperature, (21-42%); c) corresponding arylboronic acid, 
LiCl, 2 M Na2CO3(aq), Pd(PPh3)4, DME, 90 °C, 3.5 h, (20-99%); d)Pd/C, Pd(OAc)2, H2 1 atm, MeOH or THF, (9-70%); e) 
ester 16, 4 M LiOH(aq), H2O/EtOH, 50 °C, 1.5 h, (53%). For designation of R1, see Table 2 and 3. 

We started with a sequenced Hoffman elimination and conjugated addition16 of N,N-ethyl-

methyl-4-oxo-piperidinium iodide17 (28) to amines 29 and 30, which were obtained following 

the synthetic approaches described earlier by our group.
18

 Piperidones 31 and 32 were 

deprotonated with lithium diisopropylamide (LDA) and subsequently treated with N-phenyl-

bis(trifluoromethanesulfonimide) to generate triflates 33 and 34. These triflates were used in 

a Suzuki–coupling with different arylboronic acids, and subsequent hydrogenation of the 
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formed olefins (17, 35 - 46) resulted in the final compounds (4 - 14, 16, 18) with the desired 

groups on the 4 position of the piperidine ring. Additional saponification of compound 16 

yielded benzoic acid 15. Any attempts to introduce halogen substituents on the aryl group using 

this synthetic route resulted in dehalogenation products during the hydrogenation step. We 

argued that the hydrogenation could be more selective if less bulky structures were used. 

Therefore we decided to reverse the synthetic route and modify the left–hand side of the 

molecules prior to peptide coupling on the right–hand side (Scheme 2). The synthesis of 

(1S,3R)-methyl-3-((tert-butoxycarbonyl)amino)-1-isopropylcyclopentanecarboxylate 47 was 

achieved following the synthetic approach reported by Kothandaraman et al.19 The TFA 

mediated N-Boc deprotection yielded amine 48, which was used in a coupling reaction with the 

piperidone salt 28. The coupling was performed in several smaller batches in parallel as big 

scale reactions resulted in poor yields. Subsequently the triflate 50 was generated form the 

piperidone 49 under the same conditions as for compounds 33 and 34. The triflate 50 was 

coupled with corresponding boronic acids and the obtained olefins were hydrogenated using 

PtO2. In this case only traces of the dehalogenated products were observed. 

Scheme 2.a 

 
 a

Reagents and conditions: a) TFA, DCM, 2 h, room temperature (98%); b) K2CO3, EtOH/H2O (3:1), reflux, 3 h (56%); c) 
i) LDA, dry THF, –100 °C → –40 °C; ii) N-phenyl-bis(trifluoromethanesulfonimide), –80 °C → room temperature (67%); 
d) corresponding arylboronic acid, LiCl, 2 M Na2CO3(aq), Pd(PPh3)4, DME, 90 °C, 3.5 h; e)PtO2, H2 2 atm, THF, room 
temperature, 10-15 min; f) 4 M LiOH(aq), H2O/EtOH, reflux, 3 h; g) 7-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline 
hydrochloride, PyBrOP, DIPEA, DMAP, DCM, room temperature, 48 h, (yield in four steps = 0.8-9%). For designation 
of R, see Table 3. 
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Next, a saponification of the esters and peptide coupling under bromo-tris-pyrrolidino 

phosphoniumhexafluorophosphate (PyBroP) conditions yielded final compounds 20, 24, and 

25. However, this approach gave poor overall yields and was abandoned for further synthesis. 

Recently, Allwood et al.
20

 described a new, metal–free reductive coupling of saturated 

heterocyclic sulfonylhydrazones with boronic acids as an alternative to the tedious step–by–

step route depicted in scheme 1. Analogous to the method described by Allwood et al., the 

tosylhydrazone 52 was obtained in a quantitative yield from piperidone intermediate 32 and 

sulfonylhydrazide 51 (Scheme 3).20 Subsequently, the reductive coupling of the corresponding 

arylboronic acids and the tosylhydrazone 52 resulted in the desired products, which were 

purified by preparative HPLC yielding the final compounds 19, 21 – 23, 27 as TFA salts. The 

methylester 27 was saponified to give the carboxylic acid derivative 26 as a white HCl salt. 

Scheme 3.a 

 

a
Reagents and conditions: a) MeOH, room temperature, 4 h (100%); b) corresponding boronic acid, Cs2CO3, dry 1,4-

dioxane, 100 °C, 18 h, (8-23%); c) ester 27, 4 M LiOH(aq), H2O/EtOH, 50 °C, 2 h, (65%). For designation of R, see Table 3. 

Biology 

To determine their binding affinity all compounds were tested in a 125I-CCL2 radioligand 

displacement assay on U2OS–CCR2 membrane preparations as described previously by our 

group.21 Next to all four MK-0483 diastereomers compounds with affinities lower than or 
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equal to 100 nM were subsequently screened in a [3H]INCB3344 dual point competition 

association assay on U2OS–CCR2 membrane preparations to determine their kinetic–rate–

index (KRI), which served as an indicator for the magnitude of the RT. Compounds with a KRI 

>1 were finally tested in the full competition association assay to determine the RT, as 

described previously by our group.
18

 

Structure–Affinity Relationships and Structure–Kinetics Relationships 

The 3-piperidinylcyclopentanecarboxamide scaffold has been extensively evaluated by the 

Merck research group for CCR2 receptor binding.
22-24

 All these efforts resulted in the 

discovery of MK-0483, which, upon tritiation, served as a radioligand. This [
3
H]–MK-0483 

bound to monocytes and appeared to have very slow receptor dissociation kinetics.15 We 

decided to resynthesize MK-0483 and its diastereomers and to evaluate these four 

compounds in our various binding assays on the CCR2 receptor to determine the structural 

components responsible for both the high affinity and the long RT of MK-0483. Following the 

synthetic approach reported by Pasternak et.al.15 we were able to generate the same four 

diastereomers and assigned them 3a-d according to the sequence of elution form the 

preparative chiral HPLC, respectively. First, we determined their affinity in a 125I-CCL2 

competition displacement assay in which the trans-cyclopentane isomers (3a and 3b) showed 

only moderate affinity (Ki = 59 and 383 nM, respectively) (Table 1). However, the cis-

cyclopentane isomers (3c and 3d) had high affinity for the CCR2 receptor (Ki = 1.2 and 11 nM, 

respectively) which is in accordance with the reported values.15 Next, we evaluated all four 

diastereomers in the competition–association assay as this could help us to understand the 

importance of 3D conformation for SKR. 
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Table 1. Binding affinities, association and dissociation rate constants, and residence times of MK-0483 
and its diastereomers 

 
Nr. Ki (nM) ± SEM 

(n = 3) 
kon (nM–1 min–1) koff (min–1) RT (min) 

3a 59 ± 2 0.00044 ± 0.0004 0.0028 ± 0.0004 357 ± 51 

3b 383 ± 19 0.000058 ± 0.000007 0.0037 ± 0.0007 270 ± 51 

3c, (MK-0483) 1.2 ± 0.1 0.020 ± 0.002 0.0014 ± 0.00004 724 ± 20 

3d 11 ± 2.6 0.013 ± 0.001 0.018 ± 0.002 56 ± 6 

Surprisingly, both trans-isomers (3a and 3b), despite their moderate affinity, had similar and 

very slow dissociation characteristics translating in residence times longer than 4 hours (RT = 

357 and 270 min, respectively) (Table 1), whereas the association rate constants displayed a 

7-fold difference (kon = 0.00044 and 0.000058 nM–1 min–1, respectively) causing also the 

difference in affinity. The opposite was observed in the case of cis-isomers 3c and 3d. For 

these compounds, the association rate constants were similar and the dissociation rate 

constants showed a more than 12-fold difference, yielding residence times of 724 (3c) and 56 

min (3d), respectively, which is also in line with the reported halflife value for MK-0483 (3c) by 

the Merck researchers.
15

 Apparently, the cis-isomers have the best conformation for the 

eventual binding state on the receptor (affinity), reach that state quickly as can be gauged 

from their relatively fast kon values, and stay there for prolonged times (Table 1). The only 

difference for the trans-isomers is their relatively slow association rate, but still they are 

capable of binding to the CCR2 receptor, and display long residence times as well.  
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Bis(trifluoromethyl)benzyl Derivatives 4-16 

From the above we chose to continue with cis-analogues of MK-0483 and decided to 

synthesize several new analogues of MK-0483 and a small number of known15, 24 compounds 

to describe the SAR and SKR for the CCR2 receptor in this series of structures. In the first array 

we generated the more flexible (on the right–hand side) bis(trifluoromethyl)benzyl 

derivatives with different substituents on the aromatic ring connected to the piperidine (4-16) 

(Table 2). The unsubstituted phenyl compound (4) had an affinity of 1.5 nM for CCR2, which 

was best in class. However, in the dual–point competition–association assay it yielded a KRI 

below unity (KRI = 0.7), indicative of a short RT. Incorporation of the 2-methoxy group 

(compound 5) resulted in a decrease of both the affinity and the KRI value (Ki = 28 nM, KRI = 

0.6). The 3-methoxy group (compound 6) yielded a small regain in the affinity (correlating 

with the reported values)24 and the KRI value (Ki = 5.9 nM, KRI = 0.7). However, the 4-methoxy 

derivative (7), despite its moderate affinity (Ki = 29 nM), had a KRI value of 0.8. The double 

substitution of 3,4-di-methoxy (compound 8) resulted in a big decrease in both the affinity 

and the KRI value. Closing the methoxy groups to yield a benzo[1,3]dioxole ring (compound 9) 

yielded a minor improvement in affinity, however, it did not enhance the KRI value (KRI = 0.6). 

Lipophilic groups on the 4 position (e.g. 4-OCF3, 4-t-Bu) resulted in an even bigger decrease of 

the affinity (compound 10, 4-OCF3) or a complete loss of the affinity (compound 11, 4-t-Bu). 

The hydrophilic 4-hydroxy group (compound 12) boosted affinity somewhat but still had a 

lower KRI value compared to the 4-methoxy derivative (7). 

Table 2. Binding affinities and KRI values of compounds 4-16. 

 

 
Nr. R Ki (nM) ± SEM (n = 3)  KRI (n=2) 

4 H 1.5 ±0.1 0.7 (0.6/0.7) 

5 2-OMe 28 ± 2 0.6 (0.5/0.7) 

6 3-OMe 5.9 ± 1.7 0.7 (0.6/0.8) 

7 4-OMe 29 ± 2 0.8 (0.7/0.9) 

8 3,4-di-OMe 48 ± 1 0.6 (0.5/0.6) 
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9 3,4-OCH2O- 17 ± 3 0.6 (0.6/0.7) 

10 4-OCF3 122 ± 20 - 

11 4-tBu 7%
a
 - 

12 4-OH 17 ± 2 0.6 (0.6/0.6) 

13 H 5.4 ± 0.9 0.6 (0.6/0.6) 
14 4-OMe 76 ± 14 0.5 0.5/0.6) 

15 3-COOH 22 ± 6 0.8 (0.8/0.8) 

16 3-COOMe 7.9 ± 1.6 0.6 (0.5/0.7) 
a
Percent displacement at 1 µM 

125
I-CCL2. 

Comparing the 3-pyridine (13) with phenyl ring (4) also resulted in a minor decrease in affinity 

(correlating with the reported values)
24

 and the KRI value (Ki = 5.4 nM, KRI = 0.6). The 

combination of 4-methoxy and 3-pyridine (compound 14) yielded a 50-fold decrease in 

affinity compared to 4 and the smallest KRI value observed in this study (KRI = 0.5). 

Apparently, any substitution on the phenyl ring is not favorable and results in a decrease in 

affinity compared to the unsubstituted phenyl ring (4), although the 3-substituents are 

tolerated more than others. The evaluation of direct analogues of MK-0483, such as the 3-

carboxylic acid (compound 15), resulted in a 14-fold decrease in affinity (Ki = 22 nM, in 

agreement with the reported values)24 compared to 4, however, the KRI value increased to 

0.8, whereas the methyl ester (16) had better affinity than the acid (Ki = 7.9 nM), but a smaller 

KRI value. 

7-(Trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline Derivatives 17-27 

The rigidification on the right–hand side into the 7-(trifluoromethyl)-1,2,3,4-

tetrahyroisoquinoline group provided compounds 17-27. The unsubstituted phenyl 

intermediate (olefin 17) had a 14-fold lower affinity than its saturated analogue 18 and two-

fold shorter RT (Table 3) indicating that the phenyl ring should be positioned in an angle to 

the piperidine ring for optimal binding. 
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Table 3. Binding affinities, KRI values and residence times of compounds 17-27. 

 
Nr. R Ki (nM) ± SEM (n = 3)  KRI (n=2) RT (min) 

17 - 70 ± 25 1.1 (1.1/1.0) 38 ± 4 

18 H 4.4 ± 0.7 1.1 (1.2/1.0) 91 ± 25 

19 3-OMe 0.95 ± 0.22 0.9 (0.8/0.9) - 

20 3-Cl 2.6 ± 0.3 1.0 (0.9/1.2) 200 ± 29 
21 3-Br 2.8 ± 0.2 1.0 (1.0/1.1) 243 ± 45 

22 3-iPr 3.6 ± 0.4 1.0 (1.0/0.9) 266 ± 48 

23 3-CF3 5.3 ± 0.3 1.0 (0.9/1.1) 158 ± 35 

24 4-Cl 2.0 ± 0.3 0.8 (0.8/0.8) - 

25 4-CF3 7.2 ± 0.2 0.8 (0.8/0.9) - 

26 3-COOH 7.8 ± 1.4 0.7 (0.7/0.7) - 

27 3-COOMe 0.91 ± 0.25 0.8 (0.8/0.8) - 

From the bis(trifluoromethyl)benzyl series (Table 2) we learned that substituents on the 3 

position were better tolerated so therefore we focused on this position in this array of 

compounds. The 3-methoxy derivative (19) had excellent affinity (Ki = 0.95 nM), but the KRI 

was below unity. Changing from 3-methoxy to 3-chloro (20) resulted in a small decrease in 

affinity, but an increase in RT. The 3-bromo derivative (21) had similar affinity as 3-chloro, but 

a longer RT. We have previously reported a similar correlation in another series of CCR2 

antagonists where the methoxy substituents yielded the best affinity compounds, while the 

halogen derivatives had a longer RT.13 The 3-isopropyl substituent (22) being similar in size to 

the bromine but having electron donating properties yielded only a minor decrease in the 

affinity and a minor increase in the RT, thus suggesting the importance of the space–filling 

properties of the substituents. The 3-trifluoromethyl derivative (23) (bioisoster of chlorine) 

showed similar results as 20 (3-Cl). In our effort to increase the RT we also explored the 4 

position by introducing the lipophilic 4-chloro (24) and 4-trifluoromethyl (25) groups. 

However, despite the good affinity, both compounds had KRI values below unity (KRI = 0.8 for 

both).  

A direct analogue of MK-0483 with an acid group on the 3 position (26) resulted in a minor 

decrease in affinity (comparable to the reported values),15 but we noticed a substantial 
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decrease in RT (KRI = 0.7). Apparently, either the additional methyl group on the 3 position of 

the piperidine ring, the oxygen atom in the 3,4-dihydro-2H-benzo[e][1,3]oxazine ring or the 

combination of both is responsible for the long residence time of MK-0483. The compound 

with a corresponding methyl ester (27) yielded the best affinity in this study, although it had a 

short RT (Ki = 0.91 nM, KRI = 0.8).  

CONCLUSIONS 

We have evaluated the SAR and SKR of MK-0483 (3c), its diastereomers (3a, b, d) and 

structural analogues (4 - 27) as CCR2 antagonists. On the right–hand side of the molecules a 

rigid 7-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline moiety yields better affinity than the 

more flexible bis(trifluoromethyl)benzyl substituent and generally prolongs the drug–target 

residence time. On the left–hand side SAR of the phenyl ring suggests that lipophilic hydrogen 

bond accepting substituents on the 3 position (e.g. 3-OMe (19), 3-COOMe (27)) are vital for 

improved affinity. However, the SKR suggests that to have long RT a lipophilic group with a 

certain size is desired (e.g. 3-Br (21), 3-i-Pr (22)) or alternatively (in the case of MK-0483 (3c)) 

a carboxylic acid group can be used. However, the acid group per se does not provide the long 

RT for these structures. Possibly the additional methyl group on the piperidine ring (as seen in 

MK-0483 (3c)) provides shielding of a hydrogen bond formed between the acid group and the 

receptor. We have reported similar observations on shielding in another series of CCR2 

antagonists, moreover, a similar idea was put forward by Schmidtke et al.
25

 in calculations on 

hydrogen bond shielding. Likewise, the additional oxygen atom in the 3,4-dihydro-2H-

benzo[e][1,3]oxazine ring of MK-0483 (3c) could make an additional hydrogen bond and 

cause its long RT as the hydrogen bond would be shielded by the ring system itself. In 

conclusion, this study contributes to one of the first detailed structure–kinetics relationships 

for CCR2 antagonists which can help to develop better drug candidates. Moreover, the value 

of the long RT drugs has already been proven on other targets, although only in retrospect.
10

 

From this perspective, MK-0483 (3c) would be a suitable candidate to be deliberately 

advanced into clinical studies due to its long RT. If it failed due to lack of efficacy one could 
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argue that blockade of CCR2 (alone) is not sufficient to treat the many immunological 

disorders that were mentioned in the Introduction. 

EXPERIMENTAL SECTION 

Chemistry  
All solvents and reagents were purchased from commercial sources and were of analytical grade. 
Demineralized water is simply referred to as H2O, because it was used in all cases, unless stated 
otherwise (i.e., brine). 1H and 13C NMR spectra were recorded on a Bruker AV 400 liquid spectrometer 
(1H NMR, 400 MHz; 13C NMR, 100 MHz) at ambient temperature. Chemical shifts are reported in parts 
per million (ppm), are designated by δ, and are downfield to the internal standard tetramethylsilane 
(TMS). Coupling constants are reported in hertz and are designated as J. Analytical purity of the final 
compounds was determined by high-performance liquid chromatography (HPLC) with a Phenomenex 
Gemini 3 µm C18 110A column (50 × 4.6 mm, 3 μm), measuring UV absorbance at 254 nm. The sample 
preparation and HPLC method was as follows: 0.3–0.8 mg of compound was dissolved in 1 mL of a 1:1:1 
mixture of CH3CN/H2O/t-BuOH and eluted from the column within 15 min at a flow rate of 1.3 mL/min. 
The elution method was set up as follows: 1–4 min isocratic system of H2O/CH3CN/1% TFA in H2O, 
80:10:10, from the 4th min, a gradient was applied from 80:10:10 to 0:90:10 within 9 min, followed by 1 
min of equilibration at 0:90:10 and 1 min at 80:10:10. All compounds showed a single peak at the 
designated retention time and are at least 95% pure. Preparative HPLC was performed on a Schimatzu 
HPLC–ultraviolet (UV) system using a Gemini C18 Phenomenex column (100 × 10 mm, 5 µm), and a 
linear gradient from 10 to 90% of mobile phase B was applied, keeping mobile phase C constant at 10%. 
Mobile phase A consisted of H2O, mobile phase B consisted of acetonitrile, and mobile phase C consisted 
of 1% TFA solution in H2O. The flow rate was 5 mL/min. Liquid chromatography–mass spectrometry (LC–
MS) analyses were performed using Thermo Finnigan Surveyor - LCQ Advantage Max LC-MS system and 
a Gemini C18 Phenomenex column (50 × 4.6 mm, 3 µm). The elution method was set up as follows: 1–4 
min isocratic system of H2O/CH3CN/1% TFA in H2O, 80:10:10, from the 4th min, a gradient was applied 
from 80:10:10 to 0:90:10 within 9 min, followed by 1 min of equilibration at 0:90:10 and 1 min at 
80:10:10. Microwave reactions were done using Biotage Initiator microwave synthesizer. Thin-layer 
chromatography (TLC) was routinely consulted to monitor the progress of reactions, using aluminum–
coated Merck silica gel F254 plates. Purification by column chromatography was achieved by use of Grace 
Davison Davisil silica column material (LC60A, 30–200 µm). The procedure for a series of similar 
compounds is given as a general procedure for all within that series, annotated by the numbers of the 
compounds.  
General procedure for the synthesis of compounds 4 – 14, 16. 
In a round–bottom flask a mixture of the corresponding olefin (35 – 46), Pd/C 5% wt (5 mol%) and 
palladium acetate (1.5 mol %) were dissolved in MeOH and stirred overnight with a hydrogen balloon. 
The reaction mixture was filtered through Celite and purified by preparative HPLC purification system. 
(1S,3R)-N-(3,5-bis(trifluoromethyl)benzyl)-1-isopropyl-3-(4-phenylpiperidin-1-yl)cyclopentane-1-
carboxamide (TFA salt) (4). Yield = 69%, 1H NMR (400 MHz, CDCl3) δ: 10.62 (s,1H), 7.76–7.74 (m, 3H), 
7.60 (s, 1H), 7.37–7.17 (m, 5H), 4.60–4.43 (m, 2H), 3.76–3.65 (m, 2H), 3.43 (s, 1H), 2.92–2.71 (m, 3H), 
2.61–2.56 (m, 1H), 2.29–2.01 (m, 8H), 2.92–2.85 (m, 1H), 1.81–7.23 (m, 1H), 0.88–0.87 (m, 6H); 13C NMR 
(101 MHz, CDCl3) δ: 176.8, 161.5, 161.2, 142.6, 141.7, 131.9, 131.6, 129.2, 129.0, 127.9, 127.4, 126.6, 
124.7, 122.0, 117.5, 67.5, 57.3, 52.9, 51.8, 43.3, 40.3, 34.8, 32.5, 31.9, 30.5, 27.9, 18.6, 17.8; MS peak: 
541+[H+]; HPLC: tr = 8.9 min. 
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(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-1-isopropyl-3-(4-(2-methoxyphenyl)piperidin-1-
yl)cyclopentane-1-carboxamide (TFA salt) (5). Yield = 64%, 1H NMR (400 MHz, CD3CN) δ: 8.77 (br s, 1H), 
7.92 (s, 3H), 7.46 (t, J = 4.8 Hz 1H), 7.27 (t, J = 20.0Hz, 1H), 7.16 (dd, J

1
=J

2
= 1.2 Hz, 1H), 7.01–6.97 (m, 2H), 

4.58–4.53 (m, 2H), 3.84 (s, 3H), 3.74 (d, J =12.0 Hz, 1H), 3.60–3.51 (m, 2H), 3.24–3.15 (m, 1H), 3.04–2.95 
(m, 2H), 2.45 (dd, J1 =7.6 Hz, J2 =6.8 Hz, 1H), 2.19–1.97 (m, 7H), 1.84–1.67 (m, 2H), 0.90–0.86 (m, 6H). 13C 
NMR (101 MHz, CD3CN) δ: 157.1, 142.9, 131.3, 128.1, 126.9, 126.4, 121.0, 117.4, 114.7, 111.0, 66.9, 
57.3, 55.2, 55.0, 51.6, 42.5, 33.7, 33.4, 32.3, 31.5, 29.0, 27.8, 18.0, 16.9; MS peak : 571+ [H+]; HPLC tr = 
8.9 min. 
(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-1-isopropyl-3-(4-(3-methoxyphenyl)piperidin-1-
yl)cyclopentane-1-carboxamide (TFA salt) (6). Yield = 16%, 1H NMR (400 MHz, CDCl3) δ: 11.74 (s, 1H), 
7.79–7.77 (m, 3H), 7.60 (s, 1H), 7.25–7.11 (m, 2H), 6.83–6.18 (m, 2H), 4.65–4.46 (m, 2H), 3.85–3.83 (m, 
4H), 3.45–3.21 (m, 4H), 2.89–2.72 (m, 4H), 2.33–1.97 (m, 8H), 1.72 (s, 1H), 0.91–0.89 (m, 6H) ); 13C NMR 
(101 MHz, CDCl3) δ: 176.9, 160.0, 144.2, 141.8, 131.8, 129.9, 127.9, 124.6, 118.3, 112.7, 112.2, 99.9, 
67.6, 56.9, 55.6, 55.2, 52.9, 52.1, 43.1, 40.6, 35.0, 30.2, 30.1, 28.1, 18.7, 17.8; MS peak: 571+ [H+]; HPLC: 
tr = 8.9 min. 
(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-1-isopropyl-3-(4-(4-methoxyphenyl)piperidin-1-
yl)cyclopentane-1-carboxamide (TFA salt) (7). Yield = 9%, 1H NMR (400 MHz, CDCl3) δ: 11.72 (s, 1H), 
7.77–7.75 (m, 3H), 7.0 (s, 1H), 7.12 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 4.65–4.41 (m, 2H), 3.81 (s, 
3H), 3.79–3.68 (m, 2H), 3.33 (s, 1H), 2.82–2.63 (m, 4H), 2.32–2.25 (m, 9H), 1.96–1.93 (m, 1H), 0.88–0.87 
(m, 6H) ; 13C NMR (101 MHz, CDCl3) δ: 142.0, 135.0, 128.1, 127.8, 121.3, 114.5, 67.8, 57.2, 55.5, 53.2, 
52.4, 43.4, 39.9, 35.2, 32.3, 30.7, 30.6, 28.3, 18.9, 18.0; MS peak: 571+ [H+]; HPLC: tr = 9.1 min. 
(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-3-(4-(3,4-dimethoxyphenyl)piperidin-1-yl)-1-
isopropylcyclopentane-1-carboxamide (TFA salt) (8). Yield = 37%, 1H NMR (400 MHz, CDCl3) δ: 11.48 (s, 
1H), 7.77–7.75 (m, 3H), 7.59 (s, 1H), 6.81 (d, J = 8.4 Hz, 1H), 6.74 (d, J = 7.2 Hz, 2H), 4.64–4.43 (m, 2H), 
3.89–3.86 (m, 6H), 3.76–3.68 (m, 2H), 3.36 (s, 1H), 2.83–2.67 (m, 4H), 2.32–1.94 (m, 9H), 1.72–1.66 (m, 
1H), 0.89–0.87 (m, 6H); 13C NMR (101 MHz, CDCl3) δ: 149.4, 148.3 141.9, 135.5, 131.9, 131.6, 128.0, 
121.2, 112.0, 111.5, 109.7, 67.7, 57, 2, 43.3, 40.3, 35.1, 32.6, 32.2, 30.6, 30.5, 28.2, 18.8, 18.0; MS peak: 
601

+
 [H

+
]; HPLC: tr = 8.7min. 

(1S,3R)-3-(4-(Benzo[d][1,3]dioxol-5-yl)piperidin-1-yl)-N-(3,5-bis(trifluoromethyl)benzyl)-1-
isopropylcyclopentane-1-carboxamide (TFA salt) (9). Yield = 38%, 1H NMR (400 MHz, CDCl3) δ: 11.72 (s, 
1H), 7.76–7.75 (m, 3H), 7.57 (s, 1H), 6.78 (d, J = 10.0 Hz, 1H), 6.67 (d, J = 10.4 Hz, 1H), 6.63 (s, 1H), 5.93 
(s, 2H), 4.63–5.51 (m, 2H), 3.76–3.67 (m, 2H), 3.35 (s, 1H) 2.83–2.70 (m, 2H), 2.69–2.61 (m, 2H), 2.31–
1.86 (m, 8H), 1.72–1.64 (m, 1H), 0.88–0.86 (m, 6H); 13C NMR (101 MHz, CDCl3) δ: 176.2, 148.1, 146.8, 
141.9, 136.7, 131.9, 131.6, 128.0, 121.2, 119.7, 108.7, 107.2, 101.2, 67.7, 57.1, 52.9, 52.1, 43.3, 40.4, 
35.1, 32.4, 32.2, 30.6, 28.1, 18.8, 17.9; MS peak: 585+ [H+]; HPLC: tr = 8.9 min. 
(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-1-isopropyl-3-(4-(4-(trifluoromethoxy)phenyl)piperidin-1-
yl)cyclopentane-1-carboxamide (TFA salt) (10). Yield = 32%, 1H NMR (400 MHz, CDCl3) δ: 11.06, (s, 1H), 
7.76, (s, 3H), 7.35 (s, 1H), 2.23–2.17 (m, 4H), 4.64–4.43 (m, 2H), 3.79–3.70 (m, 2H), 3.42 (s, 2H), 2.88–
2.72 (m, 3H), 2.66–2.60 (m, 1H), 2.34–1.86 (m, 9H), 1.75–1.61 (m, 1H), 0.91–0.89 (m, 6H); 13C NMR (101 
MHz, CDCl3) δ: 176.3, 148.5, 141.6, 141.2, 132.1, 131.7, 128.1, 124.8, 12.0, 121.6, 121.4, 67.7, 57.2, 52.9, 
51.8, 43.3, 39.9, 35.2, 32.7, 31.9, 30.4, 30.3, 27.9, 18.7, 18.0; MS peak: 625+ [H+]; HPLC: tr = 9.4 min. 
(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-3-(4-(4-(tert-butyl)phenyl)piperidin-1-yl)-1-
isopropylcyclopentane-1-carboxamide (TFA salt) (11). Yield = 17%, 1H NMR (400 MHz, CDCl3) δ: 11.76 (s, 
1H), 9.12 (s, 1H), 7.83–7.78 (m, 4H), 7.63 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 0.5 Ha), 7.17 (d, J = 8.4 Hz, 
0.5Hb), 4.63–4.47 (m, 2H), 3.83–3.37 (m, 6H), 2.87–1.73 (m, 11H), 1.41 (s, 4.5Ha), 1.35 (s, 4.5Hb), 0.95–
0.93 (m, 6H); 13C NMR (101 MHz, CDCl3) δ: 177.2, 156.9, 156.8, 143.5, 141.8, 141.6, 139.6, 130.4, 127.6, 
126.3, 124.4, 121.2, 70.1, 67.6, 59.2, 56.9, 52.9, 43.3, 43.1, 39.9, 34.5, 32.3, 31.1, 30.3, 18.9, 18.7, 17.8, 
17.7; MS peak: 597+ [H+]; HPLC: tr = 9.8 min. a and b for different rotamers. 
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(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-3-(4-(4-hydroxyphenyl)piperidin-1-yl)-1-
isopropylcyclopentane-1-carboxamide (TFA salt) (12). Yield = 31%, 1H NMR (400 MHz, CDCl3) δ: 10.63 (s, 
1H), 7.92 (s, 3H), 7.52 (s, 1H), 7.09 (d, J = 8.0 Hz, 2H), 6.79 (d, J = 8.0 Hz, 2H), 4.51–4.50 (m, 2H), 3.62–
3.46 (m, 3H), 2.95–2.75 (m, 3H), 2.45–1.97 (m, 10H), 1.80–1.70 (m, 2H), 0.89–0.86 (m, 6H ); 13C NMR 
(101 MHz, CDCl3) δ: 155.9, 143.2, 135.3, 128.3, 127.7, 120.8, 117.4, 115.4, 66.6, 56.8, 42.2, 51.5, 42.5, 
38.6, 34.4, 33.0, 30.5, 27.6, 17.7, 17.2; MS peak: 557+ [H+]; HPLC: tr = 8.5 min. 
(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-1-isopropyl-3-(4-(pyridin-3-yl)piperidin-1-yl)cyclopentane-1-
carboxamide (TFA salt) (13). Yield = 55%, 1H NMR (400 MHz, CDCl3) δ: 12.11 (s, 1H), 8.94 (s, 1H), 8.65 (d, 
J = 5.2 Hz, 1H), 8.43 (d, J = 8.0 Hz, 1H), 7.86 (t, J = 5.6 Hz, 1H), 7.76–7.74 (m, 3H), 7.52 (s, 1H), 4.64–4.47 
(m, 2H), 3.82–3.74 (m, 2H), 3.43–3.39 (m,1H), 2.68–2.47 (m, 3H), 2.17–1.69 (m, 8H), 1.23 (s, 2H), 0.91–
0.87 (m, 6H); 13C NMR (101 MHz, CDCl3) δ: 178.45, 148.73, 147.8, 142.5, 140.7, 133.9, 132.0, 131.9, 
131.7, 131.6, 131.3, 127.7, 124.7, 123.6, 121.9, 121.1, 65.9, 57.1, 53.4, 52.9, 51.3, 50.0, 47.4, 44.2, 42.8, 
39.7, 38.5, 38.2, 35.5, 35.1, 33.9, 33.2, 32.9, 29.7, 29.1, 28.3, 26.2, 23.8, 19.3, 19.2, 17.5; MS peak: 542+ 
[H+]; HPLC: tr = 7.9 min. 
(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-1-isopropyl-3-(4-(6-methoxypyridin-3-yl)piperidin-1-
yl)cyclopentane-1-carboxamide (TFA salt) (14). Yield = 70%, 1H NMR (400 MHz, CDCl3) δ: 11.18 (s, 1H), 
8.25 (s, 1H), 7.84 (d, J = 8.8 Hz, 1H), 7.35 (s, 1H), 7.30–7.25 (m, 3H), 6.95 (d, J = 8.8 Hz, 1H), 4.63–4.46 (m, 
2H), 4.03 (s, 3H), 3.78–3.69 (m, 2H), 3.41–3.39 (m, 1H), 2.95–2.89 (m, 3H), 2.62–2.56 (m, 1H), 2.30–1.67 
(m, 10H), 0.80–0.86 (m, 6H); 13C NMR (101 MHz, CDCl3) δ: 176.4, 162.5, 161.9, 161.5, 161.2, 160.8, 
142.5, 141.7, 140.6, 132.3, 132.0, 131.7, 131.3, 128.0, 124.7, 122.0, 121.4, 121.3, 117.3, 114.5, 111.3, 
67.6, 57.3, 44.6, 52.6, 51.6, 43.3, 36.8, 34.9, 32.6, 31.9, 30.0, 29.9, 28.1, 18.7, 17.9 ; MS peak: 572+ [H+]; 
HPLC: tr = 8.0 min. 
3-(1-((1R,3S)-3-((3,5-bis(trifluoromethyl)benzyl)carbamoyl)-3-isopropylcyclopentyl)piperidin-4-yl)benzoic 
acid (15). In a 50 mL round–bottom flask compound 16 (0.058 g, 0.128 mmol) was dissolved in EtOH (10 
mL). Subsequently, 4 M LiOH (0.3 mL, 1.2 mmol) in H2O was added and the reaction mixture was stirred 
for 1.5 hours at 50 °C. EtOH was evaporated in vacuum. The reaction mixture was partitioned between 
brine and chloroform and the pH was adjusted to 7 with 1 M HCl (aq.). The organic layer was collected, 
dried over MgSO4 and concentrated in vacuum, yielding compound 15 as a HCl salt (0.042 g, 53 %). 

1
H 

NMR (400 MHz, CDCl3) δ: 9.34 (s, 1H), 8.04 (s, 1H), 7.76–7.75 (m, 3H), 7.64 (s, 1H), 7.22–7.20 (m, 2H), 
4.64–4.58 (m, 1H), 4.27–4.22 (m, 1H), 3.88 (d, J = 11.2 Hz, 1H), 3.78 (d, J = 11.2 Hz, 1H), 3.49–3.42 (m, 
1H), 3.14–3.12 (m, 1h), 2.90–2.65 (m, 4H), 2.36–2.32 (m, 1H), 2.19–1.96 (m, 5H), 1.93–1.88 (m, 2H), 
1.69–1.68 (m, 1H), 0.93–0.89 (m, 6H); 13C NMR (101 MHz, CDCl3) δ: 176.3, 173.1, 142.9, 142.5, 136.6, 
131.4, 131.2, 131.0, 128.2, 128.0, 127.9, 125.2, 124.7, 122.0, 120.6, 68.1, 57.6, 53.5, 52.7, 43.2, 40.2, 
35.2, 34.3, 32.8, 30.6, 29.4, 26.9, 19.3, 17.8. ; MS peak: 585

+
 [H

+
]; HPLC: tr = 9.2 min. 

Methyl 3-(1-((1R,3S)-3-((3,5-bis(trifluoromethyl)benzyl)carbamoyl)-3-isopropylcyclopentyl)piperidin-4-
yl)benzoate (TFA salt) (16). Yield = 69%, 1H NMR (400 MHz, CDCl3) δ: 8.66 (s, 1H), 7.85 (s, 1H), 7.78–7.76 
(m, 3H), 7.36 (t, J = 7.7 Hz, 1H), 7.26 (d, J = 7.7 Hz, 1H), 4.57 (d, J = 5.6 Hz, 2H), 3.91 (s, 3H), 3.26 (d, J = 
11.0 Hz, 1H), 3.12 (d, J = 11.0 Hz, 1H), 2.75 (s, 1H), 2.65–2.49 (m, 1H), 2.32–2.27 (m, 1H), 2.18–1.93 (m, 
4H), 1.93–1.76 (m, 4H), 1.76–1.63 (m, 2H), 1.60–1.30 (m, 2H), 0.94–0.89 (m, 6H) ; 13C NMR (101 MHz, 
CDCl3) δ: 178.7, 167.1, 145.8, 142.5, 131.8, 131.5, 131.0, 128.5, 127.9, 127.5, 124.6, 121.9, 121.0, 65.7, 
56.9, 53.5, 52.1, 51.1, 42.6, 41.9, 35.4, 33.6, 33.3, 29.9, 19.3, 17.3; MS peak: 599+ [H+]; HPLC: tr = 9.7 
min. 
((1S,3R)-1-isopropyl-3-(4-phenyl-3,6-dihydropyridin-1(2H)-yl)cyclopentyl)(7-(trifluoromethyl)-3,4-
dihydroisoquinolin-2(1H)-yl)methanone (17). In a 5 mL microwave tube a mixture of triflate 34 (0.06 g, 
0.1 mmol), phenylboronic acid (0.018 g, 1.5 mmol), LiCl (0.012 g, 0.3 mmol), 2 M Na2CO3 in H2O (0.15 mL 
0.3 mmol) and tetrakis(triphenylphosphine)palladium(0) (5 mol%) was dissolved in DME (1 mL) under a 
nitrogen atmosphere. The reaction mixture was heated under microwave irradiation at 90 °C for 5.5 
hours. The reaction mixture was partitioned between DCM and H2O. The organic layer was dried with 
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MgSO4 and concentrated in vacuum. The product was purified by preparative HPLC system, yielding 
compound 17 as TFA salt (0.014 g, 23%). 1H NMR (400 MHz, CD3CN) δ: 7.50–7.28 (m, 8H), 6.00 (s, 1H), 
4.90–4.60 (m, 3H), 4.30 (d, J = 16.0 Hz, 0.5H

a
), 4.20 (d, J = 16.0 Hz, 0.5H

b
), 3.90–3.55 (m, 4H), 3.34 (br s, 

0.5Ha), 3.20–2.90 (m, 3.5H), 2.80–2.65 (m, 3H), 2.40–1.95 (m, 4H), 1.72 (br s, 1H), 0.93 (d, J = 6.4 Hz, 
3Ha), 0.86 (d, J = 6.4 Hz, 3Hb); MS peak: 497+ [H+]; HPLC: tr = 8.7 min. a and b indicating different 
rotamers. 
((1S,3R)-1-isopropyl-3-(4-phenylpiperidin-1-yl)cyclopentyl)(7-(trifluoromethyl)-3,4-dihydroisoquinolin-
2(1H)-yl)methanone (18). In a 10 mL round–bottom flask compound 17 (6.6 mg, 0.011 mmol) was 
dissolved in 5 mL of THF. To the reaction mixture Pd/C 5% wt (5 mol%) and palladium acetate (1.5 mol 
%) were added. The reaction mixture was flushed with hydrogen and kept under hydrogen atmosphere 
with a hydrogen balloon. The reaction mixture was heated at 50 °C for 30 seconds and stirring continued 
at room temperature for 2 hours. After the reaction was finished the mixture was filtered over celite 
and the product was purified by preparative HPLC system, yielding compound 18 as TFA salt (4.5 mg, 
67%). 1H NMR (400 MHz, CD3CN) δ: 7.45–7.18 (m, 8H), 4.85–4.68 (m, 2H), 3.90–3.60 (m, 3H), 3.40 (br s, 
1H), 3.00–1.80 (m, 17H), 1.64 (br s, 1H), 0.91 (d, J = 6.4 Hz, 3H), 0.82 (d, J = 6.4 Hz, 3H); MS peak: 499+ 
[H+]; HPLC: tr = 8.7 min. 
General procedure for the synthesis of compounds 19, 21 – 23 and 27. 
Into an oven dried glass tube were added the tosylhydrazone 52 (140 mg, 0.23 mmol, 1 equiv.), the 
corresponding boronic acid (0.34 mmol, 1.5 equiv.), Cs2CO3 (110 mg, 0.34 mmol, 1.5 equiv. dried at 100 
°C overnight) and then sealed with a crimp top with septum. High vacuum was applied for 30 minutes 
after which it was backfilled with nitrogen and 1 mL of dry 1,4-dioxane was added. Subsequently, the 
mixture was degassed 4 times by applying a vacuum and a nitrogen atmosphere sequentially. The 
reaction mixture was heated at 100 °C for 18 hours. TLC showed full conversion of the tosylhydrazone 
(EtOAc, KMnO4 spray to visualize). The cooled reaction mixture was quenched with 2 mL of an aqueous 
saturated NaHCO3 solution, extracted 3 times with DCM, dried over MgSO4 and concentrated in vacuum. 
The crude yellow oil was pre–purified by column chromatography followed by preparative HPLC 
purification to give the final compounds 19, 21 – 23 and 27 as TFA salts as colorless solidified oils. 
1-((1R,3S)-3-isopropyl-3-(7-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)cyclopentyl)-4-(3-
methoxyphenyl)piperidin-1-ium 2,2,2-trifluoroacetate (19). Yield = 10%. 1H NMR (400 MHz, CD3CN) δ: 
10.66 (br s, 1H, NH), 7.53 (s, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.23 (td, J = 7.2, 2.0 Hz, 
1H), 6.82–6.70 (m, 3H), 4.78–4.68 (m, 2H), 3.78–3.65 (m, 6H), 3.60 (d, J = 12.0 Hz, 1H), 3.40–3.28 (m, 
1H), 2.95–2.86 (m, 4H), 2.81–2.74 (m, 1H), 2.57–2.52 (m, 1H), 2.48–2.35 (m, 2H), 2.11–1.98 (m, 6H), 
1.72–1.56 (m, 2H), 0.89 (d, J = 6.4 Hz, 3H), 0.75 (d, J = 6.4 Hz, 3H). LC–MS: 529+ [H+]; HPLC tr: 8.09 min. 
4-(3-Bromophenyl)-1-((1R,3S)-3-isopropyl-3-(7-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline-2-
carbonyl)cyclopentyl)piperidin-1-ium 2,2,2-trifluoroacetate (21). Yield = 8%. 1H NMR (400 MHz, CD3CN) 
δ: 10.84 (br s, 1H, NH), 7.52 (s, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.42–7.37 (m, 2H), 7.33 (d, J = 8.0 Hz, 1H), 
7.27–7.21 (m, 2H), 4.78–4.68 (m, 2H), 3.85–3.65 (m, 3H), 3.60 (d, J = 12.6 Hz, 1H), 3.40–3.28 (m, 1H), 
2.96–2.77 (m, 5H), 2.57–2.52 (m, 1H), 2.48–2.35 (m, 2H), 2.16–1.98 (m, 6H), 1.68–1.56 (m, 2H), 0.89 (d, J 
= 6.4 Hz, 3H), 0.75 (d, J = 6.4 Hz, 3H). 13C NMR (101 MHz, CD3CN) δ: 147.0, 134.8, 130.6, 129.9, 129.8, 
129.6, 125.7, 123.3, 123.0, 122.2, 56.4, 56.0, 52.3, 51.6, 39.1, 34.7, 32.6, 29.9, 28.1, 27.7, 17.4, 17.1. LC–
MS: 578+ [H+]; tR: 8.87 min. 
1-((1R,3S)-3-Isopropyl-3-(7-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)cyclopentyl)-4-(3-
isopropylphenyl)piperidin-1-ium 2,2,2-trifluoroacetate (22). Yield = 23%. 1H NMR (400 MHz, CD3CN) δ: 
9.25 (br s, 1H, NH), 7.54 (s, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.24 (t, J = 7.6 Hz, 1H), 
7.14–7.10 (m, 2H), 7.03 (d, J = 7.6 Hz, 1H), 4.82–4.71 (m, 2H), 3.90–3.69 (m, 3H), 3.60 (d, J = 12.2 Hz, 1H), 
3.42–3.31 (m, 1H), 3.00–2.78 (m, 5H), 2.54–2.32 (m, 3H), 2.22–2.08 (m, 2H), 2.07–1.96 (m, 4H), 1.67–
1.59 (m, 2H), 1.20 (d, J = 7.0 Hz, 6H), 0.88 (d, J = 6.4 Hz, 3H), 0.79 (d, J = 6.4 Hz, 3H). 13C NMR (101 MHz, 
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CD3CN) δ: 149.4, 144.1, 134.7, 129.7, 128.7, 127.7, 124.9, 124.0, 123.3, 67.3, 56.5, 52.8, 51.9, 39.3, 34.0, 
32.3, 30.4, 30.3, 28.3, 17.4, 17.2. LC–MS: 541+ [H+]; tR: 9.22 min. 
1-((1R,3S)-3-Isopropyl-3-(7-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)cyclopentyl)-4-(3-
(trifluoromethyl)phenyl)piperidin-1-ium 2,2,2-trifluoroacetate (23). Yield = 9%. 1H NMR (400 MHz, 
CD3CN) δ: 10.80 (br s, 1H, NH), 7.60–7.49 (m, 5H), 7.47 (d, J = 8.4 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 4.81–
4.66 (m, 2H), 3.94–3.69 (m, 3H), 3.62 (d, J = 12.0 Hz, 1H), 3.42–3.30 (m, 1H), 3.02–2.83 (m, 5H), 2.61–
2.40 (m, 3H), 2.14–1.98 (m, 6H), 1.72–1.55 (m, 2H), 0.89 (d, J = 6.4 Hz, 3H), 0.75 (d, J = 6.4 Hz, 3H). 13C 
NMR (101 MHz, CD3CN) δ: 146.5, 135.7, 131.7, 130.5, 124.5, 124.3, 68.3, 57.0, 53.2, 52.6, 40.1, 35.7, 
33.6, 30.9, 29.1, 18.4, 18.1. LC–MS: 567+ [H+]; tR: 8.88 min. 
1-((1R,3S)-3-Isopropyl-3-(7-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)cyclopentyl)-4-(3-
(methoxycarbonyl)phenyl)piperidin-1-ium 2,2,2-trifluoroacetate (27). Yield = 14%. 1H NMR (400 MHz, 
CD3CN) δ: 10.94 (br s, 1H, NH), 7.86–7.84 (m, 2H), 7.52 (s, 1H), 7.50–7.41 (m, 3H), 7.33 (d, J = 8.0 Hz, 1H), 
4.81–4.66 (m, 2H), 3.92–3.65 (m, 5H), 3.62 (d, J = 12.1 Hz, 1H), 3.42–3.30 (m, 1H), 3.02–2.82 (m, 5H), 
2.60–2.40 (m, 3H), 2.17–1.96 (m, 6H), 1.72–1.55 (m, 2H), 0.89 (d, J = 6.4Hz, 3H), 0.74 (d, J = 6.2 Hz, 3H). 

13C NMR (101 MHz, CD3CN) δ: 166.7, 144.9, 134.8, 131.5, 130.6, 129.6, 129.0, 127.8, 127.6, 123.3, 67.4, 
56.0, 52.3, 51.8, 51.7, 39.2, 34.8, 32.6, 30.0, 28.1, 17.4, 17.1. LC–MS: 557+ [H+]; tR: 8.49 min. 
General procedure for synthesis of compounds 20, 24, 25. 
In a 5 mL microwave tube a solution of compound 50 (0.5 mmol, 1 equiv.) in 3 mL of DME was mixed 
with corresponding arylboronic acid (0.65 mmol, 1.3 equiv), LiCl (1.5 mmol, 3 equiv), 2 M Na2CO3 (1.5 
mmol, 3 equiv) solution in H2O and Pd(PPh3)4 (5 mol%). The reaction mixture was heated under 
microwave irradiation at 90 °C for 30 min – 2.5 hours. The reaction mixture was partitioned between 
DCM/H2O. The organic layer was dried with MgSO4 and concentrated in vacuum. The product was 
purified by column chromatography on silica gel with an eluent system consisting of DCM and increasing 
amounts of EtOAc (0-50%). The corresponding olefin was dissolved in THF and transferred to a 20 mL 
microwave tube. To the reaction mixture PtO2 (20 wt%) and acetic acid (3 equiv) were added. The tube 
was capped, flushed with H2 gas, and additionally pressurized with 20 mL of H2 gas using a 20 mL 
syringe. The reaction was monitored using TLC/MS. The reaction was complete after 10 to 15 min. In the 
case of halogen substituents, if longer reaction times were used a de-halogenation was observed. Next, 
the corresponding esters were dissolved in EtOH and transferred to a 50 mL round–bottom flask. To the 
reaction mixture 4 M LiOH (10 equiv) in H2O was added and the reaction mixture was refluxed for 3 
hours. EtOH was evaporated in vacuum. The reaction mixture was acidified with 1 M HCl and the 
product was extracted with DCM. The organic layer was dried with MgSO4 and concentrated in vacuum. 
The corresponding acid was dissolved in DCM and transferred to a 10 mL round–bottom flask. To the 
reaction mixture 7-trifluoromethyl-1,2,3,4-tetrahydroisoquinoline HCl salt (2 equiv) was added followed 
by the addition of DIPEA (12 equiv), PyBrOP (3 equiv), DMAP (1.5 equiv), and several beads of 4 Ǻ 
molecular sieves. The reaction mixture was stirred for 48 hours at room temperature. The reaction 
mixture was extracted with DCM/H2O, dried with MgSO4 and concentrated in vacuum. The product was 
purified by preparative HPLC. All intermediates were checked by MS and were advanced to the next 
step without further analysis. 
((1S,3R)-3-(4-(3-chlorophenyl)piperidin-1-yl)-1-isopropylcyclopentyl)(7-(trifluoromethyl)-3,4-
dihydroisoquinolin-2(1H)-yl)methanone TFA salt (20). Overall yield = 9%, 1H NMR (400 MHz, CD3CN) δ: 
8.51 (br s, 1H), 7.50–7.40 (m, 2H), 7.30–7.16 (m, 4H), 7.09 (d, J = 6.8 Hz, 1H), 4.81 (br s, 2H), 4.00–3.65 
(m, 4H), 3.52 (br s, 1H), 3.15–2.75 (m, 5H), 2.60–2.40 (m, 2H), 2.35–2.00 (m, 7H), 1.79 (br s, 1H), 0.89 (br 
s, 6H). MS peak: 533+ [H+]; HPLC: tr = 8.82 min. 
((1S,3R)-3-(4-(4-Chlorophenyl)piperidin-1-yl)-1-isopropylcyclopentyl)(7-(trifluoromethyl)-3,4-
dihydroisoquinolin-2(1H)-yl)methanone TFA salt (24). Overall yield = 0.8%, 1H NMR (400 MHz, CD3CN) δ: 
10.81 (br s, 1H), 7.50–7.24 (m, 5H), 7.15 (d, J = 8.4 Hz, 2H), 4.40–4.20 (m, 2H), 3.86 (d, J = 11.6 Hz, 2H), 
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3.72 (d, J = 11.2 Hz, 2H), 3.52 (br s, 1H), 3.10–2.60 (m, 7H), 2.35–2.05 (m, 7H), 1.95–1.80 (m, 1H), 1.75–
1.62 (m, 1H), 0.95–0.83 (m, 6H). MS peak: 533+ [H+]; HPLC: tr = 8.96 min. 
((1S,3R)-1-Isopropyl-3-(4-(4-(trifluoromethyl)phenyl)piperidin-1-yl)cyclopentyl)(7-(trifluoromethyl)-3,4-
dihydroisoquinolin-2(1H)-yl)methanone TFA salt (25). Overall yield = 2%, 1H NMR (400 MHz, CD3CN) δ: 
9.43 (br s, 1H), 7.70–7.29 (m, 7H), 4.81 (s, 2H), 3.95–3.74 (m, 4H), 3.53 (br s, 1H), 3.10–2.85 (m, 5H), 
2.65–2.45 (m, 2H), 2.30–2.10 (m, 7H), 1.95–1.70 (m, 2H), 0.95–0.83 (m, 6H). MS peak: 567+ [H+]; HPLC: tr 
= 9.07 min. 
4-(3-carboxyphenyl)-1-((1R,3S)-3-isopropyl-3-(7-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline-2-
carbonyl)cyclopentyl)piperidin-1-ium chloride (26). Ester 27 (25 mg, 0.045 mmol, 1.0 equiv.) was 
dissolved in a mixture of EtOH (5 mL), water (2 mL) and an 4M LiOH (aq.) (113µL, 0.45 mmol, 10.0 
equiv.) was added. After 2 hours at 50 °C all of 27 was consumed as shown by TLC (EtOAc, KMnO4 spray 
to visualize). The ethanol was evaporated and the pH was adjusted to pH = 1 with a 3M HCl (aq.) 
solution. The white precipitate was filtered off, rinsed with water and dried in vacuum to yield 
compound 26 as HCl salt. Yield = 17 mg, 65%. 1H NMR (400 MHz, CD3CN) δ: 7.88–7.84 (m, 2H), 7.52 (s, 
1H), 7.50–7.45 (m, 2H), 7.42 (t, J = 7.6 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 4.80–4.70 (m, 2H), 3.90–3.63 (m, 
3H), 3.58 (d, J = 12.8 Hz, 1H), 3.40–3.29 (m, 1H), 3.01–2.85 (m, 5H), 2.70–2.40 (m, 3H and water), 2.24–
2.05 (m, 6H), 1.82–1.75 (m, 1H), 1.67–1.59 (m ,1H), 0.88 (d, J = 6.4 Hz, 3H), 0.76 (d, J = 6.4 Hz, 3H). LC–
MS: 543+ [H+]; HPLC tr: 8.10 min. 
1-Ethyl-1-methyl-4-oxo-piperidin-1-ium iodide (28). In a 20 mL microwave tube a solution of 1-methyl-4-
piperidone (2.2 mL, 17.9 mmol) in acetone (15 mL) was mixed with ethyl iodide (1.43 mL, 17.9 mmol) 
under nitrogen atmosphere. The reaction mixture was stirred in the microwave at 60 °C for 5 hours 
forming yellow solids. The solids were filtered, washed with acetone and dried under vacuum to yield 
yellow salt 28 (4.35 g, 90%). The compound was used in next step as is.  
Synthesis of (1S,3R)-3-amino-N-(3,5-bis(trifluoromethyl)benzyl)-1-isopropylcyclopentane-1-carboxamide 
(29) was achieved following the synthetic approach reported by our group earlier.18 
Synthesis of ((1S,3R)-3-amino-1-isopropylcyclopentyl)(7-(trifluoromethyl)-3,4-dihydroisoquinolin-2(1H)-
yl)methanone (30) was achieved following the synthetic approach reported earlier by our group. 
(1S,3R)-N-(3,5-bis(trifluoromethyl)benzyl)-1-isopropyl-3-(4-oxopiperidin-1-yl)cyclopentane-1-
carboxamide (31). In 250 mL round–bottom flask a solution of amine 29 (2.0 g, 5.0 mmol) dissolved in 
ethanol (75 mL) and H2O (25 mL) was stirred at 40 °C. Compound 28 (2.02 g, 7.5 mmol) was dissolved in 
H2O (30 mL) and added dropwise within 5 minutes to the reaction mixture. Then K2CO3 (1.4 g, 10 mmol) 
was added and the reaction mixture was refluxed for 5 hours, followed by an additional 12 hour stirring 
at room temperature. Ethanol was removed in vacuum and the reaction mixture was partitioned 
between DCM/ H2O. The organic layer was dried over MgSO4 and concentrated in vacuum. Compound 
31 was purified by column chromatography on silica gel with an eluent system consisting of DCM and 
increasing amounts of EtOAc (50-100%). Yield =1.7 g, (72%). 1H NMR (400 MHz, CDCl3) δ: 7.77–7.70 (m, 
3H), 7.49 (s, 1H), 4.56 (d, J = 5.6 Hz, 2H), 2.83–2.76 (m, 5H), 2.38–2.27 (m, 4H), 2.19–1.90 (m, 5H), 1.70–
1.53 (m, 2H), 1.15 (s, 1H), 0.92–0.89 (m, 6H) 
1-((1R,3S)-3-isopropyl-3-(7-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline-2-
carbonyl)cyclopentyl)piperidin-4-one (32). In a 20 mL microwave tube a solution of amine 30 (0.71 g, 2.0 
mmol) in ethanol (10 mL) and H2O (3 mL) was stirred at 40 °C. Compound 28 (0.81 g, 3 mmol) was 
dissolved in H2O (3 mL) and added dropwise during 5 minutes to the reaction mixture. Then K2CO3 (0.56 
g, 4 mmol) was added and the reaction mixture was heated under microwave irradiation at 100 °C for 3 
hours. Ethanol was removed in vacuum and the reaction mixture was extracted with DCM/ 1M NaOH 
solution in H2O. The organic layer was dried over MgSO4 and concentrated in vacuum. Compound 32 
was purified by column chromatography on silica gel with an eluent system consisting of DCM and 
increasing amounts of EtOAc (50-100%). Yield =0.22 g, (25%). 1H NMR (400 MHz, CDCl3) δ: 7.40–7.30 (m, 
2H), 7.21 (d, J = 8 Hz, 1H), 4.80–4.60 (m, 2H), 3.77 (br s, 2H), 2.88 (br s, 2H), 2.72 (br s, 3H), 2.63–2.53 
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(m, 2H), 2.41–2.38 (m, 3H), 2.24–2.18 (m, 1H), 2.05–1.80 (m, 4H), 1.60–1.30 (m, 3H), 0.89 (d, J = 6.8 Hz, 
3H), 0.73 (d, J = 6,8 Hz, 3H). 
1-((1R,3S)-3-((3,5-bis(trifluoromethyl)benzyl)carbamoyl)-3-isopropylcyclopentyl)-1,2,3,6-
tetrahydropyridin-4-yl trifluoromethanesulfonate (33). In a 100 mL round–bottom flask a solution of LDA 
(2M in heptanes, 2.2 mL, 2.88 mmol) in dry THF (20 mL) was cooled down to –78 °C under a nitrogen 
atmosphere. The ketone compound 31 (0.55 g, 1.15 mmol) was dissolved in dry THF (15 mL) and added 
dropwise to the reaction mixture. Vigorous stirring was necessary. The reaction mixture was stirred for 1 
hour at –78 °C. After 1 hour, the reaction mixture was slowly warmed to –20 °C and kept at this 
temperature for 1 hour. Subsequently the reaction mixture was cooled down to –78 °C and N-phenyl-
bis(trifluoromethanesulfonimide) (0.65 g, 2.3 mmol) dissolved in dry THF (8 mL) was added dropwise to 
the reaction mixture. After the addition was complete, the reaction mixture was slowly brought to room 
temperature and stirred overnight. The reaction mixture was quenched with EtOH, concentrated in 
vacuum and partitioned between DCM/H2O. The organic layer was dried with MgSO4 and concentrated 
in vacuum. The product was purified by column chromatography on silica gel with an eluent system 
consisting of DCM and increasing amounts of EtOAc (0-30%), yielding the triflate compound 33 (0.3 g, 
42%). 1H NMR (400 MHz, CDCl3) δ: 8.08 (t, J = 5.6 Hz, 1H), 7.76–7.72 (m, 3H), 5.68 (s, 1H), 4.49 (d, J = 5.6 
Hz, 2H), 3.20–3.06 (m, 2H), 2.89–2.82 (m, 2H), 2.67–2.60 (m, 1H), 2.40–2.20 (m, 3H), 2.04–1.79 (m, 4H), 
1.73–1.59 (m, 2H), 0.91(d, J = 6.8 Hz, 3H), 0.88 (d, J = 6.8 Hz, 3H). 
1-((1R,3S)-3-((3,5-bis(trifluoromethyl)benzyl)carbamoyl)-3-isopropylcyclopentyl)-1,2,3,6-
tetrahydropyridin-4-yl trifluoromethanesulfonate (34). In a 20 mL microwave tube a solution of LDA (2M 
in heptanes, 0.33 mL, 0.65 mmol) in THF (5 mL) was cooled down to –78 °C under nitrogen atmosphere. 
The ketone compound 32 (0.22 g, 0.5 mmol) was dissolved in dry THF (5 mL) and added dropwise to the 
reaction mixture. Vigorous stirring was necessary. The reaction mixture was stirred for 1 hour at –78 °C. 
After 1 hour, the reaction mixture was slowly warmed to –20 °C and kept at this temperature for 1.5 
hours. Subsequently the reaction mixture was cooled down to –78 °C and N-phenyl-
bis(trifluoromethanesulfonimide) (0.23 g, 0.65 mmol) dissolved in THF (5 mL) was added dropwise to the 
reaction mixture. After the addition was complete, the reaction mixture was slowly brought to room 
temperature and stirred overnight. The reaction mixture was quenched with EtOH, concentrated in 
vacuum and partitioned between DCM/H2O. The organic layer was dried with MgSO4 and concentrated 
in vacuum. The product was purified by column chromatography on silica gel with an eluent system 
consisting of DCM and increasing amounts of EtOAc (0-20%), yielding the triflate compound 34 (0.06 g, 
21%). 1H NMR (400 MHz, CDCl3) δ: 7.44 (d, J = 8 Hz, 1H), 7.38 (s, 1H), 7.27 (d, J = 8.0 Hz, 1H), 5.71 (s, 1H), 
4.90–4.57 (m, 2H), 3.82 (br s, 2H), 3.17 (s, 2H), 2.93 (d, J = 5.2 Hz, 2H), 2.80–2.60 (m, 4H), 2.43 (br s, 2H), 
2.25–2.15 (m, 1H), 2.08–1.82 (m, 3H), 1.60–1.38 (m, 2H), 0.95 (d, J = 6.4 Hz, 3H), 0.80 (d, J = 6.4 Hz, 3H). 
General synthesis of compounds 35 – 46. 
In a 5 mL microwave tube a mixture of triflate 33 (0.25 mmol, 1 equiv.), corresponding arylboronic acid 
(0.35 mmol, 1.4 equiv.), LiCl (0.75 mmol, 3 equiv.), 2 M Na2CO3 in H2O (0.75 mmol, 3 equiv.) and 
tetrakis(triphenylphosphine)palladium(0) (5 mol%) was dissolved in DME (4 mL) under a nitrogen 
atmosphere. The reaction was heated under microwave irraditaion at 90 °C for 3.5 hours. DME was 
evaporated in vacuum and the reaction mixture was partitioned between 2 M Na2CO3/DCM. The organic 
layer was dried with MgSO4 and concentrated in vacuum. The products were purified by column 
chromatography on silica gel with an eluent system consisting of DCM and increasing amounts of EtOAc 
(0-50%). LC–MS was used for confirmation of the products before using them in the next step. 
(1S,3R)-N-(3,5-bis(trifluoromethyl)benzyl)-1-isopropyl-3-(4-phenyl-3,6-dihydropyridin-1(2H)-
yl)cyclopentane-1-carboxamide (35). Yield = 40 %, MS peak: 539+ [H+]. 
(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-1-isopropyl-3-(4-(2-methoxyphenyl)-3,6-dihydropyridin-1(2H)-
yl)cyclopentane-1-carboxamide (36). Yield = 21%, MS peak: 569+ [H+]. 
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(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-1-isopropyl-3-(4-(3-methoxyphenyl)-3,6-dihydropyridin-1(2H)-
yl)cyclopentane-1-carboxamide (37). Yield = 20%, MS peak: 569+ [H+]. 
(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-1-isopropyl-3-(4-(4-methoxyphenyl)-3,6-dihydropyridin-1(2H)-
yl)cyclopentane-1-carboxamide (38). Yield = 99% (without purification), MS peak: 569+ [H+]. 
(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-3-(4-(3,4-dimethoxyphenyl)-3,6-dihydropyridin-1(2H)-yl)-1-
isopropylcyclopentane-1-carboxamide (39). Yield = 30%, MS peak: 599+ [H+]. 
 (1S,3R)-3-(4-(Benzo[d][1,3]dioxol-5-yl)-3,6-dihydropyridin-1(2H)-yl)-N-(3,5-bis(trifluoromethyl)benzyl)-1-
isopropylcyclopentane-1-carboxamide (40). Yield = 41%, MS peak: 583+ [H+]. 
(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-1-isopropyl-3-(4-(4-(trifluoromethoxy)phenyl)-3,6-
dihydropyridin-1(2H)-yl)cyclopentane-1-carboxamide (41). Yield = 51%, MS peak: 623+ [H+]. 
(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-3-(4-(4-(tert-butyl)phenyl)-3,6-dihydropyridin-1(2H)-yl)-1-
isopropylcyclopentane-1-carboxamide (42). Yield = 32%, MS peak: 595+ [H+]. 
(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-3-(4-(4-hydroxyphenyl)-3,6-dihydropyridin-1(2H)-yl)-1-
isopropylcyclopentane-1-carboxamide (43). Yield = 25%, MS peak: 555+ [H+]. 
(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-3-(3',6'-dihydro-[3,4'-bipyridin]-1'(2'H)-yl)-1-
isopropylcyclopentane-1-carboxamide (44). Yield = 55%, MS peak: 540+ [H+]. 
(1S,3R)-N-(3,5-bis(Trifluoromethyl)benzyl)-1-isopropyl-3-(6-methoxy-3',6'-dihydro-[3,4'-bipyridin]-1'(2'H)-
yl)cyclopentane-1-carboxamide (45). Yield = 59%, MS peak: 570+ [H+]. 
Methyl 3-(1-((1R,3S)-3-((3,5-bis(trifluoromethyl)benzyl)carbamoyl)-3-isopropylcyclopentyl)-1,2,3,6-
tetrahydropyridin-4-yl)benzoate (46). Yield = 53%, MS peak: 597+ [H+]. 
Synthesis of (1S,3R)-methyl-3-((tert-butoxycarbonyl)amino)-1-isopropylcyclopentanecarboxylate (47) was 
achieved following the synthetic approach reported by Kothandaraman S. et al.19 
Methyl (1S,3R)-3-amino-1-isopropylcyclopentane-1-carboxylate (48). In a 100 mL round–bottom flask 
compound 47 (11.4 g, 40 mmol) was dissolved in a mixture of DCM (30 mL) and TFA (20 mL). The 
reaction mixture was stirred at room temperature for 2 hours. After completion, the reaction mixture 
was basified to pH 14 with 2 M NaOH solution in H2O and extracted with DCM. The organic layer was 
dried with MgSO4 and concentrated in vacuum. Yield = 7.3 g (98%). The crude product was used in the 
next step without further purification. 

1
H NMR (400 MHz, CDCl3) δ: 3.57 (s, 3H), 3.25–3.18 (m, 1H), 2.20–

2.12 (m, 1H), 1.90–1.70 (m, 4H), 1.48–1.35 (m, 2H), 1.28–1.15 (m, 2H), 0.80–0.71 (m, 6H). 
Methyl (1S,3R)-1-isopropyl-3-(4-oxopiperidin-1-yl)cyclopentane-1-carboxylate (49). In 7 separate batches 
of 100 mL round–bottom flasks a solution of amine 48 (0.74 g, 4.0 mmol) dissolved in ethanol (20 mL) 
and H2O (8 mL) was stirred at 40 °C. Compound 28 (1.61 g, 6 mmol) was dissolved in H2O (8 mL) and 
added dropwise during 5 minutes to the reaction mixture. Then K2CO3 (1.12 g, 8 mmol) was added and 
the reaction mixture was refluxed for 3 hours. All batches were combined and ethanol was removed in 
vacuum and the reaction mixture was partitioned between DCM/H2O. The organic layer was dried over 
MgSO4 and concentrated in vacuum. The product was purified by column chromatography on silica gel 
with an eluent system consisting of DCM and increasing amounts of EtOAc (0-100%). Combined yield = 
4.19 g, (56%). 1H NMR (400 MHz, CDCl3) δ: 3.55 (s, 3H), 2.63 (t, J = 6.4 Hz, 4H), 2.59–2.50 (m, 1H), 2.29 (t, 
J = 6.4 Hz, 4H), 2.16–2.12 (m, 1H), 2.01–1.95 (m, 1H), 1.87–1.74 (m, 3H), 1.37 (t, J = 4.8 Hz, 2H), 0.74 (d, J 
= 6.8 Hz, 3H), 0.71 (d, J = 6.8 Hz, 3H). 
Methyl (1S,3R)-1-isopropyl-3-(4-(((trifluoromethyl)sulfonyl)oxy)-3,6-dihydropyridin-1(2H)-
yl)cyclopentane-1-carboxylate (50). In a 250 mL round–bottom flask a solution of LDA (2M in heptanes, 
11 mL, 22 mmol) in dry THF (100 mL) was cooled down to –100 °C under a nitrogen atmosphere. The 
ketone compound 49 (4.19 g, 15.6 mmol) was dissolved in dry THF (20 mL) and added dropwise to the 
reaction mixture keeping the temperature below –78 °C. Vigorous stirring was necessary. The reaction 
mixture was stirred for 3 hours, slowly rising the temperature to –40 °C. Subsequently, the reaction 
mixture was cooled down to –80 °C and N-phenyl-bis(trifluoromethanesulfonimide) (7.86 g, 22 mmol) 
dissolved in dry THF (10 mL) was added dropwise to the reaction mixture keeping the temperature of 
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the reaction below –80 °C. After the addition was complete, the reaction mixture was slowly brought to 
room temperature and stirred overnight. The reaction mixture was quenched with EtOH, concentrated 
in vacuum and partitioned between DCM/H2O. The organic layer was dried with MgSO4 and 
concentrated in vacuum. The product was purified by column chromatography on silica gel with an 
eluent system consisting of DCM and increasing amounts of EtOAc (0-10%), yielding the triflate 
compound 50 (4.2 g, 67%). 1H NMR (400 MHz, CDCl3) δ: 5.73 (s, 1H), 3.70 (s, 3H), 3.25–3.12 (m, 2H), 
2.80–2.67 (m, 3H), 2.46 (br s, 2H), 2.35–2.25 (m, 1H), 2.13–1.85 (m, 4H), 1.60–1.48 (m, 2H), 0.89 (d, J = 
6.4 Hz, 3H), 0.86 (d, J = 6.4 Hz, 3H). 
N'-(1-((1R,3S)-3-isopropyl-3-(7-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline-2-
carbonyl)cyclopentyl)piperidin-4-ylidene)-4-methoxybenzenesulfonohydrazide (52). Sulfonylhydrazide 51 
(365 mg, 1.80 mmol, 1.05 equiv.) was slurried in 3,5 mL of MeOH and piperidone 32 (750 mg, 1.72 
mmol, 1.00 equiv.) was added at room temperature, resulting in a homogeneous reaction mixture. After 
4 hours all of the piperidone was consumed shown by TLC (1/1 EtOAc/Pet. Ether). Methanol was 
removed in vacuum and the solidified oil (1.06 g, yield 100%) was used in the next reactions without 
purification. 1H NMR (400 MHz, CDCl3) δ: 7.88 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.0 Hz, 1H), 7.36 (s, 1H), 
4.90–4.60 (m, 2H), 3.87 (s, 3H), 3.85–3.60 (m, 2H), 3.46 (s, 1H), 2.90 (s, 2H), 2.60–2.41 (m, 6H), 2.33 (br 
s, 3H), 2.19–2.14 (m, 1H), 2.00 (br s, 1H), 1.88–1.78 (m, 2H), 1.54–1.43 (m, 1H), 1.36–1.25 (m, 1H), 0.92 
(d, J = 6.4 Hz, 3H), 0.75 (d, J = 6.4 Hz, 3H). 

Abbreviations 
Boc, tert-butyloxycarbonyl; CCL2, chemokine ligand 2; CCR2, chemokine receptor 2; CCR5, chemokine 
receptor 5; DCM, dichloromethane; DiPEA, N,N-diisopropylethylamine; DMAP, N,N-
dimethylaminopyridine; DME, dimethoxyethane; EtOAc, ethylacetate; EtOH, ethanol; HPLC, high-
performance liquid chromatography; 125I-CCL2, 125I–labelled chemokine ligand 2; KRI, kinetic rate index; 
LDA, lithium diisopropylamide; LC-MS, liquid chromatography – mass spectrometer; MCP-1, monocyte 
chemotactic protein-1; MeOH, methanol; NMR, nuclear magnetic resonance; PyBrOP, bromo-tris-
pyrrolidino phosphoniumhexafluorophosphate; RT, residence time; SAR, structure–affinity relationships; 
SKR, structure–kinetic relationships; TFA, trifluoroacetic acid; THF, tetrahydrofuran; TLC, thin layer 
chromatography; TMS, tetramethylsilane; U2OS, human bone osteosarcoma cells; UV, ultraviolet. 
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ABSTRACT 

A novel N-(2-oxo-2-(piperidin-4-ylamino)ethyl)-3-(trifluoromethyl)benzamide series of human 

CCR2 chemokine receptor antagonists was identified. With a pharmacophore model based on 

known CCR2 antagonists a new core scaffold was designed, analogues of it synthesized and 

structure–affinity relationship studies derived yielding a new high affinity CCR2 antagonist N-

(2-((1-(4-(3-methoxyphenyl)cyclohexyl)piperidin-4-yl)amino)-2-oxoethyl)-3-

(trifluoromethyl)benzamide.  
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The CC chemokine CCL2, through its interaction with the CCR2 G protein–coupled receptor, 

plays an important role in the recruitment of monocytes, natural killer cells, dendritic cells 

and T-lymphocytes.1 Research on CCL2 knockout (KO) and CCR2 KO mice suggests that 

inhibition of the CCL2/CCR2 axis may be beneficial in the treatment of inflammatory 

diseases.
2
 The pair is thought to be involved in atherosclerosis,

3
 insulin resistance,

4
 multiple 

sclerosis,
5
 neuropathic pain

6
 and asthma.

7
 Different in vitro and in vivo models have shown 

the usefulness of small molecule CCR2 antagonists to inhibit the chemotactic response of 

CCL2.8-10Consequently, the pharmaceutical industry has devoted considerable efforts to the 

development of CCR2 antagonists to combat these diseases. A vast number of different 

scaffolds used in the design of CCR2 antagonists has been described.
11, 12

  

 
Figure 1. Pharmacophore of CCR2 antagonists. 

However, the bulk of these antagonists share the same structural motifs: a basic nitrogen 

atom in the center, flanked by two aromatic rings of which one is connected to the nitrogen 

atom with an amide containing linker and the other with an aliphatic linker (Figure 1). In some 

cases the latter aromatic ring is missing and only the aliphatic group is left on one side.12 

Usually, the central nitrogen is part of an aliphatic heterocycle (e.g. piperidine, 1,
13

 

pyrrolidine, 2
14

 and INCB3344
14, 15

 or azetidine, JNJ lead
16

) (Figure 2). 
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Figure 2. Known CCR2 antagonists. 

In this paper, we describe our efforts towards the identification of a new class of CCR2 

receptor antagonists. Using the structural knowledge of CCR2 antagonists as in figure 2 we 

generated hybrid scaffolds based on a piperidine ring. We explored different linkers between 

the basic nitrogen and aromatic groups as well as different substituents on the aromatic 

group. All compounds were evaluated in a 125I-CCL2 displacement assay on a human bone 

osteosarcoma (U2OS) cell membrane preparation expressing CCR2 as described previously by 

our group.17  

Scheme 1.a 

 
a
Reagents and conditions: a) PyBrOP, DIPEA, DMAP, N-(3-(trifluoromethyl)benzoyl)glycine, DCM, MS 4 Å, room 

temperature; b) dry 3 M HCl in MeOH, room temperature, yield in two steps: 57-89%; c) corresponding aldehyde or 
ketone, NaBH(OAc)3, AcOH, DCE, room temperature, (2-64%). 

The synthetic methods to arrive at these compounds are depicted in schemes 1, 2 and 3. The 

commercially available N-Boc-protected piperidineamines 3 and 4 were used in a peptide–

coupling reaction with N-(3-(trifluoromethyl)benzoyl)glycine under bromo-tris-pyrrolidino 
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phosphoniumhexafluorophosphate (PyBroP) conditions.18 Subsequent removal of the Boc-

protecting group with dry HCl in methanol produced the free amines 5 and 6. These amines 

were used in reductive amination reactions with different aldehydes and ketones to yield the 

desired products 7-11, 13-21 (Scheme 1). 

For the synthesis of the desired ketones we first used a synthetic route via hydrazone 

intermediates (Scheme 2) under conditions described by Barluenga et al.
19

 Commercially 

available ketone 22 was reacted with tosylhydrazide to generate hydrazone 23, which was 

used subsequently in a Pd–catalyzed cross–coupling reaction to generate 24 with moderate 

yield. 

Scheme 2.a 

 
a
Reagents and conditions: a) p-toluenesulfonhydrazide, dioxane, 130 °C, 45 minutes, MW, (65%); b) Pd2(dba)3, XPhos, 

Lit-BuO 1.0 M in hexanes, dioxane, 110 °C, 2 h, MW, (24%); c) Pd/C 10% wt, Pd(OAc)2, MeOH, H2, room temperature, 
4-12 h, (85-99%) ; d) FeCl3•6H2O, acetone, DCM, 5-12 h, room temperature, (42-99%); e) i)1.3 eq. LDA, THF, under N2, 
–78 °C → –25 °C, 2 h, cool down to –78 °C; ii) N-phenyl-bis(trifluoromethanesulfonimide), –78 °C → room 
temperature, 24 h, (80%); f) 3,4-(methylenedioxy)phenylboronic acid, KF, Pd(dppf)Cl2, room temperature overnight, 
(58%); g) PdCl2, PPh3, bis(pinacolato)diboron, KOPh, toluene, under N2, 4 h at 50 °C, 24 h at room temperature, (59%); 
h) Pd(PPh3)4, corresponding arylhalogen, Na2CO3 2 M in H2O, dioxane, under N2, 80 °C, 5 h, MW, (80-99%). 

However, attempts to use this method with other substituents on the phenyl ring resulted in 

very poor yields or no product at all. Another synthetic route was therefore chosen to yield 

the desired ketones. The acetal protected cyclohexanone 22 was deprotonated with 
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lithiumdiisopropylamide (LDA) and reacted with N-phenyl-bis(trifluoromethanesulfonimide) 

to generate triflate 25. This compound was used directly in a Suzuki–coupling with 3,4-

methylenedioxyphenylboronic acid, however, to introduce other substituents we decided to 

transform the triflate in boronic ester 26 with bis(pinacolato)diboron. This allowed us to use a 

wider range of arylhalogens as coupling partners in the Suzuki–coupling to eventually 

generate the desired intermediates with good overall yields. Subsequently, reduction of the 

double bond and removal of the acetal protecting group yielded the desired ketones 33-39, 

which were used in reductive amination reactions to yield the final compounds.  

Scheme 3.a 

 
a
Reagents and conditions: a) propargyl bromide, K2CO3, acetone, reflux overnight, (99%); b) iodobenzene, proline, 

Na2CO3, NaN3, ascorbic acid, CuSO4•5H2O, DMSO/H2O 3:1, 80 °C, 48 h, (4%). 

To explore the influence of a methylenetriazole group as a linker between the piperidine and 

phenyl moieties we used click chemistry (Scheme 3). First, we alkylated the piperidine of 

compound 5 with propargyl bromide to generate compound 40, which was used in a further 

reaction with sodium azide and iodobenzene in the presence of proline, ascorbic acid and 

CuSO4 as described by Feldman et al.20 

As mentioned before we combined the different scaffolds from two known CCR2 antagonists 

(compound 1 of Epix Delaware;13 compound 2 from Tejin14) to generate a hybrid scaffold by 

transfecting the N-(3-(trifluoromethyl)benzoyl)glycine part onto the piperidine ring. We 

argued that the expansion of the central ring to piperidine (compared to INCB3344 and JNJ 

Lead) might have a minor effect only on the configuration of the molecule. However, the 4-
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chlorobenzyl group (compound 7) which had yielded good affinity in combination with the 

pyrrolidine scaffold14 (compound 2), provided no affinity in the case of piperidine (Table 1). 

Table 1. CCR2 affinities of compounds 7-12. 

 
R Nr. Ki, (nM) ± 

SEM (n = 3)a 

 

7 0% 

 

8 6% 

 

9 24% 

 

10 74 ± 9 

 

11 10% 

 

12 12% 

a
Human CCR2 binding affinity in [

125
I]CCL2 assay or % displ. at 1µM of [

125
I]CCL2 binding 

Extending the linker to propyl (compound 8) had a minor effect on the affinity and the 

rigidification of the linker into tetrahydronaphthalene (compound 9) yielded negligible 

improvement (displacement at 1 μM concentration of 6% and 24%, respectively). However, 

separation of the rings into a 4-phenylcyclohexyl group (compound 10) resulted in a boost of 

affinity (Ki = 74 nM). To explore the correct location of the phenyl ring we moved it to the 3 

position on the cyclohexane ring (compound 11), which resulted in a complete loss of affinity. 

In addition, the cyclohexane`s exchange to methylenetriazole as a linker (compound 12) did 

not yield any affinity either. Apparently, the distance, 3D orientation and lipophilicity 

provided by the cyclohexane moiety is just right for the binding of these molecules to the 

file:///I:/Documents/Dokumenti/Darbs/PhD/My%20theses_MV/For%20reading%20commite/Chapter%206/Chapter%206.docx%23_ENREF_14


CHAPTER 6 

150 

CCR2 receptor and any deviation from it results in complete loss of affinity. This could also be 

the reason why the 4-aryl-cyclohexane motif is used in so many pyrrolidine
15, 21

 and 

azetidine16, 22 derivatives (e.g. INCB3344, JNJ Lead, see figure 2). We continued the SAR 

studies with different substituents on the phenyl ring of the 4-phenyl-cyclohexyl group. 

Introduction of a methyl group on different positions indicated that substitution on the 2 and 

4 positions (compounds 13 and 15) decreased the affinity (Table 2). 

Table 2. CCR2 affinities of compounds 13-21. 

 
Nr. R Ki, (nM) ± SEM (n = 

3)a 

13 2-Me 26% 

14 3-Me 270 ± 20 
15 4-Me 38% 

16 3-OMe 66 ± 12 

17 3,5-di-OMe 41% 

18 2,6-di-OMe 42% 

19 4-OH 139 ± 35 

20 3,4-OCH2O- 90 ± 18 

21 - 31% 
a
Human CCR2 binding affinity in [

125
I]CCL2 assay or % displ. at 1µM of [

125
I]CCL2 binding 

The 3 position can tolerate substitution, albeit with a slight decrease in affinity (14, Ki = 270 

nM). Changing the methyl to methoxy resulted in a regain of the affinity (compound 16, Ki = 

66 nM) pointing to a possible H–bond formation in the receptor binding pocket. However, 

insertion of two methoxy groups on either the 3,5 or 2,6 positions (compounds 17, 18) 

yielded a decrease in affinity (displacement of 41% and 42%, respectively). Inserting a 

hydroxyl group on the 4 position (compound 19) was tolerated with a twofold affinity 
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decrease compared to 10. Combining substituents of 16 and 19 into a 3,4-methylendioxy 

group retained the affinity (compound 20, Ki = 90 nM) which is in accordance with 

observations from the pyrrolidine15 and azetidine16 series. Finally, we wanted to explore the 

possibility of reversing the piperidine ring (compound 21) in the same fashion as it was 

described for pyrrolidines
23

 where it had only minimal effect on the binding affinity. However, 

in our case of the piperidine moiety such reversal substantially decreased the affinity for the 

CCR2 receptor. 

In conclusion, we have synthesized a novel series of N-(2-oxo-2-(piperidin-4-ylamino)ethyl)-3-

(trifluoromethyl)benzamide derivatives and compounds substituted with 4-arylcyclohexanes 

were identified as good hits for CCR2 antagonism and might be considered for further 

optimization.  

EXPERIMENTAL SECTION 

Chemistry 
All solvents and reagents were purchased from commercial sources and were of analytical grade. 
Demineralized water is simply referred to as H2O, because it was used in all cases, unless stated 
otherwise (i.e., brine). 

1
H and 

13
C NMR spectra were recorded on a Bruker AV 400 liquid spectrometer 

(1H NMR, 400 MHz; 13C NMR, 101 MHz). Chemical shifts are reported in parts per million (ppm), are 
designated by δ, and are downfield to the internal standard tetramethylsilane (TMS). Coupling constants 
are reported in hertz and are designated as J. a and b indicating different diastereomers. Analytical 
purity of the final compounds was determined by high-performance liquid chromatography (HPLC) with 
a Phenomenex Gemini 3 µm C18 110A column (50 × 4.6 mm, 3 μm), measuring UV absorbance at 254 
nm. The sample preparation and HPLC method for compounds were as follows: 0.3–0.8 mg of 
compound was dissolved in 1 mL of a 1:1:1 mixture of CH3CN/H2O/t-BuOH and eluted from the column 
within 15 min at a flow rate of 1.3 mL/min. The elution method was set up as follows: 1–4 min isocratic 
system of H2O/CH3CN/1% TFA in H2O, 80:10:10, from the 4

th
 min, a gradient was applied from 80:10:10 

to 0:90:10 within 9 min, followed by 1 min of equilibration at 0:90:10 and 1 min at 80:10:10. All 
compounds showed a single peak at the designated retention time and are at least 95% pure. 
Microwave reactions were done using Biotage Initiator microwave synthesizer. Thin-layer 
chromatography (TLC) was routinely consulted to monitor the progress of reactions, using aluminum-
coated Merck silica gel F254 plates. Purification by column chromatography was achieved by use of Grace 
Davison Davisil silica column material (LC60A, 30–200 µm). The procedure for a series of similar 
compounds is given as a general procedure for all within that series, annotated by the numbers of the 
compounds.  
N-(2-oxo-2-(piperidin-4-ylamino)ethyl)-3-(trifluoromethyl)benzamide (5). To 2 g, 10 mmol (1 equiv.)of 4-
amino-1-boc-piperidine (3) dissolved in 30 mL DCM was added 2.47 g, 10 mmol (1 equiv.) of N-(3-
(trifluoromethyl)benzoyl)glycine, 4.66 g, 10 mmol (1 equiv.) of PyBroP, 1 g, 8 mmol (0.8 equiv.) of 4-
dimethylaminopyridine, 5.10 mL, 30 mmol (3 equiv.) of N,N-diisopropylethylamine and molecular sieves 
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4 Å. The reaction mixture was stirred for 24 h at room temperature. The product was partitioned 
between DCM/1M NaOH. The organic layer was washed with brine, dried over MgSO4 and evaporated. 
The intermediate was purified by column chromatography (50/50 EtOAc in DCM). 

1
H NMR (400 MHz, 

CDCl3) δ: 8.11 (s, 1H), 8.00 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 7.6 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.14 (d, J = 
7.6 Hz, 1H), 4.17 (d, J = 4.8 Hz, 2H), 4.00–3.92 (m, 3H), 2.89 (t, J = 11.6 Hz, 2H), 1.91 (d, J = 2.8 Hz, 2H), 
1.45–1.37 (m, 11H). Subsequently, tert-butyl 4-(2-(3-(trifluoromethyl)benzamido)acetamido)piperidine-
1-carboxylate was added to a dry solution of 3M HCl in MeOH. The reaction was stirred at room 
temperature for 2.5 hours. Upon completion, the reaction was neutralized with 1M NaOH (aq.) to pH = 
10 and the methanol was evaporated. Extraction with DCM and subsequent drying over MgSO4 and 
evaporation yielded the product. Overall yield = 57%. 1H NMR (400 MHz, CDCl3) δ: 8.80 (s, 1H), 8.61 (d, J 
= 8.0 Hz, 2H), 7.76 (d, J = 7.6 Hz, 1H), 6.54 (s, 1H), 4.86 (d, J = 7.6 Hz, 2H), 3.92–3.87 (m, 3H), 2.63 (t, J = 
10.2 Hz, 2H), 1.89–1.86 (m, 2H), 1.32–1.30 (m, 2H). 
N-(2-oxo-2-(piperidin-4-ylamino)ethyl)-3-(trifluoromethyl)benzamide (6). To 1 equivalent of tert-butyl 
piperidin-4-ylcarbamate (4) dissolved in DCM was added 1 equivalent of N-(3-
(trifluoromethyl)benzoyl)glycine, 1 equivalent of PyBroP, 0.8 equivalents of 4-dimethylaminopyridine, 3 
equivalents of N,N-diisopropylethylamine and molecular sieves 4 Å. The reaction mixture was stirred for 
24 h at room temperature. The product was extracted with DCM/ 1 M NaOH. The organic layer was 
washed with brine, dried over MgSO4 and evaporated. The intermediate was purified by column 
chromatography (50/50 EtOAc in DCM). 1H NMR (400 MHz, CDCl3) δ: 8.13 (s, 1H), 8.01 (d, J = 8.0 Hz, 1H), 
7.78 (d, J = 8.0 Hz, 1H), 7.59 (t, J = 8.0 Hz, 1H), 7.47 (br s, 1H), 4.65–4.50 (m, 2H), 4.70 (dd, J = 22.4, 3.6, 
Hz, 2H), 3.82–3.72 (m, 2H), 3.23–3.15 (m, 1H), 2.88 (t, J = 12.0 Hz, 1H), 2.15–2.00 (m, 2H), 1.47 (s, 9H), 
1.41–1.30 (m, 2H). tert-butyl (1-((3-(trifluoromethyl)benzoyl)glycyl)piperidin-4-yl)carbamate was added 
to a dry solution of 3M HCl in MeOH. The reaction was stirred at room temperature for 2.5 hours. Upon 
completion, the reaction was neutralized with 1M NaOH (aq.) to pH = 10 and the methanol was 
evaporated. Extraction with DCM and subsequent drying on MgSO4 and evaporation yielded the 
product. Overall yield = 89%. 1H NMR (400 MHz, CDCl3) δ: 8.00 (s, 1H), 7.88 (d, J = 8.0 Hz, 2H), 7.59 (d, J = 
7.6 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 4.31 (d, J = 12.0 Hz, 2H), 4.40–4.10 (m, 2H), 3.68 (d, J = 12.0 Hz, 1H), 
3.10–2.65 (m, 4H), 1.83–1.70 (m, 2H), 1.28–1.14 (m, 2H). 
General procedure for the preparation of compounds 7, 10, 16 and 19. 
A round-bottom flask was purged with N2 gas before adding DCM. N-(2-oxo-2-(piperidin-4-
lamino)ethyl)-3-(trifluoromethyl)benzamide (5) was added together with the corresponding aldehyde or 
ketone in a 1:1 ratio. In the case of ketones, 1 equivalent of acetic acid was added. 2 equivalents of 
NaBH(OAc)3 were added and the reaction mixture was stirred with 4 Å MS for 48 hours at room 
temperature. The reaction was quenched with 1M NaOH (aq.) and extracted with DCM. The organics 
were washed with brine and dried over MgSO4. Purification by column chromatography was performed 
using an eluent system of 90:9:1 DCM:MeOH:NH4OH. 
N-(2-((1-(4-chlorobenzyl)piperidin-4-yl)amino)-2-oxoethyl)-3-(trifluoromethyl)benzamide (7). The product 
was obtained in a yield of 62%. 1H NMR (400 MHz, Acetone-d6) δ: 8.35–8.20 (m, 3H), 7.90 (d, J = 7.6 Hz, 
1H), 7.75 (t, J = 7.6 Hz, 1H), 7.25–7.42 (m, 5H), 4.06 (d, J = 5.6 Hz, 2H), 3.70–3.80 (m, 1H), 3.49 (s, 2H), 
2.80 (d, J = 11.6 Hz, 2H), 2.16–2.05 (m, 2H), 1.88–1.80 (m, 2H), 1.58–1.47 (m, 2H). 

13
C NMR (101Hz, 

Acetone-d6) δ: 168.0, 165.3, 138.0, 135.4, 132.0, 131.1, 130.4, 130.0, 129.5, 128.1, 127.8, 127.8, 125.5, 
124.1, 124.1, 61.6, 52.1, 46.6, 43.1, 31.8. LC/MS mass found: 454+, 456+ [H+]. Purity: 96.9 %. 
N-(2-oxo-2-((1-(4-phenylcyclohexyl)piperidin-4-yl)amino)ethyl)-3-(trifluoromethyl)benzamide (10). The 
product was obtained with a yield of 43%. 1H NMR (400 MHz, CDCl3) δ: 8.17 (s, 1H), 8.10–8.00 (m, 2H), 
7.76 (d, J = 8.0 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.35–7.18 (m, 5H), 7.08 (d, J = 8.0 Hz, 0.3H),a 7.00 (d, J = 
8.0 Hz, 0.7H),b 4.20 (d, J = 5.2 Hz, 2H), 3.88–3.76 (m, 1H), 3.10–2.90 (m, 2H), 2.77–2.69 (m, 1H), 2.50–
2.38 (m, 1H), 2.30 (br s, 1H), 2.11 (t, J = 10.6 Hz, 1H), 2.05–1.88 (m, 6H), 1.68–1.40 (m, 6H). 13C NMR 
(101Hz, CDCl3) δ: 168.5,a 168.5,b 166.4, 146.8,a 146.8,b 134.2, 131.3, 130.9, 130.4, 129.2, 128.4, 128.3, 
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127.1, 126.8, 126.0, 125.7, 125.0, 124.5, 122.3, 63.4, 59.2, 48.6, 47.8, 47.3, 44.2, 44.1, 42.2, 33.6, 32.3, 
28.7, 28.5, 27.9. LC/MS mass found: 488+ [H+]. Purity: 99.0 %. a and b are indicated for different 
diastereomers. 
N-(2-((1-(4-(3-methoxyphenyl)cyclohexyl)piperidin-4-yl)amino)-2-oxoethyl)-3-(trifluoromethyl)benzamide 
(16). This final compound was obtained with a yield of 6%. 1H NMR (400 MHz, CDCl3 + drop of MeOD) δ: 
8.13 (s, 1H), 8.03 (d, J = 7.6 Hz, 1H), 7.76 (d, J = 7.6 Hz, 1H), 7.64–7.55 (m, 2H), 7.24–7.19 (m, 1H), 6.87 
(d, J = 8.4 Hz, 1H), 6.74–6.72 (m, 1H), 6.63 (s, NH), 4.15 (d, J = 4.8 Hz, 2H), 3.80 (s, 3H), 3.02 (t, J = 13.2 
Hz, 2H), 2.71 (t, J = 4.4 Hz, 1H), 2.62–2.45 (m, 2H), 2.18 (s, 1H), 2.11–1.86 (m, 6H), 1.74–1.43 (m, 6H). 13C 
NMR (400 MHz, CDCl3 + drop of MeOD) δ: 168.2, 166.4, 134.5, 130.5, 129.5, 129.4, 124.5, 119.7, 119.3, 
113.6, 112.9, 111.2, 110.5, 77.5, 77.2, 76.8, 55.3, 48.6, 44.1, 43.9, 33.4, 28.6. LC/MS mass found: 518+ 
[H+]. Purity: 97.1 %. 
N-(2-((1-(4-(4-hydroxyphenyl)cyclohexyl)piperidin-4-yl)amino)-2-oxoethyl)-3-(trifluoromethyl)benzamide 
(19). The product was obtained with a yield of 40%. 1H NMR (400 MHz, CDCl3 + drop of MeOD) δ: 8.13 (s, 
1H), 8.03 (d, J = 7.6 Hz, 1H), 7.76 (d, J = 7.6 Hz, 1H), 7.56 (t, J = 8.0 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 7.01 
(d, J = 8.4 Hz, 1H), 6.76 (dd, J1 = 4.8 Hz, J2 =4.4 Hz, 2H), 4.07 (s, 2H), 3.77 (q, J = 4.0 Hz, 1H), 2.94 (d, J = 
9.2 Hz, 2H), 2.71 (s, 1H), 2.40–2.52 (m, 3H), 2.12 (t, J = 10.8 Hz, 1H), 1.98–1.88 (m, 5H), 1.75 (d, J = 4.8 
Hz, 1H), 1.65–1.49 (m, 4H), 1.41 (t, J = 10.4 Hz, 2H). 13C NMR (400 MHz, CDCl3 + drop of MeOD) δ: 168.3, 
154.7, 154.3, 138.2, 134.4, 131.0, 130.6, 129.3, 128.5, 128.2, 127.7, 124.4, 115.3, 115.2, 63.6, 48.6, 48.0, 
47.0, 43.5, 43.2, 33.8, 31.8, 31.7, 29.0, 28.5, 26.8. LC/MS mass found: 504+ [H+]. Purity: 96.3 %. 
General procedure for the preparation of the final compounds 8, 9, 11, 13, 14, 18, 20 and 21. 
A 5 mL vial was loaded with 0.5 mmol (1 equiv.) of the corresponding aldehyde or ketone together with 
0.5 mmol (1 equiv.) of piperidine 5 or 6. In the case of ketones 1.25 mmol (2.5 equiv.) of acetic acid were 
added. 1 mL of MeOH was added and left to stir at room temperature for 30 minutes. 1 mmol (2 equiv.) 
of PEMB were added, dropwise. The reaction mixture heated at 60 °C overnight. The crude reaction 
mixture was directly poured onto a column and purified using the eluent system of 97:2:1 
DCM:MeOH:NH4OH. 
N-(2-oxo-2-((1-(3-phenylpropyl)piperidin-4-yl)amino)ethyl)-3-(trifluoromethyl)benzamide (8). Yield = 
10%,

 1
H NMR (400 MHz, MeOD-d4) δ: 8.18 (s, 1H), 8.12 (d, J = 7.6 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.67 (t, 

J = 8.0 Hz, 1H), 7.26 (t, J = 8.0 Hz, 2H), 7.19–7.14 (m, 3H), 4.0 (s, 2H), 3.82–3.77 (m, 1H), 3.15 (d, J = 12.4 
Hz, 2H), 2.66 (q, J = 6.8 Hz, 4H), 2.47 (t, J = 11.2 Hz, 2H), 1.97–1.88 (m, 4H), 1.66 (q, J = 11.2 Hz, 2H). 
LC/MS: 448+ [H+]. Purity: 96.7%. 
N-(2-oxo-2-((1-(1,2,3,4-tetrahydronaphthalen-2-yl)piperidin-4-yl)amino)ethyl)-3-
(trifluoromethyl)benzamide (9). Yield = 77%, 1H NMR (400 MHz, CDCl3) δ: 9.01 (t, J = 5.6 Hz, 1H), 8.22 (s, 
1H), 8.19 (d, J = 7.6 Hz, 1H), 7.94–7.90 (m, 2H), 7.76 (t, J = 7.6 Hz, 1H), 7.05 (s, 4H), 3.88 (d, J = 5.6 Hz, 
2H), 3.58–3.50 (m, 1H), 3.34–2.67 (m, 7H), 2.89–2.25 (m, 2H), 1.97 (d, J = 12.0 Hz, 1H), 1.75 (d, J = 11.6 
Hz, 2H), 1.57–1.53 (m, 1H), 1.45 (q, J = 10.8 Hz, 2H). LC/MS: 460+ [H+]. Purity: 99.0%. 
N-(2-oxo-2-((1-(3-phenylcyclohexyl)piperidin-4-yl)amino)ethyl)-3-(trifluoromethyl)benzamide (11). Yield = 
3%, 1H NMR (400 MHz, CDCl3) δ: 11.23 (s, 1H), 8.10 (s, 1H), 8.02 (d, J = 7.2 Hz, 1H), 7.75 (dd, J1 = 8.0 Hz, 
J2 = 7.6 Hz, 2H), 7.54 (t, J = 15.6 Hz, 1H), 7.34–7.12 (m, 4H), 7.20 (d, J = 4.8 Hz, 2H), 3.98 (s, 1H), 3.47 (d, J 
= 7.2 Hz, 1H), 3.35 (s, 1H), 3.15 (m, 1H), 2.92–2.86 (m, 4H) 2.56 (d, J = 11.6 Hz, 1H), 2.30–2.05 (m, 4H), 
2.05–1.98 (m, 2H), 1.96–1.93 (m, 2H), 1.74 (t, J = 10.8 Hz, 1H), 1.65–1.60 (m, 1H). LC/MS: 488+ [H+]. 
Purity: 99.0%. 
N-(2-oxo-2-((1-(4-(2-methy-phenyl)cyclohexyl)piperidin-4-yl)amino)ethyl)-3-(trifluoromethyl)benzamide 
(13). The product was obtained with a yield of 13%. 1H NMR (400 MHz, CDCl3) δ: 8.15 (s, 1H), 8.05–8.00 
(m, 2H), 7.74 (d, J = 7.6 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.17–7.07 (m, 3H), 6.91 (d, J = 7.6 Hz, 1H), 4.19 
(d, J = 4.8 Hz, 2H), 3.82–3.80 (m, 1H), 3.02–2.79 (m, 3H), 2.47–2.36 (m, 1H), 2.33 (s, 3H), 2.25 (s, 1H), 
2.07–1.95 (m, 5H), 1.89–1.79 (m, 2H), 1.57–1.47 (m, 6H). 13C NMR (400 MHz, CDCl3) δ: 168.4, 166.5, 
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145.7, 144.8, 135.3, 134.4, 131.2, 130.4, 129.3, 128.5, 126.2, 125.7, 125.2, 124.5, 122.4, 63.6, 58.0, 48.9, 
47.9, 47.4, 44.2, 39.8, 32.7, 29.2, 27.5, 19.5. LC/MS: 502+ [H+]. Purity: 95.3%. 
N-(2-oxo-2-((1-(4-(3-methyl-phenyl)cyclohexyl)piperidin-4-yl)amino)ethyl)-3-(trifluoromethyl)benzamide 
(14). The product was obtained with a yield of 12%. 1H NMR (400 MHz, CDCl3) δ: 8.13 (s, 1H), 8.03 (d, J = 
7.6 Hz, 1H), 7.96 (d, J = 4.8 Hz, 1H), 7.74 (d, J = 7.6 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.18 (t, J = 8.0 Hz, 1H), 
7.07 (s, 1H), 6.99 (d, J = 9.6 Hz, 2H), 6.92 (d, J = 8.0 Hz, ½Ha), 6.85 (d, J = 7.6 Hz, ½Hb), 4.16 (d, J = 4.8 Hz, 
2H), 3.90–3.70 (m, 1H), 2.96–2.88 (m, 2H), 2.66–2.62 (m, 1H), 2.44–2.26 (m, 5H), 2.11–2.05 (m, 1H), 
2.00–1.85 (m, 6H), 1.62–1.35 (m, 6H). 13C NMR (400 MHz, CDCl3) δ: 168.4, 166.5, 147.0, 137.9, 134.4, 
131.1, 130.5, 129.3, 128.5, 128.3, 127.8, 125.1, 124.5, 124.1, 123.8, 63.5, 59.2, 48.7, 47.9, 47.4, 44.3, 
44.1, 42.4, 33.7, 32.5, 28.7, 28.1, 21.6. LC/MS: 502+ [H+]. Purity: 98.6%. 
N-(2-((1-(4-(2,6-dimethoxyphenyl)cyclohexyl)piperidin-4-yl)amino)-2-oxoethyl)-3-
(trifluoromethyl)benzamide (18). The product was obtained with a yield of 30%. 1H NMR (400 MHz, 
CDCl3) δ: 8.15 (s, 1H), 8.05 (d, J = 7.6 Hz, 1H), 7.99 (s, 1H), 7.75 (d, J = 7.6 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 
7.12–7.07 (m, 1H), 6.85 (s, 1H), 6.53 (d, J = 7.6 Hz, 2H), 4.18–4.13 (m, 2H), 3.83–3.78 (m, 1H), 3.77 (s, 
6H), 3.32–3.26 (m, 1H), 3.02–2.96 (m, 2H), 2.46–2.36 (m, 2H), 2.26 (s, 1H), 2.15–1.93 (m, 6H), 1.66–1.53 
(m, 2H), 1.49–1.39 (m, 2H), 1.25 (d, J = 6.8 Hz, 2H). 13C NMR (400 MHz, CDCl3) δ: 168.4, 166.5, 158.8, 
134.4, 131.1, 129.3, 128.5, 126.9, 125.1, 124.5, 123.8, 122.4, 104.8, 57.8, 55.9, 51.5, 47.5, 44.1, 40.5, 
34.6, 33.9, 32.7, 32.0, 29.6, 29.0, 24.2. LC/MS: 548+ [H+]. Purity: 96.7 %. 
N-(2-((1-(4-(benzo[d][1,3]dioxol-5-yl)cyclohexyl)piperidin-4-yl)amino)-2-oxoethyl)-3-
(trifluoromethyl)benzamide (20). The product was obtained with a yield of 24%. 1H NMR (400 MHz, 
CDCl3 + drop of MeOD) δ: 8.13 (s, 1H), 8.03 (d, J = 8.0 Hz, 1H), 7.77–7.73 (m, 2H), 7.56 (t, J = 8.0 Hz, 1H), 
6.76–6.63 (m, 4H), 5.91 (s, 2H), 4.16 (d, J = 4.8 Hz, 2H), 3.84–3.76 (m, 1H), 2.93 (t, J = 12.4 Hz, 2H), 2.60 
(s, 1H), 2.49–2.33 (m, 2H), 2.27 (s, 1H), 2.09 (t, J = 11.2 H, 1H), 1.98–1.84 (m, 6H), 1.60–1.44 (m, 4H), 
1.42–1.38 (m, 2H). 13C NMR (400 MHz, CDCl3 + drop of MeOD) δ: 168.2, 166.5, 147.6, 145.6, 141.1, 
134.4, 131.3, 130.5, 129.3, 128.5, 124.5, 119.7, 108.2, 107.7, 107.3, 100.9, 63.5, 59.2, 48.7, 47.9, 47.3, 
44.1, 42.3, 34.0, 32.4, 28.8, 28.0. LC/MS: 532+ [H+]. Purity: 95.5%.  
N-(2-oxo-2-4-[(4-phenylcyclohexyl)amino]piperidin-1-ylethyl)-3-(trifluoromethyl)benzamide (21). Yield = 
2%, 

1
H NMR (400 MHz, MeOH-d4) δ: 8.21 (s, 1H), 8.15 (d, J = 7.5 Hz, 1H), 7.88 (d, J = 7.6 Hz, 1H), 7.70 (t, J 

= 7.6 Hz, 1H), 7.30–7.16 (m, 5H), 4.69 (d, J = 13.6 Hz, 1H), 4.45 (d, J = 16.4 Hz, 1H), 4.21–4.15 (m ,2H), 
3.65–3.58 (m, 1H), 3.52 (s, 2H), 3.39–3.36 (m, 1H), 3.26–3.23 (m, 1H), 2.79 (t, J = 12.4 Hz, 1H), 2.59 (t, J = 
11.6 Hz, 1H), 2.28–2.15 (m, 4H), 2.04–2.01 (m, 2H), 1.73–1.49 (m, 6H). LC/MS: 488+ [H+]. Purity: 99.6%. 
N-(2-oxo-2-((1-((1-phenyl-1H-1,2,3-triazol-4-yl)methyl)piperidin-4-yl)amino)ethyl)-3-
(trifluoromethyl)benzamide (12). To a 50 mL round-bottom flask equipped with magnetic stirrer 0.72 
mmol (1 equiv.) of iodobenzene, 0.8 mmol (1.1 equiv.) of N-(2-oxo-2-((1-(prop-2-yn-1-yl)piperidin-4-
yl)amino)ethyl)-3-(trifluoromethyl)benzamide (40), 0.16 mmol (0.25 equiv.) of proline, 0.10 mmol (0.14 
equiv.) of Na2CO3, 0.96 mmol (1.3 equiv.) of NaN3 and 0.08 mmol (0.12 equiv.) of ascorbic acid were 
added and dissolved in a mixture of DMSO and H2O (3:1). Then, 0.08 mmol (0.12 equiv.) of CuSO4•5H2O 
were added and the reaction was heated at 80 °C for 48h. The mixture was quenched with 3% NH4OH, 
extracted 5 times with 10 mL EtOAc, washed with brine, dried over MgSO4, filtered and concentrated in 
vacuo. Solids were recrystallized from a mixture of H2O / Acetone = 1:1 and washed with petroleum 
ether. Yield = 4%. 1H NMR (400 MHz, Acetone –d6) δ: 8.43 (s, 1H), 8.23–8.20 (m, 2H), 7.92–7.90 (m, 2H), 
7.76 (t, J = 7.6 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.48 (m, 1H), 7.47 (t, J = 7.2 Hz, 1H), 7.32 (d, J = 6.4 Hz, 
1H), 4.04 (d, J = 5.2 Hz, 2H), 3.69 (s, 2H), 2.22 (t, J = 11.2 Hz, 2H) 2.16 (s, 1H), 2.14 (s, 1H), 1.95 (s, 1H), 
1.85 (m, 2H), 1.54 (q, J = 8.4 Hz, 1H), 1.21 (d, J = 4.8 Hz, 2H). LC/MS: 487+ [H+]. Purity: 95.7%. 
General procedure for the preparation compounds 15 and 17.  
A round-bottom flask was loaded with 0.25 mmol (1 equiv.) of N-(2-oxo-2-(piperidin-4-ylamino)ethyl)-3-
(trifluoromethyl)benzamide (5) and 0.25 mmol (1 equiv.) of the corresponding ketone. 40 mL of benzene 
together with 10 mol% p-toluenesulfonic acid and 4 Å MS were added. The reaction mixture was left to 
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reflux with a Dean-Stark setup for 48 hours. Then, to the cooled mixture 2.5 mmol (10 equiv.) sodium 
borohydride were added portionwise and the reaction was left to stir at room temperature for 24 h. The 
reaction mixture was quenched with 1M NaOH and extracted with DCM. The organic layer was washed 
with brine, dried over MgSO4 and evaporated. The product was purified by column chromatography 
(90:9:1 DCM:MeOH:NH4OH). 
N-(2-oxo-2-((1-(4-(p-tolyl)cyclohexyl)piperidin-4-yl)amino)ethyl)-3-(trifluoromethyl)benzamide (15). The 
product was obtained with a yield of 10%. 1H NMR (400 MHz, CDCl3 + drop of MeOD) δ: 8.10 (s, 1H), 
8.02 (s, 1H), 7.90 (s, 1H), 7.70 (d, J = 7.2 Hz, 1H), 7.53–7.52 (m, 1H), 7.17–7.02 (m, 4H), 4.09 (s, 2H), 3.94 
(s, 1H), 3.47–3.21 (m, 3H), 2.98 (s, 1H), 2.84 (s, 2H), 2.46–2.40 (m, 1H), 2.31 (m, 4H), 2.17 (s, 1H), 2.09–
2.01 (m, 4H), 1.85–1.78 (m, 2H), 1.70–1.51 (m, 3H). 13C NMR (400 MHz, CDCl3 + drop of MeOD) δ: 141.9, 
139.3, 136.3, 135.8, 134.6. 130.9, 130.7, 129.4, 128.4, 127.0, 126.6, 125.2, 124.5, 122.5, 65.5, 48.5, 44.8, 
43.5, 42.7, 36.0. 32.5, 28.6, 26.9, 22.9, 21.1. LC/MS: 502+ [H+]. Purity: 98.9%. 
N-(2-((1-(4-(3,5-dimethoxyphenyl)cyclohexyl)piperidin-4-yl)amino)-2-oxoethyl)-3-
(trifluoromethyl)benzamide (17). The product was obtained with a yield of 2%. 1H NMR (400 MHz, CDCl3 
+ drop of MeOD) δ: 8.10 (s, 1H), 8.02 (d, J = 7.6 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.58 (t, J = 8.0 Hz, 1H), 
7.30 (s, 1H), 7.17 (d, J = 7.6 Hz, 1H), 6.44 (d, J = 2.0 Hz, 1H), 6.32 (d, J = 2.4 Hz, 1H), 4.12 (t, J = 5.2 Hz, 
2H), 4.05–3.97 (m, 1H), 3.78 (s, 6H), 3.55 (d, J = 10.4 Hz, 1H), 3.43 (d, J = 12.0 Hz, 1H), 3.25 (t, J = 10.4 Hz, 
1H), 2.99 (s, 1H), 2.92 (s, 2H), 2.38 (d, J = 12.0 Hz, 2H), 2.25–2.02 (m, 5H), 1.94–1.85 (m, 2H), 1.69–1.56 
(m, 1H). 13C NMR (400 MHz, CDCl3 + drop of MeOD) δ: 161.3, 144.8, 134.6, 130.6, 129.4, 124.5, 105.8, 
105.0, 97.5, 65.5, 55.4, 48.6, 44.6, 43.5, 28.5, 22.9. LC/MS: 548+ [H+]. Purity: 97.7%. 
Synthesis of 4-methyl-N'-(1,4-dioxaspiro[4.5]decan-8-ylidene)benzenesulfonohydrazone (23). In a 
microwave tube 3.2 mmol (1 equiv.) of 1,4-dioxaspiro[4,5]decan-8-one (22) was dissolved in 5 mL of 
dioxane and 3.5 mmol (1.1 equiv.) of tosylhydrazide was added. The reaction mixture was heated at 130 
°C in the microwave for 1 h. Product crystallized upon cooling and was collected by filtration. Yield = 
65%. 1H NMR (CDCl3) δ: 7.84 (d, J = 7.6 Hz, 2H), 7.61 (s, 1H), 7.31 (d, J = 7.6 Hz, 2H), 3.95 (s, 4H), 2.44–
2.32 (m, 7H), 1.82–1.71 (m, 4H). 
Synthesis of 8-(3-methoxyphenyl)-1,4-dioxaspiro[4.5]dec-7-ene (24). In a 20 mL microwave tube 2.0 
mmol (1 equiv.) of 4-methyl-N'-(1,4-dioxaspiro[4.5]decan-8-ylidene)benzenesulfonohydrazone (23) is 
dissolved in 7 mL of dioxane and flushed with nitrogen gas. Next, 2 mol% of Pd2(dba)3, 4 mol% of 2-
dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl (Xphos) and 2.8 equivalents of 1 M Lit-BuO in 
hexanes were added. The reaction mixture was stirred for 1 minute and 2.2 mmol (1.1 equiv.) of 3-
bromoanisole was added. Reaction mixture was heated at 110 °C in the microwave for 24 h. Reaction 
mixture was quenched with saturated solution of NaHCO3 in water and extracted with DCM. The organic 
layer was washed with brine and dried over MgSO4. The product was purified by column 
chromatography (2:8 EtOAc/DCM). Yield = 24%. 1H NMR (CDCl3) δ: 7.21 (t, J = 8 Hz, 1H), 6.98 (d, J = 7.6 
Hz, 1H), 6.93 (s, 1H), 6.77 (d, J = 8.4 Hz, 1H), 5.98 (s, 1H), 4.01 (s, 4H), 3.80 (s, 3H), 2.65 (br s, 2H), 2.46 
(br s, 2H), 1.91 (t, J = 6.4 Hz, 2H). 
1,4-dioxaspiro[4.5]dec-7-en-8-yl trifluoromethanesulfonate (25). An oven–dried round–bottom flask was 
flushed with N2 gas and filled with 5 mL of dry THF. 3.9 mmol (1.3 equiv.) of 2 M solution of LDA in 
ethylbenzene was added. The reaction mixture was cooled to –78 °C. 3 mmol (1 equiv.) of ketone 22 
was dissolved in 10 mL of dry THF and slowly added to the reaction mixture. The reaction mixture was 
stirred for 1 hour at –78 °C, half an hour at –25 °C and then cooled again to –78 °C. Next, 3.9 mmol (1.3 
equiv.) of the N-phenyl-bis(trifluoromethanesulfonimide) was added to the reaction and the mixture 
was stirred for 4 hours at –78 °C after which it was stirred at room temperature overnight. The reaction 
mixture was quenched with H2O and extracted with EtOAc. The organic layer was washed with brine (3x) 
and dried over MgSO4. The product was purified by column chromatography (1:4 diethylether / 
petroleumether). Yield = 80%. 1H NMR (400 MHz, CDCl3) δ: 6.20 (t, J = 4.2 Hz, 1H), 4.04 (s, 4H), 2.81 – 
2.75 (m, 1H), 2.48 (d, J = 7.6 Hz, 2H), 1.90 (t, J = 6.4 Hz, 2H). 



CHAPTER 6 

156 

4,4,5,5-tetramethyl-2-(1,4-dioxaspiro[4.5]dec-7-en-8-yl)-1,3,2-dioxaborolane (26). In a round–bottom 
flask 1.1 mmol (1.1 equiv.) of bis(pinacolato)diboron was dissolved in 50 mL of toluene and PdCl2(PPh3)2 

(0.03 equiv), triphenylphosphine (0.06 equiv) and potassium phenolate (1.5 equiv) were added. The 
reaction mixture was flushed with N2 gas and 1 mmol (1 equiv.) of triflate 25 was added. The mixture 
was stirred at 50 °C under a nitrogen atmosphere. After 4 hours the heat source was removed and the 
reaction was stirred for 24 hours at room temperature. The reaction mixture was partitioned between 
H2O/EtOAc and the organic layer was washed with brine and dried over MgSO4. Column 
chromatography was performed using a gradient of 0-10% EtOAc in DCM as eluent. Yield = 59%. 1H NMR 
(400 MHz, CDCl3) δ: 6.47 (s, 1H), 3.98 (s, 4H), 2.39–2.36 (m, 4H), 1.73 (t, J = 6.4 Hz, 2H), 1.25 (s, 12H). 13C 
NMR (100 MHz, CDCl3) δ: 139.7, 108.0, 83.4, 64.5, 37.2, 31.2, 25.9, 25.0. 
Synthesis of 8-(2H-1,3-benzodioxol-5-yl)-1,4-dioxaspiro[4.5]dec-7-ene (27). 0.7 mmol (1 equiv.) of triflate 
25 was dissolved in 10 mL of dry THF. To the reaction mixture 0.77 mmol (1.1 equiv.) of 3,4-
(methylenedioxy)phenylboronic acid, 2.31 mmol (3.3 equiv.) of potassium fluoride and 10 mol% of 
Pd(dppf)Cl2 were added. The reaction mixture was stirred at room temperature overnight. Next, the 
reaction mixture was filtered over celite and purified with column chromatography (DCM). Yield = 58%. 
1H NMR δ: (CDCl3): 6.89 (s, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 5.93 (s, 2H), 5.86 (t, J = 
4.0 Hz, 1H), 4.01 (s, 4H), 2.60 (br s, 2H), 2.44 (s, 2H), 1.90 (t, J = 6.4 Hz, 2H). 
General procedure for the synthesis of compounds 28-32.  
In a 20 mL microwave tube 0.75 mmol (1 equiv.) of the boron ester 26 was dissolved in 10 mL of dioxane 
and 5 mol% of Pd(PPh3)4 was added along with 0.75 mmol (1 equiv.) of the corresponding arylbromide. 
Next, 8 equivalents of 2 M Na2CO3 in H2O solution was added and the reaction mixture was flushed with 
N2 gas and capped. The reaction mixture was heated in the microwave for 10 hours at 80 °C. Upon 
completion, the reaction mixture was partitioned between DCM/H2O and the organic layer was dried 
over MgSO4. Column chromatography was performed with DCM as eluent.  
8-(2-methyl-phenyl)-1,4-dioxaspiro[4.5]dec-7-ene (28). Yield = 90%, 1H NMR (CDCl3) δ: 7.16–7.06 (m, 4H), 
5.44 (s, 1H), 4.01 (s, 4H), 2.45 (br s, 4H), 2.29 (s, 3H), 1.89 (t, J = 7.2 Hz, 2H). 
8-(3-methyl-phenyl)-1,4-dioxaspiro[4.5]dec-7-ene (29). Yield = 99%, 1H NMR (CDCl3) δ: 7.23–7.16 (m, 3H), 
7.03 (br s, 1H), 5.95 (s, 1H), 4.00 (s, 4H), 2.65 (br s, 2H), 2.46 (br s, 2H), 2.33 (s, 3H), 1.91 (t, J = 6.4 Hz, 
2H). 
8-(4-methyl-phenyl)-1,4-dioxaspiro[4.5]dec-7-ene (30). Yield = 84%, 1H NMR (CDCl3) δ: 7.26 (d, J = 6.8 Hz, 
2H), 7.10 (d, J = 6.8 Hz, 2H), 5.94 (s, 1H), 4.02 (s, 4H), 2.64 (br s, 2H), 2.46 (br s, 2H), 2.33 (s, 3H), 1.92 (t, J 
= 6.4 Hz, 2H). 
8-(3,5-dimethoxyphenyl)-1,4-dioxaspiro[4.5]dec-7-ene (31). Yield = 80%, 1H NMR (CDCl3) δ: 6.54 (d, J = 2 
Hz, 2H), 6.35 (t, J = 2.2 Hz, 1H), 5.97 (t, J = 4.0 Hz, 1H), 4.01 (s, 4H), 3.78 (s, 6H), 2.63 (br s, 2H), 2.46 (br s, 
2H), 1.92 (t, J = 6.4 Hz, 2H). 
8-(2,6-dimethoxyphenyl)-1,4-dioxaspiro[4.5]dec-7-ene (32). Yield = 90%, 1H NMR (CDCl3) δ: 7.15 (t, J = 
8.4 Hz, 1H), 6.54 (d, J = 8.4 Hz, 2H), 5.47 (s, 1H), 4.01 (s, 4H), 3.78 (s, 6H), 2.47–2.40 (m, 4H), 1.90 (t, J = 
6.4 Hz, 2H). 
General procedure for the hydrogenation of the double bond of compounds 24, 27-32.  
A round–bottom flask was purged with hydrogen gas and the corresponding cyclohexene was added. 4 
wt% of Pd/C (10% wt) was added together with 2 mol% Pd(OAc)2 and MeOH was added and hydrogen 
balloon. The reaction mixture was flushed with hydrogen and stirred overnight under hydrogen 
atmosphere. When the reaction was finished, the reaction mixture was filtered through celite. Column 
chromatography was performed if necessary, using 100% DCM as eluent. The obtained yields were 85-
99%. All products showed correct mass in TLC/MS. 
General procedure for the synthesis of compounds 33-39. To a round–bottom flask was added 1 
equivalent of the corresponding acetal. Mixture of DCM and acetone (4:1) was added. Finally 3.5 
equivalents of FeCl3·6H2O were added and the reaction mixture was stirred at room temperature for 3.5 
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hours. The reaction mixture was quenched with saturated aqueous NaHCO3 and extracted with DCM, 
the organic layer was washed with brine and dried over MgSO4. The product was purified by column 
chromatography (DCM). 
4-(2-methylphenyl)cyclohexan-1-one (33). This compound was obtained in 99% yield. 1H NMR (400 MHz, 
CDCl3) δ: 7.25–7.10 (m, 4H), 3.26–3.19 (m, 1H), 2.58–2.50 (m, 4H), 2.41 (s, 3H), 2.17–2.13 (m, 2H), 1.97–
1.79 (m, 2H). 13C NMR (100 MHz, CDCl3) δ: 211.2, 142.9, 135.2, 130.6, 126.5, 125.0, 41.8, 38.5, 33.2, 
19.5. 
4-(3-methylphenyl)cyclohexan-1-one (34). This compound was obtained in 99% yield. 1H NMR (400 MHz, 
CDCl3) δ: 7.25–7.19 (m, 1H), 7.04 (d, J = 8.0 Hz, 3H), 3.02–2.94 (m, 1H), 2.55–2.47 (m, 4H), 2.32 (s, 3H), 
2.22–2.17 (m, 2H), 2.17–1.88 (m, 2H). 13C NMR (100 MHz, CDCl3) δ: 211.3, 144.9, 138.2, 128.6, 127.5, 
123.8, 42.8, 41.5, 34.1, 21.5. 
4-(4-methylphenyl)cyclohexan-1-one (35). This compound was obtained in 90% yield. 1H NMR (400 MHz, 
CDCl3) δ: 7.18 (s, 4H), 3.08–3.00 (m, 1H), 2.60–2.50 (m, 4H), 2.36 (s, 3H), 2.26–2.21 (m, 2H), 2.02–1.96 
(m, 2H). 13C NMR (100 MHz, CDCl3) δ: 211.3, 141.9, 136.2, 129.1, 126.6, 42.4, 41.5, 34.1, 21.1. 
4-(3-methoxyphenyl)cyclohexan-1-one (36). This compound was obtained in 95% yield. 1H NMR (400 
MHz, CDCl3) δ: 7.27–7.23 (m, 1H), 6.84 (d, J = 7.6Hz, 1H), 6.77 (s, 1H), 6.78 (s, 1H), 3.80 (s, 3H), 3.04–2.97 
(m, 1H), 2.53–2.49 (m, 4H), 2.25–2.20 (m, 2H), 1.11–1.88 (m, 2H).  
4-(3,5-dimethoxyphenyl)cyclohexan-1-one (37). This compound was obtained in 98% yield. 1H NMR (400 
MHz, CDCl3) δ: 6.40 (s, 2H), 6.34 (s, 1H), 3.78 (s, 6H), 2.99–2.93 (m, 1H), 2.51 (d, J = 4.4Hz, 2H), 2.47 (d, J 
= 4.4Hz, 2H), 2.23–2.20 (m, 2H), 1.98–1.93 (m, 2H). 13C NMR (100 MHz, CDCl3) δ: 211.2, 161.0, 147.4, 
105.1, 98.2, 55.4, 43.2, 41.4, 33.9. 
4-(2,6-dimethoxyphenyl)cyclohexan-1-one (38). This product was obtained in 42% yield. 1H NMR (400 
MHz, CDCl3) δ: 7.25–7.08 (m, 1H), 6.53 (q, J = 6.0 Hz, 2H), 3.80 (s, 6H), 2.57–2.47 (m, 5H), 1.91–1.87 (m, 
2H), 1.80–1.65 (m, 2H). 13C NMR (100 MHz, CDCl3) δ: 213.2, 158.6, 127.4, 126.9, 120.5, 109.1, 104.4, 
55.8, 42.1, 35.8, 33.9, 29.7, 27.3. 
4-(2H-1,3-benzodioxol-5-yl)cyclohexan-1-one (39). This product was obtained in 87% yield. 1H NMR (400 
MHz, CDCl3) δ: 6.77–6.69 (m, 3H), 5.91 (s, 2H), 2.99–2.92 (m, 1H), 2.54–2.47 (m, 4H), 2.20–2.16 (m, 2H), 
1.93–1.82 (m, 2H). 

13
C NMR (100 MHz, CDCl3) δ: 211.2, 147.9, 146.2, 138.9, 119.6, 108.4, 107.2, 101.0, 

42.7, 41.4, 34.3. 
N-(2-oxo-2-((1-(prop-2-yn-1-yl)piperidin-4-yl)amino)ethyl)-3-(trifluoromethyl)benzamide (40). In a 50 mL 
round–bottom flask 1.1 mmol (1.1 equiv.) of N-(2-oxo-2-(piperidin-4-ylamino)ethyl)-3-
(trifluoromethyl)benzamide (5) was dissolved in 15 mL of acetone. Subsequently, 1.1 mmol (1.1 equiv.) 
of K2CO3 and 1 mmol (1 equiv.) of propargyl bromide were added. The mixture was refluxed overnight. 
The product precipitated form the reaction mixture and was collected by filtration. Yield = 99%.

1
H NMR 

(400 MHz, CDCl3) δ: 8.21–8.18 (m, 2H), 7.76 (d, J = 8.0 Hz, 1H), 7.61–7.57 (m, 1H), 4.71 (s, 2H), 4.54 (s, 
2H), 4.19–4.15 (m, 3H), 3.98–3.95 (m, 2H), 3.83–3.81 (m, 2H), 3.07 (s, 2H), 1.26 (s, 1H). 

Abbreviations 
AcOH, acetic acid; Boc, tert-butyloxycarbonyl; CCL2, chemokine ligand 2; CCR2, chemokine receptor 2; 
DCE, dichloroethane; DCM, dichloromethane; DiPEA, N,N-diisopropylethylamine; DMAP, N,N-
dimethylaminopyridine; DMSO, dimethylsulfoxide; INCB3344, N-(2-(((3S,4S)-1-(4-(benzo[d][1,3]dioxol-5-
yl)-4-hydroxycyclohexyl)-4-ethoxypyrrolidin-3-yl)amino)-2-oxoethyl)-3-(trifluoromethyl)benzamide; JNJ 
Lead, N-(2-((1-((1R,4R)-4-(3-(dimethylamino)phenyl)-4-hydroxycyclohexyl)azetidin-3-yl)amino)-2-
oxoethyl)-3-(trifluoromethyl)benzamide; KO, knock-out; KOPh, potassium phenolate; LDA, lithium 
diisopropylamide; Lit-BuO, lithium tert-butoxide; MeOH, methanol; MW, microwave; MS, molecular 
sieves; Pd2(dba)3, tris(dibenzylideneacetone)dipalladium(0); Pd(dppf)Cl2, [1,1′-
bis(diphenylphosphino)ferrocene]dichloropalladium(II), complex with dichloromethane; Pd(OAc)2, 
palladium acetate; Pd(PPh3)4, tetrakis(triphenylphosphine)palladium(0); PEMB, 5-ethyl-2-methyl-
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pyridine borane; PPh3, triphenylphosphine; PyBrOP, bromo-tris-pyrrolidino 
phosphoniumhexafluorophosphate; SAR, structure–affinity relationships; TFA, trifluoroacetic acid; THF, 
tetrahydrofuran; U2OS, Human Bone Osteosarcoma Cells; XPhos, 2-dicyclohexylphosphino-2′,4′,6′-
triisopropylbiphenyl. 
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Inhibition of the CC chemokine 2 receptor (CCR2), the subject of my thesis, is an attractive 

strategy to combat inflammatory conditions. Hence, the pharmaceutical industry, both 

smaller and bigger actors, has paid considerable attention to this and related chemokine 

receptors. Currently, there are more than 45 different chemical classes known as CCR2 

antagonists. However, despite the big diversity of antagonists and all the efforts in 

(pre)clinical pharmacology in the CCR2 research field there are still no marketed drugs 

targeting this receptor. In fact, all clinical trials targeting CCR2 have failed to show efficacy, 

which would suggest that CCR2 is the “wrong” target. However, the research described in this 

thesis provides a better understanding of the small-molecule antagonist interactions with the 

CCR2 receptor and might help to improve the efficacy of CCR2 antagonists in the future, and 

to resurrect CCR2 as a potential target for the treatment of various inflammatory diseases. 

DEVELOPMENT OF NEW CCR2 ANTAGONISTS 

All small-molecule CCR2 antagonists can be divided into two distinct classes based on their 

binding site in the CCR2 receptor. The bulk of antagonists bind to the same orthosteric 

binding site located at the interface between transmembrane domains and extracellular side 

of the receptor, where they are directly competing with the endogenous ligand CCL2. 

Recently we discovered another (allosteric) binding site, which is located on the intracellular 

side of the receptor. Until now, only a few scaffolds are known to bind to this intracellular 

binding site (unpublished data).  

PHARMACOPHORES OF CCR2 ANTAGONISTS 

Despite the substantial chemical diversity in the structures of the antagonists, the majority of 

the orthosteric ligands correspond to the same pharmacophore (Figure 1). In the 

pharmacophore one of the general features is the presence of a basic nitrogen in the center 

of the molecule. Although Bristol-Meyers Squibb developed BMS221 – a high affinity CCR2 

antagonist without basic nitrogen -, a subsequent incorporation of an additional amine 

yielded a strong boost in affinity.2 This is also in accordance with mutagenesis studies, which 
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suggest that the nitrogen atom, positively charged at physiological pH, forms a salt-bridge 

interaction with the receptor’s glutamic acid E291. Another crucial feature is an aromatic ring 

on one side of the molecule connected via an amide-containing linker to the central nitrogen 

atom.  

 

Figure 1. Pharmacophore based on superimposition of 7 CCR2 small-molecule antagonists. Important 

groups are indicated by the circles: aromatic ring with m-CF3 group (red), amide containing linker 

(orange), aliphatic group/link with basic nitrogen (green), lipophilic group (light blue), aliphatic link 

(pink) between basic nitrogen and aromatic ring (blue). 

Usually this aromatic ring is furnished with lipophilic, electron-withdrawing groups 

(preferentially CF3) on the meta position. Interestingly, in the case of cyclopentylamines in the 

center of the molecule (see also chapter 3) any attempt to alter the location or characteristics 

of the substituent on this aromatic ring completely abolished affinity (unpublished data). The 

other side of the molecule is more versatile and can bear a wide range of different 

substituents as long as they fit the pharmacophore. Nevertheless, several criteria should be 

met before reasonable affinities can be achieved. This was evaluated in more detail with a 

piperidinediamide scaffold (chapter 6). This moiety is based on both pyrrolidine and azetidine 

scaffolds3, 4 by expanding the central aliphatic ring to piperidine. Despite that this scaffold still 
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fits the pharmacophore, substituents that were very well tolerated in the pyrrolidine series5 

caused a complete loss of affinity. After extensive SAR studies it was concluded that, similarly 

to the azetidine series, a 4-aryl-cyclohexyl group is the preferred substituent for this scaffold. 

 

Figure 2. a) superimposition of allosteric CCR2 antagonists: Scaffold A (yellow) and Scaffold F (orange), 

which did not yield high affinity compounds; b) superimposition of docking poses (based on mutagenesis 

studies) of allosteric CCR2 antagonists: Scaffold A (yellow), Scaffold F (orange) and Sulfonamide (blue).  

Structures of the allosteric (intracellular) binders (Scaffold A and Scaffold F) are similar and 

can be superimposed to generate another pharmacophore (Figure 2a). However, the new 

scaffolds (Figure 3) that were designed based on such a pharmacophore failed to yield 

compounds with better affinity than 10 µM towards the CCR2 receptor (unpublished data). 
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Figure 3. New core structures (thiourea, pyrimidine and pyridine) designed based on superimposition of 

scaffolds A and F (Figure 2a). 

These failures suggested that there must be differences between the binding modes of the 

known allosteric antagonists. Later mutagenesis studies showed that, despite the structural 

similarity of the ligands (scaffold A and F), they only partially overlap in the binding site and 

this was also proposed by further docking studies (Figure 2b). To generate a valid 

pharmacophore of the allosteric binders I would suggest combining the knowledge of 

mutagenesis and docking studies with the SAR studies performed on known allosteric 

antagonists (Figure 2b). This could potentially reveal unexplored sub-pockets for interaction in 

the allosteric binding site and generate new CCR2 antagonists.  

STRUCTURE-AFFINITY RELATIONSHIPS AND/OR STRUCTURE-KINETICS RELATIONSHIPS  

Despite the big diversity and substantial amount of already known CCR2 antagonists and 

irrespective of all failures in clinical trials targeting CCR2, the same pharmaceutical companies 

file further patents almost on a yearly basis disclosing new chemical entities as potential 

drugs for the treatment of CCR2-related diseases.
6
 Apparently, the general idea of “If 

something doesn`t work, try something else” also applies to drug discovery and development. 

Apparently it is tempting to generate huge amounts of structurally diverse compounds and to 

hope that one will eventually have the necessary properties in one compound to become an 

efficacious treatment. However, a more elaborate reevaluation of known hits may reveal 

important factors that were previously overlooked. Until now, the development of CCR2 
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antagonists has been based primarily on improving CCR2 affinity but it failed to yield 

efficacious medication. As described in the introduction of this thesis, for a CCR2 antagonist 

to exert its effect it should block its target for as long as possible. To be able to do this, first it 

needs to bind to the target (good affinity) and second it must stay bound to the target (long 

residence time) thus continuing to block it. In this thesis I describe the first attempts to use 

both properties (affinity and residence time) for the design of new high affinity and long 

residence time CCR2 antagonists. Chapter 3 is a reflection of how the combined knowledge of 

structure-affinity relationships (SAR) and the drug-target residence time, which can be 

analyzed as structure-kinetics relationships (SKR), helped to reinvigorate a chemical structure 

that was previously discarded by other scientists due to its moderate affinity for the CCR2 

receptor.7, 8 Based on this structure, we designed and synthesized high affinity and long 

residence time antagonists. Chapter 4 reports the follow-up on these structures and defines 

more detailed SAR and SKR through interrogation of the binding site of the CCR2 receptor by 

applying small changes to the ligand molecule in a step-by-step manner.9 As I see it, this 

approach can already be utilized at the very beginning of the drug discovery cycle thus 

potentially improving the success rate of drug candidates while decreasing the expenses for 

the development of new drugs.  

However, it will take time before principle of binding kinetics advocated in this thesis will 

become part of routine tests in early drug discovery. Until now, a possible correlation of 

binding kinetics with the efficacy of a drug has been shown only in hindsight. I hope the work 

described in this thesis and similar research will form the basis for the pharmaceutical 

industry to use binding kinetics in a more prospective manner. A next step would be to test 

the long residence time compounds in in vivo models and compare their efficacy with 

structurally similar high affinity, but short residence time CCR2 antagonists. Maybe the best 

choice for in vivo tests would be one of the derivatives of MK-0483 described in chapter 5. 

MK-0483 itself, stemming from the Merck Research Laboratories, is a high affinity dual 

CCR2/CCR5 antagonist and was developed as a potential clinical candidate with a good PK/PD 

profile and very slow binding kinetics at CCR2.10 Despite the excellent properties of this 

compound, Merck decided to continue clinical trials with MK-0812 (thought to have fast 
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kinetics) while MK-0483 was kept as a backup candidate.11 After the clinical failure of MK-

0812 mentioned previously, the long residence time CCR2 antagonist MK-0483 never got a 

chance to enter clinical trials. However, if Merck would restore the CCR2 program in their 

pipeline, the best option for proof-of-concept would be to use MK-0483, due to its long 

residence time and dual antagonism (the value of dual antagonism will be discussed later). 

SPECIFICITY, DUAL ANTAGONISM OR FUNCTIONAL SELECTIVITY – WHAT DO WE NEED? 

To develop a new drug and get it to the market as an effective treatment, it must fulfill many 

requirements, one of which is being selective to avoid potential adverse effects via off-target 

binding. Usually, during the early stages of the drug discovery process, a counterscreen 

against a panel of different off-targets is used to determine the selectivity of a lead compound 

before advancing it into in vivo studies. However, in some cases, lack of selectivity over some 

targets can be tolerated or it can even be beneficial. Orthosteric CCR2 antagonists often have 

affinity for the CCR5 receptor too and are called dual antagonists, like the above-mentioned 

MK-0483. According to Pasternak et al.10 it is unlikely that CCR5 blockade is a treatment 

liability for CCR2-related diseases. Zhao et al.12 even suggested that BMS-A (a dual CCR2/CCR5 

antagonist) offers a novel oral therapy for the treatment of autoimmune diseases. 

Additionally, CCR2/CCR5 dual inhibition could be beneficial in the treatment of Crohn`s 

disease and atherosclerosis.13 However, in the case of rheumatoid arthritis (RA), Lebre et al. 

recently described that even dual antagonism of CCR2/CCR5 does not prevent monocyte 

migration when induced by synovial fluid (taken form RA patients), which contains many 

different chemokines.14 Only the blockade of the CCR1 receptor in this assay resulted in 

inhibition of chemotaxis; however, CCR1 antagonists failed to show effect in clinical trials.15 

Apparently, the chemokine system in RA pathology is very versatile and one could argue that 

selective inhibition is doomed for failure as described above. To tackle this multi-level system, 

one should combine the separate benefits (observed in numerous in vitro studies) of the 

inhibition of CCR1, CCR2 and CCR5 in one treatment. This could potentially be achieved by a 

combination of an allosteric dual CCR1/CCR2 antagonist (such as the sulfonamide in Figure 
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2b)16 with an orthosteric dual CCR2/CCR5 antagonist (e.g., MK-0483). Moreover, in 

radioligand binding studies it was observed that allosteric and orthosteric CCR2 antagonists 

enhance each other’s binding.17 Another possibility would be to develop an “all-in-one” 

antagonist, which most probably would be an allosteric binder as the intracellular binding site 

is more conserved between the different chemokine receptors. A good starting point could be 

the sulfonamide core (Figure 2b), which already has high affinity for CCR1/2 and sub-

micromolar affinity for CCR4/5 receptors.
16

 

Another peculiarity that should be taken into account when developing drugs that target the 

chemokine system is its intricate complexity. For example, the CCR2 receptor can be activated 

by multiple chemokines (e.g. CCL2, CCL7, CCL8, CCL11 and CCL13), while all these chemokines, 

except CCL2, can bind to multiple other chemokine receptors. Moreover, such receptor-ligand 

interchangeability is observed between almost all chemokine receptors and their ligands, 

rendering the whole chemokine system promiscuous. However, the distinct tissue expression 

of different chemokines points out that they are part of specific and fine-tuned immune 

system.18 For example, the CCL2/CCR2 axis is important for monocyte migration from the 

bone marrow to the blood under normal homeostatic conditions. During inflammation, 

however, also CCL7, next to CCL2, plays an essential role in monocyte recruitment to the 

inflamed tissue.19 Additionally, Berchiche et al. reported that CCR2 shows a degree of biased 

signaling when activated by different chemokines.20 Although not entirely understood, this 

intricacy of the chemokine system must be taken into consideration when developing new 

ligands. For instance, lead compounds should not only be tested against the “primary” 

endogenous ligand but also all other endogenous ligands as they could bind differently and 

continue to activate the receptor. 

HERG K+ CHANNEL AS AN OFF-TARGET OF CCR2 ANTAGONISTS 

Next to the challenge of developing efficacious drugs, they must be also safe. One of the 

major safety concerns for the pharmaceutical industry has become the human ether-à-go-go-

related gene (hERG) potassium (K
+
) channel. Blockade of the hERG K

+
 channel can affect heart 
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rhythm by prolonging the QT interval, thereby increasing the risk of ventricular arrhythmias 

and fibrillation, potentially leading to torsades de pointes and sudden death.
21

 Due to their 

binding to this off-target, many drugs have been withdrawn from the market or labeled with a 

‘black box’ warning. Nowadays, screening for hERG K
+
 channel interaction is an FDA 

prerequisite and a routine procedure in the drug discovery and development cycle. One of the 

reasons why so many drugs bind to this channel is the broad tolerance of the hERG binding 

pocket. In general, if a molecule contains a charged or basic nitrogen that can be protonated 

at physiological pH, linked to an aromatic group on one side of the molecule, and to a 

lipophilic group on the other, it is a potential binder to the hERG channel. Such description fits 

a considerable variety of molecules including the orthosteric CCR2 antagonists (Figure 1). 

However, medicinal chemists have developed different ways to synthesize out hERG affinity 

from lead compounds. One of the well-known methods is the introduction of an acidic group 

in the molecule. This approach was used in the development of MK-0483, where the 

introduction of a carboxylic acid moiety resulted in a 600-fold decrease in affinity for the 

hERG channel compared to its parent compound.10 Another approach is to alter the 

pharmacophore by decreasing the pKa of the basic nitrogen22 or by exchanging an aromatic 

group to an aliphatic one.
23

 However, such interventions often result in an affinity decrease 

for the primary target too, thus requiring additional lead optimization if possible. Redfern et 

al. have proposed a 30-fold margin be a minimum between free plasma concentration of the 

drug and its IC50 value for the hERG channel.24 However, pharmaceutical companies should 

consider increasing this safety margin especially for drugs intended for non-debilitating 

diseases. Next to the affinity also binding kinetics to and binding configuration (i.e. binding to 

either the open or closed state of the channel) of the hERG channel should be taken into 

account. Recently, Veroli et al.25 described that hERG inhibitors with similar affinities but 

different binding kinetics do not hold the same pro-arrhythmic risk. However, binding 

configuration (especially the closed state of the channel) had a much bigger influence on QT 

interval prolongation than binding kinetics, suggesting the need for additional screening for 

hERG binding configurations rather than potency alone. 
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FINAL NOTE 

Drug discovery has come a long way in its evolution. Mankind journeyed from the prehistoric 

times when healers found and used medicinal herbs by trial and error of consumption of the 

local flora, throughout the birth of scientific understanding of chemistry and pharmacology in 

the 19
th

 century, to current more rational design approaches in drug discovery. Throughout 

this journey, drug discovery and development have become more effective, safer and more 

complex and all these improvements have happened in evolutionary jumps. Usually these 

jumps accrued after discovering new methods, new relationships, or testing and proving new 

ideas that led to new understandings and paradigm changes. However, such breakthroughs 

usually came after facing a crisis and at the moment the pharmaceutical industry is thought to 

face a productivity crisis.26 At the same time there is an increasing awareness that drug 

discovery cannot be successfully done anymore in ‘splendid isolation’. Public-private 

partnerships, such as the Innovative Medicines Initiative of the EU and the Dutch TIPharma 

program (that made this thesis possible) are examples how the ideas and knowledge of 

academia come together with the practical expertise of the industry and in synergy can 

provide possible solutions to overcome the aforementioned crisis. This joint collaboration and 

awareness provides room for a further exploration of novel concepts in drug discovery, for 

which time was often lacking in industry alone. This is certainly true for the subject of my 

thesis, i.e. another paradigm shift in drug discovery – from “SAR” to “SAR/SKR”, and I am 

happy that I could play a role in it.  
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SUMMARY 

This thesis starts with a brief description of the evolution of drug discovery from the “trial and 

error experiments” to the complex “rational drug design” transforming development of new 

drugs into the multi-disciplinary field as we know it today (chapter 1). However, despite all 

the developments and gained knowledge, it is still very difficult to develop effective and safe 

drugs. Recently, a paradigm shift has been proposed that instead of structure–affinity 

relationship (SAR) based drug discovery one should use both SAR and structure–kinetic 

relationships (SKR). This could result in the next evolutionary jump of drug discovery and 

development. To test this rationale a G protein-coupled receptor (GPCR) family member – 

chemotactic chemokine receptor 2 (CCR2) was chosen as the target of interest. At the time of 

beginning of this thesis the literature already described a “graveyard” of failed CCR2 ligands 

whose development was based on SAR only. However, several chemical structures showed 

potential to improve their binding kinetics especially when an indane moiety was 

incorporated (described in this thesis).  

The indane (2,3-dihydro-1H-indene) ring system per se is an appealing scaffold for biologically 

active compounds and is reviewed in chapter 2. It provides a wide range of possibilities to 

incorporate specific substituents in different directionalities, thus being an attractive 

template structure for medicinal chemists. Notably, many indane-based compounds are being 

used in the clinic to treat various diseases, such as indinavir, an HIV-1 protease inhibitor, 

indantadol, a potent MAO-inhibitor, the amine uptake inhibitor indatraline, and the ultra–

long–acting β-adrenoceptor agonist indacaterol. Given the diversity of targets these drugs act 

on, one could argue that the indane ring system is a privileged substructure, just like indole, 

the nitrogen atom containing unsaturated version of it.  

Chapter 3 describes the development of a competition association assay for CCR2 and the 

primary investigation on the relation of the structure of the ligand and its receptor residence 

time [i.e. SKR] next to a traditional SAR. This approach resulted in the discovery of a new 5-
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bromo-indane derivative with high affinity (3.6 nM) as CCR2 antagonist with a residence time 

of 135 min.  

Chapter 4 contains the report on our findings on both SAR and SKR studies for a series of 3-

((inden-1-yl)amino)-1-isopropyl-cyclopentane-1-carboxamides as CCR2 antagonists. SAR 

studies showed that this class of compounds tolerates a vast diversity of substituents on the 

indenyl ring with only small changes in affinity. However, the SKR is affected greatly by minor 

modifications of the structure. The combination of SAR and SKR in the hit-to-lead process 

resulted in the discovery of a new high–affinity and long–residence–time CCR2 antagonist (Ki 

= 2.4 nM; RT = 714 min). 

In chapter 5 we report new findings on the SAR and SKR of the reference compound MK-

0483, its diastereomers, and structural analogues of it as CCR2 antagonists. On the “right–

hand” side of the molecules the 7-(trifluoromethyl)-1,2,3,4-tetrahydroisoquinoline group 

generally yields better affinity and longer drug–target residence time (RT). On the “left–hand” 

side SAR of the phenyl ring suggests that lipophilic hydrogen bond accepting substituents on 

the 3-position are favourable. However, SKR suggests that a lipophilic group with a certain 

size is desired (e.g. 3-Br, 3-iPr). Alternatively a shielded hydrogen bond can also prolong the 

residence time; this was most prominently observed in MK-0483 itself (Ki = 1.2 nM, RT = 724 

min).  

Next to the SKR studies outlined above, we also developed a novel N-(2-oxo-2-(piperidin-4-

ylamino)ethyl)-3-(trifluoromethyl)benzamide series of human CCR2 chemokine receptor 

antagonists described in chapter 6. With a pharmacophore model based on known CCR2 

antagonists a new core scaffold was designed, analogues of it synthesized and SAR studies 

derived yielding a new high affinity CCR2 antagonist N-(2-((1-(4-(3-

methoxyphenyl)cyclohexyl)piperidin-4-yl)amino)-2-oxoethyl)-3-(trifluoromethyl)benzamide. 

Finally,  general  conclusions  about the  research  described  in this thesis are outlined. This is 

also  supplemented  with  future  erspectives of CCR2 antagonists based upon the knowledge 

and results obtained from this work (chapter 7).
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SAMENVATTING  

Dit proefschrift begint met een korte beschrijving van de evolutie van de drug discovery van 

"trial and error experimenten" naar het complexe "rational drug design" en de transformatie 

van de ontwikkeling van nieuwe geneesmiddelen in het multi-disciplinaire gebied zoals we dat 

nu kennen (hoofdstuk 1). Ondanks alle ontwikkelingen en opgedane kennis, is het nog steeds 

erg moeilijk om effectieve en veilige geneesmiddelen te ontwikkelen. Onlangs is een 

paradigmaverschuiving voorgesteld waarbij men in plaats van structuur–affiniteit relatie (SAR) 

gebaseerd geneesmiddelenonderzoek, zowel de SAR als de structuur–kinetiek relatie (SKR) 

zou moeten gebruiken. Dit kan resulteren in de volgende evolutionaire sprong van drug 

discovery en ontwikkeling. Om dit rationaal te testen werd een G eiwit gekoppelde receptor ( 

GPCR ) familielid - chemokine receptor 2 ( CCR2 ) - gekozen als doelwit. Ten tijde van de start 

van dit project omschreef de literatuur een "begraafplaats" van mislukte CCR2 liganden die 

ontwikkeld waren enkel gebaseerd op de SAR . Echter, verschillende chemische structuren 

toonden potentieel om hun bindingskinetiek te verbeteren, vooral wanneer een indaan groep 

werd opgenomen in de structuur (beschreven in dit proefschrift). 

Een indaan (2,3-dihydro-1H-indene) ringsysteem is een aantrekkelijke steiger voor biologisch 

actieve verbindingen en wordt nader beschreven in hoofdstuk 2. Het biedt een breed scala 

aan mogelijkheden om specifieke substituenten in verschillende richtingen op te nemen, en 

daarom is het een aantrekkelijk sjabloonstructuur voor chemici. Op indaan gebaseerde 

verbindingen worden met name veel gebruikt in de kliniek om verschillende ziekten te 

behandelen, zoals indinavir, een HIV-1 protease remmer, indantadol, een sterke MAO - 

remmer, de amine opname remmer indatraline, en de ultra - langwerkende β-adrenoceptor 

agonist indacaterol. Gezien de diversiteit van de receptoren waar deze medicijnen via 

werken, zou men kunnen stellen dat het indaan ringsysteem een bevoorrechte substructuur 

is, net als indole, de stikstofatoom bevattende onverzadigde versie van indaan. 
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Hoofdstuk 3 beschrijft de ontwikkeling van een competitie associatie assay voor CCR2, en het 

onderzoek naar de verhouding van de structuur van het ligand en zijn receptor verblijftijd 

[SKR] naast detraditionele SAR . Deze benadering resulteerde in de ontdekking van een nieuw 

5-bromo-indaan derivaat als CCR2 antagonist, met hoge affiniteit (3.6 nM) en een verblijftijd 

van 135 minuten. 

Hoofdstuk 4 rapporteert onze bevindingen in zowel SAR en SKR studies voor een serie van 3-

((inden-1-yl)amino)-1-isopropyl-cyclopentane-1-carboxamides als CCR2 antagonisten. SAR 

studies toonden aan dat deze klasse van verbindingen een grote verscheidenheid aan 

substituenten op de indenylring tolereert met slechts kleine veranderingen in affiniteit. 

Anderzijds wordt de SKR sterk beïnvloed door kleine wijzigingen in de structuur. De 

combinatie van SAR en SKR in het hit-to-lead proces heeft geleid tot de ontdekking van een 

nieuwe CCR2 antagonist met hoge-affiniteit en een lange verblijftijd (Ki = 2.4 nM, RT = 714 

min). 

In hoofdstuk 5 beschrijven we nieuwe bevindingen over de SAR en SKR van de referentie-

verbinding MK-0483, zijn diastereomeren, en zijn structurele analogen als CCR2 antagonisten. 

Op de "rechter" kant van de moleculen geeft de 7-(trifluormethyl)-1,2,3,4- 

tetrahydroisochinoline groep over het algemeen een betere affiniteit en langere verblijftijd 

(RT). Op de "linker" zijde geeft de SAR van de phenylring aan dat lipofiele waterstof brug 

accepterende substituenten op de 3-positie gunstig zijn. Echter, de SKR suggereert dat een 

lipofiele groep met een bepaalde grootte is gewenst (bijvoorbeeld 3-Br, 3-iPr). Als alternatief 

kan een afgeschermde waterstofbrug ook de verblijftijd verlengen. Dit was het meest 

prominent waargenomen in MK-0483 zelf (Ki = 1.2 nM, RT = 724 min). 

Naast de SKR studies beschreven hierboven ontwikkelden we een nieuwe N-(2-oxo-2-

(piperidin-4-ylamino)ethyl)-3-(trifluormethyl)benzamide serie vanCCR2 chemokine-receptor 

antagonisten, beschreven in hoofdstuk 6. Een nieuwe kernstructuur werd ontworpen met 

behulp van een farmacofoormodel op basis van een bekende CCR2 antagonist. Vervolgens 

werden analogen gesynthetiseerd en SAR studies uitgevoerd waardoor een nieuwe hoge 
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affiniteit CCR2 antagonist, N-(2-((1-(4-(3-methoxyphenyl)cyclohexyl)piperidin-4-yl)amino)-2-

oxoethyl)-3-(trifluoromethyl)benzamide, werd gevonden. 

Tot slot worden de algemene conclusies over het onderzoek in dit proefschrift beschreven in 

hoofdstuk 7. Dit wordt aangevuld met toekomstperspectieven van CCR2 antagonisten 

gebaseerd op de kennis en de resultaten die zijn verkregen uit dit werk. 
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