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Chapter 2

Abstract

Impaired balance may limit mobility and daily activities, and plays a key role in the elderly
falling. Maintaining balance requires a concerted action of the sensory, nervous and motor
systems, whereby cause and effect mutually affect each other within a closed loop.
Aforementioned systems and their connecting pathways are prone to chronological age and
disease-related deterioration. System redundancy allows for compensation strategies, e.g.
sensory reweighting, to maintain standing balance in spite of the deterioration of underlying

systems. Once those strategies fail, impaired balance and possible falls may occur.

Targeted interventions to prevent falling require knowledge of the quality of the underlying
systems and the compensation strategies used. As current clinical balance tests only measure
the ability to maintain standing balance and cannot distinguish between cause and effect in a
closed loop, there is a clear clinical need for new techniques to assess standing balance. A
way to disentangle cause-and-effect relations to identify primary defects and compensation
strategies is based on the application of external disturbances and system identification

techniques, applicable in clinical practice.

This paper outlines the multiple deteriorations of the underlying systems that may be involved
in standing balance, which have to be detected early to prevent impaired standing balance. An
overview of clinically used balance tests shows that early detection of impaired standing
balance and identification of causal mechanisms is difficult with current tests, thereby
hindering development of well-timed and target-oriented interventions as described next.
Finally, a new approach to assess standing balance and to detect the underlying deteriorations

1s proposed.
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Introduction

Impaired standing balance, defined as having difficulties maintaining an upright position in
daily life activities, is a common problem among the elderly [1;2] and has a significant impact
on the health and quality of life [1]. Impaired standing balance plays a key role in falls [3] and
is a strong risk factor for falls [4]; one third of elderly persons aged 65 or older falls at least
once a year [5-9]. Ten percent of falls among community-dwelling elderly persons result in
serious injuries, such as hip fractures (1-2%), other fractures (3-5%) or head injuries (5%)
[10]. A quarter of the deaths in home situations are the result of falls [11]. Furthermore, falls
are related to psychosocial factors such as fear of falling and social isolation [12;13]; the
resulting restricted mobility may further deteriorate standing balance [12;14]. Therefore, falls
have a profound socioeconomic impact [15]. To prevent falling targeted interventions
improving standing balance are needed which require knowledge of the underlying cause of

impaired standing balance at an early stage.

The ability to maintain balance requires appropriate interaction of several key systems, i.e. the
motor (muscles), nervous and sensory systems, connected via efferent and afferent signal
pathways resulting in a closed loop in which cause and effect are interrelated.
Aforementioned systems deteriorate with advanced age [16-18] and as a result of specific
diseases and medication use [19]. System redundancy allows for compensation strategies to
maintain balance and so it is only when those strategies fail, e.g. in cases of severe system
deterioration, multiple system deterioration and/or environmental disturbances exceeding
system resilience, that impaired balance and finally falling may occur. Impaired balance may

thus go unnoticed until an advanced stage.

Current clinical balance tests, such as the Berg Balance Scale (BSS) and the Short Physical
Performance Battery (SPPB), include an assessment of the ability to maintain standing
balance during challenging standing conditions [20;21] by narrowing the base of support or
closing the eyes. However, identification of cause-and-effect relations, primary deterioration
and compensation strategies, and ultimately the quality of the underlying systems requires
new technical approaches such as closed loop system identification techniques. This allows
for early failure detection, so that there are no missed opportunities for targeted interventions

and disease management.
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The present paper outlines the clinical need for proper balance assessment, describes the
available balance tests and proceeds to describe promising control engineering-based

solutions and their applicability for clinical practice.

Deterioration of standing balance

Advanced age in combination with (multi) morbidity and the use of medication will result in a
variety of deterioration patterns in the underlying systems involved in maintaining standing
balance, which subsequently results in a widely heterogeneous pathophysiology of impaired
standing balance among the elderly [16]. Changes in the sensory systems lead to conflicting
and inaccurate sensory information about body position. Motor system changes comprise low
muscle mass and strength, preventing correction for balance deviations in a proper and
efficient way. Changes in the nervous system result in abnormal scaling and timing of
corrective responses to internal disturbances, which include sensor and motor noise due to
deterioration of the underlying systems, and external disturbances, which are caused by the
environment, for example a slip or a push [16]. Due to system redundancy it is possible to

compensate for those changes by selecting proper strategies to maintain balance.

Deterioration of the sensory systems

With advanced age, sensory systems deteriorate. Impaired proprioception is apparent from
reduced vibration sense by the cutaneous receptors [22] or reduced joint position sense by the
muscle spindles and the golgi tendon organs [23], due to axonal degeneration and decrease in
the number and density of nerve fibers [22]. Reduced joint position sense can also be due to
degenerating chrondrocytes in the cartilage surface of joints caused by degenerative joint
disease [24]. Age-related diseases, such as diabetes, also result in impaired proprioception
[25]. Visual impairment at an advanced age comprises a decline in visual acuity, contrast
sensitivity, glare sensitivity, dark adaptation, accommodation and depth perception [16;17].
Cataract and macular degeneration mainly affect central vision, whereas chronic glaucoma
reduce peripheral vision [26]. Vestibular impairment at an advanced age results from a
reduced number of vestibular hair cells, Scarpa’s ganglion cells and nerve fibers
[16;17;27;28]. Nerve conduction speed in afferent and efferent pathways slows down due to a

decrease in the number of neurons, loss of myelination and other neural changes [17;27].
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Deterioration of the motor system

With advanced age, muscle mass decreases, which can result in low muscle mass, i.e.
sarcopenia [29]. Furthermore, muscle strength, the rate of force production and muscle power
declines with age [30;31] due to age-related alterations in muscle architecture [32], muscle
control [33;34], activation dynamics [35-37] and muscle fiber typing [38]. Tendon stiffness
decreases with age due to an increase of non-reducible collagen cross-linking, a reduction in
collagen fibril crimp angle, an increase in elastin content, a reduction of extracellular water
content and an increase in type tube V collagen. This results in a lower velocity of shortening
and a change in the length-tension relation, which causes a reduction of force production [39].
In addition, with age the tendon becomes thicker, hypoechogenic and more likely to tear [40].
Orthopedic pathologies (e.g. arthritis) can lead to restricted mobility; arthritis correlates with a

decrease in range of motion in joints [41;42].

Deterioration of the nervous system

The sensory and motor system are linked by the nervous system. The nervous system has the
adaptive capacity to compensate for the deterioration of the sensor and motor systems by
selecting a compensation strategy to maintain balance. However, this capacity deteriorates
with age and disease [16]. In the elderly, deficits in stimulus encoding, central processing and
response initiation result in diminished transmission speed and a lower accuracy of sensory
information and delayed muscle activation [16]. Impaired blood pressure regulation, as
demonstrated by hypertension and orthostatic hypotension, could result in a decrease of
cerebral blood flow [43;44] and therefore increase the risk of hypoperfusion of the brain,
resulting in brain damage and impaired neural control. As with age cognitive control seems to
become of increasing importance for standing balance [45;46], balance will also be negatively

influenced by deteriorating cognitive function [47-49].

Compensation strategies to maintain standing balance

System deterioration may induce the selection of alternative compensation strategies. First,
sensory reweighting implies that the nervous system will rely on more accurate as compared
to less accurate and conflicting sensory information. The elderly are less capable of
reweighting sensory information than young people [50;51]. Furthermore, in balance control
the elderly rely more on visual information than do the young [52]. As a consequence, the
elderly are less able to compensate in situations where visual information is disturbed or

excluded by the environment. Second, the elderly rely more heavily on the hip strategy, i.e.
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movement around the hip joint, to maintain standing balance compared to the young who rely
more on the ankle strategy, i.e. pivot around the ankle joint during normal stance [53]. In
response to more challenging conditions, e.g. altered sensory conditions in which vestibular or
proprioceptive information is reduced, the young will change their balance strategy by relying
more on the hip strategy [54]. As elderly already rely more heavily on the hip strategy, they
are less able to adapt to environmental changes. Third, co-contraction is a commonly used
strategy in the elderly when other compensation strategies cannot be used efficiently [55]. Co-
contraction is energy-demanding and makes the body stiffer, reducing the range of motion. As
a consequence, resilience to larger disturbances is reduced and stepping out strategies may be
required to prevent falling [56]. Fourth, deterioration of underlying systems increases the
attentional demands to maintain standing balance [57]. When attentional resources are limited,
this could result in impaired standing balance or falls; if two tasks are performed
simultaneously and they require more attentional demands than the total capacity, the
performance on either or both tasks deteriorates depending on the difficulty of the tasks. One
can compensate for the shortcoming of attention by task prioritization; one task is prioritized

over another task to complete the most important task successfully [58;59].

Current standing balance assessment

Clinical balance tests

Clinical balance tests are developed to assess physical performance, such as the Tinetti
Balance Test [60], the Functional Reach Test [61], the Berg Balance Scale (BBS) [62], the
Clinical balance test of Sensory Interaction and Balance (CTSIB) [63], the Short Physical
Performance Battery (SPPB) [64], the Balance Error Scoring System (BESS) [65], the Star
Excursion Balance Test (SEBT) [66] and the Romberg’s test [67]. As daily activities require
balance and balance is hard to detect during these activities, in those tests the ability to
maintain balance is dichotomously assessed and scored in specific standing and/or dynamic

balance conditions, possibly combined with walking.

Clinical balance tests are practical in use because of their low cost, simple equipment and
time efficiency. Furthermore, the tests have a good inter-rater and intra-rater reliability
[20;21;68-71]. Due to the dichotomous assessment of the ability to maintain standing balance,
clinical balance tests only detect impaired balance when compensation strategies fail [68;72].
Often, active people can maintain standing balance without any problem despite severe

system deterioration due to an efficient compensation by selection of proper strategies [72].
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This may hamper the use of clinical balance tests in active elderly people or at an early stage
of deterioration (i.e. ceiling effect). In addition, clinical balance tests do not provide
information about the underlying systems involved in maintaining standing balance and the
compensation strategies used. Therefore, the underlying cause of impaired standing balance

cannot be detected.

Posturography

Posturography is an alternative method to assess standing balance using a continuous scale
[73]. Static posturography comprises assessment of the Center of Mass (CoM) and/or Center
of Pressure (CoP) movement during an unperturbed stance. CoM movement represents
movement of the body, while CoP movement is a reflection of balance control to keep CoM
within the base of support [74]. CoM and CoP movement are interrelated but reflect different
aspects of balance control, which shows the necessity to measure both entities simultaneously.
CoM movement can be measured using inertial sensors [54;75-77] or position tracking
systems [78;79], which measure body segment displacement with respect to a local or global
coordinate system. CoP movement can be measured using force plates [80-82] or in-shoe
pressure assessment devices [83;84] which measure ground reaction forces. Inertial sensors
and in-shoe pressure assessment devices are less expensive and can be used outside the
laboratory. Deterioration detection of a specific sensory system can be facilitated by
manipulation of standing conditions, i.e. several foot positions (changes in base of support),
with eyes open or eyes closed (elimination of vision), or on a firm or compliant surface
(disturbance of proprioception) [73]. The Sensory Orientation Test (SOT) uses six sensory
conditions in which the information of three main sensory systems is alternately eliminated or
disturbed. Ratios between conditions give more insight into the quality of the underlying
sensory systems [85]. In contrast to static posturography, dynamic posturography comprises
CoM or CoP movement assessment during external disturbances applied by platform

movement or disturbances applied to upper body parts.

Posturography is easily applicable, but a major disadvantage is the high intrasubject
variability preventing individual assessment of standing balance [73]. A main source of
variability is the use of different compensation strategies depending on age, disease and test
condition [86-88]. The reliability depends on the population of interest, time of measurement
and number of trials. To reach a good reliability, it is recommended to measure CoP and/or

CoM movement more than once and during a time period of 90 seconds [88;89], which is less
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feasible in clinical practice and in an elderly population. The results of posturography are also
inherently difficult to interpret. Increased CoP or CoM movement is generally assumed to
reflect a deterioration of balance control; this may however not be the case [90-92]. As the
underlying systems are interrelated, selection of another compensation strategy could induce
either increased or diminished CoP and/or CoM movement, in fact reflecting optimal balance
control. Furthermore, changes in CoM and/or CoP movement can be multicausal, i.e. caused
by deterioration of several underlying systems. In addition, CoP and/or CoM movement are
influenced by training, such as ballet training. Ballet dancers show a better stability compared
with untrained controls [93;94], but have an increased CoP and/or CoM movement in specific
sensory conditions compared with untrained controls due to different use of sensory
information [95;96]. As a result, posturography cannot distinguish between the various
underlying systems and the compensation strategies used and it therefore fails to reveal the

details of the underlying pathophysiology of impaired standing balance [92].

Interventions to improve standing balance

Individually targeted multifactorial intervention, including individual risk assessment, is
shown to be the most effective with a significant and beneficial effect on the rate of falling
[97]. However, due to the lack of clinical tests that can make a distinction between underlying
causes of impaired standing balance, nowadays general fall prevention interventions are used,
comprising exercising, environmental modification, medication optimization, education, or a
combination. To reduce the risk of falling, exercising seems to be the best to use in the elderly
[97-99]. Exercising, either balance, resistance or cognitive-motor training [100;101] could

also be prescribed to improve standing balance in the elderly in particular [102].

For traditional balance training there are hardly any scientific guidelines regarding contents,
optimal duration and intensity. The American College of Sports Medicine (ACSM)
recommends exercises that include 1) standing conditions with increasing difficulty caused by
gradually reducing the base of support (e.g. semi-tandem stance, tandem stance, one-leg
stance); 2) dynamic movements that disturb the CoM (e.g. tandem walk, circle turns); 3)
stressing muscle groups involved in standing balance (e.g. heel stands, toe stands); and 4)
reducing sensory input (e.g. standing with eyes closed) [103]. Perturbation-based balance
training concentrates on compensation strategies to recover from unexpected disturbances
using exercises matching real life conditions [104]. Multitask balance training focuses on

balance control during dual task activities, as instability increases when shared attention is
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needed [105]. Perturbation-based and multitask balance training are shown to be more
effective than traditional balance training [106]. However, a drawback of all aforementioned
training types is the lack of a clear dose-response relationship and the unknown effects on the

underlying systems and the compensation strategies used [107].

Resistance training is used to improve the motor system, i.e. muscle function. It comprises
strength training [108;109] and power training [110;111] to increase muscle strength and
velocity of force production respectively. High intensity strength training appears to be more
effective than low intensity training. However, the effect on standing balance is less clear
[112]. Power training has been shown to be more effective in improving standing balance than
strength training [113]. Low intensity power training seems to be better than high or medium
intensity power training [114]. However, the most effective intensity of resistance training is

still under debate.

Cognitive-motor training focuses on the attentional demands needed to perform standing
balance conditions. Three types of cognitive or cognitive-motor trainings are proposed. First,
cognitive rehabilitation intervention has as goal to maximize the cognitive functioning and/or
to reduce the risk of cognitive decline, e.g. by mental imagery training on standing balance.
Second, cognitive-motor interventions are interventions combining cognitive tasks with
physical tasks, e.g. balancing with a current mental task like memorizing words. Third,
computerized interventions use biofeedback or virtual reality to improve standing balance. In
the first case, feedback is given on the balance task, e.g. by visual feedback about the CoP
movement. In the second case, environments are created in which subjects interact with
images and virtual objects in a virtual environment, such as computer games. Previous
research showed that cognitive and cognitive-motor training are effective to improve standing
balance. However, more research is needed to get more evidence on the effectiveness of

cognitive or cognitive-motor training [101].

Despite the generally positive effect of balance training, resistance training and cognitive-
motor training on standing balance, it remains unclear which intervention (i.e. content,
duration and intensity) can best be prescribed to improve standing balance in any specific case.
This requires identification of the underlying cause and primary deterioration in impaired
standing balance and the proper compensation strategy to be trained to improve standing
balance. This is not possible with the current clinical assessment tools, preventing goal

directed and time efficient therapy.
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A new method to identify the underlying cause of impaired standing
balance

As with current clinical balance tests and posturography it is difficult to identify and to
distinguish the primary deterioration of the various underlying systems and the used
compensation strategies which are needed to prescribe targeted interventions, there is a clear

clinical need for novel techniques to assess standing balance.

Balance control: a closed loop

The underlying systems involved in balance control interact within a closed loop (Figure 1).
When the body is disturbed by internal and/or external disturbances, it has to react to these
disturbances. Changes in body position are perceived by the three main sensory systems:
central and peripheral [115;116] vision, proprioception and the vestibular system [117]. This
sensory information is combined and integrated by the nervous system with a specific time
delay. Subsequent motor system action in the form of corrective, stabilizing joint torques is
generated. This changes body position, which is again perceived by the sensory systems. Thus,
in daily life cause and effect are interrelated in a continuous process (Figure 1) within a closed

loop [118].

Externally applied disturbances and closed loop system identification techniques

One way to “break open” the loop of balance control and disentangle cause-and-effect
relations is to apply precise external disturbances and record how the system reacts. The
relation between the disturbances and the response can be described in the frequency domain
by a frequency response function (FRF); per applied disturbance frequency the amplitude
ratio and time delay between input and output is described. FRFs can be compared between or
within subjects to identify changes in the balance control across different disturbance
conditions. An additional step is to translate those FRFs to parameters, which makes it
possible to describe the underlying systems involved in balance control. The experimental
FRFs are compared with a model of the balance control describing the underlying systems
mathematically. Using optimization methods, the parameters are estimated, so that they will
represent the experimental data the best. The estimated parameters give a physiological

meaning to the FRFs [119].
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Figure 1. Balance control represented as a closed loop. The position of the human body is perceived by the
sensory systems (i.e. proprioceptive, visual and vestibular system). The sensory information is sent to the
central nervous system. Here, the information is combined and a command is sent to the muscles (i.e. the
motor system), which will contract and change the body position. Using external disturbances the balance
control can be disturbed at different places in the loop (e.g. by external pushes, ankle rotations, visual scene
movement or galvanic stimulation) and the reaction to the disturbances can be established in different places
by measuring muscle activity, ground reaction forces (i.e. Center of Pressure movement) and body sway (i.e.

Center of Mass movement).

Identifying deterioration in the nervous system and changes in strategies requires mechanical
disturbances. Measuring separately the generated activity of each leg (i.e. the CoP movement)
and the CoM movement, makes it possible to identify the contribution of each leg to the
stabilization of standing balance [120]. By applying mechanical disturbances at ankle and hip
level, the inter-segmental stabilizing mechanisms which represent the contribution of the
ankle and hip strategy to the control of standing balance can be identified. Furthermore, the
movements of the two joints influence each other. This coupling between the joints can be

expressed by relating the joint torques to the joint angles [121].
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Quantifying the contribution of the sensory systems requires disturbances of a specific
sensory system, e.g. visual scene movement disturbing vision or ankle rotations disturbing
proprioception. The contribution of each sensory system in maintaining standing balance can
subsequently be expressed by a weighting factor [122]. A distinction can be made in the
contribution of the proprioceptive information of the left and the right leg to detect
asymmetries [123]. Sensory reweighting strategies can be assessed by increasing sensory
disturbance amplitudes [122] as this scales down the contribution of a sensory system, and
thus lowers its weighting factor. The quality of the sensory systems can be determined by

estimating the noise level [124].

Applying precise external disturbances makes it possible to identify the quality of each
underlying system. Simultaneous disturbances of different sensory systems allow for
assessment of sensory reweighting and together with mechanical disturbances aimed at
different joints, hip and ankle strategies can be identified. The use of random multisine
disturbances consisting of specific frequencies prevents anticipation and allows for
assessment of the bandwidth of system quality. As the goal is to identify the balance control
and not to identify the limits of the balance control, sub maximal amplitudes which can the

participant withstand, are used to disturb the system.

Clinical relevance

The use of externally applied disturbances and closed loop system identification techniques
makes it possible to detect a deterioration in the underlying systems and the compensation
strategies used by elderly persons with impaired standing balance. Using this knowledge a
physician can diagnose the underlying and primary cause of impaired standing balance, which
makes it possible to prescribe targeted interventions. This method may also be applicable to
detect deterioration of balance control at an early stage in elderly persons without impaired
standing balance, i.e. who do not show deterioration of balance control using current clinical
balance tests. Furthermore, the described method is time and cost effective since it allows for
simultaneous application of several external disturbances with different frequency contents.
The external disturbances are sub maximal, which makes the method safe for the patient.
However, before this method can be clinically applied, further research has to investigate
sensitivity and specificity of the method to identify impaired standing balance and risk of
falling in the population of interest. As such, prototypes are currently implemented and

evaluated in clinical practice.
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Conclusion

There is a clinical need for new techniques to assess standing balance that can detect the
underlying cause and primary deterioration in impaired standing balance at an early stage.
Externally applied disturbances in combination with closed loop system identification
techniques may fill the void, which makes it possible to intervene in impaired standing

balance, at an early stage, with targeted interventions.
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