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Chapter 4

The Kondo Effect of a
Single High-Spin Atom

The work presented in this chapter and the following chapter was performed in
collaboration with C. F. Hirjibehedin, M. Ternes, C. P. Lutz, and A. J. Heinrich.

4.1 Historical Overview

The story of the Kondo effect starts in the 1930’s, when De Haas and coworkers
in Leiden measured the resistance of some metals at very low temperatures.
They found that surprisingly, the resistance of their gold samples increased
rather than decreased when being cooled down below approximately 8 K [54].
Although they already suspected the appearance of this resistance-minimum to
be related to the purity of the sample material, the presently accepted expla-
nation was not proposed until 1968 when Kondo attributed the phenomenon to
the presence of magnetic impurities [55]. In the following we will discuss the
Kondo effect within the framework of the Anderson Impurity Model [56].

4.1.1 Anderson S = 1
2

Impurity Model

We consider an atomic impurity that is coupled to a bath of electrons with
Fermi energy εF . The impurity has an orbital that can host two electrons with
opposite spin orientations σ (↑ or ↓). Each electron on the impurity has an
energy εd and if the orbital is doubly filled there is an additional Coulomb
repulsion energy U . This can be summarized in the Anderson Hamiltonian:

Ĥ =
∑

σ

{
εdd̂

†
σd̂σ +

∑
k

ε(k)ĉ†kσ ĉkσ +
∑
k

(
V d̂†

σ ĉkσ + V ∗ĉ†kσd̂σ

)}
+ Ud̂†

↑d̂↑d̂
†
↓d̂↓,

(4.1)
where ĉ†kσ and ĉkσ are the creation and annihilation operators of the electrons
in the bath (with wave vector k) while d̂†σ and d̂σ create and annihilate electrons
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on the impurity. The coupling strength between the impurity and the bath is
quantified by V . We choose εF and εd such that the impurity orbital is half
filled in its ground state |d1σ〉, which thereby becomes degenerate in σ:

|d1σ〉 = d̂†σ
kF∏
k

ĉ†k↑ĉ
†
k↓|vac〉. (4.2)

Here kF is the Fermi wave vector and |vac〉 the vacuum state. For simplicity we
also assume that excitations to |d2〉 = d̂†σ̄ ĉkσ̄|d1σ〉 and to |d0〉 = ĉ†kσd̂σ|d1σ〉 (where
σ̄ denotes the opposite spin orientation of σ), i.e. respectively adding an electron
to or removing an electron from the impurity, cost the same amount of energy
U/2. As a result the situation becomes electron-hole symmetric: there are two
Hubbard bands at the same energy which are each other’s mirror image through
electron-hole inversion. Effectively the impurity is now a localized S = 1

2 system
that can switch its magnetization through either of two virtual processes, each
with a transition rate 2V 2/U :

|d1σ̄〉 = ĉ†k′σd̂σd̂†σ̄ ĉkσ̄|d1σ〉 (i.e. via |d2〉), or
|d1σ̄〉 = d̂†

σ̄ ĉk′σ̄ ĉ†kσd̂σ|d1σ〉 (i.e. via |d0〉). (4.3)

Note that such a process – which has to be energy conserving – can only occur
around the Fermi energy as it extracts an electron from the bath and replaces
it with an electron that has opposite spin. Therefore it requires both filled and
empty states at one energy. By performing a canonical transformation [57], it
is possible to approximate (4.1) as:

Ĥ �
∑

σ

∑
k

ε(k)ĉ†kσ ĉkσ +
2V 2

U

∑
kk′

Ŝd · Ŝkk′ , (4.4)

which is known as the Kondo Hamiltonian. Here Ŝd is the spin of the impurity
and Ŝkk′ is a second SU(2) (i.e. spin 1

2 ) system defined as:

Ŝ+kk′ = ĉ†k↑ĉk′↓,

Ŝ−
kk′ = ĉ†k↓ĉk′↑, (4.5)

Ŝz
kk′ =

1
2

(
ĉ†k↑ĉk′↑ − ĉ†k↓ĉk′↓

)
.

This effective spin can be seen as the net collective magnetization of the elec-
trons in the bath surrounding the impurity, the two spin orientations of which
we shall denote as ⇑ and ⇓. Since 2V 2/U > 0, Ŝkk′ is coupled antiferromag-
netically to the impurity spin Ŝd, which is oriented ↓ and ↑ respectively. At
higher temperatures the system can occupy either of the two degenerate states
|⇓, ↑〉 and |⇑, ↓〉. However, if the temperature T sinks below a characteristic
Kondo temperature TK – where kBTK is a measure for the coupling strength
between bath and impurity – energy can be gained by forming a spin-singlet
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Kondo state 1√
2

(
|⇓, ↑〉 − |⇑, ↓〉

)
[58]. This leads to a sharp resonance in the

electron density of states (DOS) of the Kondo system, exactly at the Fermi en-
ergy. Although in quantum mechanics the singlet-triplet formation is a common
phenomenon when two doublets are coupled, it should be noted that the cur-
rent system involves many spins that are distributed over a wide area that has
unclear boundaries. The Kondo state is therefore a macroscopic many-body
quantum state, the exact properties of which are still under debate in many
theoretical studies.

As the conduction electrons in the vicinity of the impurity freeze into this
singlet state the transport properties of the conductor change significantly, giv-
ing rise to the anomalous increase of the resistance that so much puzzled the
Dutch scientists in 1936. But it is important to stress that the Kondo effect
itself is not a transport property. In the model discussed above we used only
one conducting lead that was coupled to a magnetic impurity. Translated to
an STM geometry this means that if a magnetic atom is coupled to the metal
surface, the tip is not needed to form a Kondo system. So unlike the inelastic
electron excitations of the previous chapters, the Kondo effect just happens;
even if you don’t measure it.

4.1.2 Experimental Realizations of a Single Kondo Spin

In 1998 research on the Kondo effect experienced a revival when it became possi-
ble to experimentally isolate and study a single Kondo-screened spin. This mile-
stone was achieved almost simultaneously through the use of two independently
evolved techniques. First, artificially crafted quantum dots in GaAs/AlGaAs
semiconductor heterostructures were depleted until they effectively held one
electron [59, 60]. The half-integer spin that was thus isolated interacted with
neighboring leads via a coupling that could be tuned with great precision. This
method provides an extreme level of control that has led to many advanced
Kondo experiments [61, 62, 63]. The second technique that enabled the study
of individual Kondo spins was the STM, that was used to address individual
magnetic atoms lying directly on top of and strongly interacting with a metal
surface [64, 65]. Using either method, dI/dV measurements performed on the
Kondo system yielded a strong resonance around zero bias voltage. As a hall-
mark of the Kondo effect, for T > TK the amplitude of the resonance decreases
linearly with the logarithm of T . Its width in energy is a measure for the
coupling strength of the Kondo spin to the bath and therefore also for TK .
Typically for magnetic atoms on a metal surface TK ranges between 50 and
100 K [66], whereas in the quantum dots it can be tuned to values from about
1 K to < 50 mK [60].

Following these first demonstrations, other experimental systems have been
found suitable for isolating and addressing an individual Kondo spin as well.
These include carbon nanotubes [67, 68, 69] and single-molecule transistors con-
structed in electromigration junctions [70, 71].
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4.2 The Kondo Effect of Co on Cu2N

In the discussion above we have used an S = 1
2 impurity. Without losing any

of its applicability the model can be generalized to any system with a twofold
degenerate ground state, as long as a single-electron process can cause it to
switch, i.e. |Δm| = 1. However, the ground state of a system having S > 1

2
is more-than-twofold degenerate, making the problem much more complicated.
Therefore theoretical considerations of the Kondo effect are often limited to
S = 1

2 . Although this assumption is justified for most quantum dot experiments,
where the amount of spin on the dot is set precisely to 1

2 , this is not the case
in general. Based on their d-shell populations, many magnetic elements have
free-atom spin values that are higher and there is no reason to believe that these
should all reduce to 1

2 when the atom is placed upon a surface. Yet the S = 1
2

model suffices for accurately explaining the Kondo results of such systems. In
this section we will investigate this contradiction using the Kondo effect of an
S = 3

2 Co atom on Cu2N.

4.2.1 Temperature Dependence

As we could already see in fig. 2.2, the spin excitation spectrum of Co on Cu2N
looks dramatically different from the ones obtained on Mn and Fe. The bold
curve in fig. 4.1a, taken at 0.5 K, shows apart from a ‘regular’ spin excitation step
at ±5.5 mV a large resonance peak at zero bias. The portion of the spectrum

Figure 4.1: (a) Conductance spectra taken on a single Co atom on Cu2N at various
temperatures. Curves measured at temperatures higher than 0.5 K (thin lines) are
offset by 0.025 nA/mV each. (b) Plot of the full widths at half maximum (FWHM) of
the Lorentzian fits (obtained by deconvolution using the sample temperature) versus
the sample temperature. (c) Similar as (b), but with the approximate tip temperature
(0.5 and 1.8 K) used for deconvolution. At higher sample temperatures the plot
approaches linear behavior (solid line).
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between −3 and 3 mV can be fitted quite well with a thermally broadened
Lorentzian (dashed curve), where we use T = 0.5 K for the broadening. The
Lorentzian lineshape is one of the appearances of the Fano lineshape [72], which
is characteristic for the observation of the Kondo effect in an STM configuration
[64]. Measurements at higher temperatures are plotted as thinner lines.

Obtaining the Intrinsic Resonance by Deconvolution

In order to identify the peak as a Kondo resonance we should look for an intrinsic
temperature dependence in its shape, i.e. a dependence that persist even if the
effects of thermal broadening are removed. One quantity that is often plotted as
function of temperature is the height of the (deconvoluted) peak, which should
decrease linearly with the logarithm of the temperature with a low-temperature
roll-off [70, 71]. For STM experiments this is not very useful as the tip height can
vary from one measurement to the other because of the normalization condition
imposed by the feedback loop. This complication makes the vertical scale of the
spectrum uncertain. As an alternative one can also consider the intrinsic width
of the spectroscopic feature, which in the case of a Kondo resonance should
grow linearly with temperature and at very low temperature saturate at a value
∼ kBTK [60, 73].

Removing the effects of thermal broadening can be achieved by an itera-
tive deconvolution procedure that involves repeatedly fitting the curve with a
convoluted lineshape [73]:

dI

dV
(V, T ) ∝

∞∫
−∞

ρs(ε, T )
d

dV
f(ε − eV, T )dε. (4.6)

Here ρs(ε, T ) is the intrinsic DOS of the sample we would like to extract (note
that in case of a Kondo effect it can still depend on T ), while we assume the
tip DOS to be independent of either ε or T . The above expression also includes
the Fermi-Dirac distribution function

f(ε, T ) =
1

eε/kBT + 1
, (4.7)

the voltage-derivative of which is a Gaussian peak with full width at half maxi-
mum (FWHM) 3.2kBT . Apart from the temperature, also the voltage modula-
tion we add to the bias for lock-in detection broadens the spectroscopic features.
In the following, whenever we refer to deconvolution performed with a temper-
ature T , we actually use an effective temperature giving rise to a Gaussian with

an effective FWHM of
√(

3.2kBT/e
)2 + (

2
√
2Vmod

)2 [74], where Vmod is the
RMS modulation voltage (in this case 50 μV).

In fig. 4.1b the full widths at half maximum of the deconvoluted Lorentzian
fits are plotted against the temperature of the sample Ts (as read off from the
thermometer mounted on the scanner), where for each curve Ts (combined with
the modulation broadening) was used for the deconvolution. The plot shows a
sharp discontinuity between 1.2 and 1.4 K, which corresponds to the switching
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point between two different cooling methods: measurements at Ts ≤ 1.2 K
were performed in single-shot mode whereas at Ts > 1.2 K the 3He was flowing
continuously (section 1.4). This jump is likely to be caused by unequal tip and
sample temperatures. Both the thermometer and the heater were thermally
anchored strongly to the sample, whereas the tip was cooled almost directly
by the liquid 3He without being influenced much by heating. Therefore in
many cases the temperature of the tip was much lower than the thermometer
indicated. In the following paragraph we will discuss the influence of unequal tip
and sample temperatures on the thermal broadening in tunneling spectroscopy
and the proper treatment of this discrepancy in the deconvolution process.

Thermal Broadening with Unequal Temperatures

In general the net tunnel-current I flowing from tip to sample can be expressed
as the difference between the currents caused by electrons tunneling from tip to
sample It→s and vice versa Is→t [74]:

I = It→s − Is→t

∝ 4πe

�

∞∫
−∞

{
ρt(ε − eV )ρs(ε)f(ε − eV, Tt)

(
1− f(ε, Ts)

)
−ρt(ε − eV )ρs(ε)f(ε, Ts)

(
1− f(ε − eV, Tt)

)}
dε

∝ 4πe

�

∞∫
−∞

ρt(ε − eV )ρs(ε)
(
f(ε − eV, Tt)− f(ε, Ts)

)
dε. (4.8)

Here � is the reduced Planck constant while ρt(ε) and ρs(ε) are the densities
of states of the tip and sample respectively. Again f(ε, T ) is the Fermi-Dirac
distribution function that in this case can depend on either tip temperature Tt
or sample temperature Ts. In the above expression we assume that the tunneling
matrix element coupling the tip and the sample is independent of energy (hence
the proportionality sign). Taking the derivative to V we find:

dI

dV
∝ 4πe

�

∞∫
−∞

{
d

dV

[
ρt(ε − eV )

]
ρs(ε)f(ε − eV, Tt)

+ρt(ε − eV )ρs(ε)
d

dV

[
f(ε − eV, Tt)

]
(4.9)

− d

dV

[
ρt(ε − eV )

]
ρs(ε)f(ε, Ts)

}
dε.

If we assume the tip DOS to be independent of energy and we once more allow
the intrinsic DOS of the sample to depend on Ts, the expression reduces to:

dI

dV
∝ 4πe

�

∞∫
−∞

ρtρs(ε, Ts)
d

dV
f(ε − eV, Tt)dε. (4.10)
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Comparing this to (4.6), we see that remarkably, in absence of thermal equi-
librium the thermal broadening is caused exclusively by the temperature of the
tip, provided that its DOS is flat.

As no sensor was connected to the tip, we can only estimate its temperature.
We will therefore assume that the tip was not sensitive to heating and adopted
only two different temperatures; one corresponding to each cooling method. For
the measurements taken in single-shot mode (Ts ≤ 1.2 K) we use Tt = 0.5 K. As
shown in fig. 4.1c, choosing Tt = 1.8 K for the continuous flow measurements
(Ts > 1.2 K) causes the two segments of data points to line up very well1.
Now we see that the temperature dependence of the intrinsic width approaches
linear behavior (with a slope of 5.4 ± 0.1kB) at high temperatures, whereas at
low temperature it saturates as expected for a Kondo resonance. If we follow
the convention of choosing the zero-temperature FWHM of the resonance to be
2kBTK we find a Kondo temperature TK = 2.7 ± 0.2 K. For the extrapolation
to zero temperature we assume the width – being determined by whichever is

the highest of TK and Ts – to go like
√(

2kBTK

)2 + (
5.4kBTs

)2.
4.2.2 Why Co is Kondo-Screened

Now that we have established the presence of a Kondo resonance in Co on Cu2N,
the question arises why it appears in this specific case and why no such effect
is observed in either Mn or Fe on Cu2N. Let us therefore once more review the
requirements for a Kondo effect. As discussed in section 4.1.1, in order for a spin
to become Kondo-screened it needs to have a twofold degenerate ground state
which is coupled to a bath of electrons. Also, the difference in the magnetization
quantum number, |Δm|, should be equal to 1 in order to enable electrons to
initiate the virtual switching process. In chapter 3 we found that both Mn and
Fe have a negative axial anisotropy parameter D, causing the high |m| values
to be favored over the lower values. For Mn this leads to a twofold degenerate
ground state with |Δm| = 5 while for Fe |Δm| = 4. Moreover, as in the latter
case the transverse anisotropy parameter E is finite, the ground state of Fe is
not even degenerate. So we find that for these two atoms Kondo behavior can
be easily excluded based on their magnetic anisotropy. Similarly, the anisotropy
of Co on Cu2N can – as we will see in this section – explain why this particular
atom does become Kondo-screened.

1For continuous flow mode, 1.8 K is somewhat high (1.4 K would have been expected).
However, forcing the tip temperature to 1.4 K in continuous flow would suggest it to become
significantly smaller than 0.5 K in single shot which is highly unrealistic. Nonetheless, this
freedom in fixing tip temperatures has been taken into account in determining the error in
TK . The larger than expected difference between the two Tt values does not influence our
statement that this is a Kondo resonance. By choosing it to be 1.8 K for the Ts = 1.4 K
peak we assign more of its width to thermal broadening, yet the remaining width is still much
larger than that of the intrinsic Ts = 0.5 K resonance.
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Kramers Degeneracy

Kramers’ degeneracy theorem states that in an arbitrarily asymmetric but
purely electrostatic (crystal) field, any system that consists of an odd number
of electrons (and therefore has a half-integer spin) will remain at least twofold
degenerate in the absence of a magnetic field [75]. This follows from the time re-
versal invariance of a Hamiltonian that describes an electrostatic field, of which
our anisotropy Hamiltonian (3.3) is an example if we choose B = 0. The con-
sequence of this statement is that for Mn (S = 5

2 ) and Co (which has 3d7, so
probably S = 3

2 ; we will verify this later) the zero-field degeneracy between
states with equal |m| cannot be broken by a finite E value unlike the case of Fe
(S = 2).

It is illustrative to verify this theorem by perturbation theory. Since by defi-
nition E ≤ 1

3D (otherwise the axes are reassigned), we will treat the transversal
anisotropy term as a perturbation, i.e.:

Ĥ =

Ĥ0︷ ︸︸ ︷
−gμBB · Ŝ+DŜ2Z +

Ĥ′︷ ︸︸ ︷
E

(
Ŝ2X − Ŝ2Y

)
. (4.11)

The eigenstates of Ĥ0 are simply the |m〉 states, whereas in general Ĥ′ mixes
these. Using Ŝ± = ŜX ± iŜY we can rewrite the Hamiltonian to:

Ĥ = Ĥ0 +
E

2

(
Ŝ2+ + Ŝ2−

)
. (4.12)

Now it becomes evident that Ĥ′ to first order only couples states that have
Δm = ±2 and to higher order only if Δm = ±2n, where n is an integer
(this is why in the case of Fe the |m| = 2 states are split much less than the
|m| = 1 states: it is only a higher order correction). So the perturbation mixes
the |m〉 states, but does so only from two separate subgroups. For example,
if S = 2 the resulting eigensystem will consist of three states that are linear
combinations of |+2〉, |+0〉 and |−2〉 and two states that are linear combinations
of | + 1〉 and | − 1〉. Here, original eigenstates with equal |m| are coupled by
the perturbation giving rise to avoided crossings, i.e. lifted degeneracies. But if
S = 3

2 , the combinations are |+ 3
2 〉 and | − 1

2 〉 on the one hand and |+ 1
2 〉 and|− 3

2 〉 on the other, leaving the degeneracy in |m| untouched. This is true for any
half-integer spin and although here we have discussed it only in approximation,
the result is exact and holds for any value of E.

The Role of Anisotropy

As we did before for Mn and Fe, we can use the spin excitation energies to
determine the anisotropy parameters. In the zero-field spectrum of fig. 4.1a there
is one pair of steps symmetrically at ±5.5 mV (measurements up to ±25 mV
did not reveal additional excitations). Assuming that Co maintains its free-
atom spin value of S = 3

2 and taking Kramers degeneracy into account, these
steps can either be assigned to | ± 1

2 〉 → | ± 3
2 〉 excitations if D < 0, or to
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Figure 4.2: (a) Qualitative energy diagrams for an uniaxially anisotropic S = 3
2

system with negative and positive values of D, with the field oriented along the unique
axis. For D > 0, a low-energy | ± 1

2
〉 Kramers doublet is formed.

| ± 3
2 〉 → | ± 1

2 〉 if D > 0 (for now we will neglect E as it cannot influence the
zero-field excitations anyhow). Figure 4.2 shows qualitative energy diagrams
for either situation. If D were negative, the situation would be very similar to
Mn with a twofold degenerate ground state having |Δm| = 3. However, for
D > 0 the two ground states are separated by |Δm| = 1: the ideal system for
Kondo-screening!

In the next section we will show by field-dependent measurements that this
interpretation (i.e. S = 3

2 , D > 0) is indeed correct. Not only does that make
this the first report of a Kondo effect in a known high-spin (i.e. S > 1

2 ) system, it
also demonstrates the importance of magnetic anisotropy in enabling the Kondo
effect. By breaking the degeneracy in |m|, the crystal field reduces the large spin
into an effective S = 1

2 Kramers doublet that can become Kondo-screened at
low temperatures. This finding, which agrees with theoretical predictions on

Figure 4.3: (a) Energy eigenvalues of (3.3) with B = 0 and E just smaller than |D|/3
for negative and positive values of D, in case maximum magnetization is assigned to
each of the primary axes. Physically the two situations are almost identical, yet one
is labelled ‘easy-axis’ and the other ‘hard-axis’. This picture is valid for any S > 1

2
.
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the role of anisotropy in a Kondo system [76, 77], implies that Co in a different
environment might not show any Kondo effect at all. Similarly, atoms with
half-integer spin that are not a Kondo system in one case (like Mn on Cu2N)
may become so in another situation. In fact, this could retrospectively explain
previous findings in [18] where Mn atoms on Al2O3 islands on a NiAl surface
were studied by spin excitation spectroscopy. Although no Kondo behavior was
observed on most of them, some atoms (presumably Mn, as judged from their
apparent height) that were located close to the edge of an island did show a
zero-bias resonance that was attributed to Kondo-screening. This might very
well be caused by a local change in the anisotropy energies.

The interpretation presented above also raises some questions. Because
although each anisotropic system can be discretely labelled as either ‘easy-
axis’(D < 0) or ‘hard-axis’/‘easy-plane’ (D > 0), the boundary separating these
two possibilities is quite subtle. In fig. 4.3 two situations are depicted schemat-
ically, each having an E-value that is only slightly smaller than 1

3 |D| but with
different signs of D. Physically the two situations are very close, except for re-
arrangement of the axes, yet according to our model one of them should result
in a Kondo resonance and the other not at all. It is unclear how the system
would precisely behave in this crossover region.

4.3 A Kondo Spin and Its Environment

When a sufficiently large magnetic field B is applied to a Kondo-screened spin,
Zeeman splitting will lift the degeneracy in its ground state (4.2) as a result
of which the Kondo effect is quenched. However, for smaller fields where the
Zeeman energy is comparable to kBTK , what remains of the Kondo-resonance
peak splits into two peaks. This was observed both in quantum dot [59, 60] and
STM Kondo systems [18]. The effect of a magnetic field can be incorporated into
the Anderson Hamiltonian (4.1) by making εf spin-dependent: εf↑ = εf0−Δε/2
and εf↓ = εf0 +Δε/2, where Δε is the Zeeman energy. Calculations based on
this model predict the splitting between the peaks in the DOS to be 2Δε [78, 79].
Although these calculations are beyond the scope of this thesis, we can verify
their result through a simple model.

Let us start in state |d1↓〉 which is Δε = gμBB higher in energy than the
ground state |d1↑〉. We will now flip its spin by performing one of the virtual
processes of (4.3):

|d1↑〉 = ĉ†k′↓d̂↓d̂
†
↑ĉk↑|d1↓〉. (4.13)

The energy that was lost by the impurity spin during this process has been
absorbed by the bath in the form of an electron-hole excitation. In order to
get back to the original situation we can for example perform the following
operation:

|d1↓〉 = d̂†↓ĉk′↓ĉ
†
k↑d̂↑|d1↑〉, (4.14)

where the impurity reclaims the lost energy from the bath by destroying the
electron-hole pair. Note that during the entire exercise the whole system was
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excited by gμBB. If we would have started in the true ground state of the system
|d1↑〉 (and the Fermi sea unexcited), none of the above could happen because the
impurity has no source to extract energy from. The Kondo resonance therefore
takes place at an energy εF + gμBB, but since the situation is electron-hole
symmetric (because we chose the energy to ionize the impurity to be U/2 either
way) it shows up as two peaks at V = ±gμBB/e in the conductance spectrum.

Incidentally, those are exactly the positions where we expect to find the
dI/dV steps in spin excitation spectroscopy. Of course that is not surprising:
after all it is the same spin excitation that now occurs resonantly at the ex-
citation energy rather than driven by tunneling electrons at and beyond the
excitation energy. Therefore it appears as a peak rather than a step in the
differential conductance. Consequently we can expect the split peaks to follow
the positions of the spin-excitation steps whenever the excitation energies are
changed. In the remainder of this chapter we will verify this hypothesis by
modifying the excitations through various environmental factors. First we will
study the evolution of the peak positions under the influence of a magnetic field
in combination with the strong magnetic anisotropy that the Cu2N surface pro-
vides. In section 4.3.2 other atomic spins will be placed near the Kondo-screened
Co atom, giving rise to changes in the excitation spectra due to spin-coupling.

4.3.1 Anisotropic Field Dependence

Figures 4.4b-d show spin excitation spectra taken on individual Co atoms, each
corresponding to a different field direction. As expected the peak splits into two,
but the rate at which it splits depends strongly on the field direction. Plotting
the observed excitation energies against the field strength (fig. 4.5) suggests
that whereas the B ‖ x and B ‖ z directions yield very similar spectra, both
the step and peak positions are markedly different for B ‖ y. Such anisotropic
field dependence of the Kondo peak positions has not been observed before and
is a noteworthy result that is directly related to the high-spin nature of the
system. A true S = 1

2 system cannot be sensitive to magnetic anisotropy as
presented in (3.3) because none of the second-order |Δm| = 1 terms can link
the | ± 1

2 〉 eigenstates. So even though the crystal field has reduced the Co spin
to an effective spin 1

2 as far as creating a Kondo system is concerned, it clearly
still carries the signature of a true high-value spin.

Since we want to use these spectra for studying the relation of the peak
positions to the underlying excitation energies, we will mainly use the step
positions for determining the anisotropy parameters of Co on Cu2N. Especially
when taking into account the ∼ 5% variations in the excitation energies that
were encountered between different atoms of the same kind in chapter 3, we
can consider the B ‖ x and B ‖ z dependence to be sufficiently equal to model
this system exclusively with uniaxial anisotropy (i.e. E = 0 and Z = y).
However, it is important to realize once more that even if E would have been
finite, Kramers’ theorem would have prevented it from harming the degeneracy
needed for Kondo-screening. Fitting the step positions to the energy of the
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Figure 4.4: (a) Axis-assignment for Co on Cu2N (identical to what was used earlier
for Mn and Fe). (b–d) dI/dV -spectra on individual Co atoms in various magnetic
fields oriented along z, x and y in (b), (c) and (d) respectively. Curves corresponding
to non-zero fields are offset by 0.15 nA/mV. The dotted spectrum in (b) was measured
on a different atom than those with other field strengths in the same direction.
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Figure 4.5: Graphs of the peak and step positions taken from fig. 4.4b–d against
the field strength for B||x (circles) and B||z (squares) in (a) and B||y in (b). Peak
(step) positions are indicated by open (filled) symbols. For the x and z-directions the
peak positions are quite similar and therefore hard to distinguish. In contrast to the
graphs presented in chapter 3 showing directly the measured excitation energies, here
the final energies at the end of the excitation process are plotted: each data point
indicates a measured excitation energy added to the calculated ground state energy at
the corresponding field. Accordingly, the solid lines show the calculated eigenenergies
(rather than the calculated excitation energies as before).

second excitation yields2 g = 2.1 ± 0.2 and D = 2.7 ± 0.1 meV, indicating
that our reasoning in section 4.2.2 – which was based on hard-axis anisotropy
(D > 0) – was indeed correct. The solid lines in fig. 4.5 show the calculated
eigenenergies of the anisotropy Hamiltonian for these values.

At this point we turn to the field dependence of the peaks in the spectra.
According to our understanding of the Kondo effect, the peaks should closely
follow the | + 1

2 〉 → | − 1
2 〉 excitation energies. As can be seen from the open

symbols in fig. 4.5 they do so very well for all field directions. The data points
seem to be consistently slightly high compared to the calculated energy, but this
might result from the fact that the maximum of a peak that is superimposed
on top of an upward step (which should still be there) is shifted towards higher
values. Although not surprising, this result is quite remarkable: the entire model
we used to calculate the transition energies was based on the anisotropy of a
single spin in a one-particle picture, yet it precisely captures the behavior of the
many-body Kondo system.

2The error margins here are much larger than for Mn and Fe. This probably results from
forcing E to be 0. Leaving E free as a fit-parameter unfortunately does not resolve this
problem, since the | + 1

2
〉 → | + 3

2
〉 energy is very insensitive to changes in E which can

therefore not be determined. However, the choice of E = 0 is justified by the similarity of the
|+ 1

2
〉 → |− 1

2
〉 excitations (i.e. the peaks) – which are sensitive to transverse anisotropy – in

the B ‖ x and B ‖ z measurements.
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4.3.2 Coupled Kondo Systems

Having studied the interplay of a Kondo-screened spin with nonmagnetic atoms
(i.e. the crystal field), we now shift our attention to the influence of magnetic
atoms on a Kondo impurity. Similar studies in quantum dots [80] and electro-
migration junctions [81] have shown remarkable changes in the properties of a
Kondo system through spin-spin coupling. The ease with which vertical atom
manipulation can be performed on Cu2N makes this an ideal surface for doing
such experiments in an STM configuration. Here we will discuss various mea-
surements performed on a class of atomic structures that exhibit spin-coupling
that is of the proper strength to compete with the effects of magnetic anisotropy
and Zeeman splitting.

Weak Coupling Through Vacancies

As shown schematically in fig. 4.6a, a magnetic atom “X” (which can be Fe,
Mn or Co) and a Co atom are separated by 7.2 Å along a vacancy row. Such a
structure is built by first positioning either one of the atoms on a Cu site and
than placing the second atom on one of the two N sites closest to the desired
final position (dashed circle in the figure, assuming the Co atom was positioned
first). Finally the atom is hopped in place by a 1.5 V pulse (see section 2.3.3)
with ∼ 50 % success rate3. In the following we will refer to such structures
using the shorthand “XvvCo” (where the v’s correspond to the two vacancy
sites between the atoms).

These nano-engineered structures differ in three ways from those used in
earlier spin-coupling studies on Cu2N [19], where (1) the inter-atomic spacing
was half as large, i.e. 3.6 Å, (2) the atoms were positioned along a N-row
rather than a v-row and (3) all atoms were identical (Mn). In that situation
the atoms were coupled quite strongly (because of their proximity as well as
the high electron density along the N-rows) as a result of which they formed
one entity, both in topography and in spectroscopy. Also, once constituted the
structures could not be controllably disassembled. In contrast, in a topograph
of the current dimers (fig. 4.6b) one can clearly recognize each constituent atom.
Each of these can be removed without causing lasting damage and be replaced
by a different atom at will. As we will see shortly, at these relative positions the
two atoms produce individual excitation spectra that still resemble those of the
corresponding single atoms and the effects of spin-coupling on the Co atom are
comparable in magnitude to the field-induced splitting of the previous section.

In fig. 4.6b we see three vertically oriented dimers: a MnvvCo (atoms 1
and 2), a FevvCo (atoms 3 and 4) and a CovvCo structure (atoms 5 and 6).
The horizontally oriented dimer on the central island is CovvCo as well. Each
combination was built in both orientations to enable field-direction dependent
measurements (in the current image the magnetic field was oriented vertically).
In addition each structure was built once more on a sample where the field was

3We did not perform statistics on the success rate of hopping so this number is based on
general impression. If any, there might be a slight bias in favor of success.
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Figure 4.6: (a) Structural drawing of the XvvCo dimer with axis-assignments. The
dashed circle indicates where the second atom has to be put down in case the Co atom
was positioned first. (b) Topographic image (20× 20 nm, 10 mV/1 nA) showing four
dimers on separate Cu2N islands: one MnvvCo (atoms 1 and 2), one FevvCo (atoms
3 and 4) and two CovvCo’s (atoms 5 and 6 and the structure on the central island).
(c) Height profiles taken from (b) in vertical direction. The zero of the lower profile
corresponds to the surface of the Cu2N island; the other two are offset by 1 Å each.
The dashed lines are meant as a guide to compare the apparent heights of the atoms.

oriented perpendicular to the surface. All dimers where placed such that no
lattice defect, island edge or other adatom was present within a range of 14.4 Å
(i.e. 4 unit cells). As fig. 4.6c shows, the apparent height (at 10 mV/1 nA)
of the Fe and Co atoms was nearly identical whereas that of Mn was slightly
higher. Because the combination of two Kondo-screened spins in the CovvCo
structures introduces an extra complication we will first focus on the effects of
coupling non-Kondo spins to Co.

The World’s Tiniest Compass

The lowest curves in fig. 4.7 show the zero-field spectra for each of the two
atoms in FevvCo (for this the same atom-lock procedure was used as discussed
in section 2.3.1 for measurements on individual atoms). Although the typical
Co spectrum can still be recognized by its spin excitation steps, the central
Kondo feature has changed dramatically: the resonance peak seems to have split
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Figure 4.7: dI/dV -spectra measured on FevvCo when the tip was positioned over
the Fe atom (a, c) and Co atom (b, d) at various magnetic fields oriented along x
(a, b) and y (c, d).
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Figure 4.8: dI/dV -spectra measured on MnvvCo with the tip over the Mn atom
(a, c) and Co atom (b, d) at various magnetic fields oriented along x (a, b) and y
(c, d). Dotted spectra were taken on a different structure (identical but built elsewhere
on the Cu2N surface) than those with other field strengths in the same direction.
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and a small extra peak has appeared at zero-bias. If we neglect this central peak
for now (it will be taken into consideration further on) it looks like the proximity
of the Fe atom is experienced by the Co atom as an effective magnetic field.

This interpretation is confirmed surprisingly well by measurements at finite
fields. If B ‖ x (i.e. measured on the horizontal structure in fig. 4.6b) the
separation between the two peaks decreases until B � 2 T after which it grows
again. If however B ‖ y no such crossing occurs: the separation stays roughly
constant and grows only slightly beyond B ∼ 3 T. Measurements at B ‖ z (to
be discussed further on4 in chapter 5, fig. 5.11a) indicate qualitatively similar
behavior as for B ‖ y. So it seems as if the external magnetic field is able to
cancel the effect induced by the Fe atom’s effective field if it is oriented along x,
but cannot do so in the other directions. The Co atom experiences a net field
Bnet = |B+Beff |, where the effective field Beff points in the opposite direction of
the external magnetic field’s x-component. As a result Bnet = B −Beff if B ‖ x
and Bnet =

√
B2 +B2

eff if B ⊥ x. This result is in excellent agreement with our
knowledge of Fe: in chapter 3 we found that the spin of an individual Fe atom
on Cu2N has the x-axis as its easy-axis along which it likes to magnetize even
in the absence of an external magnetic field. If an external field is applied the
Fe spin will always align with its x-component and therefore by symmetry the
field lines of the Fe atom’s field must oppose the external field’s x-component
at the position of the Co atom.

This qualitative ‘effective field’ picture also fits reasonably well for the re-
sults on MnvvCo (figs. 4.8 and 5.11b). Here the peaks cross around B � 1 T if
B ‖ y or B ‖ z but repel each other if B ‖ x. With the exception of the crossing
when B ‖ y, again this agrees with our finding that Mn has an easy-axis along z.
It should be noted, however, that the anisotropy energy of Mn is much weaker
than that of Fe (D = −0.039 meV and −1.55 meV respectively). Therefore the
preferred magnetization direction of the Mn spin might be more easily disturbed
by a perpendicular field.

Thus a single Co atom acts as the world’s tiniest compass: it locally probes
the direction and strength of the magnetic field around a single atomic spin.
Clearly this picture is highly simplistic and incomplete in many ways: the con-
cept of field lines is not applicable to quantum spins, the atoms can no longer be
treated individually and as we will discuss in section 4.4 the dipolar field of such
a spin system would be far too weak to be measured at a distance of 7.2 Å. Yet
the concept of such an effective magnetic field beautifully captures the essence of
these experiments. It demonstrates the stunning amount of control with which
individual atoms can be handled and proves that even deep inside the realm
of quantum mechanics, as a first approximation our classical intuition may still
guide us. And, as we will see shortly, it certainly is not incorrect.

4These measurements were performed with a special tip that will not be discussed until
section 5.3. However, this is not expected to influence the energies at which the peaks and
steps are encountered.
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4.3.3 Full Heisenberg Model

In this section we will try to model the spin-coupled systems of the previous
section quantitatively by combining the Zeeman effect, magneto-crystalline an-
isotropy and spin-coupling in one Hamiltonian. In order to do so we need to
merge two spin systems that in general have Hilbert spaces with different di-
mensionalities. For this purpose we will use tensor multiplication as discussed
in [82]. If for example we combine an S = 1

2 system and an S = 1 system, being
described by spin-state vectors

|ma〉 =
(

a1
a2

)
and |mb〉 =

⎛
⎝ b1

b2
b3

⎞
⎠ , (4.15)

all resulting states are represented by the tensor product of |ma〉 and |mb〉:

|ma〉 ⊗ |mb〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1b1
a1b2
a1b3
a2b1
a2b2
a2b3

⎞
⎟⎟⎟⎟⎟⎟⎠ ≡ |ma mb〉. (4.16)

Here the horizontal line only acts as a guide to the eye and has no algebraic
significance. Similarly one can tensor-multiply operators, e.g. Â (2×2) working
on |ma〉 and B̂ (3× 3) working on |mb〉:

Â ⊗ B̂ =

⎛
⎜⎝ A11B̂ A12B̂

A21B̂ A22B̂

⎞
⎟⎠ , (4.17)

where the Amn’s refer to the matrix elements of Â. If we want to perform an
operation on only one of the spins we should tensor-multiply with the identity
Î on the other side, e.g.:

(
Ŝy|ma〉

)
⊗ |mb〉 =

(
Ŝy ⊗ Î

)
|ma mb〉 =

(
0 −i
i 0

)
⊗

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ |ma mb〉

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−i
−i

−i

i
i

i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

|ma mb〉 ≡ Ŝ(a)y |ma mb〉. (4.18)

Similarly, Ŝ
(b)
y |ma mb〉 ≡

(
Î ⊗ Ŝy

)
|ma mb〉, where now Ŝy is the corresponding
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spin operator with the dimension of |mb〉. Using this formalism we can begin
constructing our Hamiltonian. As in [19] we will model the interaction between
the two spins with an isotropic Heisenberg coupling term:

Ĥ = JŜ(a) · Ŝ(b) = J
(
Ŝ(a)x Ŝ(b)x + Ŝ(a)y Ŝ(b)y + Ŝ(a)z Ŝ(b)z

)
, (4.19)

where J is the coupling constant. The spins tend to align ferromagnetically for
J < 0 whereas J > 0 leads to antiferromagnetic relative orientation.

Let us start with the case of FevvCo. Combining (4.19) with the Zeeman and
anisotropy terms (3.3) for each of the two spins we can form the following
Hamiltonian5:

Ĥ = JŜ(Fe) · Ŝ(Co) − μBB ·
(
gFeŜ(Fe) + gCoŜ(Co)

)
(4.20)

+ DFeŜ
2(Fe)
x + EFe

(
Ŝ2(Fe)y − Ŝ2(Fe)z

)
+DCoŜ

2(Co)
y .

Note that here we have adopted the axis assignments that we found for the
single atoms: (X ,Y,Z) = (y, z, x) for Fe and Z = y for Co. Again, we choose
to model Co with uniaxial anisotropy (i.e. ECo = 0). During the following
analysis we will allow the other anisotropy parameters DCo, DFe and EFe, as
well as gCo and gFe to deviate no more than 5% from their single atom values.
This way the Heisenberg coupling parameter J remains as the only fully free
fitting parameter of (4.20). Since the FevvCo system has 20 eigenstates it is very
difficult to fit all excitation energies simultaneously via an automated routine.
The presented ‘fits’ were found by manually adjusting the parameter values and
can therefore not be guaranteed to be optimal. However, we will see that the
results are very convincing and cannot be far off.

The Low-Energy Case: One Spin Fixed

In fig. 4.9 the first four calculated energy levels, obtained by diagonalization of
(4.20), are plotted for J = 0.13 meV and B ‖ x together with the peak positions
extracted from fig. 4.7b (still neglecting the central peak). Except for an avoided
crossing around 1.1 T, caused by the finite value of EFe, the diagram consists of
two pairs of diverging levels that are shifted vertically relative to each other by
∼ J . According to these pairs we label the states |ψα0〉, |ψα1〉, |ψβ0〉 and |ψβ1〉.
Obviously this labelling is not defined at the avoided crossing, but we will only
use it for field values well away from it. Due to the difference in slopes we see
that at 2.1 T the ground state switches from |ψα0〉 to |ψβ0〉.

These four levels can almost entirely be expressed within the subspace span-
ned by the eight |mFe| = 2 states, i.e. |mFe mCo〉 = | ± 2 ± 1

2 〉 and | ± 2 ± 3
2 〉

where the m’s refer to the eigenvalues of Ŝ
(Fe)
x and Ŝ

(Co)
x . Table 4.1 lists the cor-

responding coefficients both for B = 0 T and for 4 T along x. Here some small

5For terms like Ŝ
2(Fe)
x it does not matter whether the square is taken before or after the

tensor product, i.e.
�
Ŝx ⊗ �̂

�2
= Ŝ2

x ⊗ �̂.
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Figure 4.9: Lowest four eigenvalues of (4.20) with J = 0.13 meV, gFe = 2.11, gCo =
2.16, DFe = −1.53 meV, EFe = 0.31 meV and DCo = 2.70 meV for B = 0 to 7 T along
x. Two crossing dashed lines indicate what the energy levels would be like if EFe = 0.
The levels are labelled according to this situation: {ψα0, ψα1, ψβ0, ψβ1} with ascending
energy at B = 0. Open circles indicate the positions where peaks were encountered
in the corresponding spectra of fig. 4.7b, all plotted with respect to the calculated
ground state (i.e. as in fig. 4.5). Here the small zero-bias peak in the 0 T spectrum
was omitted.

contributions of mFe = 0 resulting from finite EFe are neglected, the largest
matrix element of which is 0.16. From the coefficients we can see that at either
value of B the strongly diverging levels |ψβ0〉 and |ψβ1〉 have most weight in
states where the two spins have parallel orientation (remember that the expec-
tation value is the square of the matrix element), whereas |ψα0〉 and |ψα1〉 are
mostly oriented antiparallel. Note that the higher values of |mCo| are preferred
over the lower ones because B points in the x-direction which is part of the
easy-plane of Co.

The peak positions that were measured over the Co atom, the data points
in fig. 4.9, coincide very well with |ψα0〉 → |ψβ0〉 excitations when B < 2.1 T,
while above the change of ground state they closely follow |ψβ0〉 → |ψα0〉. This
is not surprising since the |ψα0〉 and |ψβ0〉 states are almost identical through
inversion of mCo: by parking the tip over the Co atom we can flip its spin from
antiparallel to parallel or vice versa with respect to the Fe atom’s spin, while
leaving the Fe spin itself untouched. Access to the other two states, |ψα1〉 and
|ψβ1〉, requires exciting the Fe spin and can therefore not be gained while the tip
is over the Co atom. At B = 2.1 T the ground state is incidentally degenerate
as a result of which the Co spin can once more become Kondo-screened, leading
to the reconstructed resonance peak we observed. This effect is not found if the
tip is positioned over the Fe atom because in that situation the electrons do not
tunnel directly into the resonance, which takes place only on the Co atom.
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Table 4.1: Projection of eigenvectors for FevvCo, obtained by diagonalization of (4.20)
with J = 0.13 meV, gFe = 2.11, gCo = 2.16, DFe = −1.53 meV, EFe = 0.31 meV,
DCo = 2.70 meV and B = 0 T and 4 T along x, on the subspace of |mFe mCo〉
states with |mFe| = 2. Matrix elements outside this subspace are no larger than
0.16. The states are labelled based on their physical significance rather than their
eigenvalues (fig. 4.9): {ψα0, ψα1, ψβ0, ψβ1} with ascending energy at B = 0 T and
{ψβ0, ψα0, ψα1, ψβ1} with ascending energy at B = 4 T.

State |+2+ 3
2 〉 |+2+ 1

2 〉 |+2– 12 〉 |+2– 32 〉 |–2+ 3
2 〉 |–2+ 1

2 〉 |–2– 12 〉 |–2–32 〉
B = 0 T

|ψα0〉 0 0.46 0 –0.86 0 0 0 0
|ψα1〉 0 0 0 0 –0.86 0 0.46 0
|ψβ0〉 0.82 0 –0.53 0 0 0 0 0
|ψβ1〉 0 0 0 0 0 –0.53 0 0.82

B = 4 T

|ψα0〉 0 –0.53 0 0.84 0 0 0 0
|ψα1〉 0 0 0 0 –0.90 0 0.40 0
|ψβ0〉 0.88 0 –0.46 0 0 0 0 0
|ψβ1〉 0 0 0 0 0 –0.61 0 0.78

Tip-Position Dependent Transition Intensities

We will now expand our analysis to include higher-energy excitations as well as
excitations of the Fe spin. In order to accurately sort out which of the large set
of eigenstates are accessible through inelastic electron excitations we will use
the transition intensity calculations that were introduced in section 3.3.3. We
simulate the position of the tip by assuming that only the spin closest to the
tip can be excited, e.g.6:

I
(Fe)
0→n =

∣∣∣〈ψn| Ŝ(Fe)x |ψ0〉
∣∣∣2 + ∣∣∣〈ψn| Ŝ(Fe)y |ψ0〉

∣∣∣2 + ∣∣∣〈ψn| Ŝ(Fe)z |ψ0〉
∣∣∣2 , (4.21)

where I
(Fe)
0→n is the transition intensity from the ground state to |ψn〉 when the

tip is over the Fe atom. As the multitude of states is much larger than before
it is worthwhile to combine the intensity information together with the energy
levels in one single graph which will now be introduced step by step.

The small dots in figs. 4.10 and 4.11 show the lowest 12 eigenenergies of (4.20)
in magnetic field intervals of 0.1 T along x and y respectively. As before, proper
parameter values for these calculations were found by manual tuning. The dots
representing the ground state |ψ0〉 are colored black while the coloring of the
remaining levels |ψn〉 is based on I

(Co)
0→n and I

(Fe)
0→n (see color key in fig. 4.11). Red

6Note that here we drop the suggestive labelling used in the previous section and once
more number the states |ψn〉 with increasing energy.
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Figure 4.10: Small dots: lowest 12 eigenvalues of (4.20) with J = 0.13 meV, gFe =
2.11, gCo = 2.16, DFe = −1.53 meV, EFe = 0.31 meV and DCo = 2.70 meV for
B = 0 to 7 T in increments of 0.1 T along x. Color indicates the values of I

(Co)
0→n

(red) and I
(Fe)
0→n (blue); see fig. 4.11 for key. The ground state is colored black. Large

dots: experimental data points indicating positions of peaks (open circles) and steps
(filled circles) in figs. 4.7a (blue, Fe) and b (red, Co), all plotted with respect to the
calculated ground state.

dots correspond to a high value of I
(Co)
0→n (i.e. a high transition intensity towards

that level if the tip is positioned over Co) while blue dots have a high I
(Fe)
0→n.

If neither intensity is high the dot becomes grey: it represents a state that is
not expected to be accessible through tunneling excitation through either atom.
States that can be reached both via excitations on Co and on Fe are colored
magenta. In both graphs the blue excitations between −3 and 0 meV represent
excitations towards |mFe| = 1; the red line between −2 and 0 meV consists of
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two excitations that involve rotating the Co spin towards its hard-axis7. Note
that here we use our knowledge of the intensities only qualitatively: a transition
is either possible or not.

Experimental data, taken from fig. 4.7, is added to the graph as larger dots:
red for features found in Co spectra and blue for Fe. Open circles correspond
to peak positions (local maximum in dI/dV ) while closed circles refer to steps
(maximum in |d2I/dV 2|). The agreement is evident: data points appear almost
exclusively on energy levels that have the appropriate color. In a few instances
(such as the low-energy Fe step at B = 1 T along y) the dot ends up between
two correctly colored lines (in this case magenta). In those situations the en-
ergy resolution of the measurement was insufficient to separately distinguish
two individual excitations. The highest-energy Fe excitations for B ‖ y that lie
close to lines that are only faintly blue correspond to steps that only have a
relatively small height as seen in fig. 4.7c.

The point where the ground state changes, B = 2.1 T along x, has a very
clear signature in the higher-energy excitations too: both Fe transitions sud-
denly switch to a different level. Let us focus on the lower of the two (around
−2 meV) by expressing the involved levels at the critical field within the sub-
space of |mFe| = 1 states (in the |mFe mCo〉-basis, with ground state |ψ0〉):

|ψ4〉 = −0.65|+1+ 3
2 〉 − 0.30|+1– 12 〉+ 0.59|–1+ 3

2 〉+ 0.35|–1– 12 〉, and

|ψ5〉 = −0.70|+1– 32 〉+ 0.43|+1+1
2 〉+ 0.46|–1– 32 〉 − 0.30|–1+ 1

2 〉,

where matrix elements ≤ 0.10 are ignored. Again, these two states almost
only differ in the sign of mCo. Comparing their coefficients to the ones listed
in table 4.1, we see that through Δ|mFe| = 1 transitions |ψ4〉 is linked to |ψβ0〉
(ground state above 2.1 T) while |ψ5〉 is linked to |ψα0〉 (ground state below
2.1 T). The external magnetic field flipping the nearby Co spin is felt on the
Fe atom which is reflected beautifully in the corresponding spin excitations.

Let us do the same thing for MnvvCo. For this system the full Heisenberg
Hamiltonian becomes:

Ĥ = JŜ(Mn) · Ŝ(Co) − μBB ·
(
gMnŜ(Mn) + gCoŜ(Co)

)
(4.22)

+ DMnŜ
2(Mn)
z +DCoŜ

2(Co)
y ,

where we neglect EMn which in the case of a single Mn atom was only 0.007 meV.
This system has 24 eigenstates which are all plotted for J = 0.06 meV with the
two in-plane field directions up to 7 T in figs. 4.12 and 4.13. In either case the
states appear in two bundles of 12 that are separated by 2DCo. The color coding
for the intensities is similar as before except that blue now refers to I

(Mn)
0→n . On

the Co atom excitations can be made towards the high bundle, which as before
involves rotating the spin towards its hard-axis, whereas Kondo resonances only

7As the vertical scales of these graphs have an arbitrary zero, these specific energy values
have no physical significance and are only mentioned for visual reference.

72



Figure 4.11: Lowest 12 eigenvalues of (4.20) with J = 0.13 meV, gFe = 2.11, gCo =
2.16, DFe = −1.48 meV, EFe = 0.33 meV and DCo = 2.70 meV for B ‖ y, represented
as in fig. 4.10. Experimental data points extracted from figs. 4.7c (blue) and d (red).

Inset: key for the color representation of I
(Co)
0→n and I

(Fe)
0→n.

occur within the lower bundle. The Mn spin can excite towards the mMn = 3
2

states in the lower bundle where mMn refers to the eigenvalue of Ŝ
(Mn)
z . Each

of these predicted transitions is observed exactly at the correct energy.
Although by far not as clear as with FevvCo also here a cancellation effect,

giving rise to the reconstructed Kondo peak, can be discerned. When B � 1 T
along y, the red/magenta line that carries the low-energy Co excitation comes
very close to the ground state – much closer then it does for B ‖ x. It is this
intersection of ground states that tells us the correct value of the Heisenberg
constant: J = 0.03 ± 0.02 meV for MnvvCo and J = 0.13 ± 0.02 meV for
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Figure 4.12: Eigenvalues of (4.22) with J = 0.03 meV, gMn = 1.90, gCo = 2.16,
DMn = −0.04 meV and DCo = 2.65 meV for B ‖ x. See fig. 4.13 for key of color

representation of I
(Co)
0→n and I

(Mn)
0→n . Experimental data points extracted from figs. 4.8a

(blue) and b (red), plotted with respect to the calculated ground state. Open (filled)
circles represent peak (step) positions.

FevvCo. But what about the effective field that was introduced in section 4.3.2?
Well, it really is the same thing. If we reduce either (4.20) or (4.22) to a single
Co spin Hamiltonian by fixing the other spin (i.e. by throwing away all terms
that contain no operators working on the Co spin) we find:

Ĥ = −gCoμB

(
B − JS(X)

gCoμB

)
· Ŝ(Co) +DCoŜ

2(Co)
y , (4.23)

where (X) is either (Fe) or (Mn). Here S(X) no longer needs to be an operator
as it does not work on the Co spin anyhow. The proximity of the second spin is
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Figure 4.13: Eigenvalues of (4.22) with J = 0.03 meV, gMn = 1.90, gCo = 2.16,
DMn = −0.04 meV and DCo = 2.65 meV for B ‖ y. Experimental data points
extracted from figs. 4.8c (blue) and d (red). Inset: key for the color representation of

I
(Co)
0→n and I

(Mn)
0→n .

thus represented by an effective field Beff = −JS(X)/gCoμB , corresponding to
a magnitude of 2.1 T for Fe and 0.6 T for Mn.

The Heisenberg Kondo Dimer

The notion of coupling multiple Kondo systems has been considered by many
theorists in a model that is known as the Kondo Lattice [83]. Especially inter-
esting is the case where the coupling strength between spins can be tuned [84],
which was realized experimentally in a quantum dot dimer [62]. Although tun-
able coupling is not readily available in our CovvCo structures, their properties
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Figure 4.14: dI/dV -spectra measured on one of the Co atoms in CovvCo at various
magnetic fields oriented along x (a) and y (b). The dotted spectrum in (b) was taken
on a different structure than the others in the same panel. Since the field direction is
irrelevant at zero field, this particular curve was measured over the atom neighboring
the one in panel (a).

might provide valuable insights in the context of Kondo Lattices. Figure 4.14
shows field-dependent measurements performed on one of the two Co atoms in
either CovvCo dimer of fig. 4.6b, i.e. for B ‖ x and y. The spectra taken at
0 T are characterized by a remarkably deep dip at zero bias that is somewhat
reminiscent of a band gap. At higher field strengths multiple small peaks seem
to cross each other at various energies. We will attempt to model this with yet
another variation of the full Heisenberg Hamiltonian:

Ĥ = JŜ(Co1) · Ŝ(Co2) − gCoμBB ·
(
Ŝ(Co1) + Ŝ(Co2)

)
(4.24)

+ DCo

(
Ŝ2(Co1)y + Ŝ2(Co2)y

)
,

where the superscript (Co1) or (Co2) indicates which of the two Co spins an
operator works on. Surprisingly, as shown in figs. 4.15 and 4.16, this simple
two-spin Hamiltonian can once again assign each observed spin excitation or
resonance to an allowed transition within its eigensystem. Here the lower four
states are all linear combinations of |mCo1 mCo2〉 = | ± 1

2 ± 1
2 〉 (where mCo1

and mCo2 refer to the eigenvalues of Ŝ
(Co1)
y and Ŝ

(Co2)
y respectively), whereas

during the higher-energy excitations one of the two Co spins is rotated towards
its hard-axis. In this situation a best fit is found for J = 0.25± 0.04 meV.
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Figure 4.15: Lowest 12 eigenvalues of (4.24) with J = 0.25 meV, gCo = 2.16 and
DCo = 2.70 meV for B ‖ x. For each level |ψn〉 the corresponding transition intensity

I
(Co)
0→n is shown in greyscale (see fig. 4.16 for key). Experimental data points extracted
from fig. 4.14a plotted with respect to the calculated ground state where open (filled)
circles represent peak (step) positions.

A remarkable exception to the overall good agreement between the measure-
ments and the model occurs among the high-energy excitations for B < 4.5 T
along y (fig. 4.16). According to the intensity calculations an additional exci-
tation should take place between 6.0 and 6.5 meV. It is unclear why this is not
observed through spectroscopy.
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Figure 4.16: Lowest 12 eigenvalues of (4.24) with J = 0.25 meV, gCo = 2.16 and
DCo = 2.70 meV for B ‖ y. Experimental data points extracted from fig. 4.14b. Inset:

key for the greyscale representation of I
(Co)
0→n.

4.4 Discussion

The Kondo effect results from a resonant interaction between a spin and its sur-
rounding conduction electrons. It is a complex many-body phenomenon that
even after decades of research remains topic of debate. The work presented in
this chapter might be a valuable contribution to this discussion. We have studied
a single magnetic atom with a known high spin in an anisotropic environment
that was thoroughly analyzed beforehand. We understand exactly how the crys-
tal field anisotropy effectively reduces the spin to an S = 1

2 Kramers doublet thus
creating a Kondo system, and why other magnetic atoms in the same situation
do not show such behavior. If a magnetic field is applied the Kondo resonance
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splits in a manner that precisely reflects the magnetically anisotropic nature of
the system consisting of the spin and its environment. And finally, if a sec-
ond magnetic atom is positioned in the vicinity of the Kondo spin the resulting
changes in the energies at which the resonances take place can be fully modelled
by isotropic Heisenberg coupling of two anisotropic spins. Surprisingly, this is
true even if the second spin is a Kondo spin itself.

The various XvvCo structures form a unique class of nano-objects. The
energy scales involved in the coupling process (i.e. J) are of the same magnitude
as all the other relevant processes in the system (D, E, μBB), yet the spins are
coupled weakly enough and are sufficiently far apart such that each can be
addressed separately by the STM tip. As we have concluded from DFT studies
in the previous chapter, the adatoms are incorporated into a large molecular
network. Hence the dimers discussed here can be regarded as molecular magnets
where each of the magnetic centers can be studied on its own.

While we can successfully model the interaction with an empirical Heisenberg
constant J , the physics of the coupling remains unclear. According to classical
electrodynamics the dipole μ = −eS/me formed by an electron spin S (where
me is the electron mass) sets up a magnetic field

B =
μ0
4πr3

(
3(μ · r̂)r̂ − μ

)
(4.25)

at a position r relative to the spin (if r > 0). Here μ0 is the permeability
of vacuum and r̂ = r/r. In case of S = 2 and r = 7.2 Å the magnitude of
such a field cannot exceed 4 × 10−2 T which is 50 times lower than the 2.1 T
we encounter. This rules out dipolar interaction as the dominant mediator for
our J , which means that the spins have to be coupled somehow by exchange
interaction through the Cu2N surface. In the following chapter we will discuss
some initial investigations into the mechanism of spin coupling on Cu2N.
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