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1.1 Authenticity and confidentiality
Authenticity and confidentiality have been big concerns in communications for mil-
lennia. One of the first known examples of confidentially sending a message goes
back to around 440 BC to “The Histories” written down by Herodotus. According
to Herodotus, Histiaeus sent an important message to his son-in-law Aristagoras. As
this message was very sensitive he tattooed it on the shaved head of his most-trusted
slave. Later, when enough hair had grown back, he sent his slave to Aristagoras with
instructions to shave the head of the slave again.

There is a risk with hidden messages that somebody finds the hidden message and
exposes it to unfriendly parties. This is especially the case for regular communications.
Eventually the idea arose to encrypt messages so that they cannot be read even if
intercepted and this has led to the development of cryptology, historically known as the
art of building and breaking ciphers. Ciphers allow parties to securely communicate by
encrypting their messages with some secret knowledge (the secret key) into unreadable
ciphertext that can only be read by parties that possess the same secret knowledge.
This form of encryption using a single secret key known to both sender and receiver
is called symmetric encryption. The most famous ancient cipher, the Caesar cipher,
is named after Julius Caesar who encrypted his most important messages with a
secret number N by cyclically substituting each letter with the N -th next letter in
the alphabet (if N = 3 then A goes to D, B to E, etc.).

Authentication of messages, the act of confirming that a message really has been
sent by a certain party, usually was achieved by a combination of inspecting the mes-
sage (e.g., verify its signature), the ‘envelope’ (e.g., is the wax seal intact) and/or
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Figure 1: Symmetric Encryption

the messenger (e.g., is the messenger known and/or in service of either party). Sym-
metric encryption also provides some form of authentication. After all, no one else
knows the secret key and is able to encrypt messages with it. However, this does not
prevent the encrypted message from being purposely changed or simply repeated at
an opportune moment by unfriendly parties. In general, authentication of someone
(or the sender/creator of something) is achieved through mutual knowledge (such as
a secret password), possession of a physical token (such as the king’s seal) and/or
distinguished marks (such as a known birthmark).

1.2 Rise of a digital world
With the invention of electronics, a new world was born. Digital information can be
very cheaply stored and copied without loss of information. The rapid development
of computers opened up a huge range of new possibilities in processing information.
The explosive growth of telecommunication networks has made it very easy to quickly
send information over vast distances to anywhere in the world. So not surprisingly,
our society has become more and more dependent on information technologies in just
a few decades.

The main advantage of digital information is that there is no longer a link between
the information and its carrier. It can be copied endlessly without any loss of quality.
The same information can be stored on, e.g., a hard disk, USB disk, mobile phone or
a DVD, or sent through an Ethernet, Wi-Fi, GSM or satellite link.

This also introduces a large vulnerability as now authentication of information
cannot be guaranteed anymore by simply looking at the physical carrier. Also, ciphers
require two parties to first agree on a secret key. Given the vast number of possible
parties in the world anyone might want to communicate privately with, establishing
and storing secret keys for every possible connection between two parties becomes
prohibitive.

Solving these security problems and many more that arose has expanded the field
of cryptography. Modern cryptography has grown into a science that encompasses
much more than only ciphers and has strong links with mathematics, computer sci-
ence and (quantum) physics. One of the key innovations of modern cryptography that
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Figure 2: Asymmetric or Public Key Encryption

gave rise to new ideas and approaches is public key encryption (also called asymmetric
encryption) [DH76, Mer78, RSA78]. Instead of using one secret key for both encryp-
tion and decryption, public key encryption uses a key pair consisting of a public key
for encryption and a private key for decryption.

Suppose everyone publishes the public key part of their properly generated key
pair in a public key listing (like a phone book). Now, securely sending a message
to someone is possible without first exchanging a secret key in advance anymore, as
you simply encrypt your message with his public key as found in the listing. Only he
can now decrypt your ciphertext using the private key known only to him. This is a
remarkable invention, although it depends heavily on the fact that no one can derive
the private key from the public key. Furthermore, it requires a guarantee from the
public key listing that every listed public key is generated by the associated person
and not by an impostor.

Ideas similar to that of public key encryption have also led to digital signatures
[RSA78]. With digital signatures you have a key pair as well which now consists of a
signing key and a verification key. The verification key is made public and should be
collected into a public listing such as that for public encryption keys. The signing key
remains private and can be used to generate a digital signature for a message, which
is then simply appended to the message. Anyone can verify the correctness of the
digital signature of a message using the publicly listed verification key and thereby
obtains proof of authenticity. However, only someone who knows the signing key can
actually generate signatures. Similar to public key encryption, the security of digital
signatures depends heavily on the fact that no one can derive the signing key from the
verification key and also requires a guarantee from the public key listing that every
listed verification key is generated by the associated person and not by an impostor.

1.3 Security frameworks
To analyze the security of cryptographic systems it is important to precisely define
the desired notion of security. First, it needs to be clear what a possible adversary
can and cannot do, e.g., whether he can eavesdrop communications or whether he is
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able to alter messages. Then security notions can be expressed as problems for an
adversary, such as finding a private key belonging to a given public key, or decrypting
a message without knowledge of the private key, that are hopefully then shown to be
hard to solve. However, there is no single good definition of how hard a problem is.

Most of modern cryptography uses one of the following three approaches to ana-
lyze the hardness of a problem: the information theoretic approach, the complexity
theoretic approach and the system based approach. These approaches differ mainly
on their assumptions about the computational limitations of an adversary. The notion
of security becomes stronger when fewer limitations are assumed on the adversary.
However, most public key cryptography requires at least some reasonable assumption
about the limitations on the adversary, i.e., without any assumptions it is even pos-
sible that no secure solutions can be found. Each of these three approaches has its
advantages and its practical use.

1.3.1 Information theoretic approach

The information theoretic approach makes no assumptions on the computational
power of the adversary. This approach has been developed by Claude Shannon [Sha48]
to find the fundamental limits on information processing operations such as compres-
sion, storage and communication. Shannon introduced the notion of entropy that
quantifies information and which intuitively can be seen as the amount of uncertainty
an entity has about a piece of information. More practically it can also be seen as
the average number of bits you need to store the information.

This approach allows for unconditional security; security which is independent of
the computing power of an adversary. It has been shown by Shannon [Sha49] that
unconditional (or perfect) privacy protection can be achieved when the length of the
uniformly randomly chosen encryption key is at least the length of the plaintext and
the encryption key is only used once. More precisely, unconditional privacy requires
that the entropy of the key is at least the entropy of the plaintext. Furthermore,
unconditional message authentication can also be achieved at the cost of a large
secret key.

The main advantage of this approach is that it allows unconditional security.
However, the large secret keys which it usually requires makes it rather unpractical.

1.3.2 Complexity theoretic approach

Complexity theory tries to classify computational problems by their inherent difficulty.
To quantify this difficulty, this approach utilizes a model of computation such as a
Turing machine. In this model, algorithms are measured by the amount of time
and/or the amount of space (memory) they use as a function in the size of the input.
In general, algorithms are called efficient if their runtime and space are bounded by a
polynomial function in the size of the input. An adversary is limited in this approach
to a certain class of algorithms which is usually the class of efficient algorithms.

Computational problems are seen as an infinite collection of instances with a solu-
tion for every instance. To each such computational problem belongs a collection of
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algorithms that can solve each instance of the problem (sometimes a certain probabil-
ity of failure is allowed). As an adversary is limited to the use of efficient algorithms,
computational problems that are generally assumed to have no efficient algorithms
are of special interest. Examples are the factoring problem – finding the prime factors
of a composite integer number – and the discrete logarithm problem – finding a num-
ber x such that h = gx mod p for a given prime p and g, h ∈ {1, . . . , p− 1} 1. In fact,
the well-known RSA public-key encryption system [RSA78] would be broken if the
factoring problem has an efficient algorithm. This approach allows the construction
of cryptographic primitives (such as public key encryption, digital signatures, zero-
knowledge proofs, etc.) for which it can be proven that breaking the cryptographic
primitive implies the existence of an efficient algorithm that solves the underlying
computational problem. Such primitives are often (a bit misleadingly) called prov-
ably secure although such proofs only reduce the primitive’s security to the assumed
hardness of some computational problem.

The advantages of this approach are that one can obtain provable security (based
on a number of assumptions) and that secret keys can be smaller than in the infor-
mation theoretic approach. It also has some inherent disadvantages. The distinction
of an algorithm being efficient is mainly asymptotic. For concrete input lengths an
algorithm with exponential runtime can be a lot faster than an algorithm with polyno-
mial runtime, e.g., due to a large difference in the constant factor. This implies that
provable security gives no information on the security of concrete instances. Also,
for real world instances an efficient algorithm, such as an encryption algorithm, may
have an impractically large runtime; making it impractical for use in cryptographic
systems.

1.3.3 System based approach

The system based approach is based on the real world efficiency of software and hard-
ware implementations and tries to produce very practical cryptographic primitives.
Analyzing the hardness of a problem instance is based on estimating the necessary
real-world resources (in computing power, memory, dedicated hardware, etc) as re-
quired by the best known algorithm that solves the problem. Compared to the com-
plexity theoretic approach wherein an algorithm is deemed efficient if its asymptotic
complexity is bounded by a polynomial function, the system based approach analyzes
concrete problem instances and deems solving a concrete problem instance as feasi-
ble if the necessary real-world resources can be obtained within a certain reasonable
monetary budget.

Concrete cryptographic primitives are designed to be fast and to make breaking
them a hard problem. Similar to a cat-and-mouse game, several attack principles
have been invented over the years to analyze and break older primitives, each leading
to new designs that try to avoid practical attacks based on those principles.

The advantage of this approach is that it results in very fast cryptographic prim-
itives. The main disadvantages are that the security is mainly based on preventing

1. gx mod p denotes the remainder of gx after division by p
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known attacks and that the designs might seem ad-hoc. The remainder of this thesis
mainly uses the system based approach.

1.4 Cryptographic hash functions
1.4.1 One-way functions

In computer science and cryptography there is a type of function that is both theoret-
ically and practically important: one-way functions. A one-way function maps a huge
(possibly infinite) domain (e.g., of all possible messages) to some (possibly infinite)
range (e.g., all bit strings of length 256). The predicate one-way means that such a
function is easy to compute whereas it is hard to invert, i.e., for a given output it is
hard to find an input that maps to that output. The one-wayness property is not rig-
orously defined and depends on the security framework used to analyze the hardness
of the inverting problem. As the very definition of a one-way function depends on the
security framework used, so does the question of their existence.

The information theoretic view leads to the most negative result: one-way func-
tions do not even exist in this view. An adversary with unlimited computing power
can simply test every possible input until he finds one that results in the given output.

All known one-way functions in the complexity theoretical approach are actually
based on (well-established) assumptions. The existence of one-way functions is thus
assumed. Nevertheless, finding an actual proof remains a very interesting problem.
In fact, a proof of their existence would also prove that the complexity classes P
and NP are distinct which thereby resolves one of the foremost unsolved questions
of computer science. The existence of one-way functions also implies the existence of
various cryptographic primitives such as pseudo-random generators [ILL89], digital
signature schemes [Rom90], zero-knowledge protocols, message authentication codes
and commitment schemes.

In cryptography there are several problems that are assumed to be hard and can be
used to define a one-way function. The earlier mentioned factoring problem leads to
the one-way function that maps two very large (say at least 2048-bits) prime numbers
p and q to their product p · q. Similarly, the discrete logarithm problem leads to the
one-way function that maps a number e to ge mod p, for a given integer g and a large
prime number p.

For cryptography, an important class of one-way functions is the class of one-way
hash functions, or simply hash functions, that operate on bit strings and map bit
strings of arbitrary length to a bit string of a fixed length (such as 256 bits) which is
called the hash.

1.4.2 Cryptographic requirements of hash functions

A major application for hash functions is found in constructing efficient digital sig-
nature schemes. In 1978, Rabin [Rab78] introduced the idea of signing the hash of
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a document M instead of directly signing it2. Signing a large message directly with
a public-key crypto system is slow and leads to a signature as large as the message.
Reducing a large message to a small hash using a hash function and signing the hash is
a lot faster and leads to small fixed-size signatures. Forging a signature then requires
either breaking the public-key crypto system or finding a document M ′ that has the
same hash as a different signed document M .

In this case, the security of digital signatures is also based on the hardness of
the problem of finding a collision, i.e., finding two different documents M and M ′

that have the same hash. Since if either M or M ′ is signed, then the corresponding
signature is also valid for the other document, resulting in a successful forgery. The
actual value of the hash is unimportant as long as both documents have the same
hash.

Here it already becomes clear that for cryptographic purposes the one-wayness
of a hash function is not enough. For cryptographic use, the following nine cryp-
tographic properties of finite families F of hash functions with identical output bit
length are considered: Pre, aPre, ePre, Sec, aSec, eSec, Coll, MAC and PRF. For a
more thorough treatment of these properties, we refer to [RS04], [BR06a] and [BR07].

Pre, ePre and aPre: The first three are based on variations of the problem of find-
ing a pre-image M for a given hash h and are definitions of one-wayness. Pre,
which stands for pre-image resistance, requires that given a uniformly randomly
chosen hash function f from a family F and a uniformly randomly chosen hash
h it is hard to find a pre-image M ∈ f−1(h). The stronger notion ePre (every-
where pre-image resistance) allows the adversary to choose the hash h before f
is uniformly randomly chosen from F . The third notion aPre (always pre-image
resistance) allows the adversary to choose the hash function f before the hash
h is uniformly randomly chosen and given to the adversary.3

Sec, eSec and aSec: The next three are based on variations of the problem of find-
ing another message M ′ that has the same hash as a given message M . Sec
(second pre-image resistance) requires f and M to be uniformly randomly cho-
sen. The stronger eSec (everywhere Sec) allows the adversary to chooseM before
f is uniformly randomly chosen and aSec (always Sec) allows the adversary to
choose f before M is uniformly randomly chosen and given to the adversary.3

Coll: Coll (collision resistance) is the property that finding two different messages
M and M ′ that have the same hash f(M) = f(M ′), where f is a hash function
chosen randomly from F is a hard problem. This property is often the first to
be broken and hence requires special attention.

2. Although at the time no such hash functions were available. The first design towards hash functions
as used today is MD4 which was introduced in 1990.
3. These variations of Pre (and Sec) may seem to be very similar; nevertheless, their distinctions are
theoretically important. For instance in the case of a fixed hash function, where there is no hash
function family to speak of, aPre and aSec are the only applicable notions.
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MAC: The MAC (message authentication code unforgeability) property views the
entire hash function family F as a single keyed hash function fK where K is a
randomly chosen secret key. The adversary does not get direct access to K and
fK , instead the adversary can make queries qi to an oracle that responds with
the output hashes ri = fK(qi). The MAC property requires that the problem
of finding a message M and its correct hash under fK , where M is not one of
the queries qi, is hard.

PRF: For the PRF (pseudo random function) property, the problem of distinguishing
between an oracle to fK for a randomly chosen secret K and a random function
oracle that responds to queries qi with randomly chosen hashes ri must be hard.

In the case of a fixed hash function f instead of a hash function family F , only
three properties are considered: pre-image resistance, second pre-image resistance
and collision resistance. The pre-image resistance and second pre-image resistance
properties are identical to the above aPre and aSec notions, respectively.

However, when formally defining collision resistance for such a fixed hash function
f one runs into the foundations-of-hashing dilemma [Rog06]. Collision resistance is an
intuitive concept and one would like to mathematically define collision resistance as
the hardness of some problem or equivalently as some statement “there is no efficient
algorithm that produces collisions”. Unfortunately, for every collision M ̸= M ′ of f ,
there is a trivial algorithm that simply outputs that collision: M andM ′. Nonetheless,
if there are no collisions known then one cannot actually write down such a trivial
algorithm. Thus one would like to think of collision resistance as the statement “there
is no known efficient algorithm that produces collisions”, which may be impossible to
define mathematically. Rogaway [Rog06] treats the foundations-of-hashing dilemma
in detail and provides a formal way to handle collision resistance, but does not provide
a clear definition for collision resistance.

Thus in this thesis we do not define the collision resistance property for a fixed
hash function in terms of some mathematical problem that must be hard, rather we
view collision resistance as the property that there are no known explicit efficient al-
gorithms. This informal definition of collision resistance is sufficient for the remainder
of this thesis as we focus on counter-examples to the collision resistance of fixed hash
functions.

1.4.3 General attacks

Even though we would prefer breaking these security properties to be impossible,
often there exists a general attack breaking a security property that thereby presents
a fundamental upper bound for an adversary’s attack complexity. A hash function is
called broken when there exists a known explicit attack that is faster than the general
attack for a security property. It must be noted that even unbroken hash functions
may be insecure in the real-world, e.g., a general attack becomes feasible due to a
too small hash bit length compared to the possible real-world computational power
of adversaries.
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The best known general attack to break Pre, aPre, ePre, Sec, aSec and eSec is a
brute force search, where hashes f(M ′) are computed for randomly chosen messages
M ′ until a message M ′ is found where f(M ′) is the target hash value (and M ′ ̸=M
for Sec, aSec, eSec). For a hash function (family) with an output hash size of N bits,
this attack succeeds after approximately 2N evaluations of the hash function. Already
for N ≥ 100 this attack is clearly infeasible in the real world for the present day and
near future.

To find collisions, one can do a lot better with a general attack based on the
birthday paradox. The birthday paradox is the counter-intuitive principle that for
groups of as few as 23 persons there is already a chance of about one half of find-
ing two persons with the same birthday (assuming all birthdays are equally likely
and disregarding leap years). Compared to finding someone in this group with your
birthday where you have 23 independent chances and thus a success probability of
23
365 ≈ 0.06, this principle is based on the fact that there are 23∗22

2 = 253 distinct pairs
of persons. This leads to a success probability of about 0.5 (note that this does not
equal 253

365 ≈ 0.7 since these pairs are not independently distributed).
For a given hash function with output size of N bits, this general algorithm suc-

ceeds after approximately
√
π/2 · 2N/2 evaluations of the hash function [vOW99].

This means that for a hash size of N = 128 bits (which was commonly used until
recently) finding a collision needs approximately 264.3 ≈ 22 · 1018 evaluations, which
is currently just in reach for a large computing project4, whereas inverting the hash
function takes about a factor of 15 · 1018 longer.

1.4.4 From compression function to hash function

With the need for secure practical hash function designs for use in digital signatures
schemes well known [Rab78, Yuv79, DP80, Mer82, Rom90], the first attempts to
construct a hash function were made in the 1980s. An immediately recognized design
approach to tackle the problem of arbitrary length inputs was to base the security of
the hash function on the security of a function with fixed size inputs, such as a block
cipher which is an already well studied cryptographic primitive. More generally for
the purpose of hash functions, such a fixed input size function is called a compression
function as it must have an output length smaller than its input length.

The compression function is then repeatedly used in some mode of operation to
process the entire message. The well known Merkle-Damgård construction (named
after the authors of the independent papers [Mer89, Dam89] published in 1989) de-
scribes exactly how to construct a hash function based on a general compression
function in an iterative structure as is depicted in Figure 3. Since these papers have
proven that the hash function is collision resistant if the underlying compression func-
tion is collision resistant, the majority of currently used hash functions are based on

4. The distributed computing project MD5CRK started in March 2004 a brute force search for
collisions for the hash function MD5. The project was stopped in August 2004 due to breakthrough
cryptanalytic research [WFLY04, WY05]. As a rough estimate, the attack can currently be done in
one year on 40.000 quad-core machines or on 1000 high-end graphics cards.
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this Merkle-Damgård construction.

Figure 3: Merkle-Damgård Construction

The construction builds a hash function based on a compression function that
takes two inputs: a chaining value or IHVin (Intermediate Hash Value) of K bits and
a message block of N bits, and outputs a new K-bit IHVout. An input message is
first padded with a single ‘1’-bit followed by a number X of ‘0’-bits and lastly the
original message length encoded into 64 bits. The number X of ‘0’-bits to be added is
defined as the lowest possible number so that the entire padded message bit length is
an integer multiple of the message block length N . The padded message is now split
into blocks of size exactly N bits. The hash function starts with a fixed public value
for IHV0 called the IV (Initial Value). For each subsequent message block it calls
the compression function with the current IHV i and the message block Mi and store
the output as the new IHVi+1. When we focus only on the compression function,
we write IHVin and IHVout for the input IHVi and the output IHVi+1, respectively.
After all blocks are processed it outputs the last IHVN after an optional finalization
transform.

The Merkle-Damgård construction has several weaknesses, none of which pose a
real-world threat against the use of currently commonly used hash functions based
on the construction. In 2004, Joux [Jou04] showed that finding a multi-collision –
defined as 2t messages that all have the same hash value – costs only about t times a
single collision attack. Furthermore, cascaded hash functions f(M) = g(M)||h(M),
obtained by concatenating the output from two different hash functions, were often
expected to yield a more secure hash function than either g and h are. However, if
either g or h is based on Merkle-Damgård then using multi-collisions Joux showed
that f is as secure as the most secure hash function of g and h.

In 2005, a general second pre-image attack against Merkle-Damgård based hash
functions was published [KS05] which can find a second pre-image for a given message
consisting of about 2k blocks in about 2n−k+1 + k2n/2+1 evaluations of the hash
function instead of the 2n evaluations of the brute force attack.

In 2006, it has been shown that the Merkle-Damgård construction preserves also
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the ePre property from a compression function besides the Coll property, but fails to
preserve Pre, aPre, Sec, aSec and eSec ([ANPS07, BR06a]). Several new constructions
have been proposed that preserve many (but not all) of these properties, e.g., ROX
[ANPS07], EMD [BR06a] and ESh [BR07].

1.4.5 The MD4 style family of hash functions

Based on the work by Merkle and Damgård and 10 years after the idea of using
hash functions in digital signatures [DP80] was introduced, Ron Rivest presented
in 1990 the dedicated hash function MD4 [Riv90a, Riv90b] as a first attempt using
the Merkle-Damgård construction. MD4 was quickly superseded by MD5 [Riv92] in
1992 due to security concerns [dBB91]. MD5 has found widespread use and remains
commonly used worldwide.

MD4 and MD5 have formed an inspiration for other hash function designs that
have followed over the years. Several of them can be seen as part of a MD4 style
family of hash functions as they are based on Merkle-Damgård and have the same
basic design of a compression function:

• SHA-0 [NIS93] (designed by the NSA, the National Security Agency of the USA,
in 1993);

• SHA-1 [NIS95] (the replacement of SHA-0 by the NSA in 1995 after undisclosed
security concerns were found in SHA-0);

• SHA-2 [NIS02, NIS08, NIS11] consisting of SHA-224, SHA-256, SHA-384 and
SHA-512 (designed in 2002 by NSA);

• RIPEMD [BP95];

• RIPEMD-160 [DBP96] consisting of strengthened versions of RIPEMD;

• and many others.

An MD4 style compression function (Figure 4) takes a message block and generates
an expanded message block split into R pieces m0, . . . ,mR−1 whose total bit length
is at least three times the block length (MD5 and SHA-1 use four and five times,
respectively). It initializes a working state with the input IHV called IHVin and
iteratively updates this working state with a step function and consecutive pieces
m0, . . . ,mR−1, very similar to the Merkle-Damgård construction. Lastly it outputs
the new IHV called IHVout as the sum of the input IHVin and the last working
state. The security of the compression function mainly depends on highly complex
bit dependencies in the step function output and a high expansion factor (which is the
expanded message block bit length divided by the input message block bit length).

All members of the MD4 style hash function family have different step functions;
nevertheless, they also have many similarities. In the case of MD5 the step function
is sketched in Figure 5, where the working state consists of four variables A, B, C
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Figure 4: MD4 Style Compression Function

and D which are both seen as elements of Z232 and as 32-bit strings.5 The variable
A is updated by adding a message piece mi, an addition constant Ki and the result
F (B,C,D) of a bit-wise function F (the i-th bit of the result only depends on the
i-th bits of the inputs). Next, A is bit-wise left rotated by s (the rotation constant)
bits and finally the input value of B is added. Let Â denote the updated variable A:

Â = B +RL(A+mi +Ki + F (B,C,D), s)

The output working state A′, B′, C ′ and D′ consists of the rotated variables: A′ = D,
B′ = Â, C ′ = B and D′ = C. The step function itself varies a little between the R
steps in MD5 in that the constant values Ki and s and the bit-wise function F are
changed.

The step function is non-linear so that the compression function cannot be simply
described as a linear system of equations that can easily be solved and thus inverted.
Moreover, it tries to create very complex dependencies of IHVout on all the message
block bits. It does so by mixing different mathematical operations (like modular
addition, bit-wise functions and bit-wise rotation) for which there is no unified ‘cal-
culus’ that allows to simplify the mathematical expression defining the compression

5. Throughout this thesis we use Z232 as shorthand for Z/232Z.
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Figure 5: Step Function of MD5’s Compression Function

function. This effect is amplified by using each message bit multiple times (4 times
in MD5) over various spread-out steps. As a result of the lack of such a calculus,
solving a set of equations over the compression function that results in a collision or
pre-image attack appears to be very difficult.

Note that this step function, like the one of MD4 and other MD4-style hash
functions, is efficiently and uniquely invertible given the output working state and
the message piece. Therefore, the addition at the end of the compression function is
necessary to avoid that inverting the entire compression function is easy. Without this
addition, the inverting problem reduces to finding R pre-images of the step function,
which can be done just as fast as evaluating the compression function.

1.5 Differential cryptanalysis
The most successful type of cryptographic analysis of the MD4 style hash function
family is differential cryptanalysis. In differential cryptanalysis one looks at two
evaluations of a given hash function at the same time. By analyzing how differences
between those two evaluations caused by message differences propagate throughout
the computation of hash function, one can try to control those differences and try to
build an efficient attack. This type of analysis is mainly used for collision attacks,
but sometimes extends to second pre-image attacks.

Differential cryptanalysis has been publicly known since the first published attacks
against the DES (Data Encryption Standard) cipher by Biham and Shamir since 1990
[BS90, BS91, BS92]. The initial differential cryptanalysis by Biham and Shamir was
based on the bitwise XOR difference and they apply this new technique to a number
of ciphers and even a few cipher-based hash functions.

The technique was quickly generalized from the bitwise XOR difference to the
modular difference (modulo 232) and applied to the MD4 style hash function family
[Ber92]. Differential cryptanalysis using the modular difference was not successful,
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since it was not possible to effectively deal with the bitwise operations (the boolean
function and the bitwise rotation). Later, in 1995, Dobbertin [Dob96] was partially
successful as he was able to find collisions for the compression function of MD5, but
this did not extend to a collision attack against MD5 itself. In the case of MD4 he
was more successful. Dobbertin [Dob98] was able to find collisions for MD4 using
differential cryptanalysis modulo 232 in 1996.6

Major cryptanalytic breakthroughs, based on a combination of the XOR difference
and the modular difference, were found in the year 2004 when collisions were presented
for SHA-0 by Biham et al. [BCJ+05] and MD4, MD5, HAVAL-128 and RIPEMD
[WFLY04] by Xiaoyun Wang et al. These attacks have set off a new innovation impulse
in hash function theory, cryptanalysis and practical attacks. The recent advances
have resulted in a loss of confidence in the design principles underlying the MD4 style
hash functions. In light of this, NIST has started a public competition in 2007 to
develop a new cryptographic hash function SHA-3 [NIS07] to be the future de facto
standard hash function. At the end of 2008, 51 out of 64 submitted candidate hash
functions were selected for the first round of public review. Mid 2009, only 14 were
selected to advance to the second round. After another year based on public feedback
and internal reviews five SHA-3 finalists were selected at the end of 2010: BLAKE
[AHMP10], Grøstl [GKM+11], JH [Wu11], Keccak [BDPA11] and Skein [FLS+10].
NIST will decide the winner in 2012 and name it SHA-3.

6. Hans Dobbertin fell ill suddenly in the late spring of 2005 and passed away on the 2nd of February
2006.
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2 MD5 collision attack by Wang et al.
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2.1 Preliminaries
In the upcoming sections we describe the original attack on MD5 by Wang et al.
[WY05] in detail. Their original paper is well complemented by [HPR04] which pro-
vides many insightful details. First we introduce the necessary preliminaries and the
definition of MD5, followed by an overview of the attack and a detailed treatment of
the various aspects.

2.1.1 32-bit words

MD5 is designed with a 32-bit computing architecture in mind and operates on words
(v31 . . . v0) consisting of 32 bits vi ∈ {0, 1}. These 32-bit words are identified with
elements v =

∑31
i=0 vi2

i of Z232 (a shorthand for Z/232Z). In this thesis we switch
freely between the bitwise and Z232 representation of 32-bit words. We shall denote a
32-bit word in binary as 000000001111111100001111001101012. For a more compact
notation, we also use the well-known hexadecimal form 00ff0f3516.

For 32-bit words X = (xi)
31
i=0 and Y = (yi)

31
i=0 we use the following notation:

• X ∧ Y = (xi ∧ yi)31i=0 is the bitwise AND of X and Y ;

• X ∨ Y = (xi ∨ yi)31i=0 is the bitwise OR of X and Y ;

• X ⊕ Y = (xi ⊕ yi)31i=0 is the bitwise XOR of X and Y ;

• X = (xi)
31
i=0 is the bitwise complement of X;
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• X[i] is the i-th bit xi;

• X + Y and X − Y denote addition and subtraction, respectively, of X and Y
in Z232 ;

• RL(X,n) and RR(X,n) are the cyclic left and right rotation, respectively, of
X by n bit positions:

RL(101001001111111111111111000000012, 5)

= 100111111111111111100000001101002;

• w(X) denotes the Hamming weight
∑31
i=0 xi of X = (xi)

31
i=0.

2.1.2 Endianness

When interpreting a 32-bit word from a string b31 . . . b0 of 32 bits and vice versa,
there are two main standards that can be used:

Big Endian: This is the most straightforward standard which interprets a bit string
in order with the most significant bit first resulting in the 32-bit word (b31 . . . b0).

Little Endian: This standard partitions a bit string into strings of eight consecutive
bits and reverses the order of these partitions while maintaining the bit order
within each partition. The resulting bit string is then interpreted using Big
Endian resulting in the 32-bit word:

(b7b6 . . . b1b0 b15b14 . . . b9b8 b23b22 . . . b17b16 b31b30 . . . b25b24).

This standard is for example used on the x86 CPU architecture.

2.1.3 Binary signed digit representation

A binary signed digit representation (BSDR) for an X ∈ Z232 is a sequence (ki)
31
i=0

such that

X =
31∑
i=0

ki2
i, ki ∈ {−1, 0, 1}.

For each non-zero X there exist many different BSDRs. The weight w((ki)31i=0) =∑31
i=0 |ki| of a BSDR (ki)

31
i=0 is defined as the number of non-zero kis.

A particularly useful type of BSDR is the Non-Adjacent Form (NAF), where no
two non-zero ki-values are adjacent. For any X ∈ Z232 there is no unique NAF, since
we work modulo 232 (making k31 = +1 equivalent to k31 = −1). However, uniqueness
of the NAF can be enforced by the added restriction k31 ∈ {0,+1}. Among the
BSDRs for a given X ∈ Z232 , the NAF has minimal weight [MS06]. The NAF can be
computed easily [Lin98] for a given X ∈ Z232 as NAF(X) = ((X + Y )[i] − Y [i])31i=0

where Y is the 32-bit word (0 X[31] . . . X[1]).
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We use the following notation for a 32-digit BSDR Z:

• Z[i] is the i-th signed bit of Z;

• RL(Z, n) and RR(Z, n) are the cyclic left and right rotation, respectively, of Z
by n positions;

• w(Z) is the weight of Z.

• σ(Z) =
∑31
i=0 ki2

i ∈ Z232 is the 32-bit word for which Z is a BSDR.

As a more compact representation for a BSDR, we list all i-values with non-zero
ki and using an overline i to indicate a negative ki. E.g., consider the following BSDR
of 223 − 20:

{0 . . . 4, 5, 23 . . . 27, 28}
= {0, 1, 2, 3, 4, 5, 23, 24, 25, 26, 27, 28}

= (ki)
31
i=0 with


k0 = k1 = k2 = k3 = k4 = k28 = +1;

k5 = k23 = k24 = k25 = k26 = k27 = −1;
ki = 0 for 6 ≤ i ≤ 22 and 29 ≤ i ≤ 31.

2.1.4 Related variables and differences

In collision attacks we consider two related messages M and M ′. In this thesis any
variable X related to the message M or its MD5 (or other hash function) calculation
may have a corresponding variable X ′ related to the message M ′ or its hash calcula-
tion. Furthermore, for such a ‘matched’ variable X ∈ Z232 we define δX = X ′ −X
and ∆X = (X ′[i]−X[i])31i=0, which is a BSDR of δX. For a matched variable Z that
is a tuple of 32-bit words, say Z = (z1, z2, . . .), we define δZ and ∆Z as (δz1, δz2, . . .)
and (∆z1,∆z2, . . .), respectively.

2.2 Description of MD5
2.2.1 MD5 overview

MD5 works as follows on a given bit string M of arbitrary bit length, cf. [Riv92]:

1. Padding. Pad the message: first append a ‘1’-bit, next append the least number
of ‘0’-bits to make the resulting bit length equivalent to 448 modulo 512, and
finally append the bit length of the original unpadded message M as a 64-bit
little-endian integer7. As a result the total bit length of the padded message M̂
is 512N for a positive integer N .

7. MD5 inherited the design choice for its predecessor MD4 of using little-endian so that for little-
endian machines the conversion between bit strings and words is effortless. Since at the time little-
endian machines were considered generally slower than big-endian machines, this conversion ad-
vantage was given to little-endian machines instead of big-endian machines[Riv90a], despite the
mathematically more aesthetic definition of big-endian.
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2. Partitioning. Partition the padded message M̂ into N consecutive 512-bit blocks
M0, M1, . . . , MN−1.

3. Processing. To hash a message consisting of N blocks, MD5 goes through N +1
states IHVi, for 0 ≤ i ≤ N , called the intermediate hash values. Each interme-
diate hash value IHVi is a tuple of four 32-bit words (ai, bi, ci, di). For i = 0 it
has a fixed public value called the initial value (IV ):

(a0, b0, c0, d0) = (6745230116, efcdab8916, 98badcfe16, 1032547616).

For i = 1, 2, . . . , N intermediate hash value IHVi is computed using the MD5
compression function described in detail below:

IHVi = MD5Compress(IHVi−1,Mi−1).

4. Output. The resulting hash value is the last intermediate hash value IHVN ,
expressed as the concatenation of the hexadecimal byte strings of the four words
aN , bN , cN , dN , converted back from their little-endian representation. As an
example the IV would be expressed as

0123456789abcdeffedcba987654321016.

2.2.2 MD5 compression function

The input for the compression function MD5Compress(IHV,B) consists of an inter-
mediate hash value IHVin = (a, b, c, d) and a 512-bit message block B. The compres-
sion function consists of 64 steps (numbered 0 to 63), split into four consecutive rounds
of 16 steps each. Each step t uses modular additions, a left rotation, and a non-linear
function ft, and involves an Addition Constant ACt and a Rotation Constant RCt.
These are defined as follows (see also Table A-1):

ACt =
⌊
232 |sin(t+ 1)|

⌋
, 0 ≤ t < 64,

(RCt, RCt+1, RCt+2, RCt+3) =


(7, 12, 17, 22) for t = 0, 4, 8, 12,

(5, 9, 14, 20) for t = 16, 20, 24, 28,

(4, 11, 16, 23) for t = 32, 36, 40, 44,

(6, 10, 15, 21) for t = 48, 52, 56, 60.

The non-linear function ft depends on the round:

ft(X,Y, Z) =


F (X,Y, Z) = (X ∧ Y )⊕ (X ∧ Z) for 0 ≤ t < 16,

G(X,Y, Z) = (Z ∧X)⊕ (Z ∧ Y ) for 16 ≤ t < 32,

H(X,Y, Z) = X ⊕ Y ⊕ Z for 32 ≤ t < 48,

I(X,Y, Z) = Y ⊕ (X ∨ Z) for 48 ≤ t < 64.

(2.1)
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The 512-bit message block B is partitioned into sixteen consecutive 32-bit strings
which are then interpreted as 32-bit words m0, m1, . . . , m15 (with little-endian byte
ordering), and expanded to 64 words Wt, for 0 ≤ t < 64, (see also Table A-1):

Wt =


mt for 0 ≤ t < 16,

m(1+5t) mod 16 for 16 ≤ t < 32,

m(5+3t) mod 16 for 32 ≤ t < 48,

m(7t) mod 16 for 48 ≤ t < 64.

We follow the description of the MD5 compression function from [HPR04] be-
cause its ‘unrolling’ of the cyclic state facilitates the analysis. For each step t the
compression function algorithm uses a working state consisting of four 32-bit words
Qt, Qt−1, Qt−2 and Qt−3 and calculates a new state word Qt+1. The working state
is initialized as (Q0, Q−1, Q−2, Q−3) = (b, c, d, a). For t = 0, 1, . . . , 63 in succession,
Qt+1 is calculated as follows:

Ft = ft(Qt, Qt−1, Qt−2);

Tt = Ft +Qt−3 +ACt +Wt;

Rt = RL(Tt, RCt);

Qt+1 = Qt +Rt.

(2.2)

After all steps are computed, the resulting state words are added to the input inter-
mediate hash value and returned as output:

MD5Compress(IHVin, B) = (a+Q61, b+Q64, c+Q63, d+Q62). (2.3)

2.3 Collision attack overview
The collision attack against MD5 by X. Wang and H. Yu is based on differential crypt-
analysis using a combination of the XOR difference and the modular difference, result-
ing in a differential cryptanalysis that uses the integer difference (b′−b) ∈ {−1, 0,+1}
for each bit b. Using this differential cryptanalysis they constructed differential paths
for the compression function of MD5 which describe precisely how differences between
the two input pairs (IHVin, B) and (IHV ′in, B

′) propagate through the compression
function’s working states Qt and Q′t, resulting in a desired difference between the out-
puts. Based on the differential path they constructed a system of equations, called
the sufficient conditions, over the bits of the working states Qt and Q′t that ensure
that the desired differential path happens.8 The purpose of this set of equations is to
facilitate the search for blocks B and B′ given IHVin and IHV ′in such that the desired

8. As shown later in this thesis, the original analysis did not lead to ‘sufficient conditions’ that were
truly sufficient. In particular, it was indirectly assumed that the desired propagation of a modular
difference through the bitwise rotation in MD5 occurs with probability 1, even though in most cases
this happens with probability slightly less than 1.
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Figure 6: Identical-prefix collision sketch

differential path occurs, thus resulting in the desired output difference. Such an at-
tack against the compression function, where for given IHVin and IHV ′in a differential
path is used to find message blocks B and B′ such that a desired δIHVout is obtained,
is called a near-collision attack.

The attack takes as input two prefixes described as two equal-length sequences
of message blocks M0, . . . ,Mk−1 and M ′0, . . . ,M

′
k−1 that resulting in identical IHVk

and IHV ′k. This condition is most easily fulfilled when both prefixes are identical,
therefore collision attacks requiring IHVk = IHV ′k are called identical-prefix collision
attacks.9 For an arbitrary prefix P , we can obtain said message block sequences by
appending a random bit string Sr of bit length less than 512 to P , such that the bit
length of P∥Sr is an integer multiple of 512. The padded prefix P∥Sr is then split
into message blocks M ′0 =M0, . . . ,M

′
k−1 =Mk−1 of 512 bits.

A collision is generated using two consecutive pairs of message blocks (B0, B
′
0)

and (B1, B
′
1), where B′0 ̸= B0 and B′1 ̸= B1, that are appended to the two pre-

fixes. Together they result in a collision: IHV ′k+2 = IHVk+2. The collision attack
outputs two messages M = P ||B0||B1 and M ′ = P ′||B′0||B′1 that result in the same
MD5 hash. Due to the incremental nature of MD5, these messages can be further
extended using an identical suffix S, resulting in the colliding messages P ||B0||B1||S
and P ′||B′0||B′1||S.

Thus in the most straightforward way, the attack can be used to create two mes-
sages M and M ′ with the same MD5 hash that only differ slightly in two subsequent
blocks, as shown in Figure 6.

Note that all blocks M0, . . . ,Mk−1 and Mk+2, . . . ,MN−1 can be chosen arbitrarily
and that only B0, B′0, B1 and B′1 are generated by the collision finding algorithm using
the value of IHV ′k = IHVk.

In the following few subsections we explain the various parts of the collision attack
in more detail.

9. Since this collision attack requires IHVk = IHV ′
k and results in IHVk+2 = IHV ′

k+2, the attack
can be chained endlessly.



2.4 Two message block collision 23

2.4 Two message block collision
Wang et al.’s attack consists of two differential paths for two subsequent message
blocks, which we refer to in order as the first and second differential path. We refer
to B0 and B1 as the first and second near-collision block, respectively. The first
differential path starts with any given IHVk = IHV ′k and introduces a difference
between IHVk+1 and IHV ′k+1:

δIHVk+1 = (δa, δb, δc, δd) = (231, 231 + 225, 231 + 225, 231 + 225).

These differences are canceled again by the second differential path. The first differ-
ential path is based on the following differences in the message block:

δm4 = 231, δm11 = 215, δm14 = 231, δmi = 0 for i /∈ {4, 11, 14}.

The second differential path is based on the negated message block differences:

δm4 = 231, δm11 = −215, δm14 = 231, δmi = 0 for i /∈ {4, 11, 14}.

Note that −231 = 231 in Z232 , so in fact δm4 and δm14 are not changed by the
negation.

These are very specific message block differences that were selected to ensure a
low complexity for the collision finding algorithm as is shown later. In Section 6.4,
we introduce even better message block differences.

2.5 Differential paths
As said before, this attack uses a combination of XOR differential cryptanalysis and
modular differential cryptanalysis. The combination of both kinds of differences gives
more information than each by themselves and both are aimed at a different repre-
sentation of a 32-bit word: as a string of 32 bits or as an element of Z232 . So instead
of only the integer modular difference between two related 32-bit words X and X ′,
this combination uses the integer differences (−1, 0 or +1) between each pair of bits
X[i] and X ′[i] for 0 ≤ i ≤ 31. This difference is represented in a natural manner
using BSDRs and thus can be denoted as ∆X, which is a BSDR of δX = X ′ −X:

∆X = (ki), ki = X ′[i]−X[i] for 0 ≤ i ≤ 31.

Of all variables used in MD5’s compression function, this combined differential
cryptanalysis is only used on the Qt variables since these are used in both the bitwise
boolean function and modular addition. The Rt and Tt variables are used in bitwise
rotation and modular addition. Nevertheless, only the modular differential is used for
Rt and Tt as a simplification, since δRt = RL(Tt + δTt, RCt)− RL(Tt, RCt) already
holds with high probability for properly chosen δRt and δTt. The modular differential
is used for the remaining variables as these are only used in modular addition.

The differential paths for both blocks (Table 2-3 and Table 2-5) were constructed
specifically to create a collision in this manner. The differential paths describe pre-
cisely for each of the 64 steps of MD5 what the differences are in the working state and
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how these differences pass through the boolean function and the rotation. More pre-
cisely, for MD5 a differential path can be described through the following sequences of
differences: (δmt)

15
t=0, (∆Qt)64t=−3, (∆Ft)63t=0. Other differences can easily be derived:

δTt = δFt + δQt−3 + δWt and δRt = δQt+1 − δQt.
The first differential path starts without differences as δIHVk = 0, but differences

are introduced in step t = 4 by δm4 = 231. The second differential path starts with
the given δIHVk+1. In both paths, all differences in the working state are canceled
at step t = 25 by δm14. Furthermore, from step t = 34, both paths use the same
differential path, although with opposite signs. This structure can easily be seen in
Table 2-3 and Table 2-5.

Below we show a fraction of the first differential path:

Table 2-1: Fraction from Table 2-3

t ∆Qt (BSDR of δQt) δFt δwt δTt RCt

13 {24, 25, 31} −213+231 0 −212 12

14 {31} 218+231 231 218−230 17

15 {3, 13, 31} 225+231 0 −27−213+225 22

16 {29, 31} 231 0 224 5

17 {31} 231 0 0 9

18 {31} 231 215 23 14

19 {17, 31} 231 0 −229 20

These two differential paths were made by hand with great skill and intuition by
Wang et al. In order to construct faster collisions attacks or for collision attacks
that do not require IHV ′k = IHVk we need to be able to construct differential paths
preferably algorithmically instead of by hand.

2.6 Sufficient conditions
Wang et al. use sufficient conditions to efficiently search for message blocks for which
these differential paths hold. These sufficient conditions guarantee that the necessary
carries and correct boolean function differences happen. Each condition gives the
value of a bit Qt[i] of the working state either directly or indirectly as shown in
Table 2-2. Later on, we generalize and extend these conditions to also include the
value of the related bit Q′t[i].

These conditions are only used to find a block B on which the message differences
can be applied to find B′ and should guarantee that the differential path happens.
They can be derived for any differential path and there can be many different possible
sets of sufficient conditions.

However, it should be noted that the sufficient conditions given by Wang et al.
are not sufficient at all, as those conditions do not guarantee that in each step the
differences are rotated correctly. In fact, as we show later on, one does not want
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Table 2-2: Sufficient bitconditions.

Symbol condition on Qt[i] direct/indirect
. no condition direct
0 Qt[i] = 0 direct
1 Qt[i] = 1 direct
^ Qt[i] = Qt−1[i] indirect

See Table B-1 for a complete listing of all possible bitconditions used in this thesis.

sufficient conditions for the full differential path as this increases the collision finding
complexity significantly.

2.7 Collision finding
Using these sufficient conditions one can efficiently search for a block B. The most
basic collision finding algorithm chooses random working state words Q1, . . . , Q16 that
fulfill their sufficient conditions for the first round. The corresponding message words
can directly be computed:

mt = RR(Qt+1 −Qt, RCt)− ft(Qt, Qt−1, Qt−2)−Qt−3 −ACt for 0 ≤ t ≤ 15.

As all the bits in the message block are now determined, the other working state
words Q17, . . . , Q64 are now also completely determined. Thus the remaining sufficient
conditions have to be fulfilled probabilistically and directly result in the complexity
of this basic collision finding algorithm. Wang et al. used the following improvements
over this basic algorithm:

Message modification: When a certain condition in the second round fails, one
can use message modification. This is a substitution formula specially made for
this condition on the message block B. In the case that this condition does not
hold applying this substitution has the effect that this condition now does hold
without interfering with other previous conditions. To use message modification,
auxiliary conditions have to be imposed on the first round. Specifically, at least
one auxiliary condition should be imposed to avoid testing the same message
block B twice (once directly, once through another message block B̂ to which
this substitution is applied).

Early stop: Stop at the step where the first sufficient condition fails and there is no
message modification. This improvement reduces the average number of MD5
compression function steps that have to be evaluated.

An example of message modification is the following. When testing a block for
the sufficient conditions in Table 2-4, suppose Q17[31] = 1 instead of 0. This can be
corrected by replacing m1,m2,m3,m4,m5 with:

1. m̂1 ← (m1 + 226) which results in a different Q̂2;
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2. m̂2 ← RR(Q3 − Q̂2, 17)−Q−1 − F (Q̂2, Q1, Q0)−AC2;

3. m̂3 ← RR(Q4 −Q3, 22)−Q0 − F (Q3, Q̂2, Q1)−AC3;

4. m̂4 ← RR(Q5 −Q4, 7)−Q1 − F (Q4, Q3, Q̂2)−AC4;

5. m̂5 ← RR(Q6 −Q5, 12)− Q̂2 − F (Q5, Q4, Q3)−AC5.

The first line is the most important, here m1 is changed such that Q̂17[31] = 0,
assuming Q13 up to Q16 remain unaltered. The added +226 in m1 results in an added
+231 in Q17[31], hence Q̂17[31] = 0. The four other lines simply change m2, m3, m4

and m5 such that Q3 up to Q16 remain unaltered by the change from Q2 to Q̂2. Since
there are no conditions in the first block that involve Q2, all sufficient conditions up
to Q17 are left unaltered. However, there is a side-effect: with probability 1/2 the
rotation in step 16 actually results in an additional added +20 in Q17[31], which then
with probability 1/8 interferes with the condition imposed on Q17[3]. Fortunately, this
side-effect can be avoided entirely by negating the substitution whenever T16[26] = 1.

Comparing Table 2-4 and Table 2-6, there are fewer sufficient conditions for the
first block. In general, this means that more message modification techniques can be
applied on the first block, resulting in a larger speedup compared to the second block.
However, there are eight sufficient bitconditions for the second block on the input
IHVk+1. Since the value of IHVk+1 depends only on the values of IHVk and the first
block B0, these eight sufficient bitconditions have to be fulfilled probabilistically by
the first block rather than the second block.

The original attack can find collisions for MD5 in about 15 minutes up to an
hour on an IBM P690 with a computational cost equivalent to about 239 compres-
sion function calls. Since then many improvements have been made [YS05, SNKO05,
LL05, Kli05, Ste06, Kli06]. Currently, collisions for MD5 based on these differential
paths can be found in several seconds on a single powerful PC with a computational
cost equivalent to about 224.1 compression function calls. These faster attacks use
techniques based on Tunnels [Kli06], controlling rotations in the first round [Ste06]
and additional differential paths. Our fastest collision attack [SSA+09b] is based on
slightly different message block differences and has a theoretical computational cost
of about 216 compression function calls (see Section 6.4). Xie and Feng [XF09] claim
to have found message differences that may lead to an even faster attack. Based
on a rather optimistic cost function they claim an estimated complexity of 210 com-
pressions. Besides this claim, they have constructed a MD5 collision attack with a
complexity of about 220.96 MD5 compressions using less promising message differ-
ences. Recently even single-block identical-prefix collisions have been found by Xie
and Feng [XF10], although they do not present their new techniques ‘for security
reasons’.
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2.8 Tables: differential paths and sufficient conditions

Table 2-3: Wang et al.’s first differential path

t ∆Qt (BSDR of δQt) δFt δwt δTt RCt

0− 3 0 0 0 0 RCt

4 0 0 231 231 7

5 {6 . . . 21, 22} 211+219 0 211+219 12

6 {6, 23, 31} −210−214 0 −210−214 17

7 {0 . . . 4, 5, 6 . . . 10, 11, −22+25+210 0 −22+25+210 22
23 . . . 25, 26 . . . 31} +216−225−227 +216−225−227

8 {0, 15, 16, 17, 18, 26+28+210 0 28+210+216 7
19, 20, 23} +216−224+231 −224+231

9 {0, 1, 6, 7, 8, 31} 20+26−220 0 20−220+226 12
−223+226+231

10 {12, 13, 31} 20+26+213−223 0 213−227 17

11 {30, 31} −20−28 215 −28−217−223 22

12 {7, 8, 13 . . . 18, 19, 31} 27+217+231 0 20+26+217 7

13 {24, 25, 31} −213+231 0 −212 12

14 {31} 218+231 231 218−230 17

15 {3, 15, 31} 225+231 0 −27−213+225 22

16 {29, 31} 231 0 224 5

17 {31} 231 0 0 9

18 {31} 231 215 23 14

19 {17, 31} 231 0 −229 20

20 {31} 231 0 0 5

21 {31} 231 0 0 9

22 {31} 231 0 217 14

23 0 0 231 0 20

24 0 231 0 0 5

25 0 0 231 0 9

26− 33 0 0 0 0 RCt

34 0 0 215 215 16

35 δQ35 = 231 231 231 0 23

36 δQ36 = 231 0 0 0 4

37 δQ37 = 231 231 231 0 11

38− 49 δQt = 231 231 0 0 RCt

50 δQ50 = 231 0 231 0 15

51− 59 δQt = 231 231 0 0 RCt

60 δQ60 = 231 0 231 0 6

61 δQ61 = 231 231 215 215 10

62 δQ62 = 231+225 231 0 0 15

63 δQ63 = 231+225 231 0 0 21

64 δQ64 = 231+225 × × × ×
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Table 2-4: Wang et al.’s first block sufficient bitconditions

t Conditions on Qt: b31 . . .b0 #
3 ........ ....0... ....0... .0...... 3
4 1....... 0^^^1^^^ ^^^^1^^^ ^0...... 19
5 1...1.0. 01..0000 00000000 001..1.1 22
6 0000001^ 01111111 10111100 0100^0^1 32
7 00000011 11111110 11111000 00100000 32
8 00000001 1..10001 0.0.0101 01000000 28
9 11111011 ...10000 0.1^1111 00111101 28
10 01...... 0..11111 1101...0 01....00 17
11 00...... ....0001 1100...0 11....10 15
12 00....^^ ....1000 0001...1 0....... 14
13 01....01 ....1111 111....0 0...1... 14
14 0.0...00 ....1011 111....1 1...1... 14
15 0.1...01 ........ 1....... ....0... 6
16 0.1..... ........ ........ ........ 2
17 0....... ......0. ^....... ....^... 4
18 0.^..... ......1. ........ ........ 3
19 0....... ......0. ........ ........ 2
20 0....... ........ ........ ........ 1
21 0....... ......^. ........ ........ 2
22 0....... ........ ........ ........ 1
23 0....... ........ ........ ........ 1
24 1....... ........ ........ ........ 1

25− 45 ........ ........ ........ ........ 0
46 ........ ........ ........ ........ 0
47 ........ ........ ........ ........ 0
48 m....... ........ ........ ........ 1
49 m....... ........ ........ ........ 1
50 #....... ........ ........ ........ 1
51 m....... ........ ........ ........ 1
52 m....... ........ ........ ........ 1
53 m....... ........ ........ ........ 1
54 m....... ........ ........ ........ 1
55 m....... ........ ........ ........ 1
56 m....... ........ ........ ........ 1
57 m....... ........ ........ ........ 1
58 m....... ........ ........ ........ 1
59 m....... ........ ........ ........ 1
60 #.....0. ........ ........ ........ 2
61 m.....1. ........ ........ ........ 2
62 m.....0. ........ ........ ........ 2
63 m.....0. ........ ........ ........ 2
64 ........ ........ ........ ........ 0

Sub-total # IV conditions in Table 2-6 8
Total # conditions 289

Uses bitconditions as defined in Table B-1 limited to only the variables Qi[j], not Q′
i[j].
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Table 2-5: Wang et al.’s second differential path

t ∆Qt (BSDR of δQt) δFt δwt δTt RCt
−3 {31} × × × ×
−2 {25, 31} × × × ×
−1 {25, 26, 31} × × × ×
0 {25, 31} 231 0 0 7
1 {25, 31} 231 0 225 12
2 {5, 25, 31} 225 0 231+226 17

3 {5, 6, 7, 11, 12, 16 . . . 20, −211−221+225 0 −211−221−226 22
21, 25 . . . 29, 30, 31} −227+231

4 {1, 2, 3, 4, 5, 21−23−218 231 21+22−218 7
25, 26, 31} +226+230 +225+226+230

5 {0, 6, 7, 8, 9, −24−25−28−220 0 −24−28−220 12
10, 11, 12, 31} −225−226+228+230 −226+228−230

6 {16, 17, 20, 21, 31} 23−25−210−211 0 23−210−221−231 17
−216−221−225

7 {6, 7, 8, 9, 216−227+231 0 −21+25+216 22
27, 28, 31} +225−227

8 {15, 16, 17, 23, −26+216+225 0 20+28+29 7
24, 25, 26, 31} +216+225−231

9 {0, 1, 6, 7, 8, 9, 31} 20+216−226+231 0 20−220−226 12
10 {12, 31} 26+231 0 −227 17
11 {31} 231 −215 −217−223 22

12 {7, 13 . . . 18, 19, 31} 217+231 0 20+26+217 7

13 {24 . . . 29, 30, 31} −213+231 0 −212 12
14 {31} 218+230 231 218+230 17
15 {3, 15, 31} −225+231 0 −27−213−225 22

16 {29, 31} 231 0 224 5
17 {31} 231 0 0 9
18 {31} 231 −215 23 14
19 {17, 31} 231 0 −229 20
20 {31} 231 0 0 5
21 {31} 231 0 0 9
22 {31} 231 0 217 14
23 0 0 231 0 20
24 0 231 0 0 5
25 0 0 231 0 9

26− 33 0 0 0 0 RCt

34 0 0 −215 −215 16
35 δQ35 = 231 231 231 0 23
36 δQ36 = 231 0 0 0 4
37 δQ37 = 231 231 231 0 11

38− 49 δQt = 231 231 0 0 RCt

50 δQ50 = 231 0 231 0 15
51− 59 δQt = 231 231 0 0 RCt

60 δQ60 = 231 0 231 0 6

61 δQ61 = 231 231 −215 −215 10
62 δQ62 = 231 − 225 231 0 0 15
63 δQ63 = 231 − 225 231 0 0 21
64 δQ64 = 231 − 225 × × × ×
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Table 2-6: Wang et al.’s second block sufficient bitconditions

t Conditions on Qt: b31 . . .b0 #
−2 ......0. ........ ........ ........ (1)
−1 ^....01. ........ ........ ........ (3)
0 ^....00. ........ ........ ..0..... (4)

Total # IV conditions for first block (8)

1 !...010. ..1..... ....0... .10..... 8
2 ^^^^110. ..0^^^^0 ...^1... ^10..00. 20
3 ^011111. ..011111 ...01..1 011^^11. 23
4 ^011101. ..000100 ...00^^0 0001000^ 26
5 !10010.. ..101111 ...01110 01010000 25
6 ^..0010. 1.10..10 1..01100 01010110 24
7 !..1011^ 1.00..01 1..11110 00.....1 20
8 ^..00100 0.11..10 1.....11 11....^0 18
9 ^..11100 0.....01 0..^..01 11....01 17
10 ^....111 1....011 1100..11 11....00 18
11 ^....... ....^101 1100..11 11....11 15
12 ^^^^^^^^ ....1000 0001.... 1....... 17
13 !0111111 ....1111 111..... 0...1... 17
14 ^1000000 ....1011 111..... 1...1... 17
15 01111101 ........ 0....... ....0... 10
16 0.1..... ........ ........ ........ 2
17 0....... ......0. ^....... ....^... 4
18 0.^..... ......1. ........ ........ 3
19 0....... ......0. ........ ........ 2
20 0....... ........ ........ ........ 1
21 0....... ......^. ........ ........ 2
22 0....... ........ ........ ........ 1
23 0....... ........ ........ ........ 1
24 1....... ........ ........ ........ 1

25− 45 ........ ........ ........ ........ 0
46 ........ ........ ........ ........ 0
47 ........ ........ ........ ........ 0
48 m....... ........ ........ ........ 1
49 m....... ........ ........ ........ 1
50 #....... ........ ........ ........ 1
51 m....... ........ ........ ........ 1
52 m....... ........ ........ ........ 1
53 m....... ........ ........ ........ 1
54 m....... ........ ........ ........ 1
55 m....... ........ ........ ........ 1
56 m....... ........ ........ ........ 1
57 m....... ........ ........ ........ 1
58 m....... ........ ........ ........ 1
59 m....... ........ ........ ........ 1
60 #.....0. ........ ........ ........ 2
61 m.....1. ........ ........ ........ 2
62 m.....1. ........ ........ ........ 2
63 m.....1. ........ ........ ........ 2
64 ........ ........ ........ ........ 0

Total # conditions 312
Uses bitconditions as defined in Table B-1 limited to only the variables Qi[j], not Q′

i[j].
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3.1 Overview
In this section we list our main contributions. First we present applications for col-
lision attacks that we have successfully implemented. This is followed by our main
results for MD5 and SHA-1. Next, we present more general results that apply to
certain classes of hash functions. Finally, we outline the remainder of this thesis.

3.2 Chosen-prefix collision applications
Several abuse scenarios were presented based on Wang et al.’s collision attack, such as
to mislead integrity checking software [Kam04, Mik04], constructing different Post-
Script documents [DL05] that collide under MD5, constructing two different X.509
certificates [CSF+08] with identical Distinguished Names and identical MD5-based
digital signatures but different public keys [LdW05], etc. Although none of these
abuse scenarios spoke in favor of continued usage of MD5, the abuse potential of
Wang et al.’s identical-prefix collision attack remains limited.

The most important contribution of this thesis is the construction and application
of chosen-prefix collision attacks. This removes the IHVin = IHV ′in restriction of
identical-prefix collisions: given any two chosen message prefixes P and P ′, a chosen-
prefix collision attack constructs suffixes S and S′ such that the concatenated values
P ||S and P ′||S′ form a collision.

Using our chosen-prefix collision attack against MD5 we discuss and implement
several new abuse scenarios in Chapter 4 that are impossible using identical-prefix col-
lisions. The main abuse scenarios that we present and successfully have implemented
are:

• Construction of colliding X.509 certificates with different distinguished names;

• Construction of colliding documents or executables where the malicious payload
is not present in the harmless counterpart;
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• Finally, our most convincing abuse scenario is the construction of a rogue CA
(Certification Authority) X.509 certificate that undermines the core of the X.509
public key infrastructure most commonly known for its use to secure websites
(https://);

3.3 Results on MD5
For MD5 we present a practical chosen-prefix collision attack and an identical-prefix
collision attack which is faster than Wang et al.’s collision attack:

Theorem 3.1 (MD5 collision attacks). There exist an identical-prefix collision attack
and a chosen-prefix collision attack against MD5 with average complexities equivalent
to 216 and 239 calls to the compression function of MD5, respectively.

Furthermore, there exists a near-collision attack against the compression function
of MD5, with an average complexity equivalent to 214.8 calls to the compression func-
tion of MD5 10, that for given IHVin = IHV ′in searches for a pair of message blocks
that results in

δIHVout = (−25,−25 + 225 + 223 + 226 − 214,−25 + 225 + 223,−25 + 225).

This near-collision attack can be altered to work for any given IHVin and IHV ′in. The
resulting near-collision attack has the same runtime complexity and searches for a
pair of message blocks that result in

δIHVout = δIHVin + (−25,−25 + 225 + 223 + 226 − 214,−25 + 225 + 223,−25 + 225).

The proof by construction of Theorem 3.1 is given in Chapter 6.
Lastly, we present a technique that can detect all known feasible identical-prefix

and chosen-prefix collision attacks against MD5 given only one message from a col-
liding message pair:

Theorem 3.2 (Detecting MD5 collision attacks). Given a message M , it is possible
to detect, with an average complexity of about 224 times the complexity of computing
the MD5 hash of M and error probability approximately 2−128, whether M has been
constructed by a collision attack based on message differences given in one of the fol-
lowing papers: [dBB93], [WY05], [SLdW07c], [XFL08], [XLF08], [VJBT08], [XF09],
[SSA+09b] and [XF10]. Furthermore, future collision attacks can easily be added in
the detection if they are not detected already.

The proof by construction of Theorem 3.2 is given in Section 8.3.

3.4 Results on SHA-1
For SHA-1 we present a near-collision attack which is used to construct an identical-
prefix and a chosen-prefix collision attack:

10. MD5’s compression function requires 500 arithmetic and bitwise word operations.
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Theorem 3.3 (SHA-1 collision attacks). There exists an identical-prefix collision
attack against SHA-1 with an average complexity between 260.3 and 265.3 calls to the
compression function of SHA-1. Also, there exists a chosen-prefix collision attack
against SHA-1 with an average complexity of 277.1 calls to the compression function
of SHA-1.

There exists a near-collision attack against the compression function of SHA-1
that, for given IHVin = IHV ′in satisfying the bitconditions given in Table 7-6 (p. 169),
searches for a pair of message blocks so that the resulting δIHVout equals one of the
192 target δIHVdiff values given in Table 7-5 (p. 167). It has an average complexity
equivalent to 257.5 calls to the compression function 11.

The proof by construction of Theorem 3.3 is given in Chapter 7.
Our attacks against SHA-1 are based on local collisions that consist of a single

disturbance in some step followed by corrections in the next five steps which cancel
out this disturbance. Disturbance vectors mark these disturbances and thus the start
of local collisions in patterns that are compatible with SHA-1’s message expansion. In
Section 7.5 we introduce a new precise SHA-1 disturbance vector analysis for the use
of near-collision attacks with the following features that improve upon the literature:

• takes into account the dependence of local collision (so far independence has
been assumed);

• allows to determine δIHVdiff = δIHVout− δIHVin with higher success probabil-
ities than those as prescribed by the disturbance vector;

• allows to determine the optimal message bitrelations that lead to the highest
success probability (so far only treated for individual local collisions).

Using our new analysis we show in Section 7.5 that higher success probabilities can
be obtained compared to the product of the success probabilities of the individual
local collisions.

Furthermore, we present a technique that can detect possibly feasible identical-
prefix and chosen-prefix collision attacks against SHA-1 given only one message from
a colliding message pair:

Theorem 3.4 (Detecting SHA-1 collision attacks). Given a message M , it is possible
to detect, with an average complexity of about 15 times the complexity of computing the
SHA-1 hash of M and error probability approximately 2−160, whether M is constructed
by a possibly feasible collision attack against SHA-1. Furthermore, future collision
attacks can easily be added in the detection if they are not detected already.

The proof by construction of Theorem 3.4 is given in Section 8.4.

11. SHA-1’s compression function requires 941 arithmetic and bitwise word operations.
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3.5 General results
Our following theorem enables one to construct complete differential paths for a cer-
tain class of compression functions.

Theorem 3.5 (Differential path construction). For the family Fmd4cf of compression
functions defined in Section 5.3 that includes those of MD4, MD5 and SHA-1 there
exists an algorithm which, from given IHVin, IHV ′in and a partial differential path
beginning at some early step and ending at the last step, constructs complete differential
paths.

Proof is given in Chapter 5 with specific more efficient algorithms for MD5 and
SHA-1 presented in Section 6.2 and Section 7.4, respectively. These algorithms
were key to the construction of the identical-prefix and chosen-prefix collision attacks
against MD5 and SHA-1 mentioned in Theorems 3.1 and 3.3.

As a more general result we can construct chosen-prefix collisions for other non-
collision-resistant hash functions:

Theorem 3.6 (Generic chosen-prefix collision attack). Let H be a hash function
with L-bit hash values based on the Merkle-Damgård construction with compression
function

Compress : {0, 1}L × {0, 1}N → {0, 1}L, 1 ≤ L ≤ N

that uses an IHV and message block of bit size L and N , respectively. Addi-
tion and subtraction of IHV -values are defined through some additive abelian group
({0, 1}L,+). There exists a chosen-prefix collision attack against H that is faster than
a brute force collision attack against H if H satisfies the following criteria:

1. there is a set I of at least four IHV differences D for which there exists near-
collision attacks against Compress that for fixed IHVin and IHV ′in searches for
message blocks B and B′ such that

IHV ′out − IHVout = IHV ′in − IHVin −D

where

IHVout = Compress(IHVin, B), IHV ′out = Compress(IHV ′in, B′).

2. each of the above near-collision attacks can be modified to start with any given
ÎHV in and ÎHV

′
in such that the total average complexity in calls to Compress,

consisting of the average cost of modifying the near-collision attack together with
the average runtime complexity of the modified near-collision attack, is at most√
π · 2L−1/4.

3. Given any IHVin, IHV
′

in ∈ {0, 1}L, we can assume that the probability that
Compress(IHVin, B) = Compress(IHV ′in, B′) for uniformly-randomly chosen
B ̸= B′ ∈ {0, 1}N is 2−L.
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4. there exists a function ϕ : {0, 1}L × {0, 1} → {0, 1}K with K < L such that the
probability puseful that y − x ∈ I for IHV -values x and y with ϕ(x, 0) = ϕ(y, 1)
is at least max(8 · 2K−L, π · 2−K).

The second criterion can be partly fulfilled by Theorem 3.5 as it provides a way to
modify a differential path underlying a near-collision attack to start with any given
ÎHV in and ÎHV

′
in. The proof of Theorem 3.6 depends on the following lemma:

Lemma 3.7 (Birthday search [vOW99]). Let V be a finite set of size at least 3. Let
f : V → V be a function such that Pr[f(a) = f(b) | a, b ∈ V, a ̸= b] = 1/|V |. Let
Pred : V ×V → {0, 1} be a boolean predicate defined on V ×V such that the probability
q = Pr[Pred(a, b) = 1 | a, b ∈ V, a ̸= b, f(a) = f(b)] is non-zero.12

Consider the following experiment. For i = 1, 2, . . ., sample qi uniformly random
from V \{q1, . . . , qi−1}, evaluate f on qi and store (qi, f(qi)). The experiment contin-
ues until there exists an j ∈ {1, . . . , i−1} such that f(qi) = f(qj) and Pred(qi, qj) = 1.

Then the expected number of evaluations of f required to find a pair (a, b) ∈ V ×V
such that a ̸= b, f(a) = f(b) and Pred(a, b) = 1 is

√
π · |V |/(2 · q).

We refer to [vOW99] for the proof of Lemma 3.7 and a practical probabilistic
algorithm to perform a birthday search.

One can directly construct a brute force collision search against H (if it satisfies
the third criteria of Theorem 3.6) with an average complexity of

√
π · 2L−1 calls to

Compress, by using the above lemma with V = {0, 1}L and q = 1 (a trivial predicate).

Proof of Theorem 3.6. Let K < L, ϕ : {0, 1}L × {0, 1} → {0, 1}K and puseful be as in
Theorem 3.6. The chosen-prefix collision attack consists of a birthday search followed
by a single near-collision attack. For given prefixes P and P ′, we first append bit
strings Sr and S′r such that bit lengths of P ||Sr and P ′||S′r are both equal to c ·N −K
for some c ∈ N+ (note that K < L ≤ N). Let IHVin and IHV ′in be the intermediate
hash values after processing the first c − 1 blocks, i.e., the first (c − 1) · N bits, of
P ||Sr and P ′||S′r, respectively. Furthermore, let B and B′ be the last N −K bits of
P ||Sr and P ′||S′r, respectively.

The birthday search is defined using ϕ and a birthday search space V = {0, 1}K .
Let τ : V → {0, 1} be some balanced selector function, i.e., |τ−1(0)| = |τ−1(1)|. Then
the birthday step function f : V → V is defined as

f(v) =

{
ϕ(Compress(IHVin, B||v), 0) if τ(v) = 0;

ϕ(Compress(IHV ′in, B′||v), 1) if τ(v) = 1.

A birthday search collision f(v) = f(w) with v ̸= w satisfies predicate useful if
τ(v) ̸= τ(w) and IHV ′out − IHVout ∈ I where

IHVout = Compress(IHVin, B||v), IHV ′out = Compress(IHV ′in, B′||w),

12. This implies that collisions a ̸= b with f(a) = f(b) and Pred(a, b) = 1 exist.
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assuming without loss of generality that τ(v) = 0 and τ(w) = 1. As f(v) = f(w)
and τ(v) = 0 ̸= τ(w) implies that ϕ(IHVout, 0) = ϕ(IHV ′out, 1), it follows that the
probability of a birthday search collision satisfying predicate useful is puseful/2.
Using Lemma 3.7, we can conclude that the average birthday search complexity is√

π · 2K
2 · puseful/2

=

√
π

puseful
· 2K/2.

As puseful ≥ π · 2−K , one can expect a ‘useful’ birthday collision before the entire
search space has been exhausted. Furthermore, since puseful ≥ 8 · 2K−L, the average
birthday search complexity is at most half that of a brute force collision attack against
H.

A successful birthday search gives us bit strings Sb = v and S′b = w such that
D = IHV ′c − IHVc ∈ I, where IHVc and IHV ′c are the intermediate hash values
after processing the first c blocks, i.e., the first c ·N bits, of P ||Sr||Sb and P ′||S′r||S′b,
respectively. To finish we need to construct a near-collision attack that starts with
IHV -values IHVc and IHV ′c and searches for message blocks Sc and S′c such that

IHV ′c+1 − IHVc+1 = IHV ′c − IHVc −D = 0 ⇒ IHV ′c+1 = IHVc+1,

where

IHVc+1 = Compress(IHVc, Sc), IHV ′c+1 = Compress(IHV ′c , S′c).

After this successful near-collision attack we have obtained our chosen-prefix collision:

H(P ||Sr||Sb||Sc) = H(P ′||S′r||S′b||S′c).

Due to the second criteria of Theorem 3.6, the complexity of constructing and exe-
cuting this near-collision attack is at most one quarter of the complexity of a brute
force collision attack against H.

Our chosen-prefix collision attack against H has an average complexity of three
quarters of the complexity of a brute force collision attack against H.

3.6 Recommendations
Based on the results presented in this thesis, we offer the following recommendations
on the use of hash functions.

1. Given the current state-of-art in the cryptanalysis of MD5, we urgently recom-
mend to immediately replace MD5 by a more secure hash function (e.g., SHA-2)
in all applications, unless it is known that the application’s security does not
depend on the collision resistance of MD5.
Especially in the case of MD5, it has been argued at the time of the first collision
attack that such collision attacks do not pose a realistic threat due to attack
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complexity, the problem of creating meaningful collisions and other technical
constraints. However, we provide several examples in Chapter 4 that show that
these arguments did not withstand the progress in cryptanalytic techniques and
the creativity of researchers in constructing realistic threats.

2. Given the current state-of-art in the cryptanalysis of SHA-1, we strongly rec-
ommend to replace SHA-1 by a more secure hash function (e.g., SHA-2) in all
applications, unless it is known that the application’s security does not depend
on the collision resistance of SHA-1.
It can be argued, as it has been before with MD5 and was later refuted, that
the current collision attacks on SHA-1 do not pose a threat due to too high
attack complexities. However, our new differential cryptanalysis presented in
Section 7.5 provides the exact analysis of combinations of local collisions that
has been lacking so far. Furthermore, we provide several possibilities to improve
our first attempt at a SHA-1 collision attack. Thus the SHA-1 collision attack
complexity will very likely decrease in the future.

3. Furthermore, we recommend to use hash functions in a randomized hashing
scheme (c.f. [HK06]), where possible, in such a manner that the randomness
cannot be influenced by a possible adversary.
In particular this holds for digital signatures as one should never sign any doc-
ument whose entire contents can be controlled or determined by a possibly
malicious party (e.g., see Section 4.2).

4. It is often observed that replacing a cryptographic primitive in applications
can be a lengthy process, therefore we recommend to start such a replacement
process as soon as indications of security weaknesses arise and not wait until
sufficient proof has been given that these security weaknesses can be abused.

5. In the event the above recommendations apply but cannot be implemented in
the near-future (e.g., due to compatibility issues, hardware designs, etc.), we
offer the recommendation of implementing a barrier against collision-attacks
using the algorithms presented in Chapter 8.

3.7 Directions for further research
We also offer some possible directions for further research:

1. Our disturbance vector analysis presented in Section 7.5 might be improved by
a more compact definition of differential paths over steps tb, . . ., te by replacing
∆Qte with the pair (δQte , δRL(Qte , 5)) which represents several possible allowed
values for ∆Qte . The definition for the probability of these differential paths
should be adjusted accordingly. This improvement will reduce the runtime and
memory cost of the analysis.
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2. The reduction algorithm of Section 7.5.4 can be extended to remove more dif-
ferences of a differential path P as long as:

Pr[Pext] = Pr[Predext] ·
Pr[P]

Pr[Reduce(P)] ,

for all (forward or backward) extensions Pext of P and the analogical extensions
Predext of Reduce(P). This improvement will reduce the runtime and memory
cost of the analysis.

3. As described in Section 7.6.8 one can also use a tunnel if it breaks only message
bitrelations over m14 and m15. Such tunnels can be used to speed up steps
14 and 15. However, the true effect of these tunnels on the optimization and
runtime complexity of the near-collision attack is subject for further research.

4. So far we have analyzed one disturbance vector and made an early attempt
at a near-collision attack in Section 7.6. More research is necessary to ana-
lyze other disturbance vectors and other combinations of tunnels and speedup
techniques. This would be aided greatly by an algorithmic construction of a
(near-)optimal near-collision attack given disturbance vector, differential path,
message bitrelations and a set of tunnels.

5. The implementation of our MD5 chosen-prefix collision attack [HC] can make
use of massively parallel computing architectures, such as CELL SPU (PlaySta-
tion 3) and CUDA (graphic cards), that offer a significantly higher perfor-
mance per cost ratio compared to common computing architectures such as
x86, AMD64, PowerPC, etc. However, so far this speedup is strictly limited to
the birthday search. Further research would be necessary to determine to what
extent the near-collision attacks against MD5 and SHA-1 could benefit from
massively parallel computing architectures.

6. The SHA-1 chosen-prefix collision attack complexity presented in Section 7.7 is
dominated by the complexity of the birthday search, which is directly related
to the size of the reasonably structured set I of δIHVdiff-values that can be ef-
ficiently eliminated with near-collision attacks. It is unclear which disturbance
vector leads to the largest such set I while keeping the near-collision attack com-
plexity relatively low. Furthermore, one could even combine several such sets
I from different disturbance vectors similar to how the chosen-prefix collision
attack on MD5 uses 32 possible message differences. This could significantly
decrease the complexity for SHA-1 chosen-prefix collisions.

7. How the cryptanalytical techniques used for MD5 and SHA-1 can aid the crypt-
analysis of other hash functions or other cryptographic primitives.

3.8 Thesis outline
The remainder of this thesis consists of the following parts: Chapter 4 discusses
the application of chosen-prefix collision attacks in a number of abuse scenarios. In
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particular it describes in detail our most important successful application of a chosen-
prefix collision attack in Section 4.2, namely the construction of a rogue Certification
Authority certificate.

In Chapter 5 we introduce the definition for the family Fmd4cf of compression func-
tions and differential paths thereof. Furthermore, we prove Theorem 3.5 by presenting
an algorithm for constructing complete differential paths which is a generalization of
the algorithms for MD5 and SHA-1 presented in Chapter 6 and Chapter 7, respec-
tively.

Chapter 6 focuses on MD5 and provides an algorithm for constructing complete
differential paths for MD5 together with a collision finding algorithm algorithm that
searches for actual near-collision blocks given a differential path. Finally this sec-
tion proves Theorem 3.1 by presenting the practical identical-prefix and chosen-prefix
collision attacks with the respective claimed complexities.

Similarly, Chapter 7 focuses on SHA-1 and provides an algorithm for constructing
complete differential paths for SHA-1. This is followed by the presentation of our
SHA-1 disturbance vector analysis. At the end of Chapter 7 we present the construc-
tion of a practical near-collision attack which proves Theorem 3.3.

Chapter 8 presents a technique to detect an identical-prefix or chosen-prefix colli-
sion given only one message of the collision pair. Such a technique may prevent abuse
of collision attacks. We apply this technique to MD5 and SHA-1 in Sections 8.3
and 8.4, respectively.
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4.1 Survey
When exploiting collisions in real world applications two major obstacles must be
overcome.

• The problem of constructing meaningful collisions. Given current methods, col-
lisions require appendages consisting of unpredictable and mostly uncontrollable
bit strings. These must be hidden in the usually heavily formatted application
data structure without raising suspicion.

• The problem of constructing realistic attack scenarios. As we do not have
effective attacks against MD5’s (second) pre-image resistance but only collision
attacks, we cannot target existing MD5 hash values. In particular, the colliding
data structures must be generated simultaneously, along with their shared hash,
by the adversary.

In this section several chosen-prefix collision applications are surveyed where these
problems are addressed with varying degrees of success. Sections 4.2, 4.3, and 4.4
describe the three most prominent applications in more detail. These applications are
the result of work done jointly with Arjen Lenstra and Benne de Weger, Section 4.2
is the result of joint work with Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra,
David Molnar, Dag Arne Osvik and Benne de Weger [SLdW07c, SSA+09b, SLdW12].
The theory, algorithms, implementation and practical execution of the underlying
collision attacks of these applications as described in Chapter 6 and Chapter 7 are
the work of the author of this thesis.

Digital certificates. Given how heavily they rely on cryptographic hash functions,
digital certificates are the first place to look for applications of chosen-prefix col-
lisions. Two X.509 certificates are said to collide if their to-be-signed parts have
the same hash and consequently their digital signatures, as provided by the CA
(Certification Authority), are identical. In [LdW05] it was shown how identical-
prefix collisions can be used to construct colliding X.509 certificates with dif-
ferent RSA moduli but identical Distinguished Names. Here the RSA moduli
absorbed the random-looking near-collision blocks, thus inconspicuously and el-
egantly solving the meaningfulness problem. Allowing different Distinguished
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Names required chosen-prefix collisions, as we have shown in [SLdW07c] in col-
laboration with Arjen Lenstra and Benne de Weger. The certificates resulting
from both constructions do not contain spurious bits, so superficial inspection at
bit level of either of the certificates does not reveal the existence of a sibling cer-
tificate that collides with it signature-wise. Nevertheless, for these constructions
to work the entire to-be-signed parts, and thus the signing CA, must be fully
under the attacker’s control, thereby limiting the practical attack potential.

A related but in detail rather different construction was carried out in collabora-
tion with Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra, David Molnar,
Dag Arne Osvik and Benne de Weger, as reported in [SSA+09a, SSA+09b] and in
Section 4.2. Although in practice a certificate’s to-be-signed part cannot be for
100% under control of the party that submits the certification request, for some
commercial CAs (that still used MD5 for their digital signature generation) the
entire to-be-signed part could be predicted reliably enough to make the following
guess-and-check approach practically feasible: prepare the prefix of the to-be-
signed part of a legitimate certification request including a guess for the part
that will be included by the CA upon certification, prepare a rogue to-be-signed
prefix, determine different collision-causing and identical collision-maintaining
appendages to complete two colliding to-be-signed parts, and submit the legiti-
mate one for certification. If upon receipt of the legitimate certificate the guess
turns out to have been correct, then the rogue certificate can be completed by
pasting the CA’s signature of the legitimate data onto the rogue data: because
the data collide, the signature is equally valid for both. Otherwise, if the guess
is incorrect, another attempt is made. Using this approach we managed (upon
the fourth attempt) to trick a commercial CA into providing a signature valid
for a rogue CA certificate. For the intricate details of the construction we refer
to Section 4.2.

A few additional remarks about this construction are in order here. We created
not just a rogue certificate, but a rogue CA certificate, containing identifying
information and public key material for a rogue CA. The private key of this
rogue CA is under our control. Because the commercial CA’s signature is valid
for the rogue CA certificate, all certificates issued by the rogue CA are trusted
by anybody trusting the commercial CA. As the commercial CA’s root certifi-
cate is present in all major browsers, this gives us in principle the possibility to
impersonate any certificate owner. This is certainly a realistic attack scenario.
The price that we have to pay is that the meaningfulness problem is only ad-
equately – and most certainly not elegantly – solved: as further explained in
the next paragraph, one of the certificates contains a considerable number of
suspicious-looking bits.

To indicate that a certificate is a CA certificate, a certain bit has to be set in the
certificate’s to-be-signed-part. According to the X.509v3 standard [CSF+08],
this bit comes after the public key field. Because it is unlikely that a commercial
CA accepts a certification request where the CA bit is set, the bit must not be set
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in the legitimate request. For our rogue CA certificate construction, the fact that
the two to-be-signed parts must contain a different bit after the public key field
causes an incompatibility with our ‘usual’ colliding certificate construction as in
[SLdW07c]. In that construction the collision-causing appendages correspond to
the high order bits of RSA moduli, and they are followed by identical collision-
maintaining appendages that transform the two appendages into valid RSA
moduli. Anything following after the moduli must remain identical lest the
collision property goes lost. As a consequence, the appendages on the rogue
side can no longer be hidden in the public key field and some other field must
be found for them. Such a field may be specially defined for this purpose,
or an existing (proprietary) extension may be used. The Netscape Comment
extension is a good example of the latter, as we found that it is ignored by
the major certificate processing software. The upshot is, however, that as the
appendages have non-negligible length, it will be hard to define a field that will
not look suspicious to someone who looks at the rogue certificate at bit level.

Colliding documents. In [DL05] (see also [GIS05]) it was shown how to construct
a pair of PostScript files that collide under MD5, but that display different
messages when viewed or printed. These constructions use identical-prefix colli-
sions and thus the only difference between the colliding files is in the generated
collision bit strings. It follows that they have to rely on the presence of both
messages in each of the colliding files and on macro-functionalities of the doc-
ument format used to show either one of the two messages. Obviously, this
raises suspicion upon inspection at bit level. With chosen-prefix collisions, one
message per colliding document suffices and macro-functionalities are no longer
required. For example, using a document format that allows insertion of color
images (such as Microsoft Word or Adobe PDF), inserting one message per doc-
ument, two documents can be made to collide by appending carefully crafted
color images after the messages. A short one pixel wide line will do – for instance
hidden inside a layout element, a company logo, or a nicely colored barcode –
and preferably scaled down to hardly visible size (or completely hidden from
view, as possible in PDF). An extension of this construction is presented in the
paragraphs below and set forth in detail in Section 4.3.

Hash based commitments. Kelsey and Kohno [KK06] presented a method to first
commit to a hash value, and next to construct faster than by a trivial pre-image
attack a document with the committed hash value, and with any message of
one’s choice as a prefix. The method applies to any Merkle-Damgård hash
function, such as MD5, that given an IHV and a suffix produces some IHV .
Omitting details involving message lengths and padding, the idea is to commit
to a hash value based on an IHV at the root of a tree, either that IHV itself
or calculated as the hash of that IHV and some suffix at the root. The tree
is a complete binary tree and is calculated from its leaves up to the root, so
the IHV at the root will be one of the last values calculated. This is done in
such a way that each node of the tree is associated with an IHV along with a
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suffix that together hash to the IHV associated with the node’s parent. Thus,
two siblings have IHV values and suffixes that collide under the hash function.
The IHV values at the leaves may be arbitrarily chosen but are, preferably, all
different. Given a prefix of one’s choice one performs a brute-force search for
a suffix that, when appended to the prefix and along with the standard IHV ,
results in the IHV at one of the leaves (or nodes) of the tree. Appending the
suffixes one encounters on one’s way from that leave or node to the root, results
in a final message with the desired prefix and committed hash value.

Originally based on a birthday search, the construction of the tree can be done
more efficiently by using chosen-prefix collisions to construct sibling node suf-
fixes based on their IHV values. For MD5, however, it remains far from feasible
to carry out the entire construction in practice. In a variant that is feasible, one
commits to a prediction by publishing its hash value. In due time one reveals the
correct prediction, chosen from among a large enough preconstructed collection
of documents that, due to tree-structured chosen-prefix collision appendages,
all share the same published hash value. In section 4.3 we present an example
involving 12 documents.

Software integrity checking. In [Kam04] and [Mik04] it was shown how any ex-
isting MD5 collision, such as the ones originally presented by Xiaoyun Wang
at the Crypto 2004 rump session, can be abused to mislead integrity checking
software that uses MD5. A similar application, using freshly made collisions,
was given on [Sel06]. As shown on [Ste09] this can even be done within the
framework of Microsoft’s Authenticode code signing program. All these results
use identical-prefix collisions and, similar to the colliding PostScript applica-
tion mentioned earlier, differences in the colliding inputs are used to construct
deviating execution flows.

Chosen-prefix collisions allow a more elegant approach, since common operating
systems ignore bit strings that are appended to executables: the programs will
run unaltered. Thus, using tree-structured chosen-prefix collision appendages
as above, any number of executables can be made to have the same MD5 hash
value or MD5-based digital signature. See Section 4.4 for an example.

One can imagine two executables: a ‘good’ one (say Word.exe) and a ‘bad’ one
(the attacker’s Worse.exe). A chosen-prefix collision for those executables is
computed, and the collision-causing bit strings are appended to both executa-
bles. The resulting altered file Word.exe, functionally equivalent to the original
Word.exe, can be offered to a code signing program such as Microsoft’s Au-
thenticode and receive an ‘official’ MD5-based digital signature. This signature
will then be equally valid for the attacker’s Worse.exe, and the attacker might
be able to replace Word.exe by his Worse.exe (renamed to Word.exe) on the
appropriate download site. This construction affects a common functionality of
MD5 hashing and may pose a practical threat. It also allows people to get many
executables signed at once at the cost of getting a single such executable signed,
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bypassing verification of any kind (e.g., authenticity, quality, compatibility,
non-spyware, non-malware) by the signing party of the remaining executables.

Computer forensics. In computer forensics so-called hash sets are used to quickly
identify known files. For example, when a hard disk is seized by law enforcement
officers, they may compute the hashes of all files on the disk, and compare those
hashes to hashes in existing hash sets: a whitelist (for known harmless files
such as operating system and other common software files) and a blacklist (for
previously identified harmful files). Only files whose hashes do not occur in
either hash set have to be inspected further. A useful feature of this method of
recognizing files is that the file name itself is irrelevant, since only the content
of the file is hashed.
MD5 is a popular hash function for this application. Examples are NIST’s Na-
tional Software Reference Library Reference Data Set13 and the US Department
of Justice’s Hashkeeper application14.
A conceivable, and rather obvious, attack on this application of hashes is to
produce a harmless file (e.g., an innocent picture) and a harmful one (e.g., an
illegal picture), and insert collision blocks that will not be noticed by common
application software or human viewers. In a learning phase the harmless file
might be submitted to the hash set and thus the common hash may end up on
the whitelist. The harmful file will be overlooked from then on.

Peer to peer software. Hash sets are also used in peer to peer software. A site
offering content may maintain a list of pairs (file name, hash). The file name is
local only, and the peer to peer software uniquely identifies the file’s content by
means of its hash. Depending on how the hash is computed such systems may
be vulnerable to a chosen-prefix attack. Software such as eDonkey and eMule
use MD4 to hash the content in a two stage manner: the identifier of the content
c1∥c2∥ . . . ∥cn is MD4(MD4(c1)∥ . . . ∥MD4(cn)), where the chunks ci are about
9 MB each. One-chunk files, i.e., files not larger than 9 MB, are most likely
vulnerable; whether multi-chunk files are vulnerable is open for research. We
have not worked out the details of a chosen-prefix collision attack against MD4,
but this seems very well doable by adapting our methods and should result in
an attack that is considerably faster than our present one against MD5.

Content addressed storage. In recent years content addressed storage is gaining
popularity as a means of storing fixed content at a physical location of which
the address is directly derived from the content itself. For example, a hash of
the content may be used as the file name. See [PD05] for an example. Clearly,
chosen-prefix collisions can be used by an attacker to fool such storage systems,
e.g., by first preparing colliding pairs of files, by then storing the harmless-
looking first one, and later overwriting it with the harmful second one.

13. http://www.nsrl.nist.gov/
14. http://www.usdoj.gov/ndic/domex/hashkeeper.htm

http://www.nsrl.nist.gov/
http://www.usdoj.gov/ndic/domex/hashkeeper.htm
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Further investigations are required to assess the impact of chosen-prefix collisions.
We leave it to others to study to what extent commonly used protocols and message
formats such as TLS, S/MIME (CMS), IPSec and XML Signatures (see [BR06b]
and [HS05]) allow insertion of random looking data that may be overlooked by some
or all implementations. The threat posed by identical-prefix collisions is not well
understood either: their application may be more limited, but for MD5 they can be
generated almost instantaneously and thus allow real-time attacks on the execution
of cryptographic protocols, and, more importantly, for SHA-1 they may soon be
feasible. We present a possible countermeasure against identical-prefix and chosen-
prefix collision attacks for MD5 and SHA-1 in Chapter 8.

4.2 Creating a rogue Certification Authority certificate
In our conference paper [SLdW07c, Section 4.1] we daydreamed:

“Ideally, a realistic attack targets the core of PKI: provide a relying party
with trust, beyond reasonable cryptographic doubt, that the person in-
dicated by the Distinguished Name field has exclusive control over the
private key corresponding to the public key in the certificate. The attack
should also enable the attacker to cover his trails.”

Our dream scenario has been, mainly, realized with the construction of a rogue CA
certificate. With the private key of a CA under our control, and the public key
appearing in a certificate with a valid signature of a commercial CA that is trusted
by all major browsers, we can create ‘trusted’ certificates at will. When scrutinized at
bit level, however, our rogue CA certificate may look suspicious which may, ultimately,
expose us. Bit level inspection is not something many users will engage in – if they
know the difference between https and http to begin with – and, obviously, the
software that is supposed to inspect a certificate’s bits is expertly guided around the
suspicious ones. So, it may be argued that our construction has a non-negligible attack
potential. Below we discuss some possibilities in this direction. Upfront, however, we
like to point out that our rogue CA is nothing more than a proof of concept that is
incapable of doing much harm, because it expired, on purpose, in September of 2004,
i.e., more than four years before it was created.

Any website secured using TLS can be impersonated using a rogue certificate
issued by a rogue CA. This is irrespective of which CA issued the website’s true
certificate and of any property of that certificate (such as the hash function it is
based upon – SHA-256 is not any better in this context than MD4). Combined with
redirection attacks where http requests are redirected to rogue web servers, this leads
to virtually undetectable phishing attacks.

But any application involving a Certification Authority that provides MD5-based
certificates with sufficiently predictable serial number and validity period may be
vulnerable. In contexts different from TLS this may include signing or encryption of
e-mail or software, non-repudiation services, etc.

As pointed out earlier, bit-level inspection of our rogue CA certificate will reveal
a relatively large number of bits that may look suspicious – and that are suspicious.
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This could have been avoided if we had chosen to create a rogue certificate for a
regular website, as opposed to a rogue CA certificate, because in that case we could
have hidden all collision causing bits inside the public keys. Nevertheless, even if
each resulting certificate by itself looks unsuspicious, as soon as a dispute arises, the
rogue certificate’s legitimate sibling can be located with the help of the CA, and the
fraud becomes apparent by putting the certificates alongside, thus exposing the party
responsible for the fraud.

Our attack relies on our ability to predict the content of the certificate fields in-
serted by the CA upon certification: if our prediction is correct with non-negligible
probability, a rogue certificate can be generated with the same non-negligible proba-
bility. Irrespective of the weaknesses, known or unknown, of the cryptographic hash
function used for digital signature generation, our type of attack becomes effectively
impossible if the CA adds a sufficient amount of fresh randomness to the certificate
fields before the public key fields. Relying parties, however, cannot verify this ran-
domness. Also, the trustworthiness of certificates should not crucially depend on such
secondary and circumstantial aspects. We would be in favor of a more fundamental
solution – along with a strong cryptographic hash function – possibly along the lines
as proposed in [HK06]. Generally speaking, it is advisable not to sign data that is
completely determined by some other party. Put differently, a signer should always
make a few trivial and unpredictable modifications before digitally signing a document
provided by someone else.

The issue in the previous paragraph was recognized and the possibility of the
attack presented in this paper anticipated in the catalogue [Bun08] of algorithms
suitable for the German Signature Law (‘Signaturgesetz’). This catalogue includes
conditions and time frames for cryptographic hash algorithms to be used in legally
binding digital signatures in Germany. One of the changes introduced in the 2008
version of the catalog is an explicit condition on the usage of SHA-1: only until 2010,
and only for so-called “qualified certificates” that contain at least 20 bits of entropy
in their serial numbers. We are grateful to Prof. Werner Schindler of the BSI for
bringing this to our attention and for confirming that this change was introduced to
thwart exactly the type of rogue certificates that we present here for MD5.

We stress that our attack on MD5 is not a pre-image or second pre-image attack.
We cannot create a rogue certificate having a signature in common with a certificate
that was not especially crafted using our chosen-prefix collision. In particular, we can-
not target any existing, independently created certificate and forge a rogue certificate
that shares its digital signature with the digital signature of the targeted certificate.
Given any certificate with an MD5-based digital signature, so far a relying party can-
not easily recognize if it is trustworthy or, on the contrary, crafted by our method.
However, in Chapter 8 we present a method to distinguish near-collision attacks given
only either certificate. This method could both be used to prevent legitimate-looking
but malicious certificates to be signed by CAs and to block malicious certificates in the
end-users applications. Nevertheless, we repeat our urgent recommendation not to
use MD5 for new X.509 certificates. How existing MD5 certificates should be handled
is a subject of further research. We also urgently recommend reconsidering usage of
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MD5 in other applications. Proper alternatives are available; but compatibility with
existing applications is obviously another matter.

The first colliding X.509 certificate construction was based on an identical-prefix
collision, and resulted in two certificates with different public keys, but identical
Distinguished Name fields [LdW05]. As a first application of chosen-prefix colli-
sions we showed how the Distinguished Name fields could be chosen differently as
well [SLdW07c]. In this section we describe the details of a colliding certificate con-
struction that goes one step further by also allowing different “basic constraints”
fields. This allows us to construct one of the certificates as an ordinary website cer-
tificate, but the other one as a CA certificate, the contents of both certificates can be
found in Appendix E. As already pointed out in Section 4.1, this additional difference
required a radical departure from the traditional construction methods from [LdW05]
and [SLdW07c]. Also, unlike our previous colliding certificate constructions where the
CA was under our control, a commercial CA provided the digital signature for the
(legitimate) website certificate. This required us to sufficiently accurately predict its
serial number and validity period well before the certification request was submitted
to the signing CA.

We exploited the following weaknesses of the commercial CA that carried out the
legitimate certification request:

• Its usage of the cryptographic hash function MD5 to generate digital signatures
for new certificates.

• Its fully automated way to process online certification requests that fails to
recognize anomalous behavior of requesting parties.

• Its usage of sequential serial numbers and its usage of validity periods that are
determined entirely by the date and time in seconds at which the certification
request is processed.

• Its failure to enforce, by means of the “basic constraints” field in its own certifi-
cate, a limit on the length of the chain of certificates that it can sign.

The first three points are further discussed below. The last point, if properly handled,
could have crippled our rogue CA certificate but does not affect its construction. A
certificate contains a “basic constraints” field where a bit is set to indicate if the
certificate is a CA certificate. With the bit set, a “path length constraint” subfield
may be present, specifying an integer that indicates how many CAs may occur in the
chain between the CA certificate in question and end-user certificates. The commercial
CA that we interacted with failed to use this option in its own certificate, implying
that any number of intermediate CAs is permitted. If the “path length constraint”
would have been present and set at 0 (zero), then our rogue CA certificate could still
have been constructed. But whether or not the rogue CA certificate or certificates
signed by it can then also be used depends on (browser-)software actually checking the
“path length constraint” subfields in chains of certificates. Thus a secondary “defense
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in depth” mechanism was present that could have foiled our attack, but failed to do
so simply because it was not used.

Before describing the construction of the colliding certificates, we briefly discuss
the parameter choices used for the chosen-prefix collision search. First, the number
of near-collision blocks is denoted by r and can be used to trade-off between birthday
search time complexity and the cost of finding the r near-collision blocks. Second, k
defines the birthday search space (its size is 64 + k) and the birthday iteration func-
tion and can be used to trade-off between birthday search time complexity, birthday
search memory complexity and average number of required near-collisions per birth-
day collision. Third, w defines the family of differential paths that can be used to
construct the near-collision blocks and is the number of bit positions where arbitrary
bit differences are allowed. It can be used to trade-off between the average number
of required near-collision blocks per birthday collision and the cost of finding the
r near-collision blocks. For more details on r, k and w we refer to Sections 6.5.2
and 6.5.3.

The 2048-bit upper bound on the length of RSA moduli, as enforced by some CAs,
combined with other limitations of our certificate construction, implied we could al-
low for at most three near-collision blocks. Opting for the least difficult possibility
(namely, three near-collision blocks), we had to decide on values for k and the aimed
for value for w that determine the costs of the birthday search and the near-collision
block constructions, respectively. Obviously, our choices were influenced by our com-
putational resources, namely a cluster of 215 PlayStation 3 (PS3) game consoles.
When running Linux on a PS3, applications have access to 6 Synergistic Processing
Units (SPUs), a general purpose CPU, and about 150MB of RAM per PS3. For the
birthday search, the 6 × 215 SPUs are computationally equivalent to approximately
8600 regular 32-bit cores, due to each SPU’s 4 × 32-bit wide SIMD architecture.
The other parts of the chosen-prefix collision construction are not suitable for the
SPUs, but we were able to use the 215 PS3 CPUs for the construction of the actual
near-collision blocks. With these resources, the choice w = 5 still turned out to be
acceptable despite the 1000-fold increase in the cost of the actual near-collision block
construction. This is the case even for the hard cases with many differences between
IHV and IHV ′: as a consequence the differential paths contain many bitconditions,
which leaves little space for the tunnels, thereby complicating the near-collision block
construction.

For the targeted three near-collision blocks, the entries for w = 5 in the first table
in Appendix D show the time-memory trade-off when the birthday search space is
varied with k. With 150MB at our disposal per PS3, for a total of about 30GB, we
decided to use k = 8 as this optimizes the overall birthday search complexity for the
plausible case that the birthday search takes

√
2 times longer than expected. The

resulting overall chosen-prefix collision construction takes on average less than a day
on the PS3-cluster. In theory we could have used 1TB (or more) of hard drive space,
in which case it would have been optimal to use k = 0 for a birthday search of about
20 PS3 days which is about 2.3 hours on the PS3-cluster.
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We summarize the construction of the colliding certificates in the sequence of steps
below, and then describe each step in more detail.

1. Construction of templates for the two to-be-signed parts, as outlined in Figure 7.
Note that we distinguish between a ‘legitimate’ to-be-signed part on the left
hand side, and a ‘rogue’ to-be-signed part on the other side.

2. Prediction of serial number and validity period for the legitimate part, thereby
completing the chosen prefixes of both to-be-signed parts.

3. Computation of the two different collision-causing appendages.

4. Computation of a single collision-maintaining appendage that will be appended
to both sides, thereby completing both to-be-signed parts.

5. Preparation of the certification request for the legitimate to-be-signed part.

6. Submission of the certification request and receipt of the new certificate.

7. If serial number and validity period of the newly received certificate are as
predicted, then the rogue certificate can be completed. Otherwise return to
Step 2.

The resulting rogue CA certificate and the end-user certificate, together with the
differential paths used for the three near-collision blocks, can be found in Appendix E.

serial number

validity period
commercial CA name

domain name

2048 bit RSA public key

serial number

validity period
commercial CA name

rogue CA name
1024 bit RSA public key

legitimate website 
certificate rogue CA certificate

chosen prefixes

collision bits

identical suffixes

v3 extensions

tumor

“CA = TRUE”

v3 extensions
“CA = FALSE”

Figure 7: The to-be-signed parts of the colliding certificates.

Step 1. Templates for the to-be-signed parts. In this step all bits are set in
the two to-be-signed parts, except for bits that are determined in later steps. For the
latter bits space is reserved here. On the legitimate side the parts to be filled in later
are the predictions for the serial number and validity period, and most bits of the
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public key. On the rogue side the largest part of the content of an extension field of
the type “Netscape Comment” is for the moment left undetermined. The following
roughly describes the sequence of steps.

• On the legitimate side, the chosen prefix contains space for serial number and
validity period, along with the exact Distinguished Name of the commercial CA
where the certification request will be submitted. This is followed by a subject
Distinguished Name that contains a legitimate website domain name (owned by
one of us) consisting of as many characters as allowed by the commercial CA
(in our case 64), and concluded by the first 208 bits of an RSA modulus, the
latter all chosen at random after the leading ‘1’-bit. These sizes were chosen in
order to have as many corresponding bits as possible on the rogue side, while
fixing as few bits as possible of the RSA modulus on the legitimate side (see
Step 4 for the reason why).

• The corresponding bits on the rogue side contain an arbitrarily chosen serial
number, the same commercial CA’s Distinguished Name, an arbitrarily chosen
validity period (actually chosen as indicating “August 2004”, to avoid abuse
of the rogue certificate), a short rogue CA name, a 1024-bit RSA public key
generated using standard software, and the beginning of the X.509v3 extension
fields. One of these fields is the “basic constraints” field, a bit that we set to
indicate that the rogue certificate will be a CA certificate (in Figure 7 this bit
is denoted by “CA=TRUE”).

• At this point the entire chosen prefix is known on the rogue side, but on the
legitimate side predictions for the serial number and validity period still need
to be inserted. That is done in Step 2.

• The various field sizes were selected so that on both sides the chosen prefixes
are now 96 bits short of the same MD5 block boundary. On both sides these
96 bit positions are reserved for the birthday bits. Because only 64 + k = 72
birthday bits per side are needed (and appended in Step 3) the first 24 bits
at this point are set to 0. On the legitimate side these 96 bits are part of the
RSA modulus, on the rogue side they are part of an extension field of the type
“Netscape Comment”, denoted as ‘tumor’ in Figure 7.

• From here on forward, everything that goes to the rogue side is part of the
“Netscape Comment” field, as it is not meaningful for the rogue CA certificate
but only appended to cause and maintain a collision with bits added to the
legitimate side. On the legitimate side we first make space for 3 near-collision
blocks of 512 bits each (calculated in Step 3) and for 208 bits used to complete
a 2048-bit RSA modulus (determined in Step 4), and then set the RSA public
exponent (for which we took the common choice 65537) and the X.509v3 ex-
tensions including the bit indicating that the legitimate certificate will be an
end-user certificate (in Figure 7 denoted by “CA=FALSE”).
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Step 2. Prediction of serial number and validity period. Based on repeated
certification requests submitted to the targeted commercial CA, it turned out that
the validity period can very reliably be predicted as the period of precisely one year
plus one day, starting exactly six seconds after a request is submitted. So, to control
that field, all we need to do is select a validity period of the right length, and submit
the legitimate certification request precisely six seconds before it starts. Though
occasional accidents may happen in the form of one-second shifts, this was the easy
part.

Predicting the serial number is harder but not impossible. In the first place, it
was found that the targeted commercial CA uses sequential serial numbers. Being
able to predict the next serial number, however, is not enough: the construction of
the collision can be expected to take at least a day, before which the serial number
and validity period have to be fixed, and only after which the to-be-signed part of
the certificate will be entirely known. As a consequence, there will have been a
substantial and uncertain increment in the serial number by the time the collision
construction is finished. So, another essential ingredient of our construction was the
fact that the CA’s weekend workload is quite stable: it was observed during several
weekends that the increment in serial number over a weekend does not vary a lot.
This allowed us to pretty reliably predict Monday morning’s serial numbers on the
Friday afternoon before. Thus, on Friday afternoon we selected a number at the
high end of the predicted range for the next Monday morning, and inserted it in the
legitimate to-be-signed part along with a validity period starting that same Monday
morning at the time corresponding to our serial number prediction. See Step 6 how
we then managed, after the weekend, to target precisely the selected serial number
and validity period.
Step 3. Computation of the collision. At this point both chosen prefixes have
been fully determined so the chosen-prefix collision can be computed: first the 72
birthday bits per side, calculated in parallel on the 1290 SPUs of a cluster of 215
PS3s, followed by the calculation of 3 pairs of 512-bit near-collision blocks on a quad-
core PC and the 215 PS3 CPUs. The entire calculation takes on average about a
day.

Given that we had a weekend available, and that the calculation can be expected
to take just a day, we sequentially processed a number of chosen-prefixes, each corre-
sponding to different serial numbers and validity periods (targeting both Monday and
Tuesday mornings). So, a near-collision block calculation on the CPUs would always
run simultaneously with a birthday search on the SPUs for the ‘next’ attempt.
Step 4. Finishing the to-be-signed parts. At this point the legitimate and rogue
sides collide under MD5, so that from here on only identical bits may be appended
to both sides.

With 208 + 24 + 72 + 3 ∗ 512 = 1840 bits set, the remaining 2048 − 1840 = 208
bits need to be set for the 2048-bit RSA modulus on the legitimate side. Because in
the next step the RSA private exponent corresponding to the RSA public exponent is
needed, the full factorization of the RSA modulus needs to be known, and the factors
must be compatible with the choice of the RSA public exponent. Because common
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CAs (including our targeted commercial CA) do not check for compositeness of RSA
moduli in certification requests, we could simply have added 208 bits to make the
RSA modulus a prime. We found that approach unsatisfactory, and opted for the
rather crude but trivial to program method sketched below that results in a 224-bit
prime factor with a prime 1824-bit cofactor. Given that at the time this work was
done the largest factor found using the elliptic curve integer factorization method was
222 bits long, a 224-bit smallest prime factor keeps the resulting modulus out of reach
of common factoring efforts. We could have used a relatively advanced lattice-based
method to try and squeeze in a 312-bit prime factor along with a prime 1736-bit
cofactor. Given only 208 bits of freedom to select a 2048-bit RSA modulus, it is
unlikely that a more balanced solution can efficiently be found. Thus the reason why
as few bits as possible should be fixed in Step 1, is that it allows us to construct a
slightly less unbalanced RSA modulus.

Let N be the 2048-bit integer consisting of the 1840 already determined bits of
the RSA modulus-to-be, followed by 208 one bits. We select a 224-bit integer p at
random until N = a · p+ b with a ∈ N and b < 2208, and keep doing this until both p
and q = ⌊N/p⌋ are prime and the RSA public exponent is coprime to (p− 1)(q − 1).
Once such primes p and q have been found, the number pq is the legitimate side’s
RSA modulus, the leading 1840 bits of which are already present in the legitimate
side’s to-be-signed part, and the 208 least significant bits of which are inserted in
both to-be-signed parts.

To analyze the required effort somewhat more in general, 2k−208 integers of k bits
(with k > 208) need to be selected on average for pq to have the desired 1840 leading
bits. Since an ℓ-bit integer is prime with probability approximately 1/ log(2ℓ), a total
of k(2048−k)2k−208(log 2)2 attempts may be expected before a suitable RSA modulus
is found. The coprimality requirement is a lower order effect that we disregard. Note
that for k(k − 2048)(log 2)2 of the attempts the k-bit number p has to be tested
for primality, and that for (2048 − k) log 2 of those q needs to be tested as well (on
average, obviously). For k = 224 this turned out to be doable in a few minutes on a
standard PC.

This completes the to-be-signed parts on both sides. Now it remains to be hoped
that the legitimate part that actually will be signed corresponds, bit for bit, with the
legitimate to-be-signed part that we concocted.
Step 5. Preparing the certification request. Using the relevant information
from the legitimate side’s template, i.e., the subject Distinguished Name and the
public key, a PKCS#10 Certificate Signing Request is prepared. The CA requires
proof of possession of the private key corresponding to the public key in the request.
This is done by signing the request using the private key – this is the sole reason that
we need the RSA private exponent.
Step 6. Submission of the certification request. The targeted legitimate to-
be-signed part contains a very specific validity period that leaves no choice for the
moment at which the certification request needs to be submitted to the CA. Just
hoping that at that time the serial number would have precisely the predicted value
is unlikely to work, so a somewhat more elaborate approach is used. About half an
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hour before the targeted submission moment, the same request is submitted, and the
serial number in the resulting certificate is inspected. If it is already too high, the
entire attempt is abandoned. Otherwise, the request is repeatedly submitted, with
a frequency depending on the gap that may still exist between the serial number
received and the targeted one, and taking into account possible certification requests
by others. In this way the serial number is slowly nudged toward the right value at the
right time. Although there is nothing illegal about repeated certification requests, it
should be possible for a CA to recognize the somewhat anomalous behavior sketched
above and to take appropriate countermeasures (such as random delays or jumps in
serial numbers) if it occurs.

Various types of accidents may happen, of course, and we experienced some of
them, such as another CA customer ‘stealing’ our targeted serial number just a few
moments before our attempt to get it, thereby wasting that weekend’s calculations.
But, after the fourth weekend it worked as planned, and we managed to get an actually
signed part that exactly matched our predicted legitimate to-be-signed part.
Step 7. Creation of the rogue certificate. Given the perfect match between the
actually signed part and the hoped for one, and the MD5 collision between the latter
and the rogue side’s to-be-signed part, the MD5-based digital signature present in the
legitimate certificate as provided by the commercial CA is equally valid for the rogue
side. To finish the rogue CA certificate it suffices to copy the digital signature to the
right spot in the rogue CA certificate.

4.3 Nostradamus attack
In the original Nostradamus attack from [KK06] one first commits to a certain hash
value, and afterwards for any message constructs a document that not only contains
that message but that also has the committed hash value. In its full generality, this
attack is at this point in time not feasible for MD5. It is easily doable, though, if a
limited size message space has been defined upfront.

Suppose there are messages m1,m2, . . . ,mr, then using r − 1 chosen-prefix colli-
sions we can construct r suffixes s1, s2, . . . , sr such that the r documents di = mi∥si
all have the same hash. After committing to the common hash, afterwards any of
the r documents d1, d2, . . . , dr can be shown, possibly to achieve some malicious goal.
The other documents will remain hidden and their contents, i.e., the mi-parts, cannot
be derived – with overwhelming probability – from the single published document or
from the common hash value.

To show the practicality of this variant, we have made an example consisting of
12 different PDF documents with a common MD5 hash value, where each document
predicts a different outcome of the 2008 US presidential elections. The PDF format is
convenient for this purpose because it allows insertion of extra image objects that are
unreferenced in the resulting document and thus invisible to the viewer in any common
PDF reader. The common MD5 hash value of our 12 colliding PDF documents
containing our predictions is

3d515dead7aa16560aba3e9df05cbc8016.
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See [SLdW07a] for the actual PDF documents, one of which correctly predicted the
outcome one year before the elections took place.

For each of the 11 collisions required for this example we used a 64-bit birthday
search (on a single PS3) aiming for about 11 near-collision blocks (constructed on
a quad-core PC). It took less than two days per chosen-prefix collision. Since we
performed those computations our methods have improved as described in this thesis,
so this attack would now run much faster.

Given the structure of PDF documents it is not entirely straightforward to insert
different chosen-prefix collision blocks, while keeping the parts following those blocks
identical in order to maintain the collision. The relevant details of both the PDF
structure and our construction are covered here.

A PDF document is built up from the following four consecutive parts: a fixed
header, a part consisting of an arbitrary number of numbered objects, an object
lookup table and, finally, a trailer. The trailer specifies the number of objects, which
of the objects is the unique root object (containing the document content) and which
is the info object (containing the document’s meta information such as authors and
title etc.), and contains a filepointer to the start of the object lookup table.

Given a file containing a PDF document, additional objects can be inserted, as
long as they are added to the object lookup table and the corresponding changes are
made to the number of objects and the filepointer in the trailer. A template for an
image object is given in Table 4-1. With the exception of binary images, the format is
mostly text based. Any binary image is put between single line-feed characters (ASCII
code 10) and the result is encapsulated by the keywords stream and endstream. The
keyword /Length must specify the byte length of the image. Because in our case,
the image is uncompressed and each pixel requires three bytes (‘RGB’), the image byte
length must be three times the product of the specified width and height. The object
number (42 in the example object header) must be set to the next available object
number.

Table 4-1: An example numbered image object in the PDF format.

Part Contents
object header 42 0 obj
image header << /ColorSpace /DeviceRGB /Subtype /Image
image size /Length 9216 /Width 64 /Height 48 /BitsPerComponent 8
image contents >> stream...endstream
object footer endobj

When constructing colliding PDF files they must be equal after the collision-
causing data. The object lookup tables and trailers for all files must therefore be the
same. This was achieved as follows:

• Because all documents must have the same number of objects, dummy objects
are inserted where necessary.
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• Because all root objects must have the same object number, they can be copied
if necessary to objects with the next available object number.

• The info objects are treated in the same way as the root objects.

• To make sure that all object lookup tables and filepointers are identical, the
objects can be sorted by object number and if necessary padded with spaces
after their obj keyword to make sure that all objects with the same object
number have the same file position and byte length in all files.

• Finally, the object lookup tables and trailers need to be adapted to reflect the
new situation – as a result they should be identical for all files.

Although this procedure works for basic PDF files (such as PDF version 1.4 as we
produced using pdflatex), it should be noted that the PDF document format allows
additional features that may cause obstructions.

Given r LATEX files with the desired subtle differences (such as names of r different
candidates), r different PDF files are produced using a version of LATEX that is suitable
for our purposes (cf. above). In all these files a binary image object with a fixed object
number is then inserted, and the approach sketched above is followed to make the
lookup tables and trailers for all files identical. Since this binary image object is
present but not used in the PDF document, it remains hidden from view in a PDF
reader. To ensure that the files are identical after the hidden image contents, their
corresponding objects were made the last objects in the files. This then leads to r
chosen prefixes consisting of the leading parts of the PDF files up to and including
the keyword stream and the first line-feed character. After determining r−1 chosen-
prefix collisions resulting in r collision-causing appendages, the appendages are put
in the proper binary image parts, after which all files are completed with a line-feed
character, the keywords endstream and endobj, and the identical lookup tables and
trailers.

Note that the Length etc. fields have to be set before collision finding, and that
the value of Length will grow logarithmically with r and linearly in the number of
near-collision blocks one is aiming for.

4.4 Colliding executables
Using the same set-up as used for the Nostradamus attack reported in Section 4.3, i.e.,
64-bit birthday search on a PS3 followed by the construction of about 12 near-collision
blocks on a quad-core PC, it took us less than 2 days to create two different Windows
executables with the same MD5 hash. Initially both 40960 bytes large, 13× 64 bytes
had to be appended to each executable, for a resulting size of just 41792 bytes each,
to let the files collide under MD5 without changing their functionality.

See [SLdW07b] for details. As noted above, it has been shown on [Ste09] that this
attack can be elevated to one on a code signing scheme.

As usual, the following remarks apply:



4.4 Colliding executables 59

• An existing executable with a known and published hash value not resulting
from this construction cannot be targeted by this attack: our attack is not a
pre-image or second pre-image attack. In order to attack a software integrity
protection or code signing scheme using this approach, the attacker must be able
to manipulate the files before they are hashed (and, possibly, signed). Given
the level of access required to realize the attack an attacker can probably do
more harm in other simpler and more traditional ways.

• Any number r of executables can be made to collide, at the cost of r−1 chosen-
prefix collisions and an O(log r)-byte appendage to each of the r original exe-
cutables.

In Chapter 8 we present a method that allows to distinguish near-collision attacks
and thus distinguish potentially malicious MD5-based certificates or executables. It
is better, however, not to rely on cryptographic primitives such as MD5 and SHA-1
that fail to meet their design criteria.
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5.1 Introduction
In this thesis we limit ourselves to hash functions of the MD4 family and focus mainly
on MD5 and SHA-1. As can be seen in Chapter 2, the construction of a near-collision
attack for MD4 style compression functions has many aspects that all have to fit
together. Nevertheless there is one aspect that is the key to the entire attack: the
differential path. In this section we introduce a definition of a compression function
family Fmd4cf that includes an important subset of the family of MD4 style compres-
sion functions, namely those of MD4, MD5 and SHA-1. We complement this family
with a definition of differential paths for these compression functions. Such a differ-
ential path is called valid if there exists a solution to the differential path under a
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relaxation of the message expansion. The most important contribution of this section
is an algorithm that searches for complete valid differential paths for which the begin-
ning and ending part are predetermined. In its generic form, this algorithm provides
insights in differential cryptanalysis applied to compression functions. We apply this
differential cryptanalysis and improve the differential path construction algorithm for
MD5 and SHA-1 in Sections 6 and 7, respectively.

For MD4 style compression functions, a differential path designed for a near-
collision attack consists of three segments. The most important segment, namely the
end segment, consists of all steps after a certain step K whose success probability
directly contributes reciprocally to the final attack complexity. E.g., the collision
finding algorithm for MD5 in Chapter 2 easily fulfills the first 16 steps of the differen-
tial path and with effort can fulfill a small number of steps thereafter using message
modification techniques. Since message modification techniques do not affect the ful-
fillment of the differential path over all steps starting at K, where K is approximately
27 for MD5, the differential path over those steps has to be fulfilled probabilistically.
The expected number of attempts required, which is the reciprocal of the success
probability over those steps, is a direct factor of the attack complexity. Hence, to
build an efficient collision attack the success probability of a differential path over
those steps should be as high as possible. Specifically, this probability must be at
least π−0.52−N/2 for the resulting attack not to be slower than a brute-force attack.

The first segment of the differential path consists of the initial working state
defined by the input pair IHVin and IHV ′in. Since for a near-collision attack the input
pair IHVin and IHV ′in are given, this segment is also a given.

The remaining segment thus ‘connects’ the begin segment and end segment of the
differential path. Whereas the end segment is constructed and specifically optimized
for a low attack complexity and the begin segment is pre-determined, this segment
must be constructed using both extremal segments in order to build a valid complete
differential path. There is no trivial solution to the problem of constructing such a
connecting segment, due to the fact that each working state variable affects multiple
steps of the differential path.

The first ones to solve the problem of constructing a connecting segment were
Xiaoyun Wang and her team. Their paper [WY05] describes their methodology which
depends mainly on expertise, intuition and patience. With their methodology they
enabled the construction of identical-prefix collisions for MD5. In this section we
present an algorithmic solution to this problem for a certain class of compression
functions which we call Fmd4cf. To this end, we first define this class Fmd4cf of
compression functions which includes those of MD4, MD5 and SHA-1, and more
formally define the concept of a differential path for this class.

Besides providing a much easier and faster way of constructing full differential
paths, our algorithmic solution also allows optimization of differential paths with re-
spect to given message modification techniques. Furthermore, the most important
result of our algorithmic solution is the construction of a chosen-prefix collision at-
tack against MD5, where the differential paths are necessarily created during the
attack instead of precomputed (see Section 6.5). Compared to identical-prefix colli-
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sion attacks such as the collision attack in Chapter 2, a chosen-prefix collision attack
removes the identical input IHVk and IHV ′k requirement at the start of the attack.
The two equal-length input message prefixes P and P ′ (resulting in IHVk and IHV ′k)
can therefore be chosen independently.

First in Section 5.2 we introduce some basic definitions and notations necessary
for this section. In Section 5.3 we present the formal definition of the class Fmd4cf of
MD4 based compression functions. This is followed by a discussion of three important
properties of the step functions of the compression functions in Fmd4cf in Section 5.4.
Next, we formally define differential paths for the class Fmd4cf of compression func-
tions in Section 5.5. Finally, we present our differential path construction algorithm
in Section 5.6.

5.2 Definitions and notation
Throughout this thesis we denote a mod b for the least non-negative residue of a
modulo b where a ∈ Z and b ∈ N+.

5.2.1 N-bit words and operators

Similar to MD5, the class Fmd4cf is based on the integer working registers of modern
CPU architectures. Whereas MD5 used 32-bit words, here we generalize this to N -bit
words. We use the shorter notation Z2N for Z/2NZ. An N -bit word (vi)

N−1
i=0 consists

of N bits vi ∈ {0, 1}. These N -bit words are identified with elements v =
∑N−1
i=0 vi2

i

of Z2N and we switch freely between these two representations.
OnN -bit wordsX = (xi)

N−1
i=0 and Y = (yi)

N−1
i=0 , we define the following operations:

• X ∧ Y = (xi ∧ yi)N−1i=0 is the bitwise AND of X and Y ;

• X ∨ Y = (xi ∨ yi)N−1i=0 is the bitwise OR of X and Y ;

• X ⊕ Y = (xi ⊕ yi)N−1i=0 is the bitwise XOR of X and Y ;

• X = (1− xi)N−1i=0 is the bitwise complement of X;

• X[i] is the i-th bit xi;

• X + Y and X − Y denote addition and subtraction, respectively, of X and Y
in Z2N ;

• RL(X,n) = (x(i+n mod N))
N−1
i=0 is the cyclic left rotation of X by 0 ≤ n < N

bit positions;

• RR(X,n) = (x(i−n mod N))
N−1
i=0 is the cyclic right rotation of X by 0 ≤ n < N

bit positions. Equivalent to cyclic left rotation over (N−n mod N) bit positions;

• w(X) denotes the Hamming weight
∑N
i=0 xi of X = (xi)

N
i=0.
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5.2.2 Binary signed digit representations

We extend the notion of the BSDR to N -bit words X ∈ Z2N as a sequence (ki)
N−1
i=0

such that

X =
N−1∑
i=0

ki2
i, ki ∈ {−1, 0, 1}.

For each non-zero X ∈ Z2N there exist many different BSDRs. The weight w((ki)N−1i=0 )
of a BSDR (ki)

N−1
i=0 is defined as the number of non-zero kis.

A particularly useful type of BSDR is the Non-Adjacent Form (NAF), where no
two non-zero ki-values are adjacent. For any X ∈ Z2N there is no unique NAF,
since we work modulo 2N (making kN−1 = +1 equivalent to kN−1 = −1). However,
uniqueness of the NAF can be enforced by the added restriction kN−1 ∈ {0,+1}.
Among the BSDRs for a given X ∈ Z2N , the NAF has minimal weight [MS06]. The
NAF can be computed easily [Lin98] for a given X ∈ Z2N as NAF(X) = ((X+Y )[i]−
Y [i])N−1i=0 where Y is the N -bit word (0 X[N − 1] . . . X[1]).

We use the following notation for an N -digit BSDR Z:

• Z[i] is the i-th signed bit ki of Z = (ki)
N−1
i=0 ;

• RL(Z, n) = (x(i+n) mod N )N−1i=0 is the cyclic left rotation of Z by 0 ≤ n < N
digit positions;

• RR(Z, n) = (x(i−n) mod N )N−1i=0 is the cyclic right rotation of Z by 0 ≤ n < N
digit positions and is equivalent to RL(Z, (N − n mod N));

• w(Z) =
∑N−1
i=0 |ki| is the weight of Z.

• σ(Z) =
∑N−1
i=0 ki2

i ∈ Z2N is the N -bit word for which Z is a BSDR.

5.2.3 Function families over N-bit words

As an aid we define three families Fsumrot, Fbool and Fboolrot of functions

f : (Z2N )J → Z2N , J ∈ N

that map an input tuple of J N -bit words to a single N -bit word.
The family Fsumrot consists of functions f that perform a selective sum over bitwise

cyclic rotated input words and a chosen constant value C ∈ Z2N :

f(X1, . . . , XJ ) 7→ C +
J∑
j=1

cj ·RL(Xj , rj), cj ∈ {−1, 0, 1}, rj ∈ {0, . . . , N − 1}.

We restrict rj to zero whenever cj = 0 for j = 1, . . . , J , so that all non-trivial rotations
(rj ̸= 0) contribute in the sum.
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The family Fbool consists of functions f that extend a boolean functions g :
{0, 1}J → {0, 1} to words:

f(X1, . . . , XJ) 7→ (g(X1[i], . . . , XJ [i]))
N−1
i=0 .

The family Fboolrot consists of functions that first cyclically rotate their input words
and then pass them to a function g ∈ Fbool:

f(X1, . . . , XJ) 7→ g(RL(X1, r1), . . . , RL(XJ , rJ)), rj ∈ {0, . . . , N − 1}.

Observation 5.1. For any f ∈ Fsumrot if we fix all input values except Xi, i ∈
{1, . . . , J}, then the resulting fi is either bijective and easily invertible or a constant
function with respect to the remaining single input value. More formally, let f ∈
Fsumrot:

f(X1, . . . , XJ) = C +
J∑
j=1

cj ·RL(Xj , rj), cj ∈ {−1, 0, 1}, rj ∈ {0, . . . , N − 1}.

For any i ∈ {1, . . . , J} and given values of all inputs except Xi we define the function
fi : Z2N → Z2N as:

fi : Xi 7→ f(X1, . . . , XJ ) = Ci + ci ·RL(Xi, ri),

where

Ci = C +

J∑
j=0
j ̸=i

cj ·RL(Xj , rj).

If ci = 0 then fi(Xi) = Ci is a constant function. Otherwise, if ci ∈ {−1, 1} then
fi(Xi) = Ci + ciRL(Xi, ri) is bijective and easily invertible:

f−1i : A 7→ RR(ci · (A− Ci), ri).

5.3 Fmd4cf: MD4 based compression functions
The class Fmd4cf of compression functions can be seen as a subfamily of the family of
MD4-style compression functions and consists of all compression functions Compress
as defined in this section. The class Fmd4cf includes the compression functions of
MD4, MD5 and SHA-1. It does not include the compression functions of the SHA-2
family, since these compression functions update two state variables per step instead
of one.

A compression function Compress uses only fixed sized N -bit words, N ∈ N+,
and the above listed N -bit word operations. From now on, we also use the shorthand
word for N -bit word.

For fixed L,K ∈ N+, Compress(IHVin,M) maps an L tuple of words IHVin and
a K tuple of words M to an L tuple of words referred to as IHVout:

Compress : (Z2N )L × (Z2N )K → (Z2N )L.
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To compute IHVout given IHVin and M , Compress computes a sequence of S+L
working state words (Qi)

S
i=−L+1 ∈ (Z2N )S+L, where S is a fixed multiple of K.

The first L words Q−L+1, . . . , Q0 are initialized using IHVin in Section 5.3.1. The
remaining S words Q1, . . . , QS are sequentially computed using step functions in
Section 5.3.4. The output L tuple IHVout is computed based on the last L words
QS−L+1, . . . , QS and IHVin in Section 5.3.2.

In the computation of each word Qi for i = 1, . . . , S a single word Wi is used that
is derived from the K tuple M . Section 5.3.3 describes the mapping of M to (Wi)

S
i=0

called the message expansion. Note that the problem of endianness (Section 2.1.2) is
avoided by defining M as a tuple of words instead of a bit string.

As an example, the value of the tuple (N,L,K, S) for MD4, MD5 and SHA-1 is
(32, 4, 16, 48), (32, 4, 16, 64) and (32, 5, 16, 80), respectively.

5.3.1 Working state initialization

Compress initializes the first L working state words Q−L+1, . . . , Q0 using the L-tuple
IHVin = (ihvin0, . . . , ihvinL−1):

Qi = fin,i(ihvin0, . . . , ihvinL−1), fin,i ∈ Fsumrot,

for i ∈ {−L+ 1, . . . , 0} such that

(fin,i)
0
i=−L+1 : (Z2N )L → (Z2N )L

is bijective.
In the case of MD4, MD5 and SHA-1, this initialization function (fin,i)

0
i=−L+1

forms a non-trivial permutation of the L input words.

5.3.2 Finalization

After all S steps are performed, the output IHVout = (ihvout0, . . . , ihvoutL−1) is
determined as a function of the last L working state words QS−L+1, . . . , QS and
IHVin:

ihvouti = fout,i(ihvin0, . . . , ihvinL−1, QS−L+1, . . . , QS), fout,i ∈ Fsumrot,

for i ∈ {0, . . . , L− 1}. For all values of QS−L+1, . . . , QS we require that the following
mapping is bijective:

(ihvin0, . . . , ihvinL−1) 7→ (fout,i(ihvin0, . . . , ihvinL−1, QS−L+1, . . . , QS))
L−1
i=0 .

Also, for all values of ihvin0, . . . , ihvinL−1 we require that the following mapping is
bijective:

(QS−L+1, . . . , QS) 7→ (fout,i(ihvin0, . . . , ihvinL−1, QS−L+1, . . . , QS))
L−1
i=0 .

The finalization of the compression functions of MD4, MD5 and SHA-1 is as fol-
lows. First the inverse initialization permutation, namely ((fin,i)

0
i=−L+1)

−1, is applied
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to (QS−L+1, . . . , QS) resulting in (Q̂S−L+1, . . . , Q̂S). The value of IHVout is computed
as the word-wise sum of the tuples (Q̂S−L+1, . . . , Q̂S) and (ihvin0, . . . , ihvinL−1), thus
ihvouti = Q̂S−L+1+i + ihvini for i = 0, . . . , L− 1.

5.3.3 Message expansion

In each of the S steps t = 0, . . . , S − 1 a single word Wt is used that is derived from
the message word tuple M :

Wt = fmsgexp,t(m0, . . . ,mK−1) ∈ Z2N .

The functions fmsgexp,t are arbitrary functions

fmsgexp,t : (Z2N )K → Z2N , t ∈ {0, . . . , S − 1}

under the restriction that for k = 0,K, . . . , S −K the following function is bijective:

fmsgexpblock,k(M) = (fmsgexp,k(M), fmsgexp,k+1(M), . . . , fmsgexp,k+K−1(M)).

MD4 and MD5 divide their S steps into S/K rounds, thus 48/16 = 3 and
64/16 = 4 rounds respectively. The first round uses the message words in order:
W0 = m0, . . . ,W15 = m15. The remaining rounds r = 1, . . . , S16 − 1 apply a fixed per-
mutation on the message words (m0, . . . ,m15) to obtain (Wr·K , . . . ,Wr·K15). SHA-1
also uses W0 = m0, . . . ,W15 = m15, however it computes the remaining words with
the following linear relation:

Wi = RL(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16, 1), for i = 16, . . . , 79.

This linear relation can be used backwards:

Wi−16 = RR(Wi, 1)⊕Wi−3 ⊕Wi−8 ⊕Wi−14, for i = 16, . . . , 79.

It follows that any 16 consecutive Wi, . . . ,Wi+15 fully determine W0, . . . ,W79 and in
particular W0, . . . ,W15. This implies that for k = 0, 16, 32, 48, 64 the mapping from
m0, . . . ,m15 to Wk+0, . . . ,Wk+15 is bijective.

5.3.4 Step function

In each of the S steps t = 0, . . . , S − 1, Compress computes a single boolean function
over the last L− 1 state words Qt−L+2, . . . , Qt:

Ft = fbool,t(Qt−L+2, . . . , Qt) ∈ Z2N , fbool,t ∈ Fboolrot.

Each step t computes V ∈ N+ (V is fixed and independent of the step t) intermediate
variables Tt,i where i ∈ {1, . . . , V } starting with Tt,0 = 0:

Tt,i = ftemp,t,i(Qt−L+1, . . . , Qt, Ft,Wt, Tt,i−1), ftemp,t,i ∈ Fsumrot.

The new working state word Qt+1 is set to the final intermediate variable Tt,V . Fur-
thermore, the functions ftemp,t,i have the following restrictions:
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• In each function ftemp,t,i, the selective sum coefficient of Tt,i−1 is non-zero.

• Over all selective sums in (ftemp,t,i)
V
i=1, the variable Qt−L+1 is selected exactly

once. More formally, for i = 1, . . . , V , let ci ∈ {−1, 0, 1} be the selective sum
coefficient of Qt−L+1 in ftemp,t,i (see Section 5.2.3) then

∑V
i=1 |ci| must be 1.

• For i = 1, . . . , V , let c′i be the selective sum coefficient of Wt in ftemp,t,i then∑V
i=1 |c′i| must be 1.

• For i = 1, . . . , V , let c′′i be the selective sum coefficient of Ft in ftemp,t,i then∑V
i=1 |c′′i | must be 1.

For MD4, V = 2 and functions fbool,t, ftemp,t,1 and ftemp,t,2 are defined as:

ftemp,t,1(. . .) = Qt−3 + Ft +Wt + Tt,0 +ACt;

ftemp,t,2(. . .) = RL(Tt,1, RCt);

fbool,t(Qt−2, Qt−1, Qt) =
(Qt ∧Qt−1)⊕ (Qt ∧Qt−2) for 0 ≤ t < 16,

(Qt ∧Qt−1) ∨ (Qt ∧Qt−2) ∨ (Qt−1 ∧Qt−2) for 16 ≤ t < 32,

Qt ⊕Qt−1 ⊕Qt−2 for 32 ≤ t < 48,

where ACt ∈ Z232 and RCt ∈ {0, . . . , 31} are constants. For MD5, also V = 2 and
the functions fbool,t, ftemp,t,1 and ftemp,t,2 are defined as:

ftemp,t,1(. . .) = Qt−3 + Ft +Wt + Tt,0 +ACt;

ftemp,t,2(. . .) = Qt +RL(Tt,1, RCt);

fbool,t(Qt−2, Qt−1, Qt) =
(Qt ∧Qt−1)⊕ (Qt ∧Qt−2) for 0 ≤ t < 16,

(Qt−2 ∧Qt)⊕ (Qt−2 ∧Qt−1) for 16 ≤ t < 32,

Qt ⊕Qt−1 ⊕Qt−2 for 32 ≤ t < 48,

Qt−1 ⊕ (Qt ∨Qt−2) for 48 ≤ t < 64,

where ACt ∈ Z232 and RCt ∈ {0, . . . , 31} are constants. For SHA-1, V = 1 and the
functions fbool,t and ftemp,t,1 are defined as:

ftemp,t,1(. . .) = RL(Qt−4, 30) +RL(Qt, 5) + Ft +Wt + Tt,0 +ACt;

fbool,t(. . .) = fsha1,t(Qt−1, RL(Qt−2, 30), RL(Qt−3, 30));

fsha1,t(X,Y, Z) =
F (X,Y, Z) = Z ⊕ (X ∧ (Y ⊕ Z)) for 0 ≤ t < 20,

G(X,Y, Z) = X ⊕ Y ⊕ Z for 20 ≤ t < 40,

H(X,Y, Z) = (X ∧ Y ) ∨ (Z ∧ (X ∨ Y )) for 40 ≤ t < 60,

I(X,Y, Z) = X ⊕ Y ⊕ Z for 60 ≤ t < 80,

where ACt ∈ Z232 is a constant.
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5.4 Properties of the step functions
For each t = 0, . . . , S − 1, the mapping

ft : (Qt−L+1, . . . , Qt, Ft,Wt) 7→ Qt+1

as defined by the sequence (ftemp,t,i)
V
i=1 has three properties that are crucial to our

differential path construction algorithm and are design criteria to thwart certain at-
tacks. The first property of ft is that the output Qt+1 can take on all possible values
in Z2N by varying only Qt−L+1 ∈ Z2N and fixing all other input values. An impor-
tant implication of this property is that Qt−L+1 can be uniquely determined given the
output value Qt+1 and all other input values. The other two properties are similar
to the first with respect to Ft and Wt instead of Qt−L+1. These three properties are
treated in detail in Section 5.4.1, 5.4.2 and 5.4.3.

5.4.1 Full dependency on Qt−L+1

Theorem 5.1 (Full dependency on Qt−L+1). Given values of the variables Qt−L+2,
. . ., Qt, Ft, Wt the following mapping is bijective:

ft,Qt−L+1
: Qt−L+1 7→ Qt+1 = ft(Qt−L+1, . . . , Qt, Ft,Wt).

Furthermore, there exists a sequence of functions (finvQ,t,i)
2V+1
i=1 ∈ F2V+1

sumrot that com-
putes the inverse of ft,Qt−L+1

given values of Qt−L+2, . . . , Qt, Ft, Wt and the value
of Qt+1:

TinvQ,t,0 = 0;

TinvQ,t,i = finvQ,t,i(Qt−L+2, . . . , Qt, Ft,Wt, Qt+1, TinvQ,t,0, . . . , TinvQ,t,i−1);

Qt−L+1 = TinvQ,t,2V+1.

Proof. We prove the theorem by providing a construction of a sequence of functions
(finvQ,t,i)

2V+1
i=1 that computes the inverse of ft,Qt−L+1

. In our construction not all
finvQ,t,i may be needed in which case we define those as the zero-function. Using
the second restriction in Section 5.3.4, let j ∈ {1, . . . , V } be the unique index such
that the selection coefficient15 of Qt−L+1 in ftemp,t,j is non-zero. Given values of
Qt−L+2, . . . , Qt, Ft and Wt, we can compute the values of Tt,0, . . . , Tt,j−1, since these
do not depend on the value of Qt−L+1. We define finvQ,t,1, . . . , finvQ,t,j−1 to compute
the values of Tt,0, . . . , Tt,j−1:

finvQ,t,i(. . .) = ftemp,t,i(0, Qt−L+2, . . . , Qt, Ft,Wt, TinvQ,t,i−1), i ∈ {1, . . . , j − 1}.

Thus TinvQ,t,j−1 = Tt,j−1 after these steps. The functions (finvQ,t,i)
2j−2
i=j are not

needed and defined as the zero function.

15. See Section 5.2.3.
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For i = j + 1, . . . , V the values of all inputs except Ti−1 and Qt−L+1 of ftemp,t,i
are known, but Qt−L+1 can be ignored as these functions do not depend on the value
of Qt−L+1. Using Observation 5.1, the following mappings are bijective:

gi : Ti−1 7→ ftemp,t,i(0, Qt−L+2, . . . , Qt, Ft,Wt, Ti−1), i ∈ {j + 1, . . . , V }.

By inverting gV , . . . , gj+1 we can compute the values of Tt,V−1, . . . , Tt,j in that order.
First let finvQ,t,2j−1(. . .) = Tt,V = Qt+1. For i = V, . . . , j + 1, let k = j + V − i and
let ci and ri be the select coefficient and rotation constant of the variable Tt,i−1 in
ftemp,t,i then we define finvQ,t,2(j+V−i) and finvQ,t,2(j+V−i)+1 as follows:

finvQ,t,2k(. . .) = ci · TinvQ,t,2k−1

−ci · ftemp,t,i(0, Qt−L+2, . . . , Qt, Ft,Wt, 0);

finvQ,t,2k+1(. . .) = RL(TinvQ,t,2k, N − ri).

Similar to Observation 5.1, the first and second function compute the cj ·(A−Cj) part
and the RR part, respectively, of the inverse of gi. Given the values of Qt−L+2, . . . , Qt,
Ft, Wt and TinvQ,t,2k−1 = Tt,i, this results in TinvQ,t,2k+1 = Tt,i−1. Thus for i = j +1
this results in TinvQ,t,2V−2 = Tj .

Again using Observation 5.1, the following mapping is bijective:

gj : Qt−L+1 7→ ftemp,t,j(Qt−L+1, . . . , Qt, Ft,Wt, Tj−1).

Thus it follows that ft,Qt−L+1
is bijective as

ft,Qt−L+1(Qt−L+1) = gV (· · · (gj+1(gj(Qt−L+1))) · · · ).

Let cQ and rQ be the select and rotation constant of the variable Qt−L+1 in ftemp,t,j
then we define finvQ,t,2V and finvQ,t,2V+1 as follows:

finvQ,t,2V (. . .) = cQ · TinvQ,t,2V−1

−cQ · ftemp,t,j(0, Qt−L+2, . . . , Qt, Ft,Wt, TinvQ,t,j−1);

finvQ,t,2V+1(. . .) = RL(TinvQ,t,2V , N − rQ).

Given the values of Qt−L+2, . . . , Qt, Ft, Wt, TinvQ,t,2V−1 = Tt,j and TinvQ,t,j−1 =
Tt,j−1, this results in TinvQ,t,2V+1 = Qt−L+1.

Using the above theorem it follows that the following mapping is bijective and its
inverse is easily computable using only additions in Z2N and bitwise rotations for all
values of Qt−L+2, . . . , Qt, Ft,Wt ∈ Z2N :

ft,Qt−L+1
: Qt−L+1 7→ ft(Qt−L+1, . . . , Qt, Ft,Wt).
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5.4.2 Full dependency on Ft

Theorem 5.2 (Full dependency on Ft). Given values of the variables Qt−L+1, . . . ,
Qt and Wt the following mapping is bijective:

ft,Ft : Ft 7→ Qt+1 = ft(Qt−L+1, . . . , Qt, Ft,Wt).

Furthermore, there exists a sequence of functions (finvF,t,i)
2V+1
i=1 ∈ F2V+1

sumrot that com-
putes the inverse of ft,Ft given values of Qt−L+1, . . . , Qt, Wt and the value of Qt+1:

TinvF,t,0 = 0;

TinvF,t,i = finvF,t,i(Qt−L+1, . . . , Qt,Wt, Qt+1, TinvF,t,0, . . . , TinvF,t,i−1);

Ft = TinvF,t,2V+1.

The proof is analogous to the proof of Theorem 5.1.

5.4.3 Full dependency on Wt

Theorem 5.3 (Full dependency on Wt). Given values of the variables Qt−L+1, . . . ,
Qt and Ft the following mapping is bijective:

ft,Wt :Wt 7→ Qt+1 = ft(Qt−L+1, . . . , Qt, Ft,Wt).

Furthermore, there exists a sequence of functions (finvW,t,i)
2V+1
i=1 ∈ F2V+1

sumrot that com-
putes the inverse of ft,Wt given values of Qt−L+1, . . . , Qt, Ft and the value of Qt+1:

TinvW,t,0 = 0;

TinvW,t,i = finvW,t,i(Qt−L+1, . . . , Qt,Wt, Qt+1, TinvW,t,0, . . . , TinvW,t,i−1);

Wt = TinvW,t,2V+1.

The proof is analogous to the proof of Theorem 5.1.

5.4.4 Properties as step function design criteria

The above three properties can be seen as step function design criteria, since without
these properties the compression function would be more vulnerable to attacks. Below
we outline how the security of the compression function may be compromised if either
one of these three properties does not hold. These design criteria may not be often
pointed out, since the topic of step function design (criteria) is not treated very well
in the literature. Nevertheless it should come as no surprise that these criteria hold
for all members of the MD4 hash function family.
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Full dependency on Qt−L+1. From a hash function design perspective it is impor-
tant that the mapping ft,Qt−L+1

is bijective. Suppose this mapping is not bijective,
then there are values of Qt−L+2, . . . , Qt, Ft,Wt and Qt+1 such that inverting ft,Qt−L+1

results in multiple pre-images:

|{Qt−L+1 ∈ Z2N | ft(Qt−L+1, . . . , Qt, Ft,Wt) = Qt+1}| > 1.

Barring further complications, this leads to a pre-image attack of Compress which is
about 2K−L faster than the brute-force pre-image attack. The pre-image attack finds
a message M given values ÎHV in, ÎHV out such that ÎHV out = Compress(ÎHV in,M)
with high probability using about 2(N ·L)−(K−L) calls to Compress. Below we sketch
this attack.

Since finalization is bijective and based on Fsumrot, it is easy to find values of
QS−L+1, . . . , QS such that

îhvouti = fout,i(îhvin0, . . . , îhvinL−1, QS−L+1, . . . , QS), i ∈ {0, . . . , L− 1}.

Furthermore, we can expect that an attacker has a sufficiently fast way of choosing
the last K − L words ŴS−K+L, . . . , ŴS−1 such that inverting the last K − L steps
leads to at least 2K−L different pre-images (QS−K+1, . . . , QS−K+l).16

The third property in Section 5.4.3 implies that in each step t all values of Qt+1

can be obtained by varying Wt. Therefore we can safely assume that on average a
message M has probability 2(K−L)−(N ·L) of resulting in one of the 2K−L found pre-
images (QS−K+1, . . . , QS−K+l) during the computation of Compress(ÎHV in,M). By
choosing only messages M such that

(WS−K+L, . . . ,WS−1) = (ŴS−K+L, . . . , ŴS−1),

then with probability 2(K−L)−(N ·L) the computation of Compress(ÎHV in,M) re-
sults in one of the 2K−L found pre-images and thereby also results in IHVout =

ÎHV out. There are in total 2N ·L such messages M among which we can expect to
find 2K−L solutions. It follows that finding a single pre-image of Compress takes
about 2(N ·L)−(K−L) attempts.

Full dependency on Ft. From a hash function designers perspective, the boolean
function is used as a security measure to prevent the hash function to be described as
a linear system over Z2N . If not all possible values of Qt+1 can be obtained by varying
Ft then Ft does not fully contribute to Qt+1 and the security measure is not used to
its full potential. An obvious attack technique is to replace the boolean function with
a linear function that approximates the boolean function. In general it is easier to
linearly approximate the boolean function as the influence of Ft on the output Qt+1

gets smaller.

16. Actually, instead of 2K−L pre-images, any set of 2Z > 2 pre-images qualifies and here ‘sufficiently
fast’ simply requires that finding the Ŵi and the 2Z pre-images is faster than performing 2(N·L)−Z

calls to Compress.
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Full dependency on Wt. Designing a hash function without having the message
words Wt fully contribute in each step t implies that IHVout depends in a simpler
manner on the message than possible. This increases the likelihood of significant
weaknesses.

In extreme cases, say only the first bit Wt[0] actually contributes, this reduces
the complexity of a brute force (second) pre-image attack to min(2S , 2L·N ) calls to
Compress. S = 1/2(L ·N) for common designs like MD5 and SHA-1, thus this attack
is significantly faster than the desired 2L·N . In each step there are only two possible
outcomes for Qt+1, as in each step t ∈ {0, . . . , S − 1} only a single bit of the message
is used. Over S steps this means that given IHVin there are at most 2S possible
IHVout = Compress(IHVin,M) by varying M instead of the expected 2L·N possible
IHVout. Hence, a brute force (second) pre-image attack has a success probability of
at most max(2−S , 2−L·N ) for each try of M .

Rather than brute-forcing it, for given IHVin and M in each step t ∈ {0, . . . , S−1}
there are 2N−1−1 other W ′t ̸=Wt that result in the same Qt+1. LetWsec,t be the set
of all W ′t that result in the same Qt+1 in step t. Finding a second pre-image M ′ ̸=M
is thus reduced to the problem of finding M ′ ̸= M such that its message expansion
(W ′t )

S−1
t=0 is in the set

∏S−1
t=0 Wsec,t. In the case of the message expansion of either

MD5 or SHA-1 this would be a simple if not trivial exercise.

5.4.5 Properties in differential cryptanalysis

The reason we treat these three properties in detail is that we need them in our
differential cryptanalysis. As outlined above, these three properties can be seen as
step function design criteria and as such are inherent to the MD4 hash function family.
Below we outline the use of these properties in our differential cryptanalysis.

Full dependency on Qt−L+1. In our algorithm to construct full differential paths,
we need to be able to extend partial differential paths over steps t = A, . . . , B with
the preceding step t = A − 1. This can easily be done due to the existence of the
functions (finvQ,t,i)

2V+1
i=1 ∈ F2V+1

sumrot that compute the inverse of ft,Qt−L+1
.

Full dependency on Ft. In our algorithm to construct full differential paths, we
construct two partial differential paths independently, the first over steps t = 0, . . . , A
and the second over steps t = A + L + 1, . . . , S − 1. This implies that the difference
in any Qi is either given by the first or the second partial differential path. Due
to the existence of the functions (finvF,t,i)

2V+1
i=1 ∈ F2V+1

sumrot, one can determine target
differences for the boolean function outcomes FA+1, . . . , FA+L. A full valid differential
path is obtained whenever these boolean function outcome differences and the Qi
differences can be simultaneously fulfilled. Construction of a full differential path
can thus be reduced to finding two partial differential paths for which these target
differences in FA+1, . . . , FA+L can actually be obtained given the Qi differences.
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Full dependency on Wt. Although this property is not directly used in our algo-
rithm to construct full differential paths, it is important in collision finding algorithms
that search for messages M that fulfill a given differential path. This property allows
one to choose working state words Qt−L+1, . . . , Qt+1 which fulfill sufficient conditions
for a given differential path and then compute the corresponding Wt.

5.5 Differential paths

In this section we formalize the concept of a differential path as a precise description
of how differences propagate through the S steps of Compress ∈ Fmd4cf. These differ-
ences are taken between instances Compress(IHVin,M) and Compress(IHV ′in,M ′).
For each variable X ∈ Z2N in the computation of Compress(IHVin,M) we denote
the respective variable in the computation of Compress(IHV ′in,M ′) as X ′. Their
difference is denoted as δX = X ′ − X and the bitwise integer difference as ∆X =
(X ′[i]−X[i])N−1i=0 which is a BSDR of δX. In the following differential cryptanalysis
we refer to such δX and ∆X as variables themselves without directly implying values
for X and X ′.

First we analyze the only two non-trivial operations of Compress with respect to
differences in Z2N : the bitwise rotations RL(X,n) in all ((ftemp,t,i)

V
i=1)

S−1
t=0 and the

boolean functions (fbool,t)
S−1
t=0 .

5.5.1 Rotation of word differences

To determine the difference RL(X ′, n)−RL(X,n) given δX, we distinguish two sit-
uations. First, suppose besides δX also ∆X is known. In this case

∆RL(X,n) = (RL(X ′, n)[i]−RL(X,n)[i])N−1i=0

= (X ′[(i+ n) mod N ]−X[(i+ n) mod N ])N−1i=0

= (∆X[(i+ n) mod N ])N−1i=0

= RL(∆X,n).

The remaining case is where ∆X is undetermined. In this case, up to four different
δY = RL(X ′, n) − RL(X,n) are possible. Here, we determine the possible δY and
their probabilities PrX [δY = RL(X + δX, n) − RL(X,n)]. We define dRL(Z, n) for
Z ∈ Z2N , n ∈ {0, . . . , N−1} as the set of possible differences RL(X+Z, n)−RL(X,n)
after rotation with non-zero probability as in the following lemma.

Lemma 5.4 (Rotation of differences). Given δX ∈ Z2N and rotation constant n ∈
{0, . . . , N − 1} then for uniformly chosen random X ∈ Z2N , there are at most four
possible differences δY = RL(X + δX, n) − RL(X,n) after rotation. Let Zlow =∑N−n−1
i=0 2i · δX[i] ∈ Z and Zhigh =

∑N−1
i=N−n 2

i · δX[i] ∈ Z. Then δY as above may
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attain one of four values as given below along with the corresponding probabilities:

δY PrX [RL(X + Z, n)−RL(X,n) = δY ]

D1 = RL(δX, n) 2−2N+n · (2N−n − Zlow) · (2N − Zhigh)
D2 = RL(δX, n)− 2n 2−2N+n · (2N−n − Zlow) · Zhigh
D3 = RL(δX, n) + 1 2−2N+n · Zlow · (2N − Zhigh − 2N−n)
D4 = RL(δX, n)− 2n + 1 2−2N+n · Zlow · (Zhigh + 2N−n)

Depending on the value of δX, some of these probabilities may be zero thus reducing
the number of possible outcomes, thus:

dRL(δX, n) =
{
Di

∣∣∣ Pr
X
[RL(X + Z, n)−RL(X,n) = Di] ̸= 0, i ∈ {1, 2, 3, 4}

}
.

This lemma follows directly from Corollary 4.12 of Magnus Daum’s Ph.D. thesis
[Dau05]. We provide a different proof using BSDRs:

Proof. As above, any BSDR (ki)
N−1
i=0 of δX gives rise to a candidate δY given by the

BSDR
RL((ki), n) = (kN−n−1, . . . , k0, kN−1, . . . , kN−n).

Two BSDRs (ki)
N−1
i=0 and (li)

N−1
i=0 of δX result in the same δY if and only if

N−n−1∑
i=0

2iki =
N−n−1∑
i=0

2ili and
N−1∑
i=N−n

2iki =
N−1∑
i=N−n

2ili. (5.1)

To analyze this property, we define a partition as a pair (α, β) ∈ Z2 such that
α + β = δX mod 2N , |α| < 2N−n, |β| < 2N and 2N−n|β. For any partition (α, β),
values ki ∈ {−1, 0, 1} for 0 ≤ i < N can be found such that

α =

N−n−1∑
i=0

2iki and β =

N−1∑
i=N−n

2iki. (5.2)

In particular, there is at least one such (ki)
N−1
i=0 which can be constructed by looking

at the binary representation of |α| and |β| and applying the sign of α and β on the
respective bits. With α+β = δX mod 2N it follows that any such (ki)

N−1
i=0 is a BSDR

of δX. Conversely, with Equation 5.2 any BSDR (ki) of δX defines a partition, which
we denote (ki) ≡ (α, β). Moreover, any BSDR (ki) of δX that leads to the same
partition gives rise to the same candidate δY due to Equation 5.1. The rotation of a
partition (α, β) is defined as

RL((α, β), n) = 2nα+ 2n−Nβ ∈ Z2N .

If (ki) ≡ (α, β), this matches RL((ki), n).
The partition constraints imply there are at most two possible values for α such

that α+β = δX, namely Zlow and when Zlow ̸= 0 also Zlow−2N−n. For each value of
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α there are also at most two possible values for β namely (δX−α mod 2N ) and when
this is non-zero also (δX − α mod 2N )− 2N . Note that Zhigh = (δX − Zlow mod 2N )
and let Z ′high = (δX − Zlow + 2N−n mod 2N ). Together this gives rise to at most 4
partitions:

p1. (α, β) = (Zlow, Zhigh);
p2. (α, β) = (Zlow, Zhigh − 2N ), if Zhigh ̸= 0;
p3. (α, β) = (Zlow − 2N−n, Z ′high), if Zlow ̸= 0;

p4. (α, β) = (Zlow − 2N−n, Z ′high − 2N ), if Zlow ̸= 0 ∧ Z ′high ̸= 0.

Note that RL((Zlow, Zhigh), n) = RL(δX, n).
To find the probability of each δY , we define

p(α,β) = Pr
X
[RL((α, β), n) = RL(X + δX, n)−RL(X,n)]

and show how p(α,β) can be calculated. For each of the four possibilities this is
done by counting the number of N -bit words X such that the BSDR defined by
ki = (X+δX)[i]−X[i] satisfies (ki) ≡ (α, β). This can be expressed in two equations:

α =
N−n−1∑
i=0

((X + α+ β)[i]−X[i])2i, β =
N−1∑
i=N−n

((X + α+ β)[i]−X[i])2i.

Since 2N−n|β, the β term can be ignored in the first equation. The first equation
then implies that adding α to X only affects the low-order N −n bits and thus α can
be ignored in the second equation:

α =
N−n−1∑
i=0

((X + α)[i]−X[i])2i, β =
N−1∑
i=N−n

((X + β)[i]−X[i])2i.

These two equations hold if and only if:

0 ≤ α+

N−n−1∑
i=0

X[i]2i < 2N−n, 0 ≤ β +

N−1∑
i=N−n

X[i]2i < 2N .

Considering the (N − n) low-order bits, we determine the number r of Xlow-values
with 0 ≤ Xlow < 2N−n such that 0 ≤ α+Xlow < 2N−n: if α < 0 then r = 2N−n + α
and if α ≥ 0 then r = 2N−n − α. Hence only r = 2N−n − |α| out of 2N−n possible
Xlow-values satisfy 0 ≤ α + Xlow < 2N−n. The same argument can be used for the
n high-order bits to determine that there are exactly 2n − |β|2n−N number of values
for Xhigh = 2n−N ·

∑N−1
i=N−nX[i]2i such that 0 ≤ 2n−N · β +Xhigh < 2n. Hence, we

conclude

p(α,β) =
2N−n − |α|

2N−n
· 2

n − |β|2n−N

2n
=

2N−n − |α|
2N−n

· 2
N − |β|
2N

.
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Assume that Z ′high ̸= 0, then Z ′high = Zhigh + 2N−n. One can now immediately
verify that D1, D2, D3 and D4 match the rotations of the 4 partitions p1, p2, p3 and
p4, respectively. Furthermore, the partition probabilities match those given in the
lemma, and whenever a partition is excluded, its probability is zero.

When Z ′high = 0, then Zhigh = 2N − 2N−n. Now as above, D1 and D2 match the
rotations of partitions p1 and p2, respectively. We can show that D4 matches the
rotation of partition p3:

RL((Zlow − 2N−n, Z ′high), n) = 2n · (Zlow − 2N−n) + 2n−N · (0)
= 2n · Zlow + 2n−N · (Zhigh − 2N + 2N−n)

= 2n · Zlow + 2n−N · Zhigh − 2n + 1

= RL(δX, n)− 2n + 1.

And also the probability of partition p3 matches the probability of D4 given in the
lemma:

pp3 = 2n−N · (2N−n − (Zlow − 2N−n)) · 2−N · (2N − Z ′high)

= 2−2N+n · Zlow · (2N )

= 2−2N+n · Zlow · (Zhigh + 2N−N ).

The remaining partition p4 is excluded and D3 is also excluded as its probability is
zero.

5.5.2 Boolean function differences

For any step t, let fbool,t ∈ Fboolrot be given as:

fbool,t(Qt−L+2, . . . , Qt) =
N−1∑
i=0

2i · g(RL(Qt−L+2, rt−L+2)[i], . . . , RL(Qt, rt)[i]),

where g : {0, 1}L−1 → {0, 1} is an arbitrary boolean function. Since each bit of the
output depends only on a single bit of each of the variables Qt−L+2, . . . , Qt, for a
precise differential description we need the bitwise integer difference ∆Qi for these
inputs and the output difference is determined bitwise as ∆Ft.

For j ∈ {0, . . . , L − 2}, define Xj = RL(Qt−L+2+j , rt−L+2+j) and thus ∆Xj =
RL(∆Qt−L+2+j , rt−L+2+j) to simplify notation a bit, then the difference ∆Ft can be
determined using

∆Ft[i] = g(X ′0[i], . . . , X
′
L−2[i])− g(X0[i], . . . , XL−2[i]).

Let i ∈ {0, . . . , N − 1}, we consider the set Ui of possible input values:

Ui = {((X ′0[i], . . . , X ′L−2[i]), (X0[i], . . . , XL−2[i])) | X ′j [i] = Xj [i] + ∆Xj [i]}.

This set Ui may be further restricted to Ũi by auxiliary conditions imposed over
the bits Xj [i] for which ∆Xj [i] = 0. (When ∆Xj [i] ̸= 0, X ′j [i] and Xj [i] are already
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determined and otherwise X ′j [i] = Xj [i] holds.) The cardinality of the set Ũi indicates
the amount of freedom left. If Ũi = ∅ then the auxiliary conditions together with ∆Qj
are contradictory and are thus of no interest.

The set Ũi of possible input values induces a set VŨi
of possible output differences:

VŨi
= {g(X ′0[i], . . .)− g(X0[i], . . .) | ((X ′0[i], . . .), (X0[i], . . .)) ∈ Ũi}.

If |VŨi
| = 1 then ∆Ft[i] ∈ VŨi

is uniquely determined and no auxiliary conditions are
necessary. This is always the case if ∆X0[i] = . . . = ∆XL−2[i] = 0 as then VŨi

= {0}.
Otherwise one can choose any value ∆F̂t[i] ∈ VŨi

and pose auxiliary conditions on
X0[i], . . . , XL−2[i] such that the resulting new set of possible input values Ûi:

• uniquely determines ∆Ft[i]: VÛi
= {∆F̂t[i]}.

• is as large as possible: VŨi\Ûi
∩ VÛi

= ∅.

Once all ∆Ft[i] are uniquely determined by adding auxiliary conditions on Qt−L+2,
. . ., Qt as necessary, also ∆Ft is completely determined. Depending on the boolean
function g, some of the input variables of Qt−L+2, . . . , Qt may not affect the value
of fbool,t(Qt−L+2, . . . , Qt) and thus their respective variables Qj , Q′j ,∆Qj , can be
ignored entirely in the above analysis.

5.5.3 Differential steps

Differential paths essentially are a sequence of differential steps. The message differ-
ences are chosen in some clever manner and must be given in the form of a sequence
(Wt)

S−1
t=0 of allowed message word differences δWt ∈ Wt for each step t. A differential

step is a precise description of how differences in the working state propagate through
a single step t ∈ {0, . . . , S − 1} and is defined as the tuple

((δQj)
t+1
j=t−L+1, (∆Qj)j∈It , δWt, ∆Ft, ((δYj,i)

L+3
i=1 )Vj=1),

where

• It ⊆ {t − L + 2, . . . , t} is the set of indices j such that the input variable Qj
affects the outcome fbool,t(Qt−L+2, . . . , Qt);

• For j ∈ It, ∆Qj is a BSDR of δQj ;

• δWt ∈ Wt;

• ∆Ft[i] ∈ {g(X ′0[i], . . .) − g(X0[i], . . .) | X ′j [i] = Xj [i] + ∆Xj [i]} where g is the
underlying boolean function of fbool,t and RL(Qt−L+2+j , rt−L+2+j) is denoted
by Xj as in Section 5.5.2;

• For j ∈ {1, . . . , V } and i ∈ {1, . . . , L + 3}, let rj,i and cj,i denote the rota-
tion constant and selection constant associated with the i-th input variable in
ftemp,t,j ;
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• The variable Yj,i denotes the i-th input variable of ftemp,t,j after the rota-
tion as in ftemp,t,j , thus for i = 1, . . . , L, Yj,i denotes RL(Qt−L+i, rj,i). The
remaining Yj,L+1, Yj,L+2, Yj,L+3 denote RL(Ft, rj,L+1), RL(Wt, rj,L+2) and
RL(Tt,j−1, rj,L+3), respectively.

The intermediate variable differences δTt,j as in Section 5.3.4 are hereby determined:
δTt,0 = 0 by definition, δTt,j =

∑L+3
i=1 cj,iδYj,i for j = 1, . . . , V . Thus together with

δQj , δWt and ∆Ft all differences of the inputs of ftemp,t,j and the differences δYj,j of
the rotations of these inputs are known.

A differential step is called valid if there exist values (Q̂j)
t+1
j=t−L+1, (Q̂′j)t+1

j=t−L+1,
Ŵt, Ŵ ′t such that:

• Q̂t+1 and Q̂′t+1 are the correct outputs of the stepfunction in Section 5.3.4 for
inputs ((Q̂j)

t
j=t−L+1, Ŵt) and ((Q̂′j)

t
j=t−L+1, Ŵ

′
t), respectively;

• δQj = Q̂′j − Q̂j for j = t− L+ 1, . . . , t+ 1;

• ∆Qj [i] = Q̂′j [i]− Q̂j [i] for j ∈ It and i = 0, . . . , N − 1;

• δWt = Ŵ ′t − Ŵt;

• ∆Ft[i] = F̂ ′t [i] − F̂t[i] for i = 0, . . . , N − 1, where F̂t = fbool,t(Q̂t−L+2, . . . , Q̂t)

and F̂ ′t = fbool,t(Q̂
′
t−L+2, . . . , Q̂

′
t);

• δYj,i = RL(Q̂′t−L+i, rj,i)−RL(Q̂t−L+i, rj,i) for j = 1, . . . , V and i = 1, . . . , L;

• δYj,L+1 = RL(F̂ ′t , rj,L+1)−RL(F̂t, rj,L+1) for j = 1, . . . , V ;

• δYj,L+2 = RL(Ŵ ′t , rj,L+2)−RL(Ŵt, rj,L+2) for j = 1, . . . , V ;

• δYj,L+3 = RL(T̂ ′t,j−1, rj,L+3) − RL(T̂t,j−1, rj,L+3) for j = 1, . . . , V , where T̂t,i
and T̂ ′t,i for i = 0, . . . , V are computed as in Section 5.3.4;

Such values (Q̂j)
t+1
j=t−L+1, (Q̂′j)t+1

j=t−L+1, Ŵt, Ŵ ′t are called a solution for the differ-
ential step. This implies that for j = 1, . . . , V and each rotation in ftemp,t,j , the
difference δYj,i is a possible outcome after rotation using the respective input dif-
ference: δQt−L+1, . . ., δQt, δFt, δWt or δTt,j . Moreover this also implies that if a
particular BSDR Z is given for such an input difference associated with δYj,i, then
RL(Z, rj,i) is a BSDR of δYj,i.

A partial differential path is defined as a sequence of differential steps for a sub-
range t = tbegin, . . . , tend, where tbegin, tend ∈ {0, . . . , S − 1}, tend ≥ tbegin. A partial
differential path over the range t = tbegin, . . . , tend is called valid if there exists a
solution consisting of values

(Q̂j)
tend+1
j=tbegin−L+1, (Q̂′j)

tend+1
j=tbegin−L+1, (Ŵj)

tend
j=tbegin

, (Ŵ ′j)
tend
j=tbegin
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which simultaneously provides solutions for all differential steps of the partial differ-
ential path. Such a solution does not imply a solution for the near-collision attack
as (Ŵj)

tend
j=tbegin

and (Ŵ ′j)
tend
j=tbegin

with almost certainty are not part of valid message
expansions for two message blocks M and M ′. A (full) differential path is defined as
a partial differential path over the range t = 0, . . . , S − 1.

5.6 Differential path construction
In this section we present the algorithm for constructing valid full differential paths
for a compression function Compress ∈ Fmd4cf based on two valid partial differential
paths: Pl over steps t = 0, . . . , tb and Pu over steps t = te, . . . , S − 1 where tb <
te − L. It will do so by independently extending Pl and Pu to t = 0, . . . , tc − 1 and
tc + L, . . . , S − 1, respectively, for some chosen value of tc so they do not overlap.
Actually, we construct large sets El and Eu of such extended differential paths. For
the remaining steps t = tc, . . . , tc + L− 1 we check for combinations Pl ∈ El, Pu ∈ Eu
whether a valid full differential path can be constructed.

5.6.1 Forward

For t̃ = tb + 1, . . . , tc − 1, we extend a valid partial differential path P over steps
t = 0, . . . , t̃− 1 with step t̃. The partial differential path gives us values (δQt)

t̃
t=−L+1

and (∆Qt)t∈I where I =
∪t̃−1
t=0 It. For i ∈ {t̃ − L + 1, . . . , t̃ − 1}, P also gives us

(multiple) differences after rotation of δQi. For each non-trivial rotation of δQi,
which we index by j ∈ JP,i, we denote the rotation constant as rP,i,j and the outcome
difference as δYP,i,j ∈ dRL(δQi, rP,i,j).17 Since such values can also be determined
from given IHVin and IHV ′in we can also allow tb to be −1.

For i ∈ It̃ \ I, we need to choose a BSDR ∆Qi of δQi. We may choose any BSDR
∆Qi of δQi such that RL(∆Qi, rP,i,j) is a BSDR of δYP,i,j for all j ∈ JP,i. Low
weight BSDRs are the preferable choice as they in general lead to fewer sufficient
conditions for the differential path.

Let Xj denote RL(Qt̃−L+2+j , rbool,t̃−L+2+j) and g be the underlying boolean func-
tion of fbool,t̃ as in Section 5.5.2. For i = 0, . . . , N − 1, the set

Ui = {((X ′0[i], . . .), (X0[i], . . .)) | X ′j [i] = Xj [i] + ∆Xj [i]}

defines all possible input bit values associated with the output bit Ft[i]. Previous
steps restrict this set Ui further to Ũi by allowing only those values for which there
is a matching solution of P. Choose any

ki ∈
{
g(X ′0[i], . . .)− g(X0[i], . . .) | ((X ′0[i], . . .), (X0[i], . . .)) ∈ Ũi

}
.

After all ki have been chosen, ∆Ft = (ki)
N−1
i=0 is fully determined. For j ∈ {1, . . . , V },

let δYj,L+1 = σ(RL(∆Ft, rtemp,j,L+1)) where rtemp,j,L+1 is the rotation constant as-

17. For dRL see Section 5.5.1.
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sociated with Ft in ftemp,t̃,j .18 As Ft is selected only once in total, there is at most
one non-trivial case for which rtemp,j,L+1 ̸= 0.

Choose any δWt̃ ∈ Wt̃. For j ∈ {1, . . . , V }, let rtemp,j,L+2 and ctemp,j,L+2 be the
rotation and selection constant associated with Wt̃ in ftemp,t̃,j . Choose any difference
δYj,L+2 ∈ dRL(δWt̃, rtemp,j,L+2), preferably one with the highest probability. As
Wt is selected only once in total, there is at most one non-trivial case for which
rtemp,j,L+2 ̸= 0.

For k ∈ {1, . . . , V } and i ∈ {t̃ − L + 1, . . . , t̃}, let rtemp,k,i−t̃+L be the rotation
constant associated with Qi in ftemp,t̃,k. If i /∈ (It̃ ∪ I) then ∆Qi is not yet chosen,
we need to choose V differences

δYk,(i−t̃+L) ∈ dRL(δQi, rtemp,k,i−t̃+L).

Consider the set of BSDRs Z of δQi such that σ(RL(Z, rP,i,j)) = δYP,i,j for all
j ∈ JP,i. Each such BSDR Z leads directly to values

(δYk,i−t̃+L)
V
k=1 = (σ(RL(Z, rtemp,k,i−t̃+L)))

V
k=1.

One can choose any such values (δYk,i−t̃+L)
V
k=1, the preferable choice is one which

results from the largest number of possible Z-values. Otherwise, if i ∈ (It̃ ∪ I) let
δYk,i−t̃+L = σ(RL(∆Qi, rtemp,k,i−t̃+L)).

The differential step t = t̃ is now easily determined. By definition δTt̃,0 = 0. For
i = 1, . . . , V , choose a δYi,L+3 ∈ dRL(δTt̃,i−1, rtemp,i,L+3) with the highest probability
where rtemp,i,L+3 is the rotation constant associated with Tt̃,i−1 in ftemp,t̃,i. Note that:

δTt̃,i = ftemp,t̃,i(Q
′
t̃−L+1

, . . . , Q′
t̃
, F ′

t̃
,W ′

t̃
, T ′
t̃,i−1)

−ftemp,t̃,i(Qt̃−L+1, . . . , Qt̃, Ft̃,Wt̃, Tt̃,i−1)

=

L∑
j=1

ci,j(RL(Q
′
t̃−L+j , rtemp,i,j)−RL(Qt̃−L+j , rtemp,i,j))

+ci,L+1(RL(F
′
t̃
, rtemp,i,L+1)−RL(Ft̃, rtemp,i,L+1))

+ci,L+2(RL(W
′
t̃
, rtemp,i,L+2)−RL(Wt̃, rtemp,i,L+2))

+ci,L+3(RL(T
′
t̃,i−1, rtemp,i,L+3)−RL(Tt̃,i−1, rtemp,i,L+3))

=
L+3∑
j=1

ci,jδYi,j

All δYi,j have been determined already. Thus δTt̃,i is hereby determined and for i = V
also δQt̃+1.

The extended differential path P̃ consists of P and the differential step t = t̃.
If there exists no solution of P̃ then the extended differential path is not valid and
of no further interest. We collect many valid differential paths P̃ by varying the

18. For σ see Section 5.2.2.
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choices made and for different input differential paths P. As this set can theoretically
grow exponentially over subsequent steps t̃, keep only the R “best” differential paths
for some feasibly large R. Here “best” should be tailored toward the near-collision
attack construction, which implies a low number of sufficient conditions for the partial
differential path and a large degree of freedom for message modification techniques.

5.6.2 Backward

For t̃ = te − 1, . . . , tc +L, we extend a valid partial differential path P over steps t =
t̃+1, . . . , S−1 with step t̃. The partial differential path gives us values (δQt)St=t̃−L+2

,
(∆Qt)t∈I where I =

∪S−1
t=t̃+1

It. For i ∈ {t̃ − L + 2, . . . , t̃ + 1}, the differential
path P also gives us (multiple) differences after rotation of δQi. For each non-trivial
rotation of δQi, which we index by j ∈ JP,i, we denote the rotation constant as rP,i,j
and the outcome difference as δYP,i,j ∈ dRL(δQi, rP,i,j). The following steps are
basically the same as in Section 5.6.1 except initially (finvQ,t̃,k)

2V+1
k=1 (as constructed

in Section 5.4.1) are used instead of (ftemp,t̃,k)
V
k=1. Only at the end the results are

translated to a differential step over (ftemp,t̃,k)
V
k=1.

For i ∈ It̃ \ I, we need to choose a BSDR ∆Qi of δQi. We may choose any BSDR
∆Qi of δQi such that RL(∆Qi, rP,i,j) is a BSDR of δYP,i,j for all j ∈ JP,i. As before,
low weight BSDRs are the preferable choice as they in general lead to fewer sufficient
conditions for the differential path.

Let Xj denote RL(Qt̃−L+2+j , rbool,t̃−L+2+j) and g be the underlying boolean func-
tion of fbool,t̃ as in Section 5.5.2. For i = 0, . . . , N − 1, the set

Ui = {((X ′0[i], . . .), (X0[i], . . .)) | X ′j [i] = Xj [i] + ∆Xj [i]}

defines all possible input bit values associated with the output bit Ft[i]. The known
differential steps t = t̃+1, . . . , S− 1 restrict this set Ui further to Ũi by allowing only
those values for which there is a matching solution of P. Choose any

ki ∈
{
g(X ′0[i], . . .)− g(X0[i], . . .) | ((X ′0[i], . . .), (X0[i], . . .)) ∈ Ũi

}
.

After k0, . . . , kN−1 have been chosen, ∆Ft = (ki)
N−1
i=0 is fully determined. For j ∈

{1, . . . , 2V+1}, let δYj,L+1 = σ(RL(∆Ft, rinvQ,j,L+1)) where rinvQ,j,L+1 is the rotation
constant associated with Ft in finvQ,t̃,j .

Choose any δWt̃ ∈ Wt̃. For k ∈ {1, . . . , 2V +1}, let rinvQ,k,L+2 and cinvQ,k,L+2 be
the rotation and selection constant associated with Wt̃ in finvQ,t̃,k. Choose any dif-
ference δYk,L+2 ∈ dRL(δWt̃, rinvQ,k,L+2), preferably one with the highest probability.

For k ∈ {1, . . . , 2V + 1} and i ∈ {t̃−L+ 2, . . . , t̃+ 1}, let rinvQ,k,(i−t̃+L−1) be the
rotation constant associated with Qi in finvQ,t̃,k. If i /∈ (It̃ ∪ I) then ∆Qi is not yet
chosen, we need to choose 2V + 1 differences

δYk,(i−t̃+L−1) ∈ dRL(δQi, rinvQ,k,(i−t̃+L−1)).
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Consider the set of BSDRs Z of δQi such that σ(RL(Z, rP,i,j)) = δYP,i,j for all
j ∈ JP,i. Each such BSDR Z leads directly to values

(δYk,(i−t̃+L−1))
2V+1
k=1 = (σ(RL(Z, rinvQ,k,(i−t̃+L−1))))

2V+1
k=1 .

One can choose any such values (δYk,(i−t̃+L−1))
2V+1
k=1 , the preferable choice is one

which results from the largest number of possible Z-values. Otherwise, if i ∈ (It̃ ∪ I)
let δYk,(i−t̃+L−1) = σ(RL(∆Qi, rinvQ,k,(i−t̃+L−1))).

By definition δTinvQ,t̃,0 = 0. For i = 1, . . . , 2V + 1 and j = 0, . . . , i − 1, let rT,i,j
be the rotation constant associated with TinvQ,t̃,j in finvQ,t̃,i. Choose a most probable
δYi,L+3+j ∈ dRL(δTinvQ,t̃,j , rT,i,j). Note that:

δTinvQ,t̃,i =
L∑
j=1

ci,j(RL(Q
′
t̃−L+j+1

, rinvQ,i,j)−RL(Qt̃−L+j+1, rinvQ,i,j))

+ci,L+1(RL(F
′
t̃
, rinvQ,i,L+1)−RL(Ft̃, rinvQ,i,L+1))

+ci,L+2(RL(W
′
t̃
, rinvQ,i,L+2)−RL(Wt̃, rinvQ,i,L+2))

+

i−1∑
j=0

ci,L+3+j(RL(T
′
invQ,t̃,j , rT,i,j)−RL(TinvQ,t̃,j , rT,i,j))

=
L+2+i∑
j=1

ci,jδYi,j .

All δYi,j have been determined already. Thus δTinvQt̃,i is hereby determined and for
i = 2V + 1 also δQt̃−L+1.

Most of the information for the differential step t = t̃ is a direct result of the above
steps: the values (δQj)

t̃+1

j=t̃−L+1
, (∆Qj)j∈It , δWt and ∆Ft. It remains to determine

the δỸi,j corresponding to differences after rotation of the inputs of ftemp,t,i. In the
proof of Theorem 5.1 the original inputs of ftemp,t,j are used in the finvQ,t,i in one of
two ways. In the first way they are used as a direct input to a call of ftemp,t,j within
finvQ,t,i. In the second way, they form the outcome of some finvQ,t,i that is used
together with finvQ,t,i−1 to invert ftemp,t,j . Thus all differences δỸi,j after rotation of
the inputs of ftemp,t,i are already determined above.

The extended differential path P̃ consists of P and the differential step t = t̃. If
there exists no solution of P̃ then the extended differential path is not valid and of
no further interest. Similar to extending forward, we collect many valid differential
paths P̃ by varying the choices made and for different input differential paths P. As
this set can theoretically grow exponentially over subsequent steps t̃, keep only the
R “best” differential paths for some feasibly large R. Here “best” differential paths
should be read as the differential paths with the highest success probability.
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5.6.3 Connect

In the final stage, we try many combinations of lower valid differential paths Pl over
steps t = 0, . . . , tc−1 and upper valid differential paths Pu over steps tc+L, . . . , S−1.
For each such combination we have differential steps t = 0, . . . , tc−1, tc+L, . . . , S−1.
This means that all (δQt)St=−L+1 are known either from Pl or Pu, there is no overlap.
Together Pl and Pu also provide values (∆Qt)t∈I where I =

∪S−1
t=tc+L

It ∪
∪tc−1
t=0 It.

We use ((finvF,j,i)
2V+1
i=1 )tc+L−1j=tc

to determine target differences δFtc , . . . , δFtc+L−1. By
using the remaining freedom in yet undetermined BSDRs ∆Ftc , . . . ,∆Ftc+L−1, we
try to achieve these target differences.

For t̃ = tc, . . . , tc + L − 1, we do the following and exhaustively try all possible
choices. For i ∈ It̃ \ (I ∪

∪t̃−1
t=tc

It), we need to choose a BSDR ∆Qi of δQi. For
i ∈ {t̃−L+1, . . . , t̃+1}, the preceding differential steps t = tc, . . . , t̃−1 together with
Pl and Pu give us (multiple) differences after rotation of δQi. For each non-trivial
rotation of δQi, which we index by j ∈ JP,i, we denote the rotation constant as rP,i,j
and the outcome difference as δYP,i,j ∈ dRL(δQi, rP,i,j). Choose any BSDR ∆Qi of
δQi such that RL(∆Qi, rP,i,j) is a BSDR of δYP,i,j for all j ∈ JP,i.

Choose any δWt̃ ∈ Wt̃. For k ∈ {1, . . . , 2V + 1}, let rinvF,k,L+2 and cinvF,k,L+2

be the rotation and selection constant associated with Wt̃ in finvF,t̃,k. Choose any
difference δYk,L+2 ∈ dRL(δWt̃, rinvF,k,L+2).

For k ∈ {1, . . . , 2V + 1} and i ∈ {t̃ − L + 1, . . . , t̃ + 1}, let rinvF,k,(i−t̃+L) be the
rotation constant associated with Qi in finvF,t̃,k. If i /∈ (I ∪

∪t̃
t=tc

It) then ∆Qi is not
yet chosen and we need to choose 2V + 1 differences

δYk,(i−t̃+L) ∈ dRL(δQi, rinvF,k,(i−t̃+L)).

Consider the set of BSDRs Z of δQi such that σ(RL(Z, rP,i,j)) = δYP,i,j for all
j ∈ JP,i. Each such BSDR Z leads directly to values

(δYk,(i−t̃+L))
2V+1
k=1 = (σ(RL(Z, rinvF,k,(i−t̃+L))))

2V+1
k=1 .

Choose any such values (δYk,(i−t̃+L))
2V+1
k=1 . Otherwise, if i ∈ (I ∪

∪t̃
t=tc

It) then let
δYk,(i−t̃+L) = σ(RL(∆Qi, rinvF,k,(i−t̃+L))).

By definition δTinvF,t̃,0 = 0. For i = 1, . . . , 2V + 1 and j = 0, . . . , i − 1, let rT,i,j
be the rotation constant associated with TinvF,t̃,j in finvF,t̃,i. Choose any δYi,L+3+j ∈
dRL(δTinvF,t̃,j , rT,i,j), here we do not limit the choices to high probability values to
increase the success probability of our connection algorithm. This can be compensated
by searching for many valid full differential paths and choosing the one most suitable
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for a near-collision attack. Note that:

δTinvF,t̃,i =
L+1∑
j=1

ci,j(RL(Q
′
t̃−L+j , rinvF,i,j)−RL(Qt̃−L+j , rinvF,i,j))

+ci,L+2(RL(W
′
t̃
, rinvF,i,L+2)−RL(Wt̃, rinvF,i,L+2))

+
i−1∑
j=0

ci,L+3+j(RL(T
′
invF,t̃,j , rT,i,j)−RL(TinvF,t̃,j , rT,i,j))

=
L+2+i∑
j=1

ci,jδYi,j .

All δYi,j have been determined already. Thus δTinvFt̃,i is hereby determined and for
i = 2V + 1 also δFt̃.

Let Xj denote RL(Qt̃−L+2+j , rbool,t̃−L+2+j) and g be the underlying boolean func-
tion of fbool,t̃ as in Section 5.5.2. For i = 0, . . . , N − 1, the set

Ui = {((X ′0[i], . . .), (X0[i], . . .)) | X ′j [i] = Xj [i] + ∆Xj [i]}

defines all possible input bit values associated with the output bit Ft[i]. The known
differential steps restrict this set Ui further to Ũi by allowing only those values for
which there is a matching solution of those differential steps. Let

Vi =
{
g(X ′0[i], . . .)− g(X0[i], . . .) | ((X ′0[i], . . .), (X0[i], . . .)) ∈ Ũi

}
.

Now it remains to verify whether δFt̃ can be achieved by one of the possible BSDRs
Z such that Z[i] ∈ Vi for i = 0, . . . , N − 1.

To this end we desire to construct sets

Zi =

(kj)
i
j=0

∣∣∣∣∣∣ kj ∈ Vj ∧
 i∑
j=0

kj2
j ≡ δFt̃ mod 2i+1

 , i ∈ {0, . . . , N − 1}.

It follows that Z0 = {(k0) | k0 ∈ V0 ∧ (k0 ≡ δFt̃ mod 2)}. For i = 1, . . . , N − 1, we
construct Zi as

Zi =

(kj)
i
j=0

∣∣∣∣∣∣ (kj)i−1j=0 ∈ Zi−1 ∧ ki ∈ Vi ∧

 i∑
j=0

kj2
j ≡ δFt̃ mod 2i+1

 .

If Zi = ∅ then δFt̃ cannot be achieved and other choices above have to be tried. If all
choices above have been exhausted then we try a untried combination of Pl and Pu.
Otherwise, δFt̃ is achieved by any of the BSDRs Z ∈ ZN−1. Choose any ∆Ft̃ ∈ ZN−1.

Most of the information for the differential step t = t̃ is a direct result of the above
steps: the values (δQj)

t̃+1

j=t̃−L+1
, (∆Qj)j∈It , δWt and ∆Ft. It remains to determine
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the δỸi,j corresponding to differences after rotation of the inputs of ftemp,t,i. As the
proof of Theorem 5.2 is analogous to that of Theorem 5.1, the original inputs of
ftemp,t,j are used in the finvF,t,i in one of two ways. In the first way they are used as
a direct input to a call of ftemp,t,j within finvF,t,i. In the second way, they form the
outcome of some finvQ,t,i that is used together with finvQ,t,i−1 to invert ftemp,t,j .

Thus all differences δỸi,j after rotation of the inputs of ftemp,t,i are already de-
termined above. It remains to verify whether there exists a simultaneous solution for
Pl, Pu and the differential steps t = tc, . . . , t̃. If there is no such solution then this
differential step is of no further interest and we try different choices above.

We can now try the next remaining differential step until t̃ = tc + L− 1 in which
case we have a full valid differential path.

5.6.4 Complexity

The complexity of the above procedure is of great interest, however it depends on
many factors which are still undecided. It is common in attacks against hash functions
to describe the complexity as the equivalent runtime cost in compression function calls.
However, the parameters N , L, K and S, and the initialization, finalization, message
expansion and step functions of the compression function remain to be chosen, thereby
making a thorough complexity analysis infeasible. Nevertheless, below we comment
on several significant factors that contribute to the complexity of the above differential
path construction.

Connect search. The connect search tries combinations of lower and upper partial
differential paths. The average runtime cost for each combination of lower and up-
per partial differential paths depends among others on the degrees of freedom. Less
freedom implies a lower average runtime cost for each combination, however the av-
erage success probability per combination also decreases. The expected number of
combinations to try is determined by the average success probability multiplied by
the desired number of valid full differential paths. This desired number of valid full
differential paths can be one, but often a lot more than one are desired as this leaves
additional freedom when implementing a collision attack.

The degrees of freedom can mostly be found in the number of allowed BSDRs
∆Qi for i ∈ {tc − L+ 2, . . . , tc + L} \

∪tc+L−1
t=tc

It and the average size of the boolean
function output bit difference sets Ũj . At least two ∆Qi are not uniquely determined
yet: i = tc and i = tc + 1. On average, a higher weight NAF(δQi) results in a larger
number of allowed BSDRs ∆Qi. Therefore a high weight NAF(δQi) for these values
of i is beneficiary to the connect search, which is in contrast with the desire to obtain
differential paths with as few as possible number of bitconditions.

Forward and backward search. The forward and backward search have very sim-
ilar complexity characteristics. The complexity of the forward and backward search
for each step consists of the following factors:
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• number of input partial differential paths: by keeping only the R “best” partial
differential paths this factor is upper bounded by R. Let Rf and Rb be this
upper bound for the forward and backward search, respectively. It follows that
Rf ·Rb must be chosen large enough such that the desired number of valid full
differential paths in the connect search may be obtained.

• average number of BSDRs ∆Qt̃ of δQt̃: this is lower bounded by 2w(NAF(δQt̃)).
Since low weight BSDRs are preferred, the set of allowed BSDRs ∆Qt̃ can be
bounded for instance by taking only the B lowest weight BSDRs, limiting the
maximum weight w(∆Qt̃) ≤ B, limiting the maximum offset weight w(∆Qt̃) ≤
w(NAF(δQt̃)) +B or any combination thereof.

• average size κ of the possible boolean function output bit difference sets Ũj
resulting in a total factor of κN .

• size of the set of possible message word differences Wt̃.

5.6.5 Specializations

In Chapters 6 and 7 we provide specializations of the differential cryptanalysis and
differential path construction for MD5 and SHA-1. In particular, we use the concept
of bitconditions to describe the differential path. These bitconditions also provide
a means to efficiently determine the set of possible boolean function output bit dif-
ferences and the additional bitconditions necessary to enforce the chosen boolean
function output bit difference. Moreover, we improve the connect search such that it
deals with the to be determined BSDRs ∆Qi and ∆Fj in a per-digit manner instead
of a per-BSDR manner.
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6.1 Overview
In Section 6.2 we apply and improve the differential path analysis and algorithms
of Chapter 5 for MD5 specifically. To complete the construction of near-collision
attacks, we augment the differential path construction algorithms with a collision
finding algorithm in Section 6.3. In Section 6.4 we present a near-collision attack
based on new message differences that leads to an identical-prefix collision attack with
estimated complexity of 216 MD5 compressions. We present the chosen-prefix collision
attack in Section 6.5 with estimated complexity 239.1 MD5 compressions. Finally, we
introduce a variant chosen-prefix collision attack which uses only a single near-collision
block in Section 6.5.4 with estimated complexity 253.2 MD5 compressions.

6.2 Differential path construction
First, we repeat the definition of MD5Compress. Then we introduce the concept of
bitconditions as a means to describe (partial) differential paths. In Sections 6.2.3, 6.2.4
and 6.2.5 we refine the algorithms of Sections 5.6.1, 5.6.2 and 5.6.3, respectively, for
MD5.
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6.2.1 Definition of MD5Compress

MD5Compress uses solely 32-bit words. The input for the compression function
MD5Compress(IHVin, B) consists of an intermediate hash value IHVin = (a, b, c, d)
consisting of four words and a 512-bit message block B. The compression function
consists of 64 steps (numbered 0 to 63), split into four consecutive rounds of 16 steps
each. Each step t uses modular additions, a left rotation, and a non-linear func-
tion ft, and involves an Addition Constant ACt and a Rotation Constant RCt. These
are defined as follows (see also Table A-1):

ACt =
⌊
232 |sin(t+ 1)|

⌋
, 0 ≤ t < 64,

(RCt, RCt+1, RCt+2, RCt+3) =


(7, 12, 17, 22) for t = 0, 4, 8, 12,

(5, 9, 14, 20) for t = 16, 20, 24, 28,

(4, 11, 16, 23) for t = 32, 36, 40, 44,

(6, 10, 15, 21) for t = 48, 52, 56, 60.

The non-linear function ft depends on the round:

ft(X,Y, Z) =


F (X,Y, Z) = (X ∧ Y )⊕ (X ∧ Z) for 0 ≤ t < 16,

G(X,Y, Z) = (Z ∧X)⊕ (Z ∧ Y ) for 16 ≤ t < 32,

H(X,Y, Z) = X ⊕ Y ⊕ Z for 32 ≤ t < 48,

I(X,Y, Z) = Y ⊕ (X ∨ Z) for 48 ≤ t < 64.

(6.1)

The message block B is partitioned into sixteen consecutive words m0, m1, . . . , m15

(with little-endian byte ordering, see Section 2.1.2), and expanded to 64 words Wt,
for 0 ≤ t < 64, of 32 bits each (see also Table A-1):

Wt =


mt for 0 ≤ t < 16,

m(1+5t) mod 16 for 16 ≤ t < 32,

m(5+3t) mod 16 for 32 ≤ t < 48,

m(7t) mod 16 for 48 ≤ t < 64.

We follow the description of the MD5 compression function from [HPR04] because
its ‘unrolling’ of the cyclic state facilitates the analysis and because it matches the
definitions in Section 5.3, thus MD5Compress ∈ Fmd4cf. For each step t the compres-
sion function algorithm maintains a working register with four state words Qt, Qt−1,
Qt−2 and Qt−3 and calculates a new state word Qt+1. With (Q0, Q−1, Q−2, Q−3) =
(b, c, d, a), for t = 0, 1, . . . , 63 in succession Qt+1 is calculated as follows:

Ft = ft(Qt, Qt−1, Qt−2);

Tt = Ft +Qt−3 +ACt +Wt;

Rt = RL(Tt, RCt);

Qt+1 = Qt +Rt.

(6.2)
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After all steps are computed, the resulting state words are added to the intermediate
hash value and returned as output:

MD5Compress(IHVin, B) = (a+Q61, b+Q64, c+Q63, d+Q62). (6.3)

6.2.2 Bitconditions

Since MD5Compress ∈ Fmd4cf, we use the differential path definition from Section 5.5
and the differential path construction algorithm from Section 5.6. The differential
path construction in Section 5.6 does not provide an algorithmic solution to determine
whether a differential path is valid or to determine the sets Ũi in Section 5.6. In this
section we define the concept of bitconditions as a way to describe differential paths.
We use this description of a differential path in bitconditions to deal with the two
above-mentioned issues.

Differential paths for MD5 are described using bitconditions qt = (qt[i])
31
i=0 on

(Qt, Q
′
t), where each bitcondition qt[i] specifies a restriction on the bits Qt[i] and

Q′t[i] possibly including values of other bits Ql[i]. As we show in this section, we can
specify the values of ∆Qt, ∆Ft for all t using bitconditions on (Qt, Q

′
t), which with

given δWt determine δTt = δQt−3+δFt+δWt and δRt = σ(∆Qt+1)−σ(∆Qt). Thus,
a partial differential path over steps t = tb, . . . , te can be seen as a (te − tb + 5)× 32
matrix (qt)

te+1
t=tb−3 of bitconditions. A full differential paths is thus a 68 × 32 matrix

(qt)
64
t=−3. As for each step t only ∆Qt,∆Qt−1 and ∆Qt−2 are required in a differential

step, in such a differential path qtb−3 and qte+1 are used only to represent δQtb−3 and
δQte+1 instead of BSDRs. In general, the four rows (qt)

0
t=−3 are fully determined by

the values of IHVin and IHV ′in.

Table 6-1: Differential bitconditions

qt[i] condition on (Qt[i], Q
′
t[i]) ki

. Qt[i] = Q′t[i] 0
+ Qt[i] = 0, Q′t[i] = 1 +1
- Qt[i] = 1, Q′t[i] = 0 −1

Note that δQt =
∑31

i=0 2
iki and ∆Qt = (ki).

Bitconditions are denoted using symbols such as ‘0’, ‘1’, ‘+’, ‘-’, ‘^’, . . . , as defined
in Tables 6-1 and 6-2, to facilitate the representation of a differential path. A direct
bitcondition qt[i] does not involve any other indices than t and i, whereas an indirect
bitcondition involves one of the row indices t ± 1 or t ± 2 as well. Table 6-1 lists
differential bitconditions qt[i], which are direct bitconditions that specify the value
ki = Q′t[i] −Qt[i]. A full row of differential bitconditions qt fixes a BSDR (ki)

31
i=0 of

δQt =
∑31
i=0 2

iki. Table 6-2 lists boolean function bitconditions, which are direct or
indirect. They are used to resolve a possible ambiguity in

∆Ft[i] = ft(Q
′
t[i], Q

′
t−1[i], Q

′
t−2[i])− ft(Qt[i], Qt−1[i], Qt−2[i]) ∈ {−1, 0,+1}
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Table 6-2: Boolean function bitconditions

qt[i] condition on (Qt[i], Q
′
t[i]) direct/indirect direction

0 Qt[i] = Q′t[i] = 0 direct
1 Qt[i] = Q′t[i] = 1 direct
^ Qt[i] = Q′t[i] = Qt−1[i] indirect backward
v Qt[i] = Q′t[i] = Qt+1[i] indirect forward
! Qt[i] = Q′t[i] = Qt−1[i] indirect backward
y Qt[i] = Q′t[i] = Qt+1[i] indirect forward
m Qt[i] = Q′t[i] = Qt−2[i] indirect backward
w Qt[i] = Q′t[i] = Qt+2[i] indirect forward
# Qt[i] = Q′t[i] = Qt−2[i] indirect backward
h Qt[i] = Q′t[i] = Qt+2[i] indirect forward
? Qt[i] = Q′t[i] ∧ (Qt[i] = 1 ∨Qt−2[i] = 0) indirect backward
q Qt[i] = Q′t[i] ∧ (Qt+2[i] = 1 ∨Qt[i] = 0) indirect forward

that may be caused by different possible values for Qj [i], Q′j [i] given differential bit-
conditions qj [i]. As an example, for t = 0 and (qt[i], qt−1[i], qt−2[i]) = (., +, -) (cf.
Table 6-1) there is an ambiguity:

if Qt[i] = Q′t[i] = 0 then ∆Ft[i] = ft(0, 1, 0)− ft(0, 0, 1) = −1,
but if Qt[i] = Q′t[i] = 1 then ∆Ft[i] = ft(1, 1, 0)− ft(1, 0, 1) = +1.

To resolve this ambiguity the triple of bitconditions (.,+,-) can be replaced by (0,+,-)
or (1,+,-) for the two cases given above, respectively.

All boolean function bitconditions include the constant bitcondition Qt[i] = Q′t[i],
so boolean function bitconditions do not affect δQt. Furthermore, the indirect boolean
function bitconditions never involve bitconditions ‘+’ or ‘-’, since those bitconditions
can always be replaced by one of the direct ones ‘.’, ‘0’ or ‘1’. For the indirect bitcon-
ditions we distinguish between ‘forward’ and ‘backward’ ones, because that makes it
easier to resolve an ambiguity in our step-wise approach. In a valid (partial) differ-
ential path one can easily convert forward bitconditions into backward bitconditions
and vice versa.

To resolve some ambiguity or simply to determine ∆Ft for a valid partial differen-
tial path we proceed as follows. For some t and i, let (a, b, c) = (qt[i], qt−1[i], qt−2[i])
be any triple of bitconditions such that all indirect bitconditions involve only Qt[i],
Qt−1[i] or Qt−2[i]. For any such triple (a, b, c) let Uabc denote the set of tuples of
values

(x, x′, y, y′, z, z′) = (Qt[i], Q
′
t[i], Qt−1[i], Q

′
t−1[i], Qt−2[i], Q

′
t−2[i])

satisfying the bitconditions:

Uabc =
{
(x, x′, y, y′, z, z′) ∈ {0, 1}6 satisfies bitconditions (a, b, c)

}
.
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The cardinality of Uabc indicates the amount of freedom left by (a, b, c). Triples
(a, b, c) for which Uabc = ∅ cannot be part of a valid differential path and are thus of
no interest. The set of all triples (a, b, c) as above and with Uabc ̸= ∅ is denoted by L
which thus consists of valid triples of bitconditions that are “local” in the sense that
either they are direct or involve only one of the other two bits.

Each (a, b, c) ∈ L induces a set Vt,abc of possible boolean function differences
∆Ft[i] = ft(x

′, y′, z′)− ft(x, y, z):

Vt,abc = {ft(x′, y′, z′)− ft(x, y, z) | (x, x′, y, y′, z, z′) ∈ Uabc} ⊂ {−1, 0,+1}.

A triple (d, e, f) ∈ L with |Vt,def| = 1 leaves no ambiguity in ∆Ft[i] and is therefore
called a solution. Let St ⊂ L be the set of solutions for step t.

For arbitrary (a, b, c) ∈ L and for each g ∈ Vt,abc, we define St,abc,g as the subset
of St consisting of all solutions that are compatible with (a, b, c) and that have g as
boolean function difference:

St,abc,g = {(d, e, f) ∈ St | Udef ⊂ Uabc ∧ Vt,def = {g}} .

For each g ∈ Vt,abc there is always a triple (d, e, f) ∈ St,abc,g consisting of direct
bitconditions 01+- that suffices, i.e., fixes a certain tuple in Uabc. This implies that
St,abc,g ̸= ∅. Despite this fact, we are specifically interested in bitconditions (d, e, f) ∈
St,abc,g that maximize |Udef| as such bitconditions maximize the amount of freedom
in the bits of Qt, Qt−1, Qt−2 while fully determining ∆Ft[i].

The direct and forward (respectively backward) boolean function bitconditions
were chosen such that for all t, i and (a, b, c) ∈ L and for all g ∈ Vt,abc there exists a
triple (d, e, f) ∈ St,abc,g consisting only of direct and forward (respectively backward)
bitconditions such that

{(x, x′, y, y′, z, z′) ∈ Uabc | ft(x′, y′, z′)− ft(x, y, z) = g} = Udef.

These boolean function bitconditions allow one to resolve an ambiguity in ∆Ft[i] in
an optimal way in the sense that they are sufficient and necessary.

If the triple (d, e, f) is not unique, then for simplicity we prefer direct over indirect
bitconditions and short indirect bitconditions (vy^!) over long indirect ones (whqm#?).
For given t, bitconditions (a, b, c), and g ∈ Vt,abc we define FC(t, abc, g) = (d, e, f) as
the preferred triple (d, e, f) consisting of direct and forward bitconditions. Similarly,
we define BC(t, abc, g) as the preferred triple consisting of direct and backward bit-
conditions. These functions are easily determined and should be precomputed. They
have been tabulated in Appendix C in Tables C-1, C-2, C-3 and C-4 grouped accord-
ing to the four different round functions F,G,H, I, and per table for all 27 possible
triples (a, b, c) of differential bitconditions.

Using this procedure we can easily determine for a partial differential path over
steps t = tb, . . . , te whether all ∆Ft[i] are unambiguously determined. When all ∆Qt
and ∆Ft have been determined by bitconditions then also δTt = δQt−3+δFt+δWt and
δRt = δQt+1 − δQt can be determined, which together describe the bitwise rotation
of δTt in each step. This does, however, not imply that δRt ∈ dRL(δTt, RCt) or with
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what probability a correct rotation of differences happens. We refer to Lemma 5.4
(p. 74) for dRL(δTt, RCt) and the probabilities of each possible output difference.

To determine whether a partial differential path is valid one needs to check whether
there exist values (Qt)

te+1
t=tb−3 and (Q′t)

te+1
t=tb−3 satisfying the bitconditions (qt)

te+1
t=tb−3

that follow the prescribed path. If for all t = tb, . . . , te and i = 0, . . . , 31 we have that
|Vt,qt[i],qt−1[i],qt−2[i]| = 1 then those bitconditions are not contradicting and ∆Ft[i] is
unambiguously determined. Moreover, then also any values (Qt)te+1

t=tb−3 and (Q′t)
te+1
t=tb−3

satisfying the bitconditions (qt)
te+1
t=tb−3 trivially satisfy the ∆Qt and ∆Ft as given by

the differential path. In which case, the only remaining obstacle for a differential path
to be valid are the rotations.

6.2.3 Extending differential paths forward

When constructing a differential path one must first fix the message block differences
δm0, . . . , δm15. They result directly in the differences δWt for t = 0, . . . , 63. We use
an adaptation of the algorithm from Section 5.6.1 to extend a partial differential path
forward using bitconditions. Suppose we have a partial differential path consisting
of at least bitconditions qt−1 and qt−2 and that the differences δQt and δQt−3 are
known. We want to extend this partial differential path forward with step t resulting
in the difference δQt+1, bitconditions qt, and additional bitconditions qt−1, qt−2.

We assume that all indirect bitconditions in qt−1 and qt−2 are forward and involve
only bits of Qt−1. If we already have qt as opposed to just the value δQt (e.g., q0
resulting from given values IHVin, IHV

′
in) then we can skip the remaining part of this

paragraph. Otherwise, we first select bitconditions qt based on the value δQt. Since
we want to construct differential paths with as few bitconditions as possible, but also
want to be able to randomize the process, any low weight BSDR (such as the NAF) of
δQt may be chosen, which then translates into a possible choice for qt as in Table 6-1.
For instance, with δQt = 28, we may choose qt[8] = ‘+’, or qt[8] = ‘-’ and qt[9] = ‘+’
(with in either case all other qt[i] = ‘.’).

To determine the differences ∆Ft = (gi)
31
i=0 we proceed as follows. For i =

0, 1, 2, . . . , 31 we assume that we have valid bitconditions (a, b, c) = (qt[i], qt−1[i],
qt−2[i]) where only c may be indirect. If c is indirect then we assume it involvesQt−1[i].
Otherwise, c is direct and no further assumption is required. Therefore (a, b, c) ∈ L.
If |Vt,abc| = 1, then there is no ambiguity and {gi} = Vt,abc and (â, b̂, ĉ) = (a, b, c).
Otherwise, if |Vt,abc| > 1, then we choose gi arbitrarily from Vt,abc and we resolve the
ambiguity by replacing bitconditions (a, b, c) by (â, b̂, ĉ) = FC(t, abc, gi). Note that
in the next step t+1 our assumptions hold again, since â, b̂ and ĉ will be either direct
or forward indirect bitconditions. More explicitly, â is a direct bitcondition and if b̂
is indirect then it involves â.

Once all gi and thus ∆Ft have been determined, δTt is determined as δFt +
δQt−3 + δWt. We choose a high probability δRt ∈ dRL(δTt, RCt) and we determine
δQt+1 = δQt + δRt.
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6.2.4 Extending differential paths backward

Having dealt with the forward extension, we now consider the backward extension
of a differential path. The backward construction follows the same approach as the
forward one and is an adaptation of the algorithm in Section 5.6.2 using bitconditions.

Suppose we have a partial differential path consisting of at least bitconditions qt
and qt−1 and that the differences δQt+1 and δQt−2 are known. We want to extend
this partial differential path backward with step t resulting in the difference δQt−3,
bitconditions qt−2, and additional bitconditions qt, qt−1. We assume that all indirect
bitconditions in qt and qt−1 are backward and only involve bits of Qt−1.

We choose a low weight BSDR (such as the NAF) of δQt−2, which then translates
into a possible choice for qt−2 as in Table 6-1.

The differences ∆Ft = (gi)
31
i=0 are determined by assuming for i = 0, 1, . . . , 31

that we have valid bitconditions (a, b, c) = (qt[i], qt−1[i], qt−2[i]) where only a may be
indirect. If a is indirect then we assume it involves Qt−1[i]. Otherwise, a is direct and
no further assumption is required. Therefore (a, b, c) ∈ L. If |Vt,abc| = 1, then there
is no ambiguity and {gi} = Vt,abc and (â, b̂, ĉ) = (a, b, c). Otherwise, if |Vt,abc| > 1,
then we choose gi arbitrarily from Vt,abc and we resolve the ambiguity by replacing
bitconditions (a, b, c) by (â, b̂, ĉ) = BC(t, abc, gi).

To rotate δRt = δQt+1 − δQt over 32 − RCt bits, we choose a high probability
δTt ∈ dRL(δRt, 32−RCt). Finally, we determine δQt−3 = δTt− δFt− δWt to extend
our partial differential path backward with step t. Note that here also in the next step
t − 1 our assumptions hold again, since â, b̂ and ĉ will be either direct or backward
indirect bitconditions. More explicitly, ĉ is a direct bitcondition and if b̂ is indirect
then it involves ĉ.

6.2.5 Constructing full differential paths

In this section we present an adaptation of the algorithm in Section 5.6.3 to connect
a lower and upper partial differential path. The adapted algorithm in this section not
only uses bitconditions, it also operates in a bit-wise manner instead of a word-wise
manner. More precisely, instead of directly searching for compatible values ∆Qi and
∆Fj that result in a valid full differential path as in Section 5.6.3, the algorithm
presented here considers only bit position 0 in the beginning and searches for com-
patible bit values ∆Qi[0] and ∆Fj [0] that could lead to a valid full differential path.
It then iteratively extends such values with higher bit positions as long as there exist
compatible values that could lead to a valid full differential path. This significantly
reduces the cost of determining whether a lower and upper partial differential path
can be connected.

Constructing a full valid differential path for MD5 can be done as follows. Assume
that for some δQ−3 and bitconditions q−2, q−1, q0 the forward construction has been
carried out up to some step t. By default, we choose t = 11 such that this construction
leaves as much freedom for message modification techniques as possible. Furthermore,
assume that for some δQ64 and bitconditions q63, q62, q61 the backward construction
has been carried out down to step t+5. For each combination of forward and backward
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Algorithm 6-1 Construction of Ui+1 from Ui for MD5.
Suppose Ui is given as {(δQt+1, δQt+2, δFt+1, δFt+2, δFt+3, δFt+4)} if i = 0 or if
i > 0 constructed inductively based on Ui−1 by means of this algorithm. For each
tuple (q1, q2, f1, f2, f3, f4) ∈ Ui do the following:

1. Let Ui+1 = ∅ and (a, b, e, f) = (qt+4[i], qt+3[i], qt[i], qt−1[i])

2. For each bitcondition d = qt+1[i] ∈
{

{.} if q1[i] = 0
{-, +} if q1[i] = 1

do

3. Let q′1 = 0,−1 or +1 depending on whether d = ‘.’, ‘-’ or ‘+’, respectively
4. For each different f ′

1 ∈ {−f1[i],+f1[i]} ∩ Vt+1,def do
5. Let (d′, e′, f′) = FC(t+ 1, def, f ′

1)

6. For each bitcondition c = qt+2[i] ∈
{

{.} if q2[i] = 0
{-, +} if q2[i] = 1

do

7. Let q′2 = 0,−1 or +1 depending on whether c = ‘.’, ‘-’ or ‘+’
8. For each different f ′

2 ∈ {−f2[i],+f2[i]} ∩ Vt+2,cd′e′ do
9. Let (c′, d′′, e′′) = FC(t+ 2, cd′e′, f ′

2)

10. For each different f ′
3 ∈ {−f3[i],+f3[i]} ∩ Vt+3,bc′d′′ do

11. Let (b′, c′′, d′′′) = FC(t+ 3, bc′d′′, f ′
3)

12. For each different f ′
4 ∈ {−f4[i],+f4[i]} ∩ Vt+4,ab′c′′ do

13. Let (a′, b′′, c′′′) = FC(t+ 4, ab′c′′, f ′
4)

14. Insert (q1 − 2iq′1, q2 − 2iq′2, f1 − 2if ′
1, f2 − 2if ′

2, f3 − 2if ′
3, f4 − 2if ′

4)
in Ui+1

partial differential paths thus found, this leads to bitconditions q−2, q−1, . . . , qt and
qt+3, qt+4, . . . , q63 and differences δQ−3, δQt+1, δQt+2, δQ64.

It remains to try and glue together each of these combinations by finishing steps
t+1, t+2, t+3, t+4 until a full differential path is found. First, as in the backward
extension, for i = t + 1, t + 2, t + 3, t + 4 we set δRi = δQi+1 − δQi, choose a high
probability δTi ∈ dRL(δRi, 32−RCi), and determine δFi = δTi − δWi − δQi−3.

We aim to complete the differential path by finding new bitconditions qt−1, qt, . . . ,
qt+4 that are compatible with the original bitconditions and that result in the required
δQt+1, δQt+2, δFt+1, δFt+2, δFt+3, δFt+4.

An efficient way to find the missing bitconditions is to first test if they exist, and
if so to backtrack to actually construct them. For i = 0, 1, . . . , 32 we attempt to
construct a set Ui consisting of all tuples (q1, q2, f1, f2, f3, f4) of 32-bit words with
qj ≡ fk ≡ 0 mod 2i for j = 1, 2 and k = 1, 2, 3, 4 such that for all ℓ = 0, 1, . . . , i − 1
there exist compatible bitconditions qt−1[ℓ], qt[ℓ], . . . , qt+4[ℓ] that determine ∆Qt+j [ℓ]
and ∆Ft+k[ℓ] below, and such that

δQt+j = qj +
i−1∑
ℓ=0

2ℓ∆Qt+j [ℓ], j = 1, 2,

δFt+k = fk +
i−1∑
ℓ=0

2ℓ∆Ft+k[ℓ], k = 1, 2, 3, 4.

(6.4)
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From these conditions it follows that U0 must be chosen as {(δQt+1, δQt+2, δFt+1,
δFt+2, δFt+3, δFt+4)}. For i = 1, 2, . . . , 32, we attempt to construct Ui based on Ui−1
using Algorithm 6-1. Because per j there are at most two qj-values and per k there are
at most two fk-values that can satisfy the above relations, we have that |Ui| ≤ 26 for
each i, 0 ≤ i ≤ 32. On the other hand, for each tuple in Ui there may in principle be
many different compatible sets of bitconditions, thus providing a significant speedup
compared to Section 5.6.3.

As soon as we encounter an i for which Ui = ∅, we know that the desired bit-
conditions do not exist, and that we should try another combination of forward and
backward partial differential paths. If, however, we find U32 ̸= ∅ then it must be
the case that U32 = {(0, 0, 0, 0, 0, 0)}. Furthermore, in that case, every set of bitcon-
ditions that leads to this non-empty U32 gives rise to a full differential path, since
equations (6.4) hold with i = 32. Thus, if U32 ̸= ∅, there exists at least one valid
trail u0, u1, . . . , u32 with ui ∈ Ui. For each valid trail, the desired new bitconditions
(qt+4[i], qt+3[i], . . . , qt−1[i]) are (a′, b′′, c′′′, d′′′, e′′, f′), which can be found at step 13 of
Algorithm 6-1.

Note that in Algorithm 6-1 we have that (d, e, f), (c, d′, e′) ∈ L for the same reasons
as in Section 6.2.3. Using the same assumption as in Section 6.2.4 that b is a direct
bitcondition and a is either a direct bitcondition or a backward indirect bitcondition
involving b. It follows that also (b, c′, d′′), (a, b′, c′′) ∈ L.

6.2.6 Complexity

The complexity to construct valid full differential paths for MD5 depends on many
factors as is explained in Section 5.6.4. For our chosen-prefix collision construction (see
Section 6.5), we have heuristically found parameter choices that are sufficient for most
cases and lead to an average complexity equivalent to about 235 MD5 compression
function calls:

• number of differential paths: 106 lower differential paths and 0.5 · 106 upper
differential paths. We chose for a relatively lower number of upper differential
paths as these include more differential steps and thus require more memory to
be stored.

• differential path weight function: the weight of a partial differential path over
steps t = b, . . . , e is defined as the number of non-constant bitconditions in
qb−2, . . . , qe which excludes the weight of the NAF of δQb−3 and δQe+1. The
output per differential step of the forward and backward construction is thus
the 106 or 0.5 · 106, respectively, partial differential paths with the lowest such
weight. This particular choice allows us to efficiently determine an upper limit
for this weight such that the desired number of differential paths can be found
for each differential step in the forward and backward construction. Having this
upper weight limit, the forward and backward construction can skip all input
differential paths and/or ∆Ft[i] choices that lead to an extended differential
path with weight above the limit. This leads to a significant speedup.
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• BSDRs of δQi: the set of allowed BSDRs of δQi where i = t or i = t − 2
in the forward or backward construction, respectively, is determined as the set
of all BSDRs of δQi having weight less than or equal to ω. The limit ω is
initially chosen as w(NAF(δQi)) + 1 to allow at least some variability. Then ω
is repeatedly increased by 1 while both ω < 14 and∣∣{BSDR X

∣∣ σ(X) = δQi ∧ w(X) ≤ ω + 1
}∣∣ ≤ 16.

• message modification freedom: the message modification techniques shown in
Section 6.3.1 depend on bitconditions. The maximum possible combined tunnel
strength can be determined after each step of the forward and connect construc-
tion and every (partial) differential path that falls below a certain threshold can
be skipped.

6.3 Collision finding
Collision finding is the process of finding an actual message block pair B,B′ that
satisfies a given δB and a differential path based on a given IHVin, IHV

′
in.

6.3.1 Tunnels

To speed up to search of collision blocks we make extensive use of so-called tun-
nels [Kli06]. A tunnel allows one to make small changes in a certain first round Qt, in
specific bits of Qt that are determined by the full differential path q−3, q−2, . . . , q64
under consideration, while causing changes in the second round only after some step l
that depends on the tunnel. However, each tunnel implies that additional first-round
bitconditions have to be taken into account in the differential path, while leaving
freedom of choice for some of the bits in Qt that may be changed. A tunnel’s strength
is the number of independent bits that can be changed in this first round Qt. Thus, a
tunnel of strength k allows us to generate 2k different message blocks that all satisfy
the differential path up to and including step l in the second round.

The tunnels used in our collision finding algorithm are shown in Table 6-3. For
example, the first tunnel (T1) allows changes in bits of Q4, in such a way that if Q4[b]
is changed for some bit position b with 0 ≤ b < 32, this causes extra bitconditions
Q5[b] = 1 and Q6[b] = 1, which have to be incorporated in the differential path.
Furthermore, because tunnel T1 affects after the first round only Q21 through Q64

we have that l = 20, and T1 can be used to change message blocks m3,m4,m5, and
m7. To determine the strength of a tunnel one first needs to incorporate the tunnel’s
extra bitconditions in the full differential path, and then count the remaining amount
of freedom in the first round Qt that is changed by the tunnel.

The most effective tunnel is T8. As indicated in the table, it affects after the
first round only Q25, . . . , Q64. Over these rounds, Wang et al.’s original differential
paths have 20 bitconditions whereas the chosen-prefix collision differential paths that
we manage to construct have approximately 27 bitconditions. It follows that, given
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Table 6-3: Collision finding tunnels for MD5.

Tunnel Change Affected Extra bitconditions⋆

T1 Q4[b] m3..m5,m7, Q21..Q64 Q5[b] = 1, Q6[b] = 1

T2 Q5[b] m4,m5,m7,m8, Q21..Q64 Q6[b] = 0

T3 Q14[b] m13..m15,m6, Q3,m2..m5, Q21..Q64 Q15[b] = Q16[b], Q3[b] free†
T4 Q9[b] m8..m10,m12, Q22..Q64 Q10[b] = 1, Q11[b] = 1

T5 Q10[b] m9,m10,m12,m13, Q22..Q64 Q11[b] = 0

T6 Q8[b] m7..m9, Q12,m12..m15, Q23..Q64 Q10[b] = 1, RR(Q12, 22)[b] free‡
T7 Q4[b] m3,m4,m7, Q24..Q64 Q5[b] = 0, Q6[b] = 1

T8 Q9[b] m8,m9,m12, Q25..Q64 Q10[b] = 0, Q11[b] = 1

⋆ The extra bitconditions refer only to Qt[b] and not to Q′
t[b], thus Q6[b] = 0 is met by both q6[b] = ‘0’

and q6[b] = ‘+’.
† Bitcondition q3[b] = ‘.’ and no other indirect bitconditions may involve Q3[b]. Set Q3[b] = Q14[b]
to avoid carries in Q3.
‡ Bitcondition q12[b − 22 mod 32] = ‘.’ and no other indirect bitconditions may involve Q12[b −
22 mod 32]. Set Q12[b− 22 mod 32] = Q8[b] to avoid carries in Q12.

enough tunnel strength, especially for T7 and T8, collision finding can be done effi-
ciently.

6.3.2 Algorithm

The conditions on the differential path imposed by Algorithm 6-2 can easily be met
because forward and backward bitconditions in the differential path are interchange-
able. Steps 10 through 15 of Algorithm 6-2 are its most computationally intensive
part, in particular for the toughest differential paths in a chosen-prefix collision, so
they should be optimized. Greater tunnel strength significantly reduces the expected
time spent there, because all tunnels are used in steps 16 through 26. This implies
that there are significantly more chances at success in step 32 per successful step 15.

Note that in Algorithm 6-2, computation of mi and Qi is performed at t = i and
t = i− 1, respectively. Furthermore, we assume that the rotations in the first round
have probability very close to 1 to be correct, and therefore do not verify them. This
is further explained in Section 6.3.3.

6.3.3 Rotation bitconditions

As mentioned below Algorithm 6-2, it is assumed there that all rotations in the first
round are correct with probability very close to 1. In Algorithm 6-2, Q1, . . . , Q16 are
chosen in a non-sequential order and also changed at various steps in the algorithm.
Ensuring correct rotations in the first round would be cumbersome and it would hardly
avoid wasting time in a state where one or more rotations in the first round would
fail due to the various tunnels. However, if we use additional bitconditions qt[i] we
can (almost) ensure correct rotations in the first round, thereby (almost) eliminating
both the effort to verify rotations and the wasted computing time. This is explained
below.
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Algorithm 6-2 Collision finding algorithm.
Given a full differential path q−3, . . . , q64 consisting of only direct and backward bitconditions
and the set T1, . . . , T8 of tunnels from Table 6-3, perform the following steps:

1. Determine for all tunnels for which bits b the extra bitconditions as shown in Table 6-
3 can be met. For each possible case, apply compatible bitconditions to enforce the
extra bitconditions and change the bitconditions qt[b] of the changed or affected Qt[b]
in the first round from ‘.’ to ‘0’.

2. Perform the steps below until a collision block has been found.
3. Select Q1, Q2, Q13, . . . , Q16 such that q1, q2, q13, . . . , q16 hold.
4. Compute m1, Q17.
5. If q17 holds and the rotation for t = 16 is successful, then proceed.
6. Store the set Z of all pairs (Q1, Q2) meeting q1, q2 that do not change m1 and

bits of Q2 involved in q3.
7. For all Q3, . . . , Q7 meeting q3, . . . , q7 do:
8. Compute m6, Q18.
9. If q18 holds and the rotation for t = 17 is successful, then proceed.

10. For all Q8, . . . , Q12 meeting q8, . . . , q12 do:
11. Compute m11, Q19.
12. If q19 holds and the rotation for t = 18 is successful, then proceed.
13. For all (Q1, Q2) in Z do:
14. Compute m0, Q20.
15. If q20 holds and the rotation for t = 19 is successful, then proceed.
16. For all values of the bits of tunnels T1, T2, T3 do:
17. Set the bits to those values and compute m5, Q21.
18. If q21 holds and the rotation for t = 20 is successful, then proceed.
19. For all values of the bits of tunnels T4, T5 do:
20. Set the bits to those values and compute m10, Q22.
21. If q22 holds and the rotation for t = 21 is successful, then proceed.
22. For all values of the bits of tunnel T6 do:
23. Set the bits to those values and compute m15, Q23.
24. If q23 holds and the rotation for t = 22 is successful, then proceed.
25. For all values of the bits of tunnel T7 do:
26. Set the bits to those values and compute m4, Q24.
27. If q24 holds and the rotation for t = 23 is successful, then proceed.
28. For all values of the bits of tunnel T8 do:
29. Set the bits to those values and compute m9, Q25.
30. If q25 holds and the rotation for t = 24 is successful, then proceed.
31. Compute m0, . . . ,m15, Q26, . . . , Q64 and Q′

1, . . . , Q
′
64.

32. If δQ̂t = Q′
t −Qt agrees with qt for t = 61, 62, 63, 64, return B,B′.
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Using notation as in the proof of Lemma 5.4, given δTt and δRt it is easy to
determine which partition (α, β) satisfies RL((α, β), RCt) = δRt. The probability
that this correct rotation holds is not necessarily p(α,β) because it may be assumed
that bitconditions qt and qt+1 hold and these directly affect Rt = Qt+1−Qt and thus
Tt = RR(Rt, RCt). Hence, using bitconditions qt and qt+1 we can try and increase
the probability of a correct rotation in step t to (almost) 1 in the following way.

The other three partitions (of the four listed in Lemma 5.4) correspond to the
incorrect rotations. Those partitions are of the form

(α̂, β̂) = (α− λ0232−RCt , β + λ02
32−RCt + λRCt2

32), λ0, λRCt ∈ {−1, 0,+1}

where either λ0 ̸= 0 or λRCt ̸= 0. They result in incorrect δR̂t of the form

δR̂t = RL((α̂, β̂), RCt) = δRt + λ02
0 + λRCt2

RCt .

They are caused by a carry when adding δTt to Tt that does or does not propagate:
from bit position 32 − RCt − 1 to 32 − RCt for λ0 ̸= 0 and from bit position 31 to
32 for λRCt ̸= 0. Since we chose the partition (α, β) with highest probability, this
usually means that we have to prevent instead of ensure those propagations in order
to decrease the probability that λ0 ̸= 0 or λRCt ̸= 0.

To almost guarantee proper rotations in each step of Algorithm 6-2, additional
bitconditions can be determined by hand. Adding bitconditions on Qt, Qt+1 around
bit positions 31−RCt+ i and lower helps preventing λi ̸= 0. This can be automated
using a limited brute-force search, separately handling the cases λ0 ̸= 0 and λRCt ̸= 0.

Let i ∈ {0, RCt}. Given bitconditions qt, qt+1, we estimate Pr[λi ̸= 0|qt, qt+1]

by sampling a small set of Q̂t, Q̂t+1 satisfying qt, qt+1, and determining the fraction
where λi = NAF(δR̂t − δRt)[i] ̸= 0 using

T̂t = RR(Q̂t+1 − Q̂t, RCt);
δR̂t = RL(T̂t + δTt, RCt)−RL(T̂t, RCt).

Using this approach, we estimate the probability that λi = 0 by selecting a small
search bound B and exhaustively trying all combinations of additional bitconditions
on Qt[b], Qt+1[b] for b = 31 − RCt + i − B, . . . , 31 − RCt + i. Finally, if there are
any bitconditions (q′t, q

′
t+1) for which Pr[λi ̸= 0|q′t, q′t+1] is negligible, we select the

pair (q′t, q
′
t+1) that leads to the smallest number of additional bitconditions and for

which Pr[λ0 = λRCt = 0|qt−1, q′t] and Pr[λ0 = λRCt = 0|q′t+1, qt+2] do not decrease
significantly for step t− 1 and t+ 1, respectively.

6.4 Identical-prefix collision attack
We first present a new collision attack for MD5 with complexity of approximately 216

MD5 compressions improving upon the 220.96 MD5 compressions required in [XLF08].
Our starting point is the partial differential path for MD5 given in Table 6-4 with
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success probability approximately 2−14.5.19 It is based on message differences δm2 =
28, δm4 = δm14 = 231 and δm11 = 215 which is very similar to those used by Wang
et al. in [WY05] for the first collision attack against MD5. This partial differential
path can be used for a near-collision attack with complexity of approximately 214.8

MD5 compressions. This complexity estimate is based on the partial differential path
success probability and the influence of additional bitconditions prior step 28, tunnels
and the early-stop technique as in Algorithm 6-2. An example full differential path
based on this partial differential path, but with alternate steps 60–63, is given in
Table 6-8 (p. 113). This example full differential path has very few bitconditions on
Q18, . . . , Q24 so that most of the time is spent around tunnel T8 (in this case with
strength 13) which alters Q25. From step 24 onwards, the average number of steps
computed per value of T8 is approximately 3. The complexity over steps 24–63 is thus
the average complexity over steps 24–64 expressed as compression function calls (3/64)
divided by the success probability over steps 24–63 (2−14.5 · 2−4 = 2−18.5) leading to
(3/64) · 2−18.5 = 214.1. Together with previous steps this leads to a near-collision
complexity equivalent to approximately 214.8 compression function calls.

This leads in the usual fashion to an identical-prefix collision attack for MD5 that
requires approximately 216 MD5 compressions, since one has to do it twice: first to
add differences to δIHV and then to eliminate them again. It should be noted that
usually bitconditions are required on the IHV and IHV ′ between the two collision
blocks which imply an extra factor in complexity. In the present case, however, we
can construct a large set of differential paths for the second near-collision block that
cover all IHV and IHV ′ values that are likely to occur, thereby avoiding the extra
complexity at the cost of precomputations.

6.5 Chosen-prefix collision attack
This section is dedicated to the removal of the identical prefix condition to attain
MD5 chosen-prefix collisions. We show how any pair of IHV values can be made to
collide under MD5 by appending properly chosen collision blocks. More precisely, we
show how, for any two chosen message prefixes P and P ′, suffixes S and S′ can be
constructed such that the concatenated values P∥S and P ′∥S′ form a chosen-prefix
collision for MD5.

Given two arbitrarily chosen messages P and P ′, to construct a chosen-prefix
collision, we first apply padding to the shorter of the two, if any, to make their lengths
equal. This ensures that the Merkle-Damgård strengthening – which is applied after
the last bits of the message and involves the message’s bitlength – is identical for
the two messages resulting from this construction. We apply additional padding such
that both resulting messages are a specific number of bits (such as 64 or 96) short of
a whole number of blocks. In principle this can be avoided, but it leads to an efficient
method that allows relatively easy presentation. All these requirements can easily be
met, also in applications with stringent formatting restrictions.

19. As steps 29–33 hold with probability 1, steps 34–63 hold with probability 2−14.5.
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Table 6-4: Partial differential path for fast near-collision attack.

t δQt δFt δWt δTt δRt RCt

26 −28

27 0

28 0

29 0 0 28 0 0 9

30− 33 0 0 0 0 0 ·
34 0 0 215 215 231 16

35 231 231 231 0 0 23

36 231 0 0 0 0 4

37 231 231 231 0 0 11

38− 46 231 231 0 0 0 ·
47 231 231 28 28 231 23

48 0 0 0 0 0 6

49 0 0 0 0 0 10

50 0 0 231 0 0 15

51− 59 0 0 0 0 0 ·
60 0 0 231 231 −25 6

61 −25 0 215 215 225 10

62 −25 + 225 0 28 28 223 15

63 −25 + 225 + 223 25 − 223 0 25 − 223 226 − 214 21

64 −25 + 225 + 223 + 226 − 214

Partial differential path for t = 29, . . . , 63 using message differences δm2 = 28, δm4 = δm14 = 231,
δm11 = 215. The probability that it is satisfied is approximately 2−14.5. It leads to a identical-prefix
collision attack of approximated complexity 216 MD5 compressions.

Given this message pair, we modify a suggestion by Xiaoyun Wang (private com-
munication) by finding a pair of k-bit values that, when appended to the last in-
complete message blocks, results in a specific form of difference vector between the
IHV values after application of the MD5 compression function to the extended mes-
sage pair. Finding the k-bit appendages can be done using a birthday search proce-
dure.

The specific form of difference vector between the IHV values that is aimed for
during the birthday search is such that the difference pattern can be removed us-
ing a to-be defined family of differential paths. Removing the difference pattern is
done by further appending to the messages a sequence of near-collision blocks. Each
pair of near-collision blocks targets a specific subpattern of the remaining differences.
For each such subpattern we construct a new differential path, as described in de-
tail in Section 6.2, and subsequently use the differential path to construct a pair of
near-collision blocks. Appending those blocks to the two messages results in a new
difference vector between the new IHV values from which the targeted subpattern has
been eliminated compared to the previous difference vector between the IHV values.
The construction continues as long as differences exist.
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How the various steps involved in this construction are carried out and how their
parameters are tuned depends on what needs to be optimized. Extensive birthday
searching can be used to create difference patterns that require a small number of
pairs of near-collision blocks. When combined with a properly chosen large family
of differential paths, a single pair of near-collision blocks suffices to complete the
collision right away. One can trade-off between the size s of the family of differential
paths and the birthday search cost: 264.8/

√
|s| MD5 compressions. However, it may

make the actual near-collision block construction quite challenging, which leads to
the intuitively expected result that finding very short chosen-prefix collision-causing
appendages is relatively costly. On the other side of the spectrum, fast birthday
searching combined with a smaller family of differential paths leads to the need for
many successive pairs of near-collision blocks, each of which can quickly be found: if
one is willing to accept long chosen-prefix collision-causing appendages, the overall
construction can be done quite fast. Between the two extremes almost everything
can be varied: number of near-collision blocks, their construction time given the
differential path, time to find the full differential path, birthday search time, birthday
search space requirements, etc., leading to a very wide variety of ‘optimal’ choices
depending on what needs to be optimized.

Eliminating the birthday search entirely may be possible. However, this is not
interesting, since it requires additional more-complex differential paths and needs on
average even more near-collision blocks. In comparison, the lowest birthday search
cost of 232.9 MD5 compressions will not be a significant portion of the total chosen-
prefix complexity.

6.5.1 Construction details

As shown in Figure 8, a chosen-prefix collision for MD5 is a pair of messages M
and M ′ that consist of arbitrarily chosen prefixes P and P ′ (not necessarily of the
same length), together with constructed suffixes S and S′, such that M = P∥S,
M ′ = P ′∥S′, and MD5(M) = MD5(M ′). The suffixes consist of three parts: padding
bit strings Sr, S

′
r, followed by ‘birthday’ bit strings Sb, S

′
b both of bit length 64 + k,

where 0 ≤ k ≤ 32 is a parameter, followed by bit strings Sc, S
′
c each consisting of a

sequence of near-collision blocks. The padding bit strings are chosen such that the
bit lengths of P∥Sr and P ′∥S′r are both equal to 512n−64−k for a positive integer n.
The birthday bit strings Sb, S

′
b are determined in such a way that application of

the MD5 compression function to P∥Sr∥Sb and P ′∥S′r∥S′b results in IHVn and IHV ′n,
respectively, for which δIHVn has a certain desirable property that is explained below.

The idea is to eliminate the difference δIHVn in r consecutive steps, for some r,
by writing Sc = Sc,1∥Sc,2∥ . . . ∥Sc,r and S′c = S′c,1∥S′c,2∥ . . . ∥S′c,r for r pairs of near-
collision blocks (Sc,j , S

′
c,j) for 1 ≤ j ≤ r. For each pair of near-collision blocks

(Sc,j , S
′
c,j) we need to construct a differential path such that the difference vector

δIHVn+j has lower weight than δIHVn+j−1, until after r pairs we have reached
δIHVn+r = (0, 0, 0, 0).
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Figure 8: Chosen-prefix collision sketch

Fix some j and let Sc,j consist of 32-bit words mi, for 0 ≤ i < 16. We fix fifteen
of the δmi as 0 and allow only δm11 to be ±2p−10 mod 32 with as yet unspecified p
with 0 ≤ p < 32. This was suggested by Xiaoyun Wang because with this type of
message difference the number of bitconditions over the final two and a half rounds
can be kept low, which turns out to be helpful while constructing collisions. For steps
t = 34 up to t = 61 the differential path is fully determined by δm11 as illustrated
in Table 6-5. The greater variability for the steps not specified in Table 6-5 does
not need to be fixed at this point. In the last two steps there is a greater degree of
freedom specified by the integer w ≥ 0 that determines which and how many IHV
differences can be eliminated per pair of near-collision blocks. A larger w allows more
eliminations by means of additional differential paths. The latter have, however, a
smaller chance to be satisfied because they depend on more (and thus less likely)
carry propagations in ∆Q62 and ∆Q63. This effect contributes to the complexity of
finding the near-collision blocks satisfying the differential paths. Varying w therefore
leads to a trade-off between fewer near-collision blocks and increased complexity to
find them.

This entire construction of the pair of near-collision blocks (Sc,j , S
′
c,j) is done in

a fully automated way based on the choice of w and the values of IHVn+j−1 and
IHV ′n+j−1 as specified. It follows from equation 6.3 (p. 91) and the rows for t ≥ 61

in Table 6-5 that a differential path with δm11 = ±2p−10 mod 32 would add a tuple

±

0, 2p +
w′∑
λ=0

sλ2
p+21+λ mod 32, 2p, 2p


to δIHVn+j−1, with notation as in Table 6-5. This is set forth in more detail below.
A sequence of such tuples is too restrictive to eliminate arbitrary δIHVn: although
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Table 6-5: Family of partial differential paths using δm11 = ±2p−10 mod 32.

t δQt δFt δWt δTt δRt RCt

31 ∓2p−10 mod 32

32 0
33 0
34 0 0 ±2p−10 mod 32 0 0 16

35− 60 0 0 0 0 0 ·
61 0 0 ±2p−10 mod 32 ±2p−10 mod 32 ±2p 10
62 ±2p 0 0 0 0 15
63 ±2p 0 0 0 0 21
64 ±2p

+
∑w′

λ=0 sλ2
p+21+λ mod 32

Here s0, . . . , sw′ ∈ {−1, 0,+1} and w′ = min(w, 31− p) for a fixed w ≥ 0. Interesting values for the
parameter w are between 2 and 5.

differences in the b component can be handled using a number of near-collision block
pairs, only identical differences can be removed from the c and d components and the
a-component differences are not affected at all. We therefore make sure that δIHVn
has the desirable property, as referred to above, that it can be eliminated using these
tuples. This is done in the birthday search step where birthday bit strings Sb and S′b
are determined such that δIHVn = (0, δb, δc, δc) for some δb and δc. A δIHVn of this
form corresponds to a collision (a, c−d) = (a′, c′−d′) between IHVn = (a, b, c, d) and
IHV ′n = (a′, b′, c′, d′). With a search space of only 64 bits, such a collision can easily
be found. Since the number of near-collision block pairs and the effort required to
find them depends in part on the number of bit differences between δb and δc, it may
pay off to lower that number at the cost of extending the birthday search space. For
instance, for any k with 0 ≤ k ≤ 32, a collision

(a, c− d, c− b mod 2k) = (a′, c′ − d′, c′ − b′ mod 2k)

with a (64 + k)-bit search space results in δc − δb ≡ 0 mod 2k and thus, on average,
just (32 − k)/3 bit differences between δb and δc. Determining such Sb and S′b can
be expected to require on the order of

√
2π2 2

64+k =
√
π232+(k/2) calls to the MD5

compression function. More on the birthday search in Section 6.5.2.
Let δIHVn be of the form (0, δb, δc, δc), δc =

∑
i ki2

i and δb− δc =
∑
i li2

i, where
(ki)

31
i=0 and (li)

31
i=0 are NAFs. If δc ̸= 0, let i be such that ki ̸= 0. Using a differential

path from Table 6-5 with δm11 = −ki2i−10 mod 32 we can eliminate the difference ki2i
in δc and δd and simultaneously change δb by

ki2
i +

i+21+w′ mod 32∑
λ=i+21 mod 32

lλ2
λ,

where w′ = min(w, 31 − i). Here one needs to be careful that each non-zero lλ is
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Algorithm 6-3 Construction of pairs of near-collision blocks.
Given n-block P∥Sr∥Sb and P ′∥S′

r∥S′
b, the corresponding resulting IHVn and IHV ′

n, and a
value for w, a pair of bit strings Sc, S

′
c is constructed consisting of sequences of near-collision

blocks such that M = P∥Sr∥Sb∥Sc and M ′ = P ′∥S′
r∥S′

b∥S′
c satisfy MD5(M) = MD5(M ′).

This is done by performing in succession steps 1, 2 and 3 below.
1. Let j = 0 and let Sc and S′

c be two bit strings of length zero.
2. Let δIHVn+j = (0, δb, δc, δc). If δc = 0 then proceed to step 3. Let (ki)

31
i=0 = NAF(δc)

and (li)
31
i=0 = NAF(δb−δc). Choose any i for which ki ̸= 0 and let w′ = min(w, 31−i).

Perform steps (a) through (f):

(a) Increase j by 1.
(b) Let δSc,j = (δm0, δm1, . . . , δm15) with δm11 = −ki2

i−10 mod 32 and δmt = 0 for
0 ≤ t < 16 and t ̸= 11.

(c) Given δIHVn+j−1 = IHV ′
n+j−1−IHVn+j−1 and δSc,j , construct a few differential

paths based on Table 6-5 with

δQ61 = 0, δQ64 = −ki2
i −

i+21+w′ mod 32∑
λ=i+21 mod 32

lλ2
λ, δQ63 = δQ62 = −ki2

i.

(d) Find message blocks Sc,j and S′
c,j = Sc,j+δSc,j that satisfy one of the constructed

differential paths. If proper message blocks cannot be found, back up to step (c)
to find more differential paths.

(e) Compute IHVn+j = MD5Compress(IHVn+j−1, Sc,j),
IHV ′

n+j = MD5Compress(IHV ′
n+j−1, S

′
c,j), and append Sc,j and S′

c,j to Sc and
S′

c, respectively.
(f) Repeat step 2

3. Let δIHVn+j = (0, δb̂, 0, 0). If δb̂ = 0 then terminate. Let (li)31i=0 = NAF(δb̂). Choose i
such that li ̸= 0 and i−21 mod 32 is minimal and let w′ = min(w, 31−(i−21 mod 32)).
Perform steps (a) through (e) as above with δm11 = 2i−31 mod 32 as opposed to δm11 =
−ki2

i−10 mod 32 in step (b) and in steps (c) and (d) with

δQ61 = 0;

δQ64 = 2i−21 mod 32 −
i+w′ mod 32∑

λ=i

lλ2
λ;

δQ63 = 2i−21 mod 32;

δQ62 = 2i−21 mod 32.

Perform steps (a) through (e) again with δm11 = −2i−31 mod 32 in step (b) and

δQ61 = 0, δQ64 = δQ63 = δQ62 = −2i−21 mod 32

in steps (c) and (d). Repeat step 3.
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eliminated only once in the case when multiple i-values allow the elimination of lλ.
Doing this for all ki that are non-zero in the NAF of δc results in a difference vector
(0, δb̂, 0, 0) where δb̂ may be different from δb, and where the weight w(NAF(δb̂)) may
be smaller or larger than w(NAF(δb)). More precisely, δb̂ =

∑31
λ=0 eλlλ2

λ, where
eλ = 0 if there exist indices i and j with 0 ≤ j ≤ min(w, 31 − i) such that ki = ±1
and λ = 21 + i+ j mod 32 and eλ = 1 otherwise.

The bits in δb̂ can be eliminated as follows. Let (l̂i)
31
i=0 = NAF(δb̂) and let j be

such that l̂j = ±1 and j − 21 mod 32 is minimal. Then the difference
∑j+w′

i=j l̂i2
i

with w′ = min(w, 31 − (j − 21 mod 32)) can be eliminated from δb̂ using δm11 =
2j−31 mod 32, which introduces a new difference 2j−21 mod 32 in δb, δc and δd. This
latter difference is eliminated using δm11 = −2j−31 mod 32, which then leads to a
new difference vector (0, δb, 0, 0) with w(NAF(δb)) < w(NAF(δb̂)). The process is
repeated until all differences have been eliminated.

Algorithm 6-3 summarizes the construction of pairs of near-collision blocks set
forth above.

6.5.2 Birthday search

A birthday search on a search space V is generally performed as in [vOW99] by
iterating a properly chosen deterministic function f : V → V and by assuming that the
points of V thus visited form a ‘random walk’, also called a trail. After approximately√
π|V |/2 iterations one may expect to have encountered a collision, i.e., different

points x and y such that f(x) = f(y). Because the entire trail can in practice
not be stored and to take advantage of parallelism, different pseudo-random walks
are generated, of which only the startpoints, lengths, and endpoints are kept. The
endpoints are ‘distinguished points’, points with an easily recognizable bitpattern
depending on |V |, available storage and other characteristics. The average length of
a walk is inversely proportional to the fraction of distinguished points in V . Because
intersecting walks share their endpoints, they can easily be detected. The collision
point can then be recomputed given the startpoints and lengths of the two colliding
walks. The expected cost (i.e., number of evaluations of f) to generate the walks
is denoted by Ctr and the expected cost of the recomputation to determine collision
points is denoted by Ccoll.

In our case the search space V and iteration function f depend on an integer
parameter k ∈ {0, 1, 2, . . . , 32} as explained in Section 6.5.1. The birthday collision
that we try to find, however, needs to satisfy several additional conditions that cannot
be captured by V , f , or k: the prefixes associated with x and y in a birthday collision
f(x) = f(y) must be different, and the required number of pairs of near-collision
blocks may be at most r when allowing differential paths with parameter w. The
probability that a collision satisfies all requirements depends not only on the choice
of r and w, but also on the value for k, and is denoted by pr,k,w. As a consequence,
on average 1/pr,k,w birthday collisions have to be found.

More precisely, for k ∈ {0, . . . , 32} let B and B′ be the last 512 − 64 − k bits of
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P∥Sr and P ′∥S′r, respectively. Then we define V and f as follows:

V = Z232 × Z232 × Z2k ,

f(x, y, z) = (a, c− d, c− b mod 2k) where

(a, b, c, d) =

{
MD5Compress(IHVn−1, B∥x∥y∥z) if x mod 2 = 0;

MD5Compress(IHV ′n−1, B′∥x∥y∥z) if x mod 2 = 1.

It should be noted that any function with inputs x, y and z that outputs either 0
or 1 can be used instead of x mod 2 above. To obtain the highest probability that a
birthday collision involves both M and M ′, such a function should be balanced, that
is the pre-image spaces of 0 and 1 should have the same size: |f−1(0)| = |f−1(1)|.

Table 6-6: Expected birthday search costs for k = 0.

k = 0 w = 0 w = 1 w = 2 w = 3

r p Ctr M p Ctr M p Ctr M p Ctr M

16 5.9 35.27 1MB 1.75 33.2 1MB 1.01 32.83 1MB 1. 32.83 1MB
15 7.2 35.92 1MB 2.39 33.52 1MB 1.06 32.86 1MB 1. 32.83 1MB
14 8.71 36.68 1MB 3.37 34.01 1MB 1.27 32.96 1MB 1.04 32.84 1MB
13 10.45 37.55 1MB 4.73 34.69 1MB 1.78 33.22 1MB 1.2 32.93 1MB
12 12.45 38.55 1MB 6.53 35.59 1MB 2.78 33.71 1MB 1.66 33.16 1MB
11 14.72 39.68 2MB 8.77 36.71 1MB 4.34 34.5 1MB 2.61 33.63 1MB
10 17.28 40.97 11MB 11.47 38.06 1MB 6.54 35.6 1MB 4.18 34.42 1MB
9 20.16 42.4 79MB 14.62 39.64 2MB 9.38 37.02 1MB 6.46 35.56 1MB
8 23.39 44.02 732MB 18.21 41.43 21MB 12.88 38.76 1MB 9.52 37.09 1MB
7 26.82 45.73 8GB 22.2 43.43 323MB 17.02 40.83 9MB 13.4 39.02 1MB
6 31.2 47.92 161GB 26.73 45.69 8GB 21.78 43.22 241MB 18.14 41.4 20MB
5 35. 49.83 3TB 31.2 47.92 161GB 27.13 45.89 10GB 23.74 44.2 938MB
4 34. 49.33 2TB 30.19 47.42 81GB

The columns p, Ctr and M denote the values of − log2(pr,k,w), log2(Ctr(r, k, w)) and the minimum
required memory M such that Ccoll(r, k, w,M) ≤ Ctr(r, k, w), respectively. See Appendix D for more
extensive tables. The values for pr,k,w were estimated based on Algorithm 6-3.

Assuming that M bytes of memory are available and that a single trail requires 28
bytes of storage (namely 96 bits for the start- and endpoint each, and 32 for the
length), this leads to the following expressions for the birthday search costs:

Ctr(r, k, w) =

√
π · |V |
2 · pr,k,w

, Ccoll(r, k, w,M) =
2.5 · 28 · Ctr(r, k, w)

pr,k,w ·M
,

where |V | = 264+k, and the factor of 2.5 is explained in Chapter 3 of [vOW99].
For M = 70/pr,k,w as given in the last column of Table 6-6 and in the more

extensive tables in Appendix D, the two costs are equal, and the overall expected
birthday search costs becomes 2Ctr(r, k, w). However, if the cost at run time of finding
the trails exceeds the expected cost by a factor of λ, then the cost to determine the
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resulting birthday collisions can be expected to increase by a factor λ2. Hence, in
practice it is advisable to choose M considerably larger. For ϵ ≤ 1, using M =
70/(pr,k,w · ϵ) bytes of memory results in Ccoll ≈ ϵ · Ctr and the expected overall
birthday search cost is about (1 + ϵ) · Ctr(r, k, w) MD5 compressions.

6.5.3 Complexity analysis

The overall complexity of the chosen-prefix collision attack depends on the parameters
used for the birthday search and the construction of pairs of near-collision blocks. This
involves various trade-offs and is described in this section.

The birthday search complexity depends on the parameter w (defining the family
of differential paths), the upper bound on the number r of pairs of near-collision
blocks, the size 264+k of the search space, and the amount of available memory M .
For various choices of r, k and w we have tabulated the heuristically determined
expected birthday search complexities and memory requirements in Appendix D (in
practice it is advisable to use a small factor more memory than required to achieve
that Ccoll is significantly smaller than Ctr). Given r, w and M , the optimal value for
k and the resulting birthday search complexity can thus easily be looked up. When
there is no restriction on the value to be used for r, one can balance the birthday
search complexity and the complexity of constructing r pairs of near-collision blocks.

Each pair of near-collision blocks requires construction of a set of full differential
paths followed by the actual construction of the pair of near-collision blocks. The
complexity of the former construction depends on several parameter choices, such
as the size of the sets of lower and upper differential paths, and the restraints used
when selecting BSDRs for a δQt. Naturally, a higher overall quality of the resulting
complete differential paths, i.e., a low number of overall bitconditions and a high
total tunnel strength, generally results when more effort is put into the construction.
For practical purposes we have found parameters sufficient for almost all cases (as
applicable to the chosen-prefix collision attack) that have an average total complexity
equivalent to roughly 235 MD5 compressions (see Section 6.2.6).

The complexity of the collision finding, i.e., the construction of a pair of near-
collision blocks, depends on the parameter w, the total tunnel strength and the num-
ber of bitconditions in the last 2.5 rounds. For small w = 0, 1, 2 and paths based on
Table 6-5, the construction requires on average roughly the equivalent of 234 MD5
compressions. Combined with the construction of the differential paths, this leads to
the rough overall estimate of about 235.6 MD5 compressions to find a single pair of
near-collision blocks for a chosen-prefix collision attack.

With w = 2 and optimizing for overall complexity this leads to the optimal pa-
rameter choices r = 9 and k = 0. For these choices, the birthday search cost is about
237 MD5 compressions and constructing the r = 9 pairs of near-collision blocks costs
about 238.8 MD5 compressions. The overall complexity is thus estimated at roughly
239.1 MD5 compressions, which takes about 35 hours on a single PC-core. For these
parameter choices the memory requirements for the birthday search are very low, even
negligible compared to the several hundreds of MBs required for the construction of
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the differential paths.
With more specific demands, such as a small number r of near-collision blocks

possibly in combination with a relatively low M , the overall complexity increases. As
an example, in our rogue CA construction at most r = 3 near-collision blocks were
allowed. Using M = 5TB this results in an overall complexity of about 249 MD5
compressions.

Implementations of our differential path construction algorithms for MD5, our
collision finding algorithm and the birthday search 20 are published as part of project
HashClash [HC]. Furthermore, we have also published a graphical user interface that
allows one to automatically perform a chosen-prefix collision attack and tweak many
of the parameter choices we have discussed in Chapter 6.

6.5.4 Single-block chosen-prefix collision

Using the same approach as in the proof of Theorem 3.6, it is even possible to construct
a chosen-prefix collision using only a single pair of near-collision blocks. Together with
84 birthday bits, the chosen-prefix collision-causing appendages are only 84 + 512 =
596 bits long.21 This approach is based on an even richer family of differential paths
that allows elimination using a single pair of near-collision blocks of a set of δIHV s.
The set of δIHV s is small enough so that finding the near-collision blocks is still
feasible, but large enough that such a δIHV can be found efficiently by a birthday
search. Instead of using the family of differential paths based on δm11 = ±2i, we use
the fastest known collision attack for MD5 of Section 6.4 and vary the last few steps
to find a large family of differential paths.

By properly tuning the birthday search, the same partial differential path of Sec-
tion 6.4 leads to the construction of a single near-collision block chosen-prefix collision
for MD5. By varying the last steps of the differential path and by allowing the colli-
sion finding complexity to grow by a factor of about 226, we have identified a set S
of about 223.3 different δIHV = (δa, δb, δc, δd) of the form δa = −25, δd = −25 +225,
δc = −25 mod 220 that can be eliminated. Such δIHV s can be found using an 84-bit
birthday search with step function f : {0, 1}84 → {0, 1}84 of the form

f(x) =

{
ϕ(MD5Compress(IHV,B∥x) + δÎHV ) for τ(x) = 0

ϕ(MD5Compress(IHV ′, B′∥x)) for τ(x) = 1,

where δÎHV is of the required form, τ : x 7→ {0, 1} is a balanced selector function
and ϕ(a, b, c, d) 7→ a∥d∥(c mod 220). There are 2128−84 = 244 possible δIHV values of
this form, of which only about 223.3 are in the allowed set S. It follows that a birthday
collision f(x) = f(x′) has probability p = 223.3/(244 · 2) = 2−21.7 to be useful, where
the additional factor 2 stems from the fact that different prefixes are required, i.e.,
τ(x) ̸= τ(x′).

20. Supports both the CELL and CUDA architecture
21. The shortest collision attack for MD5 is the 512-bit single-block identical prefix collision attack
presented in [XF10].
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A useful birthday collision can be expected after
√
π284/(2p) ≈ 253.2 MD5 com-

pressions, requires 400MB of storage and takes about three days on 215 PS3s. The
average complexity of finding the actual near-collision blocks is bounded by about
214.8+26 = 240.8 MD5 compressions and negligible compared to the birthday complex-
ity. Thus the overall complexity is approximately 253.2 MD5 compressions.

In Table 6-7 two 128-byte messages are given both consisting of a 52-byte chosen
prefix[KG07] and a 76-byte single-block chosen-prefix collision suffix and with colliding
MD5 hash value:

d320b6433d8ebc1ac65711705721c2e116.

The differential path that is actually followed between these two messages is given in
Table 6-8.

Table 6-7: Example single-block chosen-prefix collision.

Message 1
4f 64 65 64 20 47 6f 6c 64 72 65 69 63 68 0a 4f
64 65 64 20 47 6f 6c 64 72 65 69 63 68 0a 4f 64
65 64 20 47 6f 6c 64 72 65 69 63 68 0a 4f 64 65
64 20 47 6f d8 05 0d 00 19 bb 93 18 92 4c aa 96
dc e3 5c b8 35 b3 49 e1 44 e9 8c 50 c2 2c f4 61
24 4a 40 64 bf 1a fa ec c5 82 0d 42 8a d3 8d 6b
ec 89 a5 ad 51 e2 90 63 dd 79 b1 6c f6 7c 12 97
86 47 f5 af 12 3d e3 ac f8 44 08 5c d0 25 b9 56

Message 2
4e 65 61 6c 20 4b 6f 62 6c 69 74 7a 0a 4e 65 61
6c 20 4b 6f 62 6c 69 74 7a 0a 4e 65 61 6c 20 4b
6f 62 6c 69 74 7a 0a 4e 65 61 6c 20 4b 6f 62 6c
69 74 7a 0a 75 b8 0e 00 35 f3 d2 c9 09 af 1b ad
dc e3 5c b8 35 b3 49 e1 44 e8 8c 50 c2 2c f4 61
24 4a 40 e4 bf 1a fa ec c5 82 0d 42 8a d3 8d 6b
ec 89 a5 ad 51 e2 90 63 dd 79 b1 6c f6 fc 11 97
86 47 f5 af 12 3d e3 ac f8 44 08 dc d0 25 b9 56
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Table 6-8: Single-block chosen-prefix collision - differential path

t Bitconditions: qt[31] . . . qt[0]

-3 ........ ........ .....+-- ---.....
-2 ..10.0-0 .0.1..0. .1..0.+- ---.....
-1 .^11.-+1 --.0..1. .0..1... ..+..100
0 .-+-.+1+ 1+.+..+. .-..-.00 11+..100
1 .0+-.-+0 +1.-..-. .+.1+... ..+..---
2 .+.-.0-1 10.-..+. .+.0+... ..+..-+-
3 .+1-.01+ -.^-..0. ..1-.0.. ..+...--
4 .+.1..1- 0.++..1. .00100.. ..+..1+-
5 ...-...- -.0-.^.. ..+0.-^. ..0...+-
6 .1.+.... 1.-+.+.. ..-..+-. ..-....1
7 ...-...1 +.1-.0.. ..+..10. ..1...10
8 1.1-...0 +.01.1.. ..-.^+1. ..1.^..+
9 1.0+...1 +..+..^. ..-.+-.. ....-..0
10 +0--010- 00.-0.-1 01-.1+.. ...00..-
11 -0-0111- 10^-1100 11111+11 ..^101.-
12 0+0++++1 -----01+ ---00+00 ^^+-.10.
13 +++10--- --0-0-11 1+--+-++ ++10^+10
14 1011-+0- ..0.-++1 11.0-100 1011-++.
15 0+0.-+01 11.11-++ +101+100 11..1-+.
16 ....10.- ....^-0. ....+... ....^00.
17 .^..^+.. .....0^^ ^..01... .....^+.
18 0......^ .....^.. ...10... .0......
19 1....^.. ........ ...+.... .1....^.
20 +....... ........ ........ .-......
21 .....0.. ........ ...^.... ........
22 ^....1.. ........ ........ .^......
23 .....+.. ........ ........ ........
24 ........ ........ .......0 ........
25 .....^.. ........ .......1 ........
26 ........ ........ .......- ........
27 ........ ........ ........ ........
28 ........ ........ .......^ ........

δm2 = 28, , δm11 = 215, δm4 = δm14 = 231

Continued at p. 114.
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Table 6-9: Single-block chosen-prefix collision - differential path (cont.)

t Bitconditions: qt[31] . . . qt[0]

29–32 ........ ........ ........ ........
33 1....... ........ ........ ........
34 0....... ........ ........ ........
35 -....... ........ ........ ........
36 -....... ........ ........ ........
37 +....... ........ ........ ........
38 +....... ........ ........ ........
39 -....... ........ ........ ........
40 +....... ........ ........ ........
41 -....... ........ ........ ........
42 -....... ........ ........ ........
43 +....... ........ ........ ........
44 +....... ........ ........ ........
45 +....... ........ ........ ........
46 -....... ........ ........ ........
47 +....... ........ ........ ........
48 1....... ........ ........ ........
49 0....... ........ ........ ........

50–58 ........ ........ ........ ........
59 ........ ........ ........ ..0.....
60 ......0. ........ ......01 101.....
61 101101.0 .1...... .......0 10-.....
62 0.01.1+. .1...... ......-+ +++.....
63 +-----?- .-...... ......?? 0-+.....
64 .+.-.--+ .-.-.-++ -.---... ..-.....

δm2 = 28, , δm11 = 215, δm4 = δm14 = 231

Note: steps 60–63 follows the differential path as found for the example collision in Table 6-7.
These steps are not optimal and show only one of the allowed possibilities.
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7.1 Overview
Chapter 7 covers all results on SHA-0 and SHA-1. First we give a formal definition
of SHA-0 and SHA-1 in Section 7.2 and provide a treatment on published collision
attacks and techniques in Section 7.3. The remaining sections cover our contributions.

Similar to MD5, we apply and improve the differential path analysis and algo-
rithms of Chapter 5 for SHA-0 and SHA-1 in Section 7.4. However in contrast to
MD5, this differential path construction is only to be used in the first round, i.e., the
first 20 steps.

For the remaining three rounds, i.e., the last 60 steps, the technique of combining
local collisions is used. Disturbance vectors are used to describe combinations of local
collisions that may be used for near-collision attacks. So far, for various reasons,
it is assumed that the local collisions behave independently in the literature on the
analysis of disturbance vectors. This assumption has been shown to be flawed by
Stéphane Manuel [Man11].

In Section 7.5, we present a method to analyze the success probability of distur-
bance vectors over the last three rounds that does not assume independence of local
collisions. Our method is based on constructing differential paths that follow the
prescribed local collision differences and summing the success probabilities of these
differential paths. Since the number of possible differential paths can grow exponen-
tially in the number of steps, various techniques are used to reduce this growth. This
method also allows one to divert from the prescribed local collision differences at the
beginning of the second round and the last few steps in order to obtain higher success
probabilities. Furthermore, it provides an easy way to determine message expansion
conditions that are sufficient to obtain the (near-)optimal success probability, a topic
which so far has only been treated thoroughly on individual local collisions instead of
combinations thereof.

We have constructed and implemented a near-collision attack against full SHA-1
using the above mentioned tools. It has an estimated complexity equivalent to 257.5

SHA-1 compressions which can be used directly in an identical-prefix collision attack.
This improves upon the near-collision attack with complexity of about 268 SHA-1
compressions presented by Wang et al. [WYY05b]. The construction of our near-
collision attack is presented in Section 7.6. This near-collision attack is practically
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achievable within a year using about 1300 pc-cores22. As no actual near-collision
block have been found yet using this near-collision attack, we discuss the verification
of both the correctness and the complexity of our near-collision attack in Section 7.6.9.

This near-collision attack results in an identical-prefix collision attack against
SHA-1 with an average complexity between 260.3 and 265.3 calls to the compression
function of SHA-1 as explained in Section 7.6.1. Finally, based on this near-collision
attack, we present a chosen-prefix collision attack against SHA-1 with an average
complexity of about 277.1 SHA-1 compressions in Section 7.7.

Although we have not constructed any attacks against SHA-0 or its compression
function, the differential path construction algorithm in Section 7.4 and the differential
cryptanalysis in Section 7.5 can be used directly in the construction of collision attacks
against SHA-0. In particular, the differential cryptanalysis may allow an improvement
over current collision attacks due to a better selection of the disturbance vector, the
target values for δIHVdiff and the message word bitrelations, since the exact joint
success probabilities of local collisions can be used instead of approximations based
on the individual success probabilities of local collisions.

7.2 Description of SHA-0 and SHA-1
7.2.1 Overview

SHA-0 and SHA-1 work as follows on a given bit string M of arbitrary bit length,
cf. [NIS95]:

1. Padding. Pad the message: first append a ‘1’-bit, next the least number of ‘0’
bits to make the resulting bit length equal to 448 mod 512, and finally the bit
length of the original unpadded message M as a 64-bit big-endian23 integer. As
a result the total bit length of the padded message M̂ is 512N for a positive
integer N .

2. Partitioning. Partition the padded message M̂ into N consecutive 512-bit blocks
M0, M1, . . . , MN−1.

3. Processing. To hash a message consisting of N blocks, SHA-0 and SHA-1 go
through N + 1 states IHVi, for 0 ≤ i ≤ N , called the intermediate hash values.
Each intermediate hash value IHVi is a tuple of five 32-bit words (a, b, c, d, e).
For i = 0 it has a fixed public value called the initial value (IV ):

IV = (6745230116, efcdab8916, 98badcfe16, 1032547616, c3d2e1f016).

For i = 1, 2, . . . , N intermediate hash value IHVi is computed using the respec-
tive SHA-0 or SHA-1 compression function described below:

IHVi = SHA0Compress(IHVi−1,Mi−1) for SHA-0;

22. Measured on a single core of a Intel Core2 Q9550 2.83Ghz processor.
23. SHA-0/SHA-1 uses big-endian to convert between words and bit strings, whereas MD5 uses
little-endian.
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IHVi = SHA1Compress(IHVi−1,Mi−1) for SHA-1.

4. Output. The resulting hash value is the last intermediate hash value IHVN ,
expressed as the concatenation of the hexadecimal byte strings of the five words
a, b, c, d, e of IHVN = (a, b, c, d, e), converted back from their big-endian repre-
sentation. As an example the IV would be expressed as

67452301efcdab8998badcfe10325476c3d2e1f016.

7.2.2 SHA-0 compression function

The input for the compression function SHA0Compress(IHV,B) consists of an in-
termediate hash value IHVin = (a, b, c, d, e) and a 512-bit message block B. The
compression function consists of 80 steps (numbered 0 to 79), split into four consec-
utive rounds of 20 steps each. Each step t uses modular additions, left rotations,
and a non-linear function ft, and involves an Addition Constant ACt. The addition
constants are defined per round as follows:

ACt =


5a82799916 for 0 ≤ t < 20,

6ed9eba116 for 20 ≤ t < 40,

8f1bbcdc16 for 40 ≤ t < 60,

ca62c1d616 for 60 ≤ t < 80.

The non-linear function ft also depends on the round:

ft(X,Y, Z) =


F (X,Y, Z) = (X ∧ Y )⊕ (X ∧ Z) for 0 ≤ t < 20,

G(X,Y, Z) = X ⊕ Y ⊕ Z for 20 ≤ t < 40,

H(X,Y, Z) = (X ∧ Y ) ∨ (Z ∧ (X ∨ Y )) for 40 ≤ t < 60,

I(X,Y, Z) = X ⊕ Y ⊕ Z for 60 ≤ t < 80.

(7.1)

The 512-bit message block B is partitioned into sixteen consecutive 32-bit strings
which are then interpreted as 32-bit words m0, m1, . . . , m15 (with big-endian byte
ordering), and expanded to 80 words Wt, for 0 ≤ t < 80,

Wt =

{
mt for 0 ≤ t < 16,

Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16 for 16 ≤ t < 80.
(7.2)

Note that message expansion relation is reversible:

Wt−16 =Wt ⊕Wt−3 ⊕Wt−8 ⊕Wt−14, for 16 ≤ t < 80. (7.3)

Similar to MD5 we describe SHA-0’s compression function SHA0Compress in an
‘unrolled’ version such that SHA0Compress ∈ Fmd4cf. For each step t the compression
function algorithm uses a working state consisting of five 32-bit words Qt, Qt−1, Qt−2,
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Qt−3 and Qt−4 and calculates a new state word Qt+1. The working state is initialized
as

(Q0, Q−1, Q−2, Q−3, Q−4) = (a, b, RR(c, 30), RR(d, 30), RR(e, 30)). (7.4)

For t = 0, 1, . . . , 79 in succession, Qt+1 is calculated as follows:

Ft = ft(Qt−1, RL(Qt−2, 30), RL(Qt−3, 30)),

Qt+1 = Ft +ACt +Wt +RL(Qt, 5) +RL(Qt−4, 30).
(7.5)

After all steps are computed, the resulting state words are added to the input inter-
mediate hash value and returned as output:

SHA0Compress(IHVin, B) = (7.6)
(a+Q80, b+Q79, c+RL(Q78, 30), d+RL(Q77, 30), e+RL(Q76, 30)).

7.2.3 SHA-1 compression function

The compression function SHA1Compress of SHA-1 is defined identically to the com-
pression function SHA0Compress of SHA-0 except for the message expansion where
a bitwise rotation is added:

Wt =

{
mt for 0 ≤ t < 16,

RL(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16, 1) for 16 ≤ t < 80.
(7.7)

Note that SHA1Compress ∈ Fmd4cf and also that SHA-1’s message expansion relation
is reversible:

Wt−16 = RR(Wt, 1)⊕Wt−3 ⊕Wt−8 ⊕Wt−14, for 16 ≤ t < 80. (7.8)

7.2.4 Expanded messages

A sequence (Wt)
79
t=0 is called an expanded message when it is the result of the message

expansion from W0, . . . ,W15. An expanded message can be seen as an element of
F80×32
2 . Note that this “definition” differs between the contexts of SHA-0 and SHA-1

and has the following properties:

• for both SHA-0 and SHA-1, the message expansion is linear with respect to
⊕: (Wt ⊕ Vt)79t=0 is an expanded message if (Wt)

79
t=0 and (Vt)

79
t=0 are expanded

messages;

• any 16 consecutive words Wt, . . . ,Wt+15 uniquely determine the entire expanded
message W0, . . . ,W79, since both SHA-0’s and SHA-1’s message expansion re-
lations are reversible;

• the left rotation (RL(Wt, r))
79
t=0 of any expanded message (Wt)

79
t=0 by r bits is

also an expanded message;
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• the forward and backward shifts (Wt)
80
t=1 and (Wt)

78
t=−1 of any expanded message

(Wt)
79
t=0 are also expanded messages, where for SHA-x (using Eq. 7.2 and 7.7):

W80 = RL(W80−3 ⊕W80−8 ⊕W80−14 ⊕W80−16, x);

W−1 = RR(W15, x)⊕W15−3 ⊕W15−8 ⊕W15−14.

7.3 Techniques towards collision attacks
SHA-1 and its predecessor SHA-0 have a more complex message expansion compared
to MD5. Changing any bit in the first 16 words W0, . . . ,W15 leads to many bit
differences in the succeeding words W16, . . . ,W79. Constructing a collision attack
requires thus a different approach to find a good differential path over the last three
rounds.

7.3.1 Local collisions

In 1998, Chabaud and Joux [CJ98] constructed a collision attack against SHA-0 based
on local collisions. The idea of a local collision is simple: in some step t a disturbance
is created by some message word difference δWt = 2b resulting in δQt+1 = 2b. This
disturbance is corrected over the next five steps, so that after those five steps no
differences occur in the five working state words.

Obvious corrections for step t + 1 and t + 5 are δWt+1 = −2(b+5 mod 32) and
δWt+5 = −2(b+30 mod 32), since both corrections occur with probability at least 1/2
and for many values of b this probability is close to 1. In steps t+2, t+3 and t+4, the
disturbance δQt+1 = 2b might cause δFt+2, δFt+3 and δFt+4 to be non-zero, which
can be corrected with δWt+k = −δFt+k for k ∈ {2, 3, 4}. Possible corrections for steps
t+ 2, t+ 3 and t+ 4 vary per round. Common non-zero values for δFt+2, δFt+3 and
δFt+4 are ±2b, ±2(b+30 mod 32) and ±2(b+30 mod 32), respectively.

7.3.2 Disturbance vector

Due to the properties of the message expansion, Chabaud and Joux [CJ98] were
able to interleave many of these local collisions such that the message word signed
bit differences (∆Wt)

79
t=0 conform to the message expansion. For more convenient

analysis, they consider the disturbance vector which is a non-zero expanded message
(DVt)

79
t=0 where every ‘1’-bit DVt[b] marks the start of a local collision based on the

disturbance δWt[b] = ±1.
We use (DWt)

79
t=0 to denote all message word bit differences without sign: W ′t =

Wt ⊕ DWt. Note that the vector (DWt)
79
t=0 must be an expanded message, since

(Wt)
79
t=0 and (W ′t )

79
t=0 are expanded messages. Chabaud and Joux use the same relative

message word bit differences for all local collisions, as this implies that (DWt)
79
t=0

forms an XOR(⊕) over rotated shifts of the disturbance vector. Hence, (DWt)
79
t=0 is

an expanded message.
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Let R ⊂ {0, . . . , 5} × {0, . . . , 31} describe the relative indexes of the changed bits
over the six steps of a local collision, then (DWt)

79
t=0 can be determined as:

DWt =
⊕

(i,r)∈R

RL(DVt−i, r), t ∈ {0, . . . , 79}. (7.9)

Here DV−5, . . . , DV−1 are the words resulting from shifting (DVt)
79
t=0 forward five

times for SHA-x:

DVi = RR(DVi+16, x)⊕DVi+13 ⊕DVi+8 ⊕DVi+2, i = −1, . . . ,−5.

Table 7-1 provides a list of all high probability local collisions with a single bit
disturbance in ∆Qt+1 (no carries) and for which steps these local collisions are valid.
Although for some steps the local collision with the fewest differences is

(δWi)
t+5
i=t = (2b,−2b+5 mod 32, 0, 0, 0,−2b+30 mod 32),

thus R = {(0, 0), (1, 5), (5, 30)}, this local collision cannot be used in rounds two and
four due to their boolean function.

The only local collision that is valid for all steps (not allowing carries in ∆Qt+1)
is

(δWi)
t+5
i=t = (2b,−2b+5 mod 32,±2b,±2b+30 mod 32,±2b+30 mod 32,−2b+30 mod 32),

thus R = {(0, 0), (1, 5), (2, 0), (3, 30), (4, 30), (5, 30)} which is used for all published
attacks against either SHA-0 or SHA-1 and is used throughout the remainder of this
thesis.

To show that there are no other possibilities, we show that the set

R = {(0, 0), (1, 5), (2, 0), (3, 30), (4, 30), (5, 30)}

is the only set of relative bit differences that is valid for t = 30 and b = 31.
Since there can be no carry, i.e., ∆Qt+1 is either {31} or {31}, it follows that
here any local collision can only consist of relative bit differences that are in the
set {(0, 0), (1, 5), (2, 0), (3, 30), (4, 30), (5, 30)}. For all such local collisions the first,
second and sixth relative bit differences in this set are unavoidable. Whether the
remaining relative bit differences {(2, 0), (3, 30), (4, 30)} either must, must not or may
be used depends on the boolean function. For t = 30, this is the XOR boolean func-
tion that always has an output bit difference if there is a difference in only one of
the corresponding input bits. This implies that all three remaining relative bit dif-
ferences must be used. Hence, for t = 30 and b = 31 the only possible local collisions
are described by the relative bit differences

R = {(0, 0), (1, 5), (2, 0), (3, 30), (4, 30), (5, 30)}.

In the case of SHA-0, since its message expansion does not use bitwise rotation,
all ‘1’-bits in the disturbance vector can be limited to a single bit position. Chabaud
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Table 7-1: Possible local collisions for SHA-0 and SHA-1

R t

{(0, 0), (1, 5), (2, 0), (3, 30), (4, 30), (5, 30)} 0− 79
{(0, 0), (1, 5), (5, 30)} 0− 15, 38− 55, 78− 79

{(0, 0), (1, 5), (4, 30), (5, 30)} 0− 16, 38− 56, 78− 79
{(0, 0), (1, 5), (3, 30), (5, 30)} 0− 15, 38− 55, 78− 79

{(0, 0), (1, 5), (3, 30), (4, 30), (5, 30)} 0− 17, 38− 57, 78− 79
{(0, 0), (1, 5), (2, 0), (5, 30)} 0− 15, 37− 55, 77− 79

{(0, 0), (1, 5), (2, 0), (4, 30), (5, 30)} 0− 16, 37− 56, 77− 79
{(0, 0), (1, 5), (2, 0), (3, 30), (5, 30)} 0− 15, 36− 55, 76− 79

Note: See Section 7.3.2. Listed combinations of local collision relative bit differences R and starting
step t together with any starting bit b ∈ {0, . . . , 31} forms an exhaustive list of all local collisions
with a single bit disturbance ∆Qt+1[b] = ±1 (no carries) with a success probability of at least 2−5.

and Joux took advantage of this fact by placing all ‘1’-bits on bit position 1 where
local collisions generally have a higher probability than at other bit positions. Due to
the added bitwise rotation in the message expansion of SHA-1, disturbance vectors
always have ‘1’-bits at different bit positions and generally more ‘1’-bits compared to
those for SHA-0.

Consecutive ‘1’-bits within a word DVt can be compressed to a single local collision
[WYY05c], i.e., DVt[0] = DVt[1] = 1 is used as ∆Wt[0] = −1 and ∆Wt[1] = +1 which
leads to the single bit disturbance δWt = 21 − 20 = +20. Due to the rotations in the
step function, the bits at bit positions 1 and 2 are not considered consecutive in this
regard as they result in the non-consecutive bits at positions 31 and 0 after bitwise
left rotation by 30. The same holds for the bit position pair (26,27) due to the bitwise
left rotation by five.

7.3.3 Disturbance vector restrictions

Initially for the most straightforward collision attack, namely a single-block collision
attack, three restrictions were placed on disturbance vectors:

1. DV−5 = DV−4 = DV−3 = DV−2 = DV−1 = 0: δIHVin must be zero (0, 0, 0, 0, 0)
for a single-block collision attack. Using the disturbance vector for all steps, the
‘1’-bits in the words DV−5, . . . , DV−1 mark disturbances in δQ−4, . . . , δQ0 and
thus in δIHVin. Since δIHVin = (0, 0, 0, 0, 0), it follows that DV−5, DV−4,
DV−3, DV−2 and DV−1 must be zero as well;

2. DV75 = DV76 = DV77 = DV78 = DV79 = 0: this restriction is necessary to
enforce that δIHVout = δIHVin. This implies that if δIHVin = (0, 0, 0, 0, 0) then
also δIHVout = (0, 0, 0, 0, 0);

3. at most one of DVi[b] and DVi+1[b] is non-zero, for b = 0, . . . , 31 and i =
0, . . . , 15: the boolean function in the first round prevents having two consecu-
tive local collisions in the same bit position starting in the first 16 steps.
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The first and third restrictions can be alleviated by diverting from local collisions as
prescribed by the disturbance vector in the first round. So instead one can construct a
differential path over the first round and use local collisions for the remaining rounds
for use in a (near-)collision attack. Wang et al. [WYY05b] were the first to do this.

Finally, given the use of differential paths in the first round, one can also alleviate
the second restriction and construct a two-block collision attack [WYY05b]. Without
these three restrictions significantly better disturbance vectors were found, thus a
two-block collision attack can be more efficient than a single-block collision attack.
Since the complexity of each near-collision attack contributes to the overall collision
attack complexity, using more than two blocks does not offer a further advantage.

7.3.4 Disturbance vector selection

To choose the best disturbance vector, several cost functions of disturbance vectors
can be used where the cost function is only applied over the last, say, 60 words that
form the last three rounds.

• Hamming weight (e.g., [BC04, PRR05, RO05, MP05, JP05]): counts the total
number of local collisions over the specified steps, since a lower number of local
collisions is expected to yield a higher overall probability;

• Bitcondition count (e.g., [WYY05c, YIN+08]): sum of the number of bitcon-
ditions for each local collision independently (not allowing carries);

• Probability (e.g., [MPRR06, Man11]): product of the probabilities of all local
collisions independently where carries are allowed;

• Joint probability (Section 7.5): the probability of fulfilling all local collisions
simultaneously.

Stéphane Manuel [Man08, Man11] noticed that all interesting disturbance vectors,
including all disturbance vectors used in attacks in the literature, belong to the two
classes shown in Table 7-2. Within each class all disturbance vectors are forward
or backward shifts and/or rotations of each other. Since a disturbance vector is an
expanded message, it is uniquely determined by any 16 consecutive words. The first
class named ‘type I’ consists of disturbance vectors (DVt)

79
t=0 in which there are 15

consecutive zero words directly followed by a word DVi with only a single bit position
b set to ‘1’, thus DVi = 2b. Such a disturbance vector is identified as disturbance
vector I(i − 15, b). The second class named ‘type II’ consists of disturbance vectors
(DVt)

79
t=0 identified as II(i, b) such that

DVj =


2b+31 mod 32 j ∈ {i+ 1, i+ 3};
2b j = i+ 15;

0 j ∈ {i, i+ 2, i+ 4, i+ 5, . . . , i+ 14}.

In the literature, a number of disturbance vectors reported as (near-)optimal with
respect to some cost function are:
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• [WYY05b]: DV I(49,2);

• [RO05]: DVs I(52,31) and DVs I(45,1), I(49,1), I(51,1)24;

• [JP05]: DVs I(51,0), I(52,0), II(52,0);

• [PRR05]: DV I(50,2);

• [YIN+08]: DV II(56,2);

• [Man11]: DV II(52,0) (DV II(49,0) in an earlier version [Man08]).

Most of these disturbance vectors have many disturbances on bit position 31 and/or
1 as the local collisions starting at those bit positions generally have higher success
probabilities. The disturbance vector used in the near-collision attack presented in
Section 7.6 and [Ste10] is DV II(52,0). This choice is not based on the results in the
above publications, but is entirely based on preliminary results of those presented
in Section 7.5.11. In the course of writing this thesis, Manuel published an updated
version [Man11] of [Man08] which supports our choice.

7.3.5 Differential path construction

As mentioned before, Wang et al. [WYY05b] were the first to construct a hand-
made differential path. In 2006, De Cannière and Rechberger[CR06] introduced a
more algorithmic solution to construct differential paths for SHA-0 and SHA-1 which,
instead of working from two directions to each other, works similar to a probabilistic
algorithm from coding theory that searches for low weight code words. Yajima et
al. [YSN+07] also present a differential path construction algorithm which is similar
to, but less efficient than, the one we present in Section 7.4 below.

7.3.6 History of published attacks

SHA-0 Attacks The first theoretical collision attack against SHA-0 was published
by Chabaud and Joux [CJ98] with estimated attack complexity of 261 SHA-0
compressions. Their results were achieved by composing local collisions such
that message differences conform to the message expansion. Their work forms
the basis for all subsequent attacks against SHA-0 and SHA-1.
The first practical attack against SHA-0 is the near-collision attack by Eli Biham
and Rafi Chen [BC04] with an estimated complexity of 240 SHA-0 compressions,
which uses a message modification technique dubbed neutral bits by the authors.
This is a technique that, given IHV , IHV ′ and messages M and M ′ that follow
a differential path up to some step t, flips one or more message bit positions
in M and M ′ simultaneously such that the altered M and M ′ also follow the

24. These results were obtained using a Hamming weight based cost function, thus rotated versions
are considered equal. These specific rotations were chosen to avoid a situation where their analysis
would always be incorrect, see section 6 of their paper.
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Table 7-2: SHA-1 disturbance vectors of type I and type II

disturbance vector I(K, 0)
K ∈ Z

i DVK+i DWK+i

. . . . . . . . .
−18 31 28, 31
−17 30, 31 4, 28, 29, 30, 31
−16 − 3, 4, 28, 31
−15 31 29, 30
−14 31 4, 28, 31
−13 − 4, 28, 31
−12 − 28, 31
−11 31 31
−10 − 4
−9 − 29, 31
−8 − 29
−7 31 29, 31
−6 − 4, 29
−5 31 −
−4 − 4, 29
−3 31 29
−2 − 4
−1 31 29

0 − 4
1 − 29, 31
2 − −
3 − 29
4 − 29

5− 14 − −
15 0 0

16 − 5
17 − 0
18 1 1, 30
19 − 6, 30
20 − 1, 30
21 2 2, 31
22 − 7, 31
23 1 1, 2, 31
24 3 0, 3, 6
25 − 0, 1, 8
26 − 0, 3, 31
27 4 1, 4, 31
. . . . . . . . .

disturbance vector II(K, 0)
K ∈ Z

i DVK+i DWK+i

. . . . . . . . .
−20 − 29
−19 31 31
−18 − 4
−17 31 −
−16 − 4, 29
−15 31 29
−14 − 4
−13 30, 31 29, 30
−12 − 3, 4
−11 − 29, 30, 31
−10 31 28, 31
−9 − 4, 28, 29
−8 − 28, 29, 31
−7 − 29
−6 − 29
−5 31 29, 31
−4 − 4
−3 − 31
−2 − 29
−1 − 29

0 − 29
1 31 31
2 − 4
3 31 −
4 − 4, 29
5 − 29, 31
6 − −
7 − 29
8 − 29

9− 14 − −
15 0 0

16 − 5
17 − 0
18 1 1, 30
19 0 0, 6, 30
20 − 1, 5, 30
21 2 0, 2, 31
. . . . . . . . .

Note: we describe the bit-positions of all ‘1’-bits of the 32-bit words DVK+i and DWK+i. The
SHA-1 (reverse) message expansion relation is used to extend the above tables forward (backward).
Disturbance vectors I(K, b) and II(K, b) for b ∈ {0, . . . , 31} are obtained by left rotating all 80 words
of disturbance vectors I(K, 0) and II(K, 0), respectively, by b bit positions [Man11].
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differential path up to step t. In essence tunnels and neutral bits are very similar
message modification techniques. Using their techniques they are able to find
collisions for SHA-0 reduced to 65 steps.
The first (identical-prefix) collisions for full SHA-0 [BCJ+05]25, constructed
using four near-collision blocks26, were found by Biham et al. with an estimated
complexity of 251 SHA-0 compressions. Wang et al. [WYY05c] improved this to
a collision attack consisting of two near-collision blocks with an estimated total
complexity of 239 SHA-0 compressions. This attack was further improved by
Naito et al. [NSS+06] to approximately 236 SHA-0 compressions and later by
Manuel and Peyrin [MP08] to approximately 233.6 SHA-0 compressions. These
three improvements also all provide example collisions.
So far no chosen-prefix collision attacks against SHA-0 have been published.

SHA-1 Attacks The first theoretical (identical-prefix) collision attack against full
SHA-1 was published by Wang et al. [WYY05b] with an estimated complexity of
269 SHA-1 compressions. In their paper also a practical collision attack against
SHA-1 reduced to 58 steps is presented with an example collision. They claimed
have improved their theoretical attack against full SHA-1 to an estimated com-
plexity of 263 SHA-1 compressions [WYY05a, Wan06]. No publication has fol-
lowed so far however, instead [Coc07] has reconstructed and confirmed parts
of the analysis of their attack given the details presented at the CRYPTO2005
rump session.
The paper [BCJ+05], besides collision attacks against full SHA-0, also presented
collisions for 40-step SHA-1 with an attack complexity of approximately 257

SHA-1 compressions. De Cannière and Rechberger[CR06] were able to construct
a practical collision attack against 64-step SHA-1 and provide example collisions.
De Cannière et al. [CMR07] were able to find collisions for 70-step SHA-1 in
2007. Collisions for 73-step SHA-1 were presented in [Gre10]. So far no collisions
have been presented for a larger number of steps of SHA-1. In particular, though
anticipated since 2006, no actual collisions for SHA-1 have been found.
At the rump session of CRYPTO2007, Mendel et al. [MRR07] claimed to have a
collision attack against full SHA-1 with an estimated complexity of 260.x SHA-1
compressions and started a distributed computing project. No further publi-
cation has followed and their distributed computing project was stopped mid
2009.
Rafael Chen claims an identical-prefix collision attack against full SHA-1 in
his PhD thesis [Che11] with an estimated complexity of 258. However, in his
complexity estimation he extends a single 72-step SHA-1 near-collision attack

25. Announced at the rump session of Crypto’04
26. It would have been more efficient to use only two near-collision blocks. However, lacking differ-
ential path construction algorithms, the authors used a linearized model of SHA-1 to deal with the
first few steps of differential paths. At least four near-collision blocks were needed for a collision
attack within this model and using an additional technique.
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of complexity 253.1 to a two-block identical-prefix collision attack against full
SHA-1 with an additional factor of only 24.9. It can be easily verified that the
highest success probability over the last 8 steps that can be achieved for the
second near-collision block (that targets one specific δIHV ) is about 2−8.356,
thus there is an error in the complexity estimation of at least a factor 23.5.27

There are two other papers that have to be mentioned here, namely [MHP09]
by McDonald et al. in which the authors claimed to have found a differen-
tial path leading to a collision attack against full SHA-1 with an estimated
complexity of 252 SHA-1 compressions. Their result was directly based on the
disturbance vector analysis and claimed possible collision attack complexities of
Stéphane Manuel [Man08]. McDonald et al. decided to withdraw their paper
when later analysis indicated that the claimed possible collision attack complex-
ities in [Man08] were inaccurate. In the journal version [Man11] of [Man08] a
more detailed analysis of disturbance vectors is made using a more conservative
cost function and any claims towards possible collision attack complexities have
been removed.
The literature on SHA-1 does not represent the state-of-the-art cryptanalytic
methods as several claims have not been substantiated by publications. More-
over, due to lack of details it is hard if not impossible to verify the correct-
ness and accurateness of the above claimed attack complexities and/or compare
them, thus it is unclear which attack should be considered as the best correct
collision attack against SHA-1. RFC6194 [PCTH11] considers the first collision
attack by Wang et al. [WYY05b] with estimated complexity 269 SHA-1 com-
pressions as the best (identical-prefix) collision attack against full SHA-1. This
attack is based on two near-collisions attacks with a complexity of about 268

SHA-1 compressions each.
So far no chosen-prefix collision attacks against SHA-1 have been published. No
implementations of (near-)collision attacks against SHA-1 have been published
to date, except the implementation of the near-collision attack described in this
thesis [HC].28

27. Exact probability can be determined using the methods presented in Section 7.5, estimations can
easily be obtained using a Monte Carlo simulation. The given error factor of 23.5 does not take into
account the complexity of the first near-collision block and the fact that the second near-collision
block is slightly harder than 253.1.
28. Necessary for public verification of correctness and the actual runtime complexity. Also aids in
further understanding and allows further improvements by the cryptographic community.
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7.4 Differential path construction
In this section we present differential path construction algorithms for SHA-0 and
SHA-1 based on the algorithms presented in Chapter 5. Similar to MD5, the SHA-0
and SHA-1 differential path construction algorithms are improved versions that make
use of bitconditions (see Section 6.2.2). Also, the final connect algorithm operates
in a bit-wise manner similar to the algorithm in Section 6.2.5 instead of a word-wise
manner as in Chapter 5.

Differential path construction algorithms for SHA-0 and SHA-1 have already been
proposed by De Cannière and Rechberger [CR06] and Yajima et al. [YSN+07] each
using a different methodology. The first uses an approach based on a probabilistic
algorithm from coding theory for finding low weight codewords. The second is very
similar to the algorithms proposed in this section where from two ends partial differ-
ential paths are constructed towards each other. Our algorithm improves over that
of [YSN+07] on efficiency: our connection algorithm operates in a bit-wise manner
and therefore it is able to stop earlier in case of impossible forward and backward
differential path pairs.

Compared to MD5, the rotations of Qi that are given as input to the boolean func-
tion in the step update ft(Qt−1, RL(Qt−2, 30), RL(Qt−3, 30)) (see Eq. 7.5) complicate
matters, since for both SHA-0 and SHA-1 indirect bitconditions on Qt[i] can involve
one of the following bits: Qt−1[i], Qt+1[i], Qt−1[i+ 2 mod 32], Qt−2[i+ 2 mod 32],
Qt+1[i− 2 mod 32] and Qt+2[i− 2 mod 32].

However, this is simpler in the first round as the first round boolean function
of both SHA-0 and SHA-1 (ignoring the input rotations) is identical to MD5’s first
round boolean function. As can be seen in Table C-1, indirect bitconditions are only
applied to the second input involving the third input or vice versa. This implies
for SHA-0 and SHA-1 that in the first round any indirect bitcondition on Qt[i] can
involve only Qt−1[i] or Qt+1[i], thus never bit positions other than i. Therefore the
improved algorithm for MD5 in Section 6.2.5 can be more easily adapted to SHA-0
and SHA-1 over the first round. This limitation to the first round does not pose a
problem for constructing a near-collision attack, since for the remaining rounds the
differential path is the result of interleaving local collisions.

7.4.1 Differential paths

Similar to MD5, a differential path for SHA-0 or SHA-1 is described using bitcondi-
tions qt = (qt[i])

31
i=0 on (Qt, Q

′
t), where each bitcondition qt[i] specifies a restriction on

the bits Qt[i] and Q′t[i] possibly including values of other bits Ql[i] for l ∈ {t−1, t+1}.
For the first round only the following bitconditions are necessary and used: ‘.’, ‘+’,
‘-’, ‘0’, ‘1’, ‘^’, ‘v’, ‘!’ and ‘y’ (see Tables 6-1 and 6-2), where the last two bitcondi-
tions are only used by message modification techniques (see Section 7.6.8). Since the
disturbance vector determines all bit differences (DWt)

79
t=0 only up to their sign, the

actual chosen differences (∆Ŵt)
19
t=0 are maintained besides the bitconditions in the

differential path.
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A partial differential path for SHA-0 or SHA-1 over steps t = tb, . . . , te can be
seen as a (te − tb + 6) × 32 matrix (qt)

te+1
t=tb−4 of bitconditions paired with message

difference vector (∆Ŵt)
te
t=tb

. The bitconditions are used to specify the values of ∆Qt
and ∆Ft. As for each step t only ∆Qt−3,∆Qt−2,∆Qt−1,∆Qt are required in a
differential step, in such a partial differential path qt−4 and qte+1 are used only to
represent δRL(Qtb−4, 30) and δQte+1 instead of BSDRs.

7.4.2 Forward

Suppose we have a partial differential path consisting of at least bitconditions qt−3,
qt−2 and the differences ∆Qt−4, ∆Qt−1 and δQt are known. We want to extend
this partial differential path forward with step t resulting in the differences δQt+1,
∆Wt, ∆Qt, bitconditions qt−1 and additional bitconditions qt−2 and qt−3. We use an
adaptation of the algorithm from Section 5.6.1 to perform such a forward extension
using bitconditions (see also Section 6.2.2).

If the BSDR ∆Qt−1 is only used in previous steps to determine δQt−1 and
δRL(Qt−1, 5) then one can replace ∆Qt−1 by any low weight BSDR δQ̂t−1 of δQt−1
such that δRL(Qt−1, 5) = σ(RL(δQ̂t−1, 5)). Otherwise ∆Q̂t−1 = ∆Qt−1. The BSDR
∆Q̂t−1 directly translates to bitconditions qt−1 as in Table 6-1.

We select ∆Qt based on the value of δQt. Since upcoming steps can use the
remaining freedom in ∆Qt, we choose for each Z ∈ dRL(δQt, 5) (see Lemma 5.4)
at most one ∆Qt such that σ(RL(∆Qt, 5)) = Z. We continue with any one of
these ∆Qt, preferably one with low weight. We choose a ∆Wt such that ∆Wt[i] ∈
{−DWt[i],+DWt[i]} for i = 0, . . . , 31.

We assume that all indirect bitconditions in qt−3 are forward and involve only
bits of Qt−2 and that qt−2 consists of only direct bitconditions.29 To determine the
differences ∆Ft = (gi)

31
i=0 we proceed as follows. For i = 0, . . . , 31 we assume that we

have valid bitconditions

(a, b, c) = (qt−1[i], qt−2[i+ 2 mod 32], qt−3[i+ 2 mod 32]),

where only c can be indirect and if so involves Qt−2[i+ 2 mod 32] associated with b.
Hence, in the notation of Section 6.2.2: (a, b, c) ∈ L. If |Vt,abc| = 1 then there is no
ambiguity and we set gi = Vt,abc and (â, b̂, ĉ) = (a, b, c). Otherwise, if |Vt,abc| > 1,
then we choose gi arbitrarily from Vt,abc and we resolve the ambiguity in ∆Ft[i] by
replacing bitconditions (a, b, c) by (â, b̂, ĉ) = FC(t, abc, gi). Note that in the next step
t+ 1 our assumptions hold again as both â and b̂ are direct bitconditions.

29. This assumption is valid for the results of this algorithm for the previous step t − 1. However
this algorithm requires valid inputs for the first step, e.g., t = 0. E.g, we use the values ∆Q−4 =
∆Q−1 = (0)31i=0, q−3 = q−2 = (‘.’)31i=0 and δQ0 = 0 to represent identical but unknown intermediate
hash values IHVin = IHV ′

in. Another possibility is to use the values q−4, . . . , q0 consisting of direct
bitconditions ‘0’, ‘1’, ‘+’, ‘-’ that represent given values IHVin and IHV ′

in. In this case, the forward
construction algorithm can skip choosing BSDRs ∆Q−1 and ∆Q0 and translating them to q−1 and
q0 in steps t = 0 and t = 1, respectively.
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Once all gi and thus ∆Ft have been determined, δQt+1 is determined as

δQt+1 = σ(∆Ft) + σ(∆Wt) + σ(RL(∆Qt, 5)) + σ(RL(∆Qt−4, 5)).

7.4.3 Backward

Similar to the forward extension, we now consider the backward extension of a partial
differential path. Suppose we have a partial differential path consisting of at least
bitconditions qt−2, qt−1 and differences δRL(Qt−3, 30), ∆Qt and δQt+1 are known.
We want to extend this partial differential path backward with step t resulting in the
differences δRL(Qt−4, 30), ∆Wt, bitconditions qt−3 and additional bitconditions qt−1
and qt−2. We use an adaptation of the algorithm from Section 5.6.2 to perform such
a backward extension using bitconditions.

We choose a ∆Wt such that Wt[i] ∈ {−DWt[i],+DWt[i]} for i = 0, . . . , 31. We
select ∆Qt−3 based on the value of δRL(Qt−3, 30). We choose any low weight BSDR
Z of δRL(Qt−3, 30), so that ∆Qt−3 = RR(Z, 30) which then translates into a possible
qt−3 as in Table 6-1.

The differences ∆Ft = (gi)
31
i=0 are determined by assuming for i = 0, . . . , 31 that

we have valid bitconditions

(a, b, c) = (qt−1[i], qt−2[i+ 2 mod 32], qt−3[i+ 2 mod 32]),

where only a can be indirect and if so it involves Qt−2[i].30 Note that Qt−2[i] is not
associated with b. To deal with this issue, we first ignore such indirect bitconditions
and reapply them later on.

We set ã = a if a is a direct bitcondition, otherwise ã = ‘.’. It follows that
(ã, b, c) ∈ L. If |Vt,ãbc| = 1 then there is no ambiguity and we set {gi} = Vt,ãbc
and (â, b̂, ĉ) = (ã, b, c). Otherwise, if |Vt,ãbc| > 1, then we choose gi arbitrarily from
Vt,ãbc and we resolve the ambiguity by replacing bitconditions (a, b, c) by (â, b̂, ĉ) =
BC(t, ãbc, gi). Note that in the next step t − 1 our assumptions hold again as ĉ is
a direct bitcondition and b̂ is either a direct bitcondition or an indirect backward
bitcondition involving ĉ.

Finally, for all i such that qt−1[i] was an indirect bitcondition, we reapply this
bitcondition. This means that if the new q̂t−1[i]=‘.’ then we revert it to the old
value of qt−1[i]. Otherwise, it must be either ‘0’ or ‘1’, since â cannot be an indirect
bitcondition (see Table C-1). If q̂t−2[i] ∈ {‘.’, q̂t−1[i]} then we replace it by q̂t−1[i],
otherwise a contradiction has arisen and other choices have to be tried.

Once all gi and thus ∆Ft are determined, δRL(Qt−4, 30) is determined as

δRL(Qt−4, 30) = δQt+1 − σ(∆Ft)− σ(∆Wt)− σ(RL(∆Qt, 5)).

30. Again this assumption is met by the previous step t+ 1 of the algorithm. Nevertheless the first
call to the algorithm for, e.g., t = 19 requires valid inputs.
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7.4.4 Connect

Construction of a full differential path can be done as follows. Assume that the
forward construction has been carried out up to some step t. Furthermore, assume
that the backward construction has been carried out down to step t + 6. For our
near-collision attack we used a low value for t as explained in Section 7.6.4 (p. 168).
For each combination of forward and backward partial differential paths thus found,
this leads to bitconditions . . . , qt−3, qt−2, qt−1, and qt+3, qt+4, qt+5, qt+6, . . . and
differences ∆Qt, δQt+1, δRL(Qt+2, 30). As more thoroughly explained at the end
of this section, we replace all backward indirect bitconditions ‘^’ by ‘.’ to ensure
correctness. Later on, we reapply all such removed backward indirect bitconditions.

It remains to try and glue together each of these combinations by finishing steps
t + 1, . . . , t + 5 until a full differential path is found. We use an adaptation of the
algorithm in Section 5.6.3 which uses bitconditions and operates in a bit-wise manner
instead of a word-wise manner. Due to the bitwise left-rotations over 30 bit positions
in the step function, the description of the algorithm for SHA-0 and SHA-1 is more
complicated compared to MD5. We first present a sketch of our algorithm that deals
with the core principles, followed by a more precise definition.

Similar to MD5, all values for δQi are known and the goal is to find bitconditions
and differences δWt+1, . . . , δWt+5 such that some target values δFt+1, . . . , δFt+5 are
obtained:

δQi+1 = σ(RL(∆Qi, 5)) + σ(RL(∆Qi−4, 30)) + δFi + δWi, i ∈ {t+ 1, . . . , t+ 5}.
(7.10)

We have some amount of freedom in choosing ∆Qt, ∆Qt+1 and ∆Qt+2 as long as they
remain compatible with the known values of δQt+i, δRL(Qt+i, 5) and δRL(Qt+i, 30)
as described later on.

Due to the bitwise left-rotation over 30 bit position it follows that bit position 0
of step i depends on bitcondition qt[2] which is treated at bit position 2 of step
i − 1 for i ∈ {t + 2, . . . , t + 5}. This issue is dealt with by using 40 imaginary bit
positions b ∈ {0, . . . , 39} and the connect algorithm first searches for correct values
at bit position b = 0 and then iteratively extends to higher bit positions. For each
successful extension to the last bit position b = 39, one finds at least one valid full
differential path.

At each bit position b ∈ {0, . . . , 39}, the algorithm considers step t+ 1 + j at bit
position b − 2j for j ∈ {0, . . . , 4} if and only if b − 2j ∈ {0, . . . , 31}. Whenever the
algorithm considers step t+1+j for j ∈ {0, . . . , 4} at bit position b−2j ∈ {0, . . . , 31},
it does the following:

1. If j ∈ {0, 1, 2} then it first selects a value for ∆Qt+j [b− 2j] that is compatible
with the three known differences δQt+j , δRL(Qt+j , 5) and δRL(Qt+j , 30).

2. Next (if j ∈ {0, . . . , 4}), it searches for a value for ∆Wt+j+1[b−2j] and bitcondi-
tions qt+j [b−2j], qt+j−1[b−2j+2 mod 32] and qt+j−2[b−2j+2 mod 32]. These
bitconditions must be compatible with all bitconditions known up to this point.
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Furthermore, they must unambiguously lead to some value ∆Ft+j+1[b−2j] that
is ‘compatible’ with Equation 7.10 (using i = t+ j + 1).

3. For each such resulting tuple of values ∆Qt+j [b−2j], ∆Wt+j+1[b−2j], qt+j [b−
2j], qt+j−1[b − 2j + 2 mod 32] and qt+j−2[b − 2j + 2 mod 32], the algorithm
continues with the next step t + 2 + j at bit position b − 2j − 2 if j < 4 and
b− 2j − 2 ∈ {0, . . . , 31}.

Now we give a more precise definition of the connection algorithm. First, we
choose a low weight BSDR ∆Q̃t+1 of δQt+1 and a low weight BSDR ∆Q̃t+2 such
that σ(RL(∆Q̃t+2, 30)) = δRL(Qt+2, 30). Then we determine target values for FWk

which can be seen as the target value for δFk + δWk for k = t+ 1, . . . , t+ 5:

FWk = σ(∆Q̃k+1)− σ(RL(∆Q̃k, 5))− σ(RL(∆Q̃k−4, 30)). (7.11)

So far we can choose any ∆Qt, ∆Qt+1 and ∆Qt+2 under the following requirements
so that Equation 7.11 holds:

bh∑
b=bl

2b∆Qk[b] =

bh∑
b=bl

2b∆Q̃k[b] (in Z),

for (bl, bh) ∈ {(0, 1), (2, 26), (27, 31)} and k ∈ {t, t+ 1, t+ 2}.
We aim to complete the differential path by searching for new bitconditions

qt−3, . . . , qt+6 that are compatible with the differential steps from the forward and
backward construction, and by finding message word differences ∆Wt+1,. . ., ∆Wt+5

such that the following equation holds for k = t+ 1, . . . , t+ 5:

δQk+1 − σ(RL(∆Qk, 5))− σ(RL(∆Qk−4, 30)) = FWk = δFk + δWk.

An efficient way to find these new bitconditions is to first test if they exist, and
if so to backtrack to actually construct them. For i = 0, 1, . . . , 40 we attempt to
construct a set Ui consisting of all tuples

(q0, q1, q2, fw1, fw2, fw3, fw4, fw5, (qj [b])(j,b)∈Ai
),

where q0, q1, q2 ∈ Z232 and fw1, fw2, fw3, fw4, fw5 ∈ Z232 and Ai is a later to be
defined constant set, such that:

1. qj ≡ 0 mod 2min(32,max(0,i−2j)) and fwj ≡ 0 mod 2min(32,max(0,i−2j−2));

2. there exist bitconditions, compatible with the forward and backward differential
paths and the bitconditions (qj [b])(j,b)∈Ai

, that uniquely determine the ∆Qj [b]
and ∆Fj [b] below and BSDRs ∆Wk for which Wk[i] ∈ {−DWk[i],+DWk[i]} for
k = t+ 1, . . . , t+ 5 and i = 0, . . . , 31 such that



7.4 Differential path construction 133

δQt+j = qj +

θ(i−2j)∑
ℓ=0

2ℓ∆Qt+j [ℓ], j ∈ {0, 1, 2}; (7.12)

FWt+j = fwj +

θ(i−2j−2)∑
ℓ=0

2ℓ(∆Ft+j [ℓ] + ∆Wt+j [ℓ]), j ∈ {1, 2, 3, 4, 5}; (7.13)

where θ(j) = min(32,max(0, j)).

The set Ai informally consists of all indices (j, b) for which qj [b] may have been
modified by the construction of previous Uℓ for ℓ = 0, . . . , i − 1 and for which the
construction of upcoming Uℓ for ℓ = i + 1, . . . , 40 depends on qj [b]. This implies
A0 = A40 = ∅. The sets A1, . . . , A39 are defined for i = 1, . . . , 39 as:

Ai =
∪

j∈{1,2,3,4}

(
A

(1)
i,j ∪A

(2)
i,j ∪A

(3)
i,j ∪A

(4)
i,j

)
,

A
(1)
i,j =

{
(t+ j − 1, 0)

∣∣ i− 2j + 1 ∈ {0, . . . , 31}
}
,

A
(2)
i,j =

{
(t+ j − 1, 1)

∣∣ i− 2j ∈ {0, . . . , 31}
}
,

A
(3)
i,j =

{
(t+ j − 2, ℓ+ 2 mod 32)

∣∣ ℓ = i− 2j + 1 ∈ {0, . . . , 31}
}
,

A
(4)
i,j =

{
(t+ j − 2, ℓ+ 2 mod 32)

∣∣ ℓ = i− 2j ∈ {0, . . . , 31}
}
.

From these conditions it follows that U0 must be chosen as

{(q̃0, q̃1, q̃2, FWt+1, FWt+2, FWt+3, FWt+4, FWt+5, ∅)}, (7.14)

where q̃0 = σ(∆Qt), q̃1 = σ(∆Qt+1) and q̃2 = σ(∆Qt+2). Algorithm 7-1 (p. 136–139)
informally does the following to construct Ui+1:

7-1. If 0 ≤ i < 32 then step t + 1 at bit i is processed (otherwise proceed directly
to 7-1-a.): First a valid value for ∆Wt+1[i] and a valid differential bitcondition
(‘-’,‘.’ or ‘+’) for Qt[i] are chosen such that Equation 7.12 holds. Next all
possible boolean function differences ∆Ft+1[i] using qt[i], qt−1[i + 2 mod 32]
and qt−2[i + 2 mod 32] such that Equation 7.13 holds are considered. Perform
subroutine 7-1-a below for each possible choice.

7-1-a. If 0 ≤ i − 2 < 32 then step t + 2 at bit i − 2 is processed (otherwise directly
proceed to 7-1-b.): First a valid value for ∆Wt+2[i− 2] and a valid differential
bitcondition (‘-’,‘.’ or ‘+’) for Qt+1[i − 2] are chosen such that Equation 7.12
holds. Next all possible boolean function differences ∆Ft+2[i−2] using qt+1[i−2],
qt[i mod 32] and qt−1[i mod 32] such that Equation 7.13 holds are considered.
Perform subroutine 7-1-b below for each possible choice.

7-1-b. If 0 ≤ i−4 < 32 then step t+3 at bit i−4 is processed (otherwise directly proceed
to 7-1-c.): First a valid value for ∆Wt+3[i−4] and a valid differential bitcondition
(‘-’,‘.’ or ‘+’) forQt+2[i−4] are chosen such that Eq. 7.12 holds. Next all possible
boolean function differences ∆Ft+3[i − 4] using qt+2[i − 4], qt+1[i − 2 mod 32]
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and qt[i − 2 mod 32] such that Equation 7.13 holds are considered. Perform
subroutine 7-1-c below for each possible choice.

7-1-c. If 0 ≤ i−6 < 32 then step t+4 at bit i−6 is processed (otherwise directly proceed
to 7-1-d.): First a valid value for ∆Wt+4[i − 6] is chosen. Next all possible
boolean function differences ∆Ft+4[i − 6] using qt+3[i − 6], qt+2[i − 4 mod 32]
and qt+1[i − 4 mod 32] such that Equation 7.13 holds are considered. Perform
subroutine 7-1-d below for each possible choice.

7-1-d. If 0 ≤ i − 8 < 32 then step t + 5 at bit i − 8 is processed (otherwise save the
resulting new tuple in Ui+1): First a valid value for ∆Wt+5[i − 8] is chosen.
Next all possible boolean function differences ∆Ft+5[i − 8] using qt+4[i − 8],
qt+3[i − 6 mod 32] and qt+2[i − 6 mod 32] such that Equation 7.13 holds are
considered and for each saves the resulting new tuple in Ui+1.

For i = 1, . . . , 40, we use Algorithm 7-1 (pp. 136–139) to construct Ui based on Ui−1.
As soon as we encounter an i for which Ui = ∅, we know that the desired differential
path cannot be constructed from this combination of forward and backward partial
differential paths, and that we should try another combination. If, however, we find
U40 ̸= ∅ then it must be the case that U40 = (0, 0, 0, 0, 0, 0, 0, 0, ∅). Furthermore, in
that case, every set of bitconditions that leads to this non-empty U40 gives rise to a full
differential path. Thus if U40 ̸= ∅, there exists at least one valid trail u0, . . . , u40 with
ui ∈ Ui and where ui+1 is a tuple resulting from ui in Algorithm 7-1. For each valid
trail, the desired new bitconditions qt−2, . . . , qt+4 can be found as g′, f′0, e′0, d′0, c′0, b′′2 , a′
for bits i+ 2, i, i− 2, i− 4, i− 6, i− 6, i− 8 (mod 32), respectively and if applicable,
for i = 0, . . . , 39 in Algorithm 7-1.31

Finally, there remains an issue that has not been dealt with so far, namely that
(a, b, c) must be in L (see Section 6.2.2) for every occurrence of the form FC(j, abc, z)
in Algorithm 7-1. The connection algorithm works forward, which implies in the
same way as in Section 7.4.2 that b is a direct bitcondition and c is either a direct
bitcondition or a forward indirect bitcondition involving b. If the bitcondition a is
indirect then (a, b, c) cannot be in L, since a involves bitcondition other than b and
c. Thus a must be a direct bitcondition. However, a may come from the backward
partial differential path and thus may be a backward indirect bitcondition. To resolve
this issue, we replace all backward indirect bitconditions ‘^’ by ‘.’ before running
Algorithm 7-1. We reapply all such removed backward indirect bitconditions ‘^’ on
Qj [b] to the differential paths resulting from the above procedure in the following
manner. Note that qj [b] must be either ‘.’, ‘0’ or ‘1’, since the only step that could
have resulted in qj [b] =‘v’ comes after the connection steps t+1, . . . , t+5. If qj [b] =‘.’
then we set qj [b] =‘^’ to reapply the backward bitcondition. If qj [b] ∈ {‘0’,‘1’}
and qj−1[b] ∈ {‘.’,‘v’, qj [b]} then we set qj−1[b] = qj [b] to reapply the backward

31. Note that step t + 5 at bit position i − 8 determines three of these final bitconditions, namely
qt+2[i − 6 mod 32], qt+3[i − 6 mod 32] and qt+4[i − 8 mod 32]. Furthermore, the lower steps t + 1,
t+2, t+3 and t+4 at bit position j determine only one final bitcondition, namely qt−2[j+2 mod 32],
qt−1[j + 2 mod 32], qt[j + 2 mod 32] and qt+1[j + 2 mod 32], respectively. This explains the double
i− 6.
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bitcondition. If both options above do not hold then a contradiction has arisen and
the full differential path cannot be valid.

For an example full differential path constructed with the above algorithm see
Table 7-6 (p. 169).

7.4.5 Complexity

The complexity to construct valid differential paths for SHA-1 depends on many
factors as is also explained in Sections 5.6.4 and 6.2.6. In the case of SHA-1, the com-
plexity of the connection algorithm also depends on the number of possible message
word differences on those five steps. However, the choice of which five steps to use for
the connection algorithm depends mostly on the particular choice of the disturbance
vector so as to leave maximal freedom for message modification techniques.

A rough approximation for the complexity to construct the differential path for
our near-collision attack in Section 7.6 is the equivalent of 243 SHA-1 compression
function calls. This is significantly larger than the differential path construction for
MD5. Nevertheless, it is also significantly smaller than the lowest complexity claimed
(and withdrawn) so far for a SHA-1 collision attack. This complexity is based on
our choices for the disturbance vector II(52,0), the five connecting steps, amount
of freedom left for message modification techniques and the maximum number of
bitconditions in the first round. It should be clear that for other choices the complexity
of constructing differential paths can be smaller or larger.

Our implementations of our differential path construction algorithms for SHA-1
are published as part of project HashClash [HC].
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Algorithm 7-1 Construction of Ui+1 from Ui for SHA-0 and SHA-1.
Assume Ui is constructed inductively by means of this algorithm. For each tuple
(q0, q1, q2, fw1, fw2, fw3, fw4, fw5, (qj [b])(j,b)∈Ai

) ∈ Ui do the following:†

1. Let Ui+1 = ∅ and q̂j [b] = qj [b] for (j, b) ∈ Ai.‡

2. If i ≥ 32 then
3. Let e′2 = qt+1−1[i], q̂0 = q0 and f̂w1 = fw1.
4. Proceed with subroutine step2 (Algorithm 7-1-a, p. 137)
5. Else
6. For each different q′0 ∈ {−q0[i],+q0[i]} do
7. Let q̂0 = q0 − 2iq′0.
8. If i ∈ {1, 26, 31} and q̂0 ̸=

∑31
b=i+1 2

b∆Q̃t[b] then skip steps 9-16.
9. Let e2 = ‘-’, ‘.’ or ‘+’ based on whether q′0 = −1, 0 or +1.

10. Let f2 = qt+1−2[i+ 2 mod 32] and g = qt+1−3[i+ 2 mod 32].
11. For each different w′1 ∈ {−DWt+1[i],+DWt+1[i]} do
12. Let Z1 = fw1 − 2iw′1

13. For each different z′1 ∈ {−Z1[i], Z1[i]} ∩ Vt+1,e2f2g do

14. Let (e′2, f
′
2, g
′) = FC(t+ 1, e2f2g, z

′
1) and f̂w1 = fw1 − 2i(w′1 + z′1)

15. Let q̂t+1−1[i] = e′2 and q̂t+1−2[i+ 2 mod 32] = f′2.
16. Proceed with subroutine step2 (Algorithm 7-1-a, p. 137)
17. End if
18. Return Ui+1

† For any qj [b] above: if (j, b) ∈ Ai this bitcondition is retrieved from the current tuple in Ui,
otherwise it is retrieved from the forward or backward differential path depending on j.
‡ This line provides default (previous) values q̂j [b] for Algorithm 7-1-d line 10.
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Algorithm 7-1-a Construction of Ui+1 from Ui for SHA-0 and SHA-1 (continued).
Subroutine step2

1. If i < 2 or i ≥ 34 then
2. Let d′2 = qt+2−1[i− 2], q̂1 = q1, f̂w2 = fw2.
3. Proceed with subroutine step3 (Algorithm 7-1-b, p. 138)
4. Else
5. For each different q′1 ∈ {−q1[i− 2],+q1[i− 2]} do
6. Let q̂1 = q1 − 2i−2q′1.
7. If i− 2 ∈ {1, 26, 31} and q̂1 ̸=

∑31
b=i−2+1 2

b∆Q̃t[b] then skip steps 8-15.
8. Let d2 = ‘-’, ‘.’ or ‘+’ based on whether q′1 = −1, 0 or +1.
9. Let f0 = qt+2−3[i mod 32].

10. For each different w′2 ∈ {−DWt+2[i− 2],+DWt+2[i− 2]} do
11. Let Z2 = fw2 − 2i−2w′2

12. For each different z′2 ∈ {−Z2[i− 2], Z2[i− 2]} ∩ Vt+2,d2e′2f0
do

13. Let (d′2, e
′′
2 , f
′
0) = FC(t+ 2, d2e

′
2f0, z

′
2) and f̂w2 = fw2 − 2i−2(w′2 + z′2)

14. Let q̂t+2−1[i− 2] = d′2 and q̂t+2−2[i mod 32] = e′′2 .
15. Proceed with subroutine step3 (Algorithm 7-1-b, p. 138)
16. End if
17. Return to main routine
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Algorithm 7-1-b Construction of Ui+1 from Ui for SHA-0 and SHA-1 (continued).
Subroutine step3

1. If i < 4 or i ≥ 36 then
2. Let c′2 = qt+3−1[i− 4], q̂2 = q2, f̂w3 = fw3.
3. Proceed with subroutine step4 (Algorithm 7-1-c, p. 139)
4. Else
5. For each different q′2 ∈ {−q2[i− 4],+q2[i− 4]} do
6. Let q̂2 = q2 − 2i−4q′2.
7. If i− 4 ∈ {1, 26, 31} and q̂2 ̸=

∑31
b=i−4+1 2

b∆Q̃t[b] then skip steps 8-15.
8. Let c2 = ‘-’, ‘.’ or ‘+’ based on whether q′2 = −1, 0 or +1.
9. Let e0 = qt+3−3[i− 2 mod 32].

10. For each different w′3 ∈ {−DWt+3[i− 4],+DWt+3[i− 4]} do
11. Let Z3 = fw3 − 2i−4w′3

12. For each different z′3 ∈ {−Z3[i− 4], Z3[i− 4]} ∩ Vt+3,c2d′
2e0

do

13. Let (c′2, d
′′
2 , e
′
0) = FC(t+ 3, c2d

′
2e0, z

′
3) and f̂w3 = fw3 − 2i−4(w′3 + z′3)

14. Let q̂t+3−1[i− 4] = c′2 and q̂t+3−2[i− 2 mod 32] = d′′2 .
15. Proceed with subroutine step4 (Algorithm 7-1-c, p. 139)
16. End if
17. Return to subroutine step2
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Algorithm 7-1-c Construction of Ui+1 from Ui for SHA-0 and SHA-1 (continued).
Subroutine step4

1. If i < 6 or i ≥ 38 then
2. Let b′2 = qt+4−1[i− 6], f̂w4 = fw4.
3. Proceed with subroutine step5 (Algorithm 7-1-d, p. 139)
4. Else
5. Let b2 = qt+4−1[i− 6] and d0 = qt+4−3[i− 4 mod 32].
6. For each different w′4 ∈ {−DWt+4[i− 6],+DWt+4[i− 6]} do
7. Let Z4 = fw4 − 2i−6w′4

8. For each different z′4 ∈ {−Z4[i− 6], Z4[i− 6]} ∩ Vt+4,b2c′2d0
do

9. Let (b′2, c
′′
2 , d
′
0) = FC(t+ 4, b2c

′
2d0, z

′
4) and f̂w4 = fw4 − 2i−6(w′4 + z′4)

10. Let q̂t+4−1[i− 6] = b′2 and q̂t+4−2[i− 4 mod 32] = c′′2 .
11. Proceed with subroutine step5 (Algorithm 7-1-d, p. 139)
12. End if
13. Return to subroutine step3

Algorithm 7-1-d Construction of Ui+1 from Ui for SHA-0 and SHA-1 (continued).
Subroutine step5

1. If i < 8 then
2. Let f̂w5 = fw5.
3. Insert (q̂0, q̂1, q̂2, f̂w1, f̂w2, f̂w3, f̂w4, f̂w5, (q̂j [b])(j,b)∈Ai+1

) in Ui+1.
4. Else
5. Let a = qt+5−1[i− 8] and c0 = qt+5−3[i− 6 mod 32].
6. For each different w′5 ∈ {−DWt+5[i− 8],+DWt+5[i− 8]} do
7. Let Z5 = fw5 − 2i−8w′5

8. For each different z′5 ∈ {−Z5[i− 8], Z5[i− 8]} ∩ Vt+5,ab′
2c0

do

9. Let (a′, b′′2 , c
′
0) = FC(t+ 5, ab′2c0, z

′
5) and f̂w5 = fw5 − 2i−8(w′5 + z′5)

10. Insert (q̂0, q̂1, q̂2, f̂w1, f̂w2, f̂w3, f̂w4, f̂w5, (q̂j [b])(j,b)∈Ai+1
) in Ui+1.

11. End if
12. Return to subroutine step4
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7.5 Differential cryptanalysis

As laid out in Section 7.3.4, all publications so far assume independence of local
collisions in their analysis of disturbance vectors. However, this assumption is flawed
as shown in this section and for instance the updated version [Man11] of [Man08]. So
far no disturbance vector cost function that treats the local collisions as dependent
has been presented.

The differential cryptanalysis method presented in this section does exactly this,
i.e., it allows one to determine the exact success probability of a specific local collision
or a specific combination of local collisions. As such it can be used as a cost function
to determine (near-)optimal disturbance vectors. It improves upon the cost function
that takes the product of the exact success probability of each individual local collision
(allowing additional carries of δQi) over a specified range of steps, since it determines
the exact joint success probability over the specified range of steps.

Our results clearly show that the joint probability differs from the product of the
individual probabilities. Also, our results show that using dependence between local
collisions leads to significantly higher success probabilities under the correct optimal
message conditions than when assuming independent local collisions. It should be
noted that if message conditions are used that are incompatible with the correct
optimal message conditions then the average success probability will be lower and in
the extreme can be even 0. In particular this may be the case for message conditions
derived using previous analysis methods.

Our method also allows a more detailed analysis of the beginning of the second
round and the last few steps. At these steps it may be more advantageous to divert
from a prescribed combination of local collisions, as even higher success probabilities
may be achieved. Moreover, our method allows us to find the smallest set of message
expansion conditions which still results in the highest joint probability of success over
the last three rounds. However, these conditions may be more limiting than or even
incompatible with the message expansion conditions as prescribed by local collisions.

Our method is based on constructing differential paths that follow the prescribed
local collision differences and summing the success probabilities of such differential
paths that share the same message differences, the first five working state differences
and the last five working state differences. The message differences and first five
working state differences are preconditions of a differential path, whereas the last
five working state differences determine δIHVdiff = δIHVout − δIHVin. Here, the
success probability of a differential path over steps i, . . . , j is defined informally as
the probability that all differential steps are fulfilled simultaneously assuming that
Wi, . . . ,Wj and Qi−4, . . . , Qi are independent uniform random variables and that
both the message differences δWi, . . . , δWj and the first five working state differences
δRL(Qi−4, 30), δQi−3, . . . , δQi as described in the differential path hold.

To overcome the exponential growth in the number of differential paths and pos-
sible message difference vectors (δWt)

j
t=i over the number of steps considered, our

method employs several techniques. We first sketch the two most important tech-
niques and then we present our method in detail.
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The main technique is differential path reduction which removes all information in
the differential path that is not strictly required for a forward or backward extension
with a differential step. For instance, consider all differential paths over steps 59 to
66 with a single local collision starting at step 60 and bit position 2. There are 50
different possible values for ∆Q61, since σ(∆Q61) can be either positive or negative
and carries can extend from bit position 2 up to bit position 26. The number of
possible differential paths can be even greater as there can be multiple values for ∆F62,
∆F63 and ∆F64 for each value of ∆Q61. Nevertheless, since δQ55 = . . . = δQ59 = 0
and δQ62 = . . . = δQ67 = 0, the information of this local collision is not strictly
required for the forward and backward extension with differential step 67 and 58,
respectively. It follows that all such differential paths reduce to the trivial differential
path with no differences at all.

Together with each reduced differential path, we maintain intermediary proba-
bilities that accumulate the success probabilities of the removed parts of all differ-
ential paths. Since in the definition of the success probability of a differential path
we assume that the message differences hold, we maintain a separate intermediary
probability for each combination of a reduced differential path and possible message
difference vector. This reduction is performed whenever all differential paths have
been extended with a certain step t, after which we continue by extending with the
next step.

Since the number of possible message difference vectors also grows exponentially in
the number of steps, we employ another technique that allows us to ‘combine’ message
difference vectors. Consider for each possible message difference vector w = (δWt)

j
t=i

the function that maps each possible reduced differential path P to the associated in-
termediary probability for that w and P. Suppose there are several message difference
vectors w1, . . . , wK (over steps i, . . . , j) for which said functions are identical. Then
these message difference vectors all lead to identical reduced differential paths and
associated intermediary probabilities. Furthermore, any future extension, i.e., future
reduced differential paths and intermediary probabilities, depend only on these iden-
tical reduced differential paths and intermediary probabilities and not on the message
difference vector. This implies that we can combine these message difference vectors
in the following manner. We remove all intermediary probabilities associated with
w2, . . . , wK and keep only the intermediary probability of a single message difference
vector w1 for future extensions. Furthermore, we create a substitution rule such that
in any future extended message difference vector w that has the same differences as
w1 over steps i, . . . , j, we may replace this subvector w1 of w by any of w2, . . . , wK .

7.5.1 Definition

Our method is based on differential paths P over steps t = tb, . . . , te, which are not
described by bitconditions as in Section 7.4, but described by:

P = (δRL(Qtb−4, 30), (∆Qt)
te
t=tb−3, δQte+1, (∆Ft)

te
t=tb

, (δWt)
te
t=tb

),

under the following restrictions:
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• correct differential steps for t = tb, . . . , te:

δQt+1 = σ(RL(∆Qt, 5)) + δRL(Qt−4, 30)) + σ(∆Ft) + δWt, (7.15)

where δQt+1 = σ(∆Qt+1) if t ̸= te and δRL(Qt−4, 30) = σ(RL(∆Qt−4, 30)) if
t ̸= tb;

• for t = tb, . . . , te, both values −1 and +1 of ∆Ft[31] result in the same contri-
bution 231 ∈ Z232 in σ(∆Ft). We restrict ∆Ft[31] to {0, 1} and a non-zero value
represents ∆Ft[31] = ±1;

• each ∆Ft[b] is individually possible, i.e., (2b∆Ft[b] mod 232) ∈ Vt,b, where

Vt,b =

{
(ft(q

′
1,q

′
2,q

′
3)∧2

b)

−(ft(q1,q2,q3)∧2b)

∣∣∣∣∣
qi,q

′
i∈Z232 for i=1,2,3,
∆q1=∆Qt−1

∆q2=RL(∆Qt−2,30)
∆q3=RL(∆Qt−3,30)

}
; (7.16)

The probability Pr[P] of such a differential path P is defined as:32

Pr


∆Q̂j=∆Qj for j∈{tb−3,...,te},

δQ̂te+1=δQte+1,

2b∆F̂i[b]=2b∆Fi[b] mod 232,
for i∈{tb,...,te}, b∈{0,...,31}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q̂tb−4
R←−Z232 ,

Q̂′
tb−4=RR(RL(Q̂tb−4,30)+δRL(Qtb−4,30),30),

Q̂k
R←−Z232 , Q̂

′
k=Q̂k+δQk for k∈{tb−3,...,tb};

Ŵt
R←−Z232 , Ŵ

′
t=Ŵt+δWt,

F̂t=ft(Q̂t−1,RL(Q̂t−2,30),RL(Q̂t−3,30)),

F̂ ′
t=ft(Q̂

′
t−1,RL(Q̂

′
t−2,30),RL(Q̂

′
t−3,30)),

Q̂t+1=RL(Q̂t,5)+RL(Q̂t−4,30)+F̂t+Ŵt+ACt,

Q̂′
t+1=RL(Q̂

′
t,5)+RL(Q̂

′
t−4,30)+F̂

′
t+Ŵ

′
t+ACt,

for t∈{tb,...,te}


.

More informally, this is the success probability of the following experiment:
Experiment 7.1. This experiment involves partial SHA-1 computations of two mes-
sages. For the first message, values for Q̂tb−4, . . . , Q̂tb and Ŵtb , . . . , Ŵte are selected
uniformly at random. The remaining values for Q̂tb+1, . . . , Q̂te+1 are computed using
SHA-0’s and SHA-1’s step function for t = tb, . . . , te:

F̂t = ft(Q̂t−1, RL(Q̂t−2, 30), RL(Q̂t−3, 30)),

Q̂t+1 = RL(Q̂t, 5) +RL(Q̂t−4, 30) + F̂t + Ŵt +ACt.

For the second message, we apply the differential path differences to the randomly
selected variables:

Q̂′tb−4 = RR(RL(Q̂tb−4, 30) + δRL(Qtb−4, 30), 30),

Q̂′i = Q̂i + δQi for i = tb − 3, . . . , tb,

Ŵ ′j = Ŵj + δWj for j = tb, . . . , te.

32. Note that 2b∆F̂j [b] = 2b∆Fj [b] mod 232 for b = 0, . . . , 31 does not imply ∆F̂j = ∆Fj . At bit
position 31, the first case distinguishes only between ∆Fj [31] being zero or non-zero, whereas the
latter case also distinguishes ∆Fj [31] by sign.
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The remaining values Q̂′tb+1, . . . , Q̂
′
te+1 are computed using SHA-0’s and SHA-1’s step

function for t = tb, . . . , te:

F̂ ′t = ft(Q̂
′
t−1, RL(Q̂

′
t−2, 30), RL(Q̂

′
t−3, 30)),

Q̂′t+1 = RL(Q̂′t, 5) +RL(Q̂′t−4, 30) + F̂ ′t + Ŵ ′t +ACt.

The experiment has succeeded when the above step function computations follow the
differential path P, thus when all the following equations hold:

δQ̂te+1 = δQte+1,

∆Q̂i = ∆Qi for i = tb − 3, . . . , te,

2b∆F̂j [b] = 2b∆Fj [b] mod 232 for j = tb, . . . , te, b = 0, . . . , 31.

7.5.2 Probability analysis

In this section we present a method to efficiently determine the probability of a
differential path P. To this end, consider a slight change in Experiment 7.1:
Experiment 7.2. This experiment is a modification of Experiment 7.1. Instead of
randomly selecting values for Ŵtb , . . . , Ŵte and computing values for Q̂tb+1, . . . , Q̂te+1,
one randomly selects values for Q̂tb+1, . . . , Q̂te+1 and computes values for Ŵtb , . . . , Ŵte

using:

F̂t = ft(Q̂t−1, RL(Q̂t−2, 30), RL(Q̂t−3, 30)),

Ŵt = Q̂t+1 −RL(Q̂t, 5)−RL(Q̂t−4, 30)− F̂t −ACt.

The success requirement is left unchanged.

Since there is a bijective relation between (Ŵt)
te
t=tb

and (Q̂t+1)
te
t=tb

, this implies
that (Ŵt)

te
t=tb

is also uniformly distributed in Experiment 7.2. Hence, the success
probabilities of both experiments are equal. Note that this second experiment is com-
pletely determined by the values of (Q̂t)te+1

t=tb−4. Next, consider another experiment:

Experiment 7.3. This experiment is a modification of Experiment 7.2. As above,
we set

Q̂′tb−4 = RR(RL(Q̂tb−4, 30) + δRL(Qtb−4, 30), 30),

Q̂′i = Q̂i + δQi for i = tb − 3, . . . , tb.

However, instead of setting Ŵ ′t = Ŵt + δWt for t = tb, . . . , te and computing values
for Q̂′tb+1, . . . , Q̂

′
te+1, one sets Q̂′t+1 = Q̂t+1 + δQt+1 for t = tb, . . . , te and computes

values for Ŵ ′tb , . . . , Ŵ
′
te :

F̂ ′t = ft(Q̂
′
t−1, RL(Q̂

′
t−2, 30), RL(Q̂

′
t−3, 30)),

Ŵ ′t = Q̂′t+1 −RL(Q̂′t, 5)−RL(Q̂′t−4, 30)− F̂ ′t −ACt.
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The success requirement is left unchanged. In particular, one does not need an addi-
tional check that δŴt = δWt as in case of success this is implied by Equation 7.15:

δŴt = δQ̂t+1 − σ(RL(∆Q̂t, 5))− δRL(Q̂t−4, 30))− σ(∆F̂t)
= δQt+1 − σ(RL(∆Qt, 5))− δRL(Qt−4, 30))− σ(∆Ft)
= δWt.

Lemma 7.1. For fixed values (Q̂t)
te+1
t=tb−4, Experiment 7.3 succeeds if and only if

Experiment 7.2 succeeds.

Proof. If Experiment 7.3 succeeds then Eq. 7.15 must hold resulting in (δŴt)
te
t=tb

=

(δWt)
te
t=tb

. This implies that Experiment 7.2 also succeeds, since it will obtain iden-
tical values for both (Ŵ ′t )

te
t=tb

and (Q̂′t+1)
te
t=tb

as Experiment 7.3.
Suppose Experiment 7.3 fails. If (δŴt)

te
t=tb

= (δWt)
te
t=tb

then again Experiment 7.2
will obtain identical values for both (Ŵ ′t )

te
t=tb

and (Q̂′t+1)
te
t=tb

as Experiment 7.3 and
thus Experiment 7.2 also fails. Otherwise, let t̃ be the smallest t ∈ {tb, . . . , te} for
which δŴt ̸= δWt. This implies that Experiment 7.2 obtains identical values for
(Ŵ ′t )

t̃−1
t=tb

, (Q̂′t)t̃t=tb+1 and ∆F̂t̃ as Experiment 7.3. Assume that ∆Q̂t = ∆Qt holds for
all t = tb−3, . . . , t̃ and 2b∆F̂t̃[b] = 2b∆Ft̃[b] mod 232 holds for all b ∈ {0, . . . , 31}. Then
Equation 7.15 implies that δŴt̃ = δWt̃ which contradicts the choice of t̃, therefore
this assumption does not hold. This failed assumption together with the fact that
Experiment 7.2 obtains identical values for (Q̂′t)

t̃
t=tb+1 and ∆F̂t̃ as Experiment 7.3

directly implies that Experiment 7.2 must also fail.

We use these experiments to show that the probability Pr[P] of such a differential
path can be determined as the fraction NP/2

32(te−tb+6) where NP is the number of
possible values (Q̂t)

te+1
t=tb−4 ∈ Zte−tb+6

232 for which this third experiment succeeds. In
other words, NP is the number of possible values (Q̂t)

te+1
t=tb−4 ∈ Zte−tb+6

232 for which

• for t = tb − 3, . . . , te: ∆Qt = ∆Q̂t;

• for t = tb, . . . , te and b = 0, . . . , 31:

(2b∆Ft[b] mod 232) = (ft(Q̂
′
t−1, RL(Q̂

′
t−2, 30), RL(Q̂

′
t−3, 30)) ∧ 2b)

− (ft(Q̂t−1, RL(Q̂t−2, 30), RL(Q̂t−3, 30)) ∧ 2b),

where Q̂′t = Q̂t + δQt for t ∈ {tb − 3, . . . , te}.
An efficient way to determine the probability Pr[P] is based on the fact that we

can partition the bits Q̂t[b] into parts G∆Q, G0, . . . , GK for some K ∈ N that each
contribute a factor to Pr[P]. One important part G∆Q consists of all indices (j, i)
such that ∆Qj [i] ̸= 0 where j ∈ {tb − 3, . . . , te} and i ∈ {0, . . . , 31}. Since the values
Q̂′j [i] and Q̂j [i] are uniquely determined for all (j, i) ∈ G∆Q, this partition contributes
the factor of p∆Q = 1/2|G∆Q| to Pr[P].
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Consider the set SF of all indices (t, b) where t ∈ {tb, . . . , te} and b ∈ {0, . . . , 31}
such that |Vt,b| > 1 and thus ∆Ft[b] is not trivially fulfilled. Let SQ be the set of all
indices (j, i) where j ∈ {tb − 4, . . . , te + 1} and i ∈ {0, . . . , 31} such that ∆Qj [i] = 0
and Qj [i] is involved with some ∆Ft[b] with (t, b) ∈ SF :

{(j + 1, i), (j + 2, i+ 2 mod 32), (j + 3, i+ 2 mod 32)} ∩ SF ̸= ∅.

All indices (j, i) of bits Qj [i] where (j, i) /∈ SQ ∪ G∆Q for j ∈ {tb − 4, . . . , te + 1},
i ∈ {0, . . . , 31} form part G0. Part G0 consists by construction of all indices of free
bits Qj [i] whose values do not affect ∆Qj or any of the non-trivially fulfilled ∆Ft and
thus contributes a factor of p0 = 2|G0|/2|G0| = 1 to Pr[P].

The set of remaining indices SQ is further partitioned by constructing a graph
G consisting of vertices Ft[b] for all (t, b) ∈ SF and vertices Qj [i] for all (j, i) ∈ SQ.
There is an edge between two nodes Ft[b] and Qj [i] if and only if:

(t, b) ∈ {(j + 1, i), (j + 2, i+ 2 mod 32), (j + 3, i+ 2 mod 32)}, (7.17)

i.e., Qj [i] is involved with Ft[b]. The graph G can be uniquely partitioned into
connected subgraphs G1, . . . ,GK . This partition G1, . . . ,GK of G defines a partition
G1, . . . , GK of SQ as follows:

Gk = {(j, i) | Qj [i] ∈ Gk} , k ∈ {1, . . . ,K}.

By construction, all bits Qj [i] with associated nodes in the partition Gk influence
a non-trivially fulfilled ∆Ft[b] if and only if there is an associated node Ft[b] in Gk.
The probability pk can be determined as NP,k · 2−|Gk|, where NP,k is the number of
different values of (Qj [i])(j,i)∈Gk

that result in the correct value of all ∆Ft[b], where
Ft[b] is a node in Gk, and assuming Q′j [i] = Qj [i] + ∆Qj [i] for all (j, i) ∈ G∆Q.

Lemma 7.2. The probability Pr[P] is the product of p∆Q, p0, p1, . . . , pK :

Pr[P] = p∆Q · p0 ·
K∏
k=1

pk = 2−|G∆Q|
K∏
k=1

NP,k
2|Gk|

.

Proof. This lemma follows directly from the above construction.

As a simple example, a single local collision starting with δWt = 2b (without carry
in δQt+1) results in five parts: G∆Q, G0, G1, G2, G3. Part G∆Q consists solely of the
disturbance (t+1, b). Parts G1, G2 and G3 consist each of two bit indices namely the
other two Qi[j] involved with Qt+1[b] in the boolean function in step t+ 2, t+ 3 and
t+ 4, respectively.

7.5.3 Extending

Extending a differential path P forward or backward with step l is done as follows.
First a δWl consistent with DWl is chosen:

δWl ∈
{
σ(∆Wl)

∣∣∣ ∆Wl[i] ∈ {−DWl[i],+DWl[i]} for i = 0, . . . , 31
}
.
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In the case of a forward extension choose any BSDR ∆Ql of δQl and a valid ∆Fl:
∆Fl[i] ∈ Vl,i for i = 0, . . . , 31 (see Equation 7.16). Now δQl+1 is determined as

δQl+1 = σ(RL(∆Ql, 5)) + σ(RL(∆Ql−4, 30)) + σ(∆Fl) + δWl

and P is extended by appending ∆Ql, δQl+1, ∆Fl and δWl.
Otherwise for a backward extension choose any BSDR ∆Ql−3 of δQl−3 and a valid

∆Fl: ∆Fl[i] ∈ Vl,i for i = 0, . . . , 31. Then δRL(Ql−4, 30) is determined as

δRL(Ql−4, 30) = σ(∆Ql+1)− σ(RL(∆Ql, 5))− σ(∆Fl)− δWl

and P is extended by prepending δRL(Ql−4, 30), ∆Ql−3 and ∆Fl and δWl.

7.5.4 Reduction

As said before, we are interested in the sum of success probabilities of differential
paths that share the same message differences, the first five working state differences
and the last five working state differences. The differential paths themselves are of
lesser interest.

To reduce the total number of differential paths after extending a given step, we
try to sensibly remove differences ∆Qt[b] and ∆Fi[j] whose fulfillment probabilities
are independent of any possible forward or backward extension choices. By keeping a
graph-like structure of all intermediary differential paths one can always reconstruct
non-reduced differential paths over all prescribed steps by performing the same ex-
tension choices without the subsequent reductions. Furthermore, we show in the next
section how to use intermediary probabilities that accumulate the probabilities of
such removed differences.

Given a differential path P over steps t = tb, . . . , te, we determine which differences
∆Qj [i] and ∆Ft[b] can safely be removed. This is done by constructing the following
graph G̃:

1. For t = tb, . . . , te and b = 0, . . . , 31, we add a node Ft[b] if and only if ∆Qt−1[b] ̸=
0 or ∆Qt−2[b+ 2 mod 32] ̸= 0 or ∆Qt−3[b+ 2 mod 32] ̸= 0.

2. For j = tb − 4, . . . , te + 1 and i = 0, . . . , 31, we add a node Qj [i] if and only if
at least one of the following differences is present in P and non-zero: ∆Qj [i],
∆Qj−1[i + 2 mod 32], ∆Qj−2[i + 2 mod 32], ∆Qj+1[i − 2 mod 32], ∆Qj−1[i],
∆Qj+2[i− 2 mod 32], ∆Qj+1[i].

3. We connect each node Ft[b] in the graph with edges to the nodes Qj−1[i],
Qj−2[i+ 2 mod 32] and Qj−3[i+ 2 mod 32].

Consider all connected subgraphs G̃1, . . . , G̃K of G̃. Let k ∈ {1, . . . ,K}, if for all nodes
Qj [i] of the connected subgraph G̃k we have ∆Qj [i] = 0 or j ∈ {tb+1, . . . , te−4} then
all differences ∆Qj [i] and ∆Ft[b] associated with the respective nodes Qj [i] and Ft[b]
in G̃k can be safely removed. Since Equation 7.15 must hold, the necessary corrections
are made in δWt. For all nodes Qi[j] ∈ G̃k where ∆Qi[j] ̸= 0 we do the following:
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1. Replace the value of δWj+4 by δWj+4 +∆Qj [i] · 2i−2 mod 32;

2. Replace the value of δWj by δWj +∆Qj [i] · 2i+5 mod 32;

3. Replace the value of δWj−1 by δWj−1 −∆Qj [i] · 2i;

4. Replace the value of ∆Qj [i] by 0.

For all nodes Ft[b] ∈ G̃k we do the following:

1. Replace the value of δWt by δWt +∆Ft[b] · 2b;

2. Replace the value of δFt[b] by 0.

Note that ∆Qtb−4, . . . , Qtb and ∆Qte−3, . . . ,∆Qte+1 remain untouched. Also, it can
be seen that the graph G from Section 7.5.2 is a subgraph of G̃.

Lemma 7.3. Given a differential path P over steps tb, . . . , te and its reduced version
P̂, let P̃ be defined over steps tb, . . . , te by:

∆Q̃j [i] = ∆Qj [i]−∆Q̂j [i] for j = tb − 4, . . . , te + 1, i = 0, . . . , 31;

∆F̃t[b] = ∆Ft[b]−∆F̂t[b] for t = tb, . . . , te, b = 0, . . . , 31;

δW̃t = δWt − δŴt for t = tb, . . . , te.

(Thus P̃ is defined by the eliminated differences ∆Qj [i] and ∆Ft[b] and the negative
sum of corrections to δWt.) Then P̂ and P̃ are valid differential paths and

Pr[P] = Pr[P̂] · Pr[P̃].

Proof. Let k ∈ {1, . . . ,K}. Then for every Qj [i] in G̃k with ∆Qj [i] ̸= 0, also all
related Ft[b] are in G̃k by construction. (As before a Qj [i] and Ft[b] are related if
Equation 7.17 holds.) Similarly, for every Ft[b] in G̃k also all related Qj [i] are in G̃k
by construction.

Let K ⊂ {1, . . . ,K} be the index set of all connected subgraphs G̃k such that
∆Qj [i] = 0 or j ∈ {tb + 1, . . . , te − 4} for all nodes Qj [i] in G̃k. Then the differences
∆Qj [i] and ∆Ft[b] associated with the respective nodes Qj [i] and Ft[b] in G̃k are either
present in P̃ if k ∈ K or in P̂ if k /∈ K. Furthermore, all other differences ∆Qj [i] and
∆Ft[b] present in P̂ and P̃ are zero.

The probability Pr[P] is the product of p∆Q, p1, . . . , pL as in Section 7.5.2 (p0 = 1
is always trivial). First, p∆Q is determined by all differences ∆Qj [i] ̸= 0 in P where
each such difference ∆Qj [i] contributes a factor of 1/2 to p∆Q. Since each such
difference ∆Qj [i] is either present in P̂ or in P̃ it follows that p∆Q = p̂∆Q · p̃∆Q. Since
the graph G from Section 7.5.2 is a subgraph of G̃, it follows that each connected
subgraph Gl for l ∈ {1, . . . , L} is a subgraph of some G̃k. If k ∈ K then the probability
pl associated with Gl is a factor of Pr[P̃] and not of Pr[P̂]. Otherwise, k /∈ K and pl
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is a factor of Pr[P̂] and not of Pr[P̃]. Since p∆Q is divided into two factors, one for P̂
and one for P̃ and the probabilities p1, . . . , pL have been partitioned between Pr[P̂]
and Pr[P̃], one can conclude that Pr[P̂] · Pr[P̃].

For a given differential path P we denote by Reduce(P) the differential path
resulting from reducing P by the above method.

Observation 7.1. Let P be a differential path over steps tb, . . . , te for which σ(∆Qi) =
0 for i = tb − 4, . . . , tb and for i = te − 3, . . . , te + 1. Then P̂ = Reduce(P) is trivial:
P̂ = (0, ((0)31j=0)

te+1
i=tb−4, 0, ((0)

31
j=0)

te
i=tb

, (0)tei=tb).

7.5.5 Single local collision analysis

In this section we analyze the probabilities of local collisions either with or without
additional carries. In Section 7.5.7 we extend this analysis to combinations of local
collisions as prescribed by a disturbance vector. For now, let (DVt)

79
t=0 ∈ Z80

232 be
a disturbance vector consisting of a single disturbance starting between step 0 and
74, which implies that after step 79 all corrections for this single disturbance have
been made. Although (DVt)

79
t=0 is not a valid disturbance vector for either SHA-0 or

SHA-1, it allows for differential cryptanalysis of a single local collision that is easily
extended to valid disturbance vectors.

First we present a number of definitions that we need later on. For t = 1, . . . , 80,
we denote by Qt the set of allowed values for ∆Qt. We offer two choices for Qt. The
first choice is to select one from the family of sets Qc,u,t for u ∈ {0, . . . , 32} of allowed
values for ∆Qt as prescribed by the disturbance(s) in (DVt)

79
t=0 allowing carries and

where the weight is bounded by u plus the NAF weight:

Qc,u,t =

BSDR Y

∣∣∣∣∣∣∣
σ(Y ) = σ(Z),

Z[i] ∈ {−DVt−1[i], DVt−1[i]}, i = 0, . . . , 31,

w(Y ) ≤ w(NAF(σ(Y ))) + u

 .

For u = 32, the bound on the weight is trivially fulfilled and we denote Qc,t for Qc,32,t.
The set Qc,t is the preferred choice for Qt.

The second choice for Qt is the set Qnc,t which is defined as the set of allowed
values for ∆Qt as prescribed by the disturbance(s) in (DVt)

79
t=0 not allowing carries:

Qnc,t =
{
Y ∈ Qc,0,t

∣∣∣ Y [i] ∈ {0,−DVt−1[i], DVt−1[i]}
}
.

No carries can be present as Y ∈ Qc,0,t. Nevertheless, Qc,0,t still allows the distur-
bances ∆Qt = {2, 0} and ∆Qt = {1, 0} (using compact notation, see p. 18) in case
of two serial local collisions starting at step t − 1: DVt−1 = 21 + 20. The condition
Y [i] ∈ {0,−DVt−1[i], DVt−1[i]} prevents disturbances associated with ‘0’-bits in the
disturbance vector.

We assume a choice has been made for Qt and preferably this is Qc,t, however we
may need another choice for Qt in the upcoming sections. To simplify notation, we



7.5 Differential cryptanalysis 149

use σ(Qt) and σ(RL(Qt, n)) to denote {σ(Y ) | Y ∈ Qt} and {σ(RL(Y, n)) | Y ∈ Qt},
respectively. The remaining definitions in this section may depend on the particular
choice of Qt.

Let (DWt)
79
t=0 ∈ Z80

232 be the associated message expansion XOR difference vector
of the disturbance vector (see Equation 7.9, p. 121). Then for t = 0, . . . , 79, we define
the set Wt as the set of possible δWt given XOR difference DWt:

Wt =
{
σ(∆Wt)

∣∣∣ ∆Wt[i] ∈ {−DWt[i], DWt[i]}, i = 0, . . . , 31
}
.

Let D[i,j] be the set of all differential paths P over steps i, . . . , j with:

• δWt ∈ Wt for t = i, . . . , j;

• ∆Qt ∈ Qt for t = i− 3, . . . , j;

• δRL(Qi−4, 30) ∈ σ(RL(Qi−4, 30));

• δQj+1 ∈ σ(Qj+1);

• Pr[P] > 0.

Informally, D[i,j] is the set of all possible differential paths over steps i, . . . , j that
follow the local collision differences as prescribed by the disturbance vector where
carries are limited through the choice for Qt. These are the differential paths that
we are interested in. Let R[i,j] denote the set {Reduce(P) | P ∈ D[i,j]} of all reduced
versions of the differential paths in D[i,j]. We like to point out that |R[i,j]| ≤ |D[i,j]|
and that |R[i,j]| can be significantly smaller than |D[i,j]|, especially for a large number
of steps j − i+ 1.

Now we can analyze the success probability of the local collision. The success
probability pw,[tb,te] of the single local collision in (DVt)

79
t=0 which begins at step tb ≥ 0

and ends with step te < 80 using given message difference vector w = (δWt)
te
t=tb

∈
(Wt)

te
t=tb

is determined as:

pw,[tb,te] =
∑

P̂∈D[tb,te]

(δŴt)
te
t=tb

=w

Pr[P̂].

Thus to analyze the local collision we generate differential paths P ∈ D[i,j]. Instead
of storing all possible differential paths, we keep only reduced differential paths along
with intermediary probabilities. For a reduced differential path Pr over steps i, . . . , j
and message difference vector w ∈ (Wt)

j
t=i, we define the intermediary probability

p(w,Pr,[i,j]) as:
p(w,Pr,[i,j]) =

∑
P̂∈D[i,j]

Reduce(P̂)=Pr

(δŴt)
j
t=i=w

Pr[P̂]/Pr[Pr].
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Algorithm 7-2 Local collision analysis (forward)
Let (DVt)79t=0, (DWt)

79
t=0, (Wt)

79
t=0 and (Qt+1)

79
t=0 be as defined in Section 7.5.11 and let

I = [tb, te] be an interval of steps tb, . . . , te such that DVi = 0 for i ∈ {tb−5, . . . , tb−1}.
1. We start with Atb,tb = ∅;
2. For all differential paths P over step tb of the following form:

δRL(Qtb−4, 30) = 0, ∆Qtb−3 = . . . = ∆Qtb = 0, ∆Ftb = 0,

δQtb+1 = δWtb ∈ Wtb ∩ σ(Qtb+1),

we insert the tuple (P, {((δWi)
tb
i=tb

, 1)}) in the set Atb,tb ;
3. For steps t = tb + 1, . . . , te in that order we do the following:
4. Let Atb,t = ∅;
5. For all tuples (P,S) ∈ Atb,t−1 we extend P forward:
6. For all BSDRs ∆Qt ∈ Qt of δQt:
7. For all δWt ∈ Wt, δQt+1 ∈ σ(Qt+1) and ∆Ft such that

(∆Ft[b])
31
b=0 ∈ (Vt,b)

31
b=0

† and

δQt+1 = σ(RL(∆Qt, 5)) + σ(RL(∆Qt−4, 30)) + σ(∆Ft) + δWt

do the following:
8. Let Pe be P extended with step t using ∆Qt, ∆Ft, δWt and δQt+1;
9. If Pr[Pe] > 0 then do:

10. Let Pr = Reduce(Pe), pr = Pr[Pe]/Pr[Pr] and

Ŝ =
{
((δŴi)

t
i=tb , pr · p̂)

∣∣∣ ((δŴi)
t−1
i=tb

, p̂) ∈ S
}
,

where δŴt = δWt;
11. If there exists a tuple (Pr, S̃) ∈ Atb,t for some S̃ then

replace (Pr, S̃) in Atb,t by the tuple (Pr,SPr ), where

SPr =


w,

∑
(w,p′)∈Ŝ∪S̃

p′

 ∣∣∣∣∣∣ w ∈
{
w′

∣∣∣(w′, p′) ∈ Ŝ ∪ S̃
} ,

12. otherwise insert (Pr, Ŝ) in Atb,t.
13. Return Atb,te .

† See Equation 7.16 (p. 142).

The set SPr for a reduced differential path Pr ∈ R[i,j] is defined as the set of all
possible tuples (w, p(w,Pr,[i,j])) with w ∈ (Wt)

j
t=i and p(w,Pr,[i,j]) > 0. Then for

0 ≤ i ≤ j < 80, the set Ai,j is defined as the set of all tuples (Pr,SPr ) of differential
paths Pr ∈ R[i,j] with SPr ̸= ∅. The set Atb,te thus consists of all reduced versions
of differential paths in D[tb,te] together with the intermediary probabilities for each
possible message difference vector. To compute the set Atb,te , we use Algorithm 7-2



7.5 Differential cryptanalysis 151

Algorithm 7-3 Local collision analysis (backward)
Let (DVt)

79
t=0, (DWt)

79
t=0, (Wt)

79
t=0 and (Qt+1)

79
t=0 be as defined in Section 7.5.11 and

let I = [tb, te] be an interval of steps tb, . . . , te such that DVi = 0 for i ∈ {te−4, . . . , te}.
1. We start with Ate,te = ∅;
2. For all differential paths P over step te of the following form:

∆Qte−3 = . . . = ∆Qte = 0, δQte+1 = 0, ∆Fte = 0,

δRL(Qte−4, 30) = −δWte ∈ σ(RL(Qte−4, 30)), δWte ∈ Wte

we insert the tuple (P, {((δWi)
te
i=te

, 1)}) in the set Ate,te ;
3. For steps t = te − 1, . . . , tb in that order we do the following:
4. Let At,te = ∅;
5. For all tuples (P,S) ∈ At+1,te we extend P backwards:
6. For all BSDRs Y ∈ Qt−3 with σ(RL(Y, 30)) = δRL(Qt−3, 30):
7. Let ∆Qt−3 = Y ;
8. For all δWt ∈ Wt, δRL(Qt−4, 30) ∈ σ(RL(Qt−4, 30)) and ∆Ft

such that (∆Ft[b])
31
b=0 ∈ (Vt,b)

31
b=0 and

δRL(Qt−4, 30) = σ(∆Qt+1)− σ(RL(∆Qt, 5))− σ(∆Ft)− δWt

do the following:
9. Let Pe be P extended with step t using δRL(Qt−4, 30), ∆Qt−3, ∆Ft

and δWt;
10. If Pr[Pe] > 0 then do:
11. Let Pr = Reduce(Pe), pr = Pr[Pe]/Pr[Pr] and

Ŝ =
{
((δŴi)

te
i=t, pr · p̂)

∣∣∣ ((δŴi)
te
i=t+1, p̂) ∈ S

}
,

where δŴt = δWt;
12. If there exists a tuple (Pr, S̃) ∈ At,te for some S̃ then

replace (Pr, S̃) in At,te by the tuple (Pr,SPr ), where

SPr =


w,

∑
(w,p′)∈Ŝ∪S̃

p′

 ∣∣∣∣∣∣ w ∈
{
w′

∣∣∣(w′, p′) ∈ Ŝ ∪ S̃
} ,

13. otherwise insert (Pr, Ŝ) in At,te .
14. Return Atb,te .

(p. 150) to iteratively construct the sets Atb,j for j = tb, . . . , te.

Since DVt = 0 for t = tb − 5, . . . , tb − 1 and for t = te − 4, . . . , te for this single
local collision, it follows that for all (P,S) ∈ Atb,te we have for P by definition
δRL(Qtb−4, 30) = 0, ∆Qi = (0)31j=0 for i = tb − 3, . . . , tb, ∆Qi = (0)31j=0 for i =
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te − 3, . . . , te and δQte+1 = 0. Observation 7.1 (p. 148) implies that P is trivial:

P = (0, ((0)31j=0)
te+1
i=tb−4, 0, ((0)

31
j=0)

te
i=tb

, (0)tei=tb).

Hence, Atb,te consists of a single tuple (P,S) where P is trivial and the set S contains
all tuples ((δWt)

te
t=tb

, p) where p > 0 by definition is the desired success probability
pw,[tb,te] of w = (δWt)

te
t=tb

. Most importantly we have determined the highest success
probability p[tb,te] = max{p | (w, p) ∈ S} and all message difference vectors that
attain that probability: {w | (w, p[tb,te]) ∈ S}.

A similar analysis is possible backwards by iteratively constructing sets Ai,te for
i = te, . . . , tb using Algorithm 7-3 (p. 151). Note that Algorithm 7-2 expects DVt = 0
for t ∈ {tb − 5, . . . , tb − 1}, whereas Algorithm 7-3 expects DVt = 0 for t ∈ {te −
4, . . . , te}. Hence, working backwards provides an alternative whenever DVt ̸= 0 for
some t ∈ {tb − 5, . . . , tb − 1} and DVt = 0 for t ∈ {te − 4, . . . , te}.

7.5.6 Message difference compression

Since the number of possible message difference vectors grows exponentially in the
number of steps, we employ another technique that allows us to ‘combine’ message
difference vectors. This is nothing more than a smart representation of Ai,j by a
pair (SRi,j ,Bi,j) that has significantly reduced memory footprint and also allows
an optimization that reduces the runtime complexity. In the implementations of
Algorithms 7-2 and 7-3, we use the pair (SRi,j ,Bi,j) representing Ai,j to improve
runtime and memory complexity. Nevertheless, in the upcoming sections we still use
Ai,j instead of the equivalent representation (SRi,j ,Bi,j) for ease of notation.

First we introduce some necessary notation. We denote a message difference vector
substitution rule as (wn)

j
n=i ↩→ (vn)

j
n=i. For a message difference vector (xk)

m
k=l and

a message difference vector substitution rule (wn)
j
n=i ↩→ (vn)

j
n=i such that l ≤ i ≤

j ≤ m, we define Π((xk)
m
k=l, (wn)

j
n=i ↩→ (vn)

j
n=i) as the message difference vector

(yk)
m
k=l, where for k ∈ {l, . . . ,m}:

yk =

{
xk if (xn)jn=i ̸= (wn)

j
n=i ∨ k /∈ {i, . . . , j};

vk otherwise.

This definition of Π is extended to a set SR of message difference vector substitution
rules:

Π(X,SR) =
{
Π(· · ·Π(X, s1), · · · , sn)

∣∣ n ∈ {0, . . . , |SR|}, s1, . . . , sn ∈ SR},
which includes X itself by using n = 0.

Now we can represent Ai,j in Algorithms 7-2 and 7-3 as a pair (SRi,j ,Bi,j) of a
set of substitution rules SRi,j and a set Bi,j of the form

Bi,j = {(P,S ′P) | (P,SP) ∈ Ai,j}
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such that for all P the set S ′P together with SRi,j generates SP :

SP =
∪

(w,p)∈S′
P

{(v, p) | v ∈ Π(w,SRi,j)}.33

To obtain a representation (SRi,j ,Bi,j) of Ai,j , we do the following. We start with
Btb,t = Atb,t and SRtb,t = ∅. Let

W = {w | (w, p) ∈ SP , (P,SP) ∈ Ai,j}

be the set of all message difference vectors w under consideration. For each w ∈ W we
define the function θw that maps differential paths P to the respective intermediary
probability of w and P:

θw : {P | (P,S) ∈ Ai,j} → [0, 1]

θw : P 7→ p, for which (w, p) ∈ SP
Now for all groups w1, . . . , wK ∈ W of message difference vectors that have identical
functions θw1 = . . . = θwK , we remove all occurrences of w2, . . . , wK in Bi,j and
compensate by inserting message difference vectors substitution rules w1 ↩→ w2, w1 ↩→
w3, …, w1 ↩→ wK into SRi,j .34 We denote the resulting representation (SRi,j ,Bi,j)
of Ai,j as Compact(Ai,j).

Let Atb,t = Extend(Atb,t−1) denote the computation of Atb,t using Atb,t−1 in steps
4–12 of Algorithm 7-2. Then (SRtb,t,Btb,t) can be computed from (SRtb,t−1,Btb,t−1)
as

(SRtb,t,Btb,t) = Compact
(
Extend

(
(SRtb,t−1,Btb,t−1)

))
.

Although this implies that we still need to store the entire set Atb,t at some point.
Note that in the steps 4 to 12 of Algorithm 7-2 for any P the values Pr and pr

do not directly depend on values w ∈ {v | (v, p) ∈ S}. One can thus observe that
for any two message difference vectors w and v used in Ai,j for which θw = θv, it
follows that also θw′ = θv′ for any extensions w′ = w||x and v′ = v||x of w and v by
the same message differences x (as in step 10 of Algorithm 7-2). This implies that in
the reduction of Atb,t to (SRtb,t,Btb,t) = Compact(Atb,t) all these message difference
vectors v′ can be removed by using the substitution rule w ↩→ v.

More specifically, let (SRtb,t−1,Btb,t−1) be a representation of Atb,t−1, then for
step t in Algorithm 7-2 the above observation holds for all w and v ∈ Π(w,SRtb,t−1)
and thus all extensions of such v in Atb,t can be removed and compensated by the
substitution rule w ↩→ v. This implies that

(SRtb,t−1,Extend(Btb,t−1))

33. This directly implies that for SRi,j = ∅ we have that Bi,j = Ai,j . Note that for any two message
difference vectors w and v ∈ Π(w,SRi,j) their respective probabilities for all differential paths P
must be equal: ∀P : (w, p) ∈ SP ⇔ (v, p) ∈ SP .
34. To efficiently determine these groups with identical functions θw, we compute and compare hash
values of a representation of θw for all w ∈ W instead of these function θw themselves.
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is a representation of Atb,t, which naturally may be further reduced.
We can thus obtain a representation (SRtb,t,Btb,t) of Atb,t more efficiently than

simply computing Compact
(
Extend

(
(SRtb,t−1,Btb,t−1)

))
as follows:

(S̃Rtb,t, B̃tb,t) = Compact(Extend(Btb,t−1));
(SRtb,t,Btb,t) = (S̃Rtb,t ∪ SRtb,t−1, B̃tb,t).

In this manner we can obtain a representation of the set Atb,te , but in a way that
does not require anymore that the entire set Atb,te must be computed and stored
in memory. Furthermore, only the message difference vectors present in Btb,t−1 are
processed instead of all message difference vectors present in Atb,t−1 in the processing
of step t in step 3 of Algorithm 7-2.

Algorithm 7-3 is treated analogously.

7.5.7 Single local collision analysis: δIHVdiff

Consider a single local collision starting at step tb ≥ 75 and ending with step te = 79.
Since 79 = te < tb+5, not all corrections have been made after step 79 and it follows
that Atb,te does not consist of a single trivial reduced differential path. In this case
we are interested in the most likely differences δIHVdiff = δIHVout − δIHVin added
to the IHV according to a differential path P over steps tb, . . . , 79:

ϕ(P̂) = (di)
80
i=76, di =


σ(RL(∆Q̂i, 30)), i = 76, 77, 78;

σ(∆Q̂i), i = 79;

δQ̂i, i = 80.

Using Algorithm 7-2 we compute the set Atb,79 and we determine the set I of possible
δIHVdiff: I = {ϕ(P̂) | (P̂,S) ∈ Atb,79}.

We can determine the success probability p(w,δIHVdiff,[tb,79]) for each message dif-
ference vector w = (δWt)

79
t=tb
∈ (Wt)

79
t=tb

and for each δIHVdiff ∈ I:

p(w,δIHVdiff,[tb,79]) =
∑

P̂∈D[tb,79]

ϕ(P̂)=δIHVdiff
(δŴt)

79
t=tb

=w

Pr[P̂]

=
∑

(P̂,S)∈Atb,79

ϕ(P̂)=δIHVdiff

∑
(w,p(w,P̂,[tb,79])

)∈S

p(w,P̂,[tb,79]) · Pr[P̂].

Finally, we can determine the highest success probability:

p[tb,79] = max{p(w,δIHVdiff,[tb,79]) | δIHVdiff ∈ I, w ∈ (Wt)
79
t=tb
}

and all δIHVdiff that attain that probability (almost):

{δIHVdiff | δIHVdiff ∈ I, ∃w : p(w,δIHV,[tb,79]) ≥ p[tb,79] · α},
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where α ∈ [0, 1] is a given factor, i.e., α = 0.95. For each such δIHVdiff we determine
all w for which p(w,δIHV,[tb,79]) ≥ p[tb,79] · α:

{w | w ∈ (Wt)
79
t=tb

, p(w,δIHVdiff,[tb,79]) ≥ p[tb,79] · α}.

7.5.8 Single local collision analysis: alternative δIHVdiff

Our analysis so far only allowed working state differences as prescribed by the dis-
turbances in (DVt)

79
t=0 either with or without carries. However, for the last steps it

is not necessary anymore to restrict ∆Qt. We are interested in δIHVdiff with high
probability, not necessarily one exactly as prescribed by disturbances in (DVt)

79
t=0.

To that end we choose Qt for t ∈ {76, . . . , 80} as the set of all low weight BSDRs
or even by the set of all BSDRs as desired. Then using Algorithm 7-4 we iteratively
generate sets Ytb,i for i = tb, . . . , 79 that are defined as the set of all tuples (Pr, sPr )
of differential paths Pr ∈ R[tb,i] and associated weights sPr . The associated weight
sPr of a reduced differential path Pr ∈ R[tb,i] is defined as

sPr =
∑

w∈(W)it=tb

p(w,Pr,[tb,i]),

where p(w,Pr,[tb,i]) is the probability as defined earlier (using our choice of Qt).
The last set Ytb,79 is used to determine for possible δIHVdiff a weight sδIHVdiff

which is the sum of success probabilities over allowed message difference vectors:

sδIHVdiff =
∑

(P,sP)∈Ytb,79

ϕ(P)=δIHVdiff

sP · Pr[P]

=
∑

(P,sP)∈Ytb,79

ϕ(P)=δIHVdiff

∑
w∈(Wt)79t=tb

Pr[P] · p(w,P,[tb,79])

=
∑

(P,sP)∈Ytb,79

ϕ(P)=δIHVdiff

∑
w∈(Wt)79t=tb

∑
P̂∈D[tb,79]

Reduce(P̂)=P
(δŴt)

79
t=tb

=w

Pr[P̂]

=
∑

w∈(Wt)79t=tb

∑
P̂∈D[tb,79]

ϕ(P̂)=δIHVdiff
(δŴt)

79
t=tb

=w

Pr[P̂]

=
∑

P̂∈D[tb,79]

ϕ(P̂)=δIHVdiff

Pr[P̂].
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Algorithm 7-4 δIHVdiff analysis (forward)
Let (DVt)

79
t=0, (DWt)

79
t=0, (Wt)

79
t=0 and (Qt+1)

79
t=0 be as defined in Section 7.5.11 and

let I = [tb, 79] be an interval of steps tb, . . . , 79 such that DVi = 0 for i ∈ {tb −
5, . . . , tb − 1}.

1. We start with Ytb,tb = ∅;
2. For all differential paths P over step tb of the following form:

δRL(Qtb−4, 30) = 0, ∆Qtb−3 = . . . = ∆Qtb = 0, ∆Ftb = 0,

δQtb+1 = δWtb ∈ Wtb ∩ σ(Qtb+1),

we insert the tuple (P, 1) in the set Ytb,tb ;
3. For steps t = tb + 1, . . . , 79 in that order we do the following:
4. Let Ytb,t = ∅;
5. For all tuples (P, s) ∈ Ytb,t−1 we extend P forward:
6. For all BSDRs ∆Qt ∈ Qt of δQt:
7. For all δWt ∈ Wt, δQt+1 ∈ σ(Qt+1) and ∆Ft such that

(∆Ft[b])
31
b=0 ∈ (Vt,b)

31
b=0

† and

δQt+1 = σ(RL(∆Qt, 5)) + σ(RL(∆Qt−4, 30)) + σ(∆Ft) + δWt

do the following:
8. Let Pe be P extended with step t using ∆Qt, ∆Ft, δWt and δQt+1;
9. If Pr[Pe] > 0 then do:

10. Let Pr = Reduce(Pe) and sr = s · Pr[Pe]/Pr[Pr];
11. If there exists a tuple (Pr, s̃) ∈ Ytb,t for some s̃ then

replace (Pr, s̃) in Ytb,t by the tuple (Pr, sr + s̃),
12. otherwise insert (Pr, sr) in Ytb,t.
13. Return Ytb,79.

† See Equation 7.16 (p. 142).

We select a set Î of differences δIHVdiff with high weights sδIHVdiff and define the
sets Qihv,t for t = 1, . . . , 80:

Qihv,t =


{
∆Qt

∣∣∣ ∃(Xi)
80
i=76 ∈ Î : σ(RL(∆Qt, 30)) = Xt

}
, t ∈ {76, 77, 78};{

∆Qt

∣∣∣ ∃(Xi)
80
i=76 ∈ Î : σ(∆Qt) = Xt

}
, t ∈ {79, 80};

Qt, t < 76.
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We can define related sets Qihv,u,t for u ∈ {0, . . . , 32} and t ∈ {1, . . . , 80} where the
weights are bounded by u plus the NAF weight:

Qihv,u,t = {Y | Y ∈ Qihv,t ∧ w(Y ) ≤ w(NAF(σ(Y ))) + u}.

By repeating the analysis in Section 7.5.7 using the sets Qihv,u,t for Qt, we can
determine the success probabilities for each δIHVdiff ∈ Î. In this way we also find
the highest success probability among those δIHVdiff as well as the message difference
vectors that enable this highest success probability.

7.5.9 Single local collision analysis: round 1

If DVt = 0 for t ∈ {te − 4, . . . , te} but not for all t ∈ {tb − 5, . . . , tb − 1} (e.g., if
20 = tb > te − 5) then the local collision is truncated and Atb,te does not consist of
a single trivial reduced differential path. Instead we assume that tb is chosen as the
first step whose success probability should be taken into account, i.e., steps before tb
are ignored in the cost of a local collision since they are assumed to be fulfilled by
message modification techniques. Thus we are interested in the most likely working
state differences Λ = ψ(P̂) of P̂:

ψ(P̂) = (di)
tb
i=tb−4, di =

{
RR(NAF(δRL(Q̂i, 30)), 30), i = tb − 4;

∆Q̂i, i = tb − 3, . . . , tb;

Here we use ∆Q̂t instead of δQ̂t as we assume that the final bitconditions disallow
additional carries. Nevertheless, it is only a minor modification to use δQ̂t in the
analysis below. The following analysis is very similar to the previous section.

Using Algorithm 7-3 we compute the set Atb,te and we determine the set J of
possible Λ: J = {ψ(P̂) | (P̂,S) ∈ Atb,te}. We can determine the success probability
p(w,Λ,[tb,te]) given message difference vector w = (δWt)

te
t=tb
∈ (Wt)

te
t=tb

for each Λ ∈ J :

p(w,Λ,[tb,te]) =
∑

P̂∈D[tb,te]

ψ(P̂)=Λ

(δŴt)
te
t=tb

=w

Pr[P̂]

=
∑

(P̂,S)∈Atb,te

ψ(P̂)=Λ

∑
(w,p(w,P̂,[tb,te]))∈S

p(w,P̂,[tb,te]) · Pr[P̂].

Finally, we can determine the highest success probability:
p[tb,te] = max{p(w,Λ,[tb,te]) | Λ ∈ J , w ∈ (Wt)

te
t=tb
}

and all Λ that attain that probability:
{Λ | Λ ∈ J , ∃w : p(w,Λ,[tb,te]) = p[tb,te]}.

For each such Λ we determine all w for which p(w,Λ,[tb,te]) = p[tb,te]:

{w | w ∈ (Wt)
te
t=tb

, p(w,δIHVdiff,[tb,te]) = p[tb,te]}.
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7.5.10 Single local collision analysis: alternate round 1

In the first round the differential path construction algorithms from Section 7.4 deviate
from the local collisions as prescribed by the disturbance vector. Therefore, similar
to the analysis of the last few steps, one can also allow all differences in the first
few steps if they lead to higher success probabilities. We are interested in Λ with
high probability. To that end we choose Qt for t ∈ {tb − 4, . . . , tb} as the set of all
low weight BSDRs. Then using Algorithm 7-5 we iteratively generate sets Zi,te for
i = te− 1, . . . , tb that are defined as the set of all tuples (Pr, sPr ) of differential paths
Pr ∈ R[tb,te] and associated weights sPr . For each Pr, the associated weight sPr is
defined as

sPr =
∑

w∈(W)tet=i

p(w,Pr,[i,te]),

where p(w,Pr,[i,te]) is the probability as defined earlier (using our choice of Qt).35

The last set Ztb,te is used to determine for possible Λ a weight sΛ which is the
sum of success probabilities over allowed message difference vectors:

sΛ =
∑

(P,sP)∈Ztb,te

ψ(P)=Λ

sP · Pr[P]

=
∑

(P,sP)∈Ztb,te

ψ(P)=Λ

∑
w∈(Wt)

te
t=tb

Pr[P] · p(w,P,[tb,te])

=
∑

(P,sP)∈Ztb,te

ψ(P)=Λ

∑
w∈(Wt)

te
t=tb

∑
P̂∈D[tb,te]

Reduce(P̂)=P
(δŴt)

te
t=tb

=w

Pr[P̂]

=
∑

w∈(Wt)
te
t=tb

∑
P̂∈D[tb,te]

ψ(P̂)=Λ

(δŴt)
te
t=tb

=w

Pr[P̂]

=
∑

P̂∈D[tb,te]

ψ(P̂)=Λ

Pr[P̂].

We select a set Ĵ of differences Λ with high weights sΛ and define the sets Qrnd1,t
for t = 1, . . . , 80:

Qrnd1,t =

{{
∆Qt

∣∣∣ (∆Qi)tbi=tb−4 ∈ Ĵ} , tb − 4 ≤ t ≤ tb;
Qt, otherwise.

35. This definition of sPr matches the definition from Section 7.5.8.
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Algorithm 7-5 Λ analysis (backward)
Let (DVt)

79
t=0, (DWt)

79
t=0, (Wt)

79
t=0 and (Qt+1)

79
t=0 be as defined in Section 7.5.11 and

let I = [tb, te] be an interval of steps tb, . . . , te such that DVi = 0 for i ∈ {te−4, . . . , te}.

1. We start with Zte,te = ∅;
2. For all differential paths P over step te of the following form:

∆Qte−3 = . . . = ∆Qte = 0, δQte+1 = 0, ∆Fte = 0,

δRL(Qte−4, 30) = −δWte ∈ σ(RL(Qte−4, 30)), δWte ∈ Wte

we insert the tuple (P, 1) in the set Zte,te ;
3. For steps t = te − 1, . . . , tb in that order we do the following:
4. Let Zt,te = ∅;
5. For all tuples (P, s) ∈ Zt+1,te we extend P backwards:
6. For all BSDRs Y ∈ Qt−3 with σ(RL(Y, 30)) = δRL(Qt−3, 30):
7. Let ∆Qt−3 = Y ;
8. For all δWt ∈ Wt, δRL(Qt−4, 30) ∈ σ(RL(Qt−4, 30)) and ∆Ft

such that (∆Ft[b])
31
b=0 ∈ (Vt,b)

31
b=0 and

δRL(Qt−4, 30) = σ(∆Qt+1)− σ(RL(∆Qt, 5))− σ(∆Ft)− δWt

do the following:
9. Let Pe be P extended with step t using δRL(Qt−4, 30), ∆Qt−3, ∆Ft

and δWt;
10. If Pr[Pe] > 0 then do:
11. Not let Pr = Reduce(Pe) and sr = s · Pr[Pe]/Pr[Pr];
12. If there exists a tuple (Pr, s̃) ∈ Zt,te then

replace (Pr, s̃) in Zt,te by the tuple (Pr, sr + s̃),
13. otherwise insert (Pr, sr) in Zt,te .
14. Return Ztb,te .

We can define related sets Qrnd1,u,t for u ∈ {0, . . . , 32} and t ∈ {1, . . . , 80} where the
weights are bounded by u plus the NAF weight:

Qrnd1,u,t = {Y | Y ∈ Qrnd1,t ∧ w(Y ) ≤ w(NAF(σ(Y ))) + u}.

By repeating the analysis at the beginning of this section using sets Qrnd1,u,t for Qt,
we can determine the success probabilities for each Λ ∈ Ĵ . In this way we also
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find the highest success probability among those Λ as well as the message expansion
differences that enable this highest success probability.

7.5.11 Disturbance vector analysis

Analyzing a disturbance vector (DVt)
79
t=0 and associated message expansion XOR

difference vector (DWt)
79
t=0 for SHA-1 (or SHA-0) can now be done using the methods

described in the previous sections. In this section we define several cost functions and
compare them on local collision (in)dependence, (dis)allowed carries and on both full
and truncated disturbance vectors.

First we define the sets Du,[i,j] and Dnc,[i,j] as the set D[i,j] when using the under-
lying sets Qc,u,t and Qnc,t, respectively. We define the following disturbance vector
cost functions for u ∈ {0, . . . , 32}:

FDCu,tb
(
(DVt)

79
t=0

)
= max

w,δIHVdiff,Λ

∑
P̂∈Du,[tb,79]

(δŴt)
79
t=tb

=w

ϕ(P̂)=δIHVdiff
ψ(P̂)=Λ

Pr[P̂] · 2w(∆Q̂tb−3)+w(∆Q̂tb−2);

FDNtb

(
(DVt)

79
t=0

)
= max

w,δIHVdiff,Λ

∑
P̂∈Dnc,[tb,79]

(δŴt)
79
t=tb

=w

ϕ(P̂)=δIHVdiff
ψ(P̂)=Λ

Pr[P̂] · 2w(∆Q̂tb−3)+w(∆Q̂tb−2).

The first disturbance vector cost function FDCu,tb is defined as the maximal success
probability (with a correction) over steps tb, . . . , 79 where carries are allowed (bounded
by u plus NAF weight) taken over all combinations of message difference vector w,
starting working state Λ and IHV differences δIHVdiff. The second disturbance vec-
tor cost function FDNtb is defined identically except carries are not allowed. The
correction 2w(∆Q̂tb−3)+w(∆Q̂tb−2) (which is determined by Λ) is chosen so that FDC
and FDN are more closely related to the near-collision search. In the near-collision
search we use bitconditions qi to search for valid (Qi, Q

′
i) and only then we proceed

to (Qi+1, Q
′
i+1). This correction models that the differential bitconditions in qtb−3

and qtb−2 have been pre-fulfilled in this manner.36

These two disturbance vector cost functions can be efficiently determined using the
methods of the previous sections. To that end, we split the range of steps tb, . . . , 79
into independent intervals. As the disturbance of a local collision at step t is corrected
within the next five steps, if no other local collision is started within those five steps
then we can split the interval [tb, te] into two independent intervals: [tb, t + 5] and
[t + 6, te]. Using this rule we split the range of steps [tb, 79] into intervals I1 =

36. More ideally, we would have liked to have a correction that also includes the boolean function
bitconditions with respect to ∆Ftb in qtb−3 and qtb−2. However, such a correction would no longer
be completely determined by Λ.
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[tb,1, te,1] = [tb, te,1], I2 = [tb,2, te,2], . . . , IK = [tb,K , 79] until no interval can be split
further. The disturbance vectors in consideration (see Table 7-2) always result in at
least two intervals as is required by our analysis. Intervals I2, . . . , IK−1 are analyzed
as in Section 7.5.5. The first and last interval can be analyzed as in Sections 7.5.9
and 7.5.7, respectively.

These cost functions can also be applied when the disturbance vector consists of a
single local collision. For an arbitrary disturbance vector we can treat local collisions
as independent (even though they are not) by applying the cost function to each
individual local collision in said disturbance vector and taking the product over the
resulting probabilities. This allows us to compare our cost function which takes into
account the dependence of local collisions with similar cost functions that are based
on the assumption that local collisions are independent. More specifically, we define
the function Ω that compresses consecutive ‘1’-bits37 in DVi and the function Ψ that
splits a disturbance vector into separate disturbance vectors each containing a single
disturbance:

Ω
(
(DVi)

79
i=0

)
=

(
DVi ∧

(
¬RL(DVi, 1) ∨

(
1 + 22 + 227

)))79
i=0

,

Ψ
(
(DVi)

79
i=0

)
=

{
(Yi)

79
i=0 where
Yt[b]=1,

Yi[j]=0, i ̸=t∨j ̸=b

∣∣∣∣ t∈{0,...,79}
b∈{0,...,31}

such that DVt[b]=1

}
.

Now we can define the following variants on FDC and FDN that assume independence
of local collisions:

FICu,tb
(
(DVt)

79
t=0

)
=

∏
(Yi)79i=0∈Ψ(Ω((DVt)79t=0))

FDCu,tb((Yi)79i=0);

FINtb

(
(DVt)

79
t=0

)
=

∏
(Yi)79i=0∈Ψ(Ω((DVt)79t=0))

FICtb((Yi)79i=0).

Most cost functions in the literature only consider local collisions starting at step
tb or thereafter, all other local collisions are ignored even if some of their corrections
take place at step tb or later. This can be applied by ‘truncating’ the disturbance
vector:

Γtb
(
(DVi)

79
i=0

)
= (Yi)

79
i=0, Yi =

{
DVi, i ≥ tb;
0, i < tb.

Using Γtb we can define variants of FDC, FIC, FDN and FIN:

TDCu,tb
(
(DVt)

79
t=0

)
= FDCu,tb

(
Γtb

(
(DVt)

79
t=0

))
;

TICu,tb
(
(DVt)

79
t=0

)
= FICu,tb

(
Γtb

(
(DVt)

79
t=0

))
;

TDNtb

(
(DVt)

79
t=0

)
= FDNtb

(
Γtb

(
(DVt)

79
t=0

))
;

TINtb

(
(DVt)

79
t=0

)
= FINtb

(
Γtb

(
(DVt)

79
t=0

))
.

37. Bits 0, 2 and 27 are always kept, since bit positions pairs (31,0), (1,2) and (26,27) are not
considered consecutive. See also Section 7.3.2
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Applying Γtb to a disturbance vector implies that there are no differences in Λ. This
in turn implies that the correction 2w(∆Q̂tb−3)+w(∆Q̂tb−2) is always one.

Our cost functions consist of three letters that indicate the following properties:

F Full D.V.: uses all local collisions that influence steps t ≥ tb;

T Truncated D.V.: uses only local collisions starting at steps t ≥ tb;

D Use dependence of local collisions;

I Assume independence of local collisions;

C Allow additional carries (total weight bounded by u plus NAF weight);

N Disallow carries.

The last cost function we define here is HWtb

(
(DVt)

79
t=0

)
=

∑79
i=tb

w(DVi) which is
the most crude cost function as it counts the number of ‘1’-bits in DVtb , . . . , DV79.

Below we provide selected results in Table 7-3 to compare cost functions for SHA-1.
For the cases in Table 7-3, the results of the cost function FDC7,20 are a factor
between 20.3 and 212.5 higher than FIC32,20. This clearly shows that using the joint
probability instead of using the product of individual probabilities leads to higher
maximum success probabilities.

To compare FDC with varying starting step tb for SHA-1, selected results are
shown in Table 7-4. A more complete analysis of disturbance vectors for SHA-1 using
FDC can be found in Appendix F.

Section 7.6 uses this analysis to obtain target values for δIHVdiff and message
bitrelations for disturbance vector II(52,0). The maximum success probabilities for
intervals [33, 52], [53, 60] and [67, 79] as determined using this analysis have been
confirmed by experiments as described in Section 7.6.9.

Table 7-3: SHA-1 disturbance vector analysis - cost function comparison

DV FDC FIC FDN FIN TDC TIC TDN TIN HW
I(48, 0) 71.4 80.5 77 83 65.4 74.5 71 77 27
I(49, 0) 72.2 79.6 77 83 67.2 74.6 72 78 27
I(50, 0) 71.9 81.4 75 83 65.9 73.4 69 75 26
I(51, 0) 73.3 85.8 77 88 67.3 74.8 71 77 25
I(48, 2) 73.8 75.7 79 79 69.8 71.7 75 75 27
I(49, 2)† 73.8 74.1 78 78 70.8 71.1 75 75 27
II(50, 0) 73.0 77.4 78 80 68.0 70.4 73 73 27
II(51, 0) 71.9 77.7 77 81 67.6 69.7 73 73 26
II(52, 0)‡ 71.8 79.4 75 81 65.4 67.4 69 69 25

The eight columns FDC to TIN show the negative log2 results from the cost functions FDC7,20,
FDN20, FIC32,20, FIN20, TDC7,20, FDN20, TIC32,20, TIN20, respectively. The last column shows
the result from the cost function HW20. The disturbance vectors marked by † and ‡ are used in
Wang et al.’s collision attack [WYY05b] and our near-collision attack in Section 7.6, respectively.
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Table 7-4: SHA-1 disturbance vector analysis - FDC with varying starting step

tb
DV 18 19 20 21 22 23 24 25 26

I(48, 0) 78.3 75.3 71.4 70.4 67.4 66.4 65.0 63.0 61.0
I(49, 0) 80.2 75.2 72.2 69.3 68.3 65.3 64.3 62.9 60.9
I(50, 0) 79.9 75.9 71.9 70.9 68.1 67.1 64.1 63.1 61.7
II(51, 0) 78.7 74.9 71.9 68.9 67.9 66.5 64.5 58.5 56.5
II(52, 0) 78.6 75.6 71.8 69.8 66.8 65.8 64.3 62.3 56.3

The columns are the negative log2 results from the cost function FDC8,tb .
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7.6 SHA-1 near-collision attack
7.6.1 Overview

In this section we present the construction of a near-collision attack against SHA-1 us-
ing our methods from Sections 7.4 and 7.5. The construction consists of the following
steps that each are discussed in the following sections:

1. We discuss the selection of the disturbance vector and our choice for II(52,0) in
Section 7.6.2.

2. In Section 7.6.3 we perform a precise analysis of disturbance vector II(52,0) to
obtain sets of optimal values for δIHVdiff and Λ.

3. In Section 7.6.4 we construct valid first round differential paths where we use
the found set of optimal values for Λ to derive the first round upper partial
differential paths.

4. The bitconditions given by these first round differential paths are extended into
round two in Section 7.6.5 for the purposes of the early-stopping and message
modification techniques.

5. Section 7.6.6 details the derivation of the smallest set of message bitrelations
over all four rounds that lead (almost) to the highest success probability under
the restrictions given by the bitconditions over round one and two.

6. In Section 7.6.7 we present our basic collision searching algorithm that efficiently
searches for message blocks that fulfill all bitconditions up toQ17 and all message
bitrelations.

7. Lastly, we significantly speed up our basic collision searching algorithm using
tunnels in Section 7.6.8.

Our implementation of this near-collision attack is published as part of project Hash-
Clash [HC]. The attack has a complexity equivalent to about 257.5 calls to the SHA-1
compression function. This improves upon the near-collision attack by Wang et al.
with a complexity of about 268 SHA-1 compressions. So far no near-collision blocks
have been found using our near-collision attack that provide explicit proof of the cor-
rectness and complexity of our attack. For that reason we discuss verification of the
correctness and the complexity of our near-collision attack in Section 7.6.9.

Our near-collision attack can directly be used in a two-block identical-prefix colli-
sion attack against SHA-1. It should be noted that such a two-block identical-prefix
collision attack actually consists of three blocks where the first block is part of the
identical-prefix part and is used to gain 160-bits of freedom and to satisfy the bit-
conditions q−4, . . . , q0 of our near-collision attack. The remaining two blocks are two
sequential near-collision blocks where the second block cancels the δIHVout resulting
from the first block.
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A lower-bound for the complexity of a complete two-block identical-prefix collision
attack based on our current near-collision implementation is approximately (1 + 6) ·
257.5 ≈ 260.3 SHA-1 compressions. This follows from the fact that the first near-
collision attack has the luxury of six allowed values for δIHVdiff for each possible
vector of message differences (δWt)

79
t=0, whereas the second near-collision attack must

target one specific δIHVdiff.
The second near-collision attack has a lesser amount of freedom to exploit com-

pared to the first near-collision attack, i.e., it cannot use a prior block to gain 160-bits
of freedom and it requires more message bitrelations. This may further restrict the
number of tunnels that can be used. Hence, the complexity of the identical-prefix
collision attack as directly based on our near-collision attack will in all likelihood be
larger than 260.3 SHA-1 compressions. Nevertheless, we expect it will be only a small
factor larger than this lower bound. Taking into account the extra message bitrela-
tions and up to four fewer tunnels, one arrives at the conservative upper bound of
265.3 SHA-1 compressions.

There is a wide gap between the lower bound 260.3 and the conservative upper
bound 265.3 wherein the actual complexity of the second near-collision attack will lie.
The complexity of a complete two-block identical-prefix collision attack may be more
accurately estimated when the first near-collision block(s) has been found and thus
the second near-collision attack can be constructed.

7.6.2 Disturbance vector selection

The selection of which disturbance vector to use is the most important choice in
constructing a near-collision attack. This choice directly determines the message
bit differences up to sign DWt, the set of optimal δIHVdiff to target and the set of
optimal Λ. It also determines most of the message bitrelations (some of which are
only determined up to parity) and thereby also limits which tunnels may be used as
is discussed in Section 7.6.8.

In Appendix F we present the results of our analysis of many disturbance vectors,
see also Section 7.5. Table F-1 shows the results of the seven disturbance vectors
that (almost) result in a success probability of 2−73 or higher over the last 60 steps:
I(48,0), I(49,0), I(50,0), II(46,0), II(50,0), II(51,0) and II(52,0).

We have chosen for disturbance vector II(52,0) as it is the second best under our
cost function FDCu,20 and it showed the most promising results in a preliminary
analysis from Section 7.5.8. We do not claim that disturbance vector II(52,0) is the
best, since our choice is only based on the analysis of the last 60 steps and not on
the other factors that the choice of disturbance vector influences such as number
of message bitrelations and which tunnels can be used. In fact we encourage further
analysis of the remaining disturbance vectors and construction of near-collision attacks
under these disturbance vectors.
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7.6.3 Finding optimal δIHVdiff and Λ

Disturbance vector II(52,0) can be analyzed over the last 60 steps using the following
independent intervals of steps: I1 = [20, 32], I2 = [33, 52], I3 = [53, 60] and I4 =
[67, 79]. The steps t = 61, . . . , 66 are trivial differential steps with no differences in
the working state or message words with success probability 1.

First we analyze the last interval using the methods presented in Section 7.5.
We optimize for the first near-collision attack in a two-block collision attack. Below
we provide a speedup only for the first near-collision attack, thus the second near-
collision attack complexity is the most important term in the two-block collision attack
complexity. For that reason we desire that the contribution of steps 67, . . . , 79 to the
second near-collision attack complexity is as low as possible. This can be achieved
by considering only δIHVdiff for which there exist some message difference vector w
such that the success probability p(w,δIHVdiff,[67,79]) is (almost) the highest success
probability called p[67,79].38

For each possible message difference vector w ∈ (W)79t=67 we count the number
Nw of δIHVdiff for which the success probability p(w,δIHVdiff,[67,79]) is (almost) p[67,79].
To speed up the first near-collision attack by a factor of Nmax = maxw∈(W)79t=67

Nw,
we use only those message difference vectors w ∈ (W)79t=67 for which Nw = Nmax.
The speed up by the factor of Nmax follows from the fact that the first near-collision
attack always has Nmax chances of finding a target δIHVdiff.

More precisely, we do the following:

1. We apply the analysis in Section 7.5.8 over I4 = [67, 79] to determine a set Î of
differences δIHVdiff with high weights. The set Î defines the sets Qihv,u,t.

2. Using the sets Qihv,u,t for the analysis in Section 7.5.7 we determine success
probabilities p(w,δIHVdiff,[67,79]) for message difference vectors w ∈ (Wt)

79
t=67 and

IHV differences δIHVdiff ∈ Î.

3. Let p[67,79] = max{p(w,δIHVdiff,[67,79]) | w ∈ (Wt)
79
t=67, δIHVdiff ∈ Î} be the

maximum success probability of all p(w,δIHVdiff,[67,79]).

4. For each w ∈ (Wt)
79
t=67, let Nw be the number of target δIHVdiff with high

success probability (where α = 0.90):

Nw =
∣∣∣{δIHVdiff ∈ Î

∣∣∣ p(w,δIHVdiff,[67,79]) ≥ p[67,79] · α
}∣∣∣ .

5. Let Nmax = maxw∈(Wt)79t=67
Nw and

W[67,79] =
{
w ∈ (Wt)

79
t=67

∣∣ Nw = Nmax
}

be the set of all w for which Nw = Nmax.

38. See Section 7.5.7, p. 154.
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6. Now we determine the set of target δIHVdiff values:

Ĩ =
{
δIHVdiff ∈ Î

∣∣∣ ∃w ∈W[67,79] : p(w,δIHVdiff,[67,79] ≥ p[67,79] · α
}
.

The value α influences the obtained average success probability over steps 67, . . . , 79
and the obtained Nmax. A smaller value for α can increase Nmax (thus providing
a speedup for the first near-collision attack) at the cost of a lower average success
probability (thus increasing the complexity of both the first and second near-collision
attacks).

For our near-collision attack we have found the highest success probability over
I4 = [67, 79] to be p[67,79] ≈ 2−19.2. This proves the value of Section 7.5.8 as 2−20.4

approximates the highest success probability over I4 = [67, 79] allowing only working
state differences as prescribed by the disturbances in the disturbance vector. Thus
Section 7.5.8 provided a speed up of a factor of about 21.2. We have found a set of
message difference vectors such that Nmax = 6 and Ĩ presented in Table 7-5 consists
of 192 values for δIHVdiff. This implies that the success probability over I4 of our
first near-collision attack is 6 · p[67,79] ≈ 2−16.6.

We analyze the first interval to determine the set of optimal values for Λ with
(almost) the highest success probability. After constructing differential paths us-
ing this set, we are limited to one specific Λ-value and only then we can determine

I0 =
{
(211 + 24 − 22, 26, 231, 21, 231),

(212 + 23 + 21, 27, 0, 21, 231),

(212 + 24 − 21, 27, 0, 21, 231),

(211 + 29 + 24 − 22, 26 + 24, 231, 21, 231),

(212 + 29 + 23 + 21, 27 + 24, 0, 21, 231),

(212 + 29 + 24 − 21, 27 + 24, 0, 21, 231)
}
;

I1 = I0 ∪
{
(212 + 211 + 24 − 22, 27 + 26, 231, 21, 231),

(212 + 211 + 29 + 24 − 22, 27 + 26 + 24, 231, 21, 231)
}
;

I2 =
{
(v1 − c · 25, v2, v3, v4, v5)

∣∣ (vi)
5
i=1 ∈ I1, c ∈ {0, 1}

}
;

I3 =
{
(v1 + c · 23, v2, v3, v4, v5)

∣∣ (vi)
5
i=1 ∈ I2, c ∈ {0, 1}

}
;

I4 =
{
(v1 − c · 213, v2 − c · 28, v3, v4, v5)

∣∣ (vi)
5
i=1 ∈ I3, c ∈ {0, 1}

}
;

I5 =
{
(v1 − c · 29, v2 − c · 24, v3, v4, v5)

∣∣ (vi)
5
i=1 ∈ I4, c ∈ {0, 1}

}
;

Ĩ =
{
(v1, v2, v3, v4 − c · 22, v5)

∣∣ (vi)
5
i=1 ∈ I5, c ∈ {0, 1}

}
;

The resulting set Ĩ is the set of 192 target δIHVdiff values. Note that some of the target δIHVdiff
values can be constructed in several manners in the above sets, otherwise the cardinality of Ĩ would
be (6 + 2) · 25 = 256. Furthermore, for any δIHVdiff ∈ Ĩ also −δIHVdiff ∈ Ĩ.

Table 7-5: SHA-1 near-collision attack target δIHVdiff values
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the corresponding optimal set of message difference vectors. Although it would be
possible to use the analysis in Section 7.5.10 to possibly obtain even higher success
probabilities, it diverts from the differences prescribed by local collisions which may
lead to a higher number of bitconditions in the first round and thus a lower amount
of freedom. Cf. our differential path in Table 7-6 (p. 169) uses local collisions over
steps 10, . . . , 19 and has very few bitconditions over these steps, even though it has
been constructed algorithmically as in Section 7.4.3. We leave it to future research
to determine whether the analysis in Section 7.5.10 can provide an improvement. For
now, we directly use the analysis in Section 7.5.9 and do the following:

1. We apply the analysis in Section 7.5.9 over I1 = [20, 32] to determine the set J of
possible Λ together with the success probabilities p(w,Λ,[20,32]) for w ∈ (Wt)

32
t=20

and Λ ∈ J .

2. Let p[20,32] = max{p(w,Λ,[20,32]) | w ∈ (Wt)
32
t=20,Λ ∈ J } be the maximum success

probability of all p(w,Λ,[20,32]).

3. Let J̃ = {Λ | ∃w ∈ (Wt)
32
t=20 : p(w,Λ,[20,32]) = p[20,32]} be the set of optimal

values for Λ.

7.6.4 Constructing differential paths

We use our method from Section 7.4 to construct valid differential paths over the first
round. The five connecting steps as in Section 7.4.4 are 3, 4, 5, 6 and 7. The forward
differential path construction in Section 7.4.2 does not have a sufficient amount of
freedom when lower connecting steps are chosen. For higher connecting steps, the
many bitconditions around the connecting steps easily conflict with message mod-
ification techniques and the fulfillment of the message bitrelations over the last 64
steps.

In order to construct a valid first round differential path for our near-collision
attack, we need sets of forward and backward partial differential paths. The forward
partial differential paths are forward extensions up to step t = 2 of the trivial dif-
ferential path defined by δIHVin = 0. The backward partial differential paths are
created using the set of optimal values for Λ and are then extended backwards. For
each value Λ = (∆Qi)

20
i=16 we directly obtain a partial differential path consisting of

bitconditions q16, . . . , q20 derived from ∆Q16, . . . ,∆Q20 as in Table 6-1. These partial
differential paths are extended backwards down to step t = 8.

Finally, we used Algorithm 7-1 and these sets of forward and backward partial
differential paths to search for valid first round differential paths. The full differential
path that we selected for our near-collision attack is shown in Table 7-6.

7.6.5 Second round bitconditions

Now that we have a full differential path we are bound to a specific value for Λ.
Moreover, the bitconditions of this differential path may also affect steps in round
two. For the purpose of early stopping techniques and tunnels, we also desire sufficient
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Table 7-6: SHA-1 near-collision differential path - round 1

t Bitconditions: qt[31] . . . qt[0] ∆Wt

−4,−3,−2 ........ ........ ........ ........
−1 ...1.... ........ ........ ....0...
0 .^.0.1.. .....0.1 ...00.10 .1..1..1 {1, 26, 27}
1 .0.+^-^^ ^^^^^1^0 ^^^11^10 .0..1.+0 {4, 30, 31}
2 1-...+-- -------- -------- --.-1.+0 {2, 3, 4, 26, 28, 29, 31}
3 .-.-.0.1 11111111 11110++1 +-1-00-0 {2, 26, 27, 28, 29}
4 .-...1.0 11111111 1111-+++ ++0.1.+1 {1, 3, 4, 26, 27, 28, 29, 31}
5 .-...0.. ........ ......0. .+.+10+0 {4, 29}
6 .-.+.... ........ ......01 100-.0+. {2, 3, 4, 26, 29}
7 -1...1.. ........ ........ ...0.0.. {2, 4, 26, 27, 29, 30, 31}
8 1.1-.1.. ........ ........ .....1.. {1, 26, 27}
9 ..-..0.. ........ ........ ........ {4, 30, 31}
10 ^...00.. ........ ........ .......1 {2, 3, 4, 26, 28, 29, 31}
11 ..-.1... ........ ........ .......0 {2, 26, 27, 29}
12 0-..1... ........ ........ ......!. {3, 4, 26, 27, 28, 29, 31}
13 +..01... ........ ........ ........ {4, 28, 29, 31}
14 ..-1.... ........ ........ ......!. {2, 3}
15 +.0.1... ........ ........ ......!^ {4, 27, 28, 29, 31}
16 +-0.0... ........ ........ ......!. {3, 4, 27}
17 +..1.... ........ ........ ......^. {4, 27, 28, 29, 30}
18 -.+0.... ........ ........ ........ {2, 4, 27}
19 -....... ........ ........ ........ {4, 28, 29, 30}
20 ..+..... ........ ........ ........

Note that we use the compact notation for the BSDRs ∆Wt (see Section 2.1.3) and the bitconditions
from Table B-1.

bitconditions up to the last working state variable Qi that may be corrected by
tunnels. In our case we desire sufficient bitconditions up to Q25.

For this purpose we define extra bitconditions in Table 7-7 for the second round
boolean function of SHA-1.

Table 7-7: Round two bitconditions for SHA-1.

qt[i] condition on (Qt[i],Q′
t[i]) direct/indirect direction

r Qt[i] = Q′
t[i] = RL(Qt−1, 30)[i] indirect backward

u Qt[i] = Q′
t[i] = RR(Qt+1, 30)[i] indirect forward

R Qt[i] = Q′
t[i] = RL(Qt−1, 30)[i] indirect backward

U Qt[i] = Q′
t[i] = RR(Qt+1, 30)[i] indirect forward

s Qt[i] = Q′
t[i] = RL(Qt−2, 30)[i] indirect backward

c Qt[i] = Q′
t[i] = RR(Qt+2, 30)[i] indirect forward

S Qt[i] = Q′
t[i] = RL(Qt−2, 30)[i] indirect backward

C Qt[i] = Q′
t[i] = RR(Qt+2, 30)[i] indirect forward

To obtain the desired sufficient bitconditions for our near-collision attack we first
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implemented our near-collision attack without second round bitconditions and tunnels
that can correct Q19 and up. We used this preliminary attack to find and store many
message block pairs that follow our first round differential path and the disturbance
vector up to step 32, that is, all message block pairs that result in δQ29 = δQ30 =
δQ31 = δQ32 = δQ33 = 0. For each message block pair we can derive the differential
path it follows up to step 32 and thereby bitconditions up to Q33. We are interested
in the set of bitconditions up to Q25 that occurred most frequently over all found
message block pairs found. Our resulting set of bitconditions q19, . . . , q25 is shown in
Table 7-8.

Table 7-8: SHA-1 near-collision differential path - round two bitconditions

t Bitconditions: qt[31] . . . qt[0] ∆Wt

19 -...s... ........ ........ ........
20 ..+.r... ........ ........ ........ {2, 3, 4, 27, 28, 29, 31}
21 ^.r.s... ........ ........ ........ {27, 29, 30, 31}
22 ..+.r... ........ ........ ........ {2, 28, 29, 31}
23 -...s... ........ ........ .......! {4, 27, 28, 30}
24 .-+.R... ........ ........ ........ {2, 3, 28, 29, 31}
25 ..rSS... ........ ........ ........

Note that we use the compact notation for the BSDRs ∆Wt (see Section 2.1.3) and the bitconditions
from Table B-1.

7.6.6 Finding optimal message bitrelations

Finding the optimal message bitrelations is split over five intervals: I0 = [0, 19], I1,
I2, I3 and I4. For the first round we define W[0,19] = {(σ(∆Ŵi))

19
i=0} where as before

∆Ŵi is the message difference in step i from the differential paths in Table 7-6 and
Table 7-8. For the last interval we already have found the optimal set W[67,79].

For the interval I2 = [33, 52] we simply apply the analysis of Section 7.5.5 resulting
in the sets A33,52 = {(P,S)} where P is trivial and S consists of pairs (w, pw,[33,52]).
Let p[33,52] = max(w,p)∈S p be the maximum over all such pw,[33,52]. Now we have
found the optimal set of message difference vectors over the interval I2:

W[33,52] = {w | (w, p) ∈ S, p = p[33,52]}.

The interval I3 = {53, . . . , 60} is treated analogously to I2 resulting in the set W[53,60].
To determine the optimal set of message difference vectors over the interval I1 =

[20, 32] we apply the analysis of Section 7.5.9 with the following restrictions due to
the bitconditions and message differences found in Tables 7-6 and 7-8:

• Let Qbc,i = {∆Q̂i} for i ∈ {−4, . . . , 25} where ∆Q̂i follows from the differential
bitconditions in qi. UseQbc,i for the setsQi for i ∈ {−4, . . . , 25} in Section 7.5.9.
For i ∈ {26, 33}, use the sets Qc,u,i for Qi for some value of u. In our case u = 7
suffices.
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• Let ∆F̂i be the boolean function differences that are implied by the bitconditions
q−4, . . . , q25 for i ∈ {0, . . . , 26}. We add the restriction ∆Ft = ∆F̂t in step 8 of
Algorithm 7-3 for t ∈ {20, . . . , 26}.

• For i ∈ {0, . . . , 24}, we restrict Wi to the single value {σ(∆Ŵi)} where ∆Ŵi is
the message difference from the differential paths in Table 7-6 and Table 7-8.

Let Â20,32 be the resulting set of Algorithm 7-3 under these three added restrictions.
For each w ∈ (Wt)

32
t=20 we define its success probability under the restriction of our

bitconditions as follows:

pbc,w,[20,32] =
∑

(P,S)∈Â20,32

∑
(w′,p)∈S
w=w′

p.

This naturally leads to the maximum probability p[20,32] = maxw pbc,w,[20,32] and the
optimal set of message difference vectors W[20,32] over interval I1:

W[20,32] =
{
w ∈ (Wt)

32
t=20

∣∣ pbc,w,[20,32] = p[20,32]
}
.

Now we translate each of the sets W[0,19], W[20,32], W[33,52], W[53,60] and W[67,79] to
message bitrelations on the message words (Wt)

79
t=0 associated with M of the message

block pair (M,M ′). These message bitrelations are of the form

79∑
t=0

31∑
b=0

ai,t,b ·Wt[b] = ci mod 2

where ai,t,b, ci ∈ {0, 1}. Together they can also be written as a matrix equation
A · x = c over F2 where x ∈ F32·80

2 represents the bits Wt[b] for t ∈ {0, . . . , 79} and
b ∈ {0, . . . , 31}.

For (tb, te) ∈ {(0, 19), (20, 32), (33, 52), (53, 60), (67, 79)}, we do the following. For
each ŵ = (δŴi)

te
i=tb
∈ W[tb,te] we define the set Vŵ as the set of all (Wi)

79
i=0 ∈ Z80

232

that are compatible with ŵ:

(Wi ⊕DWi)−Wi = δŴi, for i ∈ {tb, . . . , te}.39

Let the set V =
∪
w∈W[tb,te]

Vw consist of all (Wt)
79
t=0 ∈ Z80

232 that are compatible with
some w ∈W[tb,te].

Choose natural mappings from Z16
232 to F32·80

2 and from Z80
232 to F32·80

2 . Let V ′
be the set consisting of all elements of V mapped to F32·80

2 . We search for an affine

39. Note that for t ∈ {0, . . . , 79} and b ∈ {0, . . . , 31} if t /∈ {tb, . . . , te} or DWt[b] = 0 or b = 31 then
the bit Wt[b] is a free bit in Vŵ, i.e., for (Wi)

79
i=0 ∈ V also (W̃i)

79
i=0 ∈ V where W̃t = Wt ⊕ 2b and

W̃i = Wi for i ̸= t. This implies that in practice we only need to consider those bits Wt[b] for which
t ∈ {tb, . . . , te} and b ̸= 31 and DWt[b] = 1.
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subspace y + U ⊆ V ′ which is as large as possible. For our near-collision attack this
affine subspace y + U is simply found by random trials where a random y ∈ V ′ is
selected and beginning with U = ∅. For randomly selected v and w from V ′ for which
v−w /∈ U , we add v−w to the span of U if and only if y+ span(U , v−w) ⊆ V ′. This
is repeated until we can no longer add elements to U in this manner. If |U| ≥ |V ′|/2
for the resulting y and U then this affine subspace is optimal. Otherwise, we repeat
this construction several times in the hope of finding a larger affine subspace.

Having found an affine subspace y + U ⊆ V ′, we determine the orthogonal com-
plement U⊥ of the subspace U . Choose any basis of U⊥ of size k and let the k rows
of the matrix A[tb,te] ∈ Fk×(32·80)2 consist of the k basis vectors of U⊥. It follows that
x ∈ U ⇔ A[tb,te] · x = 0 and thus

x ∈ y + U ⇔ A[tb,te] · x = A[tb,te] · y.

Hence, the matrix equation A[tb,te] ·x = c[tb,te] where c[tb,te] = A[tb,te] · y describes the
desired sufficient message bitrelations over the interval [tb, te].

We present the message bitrelations of our near-collision attack for the last three
rounds in Table 7-9. The message bitrelations for the first round can directly be
read from Table 7-6: if b ̸= 31 then ∆Wt[b] = −1 and ∆Wt[b] = +1 imply the
message bitrelations Wt[b] = 1 and Wt[b] = 0, respectively. As ∆Wt[31] = −1 and
∆Wt[31] = +1 both result in δmt = 231, no message bitrelations on bit position 31
are necessary.

The matrix equations found as above for W[0,19], W[20,32], W[33,52], W[53,60] and
W[67,79] can be combined into a single matrix equation A[0,79] ·x = c[0,79] that defines
our message search space. It remains to reduce this matrix equation over the 32 · 80
message words bits to a matrix equation over the 512 message block bits using the
message expansion relation. Let the message expansion be described by the matrix
ME such that ME ·m = w where w ∈ F80·32

2 is the expanded message generated by
m ∈ F16·32

2 under the chosen natural mappings from Z16
232 to F32·16

2 and from Z80
232 to

F32·80
2 . Then the message bitrelations over the 512 message block bits is described by

the matrix equation:

(A[0,79] ·ME) · x = c[0,79], x ∈ F32·16
2 .

We use Gaussian elimination to obtain message bitrelations such that bitrelations on
mt[b] are expressed in terms of the bits of m0, . . . ,mt−1 and mt[i] for i < b.

It may happen that these message bitrelations conflict and that there are no
solutions to the above matrix equation. Since the first round has almost as many
message bitrelations as the other three rounds together, one can try to use a different
first round differential path with other message differences in Section 7.6.4.
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Table 7-9: SHA-1 near-collision rounds 2-4 message expansion conditions

W20[2] = 0 W20[3] = 0 W20[4] = 1
W20[27] = 1 W20[28] = 0 W20[29] = 1
W21[27] = 1 W21[29] = 0 W21[30] = 0
W22[2] = 1 W22[28] = 0 W22[29] = 0
W23[4] = 0 W23[27] = 0 W23[28] = 0 W23[30] = 1
W24[2] = 1 W24[3] = 0 W24[28] = 0 W24[29] = 1
W25[27] = 0 W25[30] = 1
W26[28] = 1 W26[29] = 0

W27[4] +W29[29] = 1 W27[27] +W27[28] = 1 W27[29] = 0
W28[4] +W32[29] = 0 W28[27] = 1 W28[28] = 0

W36[4] +W44[29] = 0 W38[4] +W44[29] = 1 W39[30] +W44[29] = 0
W40[3] +W44[29] = 1 W40[4] +W44[29] = 0 W41[29] +W41[30] = 0
W42[28] +W44[29] = 1 W43[4] +W47[29] = 0 W43[28] +W44[29] = 1
W43[29] +W44[29] = 0 W44[28] +W44[29] = 1 W45[29] +W47[29] = 0
W46[29] +W47[29] = 0 W48[4] +W52[29] = 0 W50[29] +W52[29] = 0
W51[29] +W52[29] = 0

W54[4] +W60[29] = 1 W56[4] +W60[29] = 0 W56[29] +W60[29] = 1
W57[29] +W60[29] = 1 W59[29] +W60[29] = 0

W67[0] +W72[30] = 1 W68[5] +W72[30] = 0 W70[1] +W71[6] = 1
W71[0] +W76[30] = 1 W72[5] +W76[30] = 0 W73[2] +W78[0] = 1
W74[1] +W75[6] = 1 W74[7] +W78[0] = 0 W75[1] +W76[6] = 1
W76[0] +W76[1] = 1 W76[3] +W77[8] = 1 W77[1] +W77[2] = 1

7.6.7 Basic collision search

The first step is to find an identical-prefix block such that IHV bitconditions q−4, . . .,
q0 for our near-collision attack are satisfied. This is done by simply trying random
blocks until one is found that satisfies these bitconditions. Since there are 14 such
bitconditions, this step has average complexity 214 SHA-1 compressions.

Our near-collision algorithm can roughly be divided into three parts. The first
part searches for message blocks that fulfill all bitconditions up to q16 and all message
bitrelations. The second part exploits message modification techniques, in our case
tunnels, to find message blocks that fulfill all bitconditions up to q25. The third part
simply applies the message block difference, computes IHVout and IHV ′out and checks
whether the resulting δIHVout is one of the target δIHVdiff values. The first part is
discussed below, the second part is discussed in Section 7.6.8 and the third part needs
no further explanation.

The first part consists of 16 steps t = 0, . . . , 15. The working state Q−4 =
Q′−4, . . . , Q0 = Q′0 is initialized using the IHVin resulting from the identical-prefix
block. Each step t = 0, . . . , 15 does the following given values Q−4, . . . , Qt and
m0, . . . ,mt−1:
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1. Let R be the set of message bitrelations that use multiple bits of mt and let
B ⊆ {0, . . . , 31} be the set of bit positions b such that mt[b] is used in some
message bitrelation in R. If R = ∅ then continue at step 2. Otherwise, for each
of the possible values (m̂t[b])b∈B that satisfy all message bitrelations in R we
perform steps 2 through 6.

2. The message bitrelations imply target bit values for mt. Let mmask′,t and mval′,t
be words such that:

(mt ⊕mval′,t) ∧mmask′,t = 0 ⇔ mt satisfies all bitrelations not in R.

We define mmask,t and mval,t using mmask′,t, mval′,t, B and (m̂t[b])b∈B :

mmask,t[b] =

{
mmask′,t[b] if b /∈ B;

1 if b ∈ B;

mval,t[b] =

{
mval′,t[b] if b /∈ B;

m̂t[b] if b ∈ B.

It follows that (mt⊕mval,t)∧mmask,t = 0 implies that mt satisfies all bitrelations.

3. The bitconditions qt+1 using the given values Qt and Qt−1 imply target bit
values for Qt+1. Let Qmask,t+1 and Qval,t+1 be words such that

(Qt+1 ⊕Qval,t+1) ∧Qmask,t+1 = 0 ⇔ Qt+1 satisfies qt+1.

4. Let C = mmask,t ⊕ Qmask,t+1 be the mask whose ‘1’-bits describe bit positions
b where either Qt+1[b] can be used to correct mt[b] or vice-versa.

5. If w(Qmask,t+1 ∧C) > w(mmask,t ∧C) then the number of uncorrectable bits in
Qt+1 that have to be satisfied by trial is larger than the number of such bits in
mt. We therefore iterate over correct values for Qt+1 and test for correct values
of mt:

(a) Let Qfixed,t+1 = (Qval,t+1 ∧Qmask,t+1)⊕ (mval,t ∧C ∧Qmask,t+1) consist of
the target bit values in Qval,t+1 and the complemented bit values in mval,t
that can be corrected.

(b) For all Qt+1 such that (Qt+1 ⊕ Qfixed,t+1) ∧ (C ∨ Qmask,t+1) = 0 do the
following:

i. Compute

Ft = ft(Qt−1, RL(Qt−2, 30), RL(Qt−3, 30)),

mt = Qt+1 −RL(Qt, 5)−RL(Qt−4, 30)− Ft −ACt.
ii. If (mt⊕mval,t)∧mmask,t∧C ̸= 0 then mt does not satisfy the message

bitrelations on some bit b which is uncorrectable (C[b] = 0). We
continue at (b).
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iii. We correct bits in mt if necessary. Let Z = (mt ⊕mval,t) ∧ C be the
mask of bits that need correction.

iv. Set Q̂t+1 = Qt+1 ⊕ Z and m̂t = mt ⊕ Z.
v. Proceed to the next step t+1 using the corrected values Q̂t+1 and m̂t

and continue at (b) afterwards.
6. Otherwise w(Qmask,t+1∧C) ≤ w(mmask,t∧C) and we iterate over correct values

for mt and test for correct values of Qt+1:

(a) Let mfixed,t = (mval,t ∧mmask,t) ⊕ (Qval,t+1 ∧ C ∧mmask,t) consist of the
target bit values in mval,t and the complemented bit values in Qval,t+1 that
can be corrected.

(b) For all mt such that (mt ⊕mfixed,t) ∧ (C ∨mmask,t) = 0 do the following:
i. Compute

Ft = ft(Qt−1, RL(Qt−2, 30), RL(Qt−3, 30)),

Qt+1 = RL(Qt, 5) +RL(Qt−4, 30) + Ft +ACt +mt.

ii. If (Qt+1 ⊕ Qval,t+1) ∧ Qmask,t+1 ∧ C ̸= 0 then Qt+1 does not satisfy
the bitconditions qt+1 on some bit b which is uncorrectable (C[b] = 0).
We continue at (b).

iii. We correct bits in Qt+1 if necessary. Let
Z = (Qt+1 ⊕Qval,t+1) ∧ C

be the mask of bits that need correction.
iv. Set Q̂t+1 = Qt+1 ⊕ Z and m̂t = mt ⊕ Z.
v. Proceed to the next step t+1 using the corrected values Q̂t+1 and m̂t

and continue at (b) afterwards.
For now the last step t = 16 sets m′i = mi⊕DWi for i ∈ {0, . . . , 15} and tests whether
δIHVout given by

δIHVout = SHA1Compress(IHVin, (m
′
i)

15
i=0)− SHA1Compress(IHVin, (mi)

15
i=0)

matches one of the target δIHVdiff values.
The correctness of the corrections made using C and Z above is shown here for

the case handled in step 4. The case handled in step 5 works analogously, where the
roles of mt and Qt+1 are interchanged. For some b ∈ {0, . . . , 31}, let Qt+1[b] be an
otherwise free bit and let mt[b] be restricted: Qmask,t+1[b] = 0 and mmask,t+1[b] = 1.
Using C in step 4(b), the value of Qt+1[b] is fixed to the value Qfixed,t+1[b] = mval,t[b].

Suppose mt[b] = 0 does not satisfy mval,t[b] = 1. As Qt+1[b] = mval,t[b] = 0, this
can easily be corrected without affecting other bits by adding 2b to mt and Qt+1. This
correction maintains the equation mt = Qt+1−RL(Qt, 5)−RL(Qt−4, 30)−Ft−ACt
implied by the SHA-1 step function. Suppose mt[b] = 1 does not satisfy mval,t[b] = 0.
Then similarly, since Qt+1[b] = 1, we can correct this without affecting other bits by
subtracting 2b from mt and Qt+1. Note that both cases only flip bit b and no other
bits, exactly what is done using Z in 4(b)iii and 4(b)iv.
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Table 7-10: SHA-1 near-collision tunnels

r Tunnels
17 (Q1[7], Q15[12], Q16[17])
18 (Q1[7], Q13[10]), (Q14[7]), (Q14[8]), (Q14[9]),

(Q15[9]), (Q15[10]), (Q15[12])
19 (Q15[5]), (Q15[6]), (Q15[7]), (Q15[8])
21 (Q10[6])
22 (Q7[7], Q15[6])
23 (Q7[6]), (Q7[8])

These are the tunnels that are used in our near-collision attack at step r. Note that each tuple
describes a tunnel through the working state bits that are changed. In principle a working state
bit Qi[j] is always changed as ∆Qi[j] = +1, except if that working state bit has been changed
before by a tunnel (e.g., Q1[7] in step 18). Another exception is (Q12[6]) for which ∆Q12[6] = −1 is
used so that that tunnel’s message conditions could be combined with those of other tunnels. The
additional bitconditions and message conditions used for these tunnels are presented in Table 7-11
and Table 7-12, respectively.

7.6.8 Tunnels

Similar to the tunnels for MD5, we use tunnels to speed up our near-collision search
by modifying a message block pair (M,M ′) that fulfills all bitconditions up to some
qk and all message bitrelations of Section 7.6.6. This modification from (M,M ′) to
(M̂, M̂ ′) is such that (M̂, M̂ ′) also fulfills all bitconditions up to qk and all message
bitrelations of Section 7.6.6. In this section we use differences not between M and
M ′, but rather between M and M̂ . For only this section we denote X̂ − X and
(X̂[b]−X[b])31b=0 by δX and ∆X, respectively, where X and X̂ are associated variables
in the computation of SHA1Compress of M and M̂ , respectively.

A tunnel consists of a controlled change in the first 16 steps which results in a
change somewhere in the next 16 steps. The controlled change is in fact a local
collision using message differences

δmt = 2b, δmt+1 = −2b+5 mod 32,

δmt+2 = δmt+3 = δmt+4 = 0 and δmt+5 = −2b+30 mod 32.

We allow no carries in the working state difference. The tunnel requires therefore the
following bitconditions:

Qt+1[b] = Q′t+1[b] = 0, Qt−1[b+ 2 mod 32] = Qt−2[b+ 2 mod 32],

Qt+2[b− 2 mod 32] = 0 and Qt+3[b− 2 mod 32] = 1.

Evidently, a tunnel must be compatible with our near-collision attack so far. This
implies that the bitconditions required for a tunnel must be compatible with the
bitconditions of the near-collision attack with respect to the first message block. For
instance, the bitcondition Qt[b] = 0 is compatible with qt[b] =‘.’, qt[b] =‘0’ and
counter-intuitively also with qt[b] =‘+’.
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Furthermore, the message differences may not break the message bitrelations of
our near-collision attack. We search for values ∆mt, ∆mt+1 and ∆mt+5 such that
σ(∆mi) = δmi for i ∈ {t, t+ 1, t+ 5} and for all message bitrelations

15∑
i=0

31∑
j=0

ci,j ·mi[j] = a mod 2

we have that these message differences do not break the message bitrelation:

∑
i∈{t,t+1,t+5}

31∑
j=0

ci,j ·∆mi[j] = 0 mod 2.

Most of the time there is only a single value for each of these ∆mi that is interesting for
practical use40, which directly implies additional message bitrelations: ∆mi[j] = +1
implies mi[j] = 0 and ∆mi[j] = −1 implies mi[j] = 1, except for ∆mi[31] ̸= 0 for
which no additional message bitrelations are necessary. If for any of the ∆mi there
are multiple interesting values then we do not use message bitrelations. Instead, we
test at step i whether adding δmi to mi results in one of the interesting ∆mi.

Tunnel message bitrelations are only a precondition when applying the tunnel,
after which they do not have to be fulfilled anymore. Thus a tunnel may not break the
original message bitrelations from Section 7.6.6 but also may not break any message
bitrelations from other tunnels that are used later on in our near-collision search
algorithm.

Since the tunnel’s message bitdifferences in the first 16 steps have been decided
on, we can determine the possible message bitdifferences in the next steps t = 16, . . ..
Since ∆mt, ∆mt+1 and ∆mt+5 are not always uniquely determined, neither are the
possible message bitdifferences in steps 16, . . .. An important aspect of a tunnel is the
first step s > 16 for which the possible message differences δms are non-zero. Instead
of using a tunnel at step s, i.e., after the verification whether qs is satisfied, we use a
tunnel at the highest step r ≥ s such that with almost certainty the tunnel does not
affect any bit Qi[j] with qi[j] ̸= ‘.’ for i ∈ {16, . . . r}. The choice of r implies that
the tunnel with probability not almost 0 affects at least one bit Qr+1[b] for which
qr+1[b] ̸=‘.’. Depending on the tunnel used there may be an exactly predictable
change in Qr+1 or the change may be not so predictable. If there is an exactly
predictable change in Qr+1 then as a speed up we can do a quick test whether the
new Qr+1 satisfies qr+1 before actually applying the tunnel and fully recomputing
steps s, . . . , r.

For some tunnels we use the following modifications of the description above:

40. In this case we only find a ∆mi ‘interesting’ if w(∆mi) = 1 or if there is an ‘interesting’ ∆m̂i

such that w(∆mi) = w(∆m̂i) + 1. This choice allows a very efficient check for a given mi whether
adding δmi to mi results in one of the ‘interesting’ ∆mi: either using message bitrelations or a
simple check of the form (mi ∧X) ̸= Y . Naturally if this does not lead to any ‘interesting’ ∆mi, we
use only that allowed ∆mi with the lowest weight.
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Table 7-11: SHA-1 near-collision tunnel bitconditions

t Bitconditions: qt[31] . . . qt[0]

−1 ...1.... ........ ......1. ....0...
0 .^.0.1.. .....0.1 ...00.10 .1..1..1
1 .0.+^-^^ ^^^^^1^0 ^^^11^10 00..1.+0
2 1-...+-- -------- -------- --0-1.+0
3 .-.-.0.1 11111111 11110++1 +-1-00-0
4 .-...1.0 11111111 1111-+++ ++0.1.+1
5 .-...0.. ........ ......01 1+.+10+0
6 .-.+.... ........ .....^01 100-.0+.
7 -1...1.. ........ .......0 0000.0..
8 1.1-.1.. ........ ........ .00001..
9 ..-..0.. ........ ......^^ .1111...
10 ^...00.. ........ ........ 000....1
11 ..-.1... ........ .......^ ..00...0
12 0-..1... ........ ...^.... .1110.!.
13 +..01... ........ .....0.0 ...0..0.
14 ..-1.... ........ .......0 ...1..1.
15 +.0.1... ........ ........ .0....0^

The additional bitconditions used for the tunnels are underlined.

• Restricting the set of ∆mi for i ∈ {t, t+1, t+5} to the ones with lowest weight
if this leads to a higher value of r.

• Restricting the set of ∆mi for i ∈ {t, t+1, t+5} to the ones with lowest weight
may also have as result that the first two message differences after step 15 are
of the form: ∆ms[b] = ±1 and ∆ms+1[b + 5 mod 32] = ±1 and ∆ms[i] =
∆ms+1[j] = 0 for all other bits i ̸= b and j ̸= b+5 mod 32. In that case, adding
the message bitrelation ms[b] + ms+1[b + 5 mod 32] = 1 mod 2 may also lead
to a higher value of r as then ms+1[b + 5 mod 32] forms a correction for the
disturbance caused by ms[b].

• For t ≥ 13, not all of the three bitconditions

Qt−1[b+ 2 mod 32] = Qt−2[b+ 2 mod 32],

Qt+2[b− 2 mod 32] = 0 and Qt+3[b− 2 mod 32] = 1

are strictly necessary for the first 16 steps. We remove not strictly necessary
bitconditions if the removal does not lead to a lower value of r.

• Even though two separate tunnels cannot be used when both break some of the
message bitrelations, if they break exactly the same set of message bitrelations
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Table 7-12: SHA-1 near-collision tunnel message conditions

W0 ∧ (29 − 27) ̸= (29 − 27)
W1[12] = 1

W5 ∧ (210 − 25) ̸= 0
W6[10] = 0

W7[10] =W7[11] =W7[12] =W7[13] = 1
W9[6] =W9[7] = 0

W10[11] =W10[12] = 1
W11[4] =W11[5] =W11[6] =W11[7]

W12 ∧ (210 − 28) ̸= 0, W12[10] =W12[11] = 0
W13[15] = 1

W14[4] =W14[5] = 1, W14[6] = 0
W15[11] = 1

Note that the expression (2x − 2y) with x > y denotes a word for which the only ‘1’-bits occur at
bit positions y, . . . , x− 1.

then they can be used simultaneously. Similarly, a set of n > 2 separate tunnels
may be used simultaneously if each of the message bitrelations is broken by an
even number of tunnels from this set.

• For t < 14, if a tunnel breaks only message bitrelations over m14 and m15 then
that tunnel can be used to speed up steps 14 and 15 instead of higher steps.
Such a tunnel can be used in our near-collision search algorithm at step 14 (or 15
if it does not break message bitrelations over m14) before mval′,14 (or mval′,15) is
determined. Since such tunnels were not considered at the time of implementing
our near-collision attack, these tunnels may lead to an improvement of our near-
collision attack.

The tunnels that we use in our near-collision are described in Table 7-10. The
additional bitconditions and message conditions they required are presented in Ta-
ble 7-11 and Table 7-12, respectively. For more details on how these tunnels are used
in the implementation of our near-collision attack we refer to [HC]. We like to note
that even with the added conditions from the tunnels, there are at least 40 bits of
freedom left in the 512-bit message space (taking into account the IHVin conditions,
but ignoring the degrees of freedom from the identical IHVin) so that many solutions
should exist for any given IHVin.

7.6.9 Verification of correctness and runtime complexity

Although so far we were unable to find actual near-collision blocks using our near-
collision attack, we show how to verify the correctness of our implementation and its
runtime complexity. The implementation of our near-collision attack can be retrieved
by checking out a copy of the hashclash source repository at Google Code [HC] using
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the Subversion client svn41:

svn checkout http://hashclash.googlecode.com/svn/trunk/ .

The C++ source code of our near-collision attack can be found in the following
subdirectory:

src/diffpathcollfind_sha1/collfind.cpp .
After all tunnels have been exploited, we the function step_16_33() to compute

all remaining steps up to step 32 for both messages M and M ′ and to verify whether
Q′i = Qi for i ∈ {29, . . . , 33}. Although uncommented for performance reasons, this
function can at this point call the function check40() for a secondary check that
Q′i = Qi for i ∈ {29, . . . , 33} and thus that our implementation works correctly up
to this point. If Q′i = Qi for i ∈ {29, . . . , 33} then step_16_33() increases a counter
that allows us to determine the average complexity C0 of searching for blocks M and
M ′ that follow our disturbance vector up to step 32. Our implementation prints this
counter divided by the number of seconds as timeavg 40. We have determined in this
manner that C0 is equivalent to about 211.97 SHA-1 compressions on an Intel Core2
Duo Mobile T9400 operating on Windows 7. The runtime complexity is thus equal
to C0/p, where p is the probability that a message block pair (M,M ′) leads to one of
the target δIHVout values, assuming that Q′i = Qi for i ∈ {29, . . . , 33}.

To check whether the current message block pair (M,M ′) leads to one of the
target δIHVout values, the function check_nc() is called. There are four independent
intervals I1 = [0, 32], I2 = [33, 52], I3 = [53, 60] and I4 = [67, 79]. The first interval
is always successful whenever check_nc() is called. The other remaining intervals
[tb, te] require that Q′i = Qi for i ∈ {tb−4, . . . , tb}, i.e., that the previous intervals were
successful. For the second interval this condition is thus guaranteed when check_nc()
is called. We determine the probability p as the product of the success probabilities
over the last three intervals.

For each of the last three intervals we can verify their success probabilities exper-
imentally as follows. For interval [tb, te] let (Wt)

79
t=0 and (W ′t )

79
t=0 be the expanded

messages from M and M ′, respectively. Set Q−4, . . . , Q0 to the IHVin resulting from
the identical-prefix block using Equation 7.4 (see p. 119). Compute steps t = 0, . . . , te
for the message block M :

Ft = ft(Qt−1, RL(Qt−2, 30), RL(Qt−3, 30)),

Qt+1 = Ft +ACt +Wt +RL(Qt, 5) +RL(Qt−4, 30).

To more quickly determine the success probability, we assume that the previous in-
tervals were successful, i.e., we set Q′i to Qi for i ∈ {tb− 4, . . . , tb}. Then we compute
steps t = tb, . . . , te for the message block M ′:

F ′t = ft(Q
′
t−1, RL(Q

′
t−2, 30), RL(Q

′
t−3, 30)),

Q′t+1 = F ′t +ACt +W ′t +RL(Q′t, 5) +RL(Q′t−4, 30).

41. Subversion is a version control system: http://subversion.apache.org/

http://subversion.apache.org/
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For I2 and I3 the success probability of these intervals can thus be computed as the
probability that Q′i = Qi for i ∈ {te−3, . . . , te+1}. This probability is experimentally
approximated as y/x by counting the number of times x that check_nc() is called
and the number of times y that after the computations above Q′i = Qi for i ∈
{te − 3, . . . , te + 1}. For I4 we do the same except instead of using Q′i = Qi for i ∈
{te−3, . . . , te+1} as the success condition, we use the condition whether (RL(Q′i, ri)−
RL(Qi, ri))

80
i=76 is one of the target δIHVdiff values where ri = 30 for i ≤ 78 and ri = 0

otherwise (see also Equation 7.6, p. 119).
The experimentally approximated success probabilities of the intervals I2, I3 and

I4 are printed by our near-collision attack as the numbers avg 53 stats, avg 61
stats and avg 80 stats, respectively. The success probabilities are in this manner
estimated as Pr[I2] = 2−20.91, Pr[I3] = 2−8.00 and Pr[I4] = 2−16.65 which accurately
match the theoretical maximum success probabilities42 as determined by the differ-
ential cryptanalysis of Section 7.5. Since these success probabilities are non-zero, our
implementation also works correctly over steps t > 32. The runtime complexity of
our near-collision attack is hereby estimated in the number of SHA-1 compressions as

C0

Pr[I2] · Pr[I3] · Pr[I4]
≈ 211.97 · 220.91 · 28.00 · 216.65 = 257.53.

We have found an example message pair shown in Table 7-13 that satisfies our
differential path up to I4 (thus up to step 66), such message pairs can be found with
an average complexity of about 211.97 · 220.91 · 28.00 = 240.9 SHA-1 compressions.

42. Taking into account the speed-up factor Nmax = 6 for I4.
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Table 7-13: Example message pair each consisting of an identical-prefix block and a near-
collision block satisfying our differential path up to step 66.

First message
bc 7e 39 3a 04 70 f6 84 e0 a4 84 de a5 56 87 5a
cd df f9 c8 2d 02 01 6b 86 0e e7 f9 11 e1 84 18
71 bf bf f1 06 70 95 c9 ed 44 af ee 78 12 24 09
a3 b2 eb 2e 16 c0 cf c2 06 c5 20 28 10 38 3c 2b
73 e6 e2 c8 43 7f b1 3e 4e 4d 5d b6 e3 83 e0 1d
7b ea 24 2c 2b b6 30 54 68 45 b1 43 0c 21 94 ab
fb 52 36 be 2b c9 1e 19 1d 11 bf 8f 66 5e f9 ab
9f 8f e3 6a 40 2c bf 39 d7 7c 1f b4 3c b0 08 72

Second message
bc 7e 39 3a 04 70 f6 84 e0 a4 84 de a5 56 87 5a
cd df f9 c8 2d 02 01 6b 86 0e e7 f9 11 e1 84 18
71 bf bf f1 06 70 95 c9 ed 44 af ee 78 12 24 09
a3 b2 eb 2e 16 c0 cf c2 06 c5 20 28 10 38 3c 2b
7f e6 e2 ca 83 7f b1 2e fa 4d 5d aa df 83 e0 19
c7 ea 24 36 0b b6 30 44 4c 45 b1 5f e0 21 94 bf
f7 52 36 bc eb c9 1e 09 a9 11 bf 93 4a 5e f9 af
23 8f e3 72 f0 2c bf 29 d7 7c 1f b8 84 b0 08 62
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7.7 Chosen-prefix collision attack
Theorem 3.6 (p. 36) allows us to construct a chosen-prefix collision attack against
SHA-1 using the near-collision attack presented in Section 7.6. Given chosen prefixes
P and P ′, we append padding bit strings Sr and S′r such that the bit lengths of
P ||Sr and P ′||S′r are both equal to N · 512 −K, where N,K ∈ N+ and K is a later
to be defined constant value. Let IHVN−1 and IHV ′N−1 be the intermediate hash
values after processing the first (N − 1) · 512 bits of P ||Sr and P ′||S′r, respectively.
Furthermore, let B and B′ be the last 512−K bits of P ||Sr and P ′||S′r, respectively.

7.7.1 Birthday search

Section 6.5.2 and [vOW99] explain how to perform a birthday search. We need to
choose the birthday search space V and the birthday step function f : V → V . Based
on the 192 target δIHVdiff-values given in Table 7-5 (p. 167), we have chosen V and
f as follows:

V = Z213 × Z218 × Z231 × Z225 × Z232 ;

f(v) =

{
ϕ
(
SHA1Compress(IHVN−1, B||v)

)
if τ(v) = 0;

ϕ
(
SHA1Compress(IHV ′N−1, B′||v)− (0, 0, 0, 0, 231)

)
if τ(v) = 1,

where ϕ : Z5
232 → V and τ : V → {0, 1} are defined as

ϕ(a, b, c, d, e) =
(
(a[i])31i=19, (b[i])

31
i=14, (c[i])

30
i=0, (d[i])

31
i=7, e

)
;

τ(a, b, c, d, e) = w(a) mod 2.

These choices were made with the following considerations:
• The 192 target δIHVdiff-values are all of the form (a, b, µ · 231, ν · 21, 231), where
µ ∈ {0, 1}, ν ∈ {−1, 1}, and a, b ∈ Z232 .

• For all δIHVdiff-values (a, b, c, d, e), we have that a ∈ {−213, . . . , 213}. This
implies that with low probability adding a to a randomly chosen x ∈ Z232

affects bit position 19 and higher.

• For all δIHVdiff-values (a, b, c, d, e), we have that b ∈ {−28, . . . , 28}. This implies
that with low probability adding b to a randomly chosen x ∈ Z232 affects bit
position 14 and higher.

• For all δIHVdiff-values (a, b, c, d, e), we have that d ∈ {−21, 21}. This implies
that with low probability adding d to a randomly chosen x ∈ Z232 affects bit
position 7 and higher.

For a birthday search collision f(v) = f(w) with τ(v) ̸= τ(w), let (x, y) = (v, w) if
τ(v) = 1 and (x, y) = (w, v) otherwise. Then

IHV ′N = (a′, b′, c′, d′, e′) = SHA1Compress(IHV ′N−1, B′||x),
IHVN = (a, b, c, d, e) = SHA1Compress(IHVN−1, B||y).
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The resulting δIHVN = (δa, δb, δc, δd, δe) = IHV ′N − IHVN is of the form

• δa ∈
{
l −m

∣∣ l,m ∈ Z232 , (l[i])
31
i=19 = (m[i])31i=19

}
;

• δb ∈
{
l −m

∣∣ l,m ∈ Z232 , (l[i])
31
i=14 = (m[i])31i=14

}
;

• δc ∈
{
l −m

∣∣ l,m ∈ Z232 , (l[i])
30
i=0 = (m[i])30i=0

}
= {0, 231};

• δd ∈
{
l −m

∣∣ l,m ∈ Z232 , (l[i])
31
i=7 = (m[i])31i=7

}
;

• δe = 231, since e′ − 231 = e by definition of f and f(x) = f(y).

For each of the 192 target δIHVdiff we can determine the probability pδIHVdiff that
δIHVN = δIHVdiff. The sum of these 192 probabilities pδIHVdiff is approximately
2−33.46.

Therefore, a birthday search collision pair v, w with f(v) = f(w) has a probability
of q = 2−33.46−1 that τ(v) ̸= τ(w) and δIHVN is one of the 192 target δIHVdiff-values.
This implies that the expected birthday search complexity in SHA-1 compressions
(ignoring the cost of computing collision points) is√

π · |V |
2 · q

≈ 277.06.

Storing a single trail (beginpoint, endpoint, length) costs about 36 bytes. When using
2.5 · 36/q ≈ 240.95 bytes (about 2TB) then the expected complexity of generating
trails equals the expected complexity of computing the collision points. The expected
complexity of computing collision points can be made significantly lower by using more
memory. Hence, the overall expected birthday search complexity is approximately
277.1 SHA-1 compressions.

7.7.2 Near-collision block

Assume we have found bit strings Sb and S′b using the above birthday search such
that δIHVN is one of the 192 δIHVdiff-values, where IHVN and IHV ′N are the inter-
mediate hash values after processing the first 512 ·N bits of P ||Sr||Sb and P ′||S′r||S′b,
respectively. The remaining step is to execute a near-collision attack identical to
the second near-collision attack in a two-block identical-prefix collision attack as de-
scribed in Section 7.6.1. To construct this near-collision attack we follow the steps as
described in Section 7.6 with the following modifications:

• In Section 7.6.3 for I4, we set Î to −δIHVN in step 1. This leads to Nmax = 1
and a smaller set of optimal message difference vectors W[67,79].

• Instead of using the trivial differential path defined by δIHVin = 0 in Sec-
tion 7.6.4, we use the differential path q−4, . . . , q0 consisting of bitconditions
‘0’, ‘1’, ‘-’ and ‘+’ that match the values Q−4, . . . , Q0 and Q′−4, . . . , Q

′
0 as ini-

tialized by definition from IHVN and IHV ′N .
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Executing the constructed near-collision attack results in message blocks Sc and S′c
such that

SHA-1
(
P ||Sr||Sb||Sc

)
= SHA-1

(
P ′||S′r||S′b||S′c

)
.

7.7.3 Complexity

As mentioned in Section 7.6.1, an upper bound for the second near-collision attack in
a two-block identical-prefix collision attack is about 265.3 SHA-1 compressions. This
same upper bound also holds for the above near-collision attack. The near-collision
attack complexity is thus a factor of 211.8 smaller than the expected birthday search
cost of 277.1 SHA-1 compressions. Hence, the overall cost of a chosen-prefix collision
attack against SHA-1 is dominated by the expected 277.1 SHA-1 compressions required
to generate the birthday search trails. This complexity is currently infeasible and this
chosen-prefix collision attack against SHA-1 remains a theoretical attack.
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8.1 Extra line of defense
It has been known since 2004 and 2005 that MD5 and SHA-1 have weaknesses. In
Chapters 6 and 7 we have improved attacks against MD5 and SHA-1 and the future
will tell how far these attacks can be further improved. So it is clear that MD5 and
SHA-1 should be replaced by more secure hash functions such as SHA-2 or the upcom-
ing SHA-3 standard for all security purposes that depend on the collision resistance
of MD5 and SHA-1. Completely banishing all such occurrences of MD5 and SHA-1
in software and hardware might be desirable in light of this, but might very well be
impossible due to the high costs and effort required. Even replacing MD5 and SHA-1
in the security-wise most important software and hardware may be difficult due to
for instance compatibility issues. Therefore, the most likely scenario is the one that
we currently see with respect to MD5, namely that more secure hash functions such
as SHA-2 are used where possible however that MD5 and SHA-1 remain supported.

Except when MD5 and SHA-1 have been explicitly disallowed, this scenario still
leaves users vulnerable to collision attacks. The technique presented in this section
allows to add an extra line of defense in security applications by detecting collision
attacks. Obviously when given two messages that result in the same hash value,
it is almost certain that a collision attack is involved. The first MD5 collision at-
tack [WY05] could easily be detected by applying its specific message differences to
a message and checking whether a collision has occurred. Since other message dif-
ferences that lead to fast near-collision attacks were found and our differential path
construction algorithm was published, there is an infinite number of ways to con-
struct a collision attack and thereby making it impossible to check for all possible
collision attacks in this manner. Moreover, our chosen-prefix collision attack is com-
pletely undetectable in this manner since the message differences that alter the first
chosen-prefix into the second chosen-prefix cannot be guessed in general.

Our technique allows to efficiently detect collisions attacks for MD5 and SHA-1,
both identical-prefix collision attacks and chosen-prefix collision attacks, given only
one of the two colliding messages. It has been tested successfully in a simple proof
of concept plug-in for Microsoft’s Internet Explorer. For this test this plug-in detects
only chosen-prefix collisions in the certificate-chain of secure websites when connecting
to a secure web server before any sensitive information has been sent. It has been
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Figure 9: Principle of detecting near-collisions

successfully used to detect man-in-the-middle attacks using our rogue Certification
Authority described in Section 4.2.

8.2 Core principle
The core principle of our technique of detecting collision attacks is to detect the last
near-collision block of a collision attack and uses two key observations:

• There are only a small number of possible message block differences that may
lead to feasible near-collision attacks.

• All published MD5 and SHA-1 collision attacks use a differential path that at
some step has no differences at all in the working state, or in the case of MD5
it also can use differences (231, 231, 231, 231) (see [dBB93]).43

Due to these observations it is possible to check for collision attacks given only one
message of a colliding pair of messages.

For two colliding messages M and M ′, let (Mk,M
′
k) be the last near-collision

block pair of a collision attack. Let IHVk+1 and IHV ′k+1 be the intermediate hash
values just after applying the compression function to Mk and M ′k in the hash value
computation of M and M ′, respectively. It follows that

IHVk+1 = IHV ′k+1.

43. The reason for this is simple: these working state differences can be maintained at every step of
the 64 steps of MD5Compress with probability at least 1/2 if not 1.
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Suppose we are only given the message M , the message block differences δMk

and a step i after which the working state difference in the near-collision attack
should be either zero or, in the case of MD5, (231, 231, 231, 231). Then as illustrated
in Figure 9, we can easily compute IHVk+1 and IHV ′k+1 and test for the telltale
condition IHVk+1 = IHV ′k+1, even though both the second message M ′ and the
message block M ′k were not given.

The hash value computation ofM gives us values for IHVk, IHVk+1 andWSi which
is the working state before step i of the compression function applied to IHVk and Mk.
Since we know the message block differences and the working state differences, we
can determine the message block M ′k and the working state WS′i associated with the
message M ′ that collides with M . Computing steps i + 1, . . . , S of the compression
function using M ′k and WS′i, we obtain working states WS′i+1, . . . ,WS

′
S . As the step

function of MD5 and SHA-1 is reversible (see Section 5.4.1) we can also compute
working states WS′i−1, . . . ,WS′0. The value of IHV ′k can be derived from WS′0 and the
value of IHV ′k+1 can be computed from IHV ′k and WS′S . Finally, if IHV ′k+1 = IHVk+1

then we have confirmed that (Mk,M
′
k) is a near-collision block pair.

This principle leads to our collision detection algorithm presented in Algorithm 8-1
that works for any Merkle-Damgård hash function that uses a compression function in
Fmd4cf (see Section 5.3, p. 65). Let C be the number of possible combinations of values
for message block differences δB, step i and working state differences δWSi belonging
to a feasible near-collision attack. Then the runtime-complexity of Algorithm 8-1 for
a message M is approximately C +1 times the runtime-complexity of computing the
hash value of M .

The probability of a false positive is at least C ·2−L where L is the bit length of the
hash value, since IHV ′k+1 = IHVk+1 holds with probability 2−L for randomly selected
IHV ′k+1 and IHVk+1. The false positive probability may be higher when there exists
a differential path compatible with one of the combinations of δB, i and δWSi that
holds with probability less than 2−L.

8.3 Application to MD5
Algorithm 8-1 can be directly applied to MD5. What remains is to determine possible
combinations of values for message block differences δB, step i and working state
differences δWSi that belong to a feasible near-collision attack. The message block
differences are additive in Z232 and for each message block Mk the message block M ′k
can be either Mk + δB or Mk − δB. There are two different working state differences
δWSi that can be used for MD5, namely (0, 0, 0, 0) and (231, 231, 231, 231), written
more compactly as 0 and 231.

Used non-zero message block differences in published near-collision attacks are
(together with selected values for i and δWSi):

• δB = ±(δm11 = 215, δm4 = δm14 = 231) [WY05]: i = 44, δWS44 ∈ {0, 231};
• δB = ±(δm2 = 28, δm11 = 215, δm4 = δm14 = 231) [SSA+09b]: i = 44,
δWS44 ∈ {0, 231};
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Algorithm 8-1 Last near-collision block detection
This algorithm returns True if a near-collision attack is detected and False otherwise.
For a given message M , let M0, . . . ,MN−1 be the N message blocks that result from
the padding and the splitting of M by the hash function. For k ∈ {0, . . . , N − 1} do
the following:

1. Let IHVk be the intermediate hash value before the message block Mk is pro-
cessed.

2. Initialize the working state WS0 with IHVk, compute all S working states
WS1, . . . ,WSS and determine IHVk+1 using IHVk and WSS .

3. For each possible combination of values for message block differences δB, step i
and working state differences δWSi belonging to a feasible near-collision attack
do the following:

(a) Apply the message block differences δB to Mk to obtain M ′k.
(b) Apply the working state differences δWSi to WSi to obtain WS′i.
(c) Compute the working states WS′i−1, . . . ,WS′0 backwards.
(d) Compute the working states WS′i+1, . . . ,WS

′
S forward.

(e) Determine IHV ′k from WS′0 and IHV ′k+1 from IHV ′k and WS′S .
(f) If IHV ′k+1 = IHVk+1 then (Mk,M

′
k) is a near-collision block pair: return

True

4. Return False

• δB = ±(δm11 = 2b) for b ∈ {0, . . . , 30} [SLdW07c]: i = 44, δWS44 ∈ {0, 231};
• δB = (δm11 = 231) [SLdW07c]: i = 44, δWS44 ∈ {0, 231};
• δB = ±(δm5 = 210, δm10 = 231) [XF10]: i = 44, δWS44 ∈ {0, 231};
• δB = (δm8 = 231) [XLF08]: i = 44, δWS44 ∈ {0, 231};
• δB = ±(δm6 = 28, δm9 = δm15 = 231) [XFL08]: i = 37, δWS37 ∈ {0, 231};
• δB = ±(δm9 = 227, δm2 = δm12 = 231) [VJBT08]: i = 37, δWS37 ∈ {0, 231}.

Other possible non-zero message block differences taken from [XF09] and [XLF08]
are:

• δB = ±(δm4 = 220, δm7 = δm13 = 231): i = 44, δWS44 ∈ {0, 231};
• δB = ±(δm2 = 28): i = 37, δWS37 ∈ {0, 231};
• δB = ±(δm5 = 210, δm11 = 221): i = 44, δWS44 ∈ {0, 231};
• δB = ±(δm5 = 210, δm11 = 231): i = 44, δWS44 ∈ {0, 231};
• δB = (δm5 = 231, δm8 = 231): i = 44, δWS44 ∈ {0, 231};
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• δB = ±(δm2 = 28, δm14 = 231): i = 37, δWS37 ∈ {0, 231};
• δB = (δm4 = 231): i = 44, δWS44 ∈ {0, 231};
• δB = (δm5 = 231): i = 44, δWS44 ∈ {0, 231};
• δB = (δm14 = 231): i = 44, δWS44 ∈ {0, 231};
• δB = ±(δm4 = 225): i = 44, δWS44 ∈ {0, 231};
• δB = ±(δm5 = 210): i = 44, δWS44 ∈ {0, 231};
• δB = ±(δm8 = 225): i = 44, δWS44 ∈ {0, 231};
• δB = ±(δm11 = 221): i = 44, δWS44 ∈ {0, 231};
• δB = ±(δm14 = 216): i = 44, δWS44 ∈ {0, 231};
• δB = ±(δm4 = 220): i = 44, δWS44 ∈ {0, 231};
• δB = ±(δm6 = 28): i = 50, δWS50 ∈ {0, 231};
• δB = ±(δm9 = 227): i = 50, δWS50 ∈ {0, 231};
• δB = ±(δm5 = 210, δm9 = 227): i = 37, δWS37 ∈ {0, 231};
• δB = (δm5 = 231, δm11 = 231): i = 44, δWS44 ∈ {0, 231};
• δB = ±(δm8 = 231, δm11 = 221): i = 44, δWS44 ∈ {0, 231};
• δB = ±(δm8 = 225, δm13 = 231): i = 44, δWS44 ∈ {0, 231}.

The number of all combinations given in the two lists above is (36 · 4 + 2 · 2) + (16 ·
4+5 · 2) = 222. We do not guarantee that the lists of combinations given above form
the exhaustive list of all combinations that lead to feasible near-collision attacks.
Nevertheless, other combinations arising from future collision attacks can easily be
added to the above lists.

All published near-collision attacks require complex differential steps in the first
round, thereby requiring a high number of bitconditions, say at least 200. E.g., the
differential paths by Wang et al. require roughly 300 bitconditions (see Table 2-4 and
Table 2-6 on pages 28 and 30). This implies that the probability of a false positive is
dominated by the general C · 2−L term explained earlier. Hence, the probability of a
false positive is estimated as 222 · 2−128 and thus negligible.

Due to the pseudo-collision attack against MD5’s compression function by den
Boer and Bosselaers [dBB93], there is also a special near-collision attack with zero
message block differences and with δWSi = 231 for all i ∈ {0, . . . , 64}. One can test for
this pseudo-collision attack using δB = 0, i = 32 and δWS32 = 231. The probability of
a false positive is 2−48 which is not negligible. However, since it requires δWS0 = 231

and thus IHVin = 231, this pseudo-collision attack requires at least one other preceding
near-collision block to form a collision attack against MD5.

This observation calls for the following modification of Algorithm 8-1 for MD5 to
reduce the chance of a false positive to 222 · 2−128 · 2−48 for δB = 0. Whenever a
near-collision block is detected in step 3.(f) for the combination δB = 0, i = 32 and
δWS32 = 231 and before returning True, perform steps 1–4 of Algorithm 8-1 on the
previous message block Mk−1 using all combinations that have δB ̸= 0 and using
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the condition IHV ′k = IHVk + 231 instead of the condition IHV ′k = IHVk. If this
sub-instance of Algorithm 8-1 returns False then the main instance continues with
the next combination of δB, i and δWSi. Otherwise, the main instance returns True.

Given a message M , the average complexity to detect whether M is constructed
by a collision attack against MD5 using one of the given message differences is about
222 + 1 + 1 = 224 times the complexity of computing the MD5 hash of M .

This technique has been tested successfully in a simple proof of concept plug-in
for Microsoft’s Internet Explorer. For this test this plug-in detects only chosen-prefix
collisions in the certificate-chain of secure websites when connecting to a secure web
server before any sensitive information has been sent. It has been successfully used to
detect man-in-the-middle attacks using our rogue Certification Authority described
in Section 4.2.

8.4 Application to SHA-1
Algorithm 8-1 can be directly applied to SHA-1. Note that this is possible even though
no practical collision attacks against SHA-1 or actual colliding messages are known
yet. What remains is to determine possible combinations of values for message block
differences δB, step i and working state differences δWSi that belong to a feasible near-
collision attack. For SHA-1 the message block differences δB are given as Mk ⊕M ′k
which is the bitwise XOR of the message block pair (Mk,M

′
k) and can be derived

from a disturbance vector as (DWt)
15
t=0 (see Section 7.3.2). For disturbance vector

I(j, b) or II(j, b) there are no differences at step j + 8, hence to test for near-collision
block pair using this disturbance vector we use Algorithm 8-1 with the combination
(DWt)

15
t=0, i = j + 8 and δWSi = (0, 0, 0, 0, 0).

We arbitrarily choose all disturbance vectors (DVt)
79
t=0 in Appendix F where for

some u ∈ {0, . . . , 7} and ϵ ≤ 0.5 it holds that FDCu,20,ϵ((DVt)79t=0) ≥ 2−74:

I(46,0), I(48,0), I(49,0), I(50,0), I(51,0), I(48,2), I(49,2),
II(46,0), II(50,0), II(51,0), II(52,0), II(53,0), II(54,0), II(56,0).

Similar to the case of MD5, it is always possible to add extra disturbance vectors to
the above list in the future whenever it is believed it can lead to a feasible collision
attack. Ignoring the first round, each disturbance vector has a probability in the
order of 2−70 that a false positive occurs. Taking into account the complex differential
steps necessary in the first round, we can safely assume that the probability of a false
positive is negligible.

Given a message M , the average complexity to detect whether M is constructed
by one of the above possibly feasible collision attacks against SHA-1 is about 15 times
the complexity of computing the SHA-1 hash of M .



A MD5 compression function constants 193

A MD5 compression function constants

Table A-1: MD5 Addition and Rotation Constants and message block expansion.

t ACt RCt Wt

0 d76aa47816 7 m0

1 e8c7b75616 12 m1

2 242070db16 17 m2

3 c1bdceee16 22 m3

4 f57c0faf16 7 m4

5 4787c62a16 12 m5

6 a830461316 17 m6

7 fd46950116 22 m7

8 698098d816 7 m8

9 8b44f7af16 12 m9

10 ffff5bb116 17 m10

11 895cd7be16 22 m11

12 6b90112216 7 m12

13 fd98719316 12 m13

14 a679438e16 17 m14

15 49b4082116 22 m15

t ACt RCt Wt

16 f61e256216 5 m1

17 c040b34016 9 m6

18 265e5a5116 14 m11

19 e9b6c7aa16 20 m0

20 d62f105d16 5 m5

21 0244145316 9 m10

22 d8a1e68116 14 m15

23 e7d3fbc816 20 m4

24 21e1cde616 5 m9

25 c33707d616 9 m14

26 f4d50d8716 14 m3

27 455a14ed16 20 m8

28 a9e3e90516 5 m13

29 fcefa3f816 9 m2

30 676f02d916 14 m7

31 8d2a4c8a16 20 m12

t ACt RCt Wt

32 fffa394216 4 m5

33 8771f68116 11 m8

34 6d9d612216 16 m11

35 fde5380c16 23 m14

36 a4beea4416 4 m1

37 4bdecfa916 11 m4

38 f6bb4b6016 16 m7

39 bebfbc7016 23 m10

40 289b7ec616 4 m13

41 eaa127fa16 11 m0

42 d4ef308516 16 m3

43 04881d0516 23 m6

44 d9d4d03916 4 m9

45 e6db99e516 11 m12

46 1fa27cf816 16 m15

47 c4ac566516 23 m2

t ACt RCt Wt

48 f429224416 6 m0

49 432aff9716 10 m7

50 ab9423a716 15 m14

51 fc93a03916 21 m5

52 655b59c316 6 m12

53 8f0ccc9216 10 m3

54 ffeff47d16 15 m10

55 85845dd116 21 m1

56 6fa87e4f16 6 m8

57 fe2ce6e016 10 m15

58 a301431416 15 m6

59 4e0811a116 21 m13

60 f7537e8216 6 m4

61 bd3af23516 10 m11

62 2ad7d2bb16 15 m2

63 eb86d39116 21 m9
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B MD5 and SHA-1 bitconditions

Table B-1: Bitconditions for MD5 and SHA-1.

qt[i] condition on (Qt[i],Q′
t[i]) direct/indirect direction

. Qt[i] = Q′
t[i] direct

+ Qt[i] = 0, Q′
t[i] = 1 direct

- Qt[i] = 1, Q′
t[i] = 0 direct

0 Qt[i] = Q′
t[i] = 0 direct

1 Qt[i] = Q′
t[i] = 1 direct

^ Qt[i] = Q′
t[i] = Qt−1[i] indirect backward

v Qt[i] = Q′
t[i] = Qt+1[i] indirect forward

! Qt[i] = Q′
t[i] = Qt−1[i] indirect backward

y Qt[i] = Q′
t[i] = Qt+1[i] indirect forward

m Qt[i] = Q′
t[i] = Qt−2[i] indirect backward

w Qt[i] = Q′
t[i] = Qt+2[i] indirect forward

# Qt[i] = Q′
t[i] = Qt−2[i] indirect backward

h Qt[i] = Q′
t[i] = Qt+2[i] indirect forward

? Qt[i] = Q′
t[i] ∧ (Qt[i] = 1 ∨Qt−2[i] = 0) indirect backward

q Qt[i] = Q′
t[i] ∧ (Qt+2[i] = 1 ∨Qt[i] = 0) indirect forward

r Qt[i] = Q′
t[i] = RL(Qt−1, 30)[i] indirect backward

u Qt[i] = Q′
t[i] = RR(Qt+1, 30)[i] indirect forward

R Qt[i] = Q′
t[i] = RL(Qt−1, 30)[i] indirect backward

U Qt[i] = Q′
t[i] = RR(Qt+1, 30)[i] indirect forward

s Qt[i] = Q′
t[i] = RL(Qt−2, 30)[i] indirect backward

c Qt[i] = Q′
t[i] = RR(Qt+2, 30)[i] indirect forward

S Qt[i] = Q′
t[i] = RL(Qt−2, 30)[i] indirect backward

C Qt[i] = Q′
t[i] = RR(Qt+2, 30)[i] indirect forward

Note: these conditions are tailored for the boolean functions of MD5 and the first and second round
boolean function of SHA-1.
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C MD5 boolean function bitconditions
The four tables in this appendix correspond to the four rounds of MD5, i.e., 0 ≤ t <
16, 16 ≤ t < 32, 32 ≤ t < 48 and 48 ≤ t < 64. The ‘abc’ in each of the first columns
denotes the three differential bitconditions (qt[i], qt−1[i], qt−2[i]) for the relevant t and
0 ≤ i ≤ 31, with each table containing all 27 possible triples. Columns 2, 3, 4 contain
forward bitconditions FC(t, abc, g) for g = 0,+1,−1, respectively, and columns 5, 6, 7
contain backward bitconditions BC(t, abc, g) for those same g-values, respectively.
The parenthesized number next to a triple def is |Udef|, the amount of freedom left.
An entry is left empty if g /∈ Vt,abc. We refer to Section 6.2.2 for more details.
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C.1 Bitconditions applied to boolean function F

Table C-1: Round 1 (0 ≤ t < 16) bitconditions applied to boolean function F :

F (X,Y, Z) = (X ∧ Y )⊕ (X ∧ Z)

D.B. Forward bitconditions Backward bitconditions
abc g = 0 g = +1 g = −1 g = 0 g = +1 g = −1

... (8) ... (8) ... (8)

..+ (4) 1.+ (2) 0.+ (2) 1.+ (2) 0.+ (2)

..- (4) 1.- (2) 0.- (2) 1.- (2) 0.- (2)

.+. (4) 0+. (2) 1+. (2) 0+. (2) 1+. (2)

.++ (2) .++ (2) .++ (2)

.+- (2) 1+- (1) 0+- (1) 1+- (1) 0+- (1)

.-. (4) 0-. (2) 1-. (2) 0-. (2) 1-. (2)

.-+ (2) 0-+ (1) 1-+ (1) 0-+ (1) 1-+ (1)

.-- (2) .-- (2) .-- (2)
+.. (4) +.v (2) +10 (1) +01 (1) +^. (2) +10 (1) +01 (1)
+.+ (2) +0+ (1) +1+ (1) +0+ (1) +1+ (1)
+.- (2) +1- (1) +0- (1) +1- (1) +0- (1)
++. (2) ++1 (1) ++0 (1) ++1 (1) ++0 (1)
+++ (1) +++ (1) +++ (1)
++- (1) ++- (1) ++- (1)
+-. (2) +-0 (1) +-1 (1) +-0 (1) +-1 (1)
+-+ (1) +-+ (1) +-+ (1)
+-- (1) +-- (1) +-- (1)
-.. (4) -.v (2) -01 (1) -10 (1) -^. (2) -01 (1) -10 (1)
-.+ (2) -1+ (1) -0+ (1) -1+ (1) -0+ (1)
-.- (2) -0- (1) -1- (1) -0- (1) -1- (1)
-+. (2) -+0 (1) -+1 (1) -+0 (1) -+1 (1)
-++ (1) -++ (1) -++ (1)
-+- (1) -+- (1) -+- (1)
--. (2) --1 (1) --0 (1) --1 (1) --0 (1)
--+ (1) --+ (1) --+ (1)
--- (1) --- (1) --- (1)
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C.2 Bitconditions applied to boolean function G

Table C-2: Round 2 (16 ≤ t < 32) bitconditions applied to boolean function G:

G(X,Y, Z) = (Z ∧X)⊕ (Z ∧ Y )

D.B. Forward bitconditions Backward bitconditions
abc g = 0 g = +1 g = −1 g = 0 g = +1 g = −1

... (8) ... (8) ... (8)

..+ (4) .v+ (2) 10+ (1) 01+ (1) ^.+ (2) 10+ (1) 01+ (1)

..- (4) .v- (2) 01- (1) 10- (1) ^.- (2) 01- (1) 10- (1)

.+. (4) .+1 (2) .+0 (2) .+1 (2) .+0 (2)

.++ (2) 0++ (1) 1++ (1) 0++ (1) 1++ (1)

.+- (2) 1+- (1) 0+- (1) 1+- (1) 0+- (1)

.-. (4) .-1 (2) .-0 (2) .-1 (2) .-0 (2)

.-+ (2) 1-+ (1) 0-+ (1) 1-+ (1) 0-+ (1)

.-- (2) 0-- (1) 1-- (1) 0-- (1) 1-- (1)
+.. (4) +.0 (2) +.1 (2) +.0 (2) +.1 (2)
+.+ (2) +1+ (1) +0+ (1) +1+ (1) +0+ (1)
+.- (2) +0- (1) +1- (1) +0- (1) +1- (1)
++. (2) ++. (2) ++. (2)
+++ (1) +++ (1) +++ (1)
++- (1) ++- (1) ++- (1)
+-. (2) +-1 (1) +-0 (1) +-1 (1) +-0 (1)
+-+ (1) +-+ (1) +-+ (1)
+-- (1) +-- (1) +-- (1)
-.. (4) -.0 (2) -.1 (2) -.0 (2) -.1 (2)
-.+ (2) -0+ (1) -1+ (1) -0+ (1) -1+ (1)
-.- (2) -1- (1) -0- (1) -1- (1) -0- (1)
-+. (2) -+0 (1) -+1 (1) -+0 (1) -+1 (1)
-++ (1) -++ (1) -++ (1)
-+- (1) -+- (1) -+- (1)
--. (2) --. (2) --. (2)
--+ (1) --+ (1) --+ (1)
--- (1) --- (1) --- (1)
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C.3 Bitconditions applied to boolean function H

Table C-3: Round 3 (32 ≤ t < 48) bitconditions applied to boolean function H:

H(X,Y, Z) = X ⊕ Y ⊕ Z

D.B. Forward bitconditions Backward bitconditions
abc g = 0 g = +1 g = −1 g = 0 g = +1 g = −1

... (8) ... (8) ... (8)

..+ (4) .v+ (2) .y+ (2) ^.+ (2) !.+ (2)

..- (4) .y- (2) .v- (2) !.- (2) ^.- (2)

.+. (4) .+w (2) .+h (2) m+. (2) #+. (2)

.++ (2) .++ (2) .++ (2)

.+- (2) .+- (2) .+- (2)

.-. (4) .-h (2) .-w (2) #-. (2) m-. (2)

.-+ (2) .-+ (2) .-+ (2)

.-- (2) .-- (2) .-- (2)
+.. (4) +.v (2) +.y (2) +^. (2) +!. (2)
+.+ (2) +.+ (2) +.+ (2)
+.- (2) +.- (2) +.- (2)
++. (2) ++. (2) ++. (2)
+++ (1) +++ (1) +++ (1)
++- (1) ++- (1) ++- (1)
+-. (2) +-. (2) +-. (2)
+-+ (1) +-+ (1) +-+ (1)
+-- (1) +-- (1) +-- (1)
-.. (4) -.y (2) -.v (2) -!. (2) -^. (2)
-.+ (2) -.+ (2) -.+ (2)
-.- (2) -.- (2) -.- (2)
-+. (2) -+. (2) -+. (2)
-++ (1) -++ (1) -++ (1)
-+- (1) -+- (1) -+- (1)
--. (2) --. (2) --. (2)
--+ (1) --+ (1) --+ (1)
--- (1) --- (1) --- (1)
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C.4 Bitconditions applied to boolean function I

Table C-4: Round 4 (48 ≤ t < 64) bitconditions applied to boolean function I:

I(X,Y, Z) = Y ⊕ (X ∨ Z)

D.B. Forward bitconditions Backward bitconditions
abc g = 0 g = +1 g = −1 g = 0 g = +1 g = −1

... (8) ... (8) ... (8)

..+ (4) 1.+ (2) 01+ (1) 00+ (1) 1.+ (2) 01+ (1) 00+ (1)

..- (4) 1.- (2) 00- (1) 01- (1) 1.- (2) 00- (1) 01- (1)

.+. (4) 0+1 (1) .+q (3) 0+1 (1) ?+. (3)

.++ (2) 0++ (1) 1++ (1) 0++ (1) 1++ (1)

.+- (2) 0+- (1) 1+- (1) 0+- (1) 1+- (1)

.-. (4) .-q (3) 0-1 (1) ?-. (3) 0-1 (1)

.-+ (2) 0-+ (1) 1-+ (1) 0-+ (1) 1-+ (1)

.-- (2) 0-- (1) 1-- (1) 0-- (1) 1-- (1)
+.. (4) +.0 (2) +01 (1) +11 (1) +.0 (2) +01 (1) +11 (1)
+.+ (2) +.+ (2) +.+ (2)
+.- (2) +0- (1) +1- (1) +0- (1) +1- (1)
++. (2) ++1 (1) ++0 (1) ++1 (1) ++0 (1)
+++ (1) +++ (1) +++ (1)
++- (1) ++- (1) ++- (1)
+-. (2) +-1 (1) +-0 (1) +-1 (1) +-0 (1)
+-+ (1) +-+ (1) +-+ (1)
+-- (1) +-- (1) +-- (1)
-.. (4) -.0 (2) -11 (1) -01 (1) -.0 (2) -11 (1) -01 (1)
-.+ (2) -1+ (1) -0+ (1) -1+ (1) -0+ (1)
-.- (2) -.- (2) -.- (2)
-+. (2) -+1 (1) -+0 (1) -+1 (1) -+0 (1)
-++ (1) -++ (1) -++ (1)
-+- (1) -+- (1) -+- (1)
--. (2) --1 (1) --0 (1) --1 (1) --0 (1)
--+ (1) --+ (1) --+ (1)
--- (1) --- (1) --- (1)
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D MD5 chosen-prefix collision birthday search cost
In this appendix notation and variables are as in Section 6.5.2. The columns p, Ctr
and M denote the values − log2(pr,k,w), log2(Ctr(r, k, w)) and the minimum required
memory such that Ccoll(r, k, w,M) ≤ Ctr(r, k, w), respectively.

r = 3 w = 0 w = 1 w = 2 w = 3
k p Ctr M p Ctr M p Ctr M p Ctr M

0
4 34.01 51.33 2TB
8 33.42 53.03 748GB 31.31 51.98 174GB
12 34.01 55.33 2TB 32.42 54.53 374GB 30.55 53.6 103GB 28.24 52.44 21GB
16 31. 55.83 141GB 29.65 55.15 55GB 27.36 54.01 12GB 25.6 53.13 4GB
20 27.51 56.08 13GB 26.18 55.42 5GB 24.53 54.59 2GB 23.26 53.96 673MB
24 24.33 56.49 2GB 23.35 56. 714MB 22.17 55.41 315MB 21.19 54.92 160MB
28 21.11 56.88 152MB 20.56 56.6 103MB 19.98 56.32 70MB 19.57 56.11 52MB
32 17.88 57.26 17MB 17.88 57.27 17MB 17.89 57.27 17MB 17.88 57.27 17MB

r = 3 w = 4 w = 5 w = 6 w = 7
k p Ctr M p Ctr M p Ctr M p Ctr M

0 31.68 48.17 225GB 30.25 47.45 84GB 28.01 46.33 18GB
4 32.2 50.43 323GB 29.92 49.29 67GB 28.06 48.36 19GB 26.2 47.43 6GB
8 28.83 50.74 32GB 27.33 49.99 11GB 25.88 49.26 5GB 24.47 48.56 2GB
12 26.63 51.64 7GB 25.14 50.9 3GB 23.96 50.3 2GB 22.94 49.8 537MB
16 24.31 52.48 2GB 23.27 51.96 675MB 22.49 51.57 394MB 21.86 51.26 255MB
20 22.28 53.46 340MB 21.62 53.13 215MB 21.14 52.9 155MB 20.73 52.69 117MB
24 20.53 54.59 102MB 20.01 54.33 71MB 19.65 54.15 55MB 19.38 54.01 46MB
28 19.25 55.95 42MB 19.02 55.83 36MB 18.82 55.74 31MB 18.65 55.65 28MB
32 17.88 57.27 17MB 17.88 57.27 17MB 17.88 57.27 17MB 17.88 57.27 17MB
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r = 4 w = 0 w = 1 w = 2 w = 3
k p Ctr M p Ctr M p Ctr M p Ctr M

0 34. 49.33 2TB 30.19 47.42 81GB
4 33.42 51.04 749GB 30.36 49.51 90GB 27.59 48.12 14GB
8 35. 53.83 3TB 30.3 51.48 87GB 27.21 49.93 11GB 24.87 48.76 2GB
12 29.58 53.12 53GB 27.53 52.09 13GB 24.59 50.62 2GB 22.47 49.56 388MB
16 26.26 53.45 6GB 24.36 52.51 2GB 22.06 51.36 292MB 20.38 50.51 91MB
20 23.16 53.91 628MB 21.5 53.08 199MB 19.72 52.19 58MB 18.54 51.6 26MB
24 20.25 54.45 84MB 19.09 53.87 38MB 17.8 53.23 16MB 16.86 52.76 8MB
28 17.26 54.95 11MB 16.63 54.64 7MB 16.02 54.34 5MB 15.6 54.13 4MB
32 14.29 55.47 2MB 14.29 55.47 2MB 14.29 55.47 2MB 14.29 55.47 2MB

r = 4 w = 4 w = 5 w = 6 w = 7
k p Ctr M p Ctr M p Ctr M p Ctr M

0 26.98 45.81 9GB 24.45 44.55 2GB 22.14 43.4 310MB 20.33 42.49 88MB
4 24.95 46.8 3GB 22.82 45.73 493MB 21.04 44.84 144MB 19.55 44.1 52MB
8 22.63 47.64 432MB 20.92 46.79 133MB 19.58 46.12 53MB 18.56 45.61 26MB
12 20.67 48.66 112MB 19.41 48.03 47MB 18.45 47.55 24MB 17.71 47.18 15MB
16 19.08 49.86 37MB 18.19 49.42 21MB 17.56 49.1 13MB 17.08 48.86 10MB
20 17.66 51.16 14MB 17.09 50.87 10MB 16.7 50.67 8MB 16.39 50.52 6MB
24 16.25 52.45 6MB 15.82 52.24 4MB 15.54 52.09 4MB 15.33 51.99 3MB
28 15.31 53.98 3MB 15.09 53.87 3MB 14.93 53.79 3MB 14.78 53.72 2MB
32 14.29 55.47 2MB 14.29 55.47 2MB 14.29 55.47 2MB 14.29 55.47 2MB

r = 5 w = 0 w = 1 w = 2 w = 3
k p Ctr M p Ctr M p Ctr M p Ctr M

0 35. 49.83 3TB 31.2 47.92 161GB 27.13 45.89 10GB 23.74 44.2 938MB
4 33.42 51.04 749GB 28.47 48.56 25GB 24.63 46.64 2GB 21.58 45.12 210MB
8 28.61 50.63 27GB 25.61 49.13 4GB 22. 47.33 280MB 19.39 46.02 46MB
12 25.43 51.04 3GB 22.74 49.7 468MB 19.66 48.15 56MB 17.53 47.09 13MB
16 22.36 51.51 360MB 20.02 50.34 72MB 17.59 49.12 14MB 15.95 48.3 5MB
20 19.38 52.01 46MB 17.48 51.07 13MB 15.67 50.16 4MB 14.55 49.6 2MB
24 16.68 52.66 7MB 15.35 52. 3MB 14.06 51.36 2MB 13.17 50.91 1MB
28 13.92 53.29 2MB 13.22 52.93 1MB 12.61 52.63 1MB 12.21 52.43 1MB
32 11.2 53.92 1MB 11.2 53.93 1MB 11.2 53.92 1MB 11.2 53.93 1MB

r = 5 w = 4 w = 5 w = 6 w = 7
k p Ctr M p Ctr M p Ctr M p Ctr M

0 20.53 42.59 102MB 18.03 41.34 18MB 16.17 40.41 5MB 14.92 39.79 3MB
4 18.94 43.79 34MB 17. 42.82 9MB 15.57 42.11 4MB 14.53 41.59 2MB
8 17.27 44.96 11MB 15.79 44.22 4MB 14.75 43.7 2MB 14.01 43.33 2MB
12 15.92 46.28 5MB 14.84 45.75 2MB 14.09 45.37 2MB 13.56 45.11 1MB
16 14.8 47.73 2MB 14.06 47.35 2MB 13.55 47.1 1MB 13.18 46.92 1MB
20 13.79 49.22 1MB 13.31 48.98 1MB 12.99 48.82 1MB 12.76 48.7 1MB
24 12.64 50.64 1MB 12.29 50.47 1MB 12.07 50.36 1MB 11.91 50.28 1MB
28 11.95 52.3 1MB 11.76 52.2 1MB 11.62 52.14 1MB 11.5 52.07 1MB
32 11.2 53.92 1MB 11.2 53.93 1MB 11.2 53.92 1MB 11.2 53.93 1MB
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r = 6 w = 0 w = 1 w = 2 w = 3
k p Ctr M p Ctr M p Ctr M p Ctr M

0 31.2 47.92 161GB 26.73 45.69 8GB 21.78 43.22 241MB 18.14 41.4 20MB
4 28.18 48.42 20GB 23.89 46.27 2GB 19.56 44.11 52MB 16.46 42.55 6MB
8 24.66 48.66 2GB 21.17 46.91 158MB 17.37 45.01 12MB 14.79 43.72 2MB
12 21.67 49.16 224MB 18.6 47.62 27MB 15.43 46.04 3MB 13.4 45.03 1MB
16 18.82 49.74 31MB 16.21 48.43 6MB 13.74 47.2 1MB 12.23 46.44 1MB
20 16.03 50.34 5MB 13.97 49.31 2MB 12.2 48.43 1MB 11.18 47.92 1MB
24 13.54 51.1 1MB 12.11 50.38 1MB 10.86 49.75 1MB 10.04 49.35 1MB
28 11.03 51.84 1MB 10.28 51.47 1MB 9.69 51.17 1MB 9.33 50.99 1MB
32 8.56 52.6 1MB 8.56 52.6 1MB 8.56 52.6 1MB 8.56 52.6 1MB

r = 6 w = 4 w = 5 w = 6 w = 7
k p Ctr M p Ctr M p Ctr M p Ctr M

0 15.12 39.88 3MB 13.05 38.85 1MB 11.73 38.19 1MB 10.91 37.78 1MB
4 14.05 41.35 2MB 12.44 40.55 1MB 11.39 40.02 1MB 10.7 39.68 1MB
8 12.92 42.79 1MB 11.73 42.19 1MB 10.95 41.8 1MB 10.44 41.54 1MB
12 12.01 44.33 1MB 11.14 43.9 1MB 10.57 43.61 1MB 10.2 43.42 1MB
16 11.25 45.95 1MB 10.64 45.64 1MB 10.24 45.45 1MB 9.98 45.32 1MB
20 10.53 47.59 1MB 10.14 47.39 1MB 9.89 47.27 1MB 9.72 47.19 1MB
24 9.59 49.12 1MB 9.31 48.98 1MB 9.14 48.9 1MB 9.04 48.85 1MB
28 9.09 50.87 1MB 8.93 50.79 1MB 8.82 50.74 1MB 8.73 50.69 1MB
32 8.56 52.6 1MB 8.56 52.6 1MB 8.56 52.6 1MB 8.56 52.6 1MB

r = 7 w = 0 w = 1 w = 2 w = 3
k p Ctr M p Ctr M p Ctr M p Ctr M

0 26.82 45.73 8GB 22.2 43.43 323MB 17.02 40.83 9MB 13.4 39.02 1MB
4 24.02 46.34 2GB 19.68 44.16 56MB 15.16 41.9 3MB 12.18 40.41 1MB
8 21.1 46.88 151MB 17.23 44.94 11MB 13.37 43.01 1MB 10.97 41.81 1MB
12 18.32 47.49 22MB 14.96 45.8 3MB 11.82 44.24 1MB 9.98 43.31 1MB
16 15.67 48.16 4MB 12.87 46.76 1MB 10.48 45.56 1MB 9.13 44.89 1MB
20 13.1 48.88 1MB 10.93 47.79 1MB 9.26 46.95 1MB 8.35 46.5 1MB
24 10.82 49.74 1MB 9.32 48.99 1MB 8.15 48.4 1MB 7.43 48.04 1MB
28 8.56 50.6 1MB 7.78 50.22 1MB 7.23 49.94 1MB 6.91 49.78 1MB
32 6.34 51.5 1MB 6.34 51.5 1MB 6.34 51.5 1MB 6.34 51.5 1MB

r = 7 w = 4 w = 5 w = 6 w = 7
k p Ctr M p Ctr M p Ctr M p Ctr M

0 10.8 37.73 1MB 9.25 36.95 1MB 8.35 36.5 1MB 7.84 36.25 1MB
4 10.13 39.39 1MB 8.9 38.78 1MB 8.17 38.41 1MB 7.74 38.19 1MB
8 9.42 41.03 1MB 8.5 40.57 1MB 7.94 40.3 1MB 7.61 40.13 1MB
12 8.82 42.74 1MB 8.15 42.4 1MB 7.74 42.19 1MB 7.48 42.07 1MB
16 8.31 44.48 1MB 7.84 44.24 1MB 7.55 44.1 1MB 7.37 44.01 1MB
20 7.82 46.23 1MB 7.51 46.08 1MB 7.32 45.99 1MB 7.21 45.93 1MB
24 7.06 47.86 1MB 6.84 47.75 1MB 6.72 47.69 1MB 6.66 47.65 1MB
28 6.71 49.68 1MB 6.58 49.62 1MB 6.5 49.58 1MB 6.43 49.54 1MB
32 6.34 51.5 1MB 6.34 51.5 1MB 6.34 51.5 1MB 6.34 51.5 1MB
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r = 8 w = 0 w = 1 w = 2 w = 3
k p Ctr M p Ctr M p Ctr M p Ctr M

0 23.39 44.02 732MB 18.21 41.43 21MB 12.88 38.76 1MB 9.52 37.09 1MB
4 20.57 44.61 105MB 15.94 42.29 5MB 11.39 40.02 1MB 8.69 38.67 1MB
8 17.91 45.28 17MB 13.77 43.21 1MB 9.99 41.32 1MB 7.86 40.26 1MB
12 15.35 46. 3MB 11.78 44.22 1MB 8.79 42.72 1MB 7.17 41.91 1MB
16 12.91 46.78 1MB 10. 45.32 1MB 7.75 44.2 1MB 6.59 43.62 1MB
20 10.56 47.61 1MB 8.35 46.5 1MB 6.81 45.73 1MB 6.03 45.34 1MB
24 8.49 48.57 1MB 6.97 47.81 1MB 5.91 47.28 1MB 5.29 46.97 1MB
28 6.48 49.56 1MB 5.71 49.18 1MB 5.21 48.93 1MB 4.93 48.79 1MB
32 4.54 50.6 1MB 4.54 50.6 1MB 4.54 50.6 1MB 4.54 50.6 1MB

r = 8 w = 4 w = 5 w = 6 w = 7
k p Ctr M p Ctr M p Ctr M p Ctr M

0 7.45 36.05 1MB 6.37 35.51 1MB 5.8 35.23 1MB 5.5 35.08 1MB
4 7.06 37.85 1MB 6.18 37.42 1MB 5.71 37.18 1MB 5.45 37.05 1MB
8 6.63 39.64 1MB 5.96 39.31 1MB 5.6 39.12 1MB 5.39 39.02 1MB
12 6.26 41.46 1MB 5.77 41.21 1MB 5.49 41.07 1MB 5.34 40.99 1MB
16 5.94 43.29 1MB 5.59 43.12 1MB 5.39 43.02 1MB 5.28 42.97 1MB
20 5.61 45.13 1MB 5.38 45.01 1MB 5.25 44.95 1MB 5.18 44.92 1MB
24 5.01 46.83 1MB 4.85 46.75 1MB 4.77 46.71 1MB 4.73 46.69 1MB
28 4.78 48.71 1MB 4.68 48.67 1MB 4.62 48.64 1MB 4.58 48.62 1MB
32 4.54 50.6 1MB 4.54 50.6 1MB 4.54 50.6 1MB 4.54 50.6 1MB

r = 9 w = 0 w = 1 w = 2 w = 3
k p Ctr M p Ctr M p Ctr M p Ctr M

0 20.16 42.4 79MB 14.62 39.64 2MB 9.38 37.02 1MB 6.46 35.56 1MB
4 17.56 43.1 13MB 12.63 40.64 1MB 8.26 38.45 1MB 5.93 37.29 1MB
8 15.09 43.87 3MB 10.75 41.7 1MB 7.2 39.92 1MB 5.41 39.03 1MB
12 12.73 44.69 1MB 9.06 42.86 1MB 6.3 41.47 1MB 4.96 40.81 1MB
16 10.51 45.58 1MB 7.57 44.11 1MB 5.53 43.09 1MB 4.57 42.61 1MB
20 8.39 46.52 1MB 6.2 45.43 1MB 4.83 44.74 1MB 4.2 44.42 1MB
24 6.53 47.59 1MB 5.05 46.85 1MB 4.12 46.39 1MB 3.63 46.14 1MB
28 4.77 48.71 1MB 4.05 48.35 1MB 3.61 48.13 1MB 3.4 48.02 1MB
32 3.14 49.9 1MB 3.14 49.9 1MB 3.14 49.9 1MB 3.14 49.9 1MB

r = 9 w = 4 w = 5 w = 6 w = 7
k p Ctr M p Ctr M p Ctr M p Ctr M

0 4.95 34.8 1MB 4.25 34.45 1MB 3.92 34.28 1MB 3.76 34.21 1MB
4 4.73 36.69 1MB 4.15 36.4 1MB 3.87 36.26 1MB 3.74 36.2 1MB
8 4.49 38.57 1MB 4.04 38.35 1MB 3.82 38.24 1MB 3.72 38.18 1MB
12 4.28 40.47 1MB 3.94 40.3 1MB 3.78 40.21 1MB 3.69 40.17 1MB
16 4.09 42.37 1MB 3.85 42.25 1MB 3.73 42.19 1MB 3.67 42.16 1MB
20 3.88 44.27 1MB 3.72 44.19 1MB 3.64 44.15 1MB 3.6 44.13 1MB
24 3.42 46.04 1MB 3.32 45.99 1MB 3.27 45.96 1MB 3.25 45.95 1MB
28 3.28 47.97 1MB 3.21 47.93 1MB 3.18 47.92 1MB 3.16 47.9 1MB
32 3.14 49.9 1MB 3.14 49.9 1MB 3.14 49.9 1MB 3.14 49.9 1MB
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r = 10 w = 0 w = 1 w = 2 w = 3
k p Ctr M p Ctr M p Ctr M p Ctr M

0 17.28 40.97 11MB 11.47 38.06 1MB 6.54 35.6 1MB 4.18 34.42 1MB
4 14.87 41.76 3MB 9.77 39.21 1MB 5.73 37.19 1MB 3.87 36.26 1MB
8 12.6 42.63 1MB 8.18 40.42 1MB 4.97 38.81 1MB 3.56 38.11 1MB
12 10.45 43.55 1MB 6.79 41.72 1MB 4.34 40.49 1MB 3.3 39.97 1MB
16 8.45 44.55 1MB 5.57 43.11 1MB 3.8 42.22 1MB 3.06 41.86 1MB
20 6.56 45.61 1MB 4.48 44.56 1MB 3.31 43.98 1MB 2.83 43.74 1MB
24 4.92 46.79 1MB 3.53 46.09 1MB 2.78 45.71 1MB 2.42 45.53 1MB
28 3.44 48.04 1MB 2.78 47.72 1MB 2.44 47.54 1MB 2.28 47.47 1MB
32 2.13 49.39 1MB 2.13 49.39 1MB 2.13 49.39 1MB 2.13 49.39 1MB

r = 10 w = 4 w = 5 w = 6 w = 7
k p Ctr M p Ctr M p Ctr M p Ctr M

0 3.17 33.91 1MB 2.77 33.71 1MB 2.6 33.62 1MB 2.53 33.59 1MB
4 3.06 35.85 1MB 2.72 35.69 1MB 2.58 35.62 1MB 2.52 35.59 1MB
8 2.94 37.8 1MB 2.68 37.66 1MB 2.56 37.61 1MB 2.51 37.58 1MB
12 2.83 39.74 1MB 2.63 39.64 1MB 2.54 39.6 1MB 2.5 39.58 1MB
16 2.73 41.69 1MB 2.59 41.62 1MB 2.52 41.59 1MB 2.49 41.57 1MB
20 2.61 43.63 1MB 2.51 43.58 1MB 2.47 43.56 1MB 2.45 43.55 1MB
24 2.28 45.47 1MB 2.22 45.44 1MB 2.2 45.42 1MB 2.19 45.42 1MB
28 2.2 47.43 1MB 2.16 47.41 1MB 2.15 47.4 1MB 2.14 47.39 1MB
32 2.13 49.39 1MB 2.13 49.39 1MB 2.13 49.39 1MB 2.13 49.39 1MB

r = 11 w = 0 w = 1 w = 2 w = 3
k p Ctr M p Ctr M p Ctr M p Ctr M

0 14.72 39.68 2MB 8.77 36.71 1MB 4.34 34.5 1MB 2.61 33.63 1MB
4 12.5 40.58 1MB 7.36 38. 1MB 3.8 36.23 1MB 2.45 35.55 1MB
8 10.43 41.54 1MB 6.06 39.36 1MB 3.3 37.98 1MB 2.29 37.47 1MB
12 8.49 42.57 1MB 4.94 40.8 1MB 2.89 39.77 1MB 2.15 39.4 1MB
16 6.7 43.68 1MB 3.98 42.32 1MB 2.54 41.59 1MB 2.02 41.34 1MB
20 5.06 44.86 1MB 3.15 43.9 1MB 2.22 43.44 1MB 1.89 43.27 1MB
24 3.64 46.15 1MB 2.42 45.54 1MB 1.86 45.25 1MB 1.63 45.14 1MB
28 2.44 47.54 1MB 1.91 47.28 1MB 1.66 47.16 1MB 1.56 47.11 1MB
32 1.49 49.07 1MB 1.49 49.07 1MB 1.49 49.07 1MB 1.49 49.07 1MB

r = 11 w = 4 w = 5 w = 6 w = 7
k p Ctr M p Ctr M p Ctr M p Ctr M

0 2.02 33.33 1MB 1.82 33.24 1MB 1.75 33.2 1MB 1.73 33.19 1MB
4 1.97 35.31 1MB 1.81 35.23 1MB 1.75 35.2 1MB 1.72 35.19 1MB
8 1.92 37.29 1MB 1.79 37.22 1MB 1.74 37.2 1MB 1.72 37.19 1MB
12 1.87 39.26 1MB 1.77 39.21 1MB 1.73 39.19 1MB 1.72 39.19 1MB
16 1.83 41.24 1MB 1.75 41.2 1MB 1.73 41.19 1MB 1.72 41.18 1MB
20 1.76 43.21 1MB 1.71 43.18 1MB 1.7 43.17 1MB 1.69 43.17 1MB
24 1.55 45.1 1MB 1.52 45.09 1MB 1.52 45.08 1MB 1.51 45.08 1MB
28 1.52 47.09 1MB 1.5 47.08 1MB 1.49 47.07 1MB 1.49 47.07 1MB
32 1.49 49.07 1MB 1.49 49.07 1MB 1.49 49.07 1MB 1.49 49.07 1MB
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r = 12 w = 0 w = 1 w = 2 w = 3
k p Ctr M p Ctr M p Ctr M p Ctr M

0 12.45 38.55 1MB 6.53 35.59 1MB 2.78 33.71 1MB 1.66 33.16 1MB
4 10.43 39.54 1MB 5.39 37.02 1MB 2.45 35.55 1MB 1.59 35.12 1MB
8 8.55 40.6 1MB 4.37 38.51 1MB 2.15 37.4 1MB 1.52 37.09 1MB
12 6.81 41.73 1MB 3.51 40.08 1MB 1.91 39.28 1MB 1.46 39.06 1MB
16 5.24 42.95 1MB 2.8 41.72 1MB 1.71 41.18 1MB 1.41 41.03 1MB
20 3.85 44.25 1MB 2.2 43.43 1MB 1.54 43.09 1MB 1.35 43. 1MB
24 2.66 45.66 1MB 1.69 45.17 1MB 1.32 44.98 1MB 1.2 44.93 1MB
28 1.75 47.2 1MB 1.37 47.01 1MB 1.23 46.94 1MB 1.18 46.92 1MB
32 1.15 48.9 1MB 1.15 48.9 1MB 1.15 48.9 1MB 1.15 48.9 1MB

r = 12 w = 4 w = 5 w = 6 w = 7
k p Ctr M p Ctr M p Ctr M p Ctr M

0 1.38 33.02 1MB 1.3 32.98 1MB 1.28 32.97 1MB 1.28 32.96 1MB
4 1.36 35.01 1MB 1.3 34.98 1MB 1.28 34.97 1MB 1.28 34.96 1MB
8 1.35 37. 1MB 1.3 36.97 1MB 1.28 36.97 1MB 1.28 36.96 1MB
12 1.33 38.99 1MB 1.29 38.97 1MB 1.28 38.96 1MB 1.27 38.96 1MB
16 1.31 40.98 1MB 1.29 40.97 1MB 1.28 40.96 1MB 1.27 40.96 1MB
20 1.29 42.97 1MB 1.27 42.96 1MB 1.26 42.96 1MB 1.26 42.95 1MB
24 1.17 44.91 1MB 1.16 44.91 1MB 1.16 44.91 1MB 1.16 44.91 1MB
28 1.16 46.91 1MB 1.16 46.9 1MB 1.15 46.9 1MB 1.15 46.9 1MB
32 1.15 48.9 1MB 1.15 48.9 1MB 1.15 48.9 1MB 1.15 48.9 1MB

r = 13 w = 0 w = 1 w = 2 w = 3
k p Ctr M p Ctr M p Ctr M p Ctr M

0 10.45 37.55 1MB 4.73 34.69 1MB 1.78 33.22 1MB 1.2 32.93 1MB
4 8.62 38.64 1MB 3.86 36.26 1MB 1.62 35.13 1MB 1.18 34.91 1MB
8 6.93 39.79 1MB 3.09 37.87 1MB 1.47 37.06 1MB 1.15 36.9 1MB
12 5.41 41.03 1MB 2.47 39.56 1MB 1.35 39. 1MB 1.13 38.89 1MB
16 4.06 42.35 1MB 1.98 41.31 1MB 1.26 40.95 1MB 1.12 40.88 1MB
20 2.91 43.78 1MB 1.59 43.12 1MB 1.18 42.92 1MB 1.1 42.87 1MB
24 1.96 45.31 1MB 1.27 44.96 1MB 1.08 44.87 1MB 1.04 44.85 1MB
28 1.33 46.99 1MB 1.11 46.88 1MB 1.05 46.85 1MB 1.03 46.84 1MB
32 1.03 48.84 1MB 1.03 48.84 1MB 1.03 48.84 1MB 1.03 48.84 1MB

r = 13 w = 4 w = 5 w = 6 w = 7
k p Ctr M p Ctr M p Ctr M p Ctr M

0 1.1 32.88 1MB 1.08 32.87 1MB 1.08 32.86 1MB 1.08 32.86 1MB
4 1.1 34.87 1MB 1.08 34.87 1MB 1.08 34.86 1MB 1.08 34.86 1MB
8 1.09 36.87 1MB 1.08 36.87 1MB 1.08 36.86 1MB 1.08 36.86 1MB
12 1.09 38.87 1MB 1.08 38.87 1MB 1.08 38.86 1MB 1.08 38.86 1MB
16 1.09 40.87 1MB 1.08 40.86 1MB 1.08 40.86 1MB 1.08 40.86 1MB
20 1.08 42.86 1MB 1.07 42.86 1MB 1.07 42.86 1MB 1.07 42.86 1MB
24 1.03 44.84 1MB 1.03 44.84 1MB 1.03 44.84 1MB 1.03 44.84 1MB
28 1.03 46.84 1MB 1.03 46.84 1MB 1.03 46.84 1MB 1.03 46.84 1MB
32 1.03 48.84 1MB 1.03 48.84 1MB 1.03 48.84 1MB 1.03 48.84 1MB
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E Rogue CA Construction

Table E-1: The to-be-signed part of our end-user X.509-certificate. Available from:
http://www.win.tue.nl/hashclash/rogue-ca/downloads/real.cert.tbs.bin.

Bytes (hex) offset description
30 82 03 9b 0–3 header
a0 03 02 01 02 4–8 version number
02 03 09 cf c7 9–13 serial number (‘643015’)
30 0d 06 09 2a 86 48 86 14–28 signature algorithm
f7 0d 01 01 04 05 00 (‘md5withRSAEncryption’)
30 5a 31 0b 30 09 06 03 29 – 120 issuer Distinguished Name
55 04 06 13 02 55 53 31 (countryName: ‘US’,
1c 30 1a 06 03 55 04 0a organizationName:
13 13 45 71 75 69 66 61 ‘Equifax Secure Inc.’,
78 20 53 65 63 75 72 65 commonName:
20 49 6e 63 2e 31 2d 30 ‘Equifax Secure Global eBusiness CA’)
2b 06 03 55 04 03 13 24
45 71 75 69 66 61 78 20
53 65 63 75 72 65 20 47
6c 6f 62 61 6c 20 65 42
75 73 69 6e 65 73 73 20
43 41 2d 31
30 1e 17 0d 30 38 31 31 121–152 validity
30 33 30 37 35 32 30 32 (‘3 November 2008 07:52:02 UTC ’
5a 17 0d 30 39 31 31 30 –’3 November 2009 07:52:02 UTC ’)
34 30 37 35 32 30 32 5a
30 82 01 1c 31 0b 30 09 153–440 subject Distinguished Name
06 03 55 04 06 13 02 55 (countryName: ‘US’,
53 31 49 30 47 06 03 55 organizationName:
04 0a 13 40 69 2e 62 72 ‘i.broke.the.internet.and.all
6f 6b 65 2e 74 68 65 2e .i.got.was.this.t-shirt
69 6e 74 65 72 6e 65 74 .phreedom.org’,
2e 61 6e 64 2e 61 6c 6c organizationalUnitName:
2e 69 2e 67 6f 74 2e 77 ‘GT11029001’,
61 73 2e 74 68 69 73 2e organizationalUnitName:
74 2d 73 68 69 72 74 2e ‘See www.rapidssl.com/resources/cps
70 68 72 65 65 64 6f 6d (c)08’,
2e 6f 72 67 31 13 30 11 organizationalUnitName:
06 03 55 04 0b 13 0a 47 ‘Domain Control Validated
54 31 31 30 32 39 30 30 - RapidSSL(R)’,
31 31 31 30 2f 06 03 55 commonName:
04 0b 13 28 53 65 65 20 ‘i.broke.the.internet.and.all
77 77 77 2e 72 61 70 69 .i.got.was.this.t-shirt

http://www.win.tue.nl/hashclash/rogue-ca/downloads/real.cert.tbs.bin
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Table E-1: The to-be-signed part of our rogue CA X.509-certificate. (cont.)

Bytes (hex) offset description
64 73 73 6c 2e 63 6f 6d .phreedom.org’)
2f 72 65 73 6f 75 72 63
65 73 2f 63 70 73 20 28
63 29 30 38 31 2f 30 2d
06 03 55 04 0b 13 26 44
6f 6d 61 69 6e 20 43 6f
6e 74 72 6f 6c 20 56 61
6c 69 64 61 74 65 64 20
2d 20 52 61 70 69 64 53
53 4c 28 52 29 31 49 30
47 06 03 55 04 03 13 40
69 2e 62 72 6f 6b 65 2e
74 68 65 2e 69 6e 74 65
72 6e 65 74 2e 61 6e 64
2e 61 6c 6c 2e 69 2e 67
6f 74 2e 77 61 73 2e 74
68 69 73 2e 74 2d 73 68
69 72 74 2e 70 68 72 65
65 64 6f 6d 2e 6f 72 67
30 82 01 22 30 0d 06 09 441 – 734 subject Public Key Info
2a 86 48 86 f7 0d 01 01 (‘rsaEncryption’,
01 05 00 03 82 01 0f 00 2048-bit RSA modulus,
30 82 01 0a 02 82 01 01 RSA public exponent ‘65537 ’):
00 b2 d3 25 81 aa 28 e8
78 b1 e5 0a d5 3c 0f 36
57 6e a9 5f 06 41 0e 6b
b4 cb 07
17 00 00 00 5b fd 6b 1c 500 – 511 96-bit birthdaystring
7b 9c e8 a9
a3 c5 45 0b 36 bb 01 d1 512 – 575 1st near-collision block
53 aa c3 08 8f 6f f8 4f
3e 87 87 44 11 dc 60 e0
df 92 55 f9 b8 73 1b 54
93 c5 9f d0 46 c4 60 b6
35 62 cd b9 af 1c a8 6b
1a c9 5b 3c 96 37 c0 ed
67 ef bb fe c0 8b 9c 50
2f 29 bd 83 22 9e 8e 08 576–639 2nd near-collision block
fa ac 13 70 a2 58 7f 62
62 8a 11 f7 89 f6 df b6
67 59 73 16 fb 63 16 8a
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Table E-1: The to-be-signed part of our rogue CA X.509-certificate. (cont.)

Bytes (hex) offset description
b4 91 38 ce 2e f5 b6 be
4c a4 94 49 e4 65 51 0a
42 15 c9 c1 30 e2 69 d5
45 7d a5 26 bb b9 61 ec
62 64 f0 39 e1 e7 bc 68 640 – 703 3rd near-collision block
d8 50 51 9e 1d 60 d3 d1
a3 a7 0a f8 03 20 a1 70
01 17 91 36 4f 02 70 31
86 83 dd f7 0f d8 07 1d
11 b3 13 04 a5 da f0 ae
50 b1 28 0e 63 69 2a 0c
82 6f 8f 47 33 df 6c a2
06 92 f1 4f 45 be d9 30 704–734 subject Public Key Info
36 a3 2b 8c d6 77 ae 35 (continued)
63 7f 4e 4c 9a 93 48 36
d9 9f 02 03 01 00 01

735 – 926 extensions:
a3 81 bd 30 81 ba 735 – 740 extensions header
30 0e 06 03 55 1d 0f 01 741 – 756 keyUsage
01 ff 04 04 03 02 04 f0 (‘digital signature’, ‘nonrepudiation’,

‘key encipherment’,
‘data encipherment’)

30 1d 06 03 55 1d 0e 04 757 – 787 subjectKeyIdentifier
16 04 14 cd a6 83 fa a5
60 37 f7 96 37 17 29 de
41 78 f1 87 89 55 e7
30 3b 06 03 55 1d 1f 04 788 – 848 cRLDistributionPoints
34 30 32 30 30 a0 2e a0 (‘http://crl.geotrust.com
2c 86 2a 68 74 74 70 3a /crls/globalca1.crl’)
2f 2f 63 72 6c 2e 67 65
6f 74 72 75 73 74 2e 63
6f 6d 2f 63 72 6c 73 2f
67 6c 6f 62 61 6c 63 61
31 2e 63 72 6c
30 1f 06 03 55 1d 23 04 849 – 881 authorityKeyIdentifier
18 30 16 80 14 be a8 a0
74 72 50 6b 44 b7 c9 23
d8 fb a8 ff b3 57 6b 68
6c
30 1d 06 03 55 1d 25 04 882 – 912 extKeyUsage
16 30 14 06 08 2b 06 01 (‘server authentication’,
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Table E-1: The to-be-signed part of our rogue CA X.509-certificate. (cont.)

Bytes (hex) offset description
05 05 07 03 01 06 08 2b ‘client authentication’)
06 01 05 05 07 03 02
30 0c 06 03 55 1d 13 01 912 – 926 basicConstraints
01 ff 04 02 30 00 (CA: ‘false’, path length: ‘none’)

Table E-2: The to-be-signed part of our rogue CA X.509-certificate. Available from:
http://www.win.tue.nl/hashclash/rogue-ca/downloads/rogue_ca.cert.tbs.bin.

Bytes (hex) offset description
30 82 03 9b 0–3 header
a0 03 02 01 02 4–8 version number
02 01 41 9–11 serial number (‘65’)
30 0d 06 09 2a 86 48 86 12–26 signature algorithm
f7 0d 01 01 04 05 00 (‘md5withRSAEncryption’)
30 5a 31 0b 30 09 06 03 27 – 118 issuer Distinguished Name
55 04 06 13 02 55 53 31 (countryName: ‘US’,
1c 30 1a 06 03 55 04 0a organizationName:
13 13 45 71 75 69 66 61 ‘Equifax Secure Inc.’,
78 20 53 65 63 75 72 65 commonName:
20 49 6e 63 2e 31 2d 30 ‘Equifax Secure Global eBusiness CA’)
2b 06 03 55 04 03 13 24
45 71 75 69 66 61 78 20
53 65 63 75 72 65 20 47
6c 6f 62 61 6c 20 65 42
75 73 69 6e 65 73 73 20
43 41 2d 31
30 1e 17 0d 30 34 30 37 119–150 validity
33 31 30 30 30 30 30 30 (‘31 July 2004 00:00:00 UTC ’
5a 17 0d 30 34 30 39 30 –’2 September 2004 00:00:00 UTC ’)
32 30 30 30 30 30 30 5a
30 3c 31 3a 30 38 06 03 153 – 212 subject Distinguished Name
55 04 03 13 31 4d 44 35 (commonName:
20 43 6f 6c 6c 69 73 69 ‘MD5 Collisions Inc.
6f 6e 73 20 49 6e 63 2e (http://www.phreedom.org/md5)’)
20 28 68 74 74 70 3a 2f
2f 77 77 77 2e 70 68 72
65 65 64 6f 6d 2e 6f 72
67 2f 6d 64 35 29
30 81 9f 30 0d 06 09 2a 213 – 374 subject Public Key Info
86 48 86 f7 0d 01 01 01 (‘rsaEncryption’,
05 00 03 81 8d 00 30 81 1024-bit RSA modulus,

http://www.win.tue.nl/hashclash/rogue-ca/downloads/rogue_ca.cert.tbs.bin
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Table E-2: The to-be-signed part of our rogue CA X.509-certificate. (cont.)

Bytes (hex) offset description
89 02 81 81 00 ba a6 59 RSA public exponent ‘65537 ’)
c9 2c 28 d6 2a b0 f8 ed
9f 46 a4 a4 37 ee 0e 19
68 59 d1 b3 03 99 51 d6
16 9a 5e 37 6b 15 e0 0e
4b f5 84 64 f8 a3 db 41
6f 35 d5 9b 15 1f db c4
38 52 70 81 97 5e 8f a0
b5 f7 7e 39 f0 32 ac 1e
ad 44 d2 b3 fa 48 c3 ce
91 9b ec f4 9c 7c e1 5a
f5 c8 37 6b 9a 83 de e7
ca 20 97 31 42 73 15 91
68 f4 88 af f9 28 28 c5
e9 0f 73 b0 17 4b 13 4c
99 75 d0 44 e6 7e 08 6c
1a f2 4f 1b 41 02 03 01
00 01

375 – 926 extensions:
a3 82 02 24 30 82 02 20 375 – 378 extensions header
30 0b 06 03 55 1d 0f 04 383 – 395 keyUsage
04 03 02 01 c6 (‘digital signature’, ’nonrepudiation’,

’certificate signing’, ‘CRL signing’
’offline CRL signing’)

30 0f 06 03 55 1d 13 01 396 – 412 basicConstraints
01 ff 04 05 30 03 01 01 (CA: ‘true’, path length: ‘none’)
ff
30 1d 06 03 55 1d 0e 04 413 – 443 subjectKeyIdentifier
16 04 14 a7 04 60 1f ab
72 43 08 c5 7f 08 90 55
56 1c d6 ce e6 38 eb
30 1f 06 03 55 1d 23 04 444 – 476 authorityKeyIdentifier
18 30 16 80 14 be a8 a0
74 72 50 6b 44 b7 c9 23
d8 fb a8 ff b3 57 6b 68
6c

477 – 926 netscape comment:
30 82 01 be 06 09 60 86 477 – 495 comment header
48 01 86 f8 42 01 0d 04
82 01 af
16 82 01 ab 496–499 random padding
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Table E-2: The to-be-signed part of our rogue CA X.509-certificate. (cont.)

Bytes (hex) offset description
33 00 00 00 27 5e 39 e0 500–511 96-bit birthday string
89 61 0f 4e
a3 c5 45 0b 36 bb 01 d1 512–575 1st near-collision block
53 aa c3 08 8f 6f f8 4f
3e 87 87 44 11 dc 60 e0
df 92 55 f9 b8 73 1b 54
93 c5 9f d0 46 c4 60 b6
35 62 cd b9 af 1c a8 69
1a c9 5b 3c 96 37 c0 ed
67 ef bb fe c0 8b 9c 50
2f 29 bd 83 22 9e 8e 08 576–639 2nd near-collision block
fa ac 13 70 a2 58 7f 62
62 8a 11 f7 89 f6 df b6
67 59 73 16 fb 63 16 8a
b4 91 38 ce 2e f5 b6 be
4c a4 94 49 e4 65 11 0a
42 15 c9 c1 30 e2 69 d5
45 7d a5 26 bb b9 61 ec
62 64 f0 39 e1 e7 bc 68 640–703 3rd near-collision block
d8 50 51 9e 1d 60 d3 d1
a3 a7 0a f8 03 20 a1 70
01 17 91 36 4f 02 70 31
86 83 dd f7 0f d8 07 1d
11 b3 13 04 a5 dc f0 ae
50 b1 28 0e 63 69 2a 0c
82 6f 8f 47 33 df 6c a2
06 92 f1 4f 45 be d9 30 704–926 identical suffix:
36 a3 2b 8c d6 77 ae 35 copied from end-user certificate
63 7f 4e 4c 9a 93 48 36
d9 9f 02 03 01 00 01 a3
81 bd 30 81 ba 30 0e 06
03 55 1d 0f 01 01 ff 04
04 03 02 04 f0 30 1d 06
03 55 1d 0e 04 16 04 14
cd a6 83 fa a5 60 37 f7
96 37 17 29 de 41 78 f1
87 89 55 e7 30 3b 06 03
55 1d 1f 04 34 30 32 30
30 a0 2e a0 2c 86 2a 68
74 74 70 3a 2f 2f 63 72
6c 2e 67 65 6f 74 72 75
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Table E-2: The to-be-signed part of our rogue CA X.509-certificate. (cont.)

Bytes (hex) offset description
73 74 2e 63 6f 6d 2f 63
72 6c 73 2f 67 6c 6f 62
61 6c 63 61 31 2e 63 72
6c 30 1f 06 03 55 1d 23
04 18 30 16 80 14 be a8
a0 74 72 50 6b 44 b7 c9
23 d8 fb a8 ff b3 57 6b
68 6c 30 1d 06 03 55 1d
25 04 16 30 14 06 08 2b
06 01 05 05 07 03 01 06
08 2b 06 01 05 05 07 03
02 30 0c 06 03 55 1d 13
01 01 ff 04 02 30 00
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Table E-3: Rogue CA - first differential path

t Bitconditions: qt[31] . . . qt[0]

-3 ........ ........ ........ ........
-2 ......1. .0.0-... .1.10.0. .+---.+-
-1 ..1.1.0. .1-++..0 .010101. .+--1---
0 ..1.0.-. .+1++^.0 .-1++1-. ^..0+1+-
1 ..+.-.-. .+++.+.- .0-11-0. -101+0+0
2 0.+.-... .-0-11.+ .1+00-1. 0..-.-.-
3 0.1.+.0. .-01.0.- ..1.+0.. +..10+0-
4 -.-.+1.. .+.1.+.0 ..+.0+.. -..01-.+
5 +.1..0.. .+..^0.0 ..-.10.. 0...+1.1
6 +.1.1+.. ....+1.- ..-.00.. 0...+-.-
7 +.+..-.. .11.1+.+ ..-.+0.. 1....1.+
8 -.0.0-.. ..1.10.- ....0-.. 1...01.0
9 -.+.1-.. ..-..1.- .^0.1+.. -...0..1
10 0.00+.10 01-00..- ^+.0.-.1 -.101101
11 1.-1-010 11-011.+ +1.10-01 -101+010
12 -^+++1+- ++1+-1^+ 01^-0+1- 00+-+-++
13 1-+0--+- +-+----- --+-+++- ++-+.1--
14 10-1000+ .10+.-10 0-1.-.-. 1-+0010-
15 .11.01++ 000+1000 0-00-010 111+..00
16 ..0...11 ...-.+.. .+..0.^. .++..0.+
17 ..10+.00 ...1.0.. .0..^.0. .0.^.1..
18 ..+.+.1. ...-.-.. .-....0. .-^..-.^
19 ..1++.-. ...-.... 0-....+. ........
20 ..0++... 0..0.^.. 0+..0... 0^...^..
21 ...++.^. 1..^.... +1..1.^. 1....0..
22 ...-1... -....... .^..-... +....1..
23 ...00... ...0.... ^....... .....-.0
24 ...1.... ^..1...0 ....^... ^.0....1
25 ........ ...+...1 ........ .....^.+
26 ......0. .......+ ........ .0-.....
27 ......1. ...^.... ........ .1-....^
28 ......-. .......^ ........ .-+.....
29 ......0. ........ ........ ..0.....
30 ......+. ........ ........ .^1.....
31 ......+. ........ ........ ........
32 ......1. ........ ........ ........
33 ......0. ........ ........ ........

34–59 ........ ........ ........ ........
60 ........ ........ ........ ...00...
61 ........ ........ ........ ....1...
62 ........ ........ ........ ...-+...
63 ........ ........ ........ ...?-...
64 ......+. ........ ........ ....-...

δm11 = −225
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Table E-4: Rogue CA - second differential path

t Bitconditions: qt[31] . . . qt[0]

-3 ........ ........ ........ ........
-2 ....1.0- +++++... .0.00... ......+-
-1 .0..1^10 0.11-1.. .1.01.^1 .....^0+
0 .1..+--- -1-0-0.. .-.++.-1 .....+--
1 .+..+000 0.++++.. .-.++.1- .....111
2 .0..+01+ 11+01-0. ..1.-.++ .....-00
3 .-..-..- .1+0-10. .0011.0+ ..^..-..
4 .+^.-..- .++.+0+. ..+.0.+. ..-.11..
5 .++...0- .+..1.+. ..+...00 ..0.1+..
6 .-1.0.0+ ..0.1.+. ..-...11 ..1.+1..
7 .11...++ .1....+. ..1.^.-- ....-+..
8 .-1...-. ........ ..-.-.00 ....0-..
9 .1-.1.11 ....1.0. ..-00.11 ....++..
10 1+-.01-. .11010.. 10-1+.0. ..0.0-0.
11 0-0.+00. 1001-10^ 110--0+. .01.111^
12 --0^0++^ 0-++-+1+ +-+1-0+0 ^0-^+1+-
13 0++-++++ +1++-1-0 +0-1--+1 ------+1
14 10101.-0 0-1.+0-0 +011.+.- 1+.1-+01
15 .10101+1 0++10.+. 1.0-010- 1100+1-.
16 ....0.11 .+..1.-. -...0^.1 .^..--..
17 ....1.-. .1^.-.0. 0..^...^ .0..1.^.
18 0...+.-+ .1....-. +...-... .0..-^..
19 ......++ .-..^... ...0-... .+......
20 +...^.+0 ...0..^. ^..0+..0 ...0^...
21 +.....0+ .^.1.... ...+1..1 .^.1....
22 -.....-. ...-.... ....^..- ...+....
23 -.0....^ ......0. ...^.... ........
24 1.1...^. ...^..1. ..0....^ ...^.0..
25 0.+..... ......+. ..1..... ........
26 ........ .0...... ..+..... ....0-..
27 ..^..... .1....^. ........ ....1-..
28 ........ .-...... ..^..... ....-+..
29 ........ .0...... ........ .....0..
30 ........ .+...... ........ ....^1..
31 ........ .+...... ........ ........
32 ........ .0...... ........ ........
33 ........ .1...... ........ ........

34–59 ........ ........ ........ ........
60 ........ ........ ........ .....000
61 ........ ........ ........ .....100
62 ........ ........ ........ .....-++
63 ........ ........ ........ .....-++
64 ........ -+-..... ........ .......-

δm11 = −222
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Table E-5: Rogue CA - third differential path

t Bitconditions: qt[31] . . . qt[0]

-3 ........ ........ ........ ........
-2 ........ ..1-+... ..01.00. ........
-1 .....0.. ..-++1.0 .010011. ........
0 .....1.. ..-++1.1 .1--0++. .1.....0
1 ...^.+.. ..-+.+.- .-0++0-. .1.....1
2 ...-.1.. ...+0+.- .-1++1-. .+^....-
3 ...0.1.. ..1+...+ ..-...-^ .+-...^-
4 ...0.^.0 ^.1+.0.+ .1-10..+ .-0..^+.
5 .^...+.0 -.0....- ......10 .+0..-10
6 .+...0.- 0.-0...+ ..1....- .+..10-.
7 .0...-1+ 1.+....- .....^.1 .-..110.
8 .1...-1+ +.+....0 ..0..+.1 .1..-.0.
9 ......-- +.+^...0 ..0..0.+ .0..-.0.
10 10..11-- +.0+0000 .1-0.+.+ .-.1-.01
11 11..11-0 -.101111 01-1^110 ^+.1-1-0
12 -+.^-0+- +.-+++++ 1--+-101 +-1-10+-
13 +0.+---- 1.11-001 ---00.+- 0-0+-+++
14 11.1+-0+ 0.+-011+ 1.-1-.1+ 0.-010.0
15 00.0+.10 ..1+0.-0 11-01.1- .01-1100
16 ....0^.+ .0+1.0.- .01.0..1 ..^+.0..
17 .+..^.0. .0.0.1^. .1^++.00 ...1.1..
18 .+....0^ .-^..+.^ .-.++.1. ...+.-..
19 0-....-. ........ ...--.+. ...+....
20 1-..0... 0^...^.. .^.0-... 0..0.^..
21 +0..1.^. 1....0.. ...1-.^. 1..^....
22 .^..+... -....1.. ...+1... +.......
23 ^....... .....+.0 ....0... ...0....
24 ....^... ^.0....1 ...^.... ^..1...0
25 ........ .....^.- ........ ...-...1
26 ........ .0+..... ......0. .......-
27 ........ .1+....^ ......1. ...^....
28 ........ .+-..... ......+. .......^
29 ........ ..0..... ......0. ........
30 ........ .^1..... ......-. ........
31 ........ ........ ......-. ........
32 ........ ........ ......1. ........
33 ........ ........ ......0. ........

34–59 ........ ........ ........ ........
60 ........ ....0... ........ ........
61 .......1 01011... ........ ........
62 .......0 .1.1+... ........ ........
63 .......+ -----... ........ ........
64 ........ ...+-..+ --.-.--. ........

δm11 = 29
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F SHA-1 disturbance vector analysis
The tables shown in this appendix are based on the disturbance vector cost function
FDCu,tb,ϵ which is a modification of the cost function FDCu,tb presented in Sec-
tion 7.5.11. The cost function FDCu,tb uses Algorithms 7-2 and 7-3 (p. 150 and 151)
to determine sets Ai,j . The cost function FDCu,tb,ϵ uses a simple modification of
these algorithms that works instead of sets Ai,j with sets A′i,j of the form:

A′i,j ⊆ {(P, g(SP)) | (P,SP) ∈ Ai,j}, where g(SP) ⊆ SP for all P. (F.1)

We add in both algorithms a step 3.5 between step 3 and step 4 that, for each
value of t in step 3, removes all message difference vectors in the previous A′i,j (thus
either (i, j) = (tb, t− 1) or (i, j) = (t+1, te)) with a too low total success probability.
Let W = {w | (w, p) ∈ S, (P,S) ∈ A′i,j} and for w ∈ W let

pw =
∑

(P,S)∈A′
i,j

∑
(w,p)∈S
w′=w

p

be the total success probability of w. Let pmax = maxw∈W pw be the maximum of
these total success probabilities. Then after pmax has been determined we remove from
A′i,j all occurrences of message difference vectors w for which pw < ϵ · pmax, where
ϵ ∈ [0, 1] is some chosen fraction. Next we remove all pairs of the form (P, ∅) from
A′i,j . More precisely, let Ã′i,j denote the contents of the set A′i,j in these algorithms
before step 3.5, then the contents of A′i,j after step 3.5 is determined as:

A′i,j =
{(
P,Trim

(
S̃ ′P

)) ∣∣∣ (P, S̃ ′P) ∈ Ã′i,j ∧ Trim
(
S̃ ′P

)
̸= ∅

}
,

Trim
(
S̃ ′P

)
=

{
(w, p) ∈ S̃ ′P

∣∣∣ pw ≥ ϵ · pmax

}
.

Informally, A′i,j contains a subset of the information present in Ai,j (Equation F.1),
thus it follows that FDCu,tb,ϵ((DVt)79t=0) ≤ FDCu,tb((DVt)79t=0) for all disturbance
vectors (DVt)

79
t=0. For ϵ = 0, it is clear that nothing will we removed in the added

procedure and thus FDCu,tb,ϵ is equivalent to FDCu,tb . Moreover, the outcome of
FDCu,tb,ϵ will also be the same as that of FDCu,tb if ϵ is small enough so that no
optimal message difference vectors are removed in this manner. For ϵ ≤ 0.5 we have
not noticed a difference in outcomes so far, but we have noticed differences for values
of ϵ that were even slightly bigger than 0.5.

The numbers presented in the following tables are the negative log2 results of the
cost function FDCu,20,ϵ for u ∈ {0, . . . , 7}. For each disturbance vector and each
value of u, we try the values 0, 18 ,

1
4 ,

1
2 for ϵ in that order and keep the first result (and

thus lowest value for ϵ) for which the computation succeeds within 24 hours using the
8GB of RAM available. An empty result in the following tables reflects the fact that
the computations failed for all these values for ϵ either due a too long runtime or a
memory allocation failure.
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Table F-1: Most interesting disturbance vectors

u
DV 0 1 2 3 4 5 6 7

I(48, 0) 75.00 71.84 71.61 71.51 71.46 71.44 71.43 71.42
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(49, 0) 76.00 72.59 72.34 72.24 72.19 72.17 72.16 72.15
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(50, 0) 75.00 72.02 71.95 71.93 71.92 71.92 71.92 71.92
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

II(46, 0) 76.00 71.85 71.83
ϵ=0 ϵ=0 ϵ=1/2

II(50, 0) 78.00 73.52 73.23 73.12 73.06 73.04 73.03 73.02
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

II(51, 0) 77.00 72.55 72.18 72.02 71.95 71.91 71.89 71.88
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

II(52, 0) 75.00 71.88 71.87 71.76 71.76 71.75 71.75 71.75
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

The columns are the negative log2 results of the cost function FDCu,20,ϵ.
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Table F-2: Overview of disturbance vectors I(K, 0)

u
DV 0 1 2 3 4 5 6 7

I(42, 0) 82.68 78.67 78.36
ϵ=0 ϵ=0 ϵ=1/4

I(43, 0) 82.00 77.65 77.31
ϵ=0 ϵ=0 ϵ=1/8

I(44, 0) 81.00 77.41 77.1 76.98 76.93 76.90 76.89 76.89
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=1/8 ϵ=1/8 ϵ=1/8 ϵ=1/8

I(45, 0) 81.00 76.91 76.66 76.54 76.49 76.47 76.46 76.45
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=1/8 ϵ=1/8 ϵ=1/8

I(46, 0) 79.00 75.02 74.92 74.84 74.83 74.83 74.83 74.83
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=1/8

I(47, 0) 79.00 75.15 74.83 74.71 74.65 74.63 74.62 74.61
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(48, 0) 75.00 71.84 71.61 71.51 71.46 71.44 71.43 71.42
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(49, 0) 76.00 72.59 72.34 72.24 72.19 72.17 72.16 72.15
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(50, 0) 75.00 72.02 71.95 71.93 71.92 71.92 71.92 71.92
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(51, 0) 77.00 73.76 73.53 73.43 73.38 73.36 73.35 73.34
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(52, 0) 79.00 76.26 76.24 76.24 76.24 76.24 76.24 76.24
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(53, 0) 82.83 78.86 78.79 78.77 78.77 78.77 78.77 78.77
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(54, 0) 82.83 79.60 79.38 79.28 79.23 79.21 79.19 79.19
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(55, 0) 81.54 78.67 78.42 78.32 78.27 78.25 78.24 78.23
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(56, 0) 81.54 79.10 79.03 79.01 79.01 79.01 79.01 79.01
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

The columns are the negative log2 results of the cost function FDCu,20,ϵ.
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Table F-3: Overview of disturbance vectors I(K, 2)

u
DV 0 1 2 3 4 5 6 7

I(42, 2) 85.09 82.17 81.84 81.72
ϵ=0 ϵ=1/4 ϵ=1/2 ϵ=1/2

I(43, 2) 84.42 81.15 80.78
ϵ=0 ϵ=1/4 ϵ=1/2

I(44, 2) 84.42 81.92 81.57 81.45 81.40 81.38 81.37 81.36
ϵ=0 ϵ=0 ϵ=1/4 ϵ=1/2 ϵ=1/2 ϵ=1/2 ϵ=1/2 ϵ=1/2

I(45, 2) 83.42 80.80 80.52 80.41 80.36 80.34 80.33 80.32
ϵ=0 ϵ=0 ϵ=0 ϵ=1/4 ϵ=1/2 ϵ=1/2 ϵ=1/2 ϵ=1/2

I(46, 2) 80.42 78.10 78.00 77.99 77.99 77.99 77.99 77.99
ϵ=0 ϵ=0 ϵ=0 ϵ=1/8 ϵ=1/8 ϵ=1/8 ϵ=1/8 ϵ=1/4

I(47, 2) 79.68 77.01 76.68 76.56 76.51 76.48 76.47 76.47
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=1/8 ϵ=1/8 ϵ=1/8 ϵ=1/8

I(48, 2) 76.68 74.27 73.99 73.88 73.83 73.81 73.80 73.79
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(49, 2) 77.00 74.30 74.02 73.92 73.87 73.85 73.84 73.83
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(50, 2) 77.00 74.74 74.63 74.61 74.61 74.60 74.60 74.60
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(51, 2) 80.00 77.47 77.21 77.11 77.07 77.04 77.03 77.03
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(52, 2) 82.00 79.98 79.93 79.92 79.92 79.92 79.92 79.92
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(53, 2) 84.00 81.91 81.80 81.78 81.78 81.78 81.78 81.78
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(54, 2) 84.00 81.37 81.06 80.95 80.90 80.87 80.86 80.85
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(55, 2) 84.00 81.78 81.53 81.43 81.38 81.36 81.34 81.34
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

I(56, 2) 82.00 80.22 80.13 80.12 80.11 80.11 80.11 80.11
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

The columns are the negative log2 results of the cost function FDCu,20,ϵ.
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Table F-4: Overview of disturbance vectors II(K, 0)

u
DV 0 1 2 3 4 5 6 7

II(44, 0) 87.00 79.51
ϵ=0 ϵ=1/2

II(45, 0) 83.00 75.45 74.82
ϵ=0 ϵ=1/8 ϵ=1/2

II(46, 0) 76.00 71.85 71.83
ϵ=0 ϵ=0 ϵ=1/2

II(47, 0) 81.42 76.23 75.87
ϵ=0 ϵ=0 ϵ=1/2

II(48, 0) 80.00 76.11 75.89 75.79 75.74
ϵ=0 ϵ=0 ϵ=0 ϵ=1/8 ϵ=1/2

II(49, 0) 80.00 75.04 74.72 74.60 74.55 74.52 74.51 74.51
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=1/8 ϵ=1/8 ϵ=1/2 ϵ=1/2

II(50, 0) 78.00 73.52 73.23 73.12 73.06 73.04 73.03 73.02
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

II(51, 0) 77.00 72.55 72.18 72.02 71.95 71.91 71.89 71.88
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

II(52, 0) 75.00 71.88 71.87 71.76 71.76 71.75 71.75 71.75
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0

II(53, 0) 76.96 73.65 73.34 73.23 73.17 73.15 73.14 73.14
ϵ=0 ϵ=0 ϵ=1/8 ϵ=1/8 ϵ=1/8 ϵ=1/8 ϵ=1/8 ϵ=1/8

II(54, 0) 77.96 73.97 73.74 73.64 73.59 73.57 73.56 73.55
ϵ=0 ϵ=0 ϵ=1/8 ϵ=1/8 ϵ=1/8 ϵ=1/8 ϵ=1/8 ϵ=1/8

II(55, 0) 77.96 75.22 74.99 74.89 74.84 74.82 74.81 74.80
ϵ=0 ϵ=1/8 ϵ=1/2 ϵ=1/2 ϵ=1/2 ϵ=1/2 ϵ=1/2 ϵ=1/2

II(56, 0) 76.96 74.48 74.18 74.07 74.01 73.99 73.98 73.97
ϵ=0 ϵ=1/2 ϵ=1/2 ϵ=1/2 ϵ=1/2 ϵ=1/2 ϵ=1/2 ϵ=1/2

The columns are the negative log2 results of the cost function FDCu,20,ϵ.
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Table F-5: Overview of disturbance vectors II(K, 2)

u
DV 0 1 2 3 4 5 6 7

II(45, 2) 85.00 78.64
ϵ=0 ϵ=1/2

II(46, 2) 82.00 77.51
ϵ=0 ϵ=1/2

II(47, 2) 85.42 79.83
ϵ=0 ϵ=1/2

II(48, 2) 83.00 78.81 78.46
ϵ=0 ϵ=1/2 ϵ=1/2

II(49, 2) 83.00 78.09 77.74
ϵ=0 ϵ=0 ϵ=1/2

II(50, 2) 81.00 76.51 76.16 76.03
ϵ=0 ϵ=0 ϵ=1/8 ϵ=1/8

II(51, 2) 82.00 77.74 77.36 77.20 77.13
ϵ=0 ϵ=0 ϵ=1/8 ϵ=1/8 ϵ=1/2

II(52, 2) 82.00 79.07 78.96 78.94 78.94 78.93 78.93 78.93
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=1/8 ϵ=1/8 ϵ=1/8 ϵ=1/2

II(53, 2) 83.00 79.60 79.30 79.18 79.13 79.11 79.09 79.09
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=1/8 ϵ=1/8 ϵ=1/8 ϵ=1/8

II(54, 2) 84.00 80.49 80.21 80.10 80.04 80.02 80.01 80.00
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=1/8 ϵ=1/8 ϵ=1/8 ϵ=1/8

II(55, 2) 84.00 81.20 80.88 80.76 80.71 80.68 80.67 80.67
ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=0 ϵ=1/8

II(56, 2) 85.00 82.69 82.39 82.27 82.22 82.20 82.19 82.18
ϵ=0 ϵ=1/4 ϵ=1/4 ϵ=1/4 ϵ=1/4 ϵ=1/4 ϵ=1/4 ϵ=1/4

The columns are the negative log2 results of the cost function FDCu,20,ϵ.
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Nederlandse samenvatting

Cryptografische hashfuncties, of simpelweg hashfuncties, zijn een van de belangrijkste
bouwstenen binnen de cryptografie. Een hashfunctie is een algoritme dat voor elk
willekeurig bericht een korte hash-waarde van een vast aantal bits (bv. 256 bits)
berekent. Zulke hash-waarden worden gebruikt als een soort van vingerafdruk om het
originele bericht mee te identificeren. Een belangrijke toepassing van hashfuncties is
in digitale handtekeningen, waardoor documenten en software ondertekend kunnen
worden en digitale communicatie beveiligd wordt.

Een belangrijke veiligheidseis is dat het praktisch onmogelijk moet zijn om collisi-
ons (twee berichten met dezelfde hash-waarde) te vinden. Een hashfunctie is gebroken
wanneer er een efficiëntere aanval om collisions te vinden bestaat dan de generieke
aanval gebaseerd op de birthday paradox.

Rond 2005 hebben Wang en coauteurs MD5 en SHA-1, twee belangrijke interna-
tionale cryptografische hashfunctie standaarden, gebroken met zogenaamde identical-
prefix collision aanvallen. Niettemin, was de software industrie initieel sceptisch over
de gevaren in de praktijk van deze eerste aanvallen op MD5 en SHA-1 omdat deze
aanvallen technisch beperkt waren.

Dit proefschrift omhelst de volgende vijftal bijdragen op het gebied van de analyse
van zwakheden van internationale cryptografische hashfunctie standaarden.

Ten eerste het verfijnen van de exacte differentiële analyse die ten grondslag ligt
van bovenstaande collision aanvallen. En dan met name het introduceren van algorit-
mische methoden voor het vinden van de benodigde zogenaamde differentiële paden
voor een grote klasse van hashfuncties die MD5 en SHA-1 omhelst, met specifieke
verbeteringen toegespitst op MD5 en SHA-1.

Ten tweede het construeren van efficiëntere en met name flexibelere aanvallen
op MD5. In het bijzonder introduceren we de zogenaamde chosen-prefix collision
aanval op MD5, waarin een grote technische beperking van identical-prefix collision
aanvallen geëlimineerd wordt: namelijk de eis dat de twee botsende bestanden volledig
identiek zijn tot aan de 128 bytes die gegenereerd worden in de identical-prefix collision
aanval en die tot de botsing lijden. Chosen-prefix collision aanvallen staan daarmee
significant meer praktische aanvallen toe op cryptografische systemen.

De derde bijdrage is dan ook het aantonen van het gevaar van collision aanvallen
op huidige cryptografische systemen met het doel de industrie zodanig te informeren
dat het tijdig en op gepaste wijze zwakke hashfuncties kan vervangen door veiligere
hashfuncties. Hoewel destijds het gevaar van deze verbeterde en efficiëntere aanval-
len door de industrie nog enigszins onderschat werd, hebben wij in 2009 bewezen dat
MD5’s zwakheden wel degelijk een groot gevaar opleveren door een MD5-gebaseerde
handtekening van een wereldwijd vertrouwde Certification Authority te gebruiken om
zelf een vertrouwde Certification Authority te creëren. Met de geconstrueerde ver-
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trouwde Certification Authority zouden we in principe – indien we deze niet bij voor-
baat nietig hadden geconstrueerd – beveiligde digitale communicatie met beveiligde
websites kunnen corrumperen op zodanige wijze dat webbrowsers de gecorrumpeerde
digitale communicatie alsnog als veilig bestempelen ten overstaan van de gebruiker.
Ons beoogde doel hiermee werd snel behaald: MD5 werd een verboden hashfunctie
voor Certification Authorities.

De vierde bijdrage is het introduceren van nieuwe exacte differentiële analytische
methoden voor SHA-1 en het construeren van identical-prefix en chosen-prefix colli-
sion aanvallen op SHA-1. Echter in tegenstelling tot MD5 zijn deze aanvallen niet
praktisch uitvoerbaar vanwege de belemmerende hoge computationele kosten. Sinds
de eerste theoretische aanval op SHA-1 door Xiaoyun Wang en coauteurs zijn er meer-
dere efficiëntere aanvallen geclaimd. Echter de claims die later wel gesubstantieerd
zijn, blijken niet volledig correct te zijn wat zelfs geleid heeft tot terugtrekking van
een zekere publicatie. Ten einde de correctheid van onze aanvallen op SHA-1 aan te
tonen, alsmede een beter begrip en verdere verbeteringen van onze aanvallen moge-
lijk te maken, hebben wij als eerste ook de daadwerkelijke implementatie van onze
aanvallen en onze analytische algoritmen gepubliceerd.

Voor een collision aanval zijn bepaalde vergelijkingen nodig die de zoekruimte voor
een collision beperkt tot een specifieke ruimte waarin een bekende succeskans behaald
kan worden, huidige methoden bepalen dit benodigde systeem van vergelijkingen en
een schatting van de bijbehorende succeskans op basis van heuristieken. Onze aan-
vallen op SHA-1 zijn gebaseerd op een nieuwe exacte analyse welke sterk leunt op
computationele combinatoriek en die in tegenstelling tot huidige methoden de inter-
actie tussen zogenaamde local collisions op een exacte en uitputtende manier kan
analyseren. Met behulp van onze nieuwe analyse is het mogelijk om voor alle geldige
systemen van vergelijkingen exact te bepalen wat de bijbehorende succeskans is en
daarmee hét systeem van vergelijkingen te kiezen dat leidt tot de hoogste succeskans
en tevens de meeste vrijheidsgraden toelaat.

De laatste bijdrage is het introduceren van een efficiënte methode die cryptogra-
fische systemen kan beschermen tegen potentiële kwaadwillenden die gebruik maken
van bovenstaande collision aanvallen. Hoewel zwakke hashfuncties zoals MD5 en
SHA-1 dienen vervangen te worden door veiligere hashfuncties, lijken er een aantal
praktische belemmeringen te zijn. Ten einde cryptografische systemen die gebruik
maken van MD5 en/of SHA-1 veilig te houden tot aan die tijd dat MD5 en SHA-1
vervangen zijn, hebben wij een efficiënte methode geïntroduceerd die kan detecteren
of dat bestanden en/of digitale communicatie met bekende collision aanvallen ge-
construeerd zijn en daardoor het verder verwerken van boosaardige bestanden en/of
digitale communicatie kan blokkeren.
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