

Cover Page

The handle http://hdl.handle.net/1887/19093 holds various files of this Leiden University
dissertation.

Author: Stevens, Marc Martinus Jacobus
Title: Attacks on hash functions and applications
Issue Date: 2012-06-19

https://openaccess.leidenuniv.nl/handle/1887/1�
http://hdl.handle.net/1887/19093

7 SHA-0 and SHA-1 115

7 SHA-0 and SHA-1

Contents
7.1 Overview . 116
7.2 Description of SHA-0 and SHA-1 117

7.2.1 Overview . 117
7.2.2 SHA-0 compression function 118
7.2.3 SHA-1 compression function 119
7.2.4 Expanded messages . 119

7.3 Techniques towards collision attacks 120
7.3.1 Local collisions . 120
7.3.2 Disturbance vector . 120
7.3.3 Disturbance vector restrictions 122
7.3.4 Disturbance vector selection 123
7.3.5 Differential path construction 124
7.3.6 History of published attacks 124

7.4 Differential path construction 128
7.4.1 Differential paths . 128
7.4.2 Forward . 129
7.4.3 Backward . 130
7.4.4 Connect . 131
7.4.5 Complexity . 135

7.5 Differential cryptanalysis . 140
7.5.1 Definition . 141
7.5.2 Probability analysis . 143
7.5.3 Extending . 145
7.5.4 Reduction . 146
7.5.5 Single local collision analysis 148
7.5.6 Message difference compression 152
7.5.7 Single local collision analysis: δIHVdiff 154
7.5.8 Single local collision analysis: alternative δIHVdiff 155
7.5.9 Single local collision analysis: round 1 157
7.5.10 Single local collision analysis: alternate round 1 158
7.5.11 Disturbance vector analysis 160

7.6 SHA-1 near-collision attack 164
7.6.1 Overview . 164
7.6.2 Disturbance vector selection 165
7.6.3 Finding optimal δIHVdiff and Λ 166
7.6.4 Constructing differential paths 168
7.6.5 Second round bitconditions 168
7.6.6 Finding optimal message bitrelations 170

116 7 SHA-0 AND SHA-1

7.6.7 Basic collision search . 173
7.6.8 Tunnels . 176
7.6.9 Verification of correctness and runtime complexity 179

7.7 Chosen-prefix collision attack 183
7.7.1 Birthday search . 183
7.7.2 Near-collision block . 184
7.7.3 Complexity . 185

7.1 Overview
Chapter 7 covers all results on SHA-0 and SHA-1. First we give a formal definition
of SHA-0 and SHA-1 in Section 7.2 and provide a treatment on published collision
attacks and techniques in Section 7.3. The remaining sections cover our contributions.

Similar to MD5, we apply and improve the differential path analysis and algo-
rithms of Chapter 5 for SHA-0 and SHA-1 in Section 7.4. However in contrast to
MD5, this differential path construction is only to be used in the first round, i.e., the
first 20 steps.

For the remaining three rounds, i.e., the last 60 steps, the technique of combining
local collisions is used. Disturbance vectors are used to describe combinations of local
collisions that may be used for near-collision attacks. So far, for various reasons,
it is assumed that the local collisions behave independently in the literature on the
analysis of disturbance vectors. This assumption has been shown to be flawed by
Stéphane Manuel [Man11].

In Section 7.5, we present a method to analyze the success probability of distur-
bance vectors over the last three rounds that does not assume independence of local
collisions. Our method is based on constructing differential paths that follow the
prescribed local collision differences and summing the success probabilities of these
differential paths. Since the number of possible differential paths can grow exponen-
tially in the number of steps, various techniques are used to reduce this growth. This
method also allows one to divert from the prescribed local collision differences at the
beginning of the second round and the last few steps in order to obtain higher success
probabilities. Furthermore, it provides an easy way to determine message expansion
conditions that are sufficient to obtain the (near-)optimal success probability, a topic
which so far has only been treated thoroughly on individual local collisions instead of
combinations thereof.

We have constructed and implemented a near-collision attack against full SHA-1
using the above mentioned tools. It has an estimated complexity equivalent to 257.5

SHA-1 compressions which can be used directly in an identical-prefix collision attack.
This improves upon the near-collision attack with complexity of about 268 SHA-1
compressions presented by Wang et al. [WYY05b]. The construction of our near-
collision attack is presented in Section 7.6. This near-collision attack is practically

7.2 Description of SHA-0 and SHA-1 117

achievable within a year using about 1300 pc-cores22. As no actual near-collision
block have been found yet using this near-collision attack, we discuss the verification
of both the correctness and the complexity of our near-collision attack in Section 7.6.9.

This near-collision attack results in an identical-prefix collision attack against
SHA-1 with an average complexity between 260.3 and 265.3 calls to the compression
function of SHA-1 as explained in Section 7.6.1. Finally, based on this near-collision
attack, we present a chosen-prefix collision attack against SHA-1 with an average
complexity of about 277.1 SHA-1 compressions in Section 7.7.

Although we have not constructed any attacks against SHA-0 or its compression
function, the differential path construction algorithm in Section 7.4 and the differential
cryptanalysis in Section 7.5 can be used directly in the construction of collision attacks
against SHA-0. In particular, the differential cryptanalysis may allow an improvement
over current collision attacks due to a better selection of the disturbance vector, the
target values for δIHVdiff and the message word bitrelations, since the exact joint
success probabilities of local collisions can be used instead of approximations based
on the individual success probabilities of local collisions.

7.2 Description of SHA-0 and SHA-1
7.2.1 Overview

SHA-0 and SHA-1 work as follows on a given bit string M of arbitrary bit length,
cf. [NIS95]:

1. Padding. Pad the message: first append a ‘1’-bit, next the least number of ‘0’
bits to make the resulting bit length equal to 448 mod 512, and finally the bit
length of the original unpadded message M as a 64-bit big-endian23 integer. As
a result the total bit length of the padded message M̂ is 512N for a positive
integer N .

2. Partitioning. Partition the padded message M̂ into N consecutive 512-bit blocks
M0, M1, . . . , MN−1.

3. Processing. To hash a message consisting of N blocks, SHA-0 and SHA-1 go
through N + 1 states IHVi, for 0 ≤ i ≤ N , called the intermediate hash values.
Each intermediate hash value IHVi is a tuple of five 32-bit words (a, b, c, d, e).
For i = 0 it has a fixed public value called the initial value (IV):

IV = (6745230116, efcdab8916, 98badcfe16, 1032547616, c3d2e1f016).

For i = 1, 2, . . . , N intermediate hash value IHVi is computed using the respec-
tive SHA-0 or SHA-1 compression function described below:

IHVi = SHA0Compress(IHVi−1,Mi−1) for SHA-0;

22. Measured on a single core of a Intel Core2 Q9550 2.83Ghz processor.
23. SHA-0/SHA-1 uses big-endian to convert between words and bit strings, whereas MD5 uses
little-endian.

118 7 SHA-0 AND SHA-1

IHVi = SHA1Compress(IHVi−1,Mi−1) for SHA-1.

4. Output. The resulting hash value is the last intermediate hash value IHVN ,
expressed as the concatenation of the hexadecimal byte strings of the five words
a, b, c, d, e of IHVN = (a, b, c, d, e), converted back from their big-endian repre-
sentation. As an example the IV would be expressed as

67452301efcdab8998badcfe10325476c3d2e1f016.

7.2.2 SHA-0 compression function

The input for the compression function SHA0Compress(IHV,B) consists of an in-
termediate hash value IHVin = (a, b, c, d, e) and a 512-bit message block B. The
compression function consists of 80 steps (numbered 0 to 79), split into four consec-
utive rounds of 20 steps each. Each step t uses modular additions, left rotations,
and a non-linear function ft, and involves an Addition Constant ACt. The addition
constants are defined per round as follows:

ACt =

5a82799916 for 0 ≤ t < 20,

6ed9eba116 for 20 ≤ t < 40,

8f1bbcdc16 for 40 ≤ t < 60,

ca62c1d616 for 60 ≤ t < 80.

The non-linear function ft also depends on the round:

ft(X,Y, Z) =

F (X,Y, Z) = (X ∧ Y)⊕ (X ∧ Z) for 0 ≤ t < 20,

G(X,Y, Z) = X ⊕ Y ⊕ Z for 20 ≤ t < 40,

H(X,Y, Z) = (X ∧ Y) ∨ (Z ∧ (X ∨ Y)) for 40 ≤ t < 60,

I(X,Y, Z) = X ⊕ Y ⊕ Z for 60 ≤ t < 80.

(7.1)

The 512-bit message block B is partitioned into sixteen consecutive 32-bit strings
which are then interpreted as 32-bit words m0, m1, . . . , m15 (with big-endian byte
ordering), and expanded to 80 words Wt, for 0 ≤ t < 80,

Wt =

{
mt for 0 ≤ t < 16,

Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16 for 16 ≤ t < 80.
(7.2)

Note that message expansion relation is reversible:

Wt−16 =Wt ⊕Wt−3 ⊕Wt−8 ⊕Wt−14, for 16 ≤ t < 80. (7.3)

Similar to MD5 we describe SHA-0’s compression function SHA0Compress in an
‘unrolled’ version such that SHA0Compress ∈ Fmd4cf. For each step t the compression
function algorithm uses a working state consisting of five 32-bit words Qt, Qt−1, Qt−2,

7.2 Description of SHA-0 and SHA-1 119

Qt−3 and Qt−4 and calculates a new state word Qt+1. The working state is initialized
as

(Q0, Q−1, Q−2, Q−3, Q−4) = (a, b, RR(c, 30), RR(d, 30), RR(e, 30)). (7.4)

For t = 0, 1, . . . , 79 in succession, Qt+1 is calculated as follows:

Ft = ft(Qt−1, RL(Qt−2, 30), RL(Qt−3, 30)),

Qt+1 = Ft +ACt +Wt +RL(Qt, 5) +RL(Qt−4, 30).
(7.5)

After all steps are computed, the resulting state words are added to the input inter-
mediate hash value and returned as output:

SHA0Compress(IHVin, B) = (7.6)
(a+Q80, b+Q79, c+RL(Q78, 30), d+RL(Q77, 30), e+RL(Q76, 30)).

7.2.3 SHA-1 compression function

The compression function SHA1Compress of SHA-1 is defined identically to the com-
pression function SHA0Compress of SHA-0 except for the message expansion where
a bitwise rotation is added:

Wt =

{
mt for 0 ≤ t < 16,

RL(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16, 1) for 16 ≤ t < 80.
(7.7)

Note that SHA1Compress ∈ Fmd4cf and also that SHA-1’s message expansion relation
is reversible:

Wt−16 = RR(Wt, 1)⊕Wt−3 ⊕Wt−8 ⊕Wt−14, for 16 ≤ t < 80. (7.8)

7.2.4 Expanded messages

A sequence (Wt)
79
t=0 is called an expanded message when it is the result of the message

expansion from W0, . . . ,W15. An expanded message can be seen as an element of
F80×32
2 . Note that this “definition” differs between the contexts of SHA-0 and SHA-1

and has the following properties:

• for both SHA-0 and SHA-1, the message expansion is linear with respect to
⊕: (Wt ⊕ Vt)79t=0 is an expanded message if (Wt)

79
t=0 and (Vt)

79
t=0 are expanded

messages;

• any 16 consecutive words Wt, . . . ,Wt+15 uniquely determine the entire expanded
message W0, . . . ,W79, since both SHA-0’s and SHA-1’s message expansion re-
lations are reversible;

• the left rotation (RL(Wt, r))
79
t=0 of any expanded message (Wt)

79
t=0 by r bits is

also an expanded message;

120 7 SHA-0 AND SHA-1

• the forward and backward shifts (Wt)
80
t=1 and (Wt)

78
t=−1 of any expanded message

(Wt)
79
t=0 are also expanded messages, where for SHA-x (using Eq. 7.2 and 7.7):

W80 = RL(W80−3 ⊕W80−8 ⊕W80−14 ⊕W80−16, x);

W−1 = RR(W15, x)⊕W15−3 ⊕W15−8 ⊕W15−14.

7.3 Techniques towards collision attacks
SHA-1 and its predecessor SHA-0 have a more complex message expansion compared
to MD5. Changing any bit in the first 16 words W0, . . . ,W15 leads to many bit
differences in the succeeding words W16, . . . ,W79. Constructing a collision attack
requires thus a different approach to find a good differential path over the last three
rounds.

7.3.1 Local collisions

In 1998, Chabaud and Joux [CJ98] constructed a collision attack against SHA-0 based
on local collisions. The idea of a local collision is simple: in some step t a disturbance
is created by some message word difference δWt = 2b resulting in δQt+1 = 2b. This
disturbance is corrected over the next five steps, so that after those five steps no
differences occur in the five working state words.

Obvious corrections for step t + 1 and t + 5 are δWt+1 = −2(b+5 mod 32) and
δWt+5 = −2(b+30 mod 32), since both corrections occur with probability at least 1/2
and for many values of b this probability is close to 1. In steps t+2, t+3 and t+4, the
disturbance δQt+1 = 2b might cause δFt+2, δFt+3 and δFt+4 to be non-zero, which
can be corrected with δWt+k = −δFt+k for k ∈ {2, 3, 4}. Possible corrections for steps
t+ 2, t+ 3 and t+ 4 vary per round. Common non-zero values for δFt+2, δFt+3 and
δFt+4 are ±2b, ±2(b+30 mod 32) and ±2(b+30 mod 32), respectively.

7.3.2 Disturbance vector

Due to the properties of the message expansion, Chabaud and Joux [CJ98] were
able to interleave many of these local collisions such that the message word signed
bit differences (∆Wt)

79
t=0 conform to the message expansion. For more convenient

analysis, they consider the disturbance vector which is a non-zero expanded message
(DVt)

79
t=0 where every ‘1’-bit DVt[b] marks the start of a local collision based on the

disturbance δWt[b] = ±1.
We use (DWt)

79
t=0 to denote all message word bit differences without sign: W ′t =

Wt ⊕ DWt. Note that the vector (DWt)
79
t=0 must be an expanded message, since

(Wt)
79
t=0 and (W ′t)

79
t=0 are expanded messages. Chabaud and Joux use the same relative

message word bit differences for all local collisions, as this implies that (DWt)
79
t=0

forms an XOR(⊕) over rotated shifts of the disturbance vector. Hence, (DWt)
79
t=0 is

an expanded message.

7.3 Techniques towards collision attacks 121

Let R ⊂ {0, . . . , 5} × {0, . . . , 31} describe the relative indexes of the changed bits
over the six steps of a local collision, then (DWt)

79
t=0 can be determined as:

DWt =
⊕

(i,r)∈R

RL(DVt−i, r), t ∈ {0, . . . , 79}. (7.9)

Here DV−5, . . . , DV−1 are the words resulting from shifting (DVt)
79
t=0 forward five

times for SHA-x:

DVi = RR(DVi+16, x)⊕DVi+13 ⊕DVi+8 ⊕DVi+2, i = −1, . . . ,−5.

Table 7-1 provides a list of all high probability local collisions with a single bit
disturbance in ∆Qt+1 (no carries) and for which steps these local collisions are valid.
Although for some steps the local collision with the fewest differences is

(δWi)
t+5
i=t = (2b,−2b+5 mod 32, 0, 0, 0,−2b+30 mod 32),

thus R = {(0, 0), (1, 5), (5, 30)}, this local collision cannot be used in rounds two and
four due to their boolean function.

The only local collision that is valid for all steps (not allowing carries in ∆Qt+1)
is

(δWi)
t+5
i=t = (2b,−2b+5 mod 32,±2b,±2b+30 mod 32,±2b+30 mod 32,−2b+30 mod 32),

thus R = {(0, 0), (1, 5), (2, 0), (3, 30), (4, 30), (5, 30)} which is used for all published
attacks against either SHA-0 or SHA-1 and is used throughout the remainder of this
thesis.

To show that there are no other possibilities, we show that the set

R = {(0, 0), (1, 5), (2, 0), (3, 30), (4, 30), (5, 30)}

is the only set of relative bit differences that is valid for t = 30 and b = 31.
Since there can be no carry, i.e., ∆Qt+1 is either {31} or {31}, it follows that
here any local collision can only consist of relative bit differences that are in the
set {(0, 0), (1, 5), (2, 0), (3, 30), (4, 30), (5, 30)}. For all such local collisions the first,
second and sixth relative bit differences in this set are unavoidable. Whether the
remaining relative bit differences {(2, 0), (3, 30), (4, 30)} either must, must not or may
be used depends on the boolean function. For t = 30, this is the XOR boolean func-
tion that always has an output bit difference if there is a difference in only one of
the corresponding input bits. This implies that all three remaining relative bit dif-
ferences must be used. Hence, for t = 30 and b = 31 the only possible local collisions
are described by the relative bit differences

R = {(0, 0), (1, 5), (2, 0), (3, 30), (4, 30), (5, 30)}.

In the case of SHA-0, since its message expansion does not use bitwise rotation,
all ‘1’-bits in the disturbance vector can be limited to a single bit position. Chabaud

122 7 SHA-0 AND SHA-1

Table 7-1: Possible local collisions for SHA-0 and SHA-1

R t

{(0, 0), (1, 5), (2, 0), (3, 30), (4, 30), (5, 30)} 0− 79
{(0, 0), (1, 5), (5, 30)} 0− 15, 38− 55, 78− 79

{(0, 0), (1, 5), (4, 30), (5, 30)} 0− 16, 38− 56, 78− 79
{(0, 0), (1, 5), (3, 30), (5, 30)} 0− 15, 38− 55, 78− 79

{(0, 0), (1, 5), (3, 30), (4, 30), (5, 30)} 0− 17, 38− 57, 78− 79
{(0, 0), (1, 5), (2, 0), (5, 30)} 0− 15, 37− 55, 77− 79

{(0, 0), (1, 5), (2, 0), (4, 30), (5, 30)} 0− 16, 37− 56, 77− 79
{(0, 0), (1, 5), (2, 0), (3, 30), (5, 30)} 0− 15, 36− 55, 76− 79

Note: See Section 7.3.2. Listed combinations of local collision relative bit differences R and starting
step t together with any starting bit b ∈ {0, . . . , 31} forms an exhaustive list of all local collisions
with a single bit disturbance ∆Qt+1[b] = ±1 (no carries) with a success probability of at least 2−5.

and Joux took advantage of this fact by placing all ‘1’-bits on bit position 1 where
local collisions generally have a higher probability than at other bit positions. Due to
the added bitwise rotation in the message expansion of SHA-1, disturbance vectors
always have ‘1’-bits at different bit positions and generally more ‘1’-bits compared to
those for SHA-0.

Consecutive ‘1’-bits within a word DVt can be compressed to a single local collision
[WYY05c], i.e., DVt[0] = DVt[1] = 1 is used as ∆Wt[0] = −1 and ∆Wt[1] = +1 which
leads to the single bit disturbance δWt = 21 − 20 = +20. Due to the rotations in the
step function, the bits at bit positions 1 and 2 are not considered consecutive in this
regard as they result in the non-consecutive bits at positions 31 and 0 after bitwise
left rotation by 30. The same holds for the bit position pair (26,27) due to the bitwise
left rotation by five.

7.3.3 Disturbance vector restrictions

Initially for the most straightforward collision attack, namely a single-block collision
attack, three restrictions were placed on disturbance vectors:

1. DV−5 = DV−4 = DV−3 = DV−2 = DV−1 = 0: δIHVin must be zero (0, 0, 0, 0, 0)
for a single-block collision attack. Using the disturbance vector for all steps, the
‘1’-bits in the words DV−5, . . . , DV−1 mark disturbances in δQ−4, . . . , δQ0 and
thus in δIHVin. Since δIHVin = (0, 0, 0, 0, 0), it follows that DV−5, DV−4,
DV−3, DV−2 and DV−1 must be zero as well;

2. DV75 = DV76 = DV77 = DV78 = DV79 = 0: this restriction is necessary to
enforce that δIHVout = δIHVin. This implies that if δIHVin = (0, 0, 0, 0, 0) then
also δIHVout = (0, 0, 0, 0, 0);

3. at most one of DVi[b] and DVi+1[b] is non-zero, for b = 0, . . . , 31 and i =
0, . . . , 15: the boolean function in the first round prevents having two consecu-
tive local collisions in the same bit position starting in the first 16 steps.

7.3 Techniques towards collision attacks 123

The first and third restrictions can be alleviated by diverting from local collisions as
prescribed by the disturbance vector in the first round. So instead one can construct a
differential path over the first round and use local collisions for the remaining rounds
for use in a (near-)collision attack. Wang et al. [WYY05b] were the first to do this.

Finally, given the use of differential paths in the first round, one can also alleviate
the second restriction and construct a two-block collision attack [WYY05b]. Without
these three restrictions significantly better disturbance vectors were found, thus a
two-block collision attack can be more efficient than a single-block collision attack.
Since the complexity of each near-collision attack contributes to the overall collision
attack complexity, using more than two blocks does not offer a further advantage.

7.3.4 Disturbance vector selection

To choose the best disturbance vector, several cost functions of disturbance vectors
can be used where the cost function is only applied over the last, say, 60 words that
form the last three rounds.

• Hamming weight (e.g., [BC04, PRR05, RO05, MP05, JP05]): counts the total
number of local collisions over the specified steps, since a lower number of local
collisions is expected to yield a higher overall probability;

• Bitcondition count (e.g., [WYY05c, YIN+08]): sum of the number of bitcon-
ditions for each local collision independently (not allowing carries);

• Probability (e.g., [MPRR06, Man11]): product of the probabilities of all local
collisions independently where carries are allowed;

• Joint probability (Section 7.5): the probability of fulfilling all local collisions
simultaneously.

Stéphane Manuel [Man08, Man11] noticed that all interesting disturbance vectors,
including all disturbance vectors used in attacks in the literature, belong to the two
classes shown in Table 7-2. Within each class all disturbance vectors are forward
or backward shifts and/or rotations of each other. Since a disturbance vector is an
expanded message, it is uniquely determined by any 16 consecutive words. The first
class named ‘type I’ consists of disturbance vectors (DVt)

79
t=0 in which there are 15

consecutive zero words directly followed by a word DVi with only a single bit position
b set to ‘1’, thus DVi = 2b. Such a disturbance vector is identified as disturbance
vector I(i − 15, b). The second class named ‘type II’ consists of disturbance vectors
(DVt)

79
t=0 identified as II(i, b) such that

DVj =

2b+31 mod 32 j ∈ {i+ 1, i+ 3};
2b j = i+ 15;

0 j ∈ {i, i+ 2, i+ 4, i+ 5, . . . , i+ 14}.

In the literature, a number of disturbance vectors reported as (near-)optimal with
respect to some cost function are:

124 7 SHA-0 AND SHA-1

• [WYY05b]: DV I(49,2);

• [RO05]: DVs I(52,31) and DVs I(45,1), I(49,1), I(51,1)24;

• [JP05]: DVs I(51,0), I(52,0), II(52,0);

• [PRR05]: DV I(50,2);

• [YIN+08]: DV II(56,2);

• [Man11]: DV II(52,0) (DV II(49,0) in an earlier version [Man08]).

Most of these disturbance vectors have many disturbances on bit position 31 and/or
1 as the local collisions starting at those bit positions generally have higher success
probabilities. The disturbance vector used in the near-collision attack presented in
Section 7.6 and [Ste10] is DV II(52,0). This choice is not based on the results in the
above publications, but is entirely based on preliminary results of those presented
in Section 7.5.11. In the course of writing this thesis, Manuel published an updated
version [Man11] of [Man08] which supports our choice.

7.3.5 Differential path construction

As mentioned before, Wang et al. [WYY05b] were the first to construct a hand-
made differential path. In 2006, De Cannière and Rechberger[CR06] introduced a
more algorithmic solution to construct differential paths for SHA-0 and SHA-1 which,
instead of working from two directions to each other, works similar to a probabilistic
algorithm from coding theory that searches for low weight code words. Yajima et
al. [YSN+07] also present a differential path construction algorithm which is similar
to, but less efficient than, the one we present in Section 7.4 below.

7.3.6 History of published attacks

SHA-0 Attacks The first theoretical collision attack against SHA-0 was published
by Chabaud and Joux [CJ98] with estimated attack complexity of 261 SHA-0
compressions. Their results were achieved by composing local collisions such
that message differences conform to the message expansion. Their work forms
the basis for all subsequent attacks against SHA-0 and SHA-1.
The first practical attack against SHA-0 is the near-collision attack by Eli Biham
and Rafi Chen [BC04] with an estimated complexity of 240 SHA-0 compressions,
which uses a message modification technique dubbed neutral bits by the authors.
This is a technique that, given IHV , IHV ′ and messages M and M ′ that follow
a differential path up to some step t, flips one or more message bit positions
in M and M ′ simultaneously such that the altered M and M ′ also follow the

24. These results were obtained using a Hamming weight based cost function, thus rotated versions
are considered equal. These specific rotations were chosen to avoid a situation where their analysis
would always be incorrect, see section 6 of their paper.

7.3 Techniques towards collision attacks 125

Table 7-2: SHA-1 disturbance vectors of type I and type II

disturbance vector I(K, 0)
K ∈ Z

i DVK+i DWK+i

.
−18 31 28, 31
−17 30, 31 4, 28, 29, 30, 31
−16 − 3, 4, 28, 31
−15 31 29, 30
−14 31 4, 28, 31
−13 − 4, 28, 31
−12 − 28, 31
−11 31 31
−10 − 4
−9 − 29, 31
−8 − 29
−7 31 29, 31
−6 − 4, 29
−5 31 −
−4 − 4, 29
−3 31 29
−2 − 4
−1 31 29

0 − 4
1 − 29, 31
2 − −
3 − 29
4 − 29

5− 14 − −
15 0 0

16 − 5
17 − 0
18 1 1, 30
19 − 6, 30
20 − 1, 30
21 2 2, 31
22 − 7, 31
23 1 1, 2, 31
24 3 0, 3, 6
25 − 0, 1, 8
26 − 0, 3, 31
27 4 1, 4, 31
.

disturbance vector II(K, 0)
K ∈ Z

i DVK+i DWK+i

.
−20 − 29
−19 31 31
−18 − 4
−17 31 −
−16 − 4, 29
−15 31 29
−14 − 4
−13 30, 31 29, 30
−12 − 3, 4
−11 − 29, 30, 31
−10 31 28, 31
−9 − 4, 28, 29
−8 − 28, 29, 31
−7 − 29
−6 − 29
−5 31 29, 31
−4 − 4
−3 − 31
−2 − 29
−1 − 29

0 − 29
1 31 31
2 − 4
3 31 −
4 − 4, 29
5 − 29, 31
6 − −
7 − 29
8 − 29

9− 14 − −
15 0 0

16 − 5
17 − 0
18 1 1, 30
19 0 0, 6, 30
20 − 1, 5, 30
21 2 0, 2, 31
.

Note: we describe the bit-positions of all ‘1’-bits of the 32-bit words DVK+i and DWK+i. The
SHA-1 (reverse) message expansion relation is used to extend the above tables forward (backward).
Disturbance vectors I(K, b) and II(K, b) for b ∈ {0, . . . , 31} are obtained by left rotating all 80 words
of disturbance vectors I(K, 0) and II(K, 0), respectively, by b bit positions [Man11].

126 7 SHA-0 AND SHA-1

differential path up to step t. In essence tunnels and neutral bits are very similar
message modification techniques. Using their techniques they are able to find
collisions for SHA-0 reduced to 65 steps.
The first (identical-prefix) collisions for full SHA-0 [BCJ+05]25, constructed
using four near-collision blocks26, were found by Biham et al. with an estimated
complexity of 251 SHA-0 compressions. Wang et al. [WYY05c] improved this to
a collision attack consisting of two near-collision blocks with an estimated total
complexity of 239 SHA-0 compressions. This attack was further improved by
Naito et al. [NSS+06] to approximately 236 SHA-0 compressions and later by
Manuel and Peyrin [MP08] to approximately 233.6 SHA-0 compressions. These
three improvements also all provide example collisions.
So far no chosen-prefix collision attacks against SHA-0 have been published.

SHA-1 Attacks The first theoretical (identical-prefix) collision attack against full
SHA-1 was published by Wang et al. [WYY05b] with an estimated complexity of
269 SHA-1 compressions. In their paper also a practical collision attack against
SHA-1 reduced to 58 steps is presented with an example collision. They claimed
have improved their theoretical attack against full SHA-1 to an estimated com-
plexity of 263 SHA-1 compressions [WYY05a, Wan06]. No publication has fol-
lowed so far however, instead [Coc07] has reconstructed and confirmed parts
of the analysis of their attack given the details presented at the CRYPTO2005
rump session.
The paper [BCJ+05], besides collision attacks against full SHA-0, also presented
collisions for 40-step SHA-1 with an attack complexity of approximately 257

SHA-1 compressions. De Cannière and Rechberger[CR06] were able to construct
a practical collision attack against 64-step SHA-1 and provide example collisions.
De Cannière et al. [CMR07] were able to find collisions for 70-step SHA-1 in
2007. Collisions for 73-step SHA-1 were presented in [Gre10]. So far no collisions
have been presented for a larger number of steps of SHA-1. In particular, though
anticipated since 2006, no actual collisions for SHA-1 have been found.
At the rump session of CRYPTO2007, Mendel et al. [MRR07] claimed to have a
collision attack against full SHA-1 with an estimated complexity of 260.x SHA-1
compressions and started a distributed computing project. No further publi-
cation has followed and their distributed computing project was stopped mid
2009.
Rafael Chen claims an identical-prefix collision attack against full SHA-1 in
his PhD thesis [Che11] with an estimated complexity of 258. However, in his
complexity estimation he extends a single 72-step SHA-1 near-collision attack

25. Announced at the rump session of Crypto’04
26. It would have been more efficient to use only two near-collision blocks. However, lacking differ-
ential path construction algorithms, the authors used a linearized model of SHA-1 to deal with the
first few steps of differential paths. At least four near-collision blocks were needed for a collision
attack within this model and using an additional technique.

7.3 Techniques towards collision attacks 127

of complexity 253.1 to a two-block identical-prefix collision attack against full
SHA-1 with an additional factor of only 24.9. It can be easily verified that the
highest success probability over the last 8 steps that can be achieved for the
second near-collision block (that targets one specific δIHV) is about 2−8.356,
thus there is an error in the complexity estimation of at least a factor 23.5.27

There are two other papers that have to be mentioned here, namely [MHP09]
by McDonald et al. in which the authors claimed to have found a differen-
tial path leading to a collision attack against full SHA-1 with an estimated
complexity of 252 SHA-1 compressions. Their result was directly based on the
disturbance vector analysis and claimed possible collision attack complexities of
Stéphane Manuel [Man08]. McDonald et al. decided to withdraw their paper
when later analysis indicated that the claimed possible collision attack complex-
ities in [Man08] were inaccurate. In the journal version [Man11] of [Man08] a
more detailed analysis of disturbance vectors is made using a more conservative
cost function and any claims towards possible collision attack complexities have
been removed.
The literature on SHA-1 does not represent the state-of-the-art cryptanalytic
methods as several claims have not been substantiated by publications. More-
over, due to lack of details it is hard if not impossible to verify the correct-
ness and accurateness of the above claimed attack complexities and/or compare
them, thus it is unclear which attack should be considered as the best correct
collision attack against SHA-1. RFC6194 [PCTH11] considers the first collision
attack by Wang et al. [WYY05b] with estimated complexity 269 SHA-1 com-
pressions as the best (identical-prefix) collision attack against full SHA-1. This
attack is based on two near-collisions attacks with a complexity of about 268

SHA-1 compressions each.
So far no chosen-prefix collision attacks against SHA-1 have been published. No
implementations of (near-)collision attacks against SHA-1 have been published
to date, except the implementation of the near-collision attack described in this
thesis [HC].28

27. Exact probability can be determined using the methods presented in Section 7.5, estimations can
easily be obtained using a Monte Carlo simulation. The given error factor of 23.5 does not take into
account the complexity of the first near-collision block and the fact that the second near-collision
block is slightly harder than 253.1.
28. Necessary for public verification of correctness and the actual runtime complexity. Also aids in
further understanding and allows further improvements by the cryptographic community.

128 7 SHA-0 AND SHA-1

7.4 Differential path construction
In this section we present differential path construction algorithms for SHA-0 and
SHA-1 based on the algorithms presented in Chapter 5. Similar to MD5, the SHA-0
and SHA-1 differential path construction algorithms are improved versions that make
use of bitconditions (see Section 6.2.2). Also, the final connect algorithm operates
in a bit-wise manner similar to the algorithm in Section 6.2.5 instead of a word-wise
manner as in Chapter 5.

Differential path construction algorithms for SHA-0 and SHA-1 have already been
proposed by De Cannière and Rechberger [CR06] and Yajima et al. [YSN+07] each
using a different methodology. The first uses an approach based on a probabilistic
algorithm from coding theory for finding low weight codewords. The second is very
similar to the algorithms proposed in this section where from two ends partial differ-
ential paths are constructed towards each other. Our algorithm improves over that
of [YSN+07] on efficiency: our connection algorithm operates in a bit-wise manner
and therefore it is able to stop earlier in case of impossible forward and backward
differential path pairs.

Compared to MD5, the rotations of Qi that are given as input to the boolean func-
tion in the step update ft(Qt−1, RL(Qt−2, 30), RL(Qt−3, 30)) (see Eq. 7.5) complicate
matters, since for both SHA-0 and SHA-1 indirect bitconditions on Qt[i] can involve
one of the following bits: Qt−1[i], Qt+1[i], Qt−1[i+ 2 mod 32], Qt−2[i+ 2 mod 32],
Qt+1[i− 2 mod 32] and Qt+2[i− 2 mod 32].

However, this is simpler in the first round as the first round boolean function
of both SHA-0 and SHA-1 (ignoring the input rotations) is identical to MD5’s first
round boolean function. As can be seen in Table C-1, indirect bitconditions are only
applied to the second input involving the third input or vice versa. This implies
for SHA-0 and SHA-1 that in the first round any indirect bitcondition on Qt[i] can
involve only Qt−1[i] or Qt+1[i], thus never bit positions other than i. Therefore the
improved algorithm for MD5 in Section 6.2.5 can be more easily adapted to SHA-0
and SHA-1 over the first round. This limitation to the first round does not pose a
problem for constructing a near-collision attack, since for the remaining rounds the
differential path is the result of interleaving local collisions.

7.4.1 Differential paths

Similar to MD5, a differential path for SHA-0 or SHA-1 is described using bitcondi-
tions qt = (qt[i])

31
i=0 on (Qt, Q

′
t), where each bitcondition qt[i] specifies a restriction on

the bits Qt[i] and Q′t[i] possibly including values of other bits Ql[i] for l ∈ {t−1, t+1}.
For the first round only the following bitconditions are necessary and used: ‘.’, ‘+’,
‘-’, ‘0’, ‘1’, ‘^’, ‘v’, ‘!’ and ‘y’ (see Tables 6-1 and 6-2), where the last two bitcondi-
tions are only used by message modification techniques (see Section 7.6.8). Since the
disturbance vector determines all bit differences (DWt)

79
t=0 only up to their sign, the

actual chosen differences (∆Ŵt)
19
t=0 are maintained besides the bitconditions in the

differential path.

7.4 Differential path construction 129

A partial differential path for SHA-0 or SHA-1 over steps t = tb, . . . , te can be
seen as a (te − tb + 6) × 32 matrix (qt)

te+1
t=tb−4 of bitconditions paired with message

difference vector (∆Ŵt)
te
t=tb

. The bitconditions are used to specify the values of ∆Qt
and ∆Ft. As for each step t only ∆Qt−3,∆Qt−2,∆Qt−1,∆Qt are required in a
differential step, in such a partial differential path qt−4 and qte+1 are used only to
represent δRL(Qtb−4, 30) and δQte+1 instead of BSDRs.

7.4.2 Forward

Suppose we have a partial differential path consisting of at least bitconditions qt−3,
qt−2 and the differences ∆Qt−4, ∆Qt−1 and δQt are known. We want to extend
this partial differential path forward with step t resulting in the differences δQt+1,
∆Wt, ∆Qt, bitconditions qt−1 and additional bitconditions qt−2 and qt−3. We use an
adaptation of the algorithm from Section 5.6.1 to perform such a forward extension
using bitconditions (see also Section 6.2.2).

If the BSDR ∆Qt−1 is only used in previous steps to determine δQt−1 and
δRL(Qt−1, 5) then one can replace ∆Qt−1 by any low weight BSDR δQ̂t−1 of δQt−1
such that δRL(Qt−1, 5) = σ(RL(δQ̂t−1, 5)). Otherwise ∆Q̂t−1 = ∆Qt−1. The BSDR
∆Q̂t−1 directly translates to bitconditions qt−1 as in Table 6-1.

We select ∆Qt based on the value of δQt. Since upcoming steps can use the
remaining freedom in ∆Qt, we choose for each Z ∈ dRL(δQt, 5) (see Lemma 5.4)
at most one ∆Qt such that σ(RL(∆Qt, 5)) = Z. We continue with any one of
these ∆Qt, preferably one with low weight. We choose a ∆Wt such that ∆Wt[i] ∈
{−DWt[i],+DWt[i]} for i = 0, . . . , 31.

We assume that all indirect bitconditions in qt−3 are forward and involve only
bits of Qt−2 and that qt−2 consists of only direct bitconditions.29 To determine the
differences ∆Ft = (gi)

31
i=0 we proceed as follows. For i = 0, . . . , 31 we assume that we

have valid bitconditions

(a, b, c) = (qt−1[i], qt−2[i+ 2 mod 32], qt−3[i+ 2 mod 32]),

where only c can be indirect and if so involves Qt−2[i+ 2 mod 32] associated with b.
Hence, in the notation of Section 6.2.2: (a, b, c) ∈ L. If |Vt,abc| = 1 then there is no
ambiguity and we set gi = Vt,abc and (â, b̂, ĉ) = (a, b, c). Otherwise, if |Vt,abc| > 1,
then we choose gi arbitrarily from Vt,abc and we resolve the ambiguity in ∆Ft[i] by
replacing bitconditions (a, b, c) by (â, b̂, ĉ) = FC(t, abc, gi). Note that in the next step
t+ 1 our assumptions hold again as both â and b̂ are direct bitconditions.

29. This assumption is valid for the results of this algorithm for the previous step t − 1. However
this algorithm requires valid inputs for the first step, e.g., t = 0. E.g, we use the values ∆Q−4 =
∆Q−1 = (0)31i=0, q−3 = q−2 = (‘.’)31i=0 and δQ0 = 0 to represent identical but unknown intermediate
hash values IHVin = IHV ′

in. Another possibility is to use the values q−4, . . . , q0 consisting of direct
bitconditions ‘0’, ‘1’, ‘+’, ‘-’ that represent given values IHVin and IHV ′

in. In this case, the forward
construction algorithm can skip choosing BSDRs ∆Q−1 and ∆Q0 and translating them to q−1 and
q0 in steps t = 0 and t = 1, respectively.

130 7 SHA-0 AND SHA-1

Once all gi and thus ∆Ft have been determined, δQt+1 is determined as

δQt+1 = σ(∆Ft) + σ(∆Wt) + σ(RL(∆Qt, 5)) + σ(RL(∆Qt−4, 5)).

7.4.3 Backward

Similar to the forward extension, we now consider the backward extension of a partial
differential path. Suppose we have a partial differential path consisting of at least
bitconditions qt−2, qt−1 and differences δRL(Qt−3, 30), ∆Qt and δQt+1 are known.
We want to extend this partial differential path backward with step t resulting in the
differences δRL(Qt−4, 30), ∆Wt, bitconditions qt−3 and additional bitconditions qt−1
and qt−2. We use an adaptation of the algorithm from Section 5.6.2 to perform such
a backward extension using bitconditions.

We choose a ∆Wt such that Wt[i] ∈ {−DWt[i],+DWt[i]} for i = 0, . . . , 31. We
select ∆Qt−3 based on the value of δRL(Qt−3, 30). We choose any low weight BSDR
Z of δRL(Qt−3, 30), so that ∆Qt−3 = RR(Z, 30) which then translates into a possible
qt−3 as in Table 6-1.

The differences ∆Ft = (gi)
31
i=0 are determined by assuming for i = 0, . . . , 31 that

we have valid bitconditions

(a, b, c) = (qt−1[i], qt−2[i+ 2 mod 32], qt−3[i+ 2 mod 32]),

where only a can be indirect and if so it involves Qt−2[i].30 Note that Qt−2[i] is not
associated with b. To deal with this issue, we first ignore such indirect bitconditions
and reapply them later on.

We set ã = a if a is a direct bitcondition, otherwise ã = ‘.’. It follows that
(ã, b, c) ∈ L. If |Vt,ãbc| = 1 then there is no ambiguity and we set {gi} = Vt,ãbc
and (â, b̂, ĉ) = (ã, b, c). Otherwise, if |Vt,ãbc| > 1, then we choose gi arbitrarily from
Vt,ãbc and we resolve the ambiguity by replacing bitconditions (a, b, c) by (â, b̂, ĉ) =
BC(t, ãbc, gi). Note that in the next step t − 1 our assumptions hold again as ĉ is
a direct bitcondition and b̂ is either a direct bitcondition or an indirect backward
bitcondition involving ĉ.

Finally, for all i such that qt−1[i] was an indirect bitcondition, we reapply this
bitcondition. This means that if the new q̂t−1[i]=‘.’ then we revert it to the old
value of qt−1[i]. Otherwise, it must be either ‘0’ or ‘1’, since â cannot be an indirect
bitcondition (see Table C-1). If q̂t−2[i] ∈ {‘.’, q̂t−1[i]} then we replace it by q̂t−1[i],
otherwise a contradiction has arisen and other choices have to be tried.

Once all gi and thus ∆Ft are determined, δRL(Qt−4, 30) is determined as

δRL(Qt−4, 30) = δQt+1 − σ(∆Ft)− σ(∆Wt)− σ(RL(∆Qt, 5)).

30. Again this assumption is met by the previous step t+ 1 of the algorithm. Nevertheless the first
call to the algorithm for, e.g., t = 19 requires valid inputs.

7.4 Differential path construction 131

7.4.4 Connect

Construction of a full differential path can be done as follows. Assume that the
forward construction has been carried out up to some step t. Furthermore, assume
that the backward construction has been carried out down to step t + 6. For our
near-collision attack we used a low value for t as explained in Section 7.6.4 (p. 168).
For each combination of forward and backward partial differential paths thus found,
this leads to bitconditions . . . , qt−3, qt−2, qt−1, and qt+3, qt+4, qt+5, qt+6, . . . and
differences ∆Qt, δQt+1, δRL(Qt+2, 30). As more thoroughly explained at the end
of this section, we replace all backward indirect bitconditions ‘^’ by ‘.’ to ensure
correctness. Later on, we reapply all such removed backward indirect bitconditions.

It remains to try and glue together each of these combinations by finishing steps
t + 1, . . . , t + 5 until a full differential path is found. We use an adaptation of the
algorithm in Section 5.6.3 which uses bitconditions and operates in a bit-wise manner
instead of a word-wise manner. Due to the bitwise left-rotations over 30 bit positions
in the step function, the description of the algorithm for SHA-0 and SHA-1 is more
complicated compared to MD5. We first present a sketch of our algorithm that deals
with the core principles, followed by a more precise definition.

Similar to MD5, all values for δQi are known and the goal is to find bitconditions
and differences δWt+1, . . . , δWt+5 such that some target values δFt+1, . . . , δFt+5 are
obtained:

δQi+1 = σ(RL(∆Qi, 5)) + σ(RL(∆Qi−4, 30)) + δFi + δWi, i ∈ {t+ 1, . . . , t+ 5}.
(7.10)

We have some amount of freedom in choosing ∆Qt, ∆Qt+1 and ∆Qt+2 as long as they
remain compatible with the known values of δQt+i, δRL(Qt+i, 5) and δRL(Qt+i, 30)
as described later on.

Due to the bitwise left-rotation over 30 bit position it follows that bit position 0
of step i depends on bitcondition qt[2] which is treated at bit position 2 of step
i − 1 for i ∈ {t + 2, . . . , t + 5}. This issue is dealt with by using 40 imaginary bit
positions b ∈ {0, . . . , 39} and the connect algorithm first searches for correct values
at bit position b = 0 and then iteratively extends to higher bit positions. For each
successful extension to the last bit position b = 39, one finds at least one valid full
differential path.

At each bit position b ∈ {0, . . . , 39}, the algorithm considers step t+ 1 + j at bit
position b − 2j for j ∈ {0, . . . , 4} if and only if b − 2j ∈ {0, . . . , 31}. Whenever the
algorithm considers step t+1+j for j ∈ {0, . . . , 4} at bit position b−2j ∈ {0, . . . , 31},
it does the following:

1. If j ∈ {0, 1, 2} then it first selects a value for ∆Qt+j [b− 2j] that is compatible
with the three known differences δQt+j , δRL(Qt+j , 5) and δRL(Qt+j , 30).

2. Next (if j ∈ {0, . . . , 4}), it searches for a value for ∆Wt+j+1[b−2j] and bitcondi-
tions qt+j [b−2j], qt+j−1[b−2j+2 mod 32] and qt+j−2[b−2j+2 mod 32]. These
bitconditions must be compatible with all bitconditions known up to this point.

132 7 SHA-0 AND SHA-1

Furthermore, they must unambiguously lead to some value ∆Ft+j+1[b−2j] that
is ‘compatible’ with Equation 7.10 (using i = t+ j + 1).

3. For each such resulting tuple of values ∆Qt+j [b−2j], ∆Wt+j+1[b−2j], qt+j [b−
2j], qt+j−1[b − 2j + 2 mod 32] and qt+j−2[b − 2j + 2 mod 32], the algorithm
continues with the next step t + 2 + j at bit position b − 2j − 2 if j < 4 and
b− 2j − 2 ∈ {0, . . . , 31}.

Now we give a more precise definition of the connection algorithm. First, we
choose a low weight BSDR ∆Q̃t+1 of δQt+1 and a low weight BSDR ∆Q̃t+2 such
that σ(RL(∆Q̃t+2, 30)) = δRL(Qt+2, 30). Then we determine target values for FWk

which can be seen as the target value for δFk + δWk for k = t+ 1, . . . , t+ 5:

FWk = σ(∆Q̃k+1)− σ(RL(∆Q̃k, 5))− σ(RL(∆Q̃k−4, 30)). (7.11)

So far we can choose any ∆Qt, ∆Qt+1 and ∆Qt+2 under the following requirements
so that Equation 7.11 holds:

bh∑
b=bl

2b∆Qk[b] =

bh∑
b=bl

2b∆Q̃k[b] (in Z),

for (bl, bh) ∈ {(0, 1), (2, 26), (27, 31)} and k ∈ {t, t+ 1, t+ 2}.
We aim to complete the differential path by searching for new bitconditions

qt−3, . . . , qt+6 that are compatible with the differential steps from the forward and
backward construction, and by finding message word differences ∆Wt+1,. . ., ∆Wt+5

such that the following equation holds for k = t+ 1, . . . , t+ 5:

δQk+1 − σ(RL(∆Qk, 5))− σ(RL(∆Qk−4, 30)) = FWk = δFk + δWk.

An efficient way to find these new bitconditions is to first test if they exist, and
if so to backtrack to actually construct them. For i = 0, 1, . . . , 40 we attempt to
construct a set Ui consisting of all tuples

(q0, q1, q2, fw1, fw2, fw3, fw4, fw5, (qj [b])(j,b)∈Ai
),

where q0, q1, q2 ∈ Z232 and fw1, fw2, fw3, fw4, fw5 ∈ Z232 and Ai is a later to be
defined constant set, such that:

1. qj ≡ 0 mod 2min(32,max(0,i−2j)) and fwj ≡ 0 mod 2min(32,max(0,i−2j−2));

2. there exist bitconditions, compatible with the forward and backward differential
paths and the bitconditions (qj [b])(j,b)∈Ai

, that uniquely determine the ∆Qj [b]
and ∆Fj [b] below and BSDRs ∆Wk for which Wk[i] ∈ {−DWk[i],+DWk[i]} for
k = t+ 1, . . . , t+ 5 and i = 0, . . . , 31 such that

7.4 Differential path construction 133

δQt+j = qj +

θ(i−2j)∑
ℓ=0

2ℓ∆Qt+j [ℓ], j ∈ {0, 1, 2}; (7.12)

FWt+j = fwj +

θ(i−2j−2)∑
ℓ=0

2ℓ(∆Ft+j [ℓ] + ∆Wt+j [ℓ]), j ∈ {1, 2, 3, 4, 5}; (7.13)

where θ(j) = min(32,max(0, j)).

The set Ai informally consists of all indices (j, b) for which qj [b] may have been
modified by the construction of previous Uℓ for ℓ = 0, . . . , i − 1 and for which the
construction of upcoming Uℓ for ℓ = i + 1, . . . , 40 depends on qj [b]. This implies
A0 = A40 = ∅. The sets A1, . . . , A39 are defined for i = 1, . . . , 39 as:

Ai =
∪

j∈{1,2,3,4}

(
A

(1)
i,j ∪A

(2)
i,j ∪A

(3)
i,j ∪A

(4)
i,j

)
,

A
(1)
i,j =

{
(t+ j − 1, 0)

∣∣ i− 2j + 1 ∈ {0, . . . , 31}
}
,

A
(2)
i,j =

{
(t+ j − 1, 1)

∣∣ i− 2j ∈ {0, . . . , 31}
}
,

A
(3)
i,j =

{
(t+ j − 2, ℓ+ 2 mod 32)

∣∣ ℓ = i− 2j + 1 ∈ {0, . . . , 31}
}
,

A
(4)
i,j =

{
(t+ j − 2, ℓ+ 2 mod 32)

∣∣ ℓ = i− 2j ∈ {0, . . . , 31}
}
.

From these conditions it follows that U0 must be chosen as

{(q̃0, q̃1, q̃2, FWt+1, FWt+2, FWt+3, FWt+4, FWt+5, ∅)}, (7.14)

where q̃0 = σ(∆Qt), q̃1 = σ(∆Qt+1) and q̃2 = σ(∆Qt+2). Algorithm 7-1 (p. 136–139)
informally does the following to construct Ui+1:

7-1. If 0 ≤ i < 32 then step t + 1 at bit i is processed (otherwise proceed directly
to 7-1-a.): First a valid value for ∆Wt+1[i] and a valid differential bitcondition
(‘-’,‘.’ or ‘+’) for Qt[i] are chosen such that Equation 7.12 holds. Next all
possible boolean function differences ∆Ft+1[i] using qt[i], qt−1[i + 2 mod 32]
and qt−2[i + 2 mod 32] such that Equation 7.13 holds are considered. Perform
subroutine 7-1-a below for each possible choice.

7-1-a. If 0 ≤ i − 2 < 32 then step t + 2 at bit i − 2 is processed (otherwise directly
proceed to 7-1-b.): First a valid value for ∆Wt+2[i− 2] and a valid differential
bitcondition (‘-’,‘.’ or ‘+’) for Qt+1[i − 2] are chosen such that Equation 7.12
holds. Next all possible boolean function differences ∆Ft+2[i−2] using qt+1[i−2],
qt[i mod 32] and qt−1[i mod 32] such that Equation 7.13 holds are considered.
Perform subroutine 7-1-b below for each possible choice.

7-1-b. If 0 ≤ i−4 < 32 then step t+3 at bit i−4 is processed (otherwise directly proceed
to 7-1-c.): First a valid value for ∆Wt+3[i−4] and a valid differential bitcondition
(‘-’,‘.’ or ‘+’) forQt+2[i−4] are chosen such that Eq. 7.12 holds. Next all possible
boolean function differences ∆Ft+3[i − 4] using qt+2[i − 4], qt+1[i − 2 mod 32]

134 7 SHA-0 AND SHA-1

and qt[i − 2 mod 32] such that Equation 7.13 holds are considered. Perform
subroutine 7-1-c below for each possible choice.

7-1-c. If 0 ≤ i−6 < 32 then step t+4 at bit i−6 is processed (otherwise directly proceed
to 7-1-d.): First a valid value for ∆Wt+4[i − 6] is chosen. Next all possible
boolean function differences ∆Ft+4[i − 6] using qt+3[i − 6], qt+2[i − 4 mod 32]
and qt+1[i − 4 mod 32] such that Equation 7.13 holds are considered. Perform
subroutine 7-1-d below for each possible choice.

7-1-d. If 0 ≤ i − 8 < 32 then step t + 5 at bit i − 8 is processed (otherwise save the
resulting new tuple in Ui+1): First a valid value for ∆Wt+5[i − 8] is chosen.
Next all possible boolean function differences ∆Ft+5[i − 8] using qt+4[i − 8],
qt+3[i − 6 mod 32] and qt+2[i − 6 mod 32] such that Equation 7.13 holds are
considered and for each saves the resulting new tuple in Ui+1.

For i = 1, . . . , 40, we use Algorithm 7-1 (pp. 136–139) to construct Ui based on Ui−1.
As soon as we encounter an i for which Ui = ∅, we know that the desired differential
path cannot be constructed from this combination of forward and backward partial
differential paths, and that we should try another combination. If, however, we find
U40 ̸= ∅ then it must be the case that U40 = (0, 0, 0, 0, 0, 0, 0, 0, ∅). Furthermore, in
that case, every set of bitconditions that leads to this non-empty U40 gives rise to a full
differential path. Thus if U40 ̸= ∅, there exists at least one valid trail u0, . . . , u40 with
ui ∈ Ui and where ui+1 is a tuple resulting from ui in Algorithm 7-1. For each valid
trail, the desired new bitconditions qt−2, . . . , qt+4 can be found as g′, f′0, e′0, d′0, c′0, b′′2 , a′
for bits i+ 2, i, i− 2, i− 4, i− 6, i− 6, i− 8 (mod 32), respectively and if applicable,
for i = 0, . . . , 39 in Algorithm 7-1.31

Finally, there remains an issue that has not been dealt with so far, namely that
(a, b, c) must be in L (see Section 6.2.2) for every occurrence of the form FC(j, abc, z)
in Algorithm 7-1. The connection algorithm works forward, which implies in the
same way as in Section 7.4.2 that b is a direct bitcondition and c is either a direct
bitcondition or a forward indirect bitcondition involving b. If the bitcondition a is
indirect then (a, b, c) cannot be in L, since a involves bitcondition other than b and
c. Thus a must be a direct bitcondition. However, a may come from the backward
partial differential path and thus may be a backward indirect bitcondition. To resolve
this issue, we replace all backward indirect bitconditions ‘^’ by ‘.’ before running
Algorithm 7-1. We reapply all such removed backward indirect bitconditions ‘^’ on
Qj [b] to the differential paths resulting from the above procedure in the following
manner. Note that qj [b] must be either ‘.’, ‘0’ or ‘1’, since the only step that could
have resulted in qj [b] =‘v’ comes after the connection steps t+1, . . . , t+5. If qj [b] =‘.’
then we set qj [b] =‘^’ to reapply the backward bitcondition. If qj [b] ∈ {‘0’,‘1’}
and qj−1[b] ∈ {‘.’,‘v’, qj [b]} then we set qj−1[b] = qj [b] to reapply the backward

31. Note that step t + 5 at bit position i − 8 determines three of these final bitconditions, namely
qt+2[i − 6 mod 32], qt+3[i − 6 mod 32] and qt+4[i − 8 mod 32]. Furthermore, the lower steps t + 1,
t+2, t+3 and t+4 at bit position j determine only one final bitcondition, namely qt−2[j+2 mod 32],
qt−1[j + 2 mod 32], qt[j + 2 mod 32] and qt+1[j + 2 mod 32], respectively. This explains the double
i− 6.

7.4 Differential path construction 135

bitcondition. If both options above do not hold then a contradiction has arisen and
the full differential path cannot be valid.

For an example full differential path constructed with the above algorithm see
Table 7-6 (p. 169).

7.4.5 Complexity

The complexity to construct valid differential paths for SHA-1 depends on many
factors as is also explained in Sections 5.6.4 and 6.2.6. In the case of SHA-1, the com-
plexity of the connection algorithm also depends on the number of possible message
word differences on those five steps. However, the choice of which five steps to use for
the connection algorithm depends mostly on the particular choice of the disturbance
vector so as to leave maximal freedom for message modification techniques.

A rough approximation for the complexity to construct the differential path for
our near-collision attack in Section 7.6 is the equivalent of 243 SHA-1 compression
function calls. This is significantly larger than the differential path construction for
MD5. Nevertheless, it is also significantly smaller than the lowest complexity claimed
(and withdrawn) so far for a SHA-1 collision attack. This complexity is based on
our choices for the disturbance vector II(52,0), the five connecting steps, amount
of freedom left for message modification techniques and the maximum number of
bitconditions in the first round. It should be clear that for other choices the complexity
of constructing differential paths can be smaller or larger.

Our implementations of our differential path construction algorithms for SHA-1
are published as part of project HashClash [HC].

136 7 SHA-0 AND SHA-1

Algorithm 7-1 Construction of Ui+1 from Ui for SHA-0 and SHA-1.
Assume Ui is constructed inductively by means of this algorithm. For each tuple
(q0, q1, q2, fw1, fw2, fw3, fw4, fw5, (qj [b])(j,b)∈Ai

) ∈ Ui do the following:†

1. Let Ui+1 = ∅ and q̂j [b] = qj [b] for (j, b) ∈ Ai.‡

2. If i ≥ 32 then
3. Let e′2 = qt+1−1[i], q̂0 = q0 and f̂w1 = fw1.
4. Proceed with subroutine step2 (Algorithm 7-1-a, p. 137)
5. Else
6. For each different q′0 ∈ {−q0[i],+q0[i]} do
7. Let q̂0 = q0 − 2iq′0.
8. If i ∈ {1, 26, 31} and q̂0 ̸=

∑31
b=i+1 2

b∆Q̃t[b] then skip steps 9-16.
9. Let e2 = ‘-’, ‘.’ or ‘+’ based on whether q′0 = −1, 0 or +1.

10. Let f2 = qt+1−2[i+ 2 mod 32] and g = qt+1−3[i+ 2 mod 32].
11. For each different w′1 ∈ {−DWt+1[i],+DWt+1[i]} do
12. Let Z1 = fw1 − 2iw′1

13. For each different z′1 ∈ {−Z1[i], Z1[i]} ∩ Vt+1,e2f2g do

14. Let (e′2, f
′
2, g
′) = FC(t+ 1, e2f2g, z

′
1) and f̂w1 = fw1 − 2i(w′1 + z′1)

15. Let q̂t+1−1[i] = e′2 and q̂t+1−2[i+ 2 mod 32] = f′2.
16. Proceed with subroutine step2 (Algorithm 7-1-a, p. 137)
17. End if
18. Return Ui+1

† For any qj [b] above: if (j, b) ∈ Ai this bitcondition is retrieved from the current tuple in Ui,
otherwise it is retrieved from the forward or backward differential path depending on j.
‡ This line provides default (previous) values q̂j [b] for Algorithm 7-1-d line 10.

7.4 Differential path construction 137

Algorithm 7-1-a Construction of Ui+1 from Ui for SHA-0 and SHA-1 (continued).
Subroutine step2

1. If i < 2 or i ≥ 34 then
2. Let d′2 = qt+2−1[i− 2], q̂1 = q1, f̂w2 = fw2.
3. Proceed with subroutine step3 (Algorithm 7-1-b, p. 138)
4. Else
5. For each different q′1 ∈ {−q1[i− 2],+q1[i− 2]} do
6. Let q̂1 = q1 − 2i−2q′1.
7. If i− 2 ∈ {1, 26, 31} and q̂1 ̸=

∑31
b=i−2+1 2

b∆Q̃t[b] then skip steps 8-15.
8. Let d2 = ‘-’, ‘.’ or ‘+’ based on whether q′1 = −1, 0 or +1.
9. Let f0 = qt+2−3[i mod 32].

10. For each different w′2 ∈ {−DWt+2[i− 2],+DWt+2[i− 2]} do
11. Let Z2 = fw2 − 2i−2w′2

12. For each different z′2 ∈ {−Z2[i− 2], Z2[i− 2]} ∩ Vt+2,d2e′2f0
do

13. Let (d′2, e
′′
2 , f
′
0) = FC(t+ 2, d2e

′
2f0, z

′
2) and f̂w2 = fw2 − 2i−2(w′2 + z′2)

14. Let q̂t+2−1[i− 2] = d′2 and q̂t+2−2[i mod 32] = e′′2 .
15. Proceed with subroutine step3 (Algorithm 7-1-b, p. 138)
16. End if
17. Return to main routine

138 7 SHA-0 AND SHA-1

Algorithm 7-1-b Construction of Ui+1 from Ui for SHA-0 and SHA-1 (continued).
Subroutine step3

1. If i < 4 or i ≥ 36 then
2. Let c′2 = qt+3−1[i− 4], q̂2 = q2, f̂w3 = fw3.
3. Proceed with subroutine step4 (Algorithm 7-1-c, p. 139)
4. Else
5. For each different q′2 ∈ {−q2[i− 4],+q2[i− 4]} do
6. Let q̂2 = q2 − 2i−4q′2.
7. If i− 4 ∈ {1, 26, 31} and q̂2 ̸=

∑31
b=i−4+1 2

b∆Q̃t[b] then skip steps 8-15.
8. Let c2 = ‘-’, ‘.’ or ‘+’ based on whether q′2 = −1, 0 or +1.
9. Let e0 = qt+3−3[i− 2 mod 32].

10. For each different w′3 ∈ {−DWt+3[i− 4],+DWt+3[i− 4]} do
11. Let Z3 = fw3 − 2i−4w′3

12. For each different z′3 ∈ {−Z3[i− 4], Z3[i− 4]} ∩ Vt+3,c2d′
2e0

do

13. Let (c′2, d
′′
2 , e
′
0) = FC(t+ 3, c2d

′
2e0, z

′
3) and f̂w3 = fw3 − 2i−4(w′3 + z′3)

14. Let q̂t+3−1[i− 4] = c′2 and q̂t+3−2[i− 2 mod 32] = d′′2 .
15. Proceed with subroutine step4 (Algorithm 7-1-c, p. 139)
16. End if
17. Return to subroutine step2

7.4 Differential path construction 139

Algorithm 7-1-c Construction of Ui+1 from Ui for SHA-0 and SHA-1 (continued).
Subroutine step4

1. If i < 6 or i ≥ 38 then
2. Let b′2 = qt+4−1[i− 6], f̂w4 = fw4.
3. Proceed with subroutine step5 (Algorithm 7-1-d, p. 139)
4. Else
5. Let b2 = qt+4−1[i− 6] and d0 = qt+4−3[i− 4 mod 32].
6. For each different w′4 ∈ {−DWt+4[i− 6],+DWt+4[i− 6]} do
7. Let Z4 = fw4 − 2i−6w′4

8. For each different z′4 ∈ {−Z4[i− 6], Z4[i− 6]} ∩ Vt+4,b2c′2d0
do

9. Let (b′2, c
′′
2 , d
′
0) = FC(t+ 4, b2c

′
2d0, z

′
4) and f̂w4 = fw4 − 2i−6(w′4 + z′4)

10. Let q̂t+4−1[i− 6] = b′2 and q̂t+4−2[i− 4 mod 32] = c′′2 .
11. Proceed with subroutine step5 (Algorithm 7-1-d, p. 139)
12. End if
13. Return to subroutine step3

Algorithm 7-1-d Construction of Ui+1 from Ui for SHA-0 and SHA-1 (continued).
Subroutine step5

1. If i < 8 then
2. Let f̂w5 = fw5.
3. Insert (q̂0, q̂1, q̂2, f̂w1, f̂w2, f̂w3, f̂w4, f̂w5, (q̂j [b])(j,b)∈Ai+1

) in Ui+1.
4. Else
5. Let a = qt+5−1[i− 8] and c0 = qt+5−3[i− 6 mod 32].
6. For each different w′5 ∈ {−DWt+5[i− 8],+DWt+5[i− 8]} do
7. Let Z5 = fw5 − 2i−8w′5

8. For each different z′5 ∈ {−Z5[i− 8], Z5[i− 8]} ∩ Vt+5,ab′
2c0

do

9. Let (a′, b′′2 , c
′
0) = FC(t+ 5, ab′2c0, z

′
5) and f̂w5 = fw5 − 2i−8(w′5 + z′5)

10. Insert (q̂0, q̂1, q̂2, f̂w1, f̂w2, f̂w3, f̂w4, f̂w5, (q̂j [b])(j,b)∈Ai+1
) in Ui+1.

11. End if
12. Return to subroutine step4

140 7 SHA-0 AND SHA-1

7.5 Differential cryptanalysis

As laid out in Section 7.3.4, all publications so far assume independence of local
collisions in their analysis of disturbance vectors. However, this assumption is flawed
as shown in this section and for instance the updated version [Man11] of [Man08]. So
far no disturbance vector cost function that treats the local collisions as dependent
has been presented.

The differential cryptanalysis method presented in this section does exactly this,
i.e., it allows one to determine the exact success probability of a specific local collision
or a specific combination of local collisions. As such it can be used as a cost function
to determine (near-)optimal disturbance vectors. It improves upon the cost function
that takes the product of the exact success probability of each individual local collision
(allowing additional carries of δQi) over a specified range of steps, since it determines
the exact joint success probability over the specified range of steps.

Our results clearly show that the joint probability differs from the product of the
individual probabilities. Also, our results show that using dependence between local
collisions leads to significantly higher success probabilities under the correct optimal
message conditions than when assuming independent local collisions. It should be
noted that if message conditions are used that are incompatible with the correct
optimal message conditions then the average success probability will be lower and in
the extreme can be even 0. In particular this may be the case for message conditions
derived using previous analysis methods.

Our method also allows a more detailed analysis of the beginning of the second
round and the last few steps. At these steps it may be more advantageous to divert
from a prescribed combination of local collisions, as even higher success probabilities
may be achieved. Moreover, our method allows us to find the smallest set of message
expansion conditions which still results in the highest joint probability of success over
the last three rounds. However, these conditions may be more limiting than or even
incompatible with the message expansion conditions as prescribed by local collisions.

Our method is based on constructing differential paths that follow the prescribed
local collision differences and summing the success probabilities of such differential
paths that share the same message differences, the first five working state differences
and the last five working state differences. The message differences and first five
working state differences are preconditions of a differential path, whereas the last
five working state differences determine δIHVdiff = δIHVout − δIHVin. Here, the
success probability of a differential path over steps i, . . . , j is defined informally as
the probability that all differential steps are fulfilled simultaneously assuming that
Wi, . . . ,Wj and Qi−4, . . . , Qi are independent uniform random variables and that
both the message differences δWi, . . . , δWj and the first five working state differences
δRL(Qi−4, 30), δQi−3, . . . , δQi as described in the differential path hold.

To overcome the exponential growth in the number of differential paths and pos-
sible message difference vectors (δWt)

j
t=i over the number of steps considered, our

method employs several techniques. We first sketch the two most important tech-
niques and then we present our method in detail.

7.5 Differential cryptanalysis 141

The main technique is differential path reduction which removes all information in
the differential path that is not strictly required for a forward or backward extension
with a differential step. For instance, consider all differential paths over steps 59 to
66 with a single local collision starting at step 60 and bit position 2. There are 50
different possible values for ∆Q61, since σ(∆Q61) can be either positive or negative
and carries can extend from bit position 2 up to bit position 26. The number of
possible differential paths can be even greater as there can be multiple values for ∆F62,
∆F63 and ∆F64 for each value of ∆Q61. Nevertheless, since δQ55 = . . . = δQ59 = 0
and δQ62 = . . . = δQ67 = 0, the information of this local collision is not strictly
required for the forward and backward extension with differential step 67 and 58,
respectively. It follows that all such differential paths reduce to the trivial differential
path with no differences at all.

Together with each reduced differential path, we maintain intermediary proba-
bilities that accumulate the success probabilities of the removed parts of all differ-
ential paths. Since in the definition of the success probability of a differential path
we assume that the message differences hold, we maintain a separate intermediary
probability for each combination of a reduced differential path and possible message
difference vector. This reduction is performed whenever all differential paths have
been extended with a certain step t, after which we continue by extending with the
next step.

Since the number of possible message difference vectors also grows exponentially in
the number of steps, we employ another technique that allows us to ‘combine’ message
difference vectors. Consider for each possible message difference vector w = (δWt)

j
t=i

the function that maps each possible reduced differential path P to the associated in-
termediary probability for that w and P. Suppose there are several message difference
vectors w1, . . . , wK (over steps i, . . . , j) for which said functions are identical. Then
these message difference vectors all lead to identical reduced differential paths and
associated intermediary probabilities. Furthermore, any future extension, i.e., future
reduced differential paths and intermediary probabilities, depend only on these iden-
tical reduced differential paths and intermediary probabilities and not on the message
difference vector. This implies that we can combine these message difference vectors
in the following manner. We remove all intermediary probabilities associated with
w2, . . . , wK and keep only the intermediary probability of a single message difference
vector w1 for future extensions. Furthermore, we create a substitution rule such that
in any future extended message difference vector w that has the same differences as
w1 over steps i, . . . , j, we may replace this subvector w1 of w by any of w2, . . . , wK .

7.5.1 Definition

Our method is based on differential paths P over steps t = tb, . . . , te, which are not
described by bitconditions as in Section 7.4, but described by:

P = (δRL(Qtb−4, 30), (∆Qt)
te
t=tb−3, δQte+1, (∆Ft)

te
t=tb

, (δWt)
te
t=tb

),

under the following restrictions:

142 7 SHA-0 AND SHA-1

• correct differential steps for t = tb, . . . , te:

δQt+1 = σ(RL(∆Qt, 5)) + δRL(Qt−4, 30)) + σ(∆Ft) + δWt, (7.15)

where δQt+1 = σ(∆Qt+1) if t ̸= te and δRL(Qt−4, 30) = σ(RL(∆Qt−4, 30)) if
t ̸= tb;

• for t = tb, . . . , te, both values −1 and +1 of ∆Ft[31] result in the same contri-
bution 231 ∈ Z232 in σ(∆Ft). We restrict ∆Ft[31] to {0, 1} and a non-zero value
represents ∆Ft[31] = ±1;

• each ∆Ft[b] is individually possible, i.e., (2b∆Ft[b] mod 232) ∈ Vt,b, where

Vt,b =

{
(ft(q

′
1,q

′
2,q

′
3)∧2

b)

−(ft(q1,q2,q3)∧2b)

∣∣∣∣∣
qi,q

′
i∈Z232 for i=1,2,3,
∆q1=∆Qt−1

∆q2=RL(∆Qt−2,30)
∆q3=RL(∆Qt−3,30)

}
; (7.16)

The probability Pr[P] of such a differential path P is defined as:32

Pr

∆Q̂j=∆Qj for j∈{tb−3,...,te},

δQ̂te+1=δQte+1,

2b∆F̂i[b]=2b∆Fi[b] mod 232,
for i∈{tb,...,te}, b∈{0,...,31}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q̂tb−4
R←−Z232 ,

Q̂′
tb−4=RR(RL(Q̂tb−4,30)+δRL(Qtb−4,30),30),

Q̂k
R←−Z232 , Q̂

′
k=Q̂k+δQk for k∈{tb−3,...,tb};

Ŵt
R←−Z232 , Ŵ

′
t=Ŵt+δWt,

F̂t=ft(Q̂t−1,RL(Q̂t−2,30),RL(Q̂t−3,30)),

F̂ ′
t=ft(Q̂

′
t−1,RL(Q̂

′
t−2,30),RL(Q̂

′
t−3,30)),

Q̂t+1=RL(Q̂t,5)+RL(Q̂t−4,30)+F̂t+Ŵt+ACt,

Q̂′
t+1=RL(Q̂

′
t,5)+RL(Q̂

′
t−4,30)+F̂

′
t+Ŵ

′
t+ACt,

for t∈{tb,...,te}

.

More informally, this is the success probability of the following experiment:
Experiment 7.1. This experiment involves partial SHA-1 computations of two mes-
sages. For the first message, values for Q̂tb−4, . . . , Q̂tb and Ŵtb , . . . , Ŵte are selected
uniformly at random. The remaining values for Q̂tb+1, . . . , Q̂te+1 are computed using
SHA-0’s and SHA-1’s step function for t = tb, . . . , te:

F̂t = ft(Q̂t−1, RL(Q̂t−2, 30), RL(Q̂t−3, 30)),

Q̂t+1 = RL(Q̂t, 5) +RL(Q̂t−4, 30) + F̂t + Ŵt +ACt.

For the second message, we apply the differential path differences to the randomly
selected variables:

Q̂′tb−4 = RR(RL(Q̂tb−4, 30) + δRL(Qtb−4, 30), 30),

Q̂′i = Q̂i + δQi for i = tb − 3, . . . , tb,

Ŵ ′j = Ŵj + δWj for j = tb, . . . , te.

32. Note that 2b∆F̂j [b] = 2b∆Fj [b] mod 232 for b = 0, . . . , 31 does not imply ∆F̂j = ∆Fj . At bit
position 31, the first case distinguishes only between ∆Fj [31] being zero or non-zero, whereas the
latter case also distinguishes ∆Fj [31] by sign.

7.5 Differential cryptanalysis 143

The remaining values Q̂′tb+1, . . . , Q̂
′
te+1 are computed using SHA-0’s and SHA-1’s step

function for t = tb, . . . , te:

F̂ ′t = ft(Q̂
′
t−1, RL(Q̂

′
t−2, 30), RL(Q̂

′
t−3, 30)),

Q̂′t+1 = RL(Q̂′t, 5) +RL(Q̂′t−4, 30) + F̂ ′t + Ŵ ′t +ACt.

The experiment has succeeded when the above step function computations follow the
differential path P, thus when all the following equations hold:

δQ̂te+1 = δQte+1,

∆Q̂i = ∆Qi for i = tb − 3, . . . , te,

2b∆F̂j [b] = 2b∆Fj [b] mod 232 for j = tb, . . . , te, b = 0, . . . , 31.

7.5.2 Probability analysis

In this section we present a method to efficiently determine the probability of a
differential path P. To this end, consider a slight change in Experiment 7.1:
Experiment 7.2. This experiment is a modification of Experiment 7.1. Instead of
randomly selecting values for Ŵtb , . . . , Ŵte and computing values for Q̂tb+1, . . . , Q̂te+1,
one randomly selects values for Q̂tb+1, . . . , Q̂te+1 and computes values for Ŵtb , . . . , Ŵte

using:

F̂t = ft(Q̂t−1, RL(Q̂t−2, 30), RL(Q̂t−3, 30)),

Ŵt = Q̂t+1 −RL(Q̂t, 5)−RL(Q̂t−4, 30)− F̂t −ACt.

The success requirement is left unchanged.

Since there is a bijective relation between (Ŵt)
te
t=tb

and (Q̂t+1)
te
t=tb

, this implies
that (Ŵt)

te
t=tb

is also uniformly distributed in Experiment 7.2. Hence, the success
probabilities of both experiments are equal. Note that this second experiment is com-
pletely determined by the values of (Q̂t)te+1

t=tb−4. Next, consider another experiment:

Experiment 7.3. This experiment is a modification of Experiment 7.2. As above,
we set

Q̂′tb−4 = RR(RL(Q̂tb−4, 30) + δRL(Qtb−4, 30), 30),

Q̂′i = Q̂i + δQi for i = tb − 3, . . . , tb.

However, instead of setting Ŵ ′t = Ŵt + δWt for t = tb, . . . , te and computing values
for Q̂′tb+1, . . . , Q̂

′
te+1, one sets Q̂′t+1 = Q̂t+1 + δQt+1 for t = tb, . . . , te and computes

values for Ŵ ′tb , . . . , Ŵ
′
te :

F̂ ′t = ft(Q̂
′
t−1, RL(Q̂

′
t−2, 30), RL(Q̂

′
t−3, 30)),

Ŵ ′t = Q̂′t+1 −RL(Q̂′t, 5)−RL(Q̂′t−4, 30)− F̂ ′t −ACt.

144 7 SHA-0 AND SHA-1

The success requirement is left unchanged. In particular, one does not need an addi-
tional check that δŴt = δWt as in case of success this is implied by Equation 7.15:

δŴt = δQ̂t+1 − σ(RL(∆Q̂t, 5))− δRL(Q̂t−4, 30))− σ(∆F̂t)
= δQt+1 − σ(RL(∆Qt, 5))− δRL(Qt−4, 30))− σ(∆Ft)
= δWt.

Lemma 7.1. For fixed values (Q̂t)
te+1
t=tb−4, Experiment 7.3 succeeds if and only if

Experiment 7.2 succeeds.

Proof. If Experiment 7.3 succeeds then Eq. 7.15 must hold resulting in (δŴt)
te
t=tb

=

(δWt)
te
t=tb

. This implies that Experiment 7.2 also succeeds, since it will obtain iden-
tical values for both (Ŵ ′t)

te
t=tb

and (Q̂′t+1)
te
t=tb

as Experiment 7.3.
Suppose Experiment 7.3 fails. If (δŴt)

te
t=tb

= (δWt)
te
t=tb

then again Experiment 7.2
will obtain identical values for both (Ŵ ′t)

te
t=tb

and (Q̂′t+1)
te
t=tb

as Experiment 7.3 and
thus Experiment 7.2 also fails. Otherwise, let t̃ be the smallest t ∈ {tb, . . . , te} for
which δŴt ̸= δWt. This implies that Experiment 7.2 obtains identical values for
(Ŵ ′t)

t̃−1
t=tb

, (Q̂′t)t̃t=tb+1 and ∆F̂t̃ as Experiment 7.3. Assume that ∆Q̂t = ∆Qt holds for
all t = tb−3, . . . , t̃ and 2b∆F̂t̃[b] = 2b∆Ft̃[b] mod 232 holds for all b ∈ {0, . . . , 31}. Then
Equation 7.15 implies that δŴt̃ = δWt̃ which contradicts the choice of t̃, therefore
this assumption does not hold. This failed assumption together with the fact that
Experiment 7.2 obtains identical values for (Q̂′t)

t̃
t=tb+1 and ∆F̂t̃ as Experiment 7.3

directly implies that Experiment 7.2 must also fail.

We use these experiments to show that the probability Pr[P] of such a differential
path can be determined as the fraction NP/2

32(te−tb+6) where NP is the number of
possible values (Q̂t)

te+1
t=tb−4 ∈ Zte−tb+6

232 for which this third experiment succeeds. In
other words, NP is the number of possible values (Q̂t)

te+1
t=tb−4 ∈ Zte−tb+6

232 for which

• for t = tb − 3, . . . , te: ∆Qt = ∆Q̂t;

• for t = tb, . . . , te and b = 0, . . . , 31:

(2b∆Ft[b] mod 232) = (ft(Q̂
′
t−1, RL(Q̂

′
t−2, 30), RL(Q̂

′
t−3, 30)) ∧ 2b)

− (ft(Q̂t−1, RL(Q̂t−2, 30), RL(Q̂t−3, 30)) ∧ 2b),

where Q̂′t = Q̂t + δQt for t ∈ {tb − 3, . . . , te}.
An efficient way to determine the probability Pr[P] is based on the fact that we

can partition the bits Q̂t[b] into parts G∆Q, G0, . . . , GK for some K ∈ N that each
contribute a factor to Pr[P]. One important part G∆Q consists of all indices (j, i)
such that ∆Qj [i] ̸= 0 where j ∈ {tb − 3, . . . , te} and i ∈ {0, . . . , 31}. Since the values
Q̂′j [i] and Q̂j [i] are uniquely determined for all (j, i) ∈ G∆Q, this partition contributes
the factor of p∆Q = 1/2|G∆Q| to Pr[P].

7.5 Differential cryptanalysis 145

Consider the set SF of all indices (t, b) where t ∈ {tb, . . . , te} and b ∈ {0, . . . , 31}
such that |Vt,b| > 1 and thus ∆Ft[b] is not trivially fulfilled. Let SQ be the set of all
indices (j, i) where j ∈ {tb − 4, . . . , te + 1} and i ∈ {0, . . . , 31} such that ∆Qj [i] = 0
and Qj [i] is involved with some ∆Ft[b] with (t, b) ∈ SF :

{(j + 1, i), (j + 2, i+ 2 mod 32), (j + 3, i+ 2 mod 32)} ∩ SF ̸= ∅.

All indices (j, i) of bits Qj [i] where (j, i) /∈ SQ ∪ G∆Q for j ∈ {tb − 4, . . . , te + 1},
i ∈ {0, . . . , 31} form part G0. Part G0 consists by construction of all indices of free
bits Qj [i] whose values do not affect ∆Qj or any of the non-trivially fulfilled ∆Ft and
thus contributes a factor of p0 = 2|G0|/2|G0| = 1 to Pr[P].

The set of remaining indices SQ is further partitioned by constructing a graph
G consisting of vertices Ft[b] for all (t, b) ∈ SF and vertices Qj [i] for all (j, i) ∈ SQ.
There is an edge between two nodes Ft[b] and Qj [i] if and only if:

(t, b) ∈ {(j + 1, i), (j + 2, i+ 2 mod 32), (j + 3, i+ 2 mod 32)}, (7.17)

i.e., Qj [i] is involved with Ft[b]. The graph G can be uniquely partitioned into
connected subgraphs G1, . . . ,GK . This partition G1, . . . ,GK of G defines a partition
G1, . . . , GK of SQ as follows:

Gk = {(j, i) | Qj [i] ∈ Gk} , k ∈ {1, . . . ,K}.

By construction, all bits Qj [i] with associated nodes in the partition Gk influence
a non-trivially fulfilled ∆Ft[b] if and only if there is an associated node Ft[b] in Gk.
The probability pk can be determined as NP,k · 2−|Gk|, where NP,k is the number of
different values of (Qj [i])(j,i)∈Gk

that result in the correct value of all ∆Ft[b], where
Ft[b] is a node in Gk, and assuming Q′j [i] = Qj [i] + ∆Qj [i] for all (j, i) ∈ G∆Q.

Lemma 7.2. The probability Pr[P] is the product of p∆Q, p0, p1, . . . , pK :

Pr[P] = p∆Q · p0 ·
K∏
k=1

pk = 2−|G∆Q|
K∏
k=1

NP,k
2|Gk|

.

Proof. This lemma follows directly from the above construction.

As a simple example, a single local collision starting with δWt = 2b (without carry
in δQt+1) results in five parts: G∆Q, G0, G1, G2, G3. Part G∆Q consists solely of the
disturbance (t+1, b). Parts G1, G2 and G3 consist each of two bit indices namely the
other two Qi[j] involved with Qt+1[b] in the boolean function in step t+ 2, t+ 3 and
t+ 4, respectively.

7.5.3 Extending

Extending a differential path P forward or backward with step l is done as follows.
First a δWl consistent with DWl is chosen:

δWl ∈
{
σ(∆Wl)

∣∣∣ ∆Wl[i] ∈ {−DWl[i],+DWl[i]} for i = 0, . . . , 31
}
.

146 7 SHA-0 AND SHA-1

In the case of a forward extension choose any BSDR ∆Ql of δQl and a valid ∆Fl:
∆Fl[i] ∈ Vl,i for i = 0, . . . , 31 (see Equation 7.16). Now δQl+1 is determined as

δQl+1 = σ(RL(∆Ql, 5)) + σ(RL(∆Ql−4, 30)) + σ(∆Fl) + δWl

and P is extended by appending ∆Ql, δQl+1, ∆Fl and δWl.
Otherwise for a backward extension choose any BSDR ∆Ql−3 of δQl−3 and a valid

∆Fl: ∆Fl[i] ∈ Vl,i for i = 0, . . . , 31. Then δRL(Ql−4, 30) is determined as

δRL(Ql−4, 30) = σ(∆Ql+1)− σ(RL(∆Ql, 5))− σ(∆Fl)− δWl

and P is extended by prepending δRL(Ql−4, 30), ∆Ql−3 and ∆Fl and δWl.

7.5.4 Reduction

As said before, we are interested in the sum of success probabilities of differential
paths that share the same message differences, the first five working state differences
and the last five working state differences. The differential paths themselves are of
lesser interest.

To reduce the total number of differential paths after extending a given step, we
try to sensibly remove differences ∆Qt[b] and ∆Fi[j] whose fulfillment probabilities
are independent of any possible forward or backward extension choices. By keeping a
graph-like structure of all intermediary differential paths one can always reconstruct
non-reduced differential paths over all prescribed steps by performing the same ex-
tension choices without the subsequent reductions. Furthermore, we show in the next
section how to use intermediary probabilities that accumulate the probabilities of
such removed differences.

Given a differential path P over steps t = tb, . . . , te, we determine which differences
∆Qj [i] and ∆Ft[b] can safely be removed. This is done by constructing the following
graph G̃:

1. For t = tb, . . . , te and b = 0, . . . , 31, we add a node Ft[b] if and only if ∆Qt−1[b] ̸=
0 or ∆Qt−2[b+ 2 mod 32] ̸= 0 or ∆Qt−3[b+ 2 mod 32] ̸= 0.

2. For j = tb − 4, . . . , te + 1 and i = 0, . . . , 31, we add a node Qj [i] if and only if
at least one of the following differences is present in P and non-zero: ∆Qj [i],
∆Qj−1[i + 2 mod 32], ∆Qj−2[i + 2 mod 32], ∆Qj+1[i − 2 mod 32], ∆Qj−1[i],
∆Qj+2[i− 2 mod 32], ∆Qj+1[i].

3. We connect each node Ft[b] in the graph with edges to the nodes Qj−1[i],
Qj−2[i+ 2 mod 32] and Qj−3[i+ 2 mod 32].

Consider all connected subgraphs G̃1, . . . , G̃K of G̃. Let k ∈ {1, . . . ,K}, if for all nodes
Qj [i] of the connected subgraph G̃k we have ∆Qj [i] = 0 or j ∈ {tb+1, . . . , te−4} then
all differences ∆Qj [i] and ∆Ft[b] associated with the respective nodes Qj [i] and Ft[b]
in G̃k can be safely removed. Since Equation 7.15 must hold, the necessary corrections
are made in δWt. For all nodes Qi[j] ∈ G̃k where ∆Qi[j] ̸= 0 we do the following:

7.5 Differential cryptanalysis 147

1. Replace the value of δWj+4 by δWj+4 +∆Qj [i] · 2i−2 mod 32;

2. Replace the value of δWj by δWj +∆Qj [i] · 2i+5 mod 32;

3. Replace the value of δWj−1 by δWj−1 −∆Qj [i] · 2i;

4. Replace the value of ∆Qj [i] by 0.

For all nodes Ft[b] ∈ G̃k we do the following:

1. Replace the value of δWt by δWt +∆Ft[b] · 2b;

2. Replace the value of δFt[b] by 0.

Note that ∆Qtb−4, . . . , Qtb and ∆Qte−3, . . . ,∆Qte+1 remain untouched. Also, it can
be seen that the graph G from Section 7.5.2 is a subgraph of G̃.

Lemma 7.3. Given a differential path P over steps tb, . . . , te and its reduced version
P̂, let P̃ be defined over steps tb, . . . , te by:

∆Q̃j [i] = ∆Qj [i]−∆Q̂j [i] for j = tb − 4, . . . , te + 1, i = 0, . . . , 31;

∆F̃t[b] = ∆Ft[b]−∆F̂t[b] for t = tb, . . . , te, b = 0, . . . , 31;

δW̃t = δWt − δŴt for t = tb, . . . , te.

(Thus P̃ is defined by the eliminated differences ∆Qj [i] and ∆Ft[b] and the negative
sum of corrections to δWt.) Then P̂ and P̃ are valid differential paths and

Pr[P] = Pr[P̂] · Pr[P̃].

Proof. Let k ∈ {1, . . . ,K}. Then for every Qj [i] in G̃k with ∆Qj [i] ̸= 0, also all
related Ft[b] are in G̃k by construction. (As before a Qj [i] and Ft[b] are related if
Equation 7.17 holds.) Similarly, for every Ft[b] in G̃k also all related Qj [i] are in G̃k
by construction.

Let K ⊂ {1, . . . ,K} be the index set of all connected subgraphs G̃k such that
∆Qj [i] = 0 or j ∈ {tb + 1, . . . , te − 4} for all nodes Qj [i] in G̃k. Then the differences
∆Qj [i] and ∆Ft[b] associated with the respective nodes Qj [i] and Ft[b] in G̃k are either
present in P̃ if k ∈ K or in P̂ if k /∈ K. Furthermore, all other differences ∆Qj [i] and
∆Ft[b] present in P̂ and P̃ are zero.

The probability Pr[P] is the product of p∆Q, p1, . . . , pL as in Section 7.5.2 (p0 = 1
is always trivial). First, p∆Q is determined by all differences ∆Qj [i] ̸= 0 in P where
each such difference ∆Qj [i] contributes a factor of 1/2 to p∆Q. Since each such
difference ∆Qj [i] is either present in P̂ or in P̃ it follows that p∆Q = p̂∆Q · p̃∆Q. Since
the graph G from Section 7.5.2 is a subgraph of G̃, it follows that each connected
subgraph Gl for l ∈ {1, . . . , L} is a subgraph of some G̃k. If k ∈ K then the probability
pl associated with Gl is a factor of Pr[P̃] and not of Pr[P̂]. Otherwise, k /∈ K and pl

148 7 SHA-0 AND SHA-1

is a factor of Pr[P̂] and not of Pr[P̃]. Since p∆Q is divided into two factors, one for P̂
and one for P̃ and the probabilities p1, . . . , pL have been partitioned between Pr[P̂]
and Pr[P̃], one can conclude that Pr[P̂] · Pr[P̃].

For a given differential path P we denote by Reduce(P) the differential path
resulting from reducing P by the above method.

Observation 7.1. Let P be a differential path over steps tb, . . . , te for which σ(∆Qi) =
0 for i = tb − 4, . . . , tb and for i = te − 3, . . . , te + 1. Then P̂ = Reduce(P) is trivial:
P̂ = (0, ((0)31j=0)

te+1
i=tb−4, 0, ((0)

31
j=0)

te
i=tb

, (0)tei=tb).

7.5.5 Single local collision analysis

In this section we analyze the probabilities of local collisions either with or without
additional carries. In Section 7.5.7 we extend this analysis to combinations of local
collisions as prescribed by a disturbance vector. For now, let (DVt)

79
t=0 ∈ Z80

232 be
a disturbance vector consisting of a single disturbance starting between step 0 and
74, which implies that after step 79 all corrections for this single disturbance have
been made. Although (DVt)

79
t=0 is not a valid disturbance vector for either SHA-0 or

SHA-1, it allows for differential cryptanalysis of a single local collision that is easily
extended to valid disturbance vectors.

First we present a number of definitions that we need later on. For t = 1, . . . , 80,
we denote by Qt the set of allowed values for ∆Qt. We offer two choices for Qt. The
first choice is to select one from the family of sets Qc,u,t for u ∈ {0, . . . , 32} of allowed
values for ∆Qt as prescribed by the disturbance(s) in (DVt)

79
t=0 allowing carries and

where the weight is bounded by u plus the NAF weight:

Qc,u,t =

BSDR Y

∣∣∣∣∣∣∣
σ(Y) = σ(Z),

Z[i] ∈ {−DVt−1[i], DVt−1[i]}, i = 0, . . . , 31,

w(Y) ≤ w(NAF(σ(Y))) + u

 .

For u = 32, the bound on the weight is trivially fulfilled and we denote Qc,t for Qc,32,t.
The set Qc,t is the preferred choice for Qt.

The second choice for Qt is the set Qnc,t which is defined as the set of allowed
values for ∆Qt as prescribed by the disturbance(s) in (DVt)

79
t=0 not allowing carries:

Qnc,t =
{
Y ∈ Qc,0,t

∣∣∣ Y [i] ∈ {0,−DVt−1[i], DVt−1[i]}
}
.

No carries can be present as Y ∈ Qc,0,t. Nevertheless, Qc,0,t still allows the distur-
bances ∆Qt = {2, 0} and ∆Qt = {1, 0} (using compact notation, see p. 18) in case
of two serial local collisions starting at step t − 1: DVt−1 = 21 + 20. The condition
Y [i] ∈ {0,−DVt−1[i], DVt−1[i]} prevents disturbances associated with ‘0’-bits in the
disturbance vector.

We assume a choice has been made for Qt and preferably this is Qc,t, however we
may need another choice for Qt in the upcoming sections. To simplify notation, we

7.5 Differential cryptanalysis 149

use σ(Qt) and σ(RL(Qt, n)) to denote {σ(Y) | Y ∈ Qt} and {σ(RL(Y, n)) | Y ∈ Qt},
respectively. The remaining definitions in this section may depend on the particular
choice of Qt.

Let (DWt)
79
t=0 ∈ Z80

232 be the associated message expansion XOR difference vector
of the disturbance vector (see Equation 7.9, p. 121). Then for t = 0, . . . , 79, we define
the set Wt as the set of possible δWt given XOR difference DWt:

Wt =
{
σ(∆Wt)

∣∣∣ ∆Wt[i] ∈ {−DWt[i], DWt[i]}, i = 0, . . . , 31
}
.

Let D[i,j] be the set of all differential paths P over steps i, . . . , j with:

• δWt ∈ Wt for t = i, . . . , j;

• ∆Qt ∈ Qt for t = i− 3, . . . , j;

• δRL(Qi−4, 30) ∈ σ(RL(Qi−4, 30));

• δQj+1 ∈ σ(Qj+1);

• Pr[P] > 0.

Informally, D[i,j] is the set of all possible differential paths over steps i, . . . , j that
follow the local collision differences as prescribed by the disturbance vector where
carries are limited through the choice for Qt. These are the differential paths that
we are interested in. Let R[i,j] denote the set {Reduce(P) | P ∈ D[i,j]} of all reduced
versions of the differential paths in D[i,j]. We like to point out that |R[i,j]| ≤ |D[i,j]|
and that |R[i,j]| can be significantly smaller than |D[i,j]|, especially for a large number
of steps j − i+ 1.

Now we can analyze the success probability of the local collision. The success
probability pw,[tb,te] of the single local collision in (DVt)

79
t=0 which begins at step tb ≥ 0

and ends with step te < 80 using given message difference vector w = (δWt)
te
t=tb

∈
(Wt)

te
t=tb

is determined as:

pw,[tb,te] =
∑

P̂∈D[tb,te]

(δŴt)
te
t=tb

=w

Pr[P̂].

Thus to analyze the local collision we generate differential paths P ∈ D[i,j]. Instead
of storing all possible differential paths, we keep only reduced differential paths along
with intermediary probabilities. For a reduced differential path Pr over steps i, . . . , j
and message difference vector w ∈ (Wt)

j
t=i, we define the intermediary probability

p(w,Pr,[i,j]) as:
p(w,Pr,[i,j]) =

∑
P̂∈D[i,j]

Reduce(P̂)=Pr

(δŴt)
j
t=i=w

Pr[P̂]/Pr[Pr].

150 7 SHA-0 AND SHA-1

Algorithm 7-2 Local collision analysis (forward)
Let (DVt)79t=0, (DWt)

79
t=0, (Wt)

79
t=0 and (Qt+1)

79
t=0 be as defined in Section 7.5.11 and let

I = [tb, te] be an interval of steps tb, . . . , te such that DVi = 0 for i ∈ {tb−5, . . . , tb−1}.
1. We start with Atb,tb = ∅;
2. For all differential paths P over step tb of the following form:

δRL(Qtb−4, 30) = 0, ∆Qtb−3 = . . . = ∆Qtb = 0, ∆Ftb = 0,

δQtb+1 = δWtb ∈ Wtb ∩ σ(Qtb+1),

we insert the tuple (P, {((δWi)
tb
i=tb

, 1)}) in the set Atb,tb ;
3. For steps t = tb + 1, . . . , te in that order we do the following:
4. Let Atb,t = ∅;
5. For all tuples (P,S) ∈ Atb,t−1 we extend P forward:
6. For all BSDRs ∆Qt ∈ Qt of δQt:
7. For all δWt ∈ Wt, δQt+1 ∈ σ(Qt+1) and ∆Ft such that

(∆Ft[b])
31
b=0 ∈ (Vt,b)

31
b=0

† and

δQt+1 = σ(RL(∆Qt, 5)) + σ(RL(∆Qt−4, 30)) + σ(∆Ft) + δWt

do the following:
8. Let Pe be P extended with step t using ∆Qt, ∆Ft, δWt and δQt+1;
9. If Pr[Pe] > 0 then do:

10. Let Pr = Reduce(Pe), pr = Pr[Pe]/Pr[Pr] and

Ŝ =
{
((δŴi)

t
i=tb , pr · p̂)

∣∣∣ ((δŴi)
t−1
i=tb

, p̂) ∈ S
}
,

where δŴt = δWt;
11. If there exists a tuple (Pr, S̃) ∈ Atb,t for some S̃ then

replace (Pr, S̃) in Atb,t by the tuple (Pr,SPr), where

SPr =

w,

∑
(w,p′)∈Ŝ∪S̃

p′

 ∣∣∣∣∣∣ w ∈
{
w′

∣∣∣(w′, p′) ∈ Ŝ ∪ S̃
} ,

12. otherwise insert (Pr, Ŝ) in Atb,t.
13. Return Atb,te .

† See Equation 7.16 (p. 142).

The set SPr for a reduced differential path Pr ∈ R[i,j] is defined as the set of all
possible tuples (w, p(w,Pr,[i,j])) with w ∈ (Wt)

j
t=i and p(w,Pr,[i,j]) > 0. Then for

0 ≤ i ≤ j < 80, the set Ai,j is defined as the set of all tuples (Pr,SPr) of differential
paths Pr ∈ R[i,j] with SPr ̸= ∅. The set Atb,te thus consists of all reduced versions
of differential paths in D[tb,te] together with the intermediary probabilities for each
possible message difference vector. To compute the set Atb,te , we use Algorithm 7-2

7.5 Differential cryptanalysis 151

Algorithm 7-3 Local collision analysis (backward)
Let (DVt)

79
t=0, (DWt)

79
t=0, (Wt)

79
t=0 and (Qt+1)

79
t=0 be as defined in Section 7.5.11 and

let I = [tb, te] be an interval of steps tb, . . . , te such that DVi = 0 for i ∈ {te−4, . . . , te}.
1. We start with Ate,te = ∅;
2. For all differential paths P over step te of the following form:

∆Qte−3 = . . . = ∆Qte = 0, δQte+1 = 0, ∆Fte = 0,

δRL(Qte−4, 30) = −δWte ∈ σ(RL(Qte−4, 30)), δWte ∈ Wte

we insert the tuple (P, {((δWi)
te
i=te

, 1)}) in the set Ate,te ;
3. For steps t = te − 1, . . . , tb in that order we do the following:
4. Let At,te = ∅;
5. For all tuples (P,S) ∈ At+1,te we extend P backwards:
6. For all BSDRs Y ∈ Qt−3 with σ(RL(Y, 30)) = δRL(Qt−3, 30):
7. Let ∆Qt−3 = Y ;
8. For all δWt ∈ Wt, δRL(Qt−4, 30) ∈ σ(RL(Qt−4, 30)) and ∆Ft

such that (∆Ft[b])
31
b=0 ∈ (Vt,b)

31
b=0 and

δRL(Qt−4, 30) = σ(∆Qt+1)− σ(RL(∆Qt, 5))− σ(∆Ft)− δWt

do the following:
9. Let Pe be P extended with step t using δRL(Qt−4, 30), ∆Qt−3, ∆Ft

and δWt;
10. If Pr[Pe] > 0 then do:
11. Let Pr = Reduce(Pe), pr = Pr[Pe]/Pr[Pr] and

Ŝ =
{
((δŴi)

te
i=t, pr · p̂)

∣∣∣ ((δŴi)
te
i=t+1, p̂) ∈ S

}
,

where δŴt = δWt;
12. If there exists a tuple (Pr, S̃) ∈ At,te for some S̃ then

replace (Pr, S̃) in At,te by the tuple (Pr,SPr), where

SPr =

w,

∑
(w,p′)∈Ŝ∪S̃

p′

 ∣∣∣∣∣∣ w ∈
{
w′

∣∣∣(w′, p′) ∈ Ŝ ∪ S̃
} ,

13. otherwise insert (Pr, Ŝ) in At,te .
14. Return Atb,te .

(p. 150) to iteratively construct the sets Atb,j for j = tb, . . . , te.

Since DVt = 0 for t = tb − 5, . . . , tb − 1 and for t = te − 4, . . . , te for this single
local collision, it follows that for all (P,S) ∈ Atb,te we have for P by definition
δRL(Qtb−4, 30) = 0, ∆Qi = (0)31j=0 for i = tb − 3, . . . , tb, ∆Qi = (0)31j=0 for i =

152 7 SHA-0 AND SHA-1

te − 3, . . . , te and δQte+1 = 0. Observation 7.1 (p. 148) implies that P is trivial:

P = (0, ((0)31j=0)
te+1
i=tb−4, 0, ((0)

31
j=0)

te
i=tb

, (0)tei=tb).

Hence, Atb,te consists of a single tuple (P,S) where P is trivial and the set S contains
all tuples ((δWt)

te
t=tb

, p) where p > 0 by definition is the desired success probability
pw,[tb,te] of w = (δWt)

te
t=tb

. Most importantly we have determined the highest success
probability p[tb,te] = max{p | (w, p) ∈ S} and all message difference vectors that
attain that probability: {w | (w, p[tb,te]) ∈ S}.

A similar analysis is possible backwards by iteratively constructing sets Ai,te for
i = te, . . . , tb using Algorithm 7-3 (p. 151). Note that Algorithm 7-2 expects DVt = 0
for t ∈ {tb − 5, . . . , tb − 1}, whereas Algorithm 7-3 expects DVt = 0 for t ∈ {te −
4, . . . , te}. Hence, working backwards provides an alternative whenever DVt ̸= 0 for
some t ∈ {tb − 5, . . . , tb − 1} and DVt = 0 for t ∈ {te − 4, . . . , te}.

7.5.6 Message difference compression

Since the number of possible message difference vectors grows exponentially in the
number of steps, we employ another technique that allows us to ‘combine’ message
difference vectors. This is nothing more than a smart representation of Ai,j by a
pair (SRi,j ,Bi,j) that has significantly reduced memory footprint and also allows
an optimization that reduces the runtime complexity. In the implementations of
Algorithms 7-2 and 7-3, we use the pair (SRi,j ,Bi,j) representing Ai,j to improve
runtime and memory complexity. Nevertheless, in the upcoming sections we still use
Ai,j instead of the equivalent representation (SRi,j ,Bi,j) for ease of notation.

First we introduce some necessary notation. We denote a message difference vector
substitution rule as (wn)

j
n=i ↩→ (vn)

j
n=i. For a message difference vector (xk)

m
k=l and

a message difference vector substitution rule (wn)
j
n=i ↩→ (vn)

j
n=i such that l ≤ i ≤

j ≤ m, we define Π((xk)
m
k=l, (wn)

j
n=i ↩→ (vn)

j
n=i) as the message difference vector

(yk)
m
k=l, where for k ∈ {l, . . . ,m}:

yk =

{
xk if (xn)jn=i ̸= (wn)

j
n=i ∨ k /∈ {i, . . . , j};

vk otherwise.

This definition of Π is extended to a set SR of message difference vector substitution
rules:

Π(X,SR) =
{
Π(· · ·Π(X, s1), · · · , sn)

∣∣ n ∈ {0, . . . , |SR|}, s1, . . . , sn ∈ SR},
which includes X itself by using n = 0.

Now we can represent Ai,j in Algorithms 7-2 and 7-3 as a pair (SRi,j ,Bi,j) of a
set of substitution rules SRi,j and a set Bi,j of the form

Bi,j = {(P,S ′P) | (P,SP) ∈ Ai,j}

7.5 Differential cryptanalysis 153

such that for all P the set S ′P together with SRi,j generates SP :

SP =
∪

(w,p)∈S′
P

{(v, p) | v ∈ Π(w,SRi,j)}.33

To obtain a representation (SRi,j ,Bi,j) of Ai,j , we do the following. We start with
Btb,t = Atb,t and SRtb,t = ∅. Let

W = {w | (w, p) ∈ SP , (P,SP) ∈ Ai,j}

be the set of all message difference vectors w under consideration. For each w ∈ W we
define the function θw that maps differential paths P to the respective intermediary
probability of w and P:

θw : {P | (P,S) ∈ Ai,j} → [0, 1]

θw : P 7→ p, for which (w, p) ∈ SP
Now for all groups w1, . . . , wK ∈ W of message difference vectors that have identical
functions θw1 = . . . = θwK , we remove all occurrences of w2, . . . , wK in Bi,j and
compensate by inserting message difference vectors substitution rules w1 ↩→ w2, w1 ↩→
w3, …, w1 ↩→ wK into SRi,j .34 We denote the resulting representation (SRi,j ,Bi,j)
of Ai,j as Compact(Ai,j).

Let Atb,t = Extend(Atb,t−1) denote the computation of Atb,t using Atb,t−1 in steps
4–12 of Algorithm 7-2. Then (SRtb,t,Btb,t) can be computed from (SRtb,t−1,Btb,t−1)
as

(SRtb,t,Btb,t) = Compact
(
Extend

(
(SRtb,t−1,Btb,t−1)

))
.

Although this implies that we still need to store the entire set Atb,t at some point.
Note that in the steps 4 to 12 of Algorithm 7-2 for any P the values Pr and pr

do not directly depend on values w ∈ {v | (v, p) ∈ S}. One can thus observe that
for any two message difference vectors w and v used in Ai,j for which θw = θv, it
follows that also θw′ = θv′ for any extensions w′ = w||x and v′ = v||x of w and v by
the same message differences x (as in step 10 of Algorithm 7-2). This implies that in
the reduction of Atb,t to (SRtb,t,Btb,t) = Compact(Atb,t) all these message difference
vectors v′ can be removed by using the substitution rule w ↩→ v.

More specifically, let (SRtb,t−1,Btb,t−1) be a representation of Atb,t−1, then for
step t in Algorithm 7-2 the above observation holds for all w and v ∈ Π(w,SRtb,t−1)
and thus all extensions of such v in Atb,t can be removed and compensated by the
substitution rule w ↩→ v. This implies that

(SRtb,t−1,Extend(Btb,t−1))

33. This directly implies that for SRi,j = ∅ we have that Bi,j = Ai,j . Note that for any two message
difference vectors w and v ∈ Π(w,SRi,j) their respective probabilities for all differential paths P
must be equal: ∀P : (w, p) ∈ SP ⇔ (v, p) ∈ SP .
34. To efficiently determine these groups with identical functions θw, we compute and compare hash
values of a representation of θw for all w ∈ W instead of these function θw themselves.

154 7 SHA-0 AND SHA-1

is a representation of Atb,t, which naturally may be further reduced.
We can thus obtain a representation (SRtb,t,Btb,t) of Atb,t more efficiently than

simply computing Compact
(
Extend

(
(SRtb,t−1,Btb,t−1)

))
as follows:

(S̃Rtb,t, B̃tb,t) = Compact(Extend(Btb,t−1));
(SRtb,t,Btb,t) = (S̃Rtb,t ∪ SRtb,t−1, B̃tb,t).

In this manner we can obtain a representation of the set Atb,te , but in a way that
does not require anymore that the entire set Atb,te must be computed and stored
in memory. Furthermore, only the message difference vectors present in Btb,t−1 are
processed instead of all message difference vectors present in Atb,t−1 in the processing
of step t in step 3 of Algorithm 7-2.

Algorithm 7-3 is treated analogously.

7.5.7 Single local collision analysis: δIHVdiff

Consider a single local collision starting at step tb ≥ 75 and ending with step te = 79.
Since 79 = te < tb+5, not all corrections have been made after step 79 and it follows
that Atb,te does not consist of a single trivial reduced differential path. In this case
we are interested in the most likely differences δIHVdiff = δIHVout − δIHVin added
to the IHV according to a differential path P over steps tb, . . . , 79:

ϕ(P̂) = (di)
80
i=76, di =

σ(RL(∆Q̂i, 30)), i = 76, 77, 78;

σ(∆Q̂i), i = 79;

δQ̂i, i = 80.

Using Algorithm 7-2 we compute the set Atb,79 and we determine the set I of possible
δIHVdiff: I = {ϕ(P̂) | (P̂,S) ∈ Atb,79}.

We can determine the success probability p(w,δIHVdiff,[tb,79]) for each message dif-
ference vector w = (δWt)

79
t=tb
∈ (Wt)

79
t=tb

and for each δIHVdiff ∈ I:

p(w,δIHVdiff,[tb,79]) =
∑

P̂∈D[tb,79]

ϕ(P̂)=δIHVdiff
(δŴt)

79
t=tb

=w

Pr[P̂]

=
∑

(P̂,S)∈Atb,79

ϕ(P̂)=δIHVdiff

∑
(w,p(w,P̂,[tb,79])

)∈S

p(w,P̂,[tb,79]) · Pr[P̂].

Finally, we can determine the highest success probability:

p[tb,79] = max{p(w,δIHVdiff,[tb,79]) | δIHVdiff ∈ I, w ∈ (Wt)
79
t=tb
}

and all δIHVdiff that attain that probability (almost):

{δIHVdiff | δIHVdiff ∈ I, ∃w : p(w,δIHV,[tb,79]) ≥ p[tb,79] · α},

7.5 Differential cryptanalysis 155

where α ∈ [0, 1] is a given factor, i.e., α = 0.95. For each such δIHVdiff we determine
all w for which p(w,δIHV,[tb,79]) ≥ p[tb,79] · α:

{w | w ∈ (Wt)
79
t=tb

, p(w,δIHVdiff,[tb,79]) ≥ p[tb,79] · α}.

7.5.8 Single local collision analysis: alternative δIHVdiff

Our analysis so far only allowed working state differences as prescribed by the dis-
turbances in (DVt)

79
t=0 either with or without carries. However, for the last steps it

is not necessary anymore to restrict ∆Qt. We are interested in δIHVdiff with high
probability, not necessarily one exactly as prescribed by disturbances in (DVt)

79
t=0.

To that end we choose Qt for t ∈ {76, . . . , 80} as the set of all low weight BSDRs
or even by the set of all BSDRs as desired. Then using Algorithm 7-4 we iteratively
generate sets Ytb,i for i = tb, . . . , 79 that are defined as the set of all tuples (Pr, sPr)
of differential paths Pr ∈ R[tb,i] and associated weights sPr . The associated weight
sPr of a reduced differential path Pr ∈ R[tb,i] is defined as

sPr =
∑

w∈(W)it=tb

p(w,Pr,[tb,i]),

where p(w,Pr,[tb,i]) is the probability as defined earlier (using our choice of Qt).
The last set Ytb,79 is used to determine for possible δIHVdiff a weight sδIHVdiff

which is the sum of success probabilities over allowed message difference vectors:

sδIHVdiff =
∑

(P,sP)∈Ytb,79

ϕ(P)=δIHVdiff

sP · Pr[P]

=
∑

(P,sP)∈Ytb,79

ϕ(P)=δIHVdiff

∑
w∈(Wt)79t=tb

Pr[P] · p(w,P,[tb,79])

=
∑

(P,sP)∈Ytb,79

ϕ(P)=δIHVdiff

∑
w∈(Wt)79t=tb

∑
P̂∈D[tb,79]

Reduce(P̂)=P
(δŴt)

79
t=tb

=w

Pr[P̂]

=
∑

w∈(Wt)79t=tb

∑
P̂∈D[tb,79]

ϕ(P̂)=δIHVdiff
(δŴt)

79
t=tb

=w

Pr[P̂]

=
∑

P̂∈D[tb,79]

ϕ(P̂)=δIHVdiff

Pr[P̂].

156 7 SHA-0 AND SHA-1

Algorithm 7-4 δIHVdiff analysis (forward)
Let (DVt)

79
t=0, (DWt)

79
t=0, (Wt)

79
t=0 and (Qt+1)

79
t=0 be as defined in Section 7.5.11 and

let I = [tb, 79] be an interval of steps tb, . . . , 79 such that DVi = 0 for i ∈ {tb −
5, . . . , tb − 1}.

1. We start with Ytb,tb = ∅;
2. For all differential paths P over step tb of the following form:

δRL(Qtb−4, 30) = 0, ∆Qtb−3 = . . . = ∆Qtb = 0, ∆Ftb = 0,

δQtb+1 = δWtb ∈ Wtb ∩ σ(Qtb+1),

we insert the tuple (P, 1) in the set Ytb,tb ;
3. For steps t = tb + 1, . . . , 79 in that order we do the following:
4. Let Ytb,t = ∅;
5. For all tuples (P, s) ∈ Ytb,t−1 we extend P forward:
6. For all BSDRs ∆Qt ∈ Qt of δQt:
7. For all δWt ∈ Wt, δQt+1 ∈ σ(Qt+1) and ∆Ft such that

(∆Ft[b])
31
b=0 ∈ (Vt,b)

31
b=0

† and

δQt+1 = σ(RL(∆Qt, 5)) + σ(RL(∆Qt−4, 30)) + σ(∆Ft) + δWt

do the following:
8. Let Pe be P extended with step t using ∆Qt, ∆Ft, δWt and δQt+1;
9. If Pr[Pe] > 0 then do:

10. Let Pr = Reduce(Pe) and sr = s · Pr[Pe]/Pr[Pr];
11. If there exists a tuple (Pr, s̃) ∈ Ytb,t for some s̃ then

replace (Pr, s̃) in Ytb,t by the tuple (Pr, sr + s̃),
12. otherwise insert (Pr, sr) in Ytb,t.
13. Return Ytb,79.

† See Equation 7.16 (p. 142).

We select a set Î of differences δIHVdiff with high weights sδIHVdiff and define the
sets Qihv,t for t = 1, . . . , 80:

Qihv,t =

{
∆Qt

∣∣∣ ∃(Xi)
80
i=76 ∈ Î : σ(RL(∆Qt, 30)) = Xt

}
, t ∈ {76, 77, 78};{

∆Qt

∣∣∣ ∃(Xi)
80
i=76 ∈ Î : σ(∆Qt) = Xt

}
, t ∈ {79, 80};

Qt, t < 76.

7.5 Differential cryptanalysis 157

We can define related sets Qihv,u,t for u ∈ {0, . . . , 32} and t ∈ {1, . . . , 80} where the
weights are bounded by u plus the NAF weight:

Qihv,u,t = {Y | Y ∈ Qihv,t ∧ w(Y) ≤ w(NAF(σ(Y))) + u}.

By repeating the analysis in Section 7.5.7 using the sets Qihv,u,t for Qt, we can
determine the success probabilities for each δIHVdiff ∈ Î. In this way we also find
the highest success probability among those δIHVdiff as well as the message difference
vectors that enable this highest success probability.

7.5.9 Single local collision analysis: round 1

If DVt = 0 for t ∈ {te − 4, . . . , te} but not for all t ∈ {tb − 5, . . . , tb − 1} (e.g., if
20 = tb > te − 5) then the local collision is truncated and Atb,te does not consist of
a single trivial reduced differential path. Instead we assume that tb is chosen as the
first step whose success probability should be taken into account, i.e., steps before tb
are ignored in the cost of a local collision since they are assumed to be fulfilled by
message modification techniques. Thus we are interested in the most likely working
state differences Λ = ψ(P̂) of P̂:

ψ(P̂) = (di)
tb
i=tb−4, di =

{
RR(NAF(δRL(Q̂i, 30)), 30), i = tb − 4;

∆Q̂i, i = tb − 3, . . . , tb;

Here we use ∆Q̂t instead of δQ̂t as we assume that the final bitconditions disallow
additional carries. Nevertheless, it is only a minor modification to use δQ̂t in the
analysis below. The following analysis is very similar to the previous section.

Using Algorithm 7-3 we compute the set Atb,te and we determine the set J of
possible Λ: J = {ψ(P̂) | (P̂,S) ∈ Atb,te}. We can determine the success probability
p(w,Λ,[tb,te]) given message difference vector w = (δWt)

te
t=tb
∈ (Wt)

te
t=tb

for each Λ ∈ J :

p(w,Λ,[tb,te]) =
∑

P̂∈D[tb,te]

ψ(P̂)=Λ

(δŴt)
te
t=tb

=w

Pr[P̂]

=
∑

(P̂,S)∈Atb,te

ψ(P̂)=Λ

∑
(w,p(w,P̂,[tb,te]))∈S

p(w,P̂,[tb,te]) · Pr[P̂].

Finally, we can determine the highest success probability:
p[tb,te] = max{p(w,Λ,[tb,te]) | Λ ∈ J , w ∈ (Wt)

te
t=tb
}

and all Λ that attain that probability:
{Λ | Λ ∈ J , ∃w : p(w,Λ,[tb,te]) = p[tb,te]}.

For each such Λ we determine all w for which p(w,Λ,[tb,te]) = p[tb,te]:

{w | w ∈ (Wt)
te
t=tb

, p(w,δIHVdiff,[tb,te]) = p[tb,te]}.

158 7 SHA-0 AND SHA-1

7.5.10 Single local collision analysis: alternate round 1

In the first round the differential path construction algorithms from Section 7.4 deviate
from the local collisions as prescribed by the disturbance vector. Therefore, similar
to the analysis of the last few steps, one can also allow all differences in the first
few steps if they lead to higher success probabilities. We are interested in Λ with
high probability. To that end we choose Qt for t ∈ {tb − 4, . . . , tb} as the set of all
low weight BSDRs. Then using Algorithm 7-5 we iteratively generate sets Zi,te for
i = te− 1, . . . , tb that are defined as the set of all tuples (Pr, sPr) of differential paths
Pr ∈ R[tb,te] and associated weights sPr . For each Pr, the associated weight sPr is
defined as

sPr =
∑

w∈(W)tet=i

p(w,Pr,[i,te]),

where p(w,Pr,[i,te]) is the probability as defined earlier (using our choice of Qt).35

The last set Ztb,te is used to determine for possible Λ a weight sΛ which is the
sum of success probabilities over allowed message difference vectors:

sΛ =
∑

(P,sP)∈Ztb,te

ψ(P)=Λ

sP · Pr[P]

=
∑

(P,sP)∈Ztb,te

ψ(P)=Λ

∑
w∈(Wt)

te
t=tb

Pr[P] · p(w,P,[tb,te])

=
∑

(P,sP)∈Ztb,te

ψ(P)=Λ

∑
w∈(Wt)

te
t=tb

∑
P̂∈D[tb,te]

Reduce(P̂)=P
(δŴt)

te
t=tb

=w

Pr[P̂]

=
∑

w∈(Wt)
te
t=tb

∑
P̂∈D[tb,te]

ψ(P̂)=Λ

(δŴt)
te
t=tb

=w

Pr[P̂]

=
∑

P̂∈D[tb,te]

ψ(P̂)=Λ

Pr[P̂].

We select a set Ĵ of differences Λ with high weights sΛ and define the sets Qrnd1,t
for t = 1, . . . , 80:

Qrnd1,t =

{{
∆Qt

∣∣∣ (∆Qi)tbi=tb−4 ∈ Ĵ} , tb − 4 ≤ t ≤ tb;
Qt, otherwise.

35. This definition of sPr matches the definition from Section 7.5.8.

7.5 Differential cryptanalysis 159

Algorithm 7-5 Λ analysis (backward)
Let (DVt)

79
t=0, (DWt)

79
t=0, (Wt)

79
t=0 and (Qt+1)

79
t=0 be as defined in Section 7.5.11 and

let I = [tb, te] be an interval of steps tb, . . . , te such that DVi = 0 for i ∈ {te−4, . . . , te}.

1. We start with Zte,te = ∅;
2. For all differential paths P over step te of the following form:

∆Qte−3 = . . . = ∆Qte = 0, δQte+1 = 0, ∆Fte = 0,

δRL(Qte−4, 30) = −δWte ∈ σ(RL(Qte−4, 30)), δWte ∈ Wte

we insert the tuple (P, 1) in the set Zte,te ;
3. For steps t = te − 1, . . . , tb in that order we do the following:
4. Let Zt,te = ∅;
5. For all tuples (P, s) ∈ Zt+1,te we extend P backwards:
6. For all BSDRs Y ∈ Qt−3 with σ(RL(Y, 30)) = δRL(Qt−3, 30):
7. Let ∆Qt−3 = Y ;
8. For all δWt ∈ Wt, δRL(Qt−4, 30) ∈ σ(RL(Qt−4, 30)) and ∆Ft

such that (∆Ft[b])
31
b=0 ∈ (Vt,b)

31
b=0 and

δRL(Qt−4, 30) = σ(∆Qt+1)− σ(RL(∆Qt, 5))− σ(∆Ft)− δWt

do the following:
9. Let Pe be P extended with step t using δRL(Qt−4, 30), ∆Qt−3, ∆Ft

and δWt;
10. If Pr[Pe] > 0 then do:
11. Not let Pr = Reduce(Pe) and sr = s · Pr[Pe]/Pr[Pr];
12. If there exists a tuple (Pr, s̃) ∈ Zt,te then

replace (Pr, s̃) in Zt,te by the tuple (Pr, sr + s̃),
13. otherwise insert (Pr, sr) in Zt,te .
14. Return Ztb,te .

We can define related sets Qrnd1,u,t for u ∈ {0, . . . , 32} and t ∈ {1, . . . , 80} where the
weights are bounded by u plus the NAF weight:

Qrnd1,u,t = {Y | Y ∈ Qrnd1,t ∧ w(Y) ≤ w(NAF(σ(Y))) + u}.

By repeating the analysis at the beginning of this section using sets Qrnd1,u,t for Qt,
we can determine the success probabilities for each Λ ∈ Ĵ . In this way we also

160 7 SHA-0 AND SHA-1

find the highest success probability among those Λ as well as the message expansion
differences that enable this highest success probability.

7.5.11 Disturbance vector analysis

Analyzing a disturbance vector (DVt)
79
t=0 and associated message expansion XOR

difference vector (DWt)
79
t=0 for SHA-1 (or SHA-0) can now be done using the methods

described in the previous sections. In this section we define several cost functions and
compare them on local collision (in)dependence, (dis)allowed carries and on both full
and truncated disturbance vectors.

First we define the sets Du,[i,j] and Dnc,[i,j] as the set D[i,j] when using the under-
lying sets Qc,u,t and Qnc,t, respectively. We define the following disturbance vector
cost functions for u ∈ {0, . . . , 32}:

FDCu,tb
(
(DVt)

79
t=0

)
= max

w,δIHVdiff,Λ

∑
P̂∈Du,[tb,79]

(δŴt)
79
t=tb

=w

ϕ(P̂)=δIHVdiff
ψ(P̂)=Λ

Pr[P̂] · 2w(∆Q̂tb−3)+w(∆Q̂tb−2);

FDNtb

(
(DVt)

79
t=0

)
= max

w,δIHVdiff,Λ

∑
P̂∈Dnc,[tb,79]

(δŴt)
79
t=tb

=w

ϕ(P̂)=δIHVdiff
ψ(P̂)=Λ

Pr[P̂] · 2w(∆Q̂tb−3)+w(∆Q̂tb−2).

The first disturbance vector cost function FDCu,tb is defined as the maximal success
probability (with a correction) over steps tb, . . . , 79 where carries are allowed (bounded
by u plus NAF weight) taken over all combinations of message difference vector w,
starting working state Λ and IHV differences δIHVdiff. The second disturbance vec-
tor cost function FDNtb is defined identically except carries are not allowed. The
correction 2w(∆Q̂tb−3)+w(∆Q̂tb−2) (which is determined by Λ) is chosen so that FDC
and FDN are more closely related to the near-collision search. In the near-collision
search we use bitconditions qi to search for valid (Qi, Q

′
i) and only then we proceed

to (Qi+1, Q
′
i+1). This correction models that the differential bitconditions in qtb−3

and qtb−2 have been pre-fulfilled in this manner.36

These two disturbance vector cost functions can be efficiently determined using the
methods of the previous sections. To that end, we split the range of steps tb, . . . , 79
into independent intervals. As the disturbance of a local collision at step t is corrected
within the next five steps, if no other local collision is started within those five steps
then we can split the interval [tb, te] into two independent intervals: [tb, t + 5] and
[t + 6, te]. Using this rule we split the range of steps [tb, 79] into intervals I1 =

36. More ideally, we would have liked to have a correction that also includes the boolean function
bitconditions with respect to ∆Ftb in qtb−3 and qtb−2. However, such a correction would no longer
be completely determined by Λ.

7.5 Differential cryptanalysis 161

[tb,1, te,1] = [tb, te,1], I2 = [tb,2, te,2], . . . , IK = [tb,K , 79] until no interval can be split
further. The disturbance vectors in consideration (see Table 7-2) always result in at
least two intervals as is required by our analysis. Intervals I2, . . . , IK−1 are analyzed
as in Section 7.5.5. The first and last interval can be analyzed as in Sections 7.5.9
and 7.5.7, respectively.

These cost functions can also be applied when the disturbance vector consists of a
single local collision. For an arbitrary disturbance vector we can treat local collisions
as independent (even though they are not) by applying the cost function to each
individual local collision in said disturbance vector and taking the product over the
resulting probabilities. This allows us to compare our cost function which takes into
account the dependence of local collisions with similar cost functions that are based
on the assumption that local collisions are independent. More specifically, we define
the function Ω that compresses consecutive ‘1’-bits37 in DVi and the function Ψ that
splits a disturbance vector into separate disturbance vectors each containing a single
disturbance:

Ω
(
(DVi)

79
i=0

)
=

(
DVi ∧

(
¬RL(DVi, 1) ∨

(
1 + 22 + 227

)))79
i=0

,

Ψ
(
(DVi)

79
i=0

)
=

{
(Yi)

79
i=0 where
Yt[b]=1,

Yi[j]=0, i ̸=t∨j ̸=b

∣∣∣∣ t∈{0,...,79}
b∈{0,...,31}

such that DVt[b]=1

}
.

Now we can define the following variants on FDC and FDN that assume independence
of local collisions:

FICu,tb
(
(DVt)

79
t=0

)
=

∏
(Yi)79i=0∈Ψ(Ω((DVt)79t=0))

FDCu,tb((Yi)79i=0);

FINtb

(
(DVt)

79
t=0

)
=

∏
(Yi)79i=0∈Ψ(Ω((DVt)79t=0))

FICtb((Yi)79i=0).

Most cost functions in the literature only consider local collisions starting at step
tb or thereafter, all other local collisions are ignored even if some of their corrections
take place at step tb or later. This can be applied by ‘truncating’ the disturbance
vector:

Γtb
(
(DVi)

79
i=0

)
= (Yi)

79
i=0, Yi =

{
DVi, i ≥ tb;
0, i < tb.

Using Γtb we can define variants of FDC, FIC, FDN and FIN:

TDCu,tb
(
(DVt)

79
t=0

)
= FDCu,tb

(
Γtb

(
(DVt)

79
t=0

))
;

TICu,tb
(
(DVt)

79
t=0

)
= FICu,tb

(
Γtb

(
(DVt)

79
t=0

))
;

TDNtb

(
(DVt)

79
t=0

)
= FDNtb

(
Γtb

(
(DVt)

79
t=0

))
;

TINtb

(
(DVt)

79
t=0

)
= FINtb

(
Γtb

(
(DVt)

79
t=0

))
.

37. Bits 0, 2 and 27 are always kept, since bit positions pairs (31,0), (1,2) and (26,27) are not
considered consecutive. See also Section 7.3.2

162 7 SHA-0 AND SHA-1

Applying Γtb to a disturbance vector implies that there are no differences in Λ. This
in turn implies that the correction 2w(∆Q̂tb−3)+w(∆Q̂tb−2) is always one.

Our cost functions consist of three letters that indicate the following properties:

F Full D.V.: uses all local collisions that influence steps t ≥ tb;

T Truncated D.V.: uses only local collisions starting at steps t ≥ tb;

D Use dependence of local collisions;

I Assume independence of local collisions;

C Allow additional carries (total weight bounded by u plus NAF weight);

N Disallow carries.

The last cost function we define here is HWtb

(
(DVt)

79
t=0

)
=

∑79
i=tb

w(DVi) which is
the most crude cost function as it counts the number of ‘1’-bits in DVtb , . . . , DV79.

Below we provide selected results in Table 7-3 to compare cost functions for SHA-1.
For the cases in Table 7-3, the results of the cost function FDC7,20 are a factor
between 20.3 and 212.5 higher than FIC32,20. This clearly shows that using the joint
probability instead of using the product of individual probabilities leads to higher
maximum success probabilities.

To compare FDC with varying starting step tb for SHA-1, selected results are
shown in Table 7-4. A more complete analysis of disturbance vectors for SHA-1 using
FDC can be found in Appendix F.

Section 7.6 uses this analysis to obtain target values for δIHVdiff and message
bitrelations for disturbance vector II(52,0). The maximum success probabilities for
intervals [33, 52], [53, 60] and [67, 79] as determined using this analysis have been
confirmed by experiments as described in Section 7.6.9.

Table 7-3: SHA-1 disturbance vector analysis - cost function comparison

DV FDC FIC FDN FIN TDC TIC TDN TIN HW
I(48, 0) 71.4 80.5 77 83 65.4 74.5 71 77 27
I(49, 0) 72.2 79.6 77 83 67.2 74.6 72 78 27
I(50, 0) 71.9 81.4 75 83 65.9 73.4 69 75 26
I(51, 0) 73.3 85.8 77 88 67.3 74.8 71 77 25
I(48, 2) 73.8 75.7 79 79 69.8 71.7 75 75 27
I(49, 2)† 73.8 74.1 78 78 70.8 71.1 75 75 27
II(50, 0) 73.0 77.4 78 80 68.0 70.4 73 73 27
II(51, 0) 71.9 77.7 77 81 67.6 69.7 73 73 26
II(52, 0)‡ 71.8 79.4 75 81 65.4 67.4 69 69 25

The eight columns FDC to TIN show the negative log2 results from the cost functions FDC7,20,
FDN20, FIC32,20, FIN20, TDC7,20, FDN20, TIC32,20, TIN20, respectively. The last column shows
the result from the cost function HW20. The disturbance vectors marked by † and ‡ are used in
Wang et al.’s collision attack [WYY05b] and our near-collision attack in Section 7.6, respectively.

7.5 Differential cryptanalysis 163

Table 7-4: SHA-1 disturbance vector analysis - FDC with varying starting step

tb
DV 18 19 20 21 22 23 24 25 26

I(48, 0) 78.3 75.3 71.4 70.4 67.4 66.4 65.0 63.0 61.0
I(49, 0) 80.2 75.2 72.2 69.3 68.3 65.3 64.3 62.9 60.9
I(50, 0) 79.9 75.9 71.9 70.9 68.1 67.1 64.1 63.1 61.7
II(51, 0) 78.7 74.9 71.9 68.9 67.9 66.5 64.5 58.5 56.5
II(52, 0) 78.6 75.6 71.8 69.8 66.8 65.8 64.3 62.3 56.3

The columns are the negative log2 results from the cost function FDC8,tb .

164 7 SHA-0 AND SHA-1

7.6 SHA-1 near-collision attack
7.6.1 Overview

In this section we present the construction of a near-collision attack against SHA-1 us-
ing our methods from Sections 7.4 and 7.5. The construction consists of the following
steps that each are discussed in the following sections:

1. We discuss the selection of the disturbance vector and our choice for II(52,0) in
Section 7.6.2.

2. In Section 7.6.3 we perform a precise analysis of disturbance vector II(52,0) to
obtain sets of optimal values for δIHVdiff and Λ.

3. In Section 7.6.4 we construct valid first round differential paths where we use
the found set of optimal values for Λ to derive the first round upper partial
differential paths.

4. The bitconditions given by these first round differential paths are extended into
round two in Section 7.6.5 for the purposes of the early-stopping and message
modification techniques.

5. Section 7.6.6 details the derivation of the smallest set of message bitrelations
over all four rounds that lead (almost) to the highest success probability under
the restrictions given by the bitconditions over round one and two.

6. In Section 7.6.7 we present our basic collision searching algorithm that efficiently
searches for message blocks that fulfill all bitconditions up toQ17 and all message
bitrelations.

7. Lastly, we significantly speed up our basic collision searching algorithm using
tunnels in Section 7.6.8.

Our implementation of this near-collision attack is published as part of project Hash-
Clash [HC]. The attack has a complexity equivalent to about 257.5 calls to the SHA-1
compression function. This improves upon the near-collision attack by Wang et al.
with a complexity of about 268 SHA-1 compressions. So far no near-collision blocks
have been found using our near-collision attack that provide explicit proof of the cor-
rectness and complexity of our attack. For that reason we discuss verification of the
correctness and the complexity of our near-collision attack in Section 7.6.9.

Our near-collision attack can directly be used in a two-block identical-prefix colli-
sion attack against SHA-1. It should be noted that such a two-block identical-prefix
collision attack actually consists of three blocks where the first block is part of the
identical-prefix part and is used to gain 160-bits of freedom and to satisfy the bit-
conditions q−4, . . . , q0 of our near-collision attack. The remaining two blocks are two
sequential near-collision blocks where the second block cancels the δIHVout resulting
from the first block.

7.6 SHA-1 near-collision attack 165

A lower-bound for the complexity of a complete two-block identical-prefix collision
attack based on our current near-collision implementation is approximately (1 + 6) ·
257.5 ≈ 260.3 SHA-1 compressions. This follows from the fact that the first near-
collision attack has the luxury of six allowed values for δIHVdiff for each possible
vector of message differences (δWt)

79
t=0, whereas the second near-collision attack must

target one specific δIHVdiff.
The second near-collision attack has a lesser amount of freedom to exploit com-

pared to the first near-collision attack, i.e., it cannot use a prior block to gain 160-bits
of freedom and it requires more message bitrelations. This may further restrict the
number of tunnels that can be used. Hence, the complexity of the identical-prefix
collision attack as directly based on our near-collision attack will in all likelihood be
larger than 260.3 SHA-1 compressions. Nevertheless, we expect it will be only a small
factor larger than this lower bound. Taking into account the extra message bitrela-
tions and up to four fewer tunnels, one arrives at the conservative upper bound of
265.3 SHA-1 compressions.

There is a wide gap between the lower bound 260.3 and the conservative upper
bound 265.3 wherein the actual complexity of the second near-collision attack will lie.
The complexity of a complete two-block identical-prefix collision attack may be more
accurately estimated when the first near-collision block(s) has been found and thus
the second near-collision attack can be constructed.

7.6.2 Disturbance vector selection

The selection of which disturbance vector to use is the most important choice in
constructing a near-collision attack. This choice directly determines the message
bit differences up to sign DWt, the set of optimal δIHVdiff to target and the set of
optimal Λ. It also determines most of the message bitrelations (some of which are
only determined up to parity) and thereby also limits which tunnels may be used as
is discussed in Section 7.6.8.

In Appendix F we present the results of our analysis of many disturbance vectors,
see also Section 7.5. Table F-1 shows the results of the seven disturbance vectors
that (almost) result in a success probability of 2−73 or higher over the last 60 steps:
I(48,0), I(49,0), I(50,0), II(46,0), II(50,0), II(51,0) and II(52,0).

We have chosen for disturbance vector II(52,0) as it is the second best under our
cost function FDCu,20 and it showed the most promising results in a preliminary
analysis from Section 7.5.8. We do not claim that disturbance vector II(52,0) is the
best, since our choice is only based on the analysis of the last 60 steps and not on
the other factors that the choice of disturbance vector influences such as number
of message bitrelations and which tunnels can be used. In fact we encourage further
analysis of the remaining disturbance vectors and construction of near-collision attacks
under these disturbance vectors.

166 7 SHA-0 AND SHA-1

7.6.3 Finding optimal δIHVdiff and Λ

Disturbance vector II(52,0) can be analyzed over the last 60 steps using the following
independent intervals of steps: I1 = [20, 32], I2 = [33, 52], I3 = [53, 60] and I4 =
[67, 79]. The steps t = 61, . . . , 66 are trivial differential steps with no differences in
the working state or message words with success probability 1.

First we analyze the last interval using the methods presented in Section 7.5.
We optimize for the first near-collision attack in a two-block collision attack. Below
we provide a speedup only for the first near-collision attack, thus the second near-
collision attack complexity is the most important term in the two-block collision attack
complexity. For that reason we desire that the contribution of steps 67, . . . , 79 to the
second near-collision attack complexity is as low as possible. This can be achieved
by considering only δIHVdiff for which there exist some message difference vector w
such that the success probability p(w,δIHVdiff,[67,79]) is (almost) the highest success
probability called p[67,79].38

For each possible message difference vector w ∈ (W)79t=67 we count the number
Nw of δIHVdiff for which the success probability p(w,δIHVdiff,[67,79]) is (almost) p[67,79].
To speed up the first near-collision attack by a factor of Nmax = maxw∈(W)79t=67

Nw,
we use only those message difference vectors w ∈ (W)79t=67 for which Nw = Nmax.
The speed up by the factor of Nmax follows from the fact that the first near-collision
attack always has Nmax chances of finding a target δIHVdiff.

More precisely, we do the following:

1. We apply the analysis in Section 7.5.8 over I4 = [67, 79] to determine a set Î of
differences δIHVdiff with high weights. The set Î defines the sets Qihv,u,t.

2. Using the sets Qihv,u,t for the analysis in Section 7.5.7 we determine success
probabilities p(w,δIHVdiff,[67,79]) for message difference vectors w ∈ (Wt)

79
t=67 and

IHV differences δIHVdiff ∈ Î.

3. Let p[67,79] = max{p(w,δIHVdiff,[67,79]) | w ∈ (Wt)
79
t=67, δIHVdiff ∈ Î} be the

maximum success probability of all p(w,δIHVdiff,[67,79]).

4. For each w ∈ (Wt)
79
t=67, let Nw be the number of target δIHVdiff with high

success probability (where α = 0.90):

Nw =
∣∣∣{δIHVdiff ∈ Î

∣∣∣ p(w,δIHVdiff,[67,79]) ≥ p[67,79] · α
}∣∣∣ .

5. Let Nmax = maxw∈(Wt)79t=67
Nw and

W[67,79] =
{
w ∈ (Wt)

79
t=67

∣∣ Nw = Nmax
}

be the set of all w for which Nw = Nmax.

38. See Section 7.5.7, p. 154.

7.6 SHA-1 near-collision attack 167

6. Now we determine the set of target δIHVdiff values:

Ĩ =
{
δIHVdiff ∈ Î

∣∣∣ ∃w ∈W[67,79] : p(w,δIHVdiff,[67,79] ≥ p[67,79] · α
}
.

The value α influences the obtained average success probability over steps 67, . . . , 79
and the obtained Nmax. A smaller value for α can increase Nmax (thus providing
a speedup for the first near-collision attack) at the cost of a lower average success
probability (thus increasing the complexity of both the first and second near-collision
attacks).

For our near-collision attack we have found the highest success probability over
I4 = [67, 79] to be p[67,79] ≈ 2−19.2. This proves the value of Section 7.5.8 as 2−20.4

approximates the highest success probability over I4 = [67, 79] allowing only working
state differences as prescribed by the disturbances in the disturbance vector. Thus
Section 7.5.8 provided a speed up of a factor of about 21.2. We have found a set of
message difference vectors such that Nmax = 6 and Ĩ presented in Table 7-5 consists
of 192 values for δIHVdiff. This implies that the success probability over I4 of our
first near-collision attack is 6 · p[67,79] ≈ 2−16.6.

We analyze the first interval to determine the set of optimal values for Λ with
(almost) the highest success probability. After constructing differential paths us-
ing this set, we are limited to one specific Λ-value and only then we can determine

I0 =
{
(211 + 24 − 22, 26, 231, 21, 231),

(212 + 23 + 21, 27, 0, 21, 231),

(212 + 24 − 21, 27, 0, 21, 231),

(211 + 29 + 24 − 22, 26 + 24, 231, 21, 231),

(212 + 29 + 23 + 21, 27 + 24, 0, 21, 231),

(212 + 29 + 24 − 21, 27 + 24, 0, 21, 231)
}
;

I1 = I0 ∪
{
(212 + 211 + 24 − 22, 27 + 26, 231, 21, 231),

(212 + 211 + 29 + 24 − 22, 27 + 26 + 24, 231, 21, 231)
}
;

I2 =
{
(v1 − c · 25, v2, v3, v4, v5)

∣∣ (vi)
5
i=1 ∈ I1, c ∈ {0, 1}

}
;

I3 =
{
(v1 + c · 23, v2, v3, v4, v5)

∣∣ (vi)
5
i=1 ∈ I2, c ∈ {0, 1}

}
;

I4 =
{
(v1 − c · 213, v2 − c · 28, v3, v4, v5)

∣∣ (vi)
5
i=1 ∈ I3, c ∈ {0, 1}

}
;

I5 =
{
(v1 − c · 29, v2 − c · 24, v3, v4, v5)

∣∣ (vi)
5
i=1 ∈ I4, c ∈ {0, 1}

}
;

Ĩ =
{
(v1, v2, v3, v4 − c · 22, v5)

∣∣ (vi)
5
i=1 ∈ I5, c ∈ {0, 1}

}
;

The resulting set Ĩ is the set of 192 target δIHVdiff values. Note that some of the target δIHVdiff
values can be constructed in several manners in the above sets, otherwise the cardinality of Ĩ would
be (6 + 2) · 25 = 256. Furthermore, for any δIHVdiff ∈ Ĩ also −δIHVdiff ∈ Ĩ.

Table 7-5: SHA-1 near-collision attack target δIHVdiff values

168 7 SHA-0 AND SHA-1

the corresponding optimal set of message difference vectors. Although it would be
possible to use the analysis in Section 7.5.10 to possibly obtain even higher success
probabilities, it diverts from the differences prescribed by local collisions which may
lead to a higher number of bitconditions in the first round and thus a lower amount
of freedom. Cf. our differential path in Table 7-6 (p. 169) uses local collisions over
steps 10, . . . , 19 and has very few bitconditions over these steps, even though it has
been constructed algorithmically as in Section 7.4.3. We leave it to future research
to determine whether the analysis in Section 7.5.10 can provide an improvement. For
now, we directly use the analysis in Section 7.5.9 and do the following:

1. We apply the analysis in Section 7.5.9 over I1 = [20, 32] to determine the set J of
possible Λ together with the success probabilities p(w,Λ,[20,32]) for w ∈ (Wt)

32
t=20

and Λ ∈ J .

2. Let p[20,32] = max{p(w,Λ,[20,32]) | w ∈ (Wt)
32
t=20,Λ ∈ J } be the maximum success

probability of all p(w,Λ,[20,32]).

3. Let J̃ = {Λ | ∃w ∈ (Wt)
32
t=20 : p(w,Λ,[20,32]) = p[20,32]} be the set of optimal

values for Λ.

7.6.4 Constructing differential paths

We use our method from Section 7.4 to construct valid differential paths over the first
round. The five connecting steps as in Section 7.4.4 are 3, 4, 5, 6 and 7. The forward
differential path construction in Section 7.4.2 does not have a sufficient amount of
freedom when lower connecting steps are chosen. For higher connecting steps, the
many bitconditions around the connecting steps easily conflict with message mod-
ification techniques and the fulfillment of the message bitrelations over the last 64
steps.

In order to construct a valid first round differential path for our near-collision
attack, we need sets of forward and backward partial differential paths. The forward
partial differential paths are forward extensions up to step t = 2 of the trivial dif-
ferential path defined by δIHVin = 0. The backward partial differential paths are
created using the set of optimal values for Λ and are then extended backwards. For
each value Λ = (∆Qi)

20
i=16 we directly obtain a partial differential path consisting of

bitconditions q16, . . . , q20 derived from ∆Q16, . . . ,∆Q20 as in Table 6-1. These partial
differential paths are extended backwards down to step t = 8.

Finally, we used Algorithm 7-1 and these sets of forward and backward partial
differential paths to search for valid first round differential paths. The full differential
path that we selected for our near-collision attack is shown in Table 7-6.

7.6.5 Second round bitconditions

Now that we have a full differential path we are bound to a specific value for Λ.
Moreover, the bitconditions of this differential path may also affect steps in round
two. For the purpose of early stopping techniques and tunnels, we also desire sufficient

7.6 SHA-1 near-collision attack 169

Table 7-6: SHA-1 near-collision differential path - round 1

t Bitconditions: qt[31] . . . qt[0] ∆Wt

−4,−3,−2
−1 ...1....0...
0 .^.0.1..0.1 ...00.10 .1..1..1 {1, 26, 27}
1 .0.+^-^^ ^^^^^1^0 ^^^11^10 .0..1.+0 {4, 30, 31}
2 1-...+-- -------- -------- --.-1.+0 {2, 3, 4, 26, 28, 29, 31}
3 .-.-.0.1 11111111 11110++1 +-1-00-0 {2, 26, 27, 28, 29}
4 .-...1.0 11111111 1111-+++ ++0.1.+1 {1, 3, 4, 26, 27, 28, 29, 31}
5 .-...0..0. .+.+10+0 {4, 29}
6 .-.+....01 100-.0+. {2, 3, 4, 26, 29}
7 -1...1..0.0.. {2, 4, 26, 27, 29, 30, 31}
8 1.1-.1..1.. {1, 26, 27}
9 ..-..0.. {4, 30, 31}
10 ^...00..1 {2, 3, 4, 26, 28, 29, 31}
11 ..-.1...0 {2, 26, 27, 29}
12 0-..1...!. {3, 4, 26, 27, 28, 29, 31}
13 +..01... {4, 28, 29, 31}
14 ..-1....!. {2, 3}
15 +.0.1...!^ {4, 27, 28, 29, 31}
16 +-0.0...!. {3, 4, 27}
17 +..1....^. {4, 27, 28, 29, 30}
18 -.+0.... {2, 4, 27}
19 -....... {4, 28, 29, 30}
20 ..+.....

Note that we use the compact notation for the BSDRs ∆Wt (see Section 2.1.3) and the bitconditions
from Table B-1.

bitconditions up to the last working state variable Qi that may be corrected by
tunnels. In our case we desire sufficient bitconditions up to Q25.

For this purpose we define extra bitconditions in Table 7-7 for the second round
boolean function of SHA-1.

Table 7-7: Round two bitconditions for SHA-1.

qt[i] condition on (Qt[i],Q′
t[i]) direct/indirect direction

r Qt[i] = Q′
t[i] = RL(Qt−1, 30)[i] indirect backward

u Qt[i] = Q′
t[i] = RR(Qt+1, 30)[i] indirect forward

R Qt[i] = Q′
t[i] = RL(Qt−1, 30)[i] indirect backward

U Qt[i] = Q′
t[i] = RR(Qt+1, 30)[i] indirect forward

s Qt[i] = Q′
t[i] = RL(Qt−2, 30)[i] indirect backward

c Qt[i] = Q′
t[i] = RR(Qt+2, 30)[i] indirect forward

S Qt[i] = Q′
t[i] = RL(Qt−2, 30)[i] indirect backward

C Qt[i] = Q′
t[i] = RR(Qt+2, 30)[i] indirect forward

To obtain the desired sufficient bitconditions for our near-collision attack we first

170 7 SHA-0 AND SHA-1

implemented our near-collision attack without second round bitconditions and tunnels
that can correct Q19 and up. We used this preliminary attack to find and store many
message block pairs that follow our first round differential path and the disturbance
vector up to step 32, that is, all message block pairs that result in δQ29 = δQ30 =
δQ31 = δQ32 = δQ33 = 0. For each message block pair we can derive the differential
path it follows up to step 32 and thereby bitconditions up to Q33. We are interested
in the set of bitconditions up to Q25 that occurred most frequently over all found
message block pairs found. Our resulting set of bitconditions q19, . . . , q25 is shown in
Table 7-8.

Table 7-8: SHA-1 near-collision differential path - round two bitconditions

t Bitconditions: qt[31] . . . qt[0] ∆Wt

19 -...s...
20 ..+.r... {2, 3, 4, 27, 28, 29, 31}
21 ^.r.s... {27, 29, 30, 31}
22 ..+.r... {2, 28, 29, 31}
23 -...s...! {4, 27, 28, 30}
24 .-+.R... {2, 3, 28, 29, 31}
25 ..rSS...

Note that we use the compact notation for the BSDRs ∆Wt (see Section 2.1.3) and the bitconditions
from Table B-1.

7.6.6 Finding optimal message bitrelations

Finding the optimal message bitrelations is split over five intervals: I0 = [0, 19], I1,
I2, I3 and I4. For the first round we define W[0,19] = {(σ(∆Ŵi))

19
i=0} where as before

∆Ŵi is the message difference in step i from the differential paths in Table 7-6 and
Table 7-8. For the last interval we already have found the optimal set W[67,79].

For the interval I2 = [33, 52] we simply apply the analysis of Section 7.5.5 resulting
in the sets A33,52 = {(P,S)} where P is trivial and S consists of pairs (w, pw,[33,52]).
Let p[33,52] = max(w,p)∈S p be the maximum over all such pw,[33,52]. Now we have
found the optimal set of message difference vectors over the interval I2:

W[33,52] = {w | (w, p) ∈ S, p = p[33,52]}.

The interval I3 = {53, . . . , 60} is treated analogously to I2 resulting in the set W[53,60].
To determine the optimal set of message difference vectors over the interval I1 =

[20, 32] we apply the analysis of Section 7.5.9 with the following restrictions due to
the bitconditions and message differences found in Tables 7-6 and 7-8:

• Let Qbc,i = {∆Q̂i} for i ∈ {−4, . . . , 25} where ∆Q̂i follows from the differential
bitconditions in qi. UseQbc,i for the setsQi for i ∈ {−4, . . . , 25} in Section 7.5.9.
For i ∈ {26, 33}, use the sets Qc,u,i for Qi for some value of u. In our case u = 7
suffices.

7.6 SHA-1 near-collision attack 171

• Let ∆F̂i be the boolean function differences that are implied by the bitconditions
q−4, . . . , q25 for i ∈ {0, . . . , 26}. We add the restriction ∆Ft = ∆F̂t in step 8 of
Algorithm 7-3 for t ∈ {20, . . . , 26}.

• For i ∈ {0, . . . , 24}, we restrict Wi to the single value {σ(∆Ŵi)} where ∆Ŵi is
the message difference from the differential paths in Table 7-6 and Table 7-8.

Let Â20,32 be the resulting set of Algorithm 7-3 under these three added restrictions.
For each w ∈ (Wt)

32
t=20 we define its success probability under the restriction of our

bitconditions as follows:

pbc,w,[20,32] =
∑

(P,S)∈Â20,32

∑
(w′,p)∈S
w=w′

p.

This naturally leads to the maximum probability p[20,32] = maxw pbc,w,[20,32] and the
optimal set of message difference vectors W[20,32] over interval I1:

W[20,32] =
{
w ∈ (Wt)

32
t=20

∣∣ pbc,w,[20,32] = p[20,32]
}
.

Now we translate each of the sets W[0,19], W[20,32], W[33,52], W[53,60] and W[67,79] to
message bitrelations on the message words (Wt)

79
t=0 associated with M of the message

block pair (M,M ′). These message bitrelations are of the form

79∑
t=0

31∑
b=0

ai,t,b ·Wt[b] = ci mod 2

where ai,t,b, ci ∈ {0, 1}. Together they can also be written as a matrix equation
A · x = c over F2 where x ∈ F32·80

2 represents the bits Wt[b] for t ∈ {0, . . . , 79} and
b ∈ {0, . . . , 31}.

For (tb, te) ∈ {(0, 19), (20, 32), (33, 52), (53, 60), (67, 79)}, we do the following. For
each ŵ = (δŴi)

te
i=tb
∈ W[tb,te] we define the set Vŵ as the set of all (Wi)

79
i=0 ∈ Z80

232

that are compatible with ŵ:

(Wi ⊕DWi)−Wi = δŴi, for i ∈ {tb, . . . , te}.39

Let the set V =
∪
w∈W[tb,te]

Vw consist of all (Wt)
79
t=0 ∈ Z80

232 that are compatible with
some w ∈W[tb,te].

Choose natural mappings from Z16
232 to F32·80

2 and from Z80
232 to F32·80

2 . Let V ′
be the set consisting of all elements of V mapped to F32·80

2 . We search for an affine

39. Note that for t ∈ {0, . . . , 79} and b ∈ {0, . . . , 31} if t /∈ {tb, . . . , te} or DWt[b] = 0 or b = 31 then
the bit Wt[b] is a free bit in Vŵ, i.e., for (Wi)

79
i=0 ∈ V also (W̃i)

79
i=0 ∈ V where W̃t = Wt ⊕ 2b and

W̃i = Wi for i ̸= t. This implies that in practice we only need to consider those bits Wt[b] for which
t ∈ {tb, . . . , te} and b ̸= 31 and DWt[b] = 1.

172 7 SHA-0 AND SHA-1

subspace y + U ⊆ V ′ which is as large as possible. For our near-collision attack this
affine subspace y + U is simply found by random trials where a random y ∈ V ′ is
selected and beginning with U = ∅. For randomly selected v and w from V ′ for which
v−w /∈ U , we add v−w to the span of U if and only if y+ span(U , v−w) ⊆ V ′. This
is repeated until we can no longer add elements to U in this manner. If |U| ≥ |V ′|/2
for the resulting y and U then this affine subspace is optimal. Otherwise, we repeat
this construction several times in the hope of finding a larger affine subspace.

Having found an affine subspace y + U ⊆ V ′, we determine the orthogonal com-
plement U⊥ of the subspace U . Choose any basis of U⊥ of size k and let the k rows
of the matrix A[tb,te] ∈ Fk×(32·80)2 consist of the k basis vectors of U⊥. It follows that
x ∈ U ⇔ A[tb,te] · x = 0 and thus

x ∈ y + U ⇔ A[tb,te] · x = A[tb,te] · y.

Hence, the matrix equation A[tb,te] ·x = c[tb,te] where c[tb,te] = A[tb,te] · y describes the
desired sufficient message bitrelations over the interval [tb, te].

We present the message bitrelations of our near-collision attack for the last three
rounds in Table 7-9. The message bitrelations for the first round can directly be
read from Table 7-6: if b ̸= 31 then ∆Wt[b] = −1 and ∆Wt[b] = +1 imply the
message bitrelations Wt[b] = 1 and Wt[b] = 0, respectively. As ∆Wt[31] = −1 and
∆Wt[31] = +1 both result in δmt = 231, no message bitrelations on bit position 31
are necessary.

The matrix equations found as above for W[0,19], W[20,32], W[33,52], W[53,60] and
W[67,79] can be combined into a single matrix equation A[0,79] ·x = c[0,79] that defines
our message search space. It remains to reduce this matrix equation over the 32 · 80
message words bits to a matrix equation over the 512 message block bits using the
message expansion relation. Let the message expansion be described by the matrix
ME such that ME ·m = w where w ∈ F80·32

2 is the expanded message generated by
m ∈ F16·32

2 under the chosen natural mappings from Z16
232 to F32·16

2 and from Z80
232 to

F32·80
2 . Then the message bitrelations over the 512 message block bits is described by

the matrix equation:

(A[0,79] ·ME) · x = c[0,79], x ∈ F32·16
2 .

We use Gaussian elimination to obtain message bitrelations such that bitrelations on
mt[b] are expressed in terms of the bits of m0, . . . ,mt−1 and mt[i] for i < b.

It may happen that these message bitrelations conflict and that there are no
solutions to the above matrix equation. Since the first round has almost as many
message bitrelations as the other three rounds together, one can try to use a different
first round differential path with other message differences in Section 7.6.4.

7.6 SHA-1 near-collision attack 173

Table 7-9: SHA-1 near-collision rounds 2-4 message expansion conditions

W20[2] = 0 W20[3] = 0 W20[4] = 1
W20[27] = 1 W20[28] = 0 W20[29] = 1
W21[27] = 1 W21[29] = 0 W21[30] = 0
W22[2] = 1 W22[28] = 0 W22[29] = 0
W23[4] = 0 W23[27] = 0 W23[28] = 0 W23[30] = 1
W24[2] = 1 W24[3] = 0 W24[28] = 0 W24[29] = 1
W25[27] = 0 W25[30] = 1
W26[28] = 1 W26[29] = 0

W27[4] +W29[29] = 1 W27[27] +W27[28] = 1 W27[29] = 0
W28[4] +W32[29] = 0 W28[27] = 1 W28[28] = 0

W36[4] +W44[29] = 0 W38[4] +W44[29] = 1 W39[30] +W44[29] = 0
W40[3] +W44[29] = 1 W40[4] +W44[29] = 0 W41[29] +W41[30] = 0
W42[28] +W44[29] = 1 W43[4] +W47[29] = 0 W43[28] +W44[29] = 1
W43[29] +W44[29] = 0 W44[28] +W44[29] = 1 W45[29] +W47[29] = 0
W46[29] +W47[29] = 0 W48[4] +W52[29] = 0 W50[29] +W52[29] = 0
W51[29] +W52[29] = 0

W54[4] +W60[29] = 1 W56[4] +W60[29] = 0 W56[29] +W60[29] = 1
W57[29] +W60[29] = 1 W59[29] +W60[29] = 0

W67[0] +W72[30] = 1 W68[5] +W72[30] = 0 W70[1] +W71[6] = 1
W71[0] +W76[30] = 1 W72[5] +W76[30] = 0 W73[2] +W78[0] = 1
W74[1] +W75[6] = 1 W74[7] +W78[0] = 0 W75[1] +W76[6] = 1
W76[0] +W76[1] = 1 W76[3] +W77[8] = 1 W77[1] +W77[2] = 1

7.6.7 Basic collision search

The first step is to find an identical-prefix block such that IHV bitconditions q−4, . . .,
q0 for our near-collision attack are satisfied. This is done by simply trying random
blocks until one is found that satisfies these bitconditions. Since there are 14 such
bitconditions, this step has average complexity 214 SHA-1 compressions.

Our near-collision algorithm can roughly be divided into three parts. The first
part searches for message blocks that fulfill all bitconditions up to q16 and all message
bitrelations. The second part exploits message modification techniques, in our case
tunnels, to find message blocks that fulfill all bitconditions up to q25. The third part
simply applies the message block difference, computes IHVout and IHV ′out and checks
whether the resulting δIHVout is one of the target δIHVdiff values. The first part is
discussed below, the second part is discussed in Section 7.6.8 and the third part needs
no further explanation.

The first part consists of 16 steps t = 0, . . . , 15. The working state Q−4 =
Q′−4, . . . , Q0 = Q′0 is initialized using the IHVin resulting from the identical-prefix
block. Each step t = 0, . . . , 15 does the following given values Q−4, . . . , Qt and
m0, . . . ,mt−1:

174 7 SHA-0 AND SHA-1

1. Let R be the set of message bitrelations that use multiple bits of mt and let
B ⊆ {0, . . . , 31} be the set of bit positions b such that mt[b] is used in some
message bitrelation in R. If R = ∅ then continue at step 2. Otherwise, for each
of the possible values (m̂t[b])b∈B that satisfy all message bitrelations in R we
perform steps 2 through 6.

2. The message bitrelations imply target bit values for mt. Let mmask′,t and mval′,t
be words such that:

(mt ⊕mval′,t) ∧mmask′,t = 0 ⇔ mt satisfies all bitrelations not in R.

We define mmask,t and mval,t using mmask′,t, mval′,t, B and (m̂t[b])b∈B :

mmask,t[b] =

{
mmask′,t[b] if b /∈ B;

1 if b ∈ B;

mval,t[b] =

{
mval′,t[b] if b /∈ B;

m̂t[b] if b ∈ B.

It follows that (mt⊕mval,t)∧mmask,t = 0 implies that mt satisfies all bitrelations.

3. The bitconditions qt+1 using the given values Qt and Qt−1 imply target bit
values for Qt+1. Let Qmask,t+1 and Qval,t+1 be words such that

(Qt+1 ⊕Qval,t+1) ∧Qmask,t+1 = 0 ⇔ Qt+1 satisfies qt+1.

4. Let C = mmask,t ⊕ Qmask,t+1 be the mask whose ‘1’-bits describe bit positions
b where either Qt+1[b] can be used to correct mt[b] or vice-versa.

5. If w(Qmask,t+1 ∧C) > w(mmask,t ∧C) then the number of uncorrectable bits in
Qt+1 that have to be satisfied by trial is larger than the number of such bits in
mt. We therefore iterate over correct values for Qt+1 and test for correct values
of mt:

(a) Let Qfixed,t+1 = (Qval,t+1 ∧Qmask,t+1)⊕ (mval,t ∧C ∧Qmask,t+1) consist of
the target bit values in Qval,t+1 and the complemented bit values in mval,t
that can be corrected.

(b) For all Qt+1 such that (Qt+1 ⊕ Qfixed,t+1) ∧ (C ∨ Qmask,t+1) = 0 do the
following:

i. Compute

Ft = ft(Qt−1, RL(Qt−2, 30), RL(Qt−3, 30)),

mt = Qt+1 −RL(Qt, 5)−RL(Qt−4, 30)− Ft −ACt.
ii. If (mt⊕mval,t)∧mmask,t∧C ̸= 0 then mt does not satisfy the message

bitrelations on some bit b which is uncorrectable (C[b] = 0). We
continue at (b).

7.6 SHA-1 near-collision attack 175

iii. We correct bits in mt if necessary. Let Z = (mt ⊕mval,t) ∧ C be the
mask of bits that need correction.

iv. Set Q̂t+1 = Qt+1 ⊕ Z and m̂t = mt ⊕ Z.
v. Proceed to the next step t+1 using the corrected values Q̂t+1 and m̂t

and continue at (b) afterwards.
6. Otherwise w(Qmask,t+1∧C) ≤ w(mmask,t∧C) and we iterate over correct values

for mt and test for correct values of Qt+1:

(a) Let mfixed,t = (mval,t ∧mmask,t) ⊕ (Qval,t+1 ∧ C ∧mmask,t) consist of the
target bit values in mval,t and the complemented bit values in Qval,t+1 that
can be corrected.

(b) For all mt such that (mt ⊕mfixed,t) ∧ (C ∨mmask,t) = 0 do the following:
i. Compute

Ft = ft(Qt−1, RL(Qt−2, 30), RL(Qt−3, 30)),

Qt+1 = RL(Qt, 5) +RL(Qt−4, 30) + Ft +ACt +mt.

ii. If (Qt+1 ⊕ Qval,t+1) ∧ Qmask,t+1 ∧ C ̸= 0 then Qt+1 does not satisfy
the bitconditions qt+1 on some bit b which is uncorrectable (C[b] = 0).
We continue at (b).

iii. We correct bits in Qt+1 if necessary. Let
Z = (Qt+1 ⊕Qval,t+1) ∧ C

be the mask of bits that need correction.
iv. Set Q̂t+1 = Qt+1 ⊕ Z and m̂t = mt ⊕ Z.
v. Proceed to the next step t+1 using the corrected values Q̂t+1 and m̂t

and continue at (b) afterwards.
For now the last step t = 16 sets m′i = mi⊕DWi for i ∈ {0, . . . , 15} and tests whether
δIHVout given by

δIHVout = SHA1Compress(IHVin, (m
′
i)

15
i=0)− SHA1Compress(IHVin, (mi)

15
i=0)

matches one of the target δIHVdiff values.
The correctness of the corrections made using C and Z above is shown here for

the case handled in step 4. The case handled in step 5 works analogously, where the
roles of mt and Qt+1 are interchanged. For some b ∈ {0, . . . , 31}, let Qt+1[b] be an
otherwise free bit and let mt[b] be restricted: Qmask,t+1[b] = 0 and mmask,t+1[b] = 1.
Using C in step 4(b), the value of Qt+1[b] is fixed to the value Qfixed,t+1[b] = mval,t[b].

Suppose mt[b] = 0 does not satisfy mval,t[b] = 1. As Qt+1[b] = mval,t[b] = 0, this
can easily be corrected without affecting other bits by adding 2b to mt and Qt+1. This
correction maintains the equation mt = Qt+1−RL(Qt, 5)−RL(Qt−4, 30)−Ft−ACt
implied by the SHA-1 step function. Suppose mt[b] = 1 does not satisfy mval,t[b] = 0.
Then similarly, since Qt+1[b] = 1, we can correct this without affecting other bits by
subtracting 2b from mt and Qt+1. Note that both cases only flip bit b and no other
bits, exactly what is done using Z in 4(b)iii and 4(b)iv.

176 7 SHA-0 AND SHA-1

Table 7-10: SHA-1 near-collision tunnels

r Tunnels
17 (Q1[7], Q15[12], Q16[17])
18 (Q1[7], Q13[10]), (Q14[7]), (Q14[8]), (Q14[9]),

(Q15[9]), (Q15[10]), (Q15[12])
19 (Q15[5]), (Q15[6]), (Q15[7]), (Q15[8])
21 (Q10[6])
22 (Q7[7], Q15[6])
23 (Q7[6]), (Q7[8])

These are the tunnels that are used in our near-collision attack at step r. Note that each tuple
describes a tunnel through the working state bits that are changed. In principle a working state
bit Qi[j] is always changed as ∆Qi[j] = +1, except if that working state bit has been changed
before by a tunnel (e.g., Q1[7] in step 18). Another exception is (Q12[6]) for which ∆Q12[6] = −1 is
used so that that tunnel’s message conditions could be combined with those of other tunnels. The
additional bitconditions and message conditions used for these tunnels are presented in Table 7-11
and Table 7-12, respectively.

7.6.8 Tunnels

Similar to the tunnels for MD5, we use tunnels to speed up our near-collision search
by modifying a message block pair (M,M ′) that fulfills all bitconditions up to some
qk and all message bitrelations of Section 7.6.6. This modification from (M,M ′) to
(M̂, M̂ ′) is such that (M̂, M̂ ′) also fulfills all bitconditions up to qk and all message
bitrelations of Section 7.6.6. In this section we use differences not between M and
M ′, but rather between M and M̂ . For only this section we denote X̂ − X and
(X̂[b]−X[b])31b=0 by δX and ∆X, respectively, where X and X̂ are associated variables
in the computation of SHA1Compress of M and M̂ , respectively.

A tunnel consists of a controlled change in the first 16 steps which results in a
change somewhere in the next 16 steps. The controlled change is in fact a local
collision using message differences

δmt = 2b, δmt+1 = −2b+5 mod 32,

δmt+2 = δmt+3 = δmt+4 = 0 and δmt+5 = −2b+30 mod 32.

We allow no carries in the working state difference. The tunnel requires therefore the
following bitconditions:

Qt+1[b] = Q′t+1[b] = 0, Qt−1[b+ 2 mod 32] = Qt−2[b+ 2 mod 32],

Qt+2[b− 2 mod 32] = 0 and Qt+3[b− 2 mod 32] = 1.

Evidently, a tunnel must be compatible with our near-collision attack so far. This
implies that the bitconditions required for a tunnel must be compatible with the
bitconditions of the near-collision attack with respect to the first message block. For
instance, the bitcondition Qt[b] = 0 is compatible with qt[b] =‘.’, qt[b] =‘0’ and
counter-intuitively also with qt[b] =‘+’.

7.6 SHA-1 near-collision attack 177

Furthermore, the message differences may not break the message bitrelations of
our near-collision attack. We search for values ∆mt, ∆mt+1 and ∆mt+5 such that
σ(∆mi) = δmi for i ∈ {t, t+ 1, t+ 5} and for all message bitrelations

15∑
i=0

31∑
j=0

ci,j ·mi[j] = a mod 2

we have that these message differences do not break the message bitrelation:

∑
i∈{t,t+1,t+5}

31∑
j=0

ci,j ·∆mi[j] = 0 mod 2.

Most of the time there is only a single value for each of these ∆mi that is interesting for
practical use40, which directly implies additional message bitrelations: ∆mi[j] = +1
implies mi[j] = 0 and ∆mi[j] = −1 implies mi[j] = 1, except for ∆mi[31] ̸= 0 for
which no additional message bitrelations are necessary. If for any of the ∆mi there
are multiple interesting values then we do not use message bitrelations. Instead, we
test at step i whether adding δmi to mi results in one of the interesting ∆mi.

Tunnel message bitrelations are only a precondition when applying the tunnel,
after which they do not have to be fulfilled anymore. Thus a tunnel may not break the
original message bitrelations from Section 7.6.6 but also may not break any message
bitrelations from other tunnels that are used later on in our near-collision search
algorithm.

Since the tunnel’s message bitdifferences in the first 16 steps have been decided
on, we can determine the possible message bitdifferences in the next steps t = 16,
Since ∆mt, ∆mt+1 and ∆mt+5 are not always uniquely determined, neither are the
possible message bitdifferences in steps 16, An important aspect of a tunnel is the
first step s > 16 for which the possible message differences δms are non-zero. Instead
of using a tunnel at step s, i.e., after the verification whether qs is satisfied, we use a
tunnel at the highest step r ≥ s such that with almost certainty the tunnel does not
affect any bit Qi[j] with qi[j] ̸= ‘.’ for i ∈ {16, . . . r}. The choice of r implies that
the tunnel with probability not almost 0 affects at least one bit Qr+1[b] for which
qr+1[b] ̸=‘.’. Depending on the tunnel used there may be an exactly predictable
change in Qr+1 or the change may be not so predictable. If there is an exactly
predictable change in Qr+1 then as a speed up we can do a quick test whether the
new Qr+1 satisfies qr+1 before actually applying the tunnel and fully recomputing
steps s, . . . , r.

For some tunnels we use the following modifications of the description above:

40. In this case we only find a ∆mi ‘interesting’ if w(∆mi) = 1 or if there is an ‘interesting’ ∆m̂i

such that w(∆mi) = w(∆m̂i) + 1. This choice allows a very efficient check for a given mi whether
adding δmi to mi results in one of the ‘interesting’ ∆mi: either using message bitrelations or a
simple check of the form (mi ∧X) ̸= Y . Naturally if this does not lead to any ‘interesting’ ∆mi, we
use only that allowed ∆mi with the lowest weight.

178 7 SHA-0 AND SHA-1

Table 7-11: SHA-1 near-collision tunnel bitconditions

t Bitconditions: qt[31] . . . qt[0]

−1 ...1....1.0...
0 .^.0.1..0.1 ...00.10 .1..1..1
1 .0.+^-^^ ^^^^^1^0 ^^^11^10 00..1.+0
2 1-...+-- -------- -------- --0-1.+0
3 .-.-.0.1 11111111 11110++1 +-1-00-0
4 .-...1.0 11111111 1111-+++ ++0.1.+1
5 .-...0..01 1+.+10+0
6 .-.+....^01 100-.0+.
7 -1...1..0 0000.0..
8 1.1-.1..00001..
9 ..-..0..^^ .1111...
10 ^...00.. 000....1
11 ..-.1...^ ..00...0
12 0-..1...^.... .1110.!.
13 +..01...0.0 ...0..0.
14 ..-1....0 ...1..1.
15 +.0.1...0....0^

The additional bitconditions used for the tunnels are underlined.

• Restricting the set of ∆mi for i ∈ {t, t+1, t+5} to the ones with lowest weight
if this leads to a higher value of r.

• Restricting the set of ∆mi for i ∈ {t, t+1, t+5} to the ones with lowest weight
may also have as result that the first two message differences after step 15 are
of the form: ∆ms[b] = ±1 and ∆ms+1[b + 5 mod 32] = ±1 and ∆ms[i] =
∆ms+1[j] = 0 for all other bits i ̸= b and j ̸= b+5 mod 32. In that case, adding
the message bitrelation ms[b] + ms+1[b + 5 mod 32] = 1 mod 2 may also lead
to a higher value of r as then ms+1[b + 5 mod 32] forms a correction for the
disturbance caused by ms[b].

• For t ≥ 13, not all of the three bitconditions

Qt−1[b+ 2 mod 32] = Qt−2[b+ 2 mod 32],

Qt+2[b− 2 mod 32] = 0 and Qt+3[b− 2 mod 32] = 1

are strictly necessary for the first 16 steps. We remove not strictly necessary
bitconditions if the removal does not lead to a lower value of r.

• Even though two separate tunnels cannot be used when both break some of the
message bitrelations, if they break exactly the same set of message bitrelations

7.6 SHA-1 near-collision attack 179

Table 7-12: SHA-1 near-collision tunnel message conditions

W0 ∧ (29 − 27) ̸= (29 − 27)
W1[12] = 1

W5 ∧ (210 − 25) ̸= 0
W6[10] = 0

W7[10] =W7[11] =W7[12] =W7[13] = 1
W9[6] =W9[7] = 0

W10[11] =W10[12] = 1
W11[4] =W11[5] =W11[6] =W11[7]

W12 ∧ (210 − 28) ̸= 0, W12[10] =W12[11] = 0
W13[15] = 1

W14[4] =W14[5] = 1, W14[6] = 0
W15[11] = 1

Note that the expression (2x − 2y) with x > y denotes a word for which the only ‘1’-bits occur at
bit positions y, . . . , x− 1.

then they can be used simultaneously. Similarly, a set of n > 2 separate tunnels
may be used simultaneously if each of the message bitrelations is broken by an
even number of tunnels from this set.

• For t < 14, if a tunnel breaks only message bitrelations over m14 and m15 then
that tunnel can be used to speed up steps 14 and 15 instead of higher steps.
Such a tunnel can be used in our near-collision search algorithm at step 14 (or 15
if it does not break message bitrelations over m14) before mval′,14 (or mval′,15) is
determined. Since such tunnels were not considered at the time of implementing
our near-collision attack, these tunnels may lead to an improvement of our near-
collision attack.

The tunnels that we use in our near-collision are described in Table 7-10. The
additional bitconditions and message conditions they required are presented in Ta-
ble 7-11 and Table 7-12, respectively. For more details on how these tunnels are used
in the implementation of our near-collision attack we refer to [HC]. We like to note
that even with the added conditions from the tunnels, there are at least 40 bits of
freedom left in the 512-bit message space (taking into account the IHVin conditions,
but ignoring the degrees of freedom from the identical IHVin) so that many solutions
should exist for any given IHVin.

7.6.9 Verification of correctness and runtime complexity

Although so far we were unable to find actual near-collision blocks using our near-
collision attack, we show how to verify the correctness of our implementation and its
runtime complexity. The implementation of our near-collision attack can be retrieved
by checking out a copy of the hashclash source repository at Google Code [HC] using

180 7 SHA-0 AND SHA-1

the Subversion client svn41:

svn checkout http://hashclash.googlecode.com/svn/trunk/ .

The C++ source code of our near-collision attack can be found in the following
subdirectory:

src/diffpathcollfind_sha1/collfind.cpp .
After all tunnels have been exploited, we the function step_16_33() to compute

all remaining steps up to step 32 for both messages M and M ′ and to verify whether
Q′i = Qi for i ∈ {29, . . . , 33}. Although uncommented for performance reasons, this
function can at this point call the function check40() for a secondary check that
Q′i = Qi for i ∈ {29, . . . , 33} and thus that our implementation works correctly up
to this point. If Q′i = Qi for i ∈ {29, . . . , 33} then step_16_33() increases a counter
that allows us to determine the average complexity C0 of searching for blocks M and
M ′ that follow our disturbance vector up to step 32. Our implementation prints this
counter divided by the number of seconds as timeavg 40. We have determined in this
manner that C0 is equivalent to about 211.97 SHA-1 compressions on an Intel Core2
Duo Mobile T9400 operating on Windows 7. The runtime complexity is thus equal
to C0/p, where p is the probability that a message block pair (M,M ′) leads to one of
the target δIHVout values, assuming that Q′i = Qi for i ∈ {29, . . . , 33}.

To check whether the current message block pair (M,M ′) leads to one of the
target δIHVout values, the function check_nc() is called. There are four independent
intervals I1 = [0, 32], I2 = [33, 52], I3 = [53, 60] and I4 = [67, 79]. The first interval
is always successful whenever check_nc() is called. The other remaining intervals
[tb, te] require that Q′i = Qi for i ∈ {tb−4, . . . , tb}, i.e., that the previous intervals were
successful. For the second interval this condition is thus guaranteed when check_nc()
is called. We determine the probability p as the product of the success probabilities
over the last three intervals.

For each of the last three intervals we can verify their success probabilities exper-
imentally as follows. For interval [tb, te] let (Wt)

79
t=0 and (W ′t)

79
t=0 be the expanded

messages from M and M ′, respectively. Set Q−4, . . . , Q0 to the IHVin resulting from
the identical-prefix block using Equation 7.4 (see p. 119). Compute steps t = 0, . . . , te
for the message block M :

Ft = ft(Qt−1, RL(Qt−2, 30), RL(Qt−3, 30)),

Qt+1 = Ft +ACt +Wt +RL(Qt, 5) +RL(Qt−4, 30).

To more quickly determine the success probability, we assume that the previous in-
tervals were successful, i.e., we set Q′i to Qi for i ∈ {tb− 4, . . . , tb}. Then we compute
steps t = tb, . . . , te for the message block M ′:

F ′t = ft(Q
′
t−1, RL(Q

′
t−2, 30), RL(Q

′
t−3, 30)),

Q′t+1 = F ′t +ACt +W ′t +RL(Q′t, 5) +RL(Q′t−4, 30).

41. Subversion is a version control system: http://subversion.apache.org/

http://subversion.apache.org/

7.6 SHA-1 near-collision attack 181

For I2 and I3 the success probability of these intervals can thus be computed as the
probability that Q′i = Qi for i ∈ {te−3, . . . , te+1}. This probability is experimentally
approximated as y/x by counting the number of times x that check_nc() is called
and the number of times y that after the computations above Q′i = Qi for i ∈
{te − 3, . . . , te + 1}. For I4 we do the same except instead of using Q′i = Qi for i ∈
{te−3, . . . , te+1} as the success condition, we use the condition whether (RL(Q′i, ri)−
RL(Qi, ri))

80
i=76 is one of the target δIHVdiff values where ri = 30 for i ≤ 78 and ri = 0

otherwise (see also Equation 7.6, p. 119).
The experimentally approximated success probabilities of the intervals I2, I3 and

I4 are printed by our near-collision attack as the numbers avg 53 stats, avg 61
stats and avg 80 stats, respectively. The success probabilities are in this manner
estimated as Pr[I2] = 2−20.91, Pr[I3] = 2−8.00 and Pr[I4] = 2−16.65 which accurately
match the theoretical maximum success probabilities42 as determined by the differ-
ential cryptanalysis of Section 7.5. Since these success probabilities are non-zero, our
implementation also works correctly over steps t > 32. The runtime complexity of
our near-collision attack is hereby estimated in the number of SHA-1 compressions as

C0

Pr[I2] · Pr[I3] · Pr[I4]
≈ 211.97 · 220.91 · 28.00 · 216.65 = 257.53.

We have found an example message pair shown in Table 7-13 that satisfies our
differential path up to I4 (thus up to step 66), such message pairs can be found with
an average complexity of about 211.97 · 220.91 · 28.00 = 240.9 SHA-1 compressions.

42. Taking into account the speed-up factor Nmax = 6 for I4.

182 7 SHA-0 AND SHA-1

Table 7-13: Example message pair each consisting of an identical-prefix block and a near-
collision block satisfying our differential path up to step 66.

First message
bc 7e 39 3a 04 70 f6 84 e0 a4 84 de a5 56 87 5a
cd df f9 c8 2d 02 01 6b 86 0e e7 f9 11 e1 84 18
71 bf bf f1 06 70 95 c9 ed 44 af ee 78 12 24 09
a3 b2 eb 2e 16 c0 cf c2 06 c5 20 28 10 38 3c 2b
73 e6 e2 c8 43 7f b1 3e 4e 4d 5d b6 e3 83 e0 1d
7b ea 24 2c 2b b6 30 54 68 45 b1 43 0c 21 94 ab
fb 52 36 be 2b c9 1e 19 1d 11 bf 8f 66 5e f9 ab
9f 8f e3 6a 40 2c bf 39 d7 7c 1f b4 3c b0 08 72

Second message
bc 7e 39 3a 04 70 f6 84 e0 a4 84 de a5 56 87 5a
cd df f9 c8 2d 02 01 6b 86 0e e7 f9 11 e1 84 18
71 bf bf f1 06 70 95 c9 ed 44 af ee 78 12 24 09
a3 b2 eb 2e 16 c0 cf c2 06 c5 20 28 10 38 3c 2b
7f e6 e2 ca 83 7f b1 2e fa 4d 5d aa df 83 e0 19
c7 ea 24 36 0b b6 30 44 4c 45 b1 5f e0 21 94 bf
f7 52 36 bc eb c9 1e 09 a9 11 bf 93 4a 5e f9 af
23 8f e3 72 f0 2c bf 29 d7 7c 1f b8 84 b0 08 62

7.7 Chosen-prefix collision attack 183

7.7 Chosen-prefix collision attack
Theorem 3.6 (p. 36) allows us to construct a chosen-prefix collision attack against
SHA-1 using the near-collision attack presented in Section 7.6. Given chosen prefixes
P and P ′, we append padding bit strings Sr and S′r such that the bit lengths of
P ||Sr and P ′||S′r are both equal to N · 512 −K, where N,K ∈ N+ and K is a later
to be defined constant value. Let IHVN−1 and IHV ′N−1 be the intermediate hash
values after processing the first (N − 1) · 512 bits of P ||Sr and P ′||S′r, respectively.
Furthermore, let B and B′ be the last 512−K bits of P ||Sr and P ′||S′r, respectively.

7.7.1 Birthday search

Section 6.5.2 and [vOW99] explain how to perform a birthday search. We need to
choose the birthday search space V and the birthday step function f : V → V . Based
on the 192 target δIHVdiff-values given in Table 7-5 (p. 167), we have chosen V and
f as follows:

V = Z213 × Z218 × Z231 × Z225 × Z232 ;

f(v) =

{
ϕ
(
SHA1Compress(IHVN−1, B||v)

)
if τ(v) = 0;

ϕ
(
SHA1Compress(IHV ′N−1, B′||v)− (0, 0, 0, 0, 231)

)
if τ(v) = 1,

where ϕ : Z5
232 → V and τ : V → {0, 1} are defined as

ϕ(a, b, c, d, e) =
(
(a[i])31i=19, (b[i])

31
i=14, (c[i])

30
i=0, (d[i])

31
i=7, e

)
;

τ(a, b, c, d, e) = w(a) mod 2.

These choices were made with the following considerations:
• The 192 target δIHVdiff-values are all of the form (a, b, µ · 231, ν · 21, 231), where
µ ∈ {0, 1}, ν ∈ {−1, 1}, and a, b ∈ Z232 .

• For all δIHVdiff-values (a, b, c, d, e), we have that a ∈ {−213, . . . , 213}. This
implies that with low probability adding a to a randomly chosen x ∈ Z232

affects bit position 19 and higher.

• For all δIHVdiff-values (a, b, c, d, e), we have that b ∈ {−28, . . . , 28}. This implies
that with low probability adding b to a randomly chosen x ∈ Z232 affects bit
position 14 and higher.

• For all δIHVdiff-values (a, b, c, d, e), we have that d ∈ {−21, 21}. This implies
that with low probability adding d to a randomly chosen x ∈ Z232 affects bit
position 7 and higher.

For a birthday search collision f(v) = f(w) with τ(v) ̸= τ(w), let (x, y) = (v, w) if
τ(v) = 1 and (x, y) = (w, v) otherwise. Then

IHV ′N = (a′, b′, c′, d′, e′) = SHA1Compress(IHV ′N−1, B′||x),
IHVN = (a, b, c, d, e) = SHA1Compress(IHVN−1, B||y).

184 7 SHA-0 AND SHA-1

The resulting δIHVN = (δa, δb, δc, δd, δe) = IHV ′N − IHVN is of the form

• δa ∈
{
l −m

∣∣ l,m ∈ Z232 , (l[i])
31
i=19 = (m[i])31i=19

}
;

• δb ∈
{
l −m

∣∣ l,m ∈ Z232 , (l[i])
31
i=14 = (m[i])31i=14

}
;

• δc ∈
{
l −m

∣∣ l,m ∈ Z232 , (l[i])
30
i=0 = (m[i])30i=0

}
= {0, 231};

• δd ∈
{
l −m

∣∣ l,m ∈ Z232 , (l[i])
31
i=7 = (m[i])31i=7

}
;

• δe = 231, since e′ − 231 = e by definition of f and f(x) = f(y).

For each of the 192 target δIHVdiff we can determine the probability pδIHVdiff that
δIHVN = δIHVdiff. The sum of these 192 probabilities pδIHVdiff is approximately
2−33.46.

Therefore, a birthday search collision pair v, w with f(v) = f(w) has a probability
of q = 2−33.46−1 that τ(v) ̸= τ(w) and δIHVN is one of the 192 target δIHVdiff-values.
This implies that the expected birthday search complexity in SHA-1 compressions
(ignoring the cost of computing collision points) is√

π · |V |
2 · q

≈ 277.06.

Storing a single trail (beginpoint, endpoint, length) costs about 36 bytes. When using
2.5 · 36/q ≈ 240.95 bytes (about 2TB) then the expected complexity of generating
trails equals the expected complexity of computing the collision points. The expected
complexity of computing collision points can be made significantly lower by using more
memory. Hence, the overall expected birthday search complexity is approximately
277.1 SHA-1 compressions.

7.7.2 Near-collision block

Assume we have found bit strings Sb and S′b using the above birthday search such
that δIHVN is one of the 192 δIHVdiff-values, where IHVN and IHV ′N are the inter-
mediate hash values after processing the first 512 ·N bits of P ||Sr||Sb and P ′||S′r||S′b,
respectively. The remaining step is to execute a near-collision attack identical to
the second near-collision attack in a two-block identical-prefix collision attack as de-
scribed in Section 7.6.1. To construct this near-collision attack we follow the steps as
described in Section 7.6 with the following modifications:

• In Section 7.6.3 for I4, we set Î to −δIHVN in step 1. This leads to Nmax = 1
and a smaller set of optimal message difference vectors W[67,79].

• Instead of using the trivial differential path defined by δIHVin = 0 in Sec-
tion 7.6.4, we use the differential path q−4, . . . , q0 consisting of bitconditions
‘0’, ‘1’, ‘-’ and ‘+’ that match the values Q−4, . . . , Q0 and Q′−4, . . . , Q

′
0 as ini-

tialized by definition from IHVN and IHV ′N .

7.7 Chosen-prefix collision attack 185

Executing the constructed near-collision attack results in message blocks Sc and S′c
such that

SHA-1
(
P ||Sr||Sb||Sc

)
= SHA-1

(
P ′||S′r||S′b||S′c

)
.

7.7.3 Complexity

As mentioned in Section 7.6.1, an upper bound for the second near-collision attack in
a two-block identical-prefix collision attack is about 265.3 SHA-1 compressions. This
same upper bound also holds for the above near-collision attack. The near-collision
attack complexity is thus a factor of 211.8 smaller than the expected birthday search
cost of 277.1 SHA-1 compressions. Hence, the overall cost of a chosen-prefix collision
attack against SHA-1 is dominated by the expected 277.1 SHA-1 compressions required
to generate the birthday search trails. This complexity is currently infeasible and this
chosen-prefix collision attack against SHA-1 remains a theoretical attack.

186 7 SHA-0 AND SHA-1

