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Chapter 3

Magnetic Anisotropy

The work presented in this chapter was published as Large Magnetic Aniso-
tropy of a Single Atomic Spin Embedded in a Surface Molecular Network, by
C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones,
and A. J. Heinrich, Science 317, 1199 (2007).

3.1 Introduction

Anisotropy is what makes the difference between spin and magnetism. A free
atom, regardless of its electronic structure, is always perfectly spherical. Al-
though it may possess a finite amount of spin (as a result of some electron
orbitals being half-filled), the lack of anisotropy makes the orientation of the
spinning axis intrinsically undetermined and therefore it will never exhibit mag-
netism. The tendency to align the angular momentum in a certain direction and
the ability to maintain the resulting magnetization over an extended amount of
time is governed entirely by the atom’s immediate environment.

The same is true for large ensembles of spins. Current non-volatile magnetic
storage devices (hard drives) are based on a continuous thin film of ferromagnetic
material, the magnetic domains of which are much smaller than the bits we
intend to write on it. The anisotropy of the material will make sure that each
domain has an ‘easy-axis’ along which it would like to magnetize either up or
down. In order to flip a domain one would have to overcome an energy barrier
Δε = KuV [38]. Here Ku is the anisotropy constant and V the volume of the
domain. At a finite temperature T this will happen spontaneously with a rate

1
τ
= f0e−Δε/kBT , (3.1)

where f0 is a measure of the attempt frequency, typically taken to be 109 s−1,
and kB is Boltzmann’s constant. A reliable storage medium has Δε/kBT = 50
or higher. If however from here we reduce the domain volume V by only a factor
of 2, the decay time τ will decrease by a factor e25 (∼ 1011)! Clearly, we are
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extremely limited in reducing the domain size and hence the bit size as long as
we cannot control the anisotropy. This impending technological barrier, that
currently threatens to halt the decades-long trend toward ever higher storage
densities at room temperature, is called the superparamagnetic limit.

Much larger anisotropies per atom than the ones found in current thin-film
magnetic materials have been reported in magnetic structures consisting of only
a few atomic spins, such as single atoms and clusters on metal surfaces [39, 40]
and molecular magnets [41, 42, 43]. These systems are of technological interest
as they have energy barriers that are already high enough to maintain a stable
spin orientation at low temperatures.

Figure 3.1: Schematic view of the
ŜZ eigenvalues of an S = 2 system
under axial anisotropy with D < 0.

To lowest order, the energy of a spin
in an environment with uniaxial anisotropy
(i.e. where only one axis is unique) can be
described by [43]:

Ĥ = −gμBB · Ŝ+DŜ2Z . (3.2)

Here the first term is the Zeeman splitting
of the states in the presence of a magnetic
field, where g is the g-factor, μB the Bohr
magneton and Ŝ =

(
ŜX , ŜY , ŜZ

)
the spin

operator. The anisotropy is represented by
the second term which splits the zero-field
degeneracy of the spin-states based on the
magnitude of the spin’s Z-projection m. If
D < 0, large values of |m| are favored and we can speak of an ‘easy-axis’.
With D > 0, the spin would like to minimize the Z-component of its magnetic
moment such that the system has an ‘easy-plane’ orthogonal to the unique axis.
For the first case the effect of this term is sketched in fig. 3.1: a barrier of height
−DS2 for integer spin and −D

(
S2 − 1

4

)
for half-integer spin separates the two

metastable configurations.
If all three axes are unique we add another term to the Hamiltonian express-

ing the difference between the remaining two directions (transverse anisotropy):

Ĥ = −gμBB · Ŝ+DŜ2Z + E
(
Ŝ2X − Ŝ2Y

)
. (3.3)

By convention, the axes are assigned as to maximize |D| and have E > 0. Note
that we use the coordinate symbols (X ,Y,Z) to distinguish from the real-world
axes (x, y, z), which will be defined in section 3.3. The transverse term does
not commute with ŜZ , such that it mixes states with different m. This means
that the two magnetization directions no longer represent stationary states as
a result of which the system cannot be used as a bit anymore. We can now
conclude that an ideal situation for data storage occurs when S is large, D is
large and negative and E is very small.
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3.2 Cu2N: a Molecular Network

When an atom is placed upon a surface, obviously the out-of-plane direction
becomes unique. In the particular case of atoms bound on the Cu sites of Cu2N
there is a distinction between the two in-plane directions as well: if the atom
is positioned on a N-row it is part of a v-column in the other direction or vice
versa (a schematic drawing can be found further on in fig. 3.4a). In this section
we will look at the exact composition of the Cu2N surface in more detail.

Figure 3.2: DFT calculations of the electron density in the Cu2N lattice.
(a, b) Cross-sectional views of bare Cu2N through a N-row (a) and through a v-
row (b). (c–f) Same for Cu2N with a Mn or Fe atom adsorbed onto it. Dark (light)
regions indicate low (high) electron density. The black equal density lines are spaced
logarithmically at powers of 101/2 e/a0, where e is the elementary charge and a0 the
Bohr radius. The line at highest density corresponds to 10−1/2 � 0.3 e/a0. At each
atom the net charge is given in units of e.

37



To better understand the structure formed by magnetic atoms on Cu2N,
we used density functional theory (DFT) calculations of the electron density
performed by C.-Y. Lin and B.A. Jones. These were done using the all-electron
full-potential linearized augmented plane wave (FLAPW) method [44] with the
exchange-correlation potential in the generalized gradient approximation (GGA)
[45]. For details of the calculation see [46]. Figures 3.2a and b show cross-
sections of the calculated charge density of Cu2N on Cu(100) in the absence of
any adatom, respectively along a N-row and a v-row. The N atoms are seen to
be slightly above the plane of the surface Cu atoms. In addition, there is a net
transfer of (negative) charge from the Cu atoms to the N atoms. A comparison
of the charge densities along the two orientations shows that the Cu2N has
formed a network of polar covalent bonds along the N-rows that is distinct from
the underlying bulk copper.

Placing an Mn or Fe atom on top of a Cu atom causes a substantial re-
arrangement of the atomic structure. As seen in figs. 3.2c–f for both Mn and
Fe, the Cu atom directly below the magnetic atom has moved toward the bulk
and is no longer part of the polar covalent Cu2N network. The magnetic atom
transfers charge to the Cu2N surface and creates bonds with its neighboring
N atoms: the magnetic atom is thus incorporated into the extended molecular
network on the surface. In view of these significant structural and electronic
changes involved in placing an atom on the surface, it is all the more surprising
that we can reverse the process by removing an adatom as described in the
previous chapter without permanently changing the Cu2N surface.

Figure 3.3: Calculations of the local spin density on each atom for (a) Mn and
(b) Fe on Cu2N. In either case the left (right) image shows the first (second) layer of
atoms. Cu atoms are depicted as large light grey spheres while N atoms are smaller
and dark. Dashed circles indicate the position of the adatom above the first layer.
The numbers give the net spin (×100) on each atom and its surrounding interstitial
region. Including the spin on the adatoms, these add up to 250 for Mn and 200 for Fe.
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The calculations can also give information on the local distribution of spin,
determined by evaluating S = (N↑ − N↓) /2 where N↑ and N↓ are the total
number of electrons with spin up and down in a specified volume. In the case
of Mn, the spin on the atom itself and the surrounding interstitial region is
S = 2.28, whereas for Fe S = 1.73. These values are slightly lower than the
free-atom spins (i.e. S = 5

2 for Mn and S = 2 for Fe), however, a substantial
amount of spin density extends into the surrounding atoms, as illustrated in
fig. 3.3. By including the spin on all of the atoms, the net spin of the total
structure is calculated to be the same as that of the free atoms (2.50 and 2.00).
Specifically in the case of Fe we find that the spin spreading occurs primarily
along the direction of the N-row, while for Mn there seems to be a slightly
stronger tendency to spread down into the second layer. This spreading of spin
density, here up to 5 Å from the binding site, is similar to that reported in DFT
calculations of molecular magnets [48]. In comparison, no substantial net spin
density is found for bare Cu2N on Cu(100).

3.3 Anisotropy in Spin Excitations

The existence of zero-field excitations as seen in the spectra of fig. 2.2, indicating
that the different spin orientations (quantum number m) are non-degenerate,
suggests that the atomic spins on Cu2N are subject to strong magneto-crystalline
anisotropy. We studied the anisotropy of Mn and Fe atoms on the Cu sites of
Cu2N by following the evolution of their spin excitations when a magnetic field
is applied in three orthogonal directions. As discussed in section 1.4 the He de-
war in which the 7 T superconducting magnet was mounted could be rotated
such that the field was either in the plane of the sample or perpendicular to it.
In the second case there was a ∼ 7◦ tilt of the magnetic field with respect to the
sample’s normal vector which we will ignore during further analysis. When the
magnetic field was in the plane, the orientation of the sample was such that the
field aligned with the (001)-direction of the crystal, i.e. parallel to the N-rows
and v-rows in one direction (in this situation there was a ∼ 5◦ misalignment
that we will ignore). Distinction between the two in-plane field directions was
made by separately regarding adatoms that were located either on a N-row or
on a v-row. As a result, multiple field directions could not be realized on a single
atom (without repositioning it). Switching from an in-plane to a perpendicular
field even required preparing a whole new sample (section 2.2.1) as it involved
dismounting the entire cryostat. For each individual atom lying on a Cu site, we
will use the coordinate system as defined for Mn in fig. 3.4a, where x is directed
along the N-row, y along the v-row and z is the surface’s normal vector.

In the subsequent analysis we will describe each of the atomic spin systems
by a single spin vector Ŝ. It is important to note that this ‘spin’ is a resultant
quantity which comprises both the intrinsic spin of the electrons and their orbital
angular momentum. As the crystal field can only directly influence the latter,
spin-orbit coupling plays an important role in translating the effects of magnetic
anisotropy to the actual electronic spins.
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Figure 3.4: (a) Schematic top view of Mn on Cu2N. This assignment of the axes will
be used for any single atom on Cu2N. (b–d) dI/dV -spectra on a individual Mn atoms
in various magnetic fields oriented along z, x and y in (b), (c) and (d) respectively.
Smooth curves show the calculated conductance based on (3.5), scaled to fit the data.

3.3.1 Mn: a Weak Easy-Axis

Figures 3.4b–d show spin excitation spectra taken on three different Mn atoms,
each corresponding to one field direction, at 0 T, 3 T and 7 T. In each situation
the energy of the single step that is found symmetrically around zero bias grows
with the field strength. The rate at which it grows is nearly equal for B ‖ x and
B ‖ y (the two in-plane directions), but is markedly higher whenB ‖ z. We shall
try to explain these observations using the anisotropy Hamiltonian (3.3). Mn is
a 3d5 metal so we expect its spin to be 52 . Since the x and y field orientations
give similar results we can expect the main anisotropy axis Z to coincide with
the z-direction, and E to be very small. Fig. 3.5a shows the qualitative effect
the anisotropy Hamiltonian has on the energy levels of an S = 5

2 system when
D < 0, E = 0 and B ‖ Z. If we assume the transitions to obey the selection
rules1 Δm = 0 or ±1, a single transition from the ground state (m = 5

2 ) to
m = 3

2 is allowed, the energy of which is finite at B = 0 and grows linearly with
the field. Note that if we choose D > 0, m = 1

2 would become the ground state
and we would have two allowed transitions (to m = 3

2 and m = − 12 ).
1We will discuss these rules in section 3.3.3.
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Figure 3.5: (a) Sketch of the qualitative effect of a negative D-value on an S = 5
2
sys-

tem when the field is oriented along the primary axis Z. (b–d) Step energies taken
from fig. 3.4. The solid lines indicate excitation energies obtained by diagonalization
of 3.3. In (b) the open circles label step energies measured on a different Mn atom.

We obtained the best fit of the step positions when g = 1.90 ± 0.01, D =
−0.039 ± 0.001 meV, and E = 0.007 ± 0.001 meV with (X ,Y,Z) = (x, y, z).
The calculated transition energies for these values are shown in figures 3.5b–d.
Due to the weakness of the anisotropy there are many level crossings at low
magnetic field. Especially in the x and y-directions, where even at E = 0 the
levels are not eigenstates of Ŝz, this complicates the exact assignment of the
spin excitations.

The resulting parameters correspond to a magnetic easy-axis pointing out
of the plane (i.e. Z = z). The value of D, which is much smaller than the
anisotropy of Fe as will be discussed shortly, is consistent with anisotropy val-
ues observed for Mn in molecular magnetic clusters [49]. Small anisotropy is
also expected for half filling of the d-orbitals. Hund’s rule coupling leads to
alignment of the electron spin and single occupation of all d-states, giving rise
to a symmetric charge distribution within the d-shell. Although the results in-
dicate a finite value for E, its magnitude is still too small to cause observable
transitions to other levels that could arise from mixing of the eigenstates.
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3.3.2 Fe: Almost a Bit

The zero-field spectrum of Fe, which based on its electronic configuration (3d6)
we expect to behave as an S = 2 system2, features three steps at |V | � 0.2, 3.8
and 5.7 mV. These excitation energies change by less than ∼ 5% between various
measurements performed on Fe atoms adsorbed on different Cu2N islands and
measured with different tips. This variation may arise from slight changes in the
local environment caused by the inherent strain in the Cu2N islands [50]. The
appearance of three spin excitations can be explained by choosing the anisotropy
parameters D < 0 and E �= 0, as illustrated qualitatively in fig. 3.7a. The result
of having a substantial E (and the absence of Kramers degeneracy for integer
S, see chapter 4) is that all zero-field degeneracy is broken, including that for
equal |m|. Now the 0.2 meV step can be assigned to an excitation between
|m| = 2 states, while the steps at higher energies are signatures of |m| = 2 → 1
transitions. Excitations to m = 0 are forbidden by the selection rules.

The field dependence of the step positions (figs. 3.6a–c) is much more an-
isotropic than in the case of Mn. A clear example is the 5.7 meV step, that
goes up in energy with increasing B ‖ x and down when B ‖ y. The evolu-
tion of the heights of the steps, which is similarly anisotropic, especially for the
0.2 meV excitation, will be discussed in the next section. Calculations of the
energy levels, fitting the measured step positions, are plotted in figs. 3.6d–f.
The parameters used here are g = 2.11 ± 0.05, D = −1.55 ± 0.01 meV and
E = 0.31±0.01 meV, with the anisotropy axes assigned as (X ,Y,Z) = (y, z, x).
This translates into a strong easy-axis (Z) along the N-direction (x), with a
significant contribution from transverse anisotropy. Similar values, although
usually with positive D (corresponding to planar or hard-axis anisotropy), have
been observed in crystals formed from molecular magnet structures with single
Fe atoms [49].

3.3.3 Transition Intensities

In order to better understand the inelastic tunneling process that governs the
spin excitations we can additionally analyze the intensity of the observed tran-
sitions. We find that the relative step heights in the Fe spectra, which should
be a measure of the excitation intensities, are well-described by:

I0→n =
∣∣∣〈ψn| ŜX |ψ0〉

∣∣∣2 +
∣∣∣〈ψn| ŜY |ψ0〉

∣∣∣2 +
∣∣∣〈ψn| ŜZ |ψ0〉

∣∣∣2 (3.4)

=
1
2

{∣∣∣〈ψn| Ŝ+ |ψ0〉
∣∣∣2 +

∣∣∣〈ψn| Ŝ− |ψ0〉
∣∣∣2 + 2

∣∣∣〈ψn| ŜZ |ψ0〉
∣∣∣2

}
,

where Ŝ± = ŜX ± iŜY and the |ψn〉 states are obtained directly from diago-
nalization of (3.3), with |ψ0〉 being the ground state. This expression was also
used for analysis of neutron scattering experiments on a similar magnetic sys-
tem [51]. The first two terms enable Δm = ±1 transitions and the third term

2See section 3.4 for a discussion on the validity of using the free-atom value of S.
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Figure 3.6: Conductance spectra on Fe in various magnetic fields oriented along
x (a), y (b) and z (c). (d–f) Calculated conductance curves based on (3.5). The
arrows indicate the appearance of the |ψ0〉 → |ψ4〉 transition.

allows Δm = 0. These selection rules are consistent with previous empirically
observed transitions in STM spin-excitation experiments [19].

Table 3.1 lists the |ψn〉 vectors (still for Fe) in the basis of ŜZ -eigenstates
|m〉. When B = 0 T, the ground state |ψ0〉 has most weight in the |–2〉 and |+2〉
states. From here, transitions to |ψ1〉 (Δm = 0) and |ψ2〉 and |ψ3〉 (Δm = ±1)
are strong, whereas transitions to |ψ4〉 are forbidden. At B = 7 T along Z (i.e.
x, the N-row), the situation changes substantially: because most of the weight
in |ψ0〉 is now in the |+2〉 state, Δm = ±1 transitions to |ψ2〉 and |ψ3〉 remain
visible while transitions to |ψ1〉 (now mostly |–2〉) and |ψ4〉 are too weak to be
observed. This is consistent with the observed disappearance of the 0.2 meV
step for B > 1 T in the x-direction.
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Table 3.1: Eigenvectors for Fe on Cu2N, written as a sum of |m〉 states and obtained
by diagonalization of (3.3) with S = 2, g = 2.11, D = −1.55 meV and E = 0.31 meV,
at B = 0 T and B = 7 T oriented along Z.

Eigenstate |–2〉 |–1〉 |+0〉 |+1〉 |+2〉
B = 0 T
|ψ0〉 0.697 0 –0.166 0 0.697
|ψ1〉 0.707 0 0 0 –0.707
|ψ2〉 0 0.707 0 –0.707 0
|ψ3〉 0 0.707 0 0.707 0
|ψ4〉 0.117 0 0.986 0 0.117

B = 7 T
|ψ0〉 0.021 0 –0.097 0 0.995
|ψ1〉 0.987 0 –0.157 0 –0.036
|ψ2〉 0 0.402 0 –0.916 0
|ψ3〉 0 0.916 0 0.402 0
|ψ4〉 0.159 0 0.983 0 0.092

Calculated values for I0→n with B ‖ Z are shown in fig. 3.7b. They are
normalized to fit the relative step heights as extracted from the measurements.
Note that it would be senseless to compare the absolute step heights. As certain
transitions die out the total inelastic current decreases, but each spectrum is
started at the same quiescent settings such that other inelastic contributions (i.e.
excitation intensities) are rescaled. Therefore we look at the relative composition
of the inelastic current, which gives meaningful quantities at any field. A similar
calculation with B ‖ X (i.e. y, the v-row) indicates that starting from ∼ 2 T in
this direction the |ψ0〉 → |ψ4〉 transition should open up. This may explain the
small steps around |V | = 8 meV indicated by the arrows in the 7 T spectrum
of fig. 3.6b.

We can even model the full conductance spectra as the sum of a voltage-
independent elastic conductance and a series of thermally broadened IETS tran-
sitions. For the inelastic part of the conductance we use:

σie ∝
∑
m

∑
n>m

Im→nPm(T )
(
1− Pn(T )

)

×
{
Φ

(
eV + (εn − εm)

kBT

)
+Φ

(
−eV − (εn − εm)

kBT

)}
, (3.5)

where each IETS step is weighted by the calculated intensity Im→n as given by
(3.4) and by the Maxwell-Boltzmann distribution:

Pi(T ) =
e−εi/kBT∑
j e−εj/kBT

. (3.6)
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Figure 3.7: (a) Sketch of the qualitative effect of a finite E-value on an S = 2
system with negative D. (b) Step heights taken from fig. 3.6a. The solid lines show
the calculated transition intensities based on (3.4). (c–e) Step positions acquired from
fig. 3.6a–c, plotted together with the calculated excitation energies for Fe.

Thus Pm(T )
(
1 − Pn(T )

)
quantifies the probability of simultaneously having

a filled initial state |ψm〉 and an empty final state |ψn〉. The shape of the
IETS transitions is given by:

Φ(x) =
1 + (x − 1)ex

(ex − 1)2
. (3.7)

This was derived for molecular vibration spectra [52, 53] and incorporates the
thermal broadening caused by the finite temperature of the electrodes. To
make sure that the summation runs only over positive energy excitations, the
eigenstate indices n are assumed to be ordered with increasing energy εn. The
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resulting modelled spectra for Fe (figs. 3.6d–f) correspond extremely well to the
experimental data. Similar modelcurves for Mn are plotted together with the
data in fig. 3.4.

The level of agreement between those modelled spectra and the experimen-
tal data is astonishing, considering that (apart from an overall scaling factor)
no additional fitting is performed. For each type of atom the parameters S,
g, D and E are determined once from the field dependence of the step ener-
gies and that information is sufficient to reconstruct a spectrum taken at any
field strength or orientation.

3.4 Discussion

In this chapter we have presented a method to map the magnetic anisotropy of
individual atoms using spin excitation spectroscopy. We find that Mn on Cu2N
has a weak easy-axis that is oriented out of plane with very little transverse
contribution. Fe is shown to have an easy-axis along the N-row that has much
higher anisotropy energy. Although the origin of these specific preferential di-
rections remains to be explained, it is interesting to note that in either case it
coincides with the directionality of the spin spreading calculated by DFT. The
weakness of the anisotropy for Mn most likely results from the fact that a Mn
atom has zero orbital angular momentum. Therefore the crystal field has no
channel through which to influence the electronic spins.

For Fe we find D = −1.55 meV, corresponding to an energy barrier with
height 6.2 meV. According to (3.1) this would result in a bit that is stable below
∼ 2 K, if it were not for the significant transverse anisotropy E = 0.31 meV.
Let us discuss the precise influence of this E-term on the magnetic stability. As
shown in table 3.1, at zero field the two lowest-energy eigenstates are (almost)
1√
2

(
|–2〉 ± |+2〉

)
. Regardless of whether the bit is set to ‘0’ or to ‘1’, one will

measure m = −2 for 50% of the time and m = +2 for the other 50% of the
time, making the system unsuitable for data storage. If, however, we were to
apply a magnetic field of 2 T permanently over the bit in the Z-direction, the
two lowest states become:

|ψ0〉 = 0.99 |+2〉 − 0.12 |+0〉+ 0.09 |−2〉, and
|ψ1〉 = 0.10 |+2〉+ 0.12 |+0〉 − 0.99 |−2〉.

These are stationary states that are still separated by a 6.0 meV barrier (i.e.
stable at T � 2 K), but now one would measure m = +2 for 98% of the time if
the bit is set to ‘0’, and m = −2 for 98% of the time if set to ‘1’. This way Fe
on Cu2N can be considered a candidate for future laboratory demonstrations of
an atomic bistable (albeit metastable in one of the two states) magnetic bit at
low temperature.

Throughout the analysis we have used the free-atom spin values, 52 for Mn
and 2 for Fe, even though these are not at all necessarily correct for bound
atoms. The DFT calculations presented in section 3.2 indicate that part of the
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spin density spreads along the surface and into the bulk, suggesting a decrease
in the effective spin on the atom. However, as a result of the discrete nature of
the system, we can only adjust the quantum number S in steps of 12 while the
spin spreading is rather small.

Previously, for the case of Mn on Cu2N, S = 5
2 was found to explain the

observed excitations better than any of the adjacent values [19]. For Fe, we
use the following reasoning. Since we can clearly discern three excitations in
the zero-field spectrum there should be at least four energy levels, ruling out
any S < 3

2 . As will be derived in the next chapter, for any half-integer spin
the zero-field degeneracy between states with equal |m| cannot be broken by
an E-term (Kramers degeneracy). This way we can additionally rule out any
half-integer S < 7

2 . The remaining spin values are integer S ≥ 2 or half-integer
S ≥ 7

2 , but as S = 5
2 is the highest spin a d-shell magnet can adopt S = 2 is

the only possibility left3.
A point that remains unclear is the role of the orbital angular momentum

of the electrons in the d-shell. Both the values for S and for g that we find (in
each case close to g = 2.00 as expected for a pure electron spin) suggest that the
orbital moment makes no substantial contribution to the effective spin vector
Ŝ. One possibility is that the crystal field either quenches the orbital angular
momentum or suppresses the spin-orbit coupling. However, this would in turn
make the electron spins invulnerable to the influence of the crystal field which
is clearly not the case.

The matrix elements (3.4) that were found to accurately determine the tran-
sition intensities are identical to those used for explaining inelastic neutron scat-
tering in a magnetic molecular cluster (Fe8) [51]. This could indicate that the
observed inelastic tunneling arises from similar dipolar magnetic interactions
between the spin of the tunneling electron and that of the magnetic atom. Es-
pecially for Fe the intensity of this process is remarkably large: at B = 0, the
combined inelastic conductance (i.e. the sum of the IETS step heights) is larger
than the elastic conductance (as measured at V = 0). Even the step of one of
the individual transitions (|ψ0〉 → |ψ1〉) is at least as high as the background.
This is surprising: not only does the excitation open a new inelastic conduction
channel, its transmission is possibly even enhanced compared to the elastic path.
A more detailed study of the inelastic excitations in comparison to the elastic
current may provide insight into which electronic orbitals are involved in either
process. In chapter 5 we will discuss a possible first step in that direction.

3In principle the interaction with the surface might destroy the d-shell character enough as
to enable S ≥ 3 (although the DFT calculations indicate a decrease of spin). This, however,
does not fit our data as well as S = 2 does.
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