

Cover Page

The handle http://hdl.handle.net/1887/19093 holds various files of this Leiden University
dissertation.

Author: Stevens, Marc Martinus Jacobus
Title: Attacks on hash functions and applications
Issue Date: 2012-06-19

https://openaccess.leidenuniv.nl/handle/1887/1�
http://hdl.handle.net/1887/19093

5 Differential cryptanalysis and paths 61

5 Differential cryptanalysis and paths

Contents
5.1 Introduction . 61
5.2 Definitions and notation . 63

5.2.1 N -bit words and operators 63
5.2.2 Binary signed digit representations 64
5.2.3 Function families over N -bit words 64

5.3 Fmd4cf: MD4 based compression functions 65
5.3.1 Working state initialization 66
5.3.2 Finalization . 66
5.3.3 Message expansion . 67
5.3.4 Step function . 67

5.4 Properties of the step functions 69
5.4.1 Full dependency on Qt−L+1 69
5.4.2 Full dependency on Ft . 71
5.4.3 Full dependency on Wt . 71
5.4.4 Properties as step function design criteria 71
5.4.5 Properties in differential cryptanalysis 73

5.5 Differential paths . 74
5.5.1 Rotation of word differences 74
5.5.2 Boolean function differences 77
5.5.3 Differential steps . 78

5.6 Differential path construction 80
5.6.1 Forward . 80
5.6.2 Backward . 82
5.6.3 Connect . 84
5.6.4 Complexity . 86
5.6.5 Specializations . 87

5.1 Introduction
In this thesis we limit ourselves to hash functions of the MD4 family and focus mainly
on MD5 and SHA-1. As can be seen in Chapter 2, the construction of a near-collision
attack for MD4 style compression functions has many aspects that all have to fit
together. Nevertheless there is one aspect that is the key to the entire attack: the
differential path. In this section we introduce a definition of a compression function
family Fmd4cf that includes an important subset of the family of MD4 style compres-
sion functions, namely those of MD4, MD5 and SHA-1. We complement this family
with a definition of differential paths for these compression functions. Such a differ-
ential path is called valid if there exists a solution to the differential path under a

62 5 DIFFERENTIAL CRYPTANALYSIS AND PATHS

relaxation of the message expansion. The most important contribution of this section
is an algorithm that searches for complete valid differential paths for which the begin-
ning and ending part are predetermined. In its generic form, this algorithm provides
insights in differential cryptanalysis applied to compression functions. We apply this
differential cryptanalysis and improve the differential path construction algorithm for
MD5 and SHA-1 in Sections 6 and 7, respectively.

For MD4 style compression functions, a differential path designed for a near-
collision attack consists of three segments. The most important segment, namely the
end segment, consists of all steps after a certain step K whose success probability
directly contributes reciprocally to the final attack complexity. E.g., the collision
finding algorithm for MD5 in Chapter 2 easily fulfills the first 16 steps of the differen-
tial path and with effort can fulfill a small number of steps thereafter using message
modification techniques. Since message modification techniques do not affect the ful-
fillment of the differential path over all steps starting at K, where K is approximately
27 for MD5, the differential path over those steps has to be fulfilled probabilistically.
The expected number of attempts required, which is the reciprocal of the success
probability over those steps, is a direct factor of the attack complexity. Hence, to
build an efficient collision attack the success probability of a differential path over
those steps should be as high as possible. Specifically, this probability must be at
least π−0.52−N/2 for the resulting attack not to be slower than a brute-force attack.

The first segment of the differential path consists of the initial working state
defined by the input pair IHVin and IHV ′in. Since for a near-collision attack the input
pair IHVin and IHV ′in are given, this segment is also a given.

The remaining segment thus ‘connects’ the begin segment and end segment of the
differential path. Whereas the end segment is constructed and specifically optimized
for a low attack complexity and the begin segment is pre-determined, this segment
must be constructed using both extremal segments in order to build a valid complete
differential path. There is no trivial solution to the problem of constructing such a
connecting segment, due to the fact that each working state variable affects multiple
steps of the differential path.

The first ones to solve the problem of constructing a connecting segment were
Xiaoyun Wang and her team. Their paper [WY05] describes their methodology which
depends mainly on expertise, intuition and patience. With their methodology they
enabled the construction of identical-prefix collisions for MD5. In this section we
present an algorithmic solution to this problem for a certain class of compression
functions which we call Fmd4cf. To this end, we first define this class Fmd4cf of
compression functions which includes those of MD4, MD5 and SHA-1, and more
formally define the concept of a differential path for this class.

Besides providing a much easier and faster way of constructing full differential
paths, our algorithmic solution also allows optimization of differential paths with re-
spect to given message modification techniques. Furthermore, the most important
result of our algorithmic solution is the construction of a chosen-prefix collision at-
tack against MD5, where the differential paths are necessarily created during the
attack instead of precomputed (see Section 6.5). Compared to identical-prefix colli-

5.2 Definitions and notation 63

sion attacks such as the collision attack in Chapter 2, a chosen-prefix collision attack
removes the identical input IHVk and IHV ′k requirement at the start of the attack.
The two equal-length input message prefixes P and P ′ (resulting in IHVk and IHV ′k)
can therefore be chosen independently.

First in Section 5.2 we introduce some basic definitions and notations necessary
for this section. In Section 5.3 we present the formal definition of the class Fmd4cf of
MD4 based compression functions. This is followed by a discussion of three important
properties of the step functions of the compression functions in Fmd4cf in Section 5.4.
Next, we formally define differential paths for the class Fmd4cf of compression func-
tions in Section 5.5. Finally, we present our differential path construction algorithm
in Section 5.6.

5.2 Definitions and notation
Throughout this thesis we denote a mod b for the least non-negative residue of a
modulo b where a ∈ Z and b ∈ N+.

5.2.1 N-bit words and operators

Similar to MD5, the class Fmd4cf is based on the integer working registers of modern
CPU architectures. Whereas MD5 used 32-bit words, here we generalize this to N -bit
words. We use the shorter notation Z2N for Z/2NZ. An N -bit word (vi)

N−1
i=0 consists

of N bits vi ∈ {0, 1}. These N -bit words are identified with elements v =
∑N−1
i=0 vi2

i

of Z2N and we switch freely between these two representations.
OnN -bit wordsX = (xi)

N−1
i=0 and Y = (yi)

N−1
i=0 , we define the following operations:

• X ∧ Y = (xi ∧ yi)N−1i=0 is the bitwise AND of X and Y ;

• X ∨ Y = (xi ∨ yi)N−1i=0 is the bitwise OR of X and Y ;

• X ⊕ Y = (xi ⊕ yi)N−1i=0 is the bitwise XOR of X and Y ;

• X = (1− xi)N−1i=0 is the bitwise complement of X;

• X[i] is the i-th bit xi;

• X + Y and X − Y denote addition and subtraction, respectively, of X and Y
in Z2N ;

• RL(X,n) = (x(i+n mod N))
N−1
i=0 is the cyclic left rotation of X by 0 ≤ n < N

bit positions;

• RR(X,n) = (x(i−n mod N))
N−1
i=0 is the cyclic right rotation of X by 0 ≤ n < N

bit positions. Equivalent to cyclic left rotation over (N−n mod N) bit positions;

• w(X) denotes the Hamming weight
∑N
i=0 xi of X = (xi)

N
i=0.

64 5 DIFFERENTIAL CRYPTANALYSIS AND PATHS

5.2.2 Binary signed digit representations

We extend the notion of the BSDR to N -bit words X ∈ Z2N as a sequence (ki)
N−1
i=0

such that

X =
N−1∑
i=0

ki2
i, ki ∈ {−1, 0, 1}.

For each non-zero X ∈ Z2N there exist many different BSDRs. The weight w((ki)N−1i=0)
of a BSDR (ki)

N−1
i=0 is defined as the number of non-zero kis.

A particularly useful type of BSDR is the Non-Adjacent Form (NAF), where no
two non-zero ki-values are adjacent. For any X ∈ Z2N there is no unique NAF,
since we work modulo 2N (making kN−1 = +1 equivalent to kN−1 = −1). However,
uniqueness of the NAF can be enforced by the added restriction kN−1 ∈ {0,+1}.
Among the BSDRs for a given X ∈ Z2N , the NAF has minimal weight [MS06]. The
NAF can be computed easily [Lin98] for a given X ∈ Z2N as NAF(X) = ((X+Y)[i]−
Y [i])N−1i=0 where Y is the N -bit word (0 X[N − 1] . . . X[1]).

We use the following notation for an N -digit BSDR Z:

• Z[i] is the i-th signed bit ki of Z = (ki)
N−1
i=0 ;

• RL(Z, n) = (x(i+n) mod N)N−1i=0 is the cyclic left rotation of Z by 0 ≤ n < N
digit positions;

• RR(Z, n) = (x(i−n) mod N)N−1i=0 is the cyclic right rotation of Z by 0 ≤ n < N
digit positions and is equivalent to RL(Z, (N − n mod N));

• w(Z) =
∑N−1
i=0 |ki| is the weight of Z.

• σ(Z) =
∑N−1
i=0 ki2

i ∈ Z2N is the N -bit word for which Z is a BSDR.

5.2.3 Function families over N-bit words

As an aid we define three families Fsumrot, Fbool and Fboolrot of functions

f : (Z2N)J → Z2N , J ∈ N

that map an input tuple of J N -bit words to a single N -bit word.
The family Fsumrot consists of functions f that perform a selective sum over bitwise

cyclic rotated input words and a chosen constant value C ∈ Z2N :

f(X1, . . . , XJ) 7→ C +
J∑
j=1

cj ·RL(Xj , rj), cj ∈ {−1, 0, 1}, rj ∈ {0, . . . , N − 1}.

We restrict rj to zero whenever cj = 0 for j = 1, . . . , J , so that all non-trivial rotations
(rj ̸= 0) contribute in the sum.

5.3 Fmd4cf: MD4 based compression functions 65

The family Fbool consists of functions f that extend a boolean functions g :
{0, 1}J → {0, 1} to words:

f(X1, . . . , XJ) 7→ (g(X1[i], . . . , XJ [i]))
N−1
i=0 .

The family Fboolrot consists of functions that first cyclically rotate their input words
and then pass them to a function g ∈ Fbool:

f(X1, . . . , XJ) 7→ g(RL(X1, r1), . . . , RL(XJ , rJ)), rj ∈ {0, . . . , N − 1}.

Observation 5.1. For any f ∈ Fsumrot if we fix all input values except Xi, i ∈
{1, . . . , J}, then the resulting fi is either bijective and easily invertible or a constant
function with respect to the remaining single input value. More formally, let f ∈
Fsumrot:

f(X1, . . . , XJ) = C +
J∑
j=1

cj ·RL(Xj , rj), cj ∈ {−1, 0, 1}, rj ∈ {0, . . . , N − 1}.

For any i ∈ {1, . . . , J} and given values of all inputs except Xi we define the function
fi : Z2N → Z2N as:

fi : Xi 7→ f(X1, . . . , XJ) = Ci + ci ·RL(Xi, ri),

where

Ci = C +

J∑
j=0
j ̸=i

cj ·RL(Xj , rj).

If ci = 0 then fi(Xi) = Ci is a constant function. Otherwise, if ci ∈ {−1, 1} then
fi(Xi) = Ci + ciRL(Xi, ri) is bijective and easily invertible:

f−1i : A 7→ RR(ci · (A− Ci), ri).

5.3 Fmd4cf: MD4 based compression functions
The class Fmd4cf of compression functions can be seen as a subfamily of the family of
MD4-style compression functions and consists of all compression functions Compress
as defined in this section. The class Fmd4cf includes the compression functions of
MD4, MD5 and SHA-1. It does not include the compression functions of the SHA-2
family, since these compression functions update two state variables per step instead
of one.

A compression function Compress uses only fixed sized N -bit words, N ∈ N+,
and the above listed N -bit word operations. From now on, we also use the shorthand
word for N -bit word.

For fixed L,K ∈ N+, Compress(IHVin,M) maps an L tuple of words IHVin and
a K tuple of words M to an L tuple of words referred to as IHVout:

Compress : (Z2N)L × (Z2N)K → (Z2N)L.

66 5 DIFFERENTIAL CRYPTANALYSIS AND PATHS

To compute IHVout given IHVin and M , Compress computes a sequence of S+L
working state words (Qi)

S
i=−L+1 ∈ (Z2N)S+L, where S is a fixed multiple of K.

The first L words Q−L+1, . . . , Q0 are initialized using IHVin in Section 5.3.1. The
remaining S words Q1, . . . , QS are sequentially computed using step functions in
Section 5.3.4. The output L tuple IHVout is computed based on the last L words
QS−L+1, . . . , QS and IHVin in Section 5.3.2.

In the computation of each word Qi for i = 1, . . . , S a single word Wi is used that
is derived from the K tuple M . Section 5.3.3 describes the mapping of M to (Wi)

S
i=0

called the message expansion. Note that the problem of endianness (Section 2.1.2) is
avoided by defining M as a tuple of words instead of a bit string.

As an example, the value of the tuple (N,L,K, S) for MD4, MD5 and SHA-1 is
(32, 4, 16, 48), (32, 4, 16, 64) and (32, 5, 16, 80), respectively.

5.3.1 Working state initialization

Compress initializes the first L working state words Q−L+1, . . . , Q0 using the L-tuple
IHVin = (ihvin0, . . . , ihvinL−1):

Qi = fin,i(ihvin0, . . . , ihvinL−1), fin,i ∈ Fsumrot,

for i ∈ {−L+ 1, . . . , 0} such that

(fin,i)
0
i=−L+1 : (Z2N)L → (Z2N)L

is bijective.
In the case of MD4, MD5 and SHA-1, this initialization function (fin,i)

0
i=−L+1

forms a non-trivial permutation of the L input words.

5.3.2 Finalization

After all S steps are performed, the output IHVout = (ihvout0, . . . , ihvoutL−1) is
determined as a function of the last L working state words QS−L+1, . . . , QS and
IHVin:

ihvouti = fout,i(ihvin0, . . . , ihvinL−1, QS−L+1, . . . , QS), fout,i ∈ Fsumrot,

for i ∈ {0, . . . , L− 1}. For all values of QS−L+1, . . . , QS we require that the following
mapping is bijective:

(ihvin0, . . . , ihvinL−1) 7→ (fout,i(ihvin0, . . . , ihvinL−1, QS−L+1, . . . , QS))
L−1
i=0 .

Also, for all values of ihvin0, . . . , ihvinL−1 we require that the following mapping is
bijective:

(QS−L+1, . . . , QS) 7→ (fout,i(ihvin0, . . . , ihvinL−1, QS−L+1, . . . , QS))
L−1
i=0 .

The finalization of the compression functions of MD4, MD5 and SHA-1 is as fol-
lows. First the inverse initialization permutation, namely ((fin,i)

0
i=−L+1)

−1, is applied

5.3 Fmd4cf: MD4 based compression functions 67

to (QS−L+1, . . . , QS) resulting in (Q̂S−L+1, . . . , Q̂S). The value of IHVout is computed
as the word-wise sum of the tuples (Q̂S−L+1, . . . , Q̂S) and (ihvin0, . . . , ihvinL−1), thus
ihvouti = Q̂S−L+1+i + ihvini for i = 0, . . . , L− 1.

5.3.3 Message expansion

In each of the S steps t = 0, . . . , S − 1 a single word Wt is used that is derived from
the message word tuple M :

Wt = fmsgexp,t(m0, . . . ,mK−1) ∈ Z2N .

The functions fmsgexp,t are arbitrary functions

fmsgexp,t : (Z2N)K → Z2N , t ∈ {0, . . . , S − 1}

under the restriction that for k = 0,K, . . . , S −K the following function is bijective:

fmsgexpblock,k(M) = (fmsgexp,k(M), fmsgexp,k+1(M), . . . , fmsgexp,k+K−1(M)).

MD4 and MD5 divide their S steps into S/K rounds, thus 48/16 = 3 and
64/16 = 4 rounds respectively. The first round uses the message words in order:
W0 = m0, . . . ,W15 = m15. The remaining rounds r = 1, . . . , S16 − 1 apply a fixed per-
mutation on the message words (m0, . . . ,m15) to obtain (Wr·K , . . . ,Wr·K15). SHA-1
also uses W0 = m0, . . . ,W15 = m15, however it computes the remaining words with
the following linear relation:

Wi = RL(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16, 1), for i = 16, . . . , 79.

This linear relation can be used backwards:

Wi−16 = RR(Wi, 1)⊕Wi−3 ⊕Wi−8 ⊕Wi−14, for i = 16, . . . , 79.

It follows that any 16 consecutive Wi, . . . ,Wi+15 fully determine W0, . . . ,W79 and in
particular W0, . . . ,W15. This implies that for k = 0, 16, 32, 48, 64 the mapping from
m0, . . . ,m15 to Wk+0, . . . ,Wk+15 is bijective.

5.3.4 Step function

In each of the S steps t = 0, . . . , S − 1, Compress computes a single boolean function
over the last L− 1 state words Qt−L+2, . . . , Qt:

Ft = fbool,t(Qt−L+2, . . . , Qt) ∈ Z2N , fbool,t ∈ Fboolrot.

Each step t computes V ∈ N+ (V is fixed and independent of the step t) intermediate
variables Tt,i where i ∈ {1, . . . , V } starting with Tt,0 = 0:

Tt,i = ftemp,t,i(Qt−L+1, . . . , Qt, Ft,Wt, Tt,i−1), ftemp,t,i ∈ Fsumrot.

The new working state word Qt+1 is set to the final intermediate variable Tt,V . Fur-
thermore, the functions ftemp,t,i have the following restrictions:

68 5 DIFFERENTIAL CRYPTANALYSIS AND PATHS

• In each function ftemp,t,i, the selective sum coefficient of Tt,i−1 is non-zero.

• Over all selective sums in (ftemp,t,i)
V
i=1, the variable Qt−L+1 is selected exactly

once. More formally, for i = 1, . . . , V , let ci ∈ {−1, 0, 1} be the selective sum
coefficient of Qt−L+1 in ftemp,t,i (see Section 5.2.3) then

∑V
i=1 |ci| must be 1.

• For i = 1, . . . , V , let c′i be the selective sum coefficient of Wt in ftemp,t,i then∑V
i=1 |c′i| must be 1.

• For i = 1, . . . , V , let c′′i be the selective sum coefficient of Ft in ftemp,t,i then∑V
i=1 |c′′i | must be 1.

For MD4, V = 2 and functions fbool,t, ftemp,t,1 and ftemp,t,2 are defined as:

ftemp,t,1(. . .) = Qt−3 + Ft +Wt + Tt,0 +ACt;

ftemp,t,2(. . .) = RL(Tt,1, RCt);

fbool,t(Qt−2, Qt−1, Qt) =
(Qt ∧Qt−1)⊕ (Qt ∧Qt−2) for 0 ≤ t < 16,

(Qt ∧Qt−1) ∨ (Qt ∧Qt−2) ∨ (Qt−1 ∧Qt−2) for 16 ≤ t < 32,

Qt ⊕Qt−1 ⊕Qt−2 for 32 ≤ t < 48,

where ACt ∈ Z232 and RCt ∈ {0, . . . , 31} are constants. For MD5, also V = 2 and
the functions fbool,t, ftemp,t,1 and ftemp,t,2 are defined as:

ftemp,t,1(. . .) = Qt−3 + Ft +Wt + Tt,0 +ACt;

ftemp,t,2(. . .) = Qt +RL(Tt,1, RCt);

fbool,t(Qt−2, Qt−1, Qt) =
(Qt ∧Qt−1)⊕ (Qt ∧Qt−2) for 0 ≤ t < 16,

(Qt−2 ∧Qt)⊕ (Qt−2 ∧Qt−1) for 16 ≤ t < 32,

Qt ⊕Qt−1 ⊕Qt−2 for 32 ≤ t < 48,

Qt−1 ⊕ (Qt ∨Qt−2) for 48 ≤ t < 64,

where ACt ∈ Z232 and RCt ∈ {0, . . . , 31} are constants. For SHA-1, V = 1 and the
functions fbool,t and ftemp,t,1 are defined as:

ftemp,t,1(. . .) = RL(Qt−4, 30) +RL(Qt, 5) + Ft +Wt + Tt,0 +ACt;

fbool,t(. . .) = fsha1,t(Qt−1, RL(Qt−2, 30), RL(Qt−3, 30));

fsha1,t(X,Y, Z) =
F (X,Y, Z) = Z ⊕ (X ∧ (Y ⊕ Z)) for 0 ≤ t < 20,

G(X,Y, Z) = X ⊕ Y ⊕ Z for 20 ≤ t < 40,

H(X,Y, Z) = (X ∧ Y) ∨ (Z ∧ (X ∨ Y)) for 40 ≤ t < 60,

I(X,Y, Z) = X ⊕ Y ⊕ Z for 60 ≤ t < 80,

where ACt ∈ Z232 is a constant.

5.4 Properties of the step functions 69

5.4 Properties of the step functions
For each t = 0, . . . , S − 1, the mapping

ft : (Qt−L+1, . . . , Qt, Ft,Wt) 7→ Qt+1

as defined by the sequence (ftemp,t,i)
V
i=1 has three properties that are crucial to our

differential path construction algorithm and are design criteria to thwart certain at-
tacks. The first property of ft is that the output Qt+1 can take on all possible values
in Z2N by varying only Qt−L+1 ∈ Z2N and fixing all other input values. An impor-
tant implication of this property is that Qt−L+1 can be uniquely determined given the
output value Qt+1 and all other input values. The other two properties are similar
to the first with respect to Ft and Wt instead of Qt−L+1. These three properties are
treated in detail in Section 5.4.1, 5.4.2 and 5.4.3.

5.4.1 Full dependency on Qt−L+1

Theorem 5.1 (Full dependency on Qt−L+1). Given values of the variables Qt−L+2,
. . ., Qt, Ft, Wt the following mapping is bijective:

ft,Qt−L+1
: Qt−L+1 7→ Qt+1 = ft(Qt−L+1, . . . , Qt, Ft,Wt).

Furthermore, there exists a sequence of functions (finvQ,t,i)
2V+1
i=1 ∈ F2V+1

sumrot that com-
putes the inverse of ft,Qt−L+1

given values of Qt−L+2, . . . , Qt, Ft, Wt and the value
of Qt+1:

TinvQ,t,0 = 0;

TinvQ,t,i = finvQ,t,i(Qt−L+2, . . . , Qt, Ft,Wt, Qt+1, TinvQ,t,0, . . . , TinvQ,t,i−1);

Qt−L+1 = TinvQ,t,2V+1.

Proof. We prove the theorem by providing a construction of a sequence of functions
(finvQ,t,i)

2V+1
i=1 that computes the inverse of ft,Qt−L+1

. In our construction not all
finvQ,t,i may be needed in which case we define those as the zero-function. Using
the second restriction in Section 5.3.4, let j ∈ {1, . . . , V } be the unique index such
that the selection coefficient15 of Qt−L+1 in ftemp,t,j is non-zero. Given values of
Qt−L+2, . . . , Qt, Ft and Wt, we can compute the values of Tt,0, . . . , Tt,j−1, since these
do not depend on the value of Qt−L+1. We define finvQ,t,1, . . . , finvQ,t,j−1 to compute
the values of Tt,0, . . . , Tt,j−1:

finvQ,t,i(. . .) = ftemp,t,i(0, Qt−L+2, . . . , Qt, Ft,Wt, TinvQ,t,i−1), i ∈ {1, . . . , j − 1}.

Thus TinvQ,t,j−1 = Tt,j−1 after these steps. The functions (finvQ,t,i)
2j−2
i=j are not

needed and defined as the zero function.

15. See Section 5.2.3.

70 5 DIFFERENTIAL CRYPTANALYSIS AND PATHS

For i = j + 1, . . . , V the values of all inputs except Ti−1 and Qt−L+1 of ftemp,t,i
are known, but Qt−L+1 can be ignored as these functions do not depend on the value
of Qt−L+1. Using Observation 5.1, the following mappings are bijective:

gi : Ti−1 7→ ftemp,t,i(0, Qt−L+2, . . . , Qt, Ft,Wt, Ti−1), i ∈ {j + 1, . . . , V }.

By inverting gV , . . . , gj+1 we can compute the values of Tt,V−1, . . . , Tt,j in that order.
First let finvQ,t,2j−1(. . .) = Tt,V = Qt+1. For i = V, . . . , j + 1, let k = j + V − i and
let ci and ri be the select coefficient and rotation constant of the variable Tt,i−1 in
ftemp,t,i then we define finvQ,t,2(j+V−i) and finvQ,t,2(j+V−i)+1 as follows:

finvQ,t,2k(. . .) = ci · TinvQ,t,2k−1

−ci · ftemp,t,i(0, Qt−L+2, . . . , Qt, Ft,Wt, 0);

finvQ,t,2k+1(. . .) = RL(TinvQ,t,2k, N − ri).

Similar to Observation 5.1, the first and second function compute the cj ·(A−Cj) part
and the RR part, respectively, of the inverse of gi. Given the values of Qt−L+2, . . . , Qt,
Ft, Wt and TinvQ,t,2k−1 = Tt,i, this results in TinvQ,t,2k+1 = Tt,i−1. Thus for i = j +1
this results in TinvQ,t,2V−2 = Tj .

Again using Observation 5.1, the following mapping is bijective:

gj : Qt−L+1 7→ ftemp,t,j(Qt−L+1, . . . , Qt, Ft,Wt, Tj−1).

Thus it follows that ft,Qt−L+1
is bijective as

ft,Qt−L+1(Qt−L+1) = gV (· · · (gj+1(gj(Qt−L+1))) · · ·).

Let cQ and rQ be the select and rotation constant of the variable Qt−L+1 in ftemp,t,j
then we define finvQ,t,2V and finvQ,t,2V+1 as follows:

finvQ,t,2V (. . .) = cQ · TinvQ,t,2V−1

−cQ · ftemp,t,j(0, Qt−L+2, . . . , Qt, Ft,Wt, TinvQ,t,j−1);

finvQ,t,2V+1(. . .) = RL(TinvQ,t,2V , N − rQ).

Given the values of Qt−L+2, . . . , Qt, Ft, Wt, TinvQ,t,2V−1 = Tt,j and TinvQ,t,j−1 =
Tt,j−1, this results in TinvQ,t,2V+1 = Qt−L+1.

Using the above theorem it follows that the following mapping is bijective and its
inverse is easily computable using only additions in Z2N and bitwise rotations for all
values of Qt−L+2, . . . , Qt, Ft,Wt ∈ Z2N :

ft,Qt−L+1
: Qt−L+1 7→ ft(Qt−L+1, . . . , Qt, Ft,Wt).

5.4 Properties of the step functions 71

5.4.2 Full dependency on Ft

Theorem 5.2 (Full dependency on Ft). Given values of the variables Qt−L+1, . . . ,
Qt and Wt the following mapping is bijective:

ft,Ft : Ft 7→ Qt+1 = ft(Qt−L+1, . . . , Qt, Ft,Wt).

Furthermore, there exists a sequence of functions (finvF,t,i)
2V+1
i=1 ∈ F2V+1

sumrot that com-
putes the inverse of ft,Ft given values of Qt−L+1, . . . , Qt, Wt and the value of Qt+1:

TinvF,t,0 = 0;

TinvF,t,i = finvF,t,i(Qt−L+1, . . . , Qt,Wt, Qt+1, TinvF,t,0, . . . , TinvF,t,i−1);

Ft = TinvF,t,2V+1.

The proof is analogous to the proof of Theorem 5.1.

5.4.3 Full dependency on Wt

Theorem 5.3 (Full dependency on Wt). Given values of the variables Qt−L+1, . . . ,
Qt and Ft the following mapping is bijective:

ft,Wt :Wt 7→ Qt+1 = ft(Qt−L+1, . . . , Qt, Ft,Wt).

Furthermore, there exists a sequence of functions (finvW,t,i)
2V+1
i=1 ∈ F2V+1

sumrot that com-
putes the inverse of ft,Wt given values of Qt−L+1, . . . , Qt, Ft and the value of Qt+1:

TinvW,t,0 = 0;

TinvW,t,i = finvW,t,i(Qt−L+1, . . . , Qt,Wt, Qt+1, TinvW,t,0, . . . , TinvW,t,i−1);

Wt = TinvW,t,2V+1.

The proof is analogous to the proof of Theorem 5.1.

5.4.4 Properties as step function design criteria

The above three properties can be seen as step function design criteria, since without
these properties the compression function would be more vulnerable to attacks. Below
we outline how the security of the compression function may be compromised if either
one of these three properties does not hold. These design criteria may not be often
pointed out, since the topic of step function design (criteria) is not treated very well
in the literature. Nevertheless it should come as no surprise that these criteria hold
for all members of the MD4 hash function family.

72 5 DIFFERENTIAL CRYPTANALYSIS AND PATHS

Full dependency on Qt−L+1. From a hash function design perspective it is impor-
tant that the mapping ft,Qt−L+1

is bijective. Suppose this mapping is not bijective,
then there are values of Qt−L+2, . . . , Qt, Ft,Wt and Qt+1 such that inverting ft,Qt−L+1

results in multiple pre-images:

|{Qt−L+1 ∈ Z2N | ft(Qt−L+1, . . . , Qt, Ft,Wt) = Qt+1}| > 1.

Barring further complications, this leads to a pre-image attack of Compress which is
about 2K−L faster than the brute-force pre-image attack. The pre-image attack finds
a message M given values ÎHV in, ÎHV out such that ÎHV out = Compress(ÎHV in,M)
with high probability using about 2(N ·L)−(K−L) calls to Compress. Below we sketch
this attack.

Since finalization is bijective and based on Fsumrot, it is easy to find values of
QS−L+1, . . . , QS such that

îhvouti = fout,i(îhvin0, . . . , îhvinL−1, QS−L+1, . . . , QS), i ∈ {0, . . . , L− 1}.

Furthermore, we can expect that an attacker has a sufficiently fast way of choosing
the last K − L words ŴS−K+L, . . . , ŴS−1 such that inverting the last K − L steps
leads to at least 2K−L different pre-images (QS−K+1, . . . , QS−K+l).16

The third property in Section 5.4.3 implies that in each step t all values of Qt+1

can be obtained by varying Wt. Therefore we can safely assume that on average a
message M has probability 2(K−L)−(N ·L) of resulting in one of the 2K−L found pre-
images (QS−K+1, . . . , QS−K+l) during the computation of Compress(ÎHV in,M). By
choosing only messages M such that

(WS−K+L, . . . ,WS−1) = (ŴS−K+L, . . . , ŴS−1),

then with probability 2(K−L)−(N ·L) the computation of Compress(ÎHV in,M) re-
sults in one of the 2K−L found pre-images and thereby also results in IHVout =

ÎHV out. There are in total 2N ·L such messages M among which we can expect to
find 2K−L solutions. It follows that finding a single pre-image of Compress takes
about 2(N ·L)−(K−L) attempts.

Full dependency on Ft. From a hash function designers perspective, the boolean
function is used as a security measure to prevent the hash function to be described as
a linear system over Z2N . If not all possible values of Qt+1 can be obtained by varying
Ft then Ft does not fully contribute to Qt+1 and the security measure is not used to
its full potential. An obvious attack technique is to replace the boolean function with
a linear function that approximates the boolean function. In general it is easier to
linearly approximate the boolean function as the influence of Ft on the output Qt+1

gets smaller.

16. Actually, instead of 2K−L pre-images, any set of 2Z > 2 pre-images qualifies and here ‘sufficiently
fast’ simply requires that finding the Ŵi and the 2Z pre-images is faster than performing 2(N·L)−Z

calls to Compress.

5.4 Properties of the step functions 73

Full dependency on Wt. Designing a hash function without having the message
words Wt fully contribute in each step t implies that IHVout depends in a simpler
manner on the message than possible. This increases the likelihood of significant
weaknesses.

In extreme cases, say only the first bit Wt[0] actually contributes, this reduces
the complexity of a brute force (second) pre-image attack to min(2S , 2L·N) calls to
Compress. S = 1/2(L ·N) for common designs like MD5 and SHA-1, thus this attack
is significantly faster than the desired 2L·N . In each step there are only two possible
outcomes for Qt+1, as in each step t ∈ {0, . . . , S − 1} only a single bit of the message
is used. Over S steps this means that given IHVin there are at most 2S possible
IHVout = Compress(IHVin,M) by varying M instead of the expected 2L·N possible
IHVout. Hence, a brute force (second) pre-image attack has a success probability of
at most max(2−S , 2−L·N) for each try of M .

Rather than brute-forcing it, for given IHVin and M in each step t ∈ {0, . . . , S−1}
there are 2N−1−1 other W ′t ̸=Wt that result in the same Qt+1. LetWsec,t be the set
of all W ′t that result in the same Qt+1 in step t. Finding a second pre-image M ′ ̸=M
is thus reduced to the problem of finding M ′ ̸= M such that its message expansion
(W ′t)

S−1
t=0 is in the set

∏S−1
t=0 Wsec,t. In the case of the message expansion of either

MD5 or SHA-1 this would be a simple if not trivial exercise.

5.4.5 Properties in differential cryptanalysis

The reason we treat these three properties in detail is that we need them in our
differential cryptanalysis. As outlined above, these three properties can be seen as
step function design criteria and as such are inherent to the MD4 hash function family.
Below we outline the use of these properties in our differential cryptanalysis.

Full dependency on Qt−L+1. In our algorithm to construct full differential paths,
we need to be able to extend partial differential paths over steps t = A, . . . , B with
the preceding step t = A − 1. This can easily be done due to the existence of the
functions (finvQ,t,i)

2V+1
i=1 ∈ F2V+1

sumrot that compute the inverse of ft,Qt−L+1
.

Full dependency on Ft. In our algorithm to construct full differential paths, we
construct two partial differential paths independently, the first over steps t = 0, . . . , A
and the second over steps t = A + L + 1, . . . , S − 1. This implies that the difference
in any Qi is either given by the first or the second partial differential path. Due
to the existence of the functions (finvF,t,i)

2V+1
i=1 ∈ F2V+1

sumrot, one can determine target
differences for the boolean function outcomes FA+1, . . . , FA+L. A full valid differential
path is obtained whenever these boolean function outcome differences and the Qi
differences can be simultaneously fulfilled. Construction of a full differential path
can thus be reduced to finding two partial differential paths for which these target
differences in FA+1, . . . , FA+L can actually be obtained given the Qi differences.

74 5 DIFFERENTIAL CRYPTANALYSIS AND PATHS

Full dependency on Wt. Although this property is not directly used in our algo-
rithm to construct full differential paths, it is important in collision finding algorithms
that search for messages M that fulfill a given differential path. This property allows
one to choose working state words Qt−L+1, . . . , Qt+1 which fulfill sufficient conditions
for a given differential path and then compute the corresponding Wt.

5.5 Differential paths

In this section we formalize the concept of a differential path as a precise description
of how differences propagate through the S steps of Compress ∈ Fmd4cf. These differ-
ences are taken between instances Compress(IHVin,M) and Compress(IHV ′in,M ′).
For each variable X ∈ Z2N in the computation of Compress(IHVin,M) we denote
the respective variable in the computation of Compress(IHV ′in,M ′) as X ′. Their
difference is denoted as δX = X ′ − X and the bitwise integer difference as ∆X =
(X ′[i]−X[i])N−1i=0 which is a BSDR of δX. In the following differential cryptanalysis
we refer to such δX and ∆X as variables themselves without directly implying values
for X and X ′.

First we analyze the only two non-trivial operations of Compress with respect to
differences in Z2N : the bitwise rotations RL(X,n) in all ((ftemp,t,i)

V
i=1)

S−1
t=0 and the

boolean functions (fbool,t)
S−1
t=0 .

5.5.1 Rotation of word differences

To determine the difference RL(X ′, n)−RL(X,n) given δX, we distinguish two sit-
uations. First, suppose besides δX also ∆X is known. In this case

∆RL(X,n) = (RL(X ′, n)[i]−RL(X,n)[i])N−1i=0

= (X ′[(i+ n) mod N]−X[(i+ n) mod N])N−1i=0

= (∆X[(i+ n) mod N])N−1i=0

= RL(∆X,n).

The remaining case is where ∆X is undetermined. In this case, up to four different
δY = RL(X ′, n) − RL(X,n) are possible. Here, we determine the possible δY and
their probabilities PrX [δY = RL(X + δX, n) − RL(X,n)]. We define dRL(Z, n) for
Z ∈ Z2N , n ∈ {0, . . . , N−1} as the set of possible differences RL(X+Z, n)−RL(X,n)
after rotation with non-zero probability as in the following lemma.

Lemma 5.4 (Rotation of differences). Given δX ∈ Z2N and rotation constant n ∈
{0, . . . , N − 1} then for uniformly chosen random X ∈ Z2N , there are at most four
possible differences δY = RL(X + δX, n) − RL(X,n) after rotation. Let Zlow =∑N−n−1
i=0 2i · δX[i] ∈ Z and Zhigh =

∑N−1
i=N−n 2

i · δX[i] ∈ Z. Then δY as above may

5.5 Differential paths 75

attain one of four values as given below along with the corresponding probabilities:

δY PrX [RL(X + Z, n)−RL(X,n) = δY]

D1 = RL(δX, n) 2−2N+n · (2N−n − Zlow) · (2N − Zhigh)
D2 = RL(δX, n)− 2n 2−2N+n · (2N−n − Zlow) · Zhigh
D3 = RL(δX, n) + 1 2−2N+n · Zlow · (2N − Zhigh − 2N−n)
D4 = RL(δX, n)− 2n + 1 2−2N+n · Zlow · (Zhigh + 2N−n)

Depending on the value of δX, some of these probabilities may be zero thus reducing
the number of possible outcomes, thus:

dRL(δX, n) =
{
Di

∣∣∣ Pr
X
[RL(X + Z, n)−RL(X,n) = Di] ̸= 0, i ∈ {1, 2, 3, 4}

}
.

This lemma follows directly from Corollary 4.12 of Magnus Daum’s Ph.D. thesis
[Dau05]. We provide a different proof using BSDRs:

Proof. As above, any BSDR (ki)
N−1
i=0 of δX gives rise to a candidate δY given by the

BSDR
RL((ki), n) = (kN−n−1, . . . , k0, kN−1, . . . , kN−n).

Two BSDRs (ki)
N−1
i=0 and (li)

N−1
i=0 of δX result in the same δY if and only if

N−n−1∑
i=0

2iki =
N−n−1∑
i=0

2ili and
N−1∑
i=N−n

2iki =
N−1∑
i=N−n

2ili. (5.1)

To analyze this property, we define a partition as a pair (α, β) ∈ Z2 such that
α + β = δX mod 2N , |α| < 2N−n, |β| < 2N and 2N−n|β. For any partition (α, β),
values ki ∈ {−1, 0, 1} for 0 ≤ i < N can be found such that

α =

N−n−1∑
i=0

2iki and β =

N−1∑
i=N−n

2iki. (5.2)

In particular, there is at least one such (ki)
N−1
i=0 which can be constructed by looking

at the binary representation of |α| and |β| and applying the sign of α and β on the
respective bits. With α+β = δX mod 2N it follows that any such (ki)

N−1
i=0 is a BSDR

of δX. Conversely, with Equation 5.2 any BSDR (ki) of δX defines a partition, which
we denote (ki) ≡ (α, β). Moreover, any BSDR (ki) of δX that leads to the same
partition gives rise to the same candidate δY due to Equation 5.1. The rotation of a
partition (α, β) is defined as

RL((α, β), n) = 2nα+ 2n−Nβ ∈ Z2N .

If (ki) ≡ (α, β), this matches RL((ki), n).
The partition constraints imply there are at most two possible values for α such

that α+β = δX, namely Zlow and when Zlow ̸= 0 also Zlow−2N−n. For each value of

76 5 DIFFERENTIAL CRYPTANALYSIS AND PATHS

α there are also at most two possible values for β namely (δX−α mod 2N) and when
this is non-zero also (δX − α mod 2N)− 2N . Note that Zhigh = (δX − Zlow mod 2N)
and let Z ′high = (δX − Zlow + 2N−n mod 2N). Together this gives rise to at most 4
partitions:

p1. (α, β) = (Zlow, Zhigh);
p2. (α, β) = (Zlow, Zhigh − 2N), if Zhigh ̸= 0;
p3. (α, β) = (Zlow − 2N−n, Z ′high), if Zlow ̸= 0;

p4. (α, β) = (Zlow − 2N−n, Z ′high − 2N), if Zlow ̸= 0 ∧ Z ′high ̸= 0.

Note that RL((Zlow, Zhigh), n) = RL(δX, n).
To find the probability of each δY , we define

p(α,β) = Pr
X
[RL((α, β), n) = RL(X + δX, n)−RL(X,n)]

and show how p(α,β) can be calculated. For each of the four possibilities this is
done by counting the number of N -bit words X such that the BSDR defined by
ki = (X+δX)[i]−X[i] satisfies (ki) ≡ (α, β). This can be expressed in two equations:

α =
N−n−1∑
i=0

((X + α+ β)[i]−X[i])2i, β =
N−1∑
i=N−n

((X + α+ β)[i]−X[i])2i.

Since 2N−n|β, the β term can be ignored in the first equation. The first equation
then implies that adding α to X only affects the low-order N −n bits and thus α can
be ignored in the second equation:

α =
N−n−1∑
i=0

((X + α)[i]−X[i])2i, β =
N−1∑
i=N−n

((X + β)[i]−X[i])2i.

These two equations hold if and only if:

0 ≤ α+

N−n−1∑
i=0

X[i]2i < 2N−n, 0 ≤ β +

N−1∑
i=N−n

X[i]2i < 2N .

Considering the (N − n) low-order bits, we determine the number r of Xlow-values
with 0 ≤ Xlow < 2N−n such that 0 ≤ α+Xlow < 2N−n: if α < 0 then r = 2N−n + α
and if α ≥ 0 then r = 2N−n − α. Hence only r = 2N−n − |α| out of 2N−n possible
Xlow-values satisfy 0 ≤ α + Xlow < 2N−n. The same argument can be used for the
n high-order bits to determine that there are exactly 2n − |β|2n−N number of values
for Xhigh = 2n−N ·

∑N−1
i=N−nX[i]2i such that 0 ≤ 2n−N · β +Xhigh < 2n. Hence, we

conclude

p(α,β) =
2N−n − |α|

2N−n
· 2

n − |β|2n−N

2n
=

2N−n − |α|
2N−n

· 2
N − |β|
2N

.

5.5 Differential paths 77

Assume that Z ′high ̸= 0, then Z ′high = Zhigh + 2N−n. One can now immediately
verify that D1, D2, D3 and D4 match the rotations of the 4 partitions p1, p2, p3 and
p4, respectively. Furthermore, the partition probabilities match those given in the
lemma, and whenever a partition is excluded, its probability is zero.

When Z ′high = 0, then Zhigh = 2N − 2N−n. Now as above, D1 and D2 match the
rotations of partitions p1 and p2, respectively. We can show that D4 matches the
rotation of partition p3:

RL((Zlow − 2N−n, Z ′high), n) = 2n · (Zlow − 2N−n) + 2n−N · (0)
= 2n · Zlow + 2n−N · (Zhigh − 2N + 2N−n)

= 2n · Zlow + 2n−N · Zhigh − 2n + 1

= RL(δX, n)− 2n + 1.

And also the probability of partition p3 matches the probability of D4 given in the
lemma:

pp3 = 2n−N · (2N−n − (Zlow − 2N−n)) · 2−N · (2N − Z ′high)

= 2−2N+n · Zlow · (2N)

= 2−2N+n · Zlow · (Zhigh + 2N−N).

The remaining partition p4 is excluded and D3 is also excluded as its probability is
zero.

5.5.2 Boolean function differences

For any step t, let fbool,t ∈ Fboolrot be given as:

fbool,t(Qt−L+2, . . . , Qt) =
N−1∑
i=0

2i · g(RL(Qt−L+2, rt−L+2)[i], . . . , RL(Qt, rt)[i]),

where g : {0, 1}L−1 → {0, 1} is an arbitrary boolean function. Since each bit of the
output depends only on a single bit of each of the variables Qt−L+2, . . . , Qt, for a
precise differential description we need the bitwise integer difference ∆Qi for these
inputs and the output difference is determined bitwise as ∆Ft.

For j ∈ {0, . . . , L − 2}, define Xj = RL(Qt−L+2+j , rt−L+2+j) and thus ∆Xj =
RL(∆Qt−L+2+j , rt−L+2+j) to simplify notation a bit, then the difference ∆Ft can be
determined using

∆Ft[i] = g(X ′0[i], . . . , X
′
L−2[i])− g(X0[i], . . . , XL−2[i]).

Let i ∈ {0, . . . , N − 1}, we consider the set Ui of possible input values:

Ui = {((X ′0[i], . . . , X ′L−2[i]), (X0[i], . . . , XL−2[i])) | X ′j [i] = Xj [i] + ∆Xj [i]}.

This set Ui may be further restricted to Ũi by auxiliary conditions imposed over
the bits Xj [i] for which ∆Xj [i] = 0. (When ∆Xj [i] ̸= 0, X ′j [i] and Xj [i] are already

78 5 DIFFERENTIAL CRYPTANALYSIS AND PATHS

determined and otherwise X ′j [i] = Xj [i] holds.) The cardinality of the set Ũi indicates
the amount of freedom left. If Ũi = ∅ then the auxiliary conditions together with ∆Qj
are contradictory and are thus of no interest.

The set Ũi of possible input values induces a set VŨi
of possible output differences:

VŨi
= {g(X ′0[i], . . .)− g(X0[i], . . .) | ((X ′0[i], . . .), (X0[i], . . .)) ∈ Ũi}.

If |VŨi
| = 1 then ∆Ft[i] ∈ VŨi

is uniquely determined and no auxiliary conditions are
necessary. This is always the case if ∆X0[i] = . . . = ∆XL−2[i] = 0 as then VŨi

= {0}.
Otherwise one can choose any value ∆F̂t[i] ∈ VŨi

and pose auxiliary conditions on
X0[i], . . . , XL−2[i] such that the resulting new set of possible input values Ûi:

• uniquely determines ∆Ft[i]: VÛi
= {∆F̂t[i]}.

• is as large as possible: VŨi\Ûi
∩ VÛi

= ∅.

Once all ∆Ft[i] are uniquely determined by adding auxiliary conditions on Qt−L+2,
. . ., Qt as necessary, also ∆Ft is completely determined. Depending on the boolean
function g, some of the input variables of Qt−L+2, . . . , Qt may not affect the value
of fbool,t(Qt−L+2, . . . , Qt) and thus their respective variables Qj , Q′j ,∆Qj , can be
ignored entirely in the above analysis.

5.5.3 Differential steps

Differential paths essentially are a sequence of differential steps. The message differ-
ences are chosen in some clever manner and must be given in the form of a sequence
(Wt)

S−1
t=0 of allowed message word differences δWt ∈ Wt for each step t. A differential

step is a precise description of how differences in the working state propagate through
a single step t ∈ {0, . . . , S − 1} and is defined as the tuple

((δQj)
t+1
j=t−L+1, (∆Qj)j∈It , δWt, ∆Ft, ((δYj,i)

L+3
i=1)Vj=1),

where

• It ⊆ {t − L + 2, . . . , t} is the set of indices j such that the input variable Qj
affects the outcome fbool,t(Qt−L+2, . . . , Qt);

• For j ∈ It, ∆Qj is a BSDR of δQj ;

• δWt ∈ Wt;

• ∆Ft[i] ∈ {g(X ′0[i], . . .) − g(X0[i], . . .) | X ′j [i] = Xj [i] + ∆Xj [i]} where g is the
underlying boolean function of fbool,t and RL(Qt−L+2+j , rt−L+2+j) is denoted
by Xj as in Section 5.5.2;

• For j ∈ {1, . . . , V } and i ∈ {1, . . . , L + 3}, let rj,i and cj,i denote the rota-
tion constant and selection constant associated with the i-th input variable in
ftemp,t,j ;

5.5 Differential paths 79

• The variable Yj,i denotes the i-th input variable of ftemp,t,j after the rota-
tion as in ftemp,t,j , thus for i = 1, . . . , L, Yj,i denotes RL(Qt−L+i, rj,i). The
remaining Yj,L+1, Yj,L+2, Yj,L+3 denote RL(Ft, rj,L+1), RL(Wt, rj,L+2) and
RL(Tt,j−1, rj,L+3), respectively.

The intermediate variable differences δTt,j as in Section 5.3.4 are hereby determined:
δTt,0 = 0 by definition, δTt,j =

∑L+3
i=1 cj,iδYj,i for j = 1, . . . , V . Thus together with

δQj , δWt and ∆Ft all differences of the inputs of ftemp,t,j and the differences δYj,j of
the rotations of these inputs are known.

A differential step is called valid if there exist values (Q̂j)
t+1
j=t−L+1, (Q̂′j)t+1

j=t−L+1,
Ŵt, Ŵ ′t such that:

• Q̂t+1 and Q̂′t+1 are the correct outputs of the stepfunction in Section 5.3.4 for
inputs ((Q̂j)

t
j=t−L+1, Ŵt) and ((Q̂′j)

t
j=t−L+1, Ŵ

′
t), respectively;

• δQj = Q̂′j − Q̂j for j = t− L+ 1, . . . , t+ 1;

• ∆Qj [i] = Q̂′j [i]− Q̂j [i] for j ∈ It and i = 0, . . . , N − 1;

• δWt = Ŵ ′t − Ŵt;

• ∆Ft[i] = F̂ ′t [i] − F̂t[i] for i = 0, . . . , N − 1, where F̂t = fbool,t(Q̂t−L+2, . . . , Q̂t)

and F̂ ′t = fbool,t(Q̂
′
t−L+2, . . . , Q̂

′
t);

• δYj,i = RL(Q̂′t−L+i, rj,i)−RL(Q̂t−L+i, rj,i) for j = 1, . . . , V and i = 1, . . . , L;

• δYj,L+1 = RL(F̂ ′t , rj,L+1)−RL(F̂t, rj,L+1) for j = 1, . . . , V ;

• δYj,L+2 = RL(Ŵ ′t , rj,L+2)−RL(Ŵt, rj,L+2) for j = 1, . . . , V ;

• δYj,L+3 = RL(T̂ ′t,j−1, rj,L+3) − RL(T̂t,j−1, rj,L+3) for j = 1, . . . , V , where T̂t,i
and T̂ ′t,i for i = 0, . . . , V are computed as in Section 5.3.4;

Such values (Q̂j)
t+1
j=t−L+1, (Q̂′j)t+1

j=t−L+1, Ŵt, Ŵ ′t are called a solution for the differ-
ential step. This implies that for j = 1, . . . , V and each rotation in ftemp,t,j , the
difference δYj,i is a possible outcome after rotation using the respective input dif-
ference: δQt−L+1, . . ., δQt, δFt, δWt or δTt,j . Moreover this also implies that if a
particular BSDR Z is given for such an input difference associated with δYj,i, then
RL(Z, rj,i) is a BSDR of δYj,i.

A partial differential path is defined as a sequence of differential steps for a sub-
range t = tbegin, . . . , tend, where tbegin, tend ∈ {0, . . . , S − 1}, tend ≥ tbegin. A partial
differential path over the range t = tbegin, . . . , tend is called valid if there exists a
solution consisting of values

(Q̂j)
tend+1
j=tbegin−L+1, (Q̂′j)

tend+1
j=tbegin−L+1, (Ŵj)

tend
j=tbegin

, (Ŵ ′j)
tend
j=tbegin

80 5 DIFFERENTIAL CRYPTANALYSIS AND PATHS

which simultaneously provides solutions for all differential steps of the partial differ-
ential path. Such a solution does not imply a solution for the near-collision attack
as (Ŵj)

tend
j=tbegin

and (Ŵ ′j)
tend
j=tbegin

with almost certainty are not part of valid message
expansions for two message blocks M and M ′. A (full) differential path is defined as
a partial differential path over the range t = 0, . . . , S − 1.

5.6 Differential path construction
In this section we present the algorithm for constructing valid full differential paths
for a compression function Compress ∈ Fmd4cf based on two valid partial differential
paths: Pl over steps t = 0, . . . , tb and Pu over steps t = te, . . . , S − 1 where tb <
te − L. It will do so by independently extending Pl and Pu to t = 0, . . . , tc − 1 and
tc + L, . . . , S − 1, respectively, for some chosen value of tc so they do not overlap.
Actually, we construct large sets El and Eu of such extended differential paths. For
the remaining steps t = tc, . . . , tc + L− 1 we check for combinations Pl ∈ El, Pu ∈ Eu
whether a valid full differential path can be constructed.

5.6.1 Forward

For t̃ = tb + 1, . . . , tc − 1, we extend a valid partial differential path P over steps
t = 0, . . . , t̃− 1 with step t̃. The partial differential path gives us values (δQt)

t̃
t=−L+1

and (∆Qt)t∈I where I =
∪t̃−1
t=0 It. For i ∈ {t̃ − L + 1, . . . , t̃ − 1}, P also gives us

(multiple) differences after rotation of δQi. For each non-trivial rotation of δQi,
which we index by j ∈ JP,i, we denote the rotation constant as rP,i,j and the outcome
difference as δYP,i,j ∈ dRL(δQi, rP,i,j).17 Since such values can also be determined
from given IHVin and IHV ′in we can also allow tb to be −1.

For i ∈ It̃ \ I, we need to choose a BSDR ∆Qi of δQi. We may choose any BSDR
∆Qi of δQi such that RL(∆Qi, rP,i,j) is a BSDR of δYP,i,j for all j ∈ JP,i. Low
weight BSDRs are the preferable choice as they in general lead to fewer sufficient
conditions for the differential path.

Let Xj denote RL(Qt̃−L+2+j , rbool,t̃−L+2+j) and g be the underlying boolean func-
tion of fbool,t̃ as in Section 5.5.2. For i = 0, . . . , N − 1, the set

Ui = {((X ′0[i], . . .), (X0[i], . . .)) | X ′j [i] = Xj [i] + ∆Xj [i]}

defines all possible input bit values associated with the output bit Ft[i]. Previous
steps restrict this set Ui further to Ũi by allowing only those values for which there
is a matching solution of P. Choose any

ki ∈
{
g(X ′0[i], . . .)− g(X0[i], . . .) | ((X ′0[i], . . .), (X0[i], . . .)) ∈ Ũi

}
.

After all ki have been chosen, ∆Ft = (ki)
N−1
i=0 is fully determined. For j ∈ {1, . . . , V },

let δYj,L+1 = σ(RL(∆Ft, rtemp,j,L+1)) where rtemp,j,L+1 is the rotation constant as-

17. For dRL see Section 5.5.1.

5.6 Differential path construction 81

sociated with Ft in ftemp,t̃,j .18 As Ft is selected only once in total, there is at most
one non-trivial case for which rtemp,j,L+1 ̸= 0.

Choose any δWt̃ ∈ Wt̃. For j ∈ {1, . . . , V }, let rtemp,j,L+2 and ctemp,j,L+2 be the
rotation and selection constant associated with Wt̃ in ftemp,t̃,j . Choose any difference
δYj,L+2 ∈ dRL(δWt̃, rtemp,j,L+2), preferably one with the highest probability. As
Wt is selected only once in total, there is at most one non-trivial case for which
rtemp,j,L+2 ̸= 0.

For k ∈ {1, . . . , V } and i ∈ {t̃ − L + 1, . . . , t̃}, let rtemp,k,i−t̃+L be the rotation
constant associated with Qi in ftemp,t̃,k. If i /∈ (It̃ ∪ I) then ∆Qi is not yet chosen,
we need to choose V differences

δYk,(i−t̃+L) ∈ dRL(δQi, rtemp,k,i−t̃+L).

Consider the set of BSDRs Z of δQi such that σ(RL(Z, rP,i,j)) = δYP,i,j for all
j ∈ JP,i. Each such BSDR Z leads directly to values

(δYk,i−t̃+L)
V
k=1 = (σ(RL(Z, rtemp,k,i−t̃+L)))

V
k=1.

One can choose any such values (δYk,i−t̃+L)
V
k=1, the preferable choice is one which

results from the largest number of possible Z-values. Otherwise, if i ∈ (It̃ ∪ I) let
δYk,i−t̃+L = σ(RL(∆Qi, rtemp,k,i−t̃+L)).

The differential step t = t̃ is now easily determined. By definition δTt̃,0 = 0. For
i = 1, . . . , V , choose a δYi,L+3 ∈ dRL(δTt̃,i−1, rtemp,i,L+3) with the highest probability
where rtemp,i,L+3 is the rotation constant associated with Tt̃,i−1 in ftemp,t̃,i. Note that:

δTt̃,i = ftemp,t̃,i(Q
′
t̃−L+1

, . . . , Q′
t̃
, F ′

t̃
,W ′

t̃
, T ′
t̃,i−1)

−ftemp,t̃,i(Qt̃−L+1, . . . , Qt̃, Ft̃,Wt̃, Tt̃,i−1)

=

L∑
j=1

ci,j(RL(Q
′
t̃−L+j , rtemp,i,j)−RL(Qt̃−L+j , rtemp,i,j))

+ci,L+1(RL(F
′
t̃
, rtemp,i,L+1)−RL(Ft̃, rtemp,i,L+1))

+ci,L+2(RL(W
′
t̃
, rtemp,i,L+2)−RL(Wt̃, rtemp,i,L+2))

+ci,L+3(RL(T
′
t̃,i−1, rtemp,i,L+3)−RL(Tt̃,i−1, rtemp,i,L+3))

=
L+3∑
j=1

ci,jδYi,j

All δYi,j have been determined already. Thus δTt̃,i is hereby determined and for i = V
also δQt̃+1.

The extended differential path P̃ consists of P and the differential step t = t̃.
If there exists no solution of P̃ then the extended differential path is not valid and
of no further interest. We collect many valid differential paths P̃ by varying the

18. For σ see Section 5.2.2.

82 5 DIFFERENTIAL CRYPTANALYSIS AND PATHS

choices made and for different input differential paths P. As this set can theoretically
grow exponentially over subsequent steps t̃, keep only the R “best” differential paths
for some feasibly large R. Here “best” should be tailored toward the near-collision
attack construction, which implies a low number of sufficient conditions for the partial
differential path and a large degree of freedom for message modification techniques.

5.6.2 Backward

For t̃ = te − 1, . . . , tc +L, we extend a valid partial differential path P over steps t =
t̃+1, . . . , S−1 with step t̃. The partial differential path gives us values (δQt)St=t̃−L+2

,
(∆Qt)t∈I where I =

∪S−1
t=t̃+1

It. For i ∈ {t̃ − L + 2, . . . , t̃ + 1}, the differential
path P also gives us (multiple) differences after rotation of δQi. For each non-trivial
rotation of δQi, which we index by j ∈ JP,i, we denote the rotation constant as rP,i,j
and the outcome difference as δYP,i,j ∈ dRL(δQi, rP,i,j). The following steps are
basically the same as in Section 5.6.1 except initially (finvQ,t̃,k)

2V+1
k=1 (as constructed

in Section 5.4.1) are used instead of (ftemp,t̃,k)
V
k=1. Only at the end the results are

translated to a differential step over (ftemp,t̃,k)
V
k=1.

For i ∈ It̃ \ I, we need to choose a BSDR ∆Qi of δQi. We may choose any BSDR
∆Qi of δQi such that RL(∆Qi, rP,i,j) is a BSDR of δYP,i,j for all j ∈ JP,i. As before,
low weight BSDRs are the preferable choice as they in general lead to fewer sufficient
conditions for the differential path.

Let Xj denote RL(Qt̃−L+2+j , rbool,t̃−L+2+j) and g be the underlying boolean func-
tion of fbool,t̃ as in Section 5.5.2. For i = 0, . . . , N − 1, the set

Ui = {((X ′0[i], . . .), (X0[i], . . .)) | X ′j [i] = Xj [i] + ∆Xj [i]}

defines all possible input bit values associated with the output bit Ft[i]. The known
differential steps t = t̃+1, . . . , S− 1 restrict this set Ui further to Ũi by allowing only
those values for which there is a matching solution of P. Choose any

ki ∈
{
g(X ′0[i], . . .)− g(X0[i], . . .) | ((X ′0[i], . . .), (X0[i], . . .)) ∈ Ũi

}
.

After k0, . . . , kN−1 have been chosen, ∆Ft = (ki)
N−1
i=0 is fully determined. For j ∈

{1, . . . , 2V+1}, let δYj,L+1 = σ(RL(∆Ft, rinvQ,j,L+1)) where rinvQ,j,L+1 is the rotation
constant associated with Ft in finvQ,t̃,j .

Choose any δWt̃ ∈ Wt̃. For k ∈ {1, . . . , 2V +1}, let rinvQ,k,L+2 and cinvQ,k,L+2 be
the rotation and selection constant associated with Wt̃ in finvQ,t̃,k. Choose any dif-
ference δYk,L+2 ∈ dRL(δWt̃, rinvQ,k,L+2), preferably one with the highest probability.

For k ∈ {1, . . . , 2V + 1} and i ∈ {t̃−L+ 2, . . . , t̃+ 1}, let rinvQ,k,(i−t̃+L−1) be the
rotation constant associated with Qi in finvQ,t̃,k. If i /∈ (It̃ ∪ I) then ∆Qi is not yet
chosen, we need to choose 2V + 1 differences

δYk,(i−t̃+L−1) ∈ dRL(δQi, rinvQ,k,(i−t̃+L−1)).

5.6 Differential path construction 83

Consider the set of BSDRs Z of δQi such that σ(RL(Z, rP,i,j)) = δYP,i,j for all
j ∈ JP,i. Each such BSDR Z leads directly to values

(δYk,(i−t̃+L−1))
2V+1
k=1 = (σ(RL(Z, rinvQ,k,(i−t̃+L−1))))

2V+1
k=1 .

One can choose any such values (δYk,(i−t̃+L−1))
2V+1
k=1 , the preferable choice is one

which results from the largest number of possible Z-values. Otherwise, if i ∈ (It̃ ∪ I)
let δYk,(i−t̃+L−1) = σ(RL(∆Qi, rinvQ,k,(i−t̃+L−1))).

By definition δTinvQ,t̃,0 = 0. For i = 1, . . . , 2V + 1 and j = 0, . . . , i − 1, let rT,i,j
be the rotation constant associated with TinvQ,t̃,j in finvQ,t̃,i. Choose a most probable
δYi,L+3+j ∈ dRL(δTinvQ,t̃,j , rT,i,j). Note that:

δTinvQ,t̃,i =
L∑
j=1

ci,j(RL(Q
′
t̃−L+j+1

, rinvQ,i,j)−RL(Qt̃−L+j+1, rinvQ,i,j))

+ci,L+1(RL(F
′
t̃
, rinvQ,i,L+1)−RL(Ft̃, rinvQ,i,L+1))

+ci,L+2(RL(W
′
t̃
, rinvQ,i,L+2)−RL(Wt̃, rinvQ,i,L+2))

+

i−1∑
j=0

ci,L+3+j(RL(T
′
invQ,t̃,j , rT,i,j)−RL(TinvQ,t̃,j , rT,i,j))

=
L+2+i∑
j=1

ci,jδYi,j .

All δYi,j have been determined already. Thus δTinvQt̃,i is hereby determined and for
i = 2V + 1 also δQt̃−L+1.

Most of the information for the differential step t = t̃ is a direct result of the above
steps: the values (δQj)

t̃+1

j=t̃−L+1
, (∆Qj)j∈It , δWt and ∆Ft. It remains to determine

the δỸi,j corresponding to differences after rotation of the inputs of ftemp,t,i. In the
proof of Theorem 5.1 the original inputs of ftemp,t,j are used in the finvQ,t,i in one of
two ways. In the first way they are used as a direct input to a call of ftemp,t,j within
finvQ,t,i. In the second way, they form the outcome of some finvQ,t,i that is used
together with finvQ,t,i−1 to invert ftemp,t,j . Thus all differences δỸi,j after rotation of
the inputs of ftemp,t,i are already determined above.

The extended differential path P̃ consists of P and the differential step t = t̃. If
there exists no solution of P̃ then the extended differential path is not valid and of
no further interest. Similar to extending forward, we collect many valid differential
paths P̃ by varying the choices made and for different input differential paths P. As
this set can theoretically grow exponentially over subsequent steps t̃, keep only the
R “best” differential paths for some feasibly large R. Here “best” differential paths
should be read as the differential paths with the highest success probability.

84 5 DIFFERENTIAL CRYPTANALYSIS AND PATHS

5.6.3 Connect

In the final stage, we try many combinations of lower valid differential paths Pl over
steps t = 0, . . . , tc−1 and upper valid differential paths Pu over steps tc+L, . . . , S−1.
For each such combination we have differential steps t = 0, . . . , tc−1, tc+L, . . . , S−1.
This means that all (δQt)St=−L+1 are known either from Pl or Pu, there is no overlap.
Together Pl and Pu also provide values (∆Qt)t∈I where I =

∪S−1
t=tc+L

It ∪
∪tc−1
t=0 It.

We use ((finvF,j,i)
2V+1
i=1)tc+L−1j=tc

to determine target differences δFtc , . . . , δFtc+L−1. By
using the remaining freedom in yet undetermined BSDRs ∆Ftc , . . . ,∆Ftc+L−1, we
try to achieve these target differences.

For t̃ = tc, . . . , tc + L − 1, we do the following and exhaustively try all possible
choices. For i ∈ It̃ \ (I ∪

∪t̃−1
t=tc

It), we need to choose a BSDR ∆Qi of δQi. For
i ∈ {t̃−L+1, . . . , t̃+1}, the preceding differential steps t = tc, . . . , t̃−1 together with
Pl and Pu give us (multiple) differences after rotation of δQi. For each non-trivial
rotation of δQi, which we index by j ∈ JP,i, we denote the rotation constant as rP,i,j
and the outcome difference as δYP,i,j ∈ dRL(δQi, rP,i,j). Choose any BSDR ∆Qi of
δQi such that RL(∆Qi, rP,i,j) is a BSDR of δYP,i,j for all j ∈ JP,i.

Choose any δWt̃ ∈ Wt̃. For k ∈ {1, . . . , 2V + 1}, let rinvF,k,L+2 and cinvF,k,L+2

be the rotation and selection constant associated with Wt̃ in finvF,t̃,k. Choose any
difference δYk,L+2 ∈ dRL(δWt̃, rinvF,k,L+2).

For k ∈ {1, . . . , 2V + 1} and i ∈ {t̃ − L + 1, . . . , t̃ + 1}, let rinvF,k,(i−t̃+L) be the
rotation constant associated with Qi in finvF,t̃,k. If i /∈ (I ∪

∪t̃
t=tc

It) then ∆Qi is not
yet chosen and we need to choose 2V + 1 differences

δYk,(i−t̃+L) ∈ dRL(δQi, rinvF,k,(i−t̃+L)).

Consider the set of BSDRs Z of δQi such that σ(RL(Z, rP,i,j)) = δYP,i,j for all
j ∈ JP,i. Each such BSDR Z leads directly to values

(δYk,(i−t̃+L))
2V+1
k=1 = (σ(RL(Z, rinvF,k,(i−t̃+L))))

2V+1
k=1 .

Choose any such values (δYk,(i−t̃+L))
2V+1
k=1 . Otherwise, if i ∈ (I ∪

∪t̃
t=tc

It) then let
δYk,(i−t̃+L) = σ(RL(∆Qi, rinvF,k,(i−t̃+L))).

By definition δTinvF,t̃,0 = 0. For i = 1, . . . , 2V + 1 and j = 0, . . . , i − 1, let rT,i,j
be the rotation constant associated with TinvF,t̃,j in finvF,t̃,i. Choose any δYi,L+3+j ∈
dRL(δTinvF,t̃,j , rT,i,j), here we do not limit the choices to high probability values to
increase the success probability of our connection algorithm. This can be compensated
by searching for many valid full differential paths and choosing the one most suitable

5.6 Differential path construction 85

for a near-collision attack. Note that:

δTinvF,t̃,i =
L+1∑
j=1

ci,j(RL(Q
′
t̃−L+j , rinvF,i,j)−RL(Qt̃−L+j , rinvF,i,j))

+ci,L+2(RL(W
′
t̃
, rinvF,i,L+2)−RL(Wt̃, rinvF,i,L+2))

+
i−1∑
j=0

ci,L+3+j(RL(T
′
invF,t̃,j , rT,i,j)−RL(TinvF,t̃,j , rT,i,j))

=
L+2+i∑
j=1

ci,jδYi,j .

All δYi,j have been determined already. Thus δTinvFt̃,i is hereby determined and for
i = 2V + 1 also δFt̃.

Let Xj denote RL(Qt̃−L+2+j , rbool,t̃−L+2+j) and g be the underlying boolean func-
tion of fbool,t̃ as in Section 5.5.2. For i = 0, . . . , N − 1, the set

Ui = {((X ′0[i], . . .), (X0[i], . . .)) | X ′j [i] = Xj [i] + ∆Xj [i]}

defines all possible input bit values associated with the output bit Ft[i]. The known
differential steps restrict this set Ui further to Ũi by allowing only those values for
which there is a matching solution of those differential steps. Let

Vi =
{
g(X ′0[i], . . .)− g(X0[i], . . .) | ((X ′0[i], . . .), (X0[i], . . .)) ∈ Ũi

}
.

Now it remains to verify whether δFt̃ can be achieved by one of the possible BSDRs
Z such that Z[i] ∈ Vi for i = 0, . . . , N − 1.

To this end we desire to construct sets

Zi =

(kj)
i
j=0

∣∣∣∣∣∣ kj ∈ Vj ∧
 i∑
j=0

kj2
j ≡ δFt̃ mod 2i+1

 , i ∈ {0, . . . , N − 1}.

It follows that Z0 = {(k0) | k0 ∈ V0 ∧ (k0 ≡ δFt̃ mod 2)}. For i = 1, . . . , N − 1, we
construct Zi as

Zi =

(kj)
i
j=0

∣∣∣∣∣∣ (kj)i−1j=0 ∈ Zi−1 ∧ ki ∈ Vi ∧

 i∑
j=0

kj2
j ≡ δFt̃ mod 2i+1

 .

If Zi = ∅ then δFt̃ cannot be achieved and other choices above have to be tried. If all
choices above have been exhausted then we try a untried combination of Pl and Pu.
Otherwise, δFt̃ is achieved by any of the BSDRs Z ∈ ZN−1. Choose any ∆Ft̃ ∈ ZN−1.

Most of the information for the differential step t = t̃ is a direct result of the above
steps: the values (δQj)

t̃+1

j=t̃−L+1
, (∆Qj)j∈It , δWt and ∆Ft. It remains to determine

86 5 DIFFERENTIAL CRYPTANALYSIS AND PATHS

the δỸi,j corresponding to differences after rotation of the inputs of ftemp,t,i. As the
proof of Theorem 5.2 is analogous to that of Theorem 5.1, the original inputs of
ftemp,t,j are used in the finvF,t,i in one of two ways. In the first way they are used as
a direct input to a call of ftemp,t,j within finvF,t,i. In the second way, they form the
outcome of some finvQ,t,i that is used together with finvQ,t,i−1 to invert ftemp,t,j .

Thus all differences δỸi,j after rotation of the inputs of ftemp,t,i are already de-
termined above. It remains to verify whether there exists a simultaneous solution for
Pl, Pu and the differential steps t = tc, . . . , t̃. If there is no such solution then this
differential step is of no further interest and we try different choices above.

We can now try the next remaining differential step until t̃ = tc + L− 1 in which
case we have a full valid differential path.

5.6.4 Complexity

The complexity of the above procedure is of great interest, however it depends on
many factors which are still undecided. It is common in attacks against hash functions
to describe the complexity as the equivalent runtime cost in compression function calls.
However, the parameters N , L, K and S, and the initialization, finalization, message
expansion and step functions of the compression function remain to be chosen, thereby
making a thorough complexity analysis infeasible. Nevertheless, below we comment
on several significant factors that contribute to the complexity of the above differential
path construction.

Connect search. The connect search tries combinations of lower and upper partial
differential paths. The average runtime cost for each combination of lower and up-
per partial differential paths depends among others on the degrees of freedom. Less
freedom implies a lower average runtime cost for each combination, however the av-
erage success probability per combination also decreases. The expected number of
combinations to try is determined by the average success probability multiplied by
the desired number of valid full differential paths. This desired number of valid full
differential paths can be one, but often a lot more than one are desired as this leaves
additional freedom when implementing a collision attack.

The degrees of freedom can mostly be found in the number of allowed BSDRs
∆Qi for i ∈ {tc − L+ 2, . . . , tc + L} \

∪tc+L−1
t=tc

It and the average size of the boolean
function output bit difference sets Ũj . At least two ∆Qi are not uniquely determined
yet: i = tc and i = tc + 1. On average, a higher weight NAF(δQi) results in a larger
number of allowed BSDRs ∆Qi. Therefore a high weight NAF(δQi) for these values
of i is beneficiary to the connect search, which is in contrast with the desire to obtain
differential paths with as few as possible number of bitconditions.

Forward and backward search. The forward and backward search have very sim-
ilar complexity characteristics. The complexity of the forward and backward search
for each step consists of the following factors:

5.6 Differential path construction 87

• number of input partial differential paths: by keeping only the R “best” partial
differential paths this factor is upper bounded by R. Let Rf and Rb be this
upper bound for the forward and backward search, respectively. It follows that
Rf ·Rb must be chosen large enough such that the desired number of valid full
differential paths in the connect search may be obtained.

• average number of BSDRs ∆Qt̃ of δQt̃: this is lower bounded by 2w(NAF(δQt̃)).
Since low weight BSDRs are preferred, the set of allowed BSDRs ∆Qt̃ can be
bounded for instance by taking only the B lowest weight BSDRs, limiting the
maximum weight w(∆Qt̃) ≤ B, limiting the maximum offset weight w(∆Qt̃) ≤
w(NAF(δQt̃)) +B or any combination thereof.

• average size κ of the possible boolean function output bit difference sets Ũj
resulting in a total factor of κN .

• size of the set of possible message word differences Wt̃.

5.6.5 Specializations

In Chapters 6 and 7 we provide specializations of the differential cryptanalysis and
differential path construction for MD5 and SHA-1. In particular, we use the concept
of bitconditions to describe the differential path. These bitconditions also provide
a means to efficiently determine the set of possible boolean function output bit dif-
ferences and the additional bitconditions necessary to enforce the chosen boolean
function output bit difference. Moreover, we improve the connect search such that it
deals with the to be determined BSDRs ∆Qi and ∆Fj in a per-digit manner instead
of a per-BSDR manner.

88 5 DIFFERENTIAL CRYPTANALYSIS AND PATHS

