

Cover Page

The handle http://hdl.handle.net/1887/19093 holds various files of this Leiden University
dissertation.

Author: Stevens, Marc Martinus Jacobus
Title: Attacks on hash functions and applications
Issue Date: 2012-06-19

https://openaccess.leidenuniv.nl/handle/1887/1�
http://hdl.handle.net/1887/19093

4 Chosen-prefix collision abuse scenarios 43

4 Chosen-prefix collision abuse scenarios

Contents
4.1 Survey . 43
4.2 Creating a rogue Certification Authority certificate . . . 48
4.3 Nostradamus attack . 56
4.4 Colliding executables . 58

4.1 Survey
When exploiting collisions in real world applications two major obstacles must be
overcome.

• The problem of constructing meaningful collisions. Given current methods, col-
lisions require appendages consisting of unpredictable and mostly uncontrollable
bit strings. These must be hidden in the usually heavily formatted application
data structure without raising suspicion.

• The problem of constructing realistic attack scenarios. As we do not have
effective attacks against MD5’s (second) pre-image resistance but only collision
attacks, we cannot target existing MD5 hash values. In particular, the colliding
data structures must be generated simultaneously, along with their shared hash,
by the adversary.

In this section several chosen-prefix collision applications are surveyed where these
problems are addressed with varying degrees of success. Sections 4.2, 4.3, and 4.4
describe the three most prominent applications in more detail. These applications are
the result of work done jointly with Arjen Lenstra and Benne de Weger, Section 4.2
is the result of joint work with Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra,
David Molnar, Dag Arne Osvik and Benne de Weger [SLdW07c, SSA+09b, SLdW12].
The theory, algorithms, implementation and practical execution of the underlying
collision attacks of these applications as described in Chapter 6 and Chapter 7 are
the work of the author of this thesis.

Digital certificates. Given how heavily they rely on cryptographic hash functions,
digital certificates are the first place to look for applications of chosen-prefix col-
lisions. Two X.509 certificates are said to collide if their to-be-signed parts have
the same hash and consequently their digital signatures, as provided by the CA
(Certification Authority), are identical. In [LdW05] it was shown how identical-
prefix collisions can be used to construct colliding X.509 certificates with dif-
ferent RSA moduli but identical Distinguished Names. Here the RSA moduli
absorbed the random-looking near-collision blocks, thus inconspicuously and el-
egantly solving the meaningfulness problem. Allowing different Distinguished

44 4 CHOSEN-PREFIX COLLISION ABUSE SCENARIOS

Names required chosen-prefix collisions, as we have shown in [SLdW07c] in col-
laboration with Arjen Lenstra and Benne de Weger. The certificates resulting
from both constructions do not contain spurious bits, so superficial inspection at
bit level of either of the certificates does not reveal the existence of a sibling cer-
tificate that collides with it signature-wise. Nevertheless, for these constructions
to work the entire to-be-signed parts, and thus the signing CA, must be fully
under the attacker’s control, thereby limiting the practical attack potential.

A related but in detail rather different construction was carried out in collabora-
tion with Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra, David Molnar,
Dag Arne Osvik and Benne de Weger, as reported in [SSA+09a, SSA+09b] and in
Section 4.2. Although in practice a certificate’s to-be-signed part cannot be for
100% under control of the party that submits the certification request, for some
commercial CAs (that still used MD5 for their digital signature generation) the
entire to-be-signed part could be predicted reliably enough to make the following
guess-and-check approach practically feasible: prepare the prefix of the to-be-
signed part of a legitimate certification request including a guess for the part
that will be included by the CA upon certification, prepare a rogue to-be-signed
prefix, determine different collision-causing and identical collision-maintaining
appendages to complete two colliding to-be-signed parts, and submit the legiti-
mate one for certification. If upon receipt of the legitimate certificate the guess
turns out to have been correct, then the rogue certificate can be completed by
pasting the CA’s signature of the legitimate data onto the rogue data: because
the data collide, the signature is equally valid for both. Otherwise, if the guess
is incorrect, another attempt is made. Using this approach we managed (upon
the fourth attempt) to trick a commercial CA into providing a signature valid
for a rogue CA certificate. For the intricate details of the construction we refer
to Section 4.2.

A few additional remarks about this construction are in order here. We created
not just a rogue certificate, but a rogue CA certificate, containing identifying
information and public key material for a rogue CA. The private key of this
rogue CA is under our control. Because the commercial CA’s signature is valid
for the rogue CA certificate, all certificates issued by the rogue CA are trusted
by anybody trusting the commercial CA. As the commercial CA’s root certifi-
cate is present in all major browsers, this gives us in principle the possibility to
impersonate any certificate owner. This is certainly a realistic attack scenario.
The price that we have to pay is that the meaningfulness problem is only ad-
equately – and most certainly not elegantly – solved: as further explained in
the next paragraph, one of the certificates contains a considerable number of
suspicious-looking bits.

To indicate that a certificate is a CA certificate, a certain bit has to be set in the
certificate’s to-be-signed-part. According to the X.509v3 standard [CSF+08],
this bit comes after the public key field. Because it is unlikely that a commercial
CA accepts a certification request where the CA bit is set, the bit must not be set

4.1 Survey 45

in the legitimate request. For our rogue CA certificate construction, the fact that
the two to-be-signed parts must contain a different bit after the public key field
causes an incompatibility with our ‘usual’ colliding certificate construction as in
[SLdW07c]. In that construction the collision-causing appendages correspond to
the high order bits of RSA moduli, and they are followed by identical collision-
maintaining appendages that transform the two appendages into valid RSA
moduli. Anything following after the moduli must remain identical lest the
collision property goes lost. As a consequence, the appendages on the rogue
side can no longer be hidden in the public key field and some other field must
be found for them. Such a field may be specially defined for this purpose,
or an existing (proprietary) extension may be used. The Netscape Comment
extension is a good example of the latter, as we found that it is ignored by
the major certificate processing software. The upshot is, however, that as the
appendages have non-negligible length, it will be hard to define a field that will
not look suspicious to someone who looks at the rogue certificate at bit level.

Colliding documents. In [DL05] (see also [GIS05]) it was shown how to construct
a pair of PostScript files that collide under MD5, but that display different
messages when viewed or printed. These constructions use identical-prefix colli-
sions and thus the only difference between the colliding files is in the generated
collision bit strings. It follows that they have to rely on the presence of both
messages in each of the colliding files and on macro-functionalities of the doc-
ument format used to show either one of the two messages. Obviously, this
raises suspicion upon inspection at bit level. With chosen-prefix collisions, one
message per colliding document suffices and macro-functionalities are no longer
required. For example, using a document format that allows insertion of color
images (such as Microsoft Word or Adobe PDF), inserting one message per doc-
ument, two documents can be made to collide by appending carefully crafted
color images after the messages. A short one pixel wide line will do – for instance
hidden inside a layout element, a company logo, or a nicely colored barcode –
and preferably scaled down to hardly visible size (or completely hidden from
view, as possible in PDF). An extension of this construction is presented in the
paragraphs below and set forth in detail in Section 4.3.

Hash based commitments. Kelsey and Kohno [KK06] presented a method to first
commit to a hash value, and next to construct faster than by a trivial pre-image
attack a document with the committed hash value, and with any message of
one’s choice as a prefix. The method applies to any Merkle-Damgård hash
function, such as MD5, that given an IHV and a suffix produces some IHV .
Omitting details involving message lengths and padding, the idea is to commit
to a hash value based on an IHV at the root of a tree, either that IHV itself
or calculated as the hash of that IHV and some suffix at the root. The tree
is a complete binary tree and is calculated from its leaves up to the root, so
the IHV at the root will be one of the last values calculated. This is done in
such a way that each node of the tree is associated with an IHV along with a

46 4 CHOSEN-PREFIX COLLISION ABUSE SCENARIOS

suffix that together hash to the IHV associated with the node’s parent. Thus,
two siblings have IHV values and suffixes that collide under the hash function.
The IHV values at the leaves may be arbitrarily chosen but are, preferably, all
different. Given a prefix of one’s choice one performs a brute-force search for
a suffix that, when appended to the prefix and along with the standard IHV ,
results in the IHV at one of the leaves (or nodes) of the tree. Appending the
suffixes one encounters on one’s way from that leave or node to the root, results
in a final message with the desired prefix and committed hash value.

Originally based on a birthday search, the construction of the tree can be done
more efficiently by using chosen-prefix collisions to construct sibling node suf-
fixes based on their IHV values. For MD5, however, it remains far from feasible
to carry out the entire construction in practice. In a variant that is feasible, one
commits to a prediction by publishing its hash value. In due time one reveals the
correct prediction, chosen from among a large enough preconstructed collection
of documents that, due to tree-structured chosen-prefix collision appendages,
all share the same published hash value. In section 4.3 we present an example
involving 12 documents.

Software integrity checking. In [Kam04] and [Mik04] it was shown how any ex-
isting MD5 collision, such as the ones originally presented by Xiaoyun Wang
at the Crypto 2004 rump session, can be abused to mislead integrity checking
software that uses MD5. A similar application, using freshly made collisions,
was given on [Sel06]. As shown on [Ste09] this can even be done within the
framework of Microsoft’s Authenticode code signing program. All these results
use identical-prefix collisions and, similar to the colliding PostScript applica-
tion mentioned earlier, differences in the colliding inputs are used to construct
deviating execution flows.

Chosen-prefix collisions allow a more elegant approach, since common operating
systems ignore bit strings that are appended to executables: the programs will
run unaltered. Thus, using tree-structured chosen-prefix collision appendages
as above, any number of executables can be made to have the same MD5 hash
value or MD5-based digital signature. See Section 4.4 for an example.

One can imagine two executables: a ‘good’ one (say Word.exe) and a ‘bad’ one
(the attacker’s Worse.exe). A chosen-prefix collision for those executables is
computed, and the collision-causing bit strings are appended to both executa-
bles. The resulting altered file Word.exe, functionally equivalent to the original
Word.exe, can be offered to a code signing program such as Microsoft’s Au-
thenticode and receive an ‘official’ MD5-based digital signature. This signature
will then be equally valid for the attacker’s Worse.exe, and the attacker might
be able to replace Word.exe by his Worse.exe (renamed to Word.exe) on the
appropriate download site. This construction affects a common functionality of
MD5 hashing and may pose a practical threat. It also allows people to get many
executables signed at once at the cost of getting a single such executable signed,

4.1 Survey 47

bypassing verification of any kind (e.g., authenticity, quality, compatibility,
non-spyware, non-malware) by the signing party of the remaining executables.

Computer forensics. In computer forensics so-called hash sets are used to quickly
identify known files. For example, when a hard disk is seized by law enforcement
officers, they may compute the hashes of all files on the disk, and compare those
hashes to hashes in existing hash sets: a whitelist (for known harmless files
such as operating system and other common software files) and a blacklist (for
previously identified harmful files). Only files whose hashes do not occur in
either hash set have to be inspected further. A useful feature of this method of
recognizing files is that the file name itself is irrelevant, since only the content
of the file is hashed.
MD5 is a popular hash function for this application. Examples are NIST’s Na-
tional Software Reference Library Reference Data Set13 and the US Department
of Justice’s Hashkeeper application14.
A conceivable, and rather obvious, attack on this application of hashes is to
produce a harmless file (e.g., an innocent picture) and a harmful one (e.g., an
illegal picture), and insert collision blocks that will not be noticed by common
application software or human viewers. In a learning phase the harmless file
might be submitted to the hash set and thus the common hash may end up on
the whitelist. The harmful file will be overlooked from then on.

Peer to peer software. Hash sets are also used in peer to peer software. A site
offering content may maintain a list of pairs (file name, hash). The file name is
local only, and the peer to peer software uniquely identifies the file’s content by
means of its hash. Depending on how the hash is computed such systems may
be vulnerable to a chosen-prefix attack. Software such as eDonkey and eMule
use MD4 to hash the content in a two stage manner: the identifier of the content
c1∥c2∥ . . . ∥cn is MD4(MD4(c1)∥ . . . ∥MD4(cn)), where the chunks ci are about
9 MB each. One-chunk files, i.e., files not larger than 9 MB, are most likely
vulnerable; whether multi-chunk files are vulnerable is open for research. We
have not worked out the details of a chosen-prefix collision attack against MD4,
but this seems very well doable by adapting our methods and should result in
an attack that is considerably faster than our present one against MD5.

Content addressed storage. In recent years content addressed storage is gaining
popularity as a means of storing fixed content at a physical location of which
the address is directly derived from the content itself. For example, a hash of
the content may be used as the file name. See [PD05] for an example. Clearly,
chosen-prefix collisions can be used by an attacker to fool such storage systems,
e.g., by first preparing colliding pairs of files, by then storing the harmless-
looking first one, and later overwriting it with the harmful second one.

13. http://www.nsrl.nist.gov/
14. http://www.usdoj.gov/ndic/domex/hashkeeper.htm

http://www.nsrl.nist.gov/
http://www.usdoj.gov/ndic/domex/hashkeeper.htm

48 4 CHOSEN-PREFIX COLLISION ABUSE SCENARIOS

Further investigations are required to assess the impact of chosen-prefix collisions.
We leave it to others to study to what extent commonly used protocols and message
formats such as TLS, S/MIME (CMS), IPSec and XML Signatures (see [BR06b]
and [HS05]) allow insertion of random looking data that may be overlooked by some
or all implementations. The threat posed by identical-prefix collisions is not well
understood either: their application may be more limited, but for MD5 they can be
generated almost instantaneously and thus allow real-time attacks on the execution
of cryptographic protocols, and, more importantly, for SHA-1 they may soon be
feasible. We present a possible countermeasure against identical-prefix and chosen-
prefix collision attacks for MD5 and SHA-1 in Chapter 8.

4.2 Creating a rogue Certification Authority certificate
In our conference paper [SLdW07c, Section 4.1] we daydreamed:

“Ideally, a realistic attack targets the core of PKI: provide a relying party
with trust, beyond reasonable cryptographic doubt, that the person in-
dicated by the Distinguished Name field has exclusive control over the
private key corresponding to the public key in the certificate. The attack
should also enable the attacker to cover his trails.”

Our dream scenario has been, mainly, realized with the construction of a rogue CA
certificate. With the private key of a CA under our control, and the public key
appearing in a certificate with a valid signature of a commercial CA that is trusted
by all major browsers, we can create ‘trusted’ certificates at will. When scrutinized at
bit level, however, our rogue CA certificate may look suspicious which may, ultimately,
expose us. Bit level inspection is not something many users will engage in – if they
know the difference between https and http to begin with – and, obviously, the
software that is supposed to inspect a certificate’s bits is expertly guided around the
suspicious ones. So, it may be argued that our construction has a non-negligible attack
potential. Below we discuss some possibilities in this direction. Upfront, however, we
like to point out that our rogue CA is nothing more than a proof of concept that is
incapable of doing much harm, because it expired, on purpose, in September of 2004,
i.e., more than four years before it was created.

Any website secured using TLS can be impersonated using a rogue certificate
issued by a rogue CA. This is irrespective of which CA issued the website’s true
certificate and of any property of that certificate (such as the hash function it is
based upon – SHA-256 is not any better in this context than MD4). Combined with
redirection attacks where http requests are redirected to rogue web servers, this leads
to virtually undetectable phishing attacks.

But any application involving a Certification Authority that provides MD5-based
certificates with sufficiently predictable serial number and validity period may be
vulnerable. In contexts different from TLS this may include signing or encryption of
e-mail or software, non-repudiation services, etc.

As pointed out earlier, bit-level inspection of our rogue CA certificate will reveal
a relatively large number of bits that may look suspicious – and that are suspicious.

4.2 Creating a rogue Certification Authority certificate 49

This could have been avoided if we had chosen to create a rogue certificate for a
regular website, as opposed to a rogue CA certificate, because in that case we could
have hidden all collision causing bits inside the public keys. Nevertheless, even if
each resulting certificate by itself looks unsuspicious, as soon as a dispute arises, the
rogue certificate’s legitimate sibling can be located with the help of the CA, and the
fraud becomes apparent by putting the certificates alongside, thus exposing the party
responsible for the fraud.

Our attack relies on our ability to predict the content of the certificate fields in-
serted by the CA upon certification: if our prediction is correct with non-negligible
probability, a rogue certificate can be generated with the same non-negligible proba-
bility. Irrespective of the weaknesses, known or unknown, of the cryptographic hash
function used for digital signature generation, our type of attack becomes effectively
impossible if the CA adds a sufficient amount of fresh randomness to the certificate
fields before the public key fields. Relying parties, however, cannot verify this ran-
domness. Also, the trustworthiness of certificates should not crucially depend on such
secondary and circumstantial aspects. We would be in favor of a more fundamental
solution – along with a strong cryptographic hash function – possibly along the lines
as proposed in [HK06]. Generally speaking, it is advisable not to sign data that is
completely determined by some other party. Put differently, a signer should always
make a few trivial and unpredictable modifications before digitally signing a document
provided by someone else.

The issue in the previous paragraph was recognized and the possibility of the
attack presented in this paper anticipated in the catalogue [Bun08] of algorithms
suitable for the German Signature Law (‘Signaturgesetz’). This catalogue includes
conditions and time frames for cryptographic hash algorithms to be used in legally
binding digital signatures in Germany. One of the changes introduced in the 2008
version of the catalog is an explicit condition on the usage of SHA-1: only until 2010,
and only for so-called “qualified certificates” that contain at least 20 bits of entropy
in their serial numbers. We are grateful to Prof. Werner Schindler of the BSI for
bringing this to our attention and for confirming that this change was introduced to
thwart exactly the type of rogue certificates that we present here for MD5.

We stress that our attack on MD5 is not a pre-image or second pre-image attack.
We cannot create a rogue certificate having a signature in common with a certificate
that was not especially crafted using our chosen-prefix collision. In particular, we can-
not target any existing, independently created certificate and forge a rogue certificate
that shares its digital signature with the digital signature of the targeted certificate.
Given any certificate with an MD5-based digital signature, so far a relying party can-
not easily recognize if it is trustworthy or, on the contrary, crafted by our method.
However, in Chapter 8 we present a method to distinguish near-collision attacks given
only either certificate. This method could both be used to prevent legitimate-looking
but malicious certificates to be signed by CAs and to block malicious certificates in the
end-users applications. Nevertheless, we repeat our urgent recommendation not to
use MD5 for new X.509 certificates. How existing MD5 certificates should be handled
is a subject of further research. We also urgently recommend reconsidering usage of

50 4 CHOSEN-PREFIX COLLISION ABUSE SCENARIOS

MD5 in other applications. Proper alternatives are available; but compatibility with
existing applications is obviously another matter.

The first colliding X.509 certificate construction was based on an identical-prefix
collision, and resulted in two certificates with different public keys, but identical
Distinguished Name fields [LdW05]. As a first application of chosen-prefix colli-
sions we showed how the Distinguished Name fields could be chosen differently as
well [SLdW07c]. In this section we describe the details of a colliding certificate con-
struction that goes one step further by also allowing different “basic constraints”
fields. This allows us to construct one of the certificates as an ordinary website cer-
tificate, but the other one as a CA certificate, the contents of both certificates can be
found in Appendix E. As already pointed out in Section 4.1, this additional difference
required a radical departure from the traditional construction methods from [LdW05]
and [SLdW07c]. Also, unlike our previous colliding certificate constructions where the
CA was under our control, a commercial CA provided the digital signature for the
(legitimate) website certificate. This required us to sufficiently accurately predict its
serial number and validity period well before the certification request was submitted
to the signing CA.

We exploited the following weaknesses of the commercial CA that carried out the
legitimate certification request:

• Its usage of the cryptographic hash function MD5 to generate digital signatures
for new certificates.

• Its fully automated way to process online certification requests that fails to
recognize anomalous behavior of requesting parties.

• Its usage of sequential serial numbers and its usage of validity periods that are
determined entirely by the date and time in seconds at which the certification
request is processed.

• Its failure to enforce, by means of the “basic constraints” field in its own certifi-
cate, a limit on the length of the chain of certificates that it can sign.

The first three points are further discussed below. The last point, if properly handled,
could have crippled our rogue CA certificate but does not affect its construction. A
certificate contains a “basic constraints” field where a bit is set to indicate if the
certificate is a CA certificate. With the bit set, a “path length constraint” subfield
may be present, specifying an integer that indicates how many CAs may occur in the
chain between the CA certificate in question and end-user certificates. The commercial
CA that we interacted with failed to use this option in its own certificate, implying
that any number of intermediate CAs is permitted. If the “path length constraint”
would have been present and set at 0 (zero), then our rogue CA certificate could still
have been constructed. But whether or not the rogue CA certificate or certificates
signed by it can then also be used depends on (browser-)software actually checking the
“path length constraint” subfields in chains of certificates. Thus a secondary “defense

4.2 Creating a rogue Certification Authority certificate 51

in depth” mechanism was present that could have foiled our attack, but failed to do
so simply because it was not used.

Before describing the construction of the colliding certificates, we briefly discuss
the parameter choices used for the chosen-prefix collision search. First, the number
of near-collision blocks is denoted by r and can be used to trade-off between birthday
search time complexity and the cost of finding the r near-collision blocks. Second, k
defines the birthday search space (its size is 64 + k) and the birthday iteration func-
tion and can be used to trade-off between birthday search time complexity, birthday
search memory complexity and average number of required near-collisions per birth-
day collision. Third, w defines the family of differential paths that can be used to
construct the near-collision blocks and is the number of bit positions where arbitrary
bit differences are allowed. It can be used to trade-off between the average number
of required near-collision blocks per birthday collision and the cost of finding the
r near-collision blocks. For more details on r, k and w we refer to Sections 6.5.2
and 6.5.3.

The 2048-bit upper bound on the length of RSA moduli, as enforced by some CAs,
combined with other limitations of our certificate construction, implied we could al-
low for at most three near-collision blocks. Opting for the least difficult possibility
(namely, three near-collision blocks), we had to decide on values for k and the aimed
for value for w that determine the costs of the birthday search and the near-collision
block constructions, respectively. Obviously, our choices were influenced by our com-
putational resources, namely a cluster of 215 PlayStation 3 (PS3) game consoles.
When running Linux on a PS3, applications have access to 6 Synergistic Processing
Units (SPUs), a general purpose CPU, and about 150MB of RAM per PS3. For the
birthday search, the 6 × 215 SPUs are computationally equivalent to approximately
8600 regular 32-bit cores, due to each SPU’s 4 × 32-bit wide SIMD architecture.
The other parts of the chosen-prefix collision construction are not suitable for the
SPUs, but we were able to use the 215 PS3 CPUs for the construction of the actual
near-collision blocks. With these resources, the choice w = 5 still turned out to be
acceptable despite the 1000-fold increase in the cost of the actual near-collision block
construction. This is the case even for the hard cases with many differences between
IHV and IHV ′: as a consequence the differential paths contain many bitconditions,
which leaves little space for the tunnels, thereby complicating the near-collision block
construction.

For the targeted three near-collision blocks, the entries for w = 5 in the first table
in Appendix D show the time-memory trade-off when the birthday search space is
varied with k. With 150MB at our disposal per PS3, for a total of about 30GB, we
decided to use k = 8 as this optimizes the overall birthday search complexity for the
plausible case that the birthday search takes

√
2 times longer than expected. The

resulting overall chosen-prefix collision construction takes on average less than a day
on the PS3-cluster. In theory we could have used 1TB (or more) of hard drive space,
in which case it would have been optimal to use k = 0 for a birthday search of about
20 PS3 days which is about 2.3 hours on the PS3-cluster.

52 4 CHOSEN-PREFIX COLLISION ABUSE SCENARIOS

We summarize the construction of the colliding certificates in the sequence of steps
below, and then describe each step in more detail.

1. Construction of templates for the two to-be-signed parts, as outlined in Figure 7.
Note that we distinguish between a ‘legitimate’ to-be-signed part on the left
hand side, and a ‘rogue’ to-be-signed part on the other side.

2. Prediction of serial number and validity period for the legitimate part, thereby
completing the chosen prefixes of both to-be-signed parts.

3. Computation of the two different collision-causing appendages.

4. Computation of a single collision-maintaining appendage that will be appended
to both sides, thereby completing both to-be-signed parts.

5. Preparation of the certification request for the legitimate to-be-signed part.

6. Submission of the certification request and receipt of the new certificate.

7. If serial number and validity period of the newly received certificate are as
predicted, then the rogue certificate can be completed. Otherwise return to
Step 2.

The resulting rogue CA certificate and the end-user certificate, together with the
differential paths used for the three near-collision blocks, can be found in Appendix E.

serial number

validity period
commercial CA name

domain name

2048 bit RSA public key

serial number

validity period
commercial CA name

rogue CA name
1024 bit RSA public key

legitimate website
certificate rogue CA certificate

chosen prefixes

collision bits

identical suffixes

v3 extensions

tumor

“CA = TRUE”

v3 extensions
“CA = FALSE”

Figure 7: The to-be-signed parts of the colliding certificates.

Step 1. Templates for the to-be-signed parts. In this step all bits are set in
the two to-be-signed parts, except for bits that are determined in later steps. For the
latter bits space is reserved here. On the legitimate side the parts to be filled in later
are the predictions for the serial number and validity period, and most bits of the

4.2 Creating a rogue Certification Authority certificate 53

public key. On the rogue side the largest part of the content of an extension field of
the type “Netscape Comment” is for the moment left undetermined. The following
roughly describes the sequence of steps.

• On the legitimate side, the chosen prefix contains space for serial number and
validity period, along with the exact Distinguished Name of the commercial CA
where the certification request will be submitted. This is followed by a subject
Distinguished Name that contains a legitimate website domain name (owned by
one of us) consisting of as many characters as allowed by the commercial CA
(in our case 64), and concluded by the first 208 bits of an RSA modulus, the
latter all chosen at random after the leading ‘1’-bit. These sizes were chosen in
order to have as many corresponding bits as possible on the rogue side, while
fixing as few bits as possible of the RSA modulus on the legitimate side (see
Step 4 for the reason why).

• The corresponding bits on the rogue side contain an arbitrarily chosen serial
number, the same commercial CA’s Distinguished Name, an arbitrarily chosen
validity period (actually chosen as indicating “August 2004”, to avoid abuse
of the rogue certificate), a short rogue CA name, a 1024-bit RSA public key
generated using standard software, and the beginning of the X.509v3 extension
fields. One of these fields is the “basic constraints” field, a bit that we set to
indicate that the rogue certificate will be a CA certificate (in Figure 7 this bit
is denoted by “CA=TRUE”).

• At this point the entire chosen prefix is known on the rogue side, but on the
legitimate side predictions for the serial number and validity period still need
to be inserted. That is done in Step 2.

• The various field sizes were selected so that on both sides the chosen prefixes
are now 96 bits short of the same MD5 block boundary. On both sides these
96 bit positions are reserved for the birthday bits. Because only 64 + k = 72
birthday bits per side are needed (and appended in Step 3) the first 24 bits
at this point are set to 0. On the legitimate side these 96 bits are part of the
RSA modulus, on the rogue side they are part of an extension field of the type
“Netscape Comment”, denoted as ‘tumor’ in Figure 7.

• From here on forward, everything that goes to the rogue side is part of the
“Netscape Comment” field, as it is not meaningful for the rogue CA certificate
but only appended to cause and maintain a collision with bits added to the
legitimate side. On the legitimate side we first make space for 3 near-collision
blocks of 512 bits each (calculated in Step 3) and for 208 bits used to complete
a 2048-bit RSA modulus (determined in Step 4), and then set the RSA public
exponent (for which we took the common choice 65537) and the X.509v3 ex-
tensions including the bit indicating that the legitimate certificate will be an
end-user certificate (in Figure 7 denoted by “CA=FALSE”).

54 4 CHOSEN-PREFIX COLLISION ABUSE SCENARIOS

Step 2. Prediction of serial number and validity period. Based on repeated
certification requests submitted to the targeted commercial CA, it turned out that
the validity period can very reliably be predicted as the period of precisely one year
plus one day, starting exactly six seconds after a request is submitted. So, to control
that field, all we need to do is select a validity period of the right length, and submit
the legitimate certification request precisely six seconds before it starts. Though
occasional accidents may happen in the form of one-second shifts, this was the easy
part.

Predicting the serial number is harder but not impossible. In the first place, it
was found that the targeted commercial CA uses sequential serial numbers. Being
able to predict the next serial number, however, is not enough: the construction of
the collision can be expected to take at least a day, before which the serial number
and validity period have to be fixed, and only after which the to-be-signed part of
the certificate will be entirely known. As a consequence, there will have been a
substantial and uncertain increment in the serial number by the time the collision
construction is finished. So, another essential ingredient of our construction was the
fact that the CA’s weekend workload is quite stable: it was observed during several
weekends that the increment in serial number over a weekend does not vary a lot.
This allowed us to pretty reliably predict Monday morning’s serial numbers on the
Friday afternoon before. Thus, on Friday afternoon we selected a number at the
high end of the predicted range for the next Monday morning, and inserted it in the
legitimate to-be-signed part along with a validity period starting that same Monday
morning at the time corresponding to our serial number prediction. See Step 6 how
we then managed, after the weekend, to target precisely the selected serial number
and validity period.
Step 3. Computation of the collision. At this point both chosen prefixes have
been fully determined so the chosen-prefix collision can be computed: first the 72
birthday bits per side, calculated in parallel on the 1290 SPUs of a cluster of 215
PS3s, followed by the calculation of 3 pairs of 512-bit near-collision blocks on a quad-
core PC and the 215 PS3 CPUs. The entire calculation takes on average about a
day.

Given that we had a weekend available, and that the calculation can be expected
to take just a day, we sequentially processed a number of chosen-prefixes, each corre-
sponding to different serial numbers and validity periods (targeting both Monday and
Tuesday mornings). So, a near-collision block calculation on the CPUs would always
run simultaneously with a birthday search on the SPUs for the ‘next’ attempt.
Step 4. Finishing the to-be-signed parts. At this point the legitimate and rogue
sides collide under MD5, so that from here on only identical bits may be appended
to both sides.

With 208 + 24 + 72 + 3 ∗ 512 = 1840 bits set, the remaining 2048 − 1840 = 208
bits need to be set for the 2048-bit RSA modulus on the legitimate side. Because in
the next step the RSA private exponent corresponding to the RSA public exponent is
needed, the full factorization of the RSA modulus needs to be known, and the factors
must be compatible with the choice of the RSA public exponent. Because common

4.2 Creating a rogue Certification Authority certificate 55

CAs (including our targeted commercial CA) do not check for compositeness of RSA
moduli in certification requests, we could simply have added 208 bits to make the
RSA modulus a prime. We found that approach unsatisfactory, and opted for the
rather crude but trivial to program method sketched below that results in a 224-bit
prime factor with a prime 1824-bit cofactor. Given that at the time this work was
done the largest factor found using the elliptic curve integer factorization method was
222 bits long, a 224-bit smallest prime factor keeps the resulting modulus out of reach
of common factoring efforts. We could have used a relatively advanced lattice-based
method to try and squeeze in a 312-bit prime factor along with a prime 1736-bit
cofactor. Given only 208 bits of freedom to select a 2048-bit RSA modulus, it is
unlikely that a more balanced solution can efficiently be found. Thus the reason why
as few bits as possible should be fixed in Step 1, is that it allows us to construct a
slightly less unbalanced RSA modulus.

Let N be the 2048-bit integer consisting of the 1840 already determined bits of
the RSA modulus-to-be, followed by 208 one bits. We select a 224-bit integer p at
random until N = a · p+ b with a ∈ N and b < 2208, and keep doing this until both p
and q = ⌊N/p⌋ are prime and the RSA public exponent is coprime to (p− 1)(q − 1).
Once such primes p and q have been found, the number pq is the legitimate side’s
RSA modulus, the leading 1840 bits of which are already present in the legitimate
side’s to-be-signed part, and the 208 least significant bits of which are inserted in
both to-be-signed parts.

To analyze the required effort somewhat more in general, 2k−208 integers of k bits
(with k > 208) need to be selected on average for pq to have the desired 1840 leading
bits. Since an ℓ-bit integer is prime with probability approximately 1/ log(2ℓ), a total
of k(2048−k)2k−208(log 2)2 attempts may be expected before a suitable RSA modulus
is found. The coprimality requirement is a lower order effect that we disregard. Note
that for k(k − 2048)(log 2)2 of the attempts the k-bit number p has to be tested
for primality, and that for (2048 − k) log 2 of those q needs to be tested as well (on
average, obviously). For k = 224 this turned out to be doable in a few minutes on a
standard PC.

This completes the to-be-signed parts on both sides. Now it remains to be hoped
that the legitimate part that actually will be signed corresponds, bit for bit, with the
legitimate to-be-signed part that we concocted.
Step 5. Preparing the certification request. Using the relevant information
from the legitimate side’s template, i.e., the subject Distinguished Name and the
public key, a PKCS#10 Certificate Signing Request is prepared. The CA requires
proof of possession of the private key corresponding to the public key in the request.
This is done by signing the request using the private key – this is the sole reason that
we need the RSA private exponent.
Step 6. Submission of the certification request. The targeted legitimate to-
be-signed part contains a very specific validity period that leaves no choice for the
moment at which the certification request needs to be submitted to the CA. Just
hoping that at that time the serial number would have precisely the predicted value
is unlikely to work, so a somewhat more elaborate approach is used. About half an

56 4 CHOSEN-PREFIX COLLISION ABUSE SCENARIOS

hour before the targeted submission moment, the same request is submitted, and the
serial number in the resulting certificate is inspected. If it is already too high, the
entire attempt is abandoned. Otherwise, the request is repeatedly submitted, with
a frequency depending on the gap that may still exist between the serial number
received and the targeted one, and taking into account possible certification requests
by others. In this way the serial number is slowly nudged toward the right value at the
right time. Although there is nothing illegal about repeated certification requests, it
should be possible for a CA to recognize the somewhat anomalous behavior sketched
above and to take appropriate countermeasures (such as random delays or jumps in
serial numbers) if it occurs.

Various types of accidents may happen, of course, and we experienced some of
them, such as another CA customer ‘stealing’ our targeted serial number just a few
moments before our attempt to get it, thereby wasting that weekend’s calculations.
But, after the fourth weekend it worked as planned, and we managed to get an actually
signed part that exactly matched our predicted legitimate to-be-signed part.
Step 7. Creation of the rogue certificate. Given the perfect match between the
actually signed part and the hoped for one, and the MD5 collision between the latter
and the rogue side’s to-be-signed part, the MD5-based digital signature present in the
legitimate certificate as provided by the commercial CA is equally valid for the rogue
side. To finish the rogue CA certificate it suffices to copy the digital signature to the
right spot in the rogue CA certificate.

4.3 Nostradamus attack
In the original Nostradamus attack from [KK06] one first commits to a certain hash
value, and afterwards for any message constructs a document that not only contains
that message but that also has the committed hash value. In its full generality, this
attack is at this point in time not feasible for MD5. It is easily doable, though, if a
limited size message space has been defined upfront.

Suppose there are messages m1,m2, . . . ,mr, then using r − 1 chosen-prefix colli-
sions we can construct r suffixes s1, s2, . . . , sr such that the r documents di = mi∥si
all have the same hash. After committing to the common hash, afterwards any of
the r documents d1, d2, . . . , dr can be shown, possibly to achieve some malicious goal.
The other documents will remain hidden and their contents, i.e., the mi-parts, cannot
be derived – with overwhelming probability – from the single published document or
from the common hash value.

To show the practicality of this variant, we have made an example consisting of
12 different PDF documents with a common MD5 hash value, where each document
predicts a different outcome of the 2008 US presidential elections. The PDF format is
convenient for this purpose because it allows insertion of extra image objects that are
unreferenced in the resulting document and thus invisible to the viewer in any common
PDF reader. The common MD5 hash value of our 12 colliding PDF documents
containing our predictions is

3d515dead7aa16560aba3e9df05cbc8016.

4.3 Nostradamus attack 57

See [SLdW07a] for the actual PDF documents, one of which correctly predicted the
outcome one year before the elections took place.

For each of the 11 collisions required for this example we used a 64-bit birthday
search (on a single PS3) aiming for about 11 near-collision blocks (constructed on
a quad-core PC). It took less than two days per chosen-prefix collision. Since we
performed those computations our methods have improved as described in this thesis,
so this attack would now run much faster.

Given the structure of PDF documents it is not entirely straightforward to insert
different chosen-prefix collision blocks, while keeping the parts following those blocks
identical in order to maintain the collision. The relevant details of both the PDF
structure and our construction are covered here.

A PDF document is built up from the following four consecutive parts: a fixed
header, a part consisting of an arbitrary number of numbered objects, an object
lookup table and, finally, a trailer. The trailer specifies the number of objects, which
of the objects is the unique root object (containing the document content) and which
is the info object (containing the document’s meta information such as authors and
title etc.), and contains a filepointer to the start of the object lookup table.

Given a file containing a PDF document, additional objects can be inserted, as
long as they are added to the object lookup table and the corresponding changes are
made to the number of objects and the filepointer in the trailer. A template for an
image object is given in Table 4-1. With the exception of binary images, the format is
mostly text based. Any binary image is put between single line-feed characters (ASCII
code 10) and the result is encapsulated by the keywords stream and endstream. The
keyword /Length must specify the byte length of the image. Because in our case,
the image is uncompressed and each pixel requires three bytes (‘RGB’), the image byte
length must be three times the product of the specified width and height. The object
number (42 in the example object header) must be set to the next available object
number.

Table 4-1: An example numbered image object in the PDF format.

Part Contents
object header 42 0 obj
image header << /ColorSpace /DeviceRGB /Subtype /Image
image size /Length 9216 /Width 64 /Height 48 /BitsPerComponent 8
image contents >> stream...endstream
object footer endobj

When constructing colliding PDF files they must be equal after the collision-
causing data. The object lookup tables and trailers for all files must therefore be the
same. This was achieved as follows:

• Because all documents must have the same number of objects, dummy objects
are inserted where necessary.

58 4 CHOSEN-PREFIX COLLISION ABUSE SCENARIOS

• Because all root objects must have the same object number, they can be copied
if necessary to objects with the next available object number.

• The info objects are treated in the same way as the root objects.

• To make sure that all object lookup tables and filepointers are identical, the
objects can be sorted by object number and if necessary padded with spaces
after their obj keyword to make sure that all objects with the same object
number have the same file position and byte length in all files.

• Finally, the object lookup tables and trailers need to be adapted to reflect the
new situation – as a result they should be identical for all files.

Although this procedure works for basic PDF files (such as PDF version 1.4 as we
produced using pdflatex), it should be noted that the PDF document format allows
additional features that may cause obstructions.

Given r LATEX files with the desired subtle differences (such as names of r different
candidates), r different PDF files are produced using a version of LATEX that is suitable
for our purposes (cf. above). In all these files a binary image object with a fixed object
number is then inserted, and the approach sketched above is followed to make the
lookup tables and trailers for all files identical. Since this binary image object is
present but not used in the PDF document, it remains hidden from view in a PDF
reader. To ensure that the files are identical after the hidden image contents, their
corresponding objects were made the last objects in the files. This then leads to r
chosen prefixes consisting of the leading parts of the PDF files up to and including
the keyword stream and the first line-feed character. After determining r−1 chosen-
prefix collisions resulting in r collision-causing appendages, the appendages are put
in the proper binary image parts, after which all files are completed with a line-feed
character, the keywords endstream and endobj, and the identical lookup tables and
trailers.

Note that the Length etc. fields have to be set before collision finding, and that
the value of Length will grow logarithmically with r and linearly in the number of
near-collision blocks one is aiming for.

4.4 Colliding executables
Using the same set-up as used for the Nostradamus attack reported in Section 4.3, i.e.,
64-bit birthday search on a PS3 followed by the construction of about 12 near-collision
blocks on a quad-core PC, it took us less than 2 days to create two different Windows
executables with the same MD5 hash. Initially both 40960 bytes large, 13× 64 bytes
had to be appended to each executable, for a resulting size of just 41792 bytes each,
to let the files collide under MD5 without changing their functionality.

See [SLdW07b] for details. As noted above, it has been shown on [Ste09] that this
attack can be elevated to one on a code signing scheme.

As usual, the following remarks apply:

4.4 Colliding executables 59

• An existing executable with a known and published hash value not resulting
from this construction cannot be targeted by this attack: our attack is not a
pre-image or second pre-image attack. In order to attack a software integrity
protection or code signing scheme using this approach, the attacker must be able
to manipulate the files before they are hashed (and, possibly, signed). Given
the level of access required to realize the attack an attacker can probably do
more harm in other simpler and more traditional ways.

• Any number r of executables can be made to collide, at the cost of r−1 chosen-
prefix collisions and an O(log r)-byte appendage to each of the r original exe-
cutables.

In Chapter 8 we present a method that allows to distinguish near-collision attacks
and thus distinguish potentially malicious MD5-based certificates or executables. It
is better, however, not to rely on cryptographic primitives such as MD5 and SHA-1
that fail to meet their design criteria.

60 4 CHOSEN-PREFIX COLLISION ABUSE SCENARIOS

