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ABSTRACT
Lack of efficacy is one of the major causes of attrition in early clinical development. This is of 
particular concern in areas of high unmet medical need such as chronic inflammatory pain, 
where measures of efficacy cannot be quantified directly in healthy subjects. The evaluation 
and selection of an effective dose range for COX-inhibitors has been a matter of debate 
over the last decade. yet, a systematic approach has not been fully implemented that 
enables the use of pharmacodynamics as a biomarker in a mechanistic manner to support 
the development of anti-inflammatory compounds. Here we apply PKPD modelling and 
simulation to assess the pharmacodynamic effects of a selective COX inhibitor across various 
clinically relevant scenarios and use biomarker response rather than drug exposure as the 
basis for dose selection in subsequent efficacy trials. Thereby, we are able to personalise 
and optimise the effective dose range in different patient sub-populations. 
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INTRODUCTION
A landmark study on attrition rates in drug development revealed that the major dropouts 
occur in Phase 2 and 3 [1]. In some therapeutic indications, such as chronic pain, such 
challenges are also observed during proof-of-concept (POC) studies. Potential explanations 
for these findings are species differences in target pharmacology or tissue distribution, 
poor tolerability due to inaccuracy in predicting the therapeutic index, insufficient target 
engagement, timing of the intervention relative to the onset of disease and trial design 
factors[2]. Whilst all the aforementioned factors can play a role in the results of a trial, target 
pharmacology and target (tissue) distribution have been considered a matter for basic 
rather than clinical pharmacology. yet, they are essential for the characterisation of efficacy 
and safety and as such underpin the rationale for dose selection. In fact, as illustrated by 
Morgan et al., development programs that have a positive readout at clinical POC also 
clearly express the pharmacology of the compound in humans [3]. Nevertheless, despite the 
increasing appreciation of the role of pharmacodynamic markers in clinical development, 
Phase 1  trials, including first-time-in-humans studies are typically designed to evaluate, 
systemic pharmacokinetics and tolerability[4]. These studies may be complemented by data 
from experimental models of pain, but measures of pain such as global pain scores are 
not integrated to pharmacokinetics or pharmacodynamics, and consequently, doses are 
selected without quantitative evidence about the extent and rate of target engagement [2]. 
These findings then become the reference for designing dose ranging studies in Phase 2 and 
defining the therapeutic dose(s) in Phase 3. 
Undoubtedly, there is a pressing need to obtain early signals of efficacy and safety to prevent 
high attrition at late stages of development. This prerequisite is key for areas of high unmet 
medical need such as chronic pain and other immunoinflammatory conditions [5]. In these 
conditions inadequate decisions regarding dose selection during Phase 2a can propagate 
undetected into late development and have a disastrous impact on the life cycle of a novel 
molecule. Despite our evolving understanding  of pharmacodynamics (PD), the evaluation of 
what constitutes a clinically relevant dose still relies primarily on empirical evidence, without 
any quantitative consideration of the underlying pharmacology or target engagement (e.g., 
receptor occupancy levels) in the patient population[3]. Currently, opportunities exist for 
truly characterizing the clinical pharmacological profile of novel molecules in humans, 
enabling mechanistic insight into the exposure-response relationships and consequently 
better rationale for the therapeutic dose range. Integration of biomarkers of pharmacology 
into drug development therefore becomes an opportunity to allow the implementation of 
the aforementioned concepts, eliminating part if not all the unobserved bias that arises 
from empirical evidence. Moreover, the assessment of pharmacokinetic-pharmacodynamic 
relationships based on biomarkers of pharmacology can provide a  stronger basis for 
personalised medicine, which is often restricted to tailoring of treatment based on the 
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use of genetic information only[6]. By applying the mechanistic classification proposed 
by Danhof et al. [7], it is also possible to identify whether such relationships are drug or  
disease-specific and consequently to establish whether they can be used as predictive and 
prognostic tools during the development and therapeutic use of the drug. 
In the current investigation we use data from a cyclo-oxygenase (COX) inhibitor to illustrate 
the concept of biomarker driven dose selection and emphasise the importance of gaining 
insight into the clinical pharmacology of the compound as the basis for the dose rationale 
and other relevant labelling information.  The choice of the COX-2 system as a paradigm 
was dictated by the various reports arising from the withdrawal of different drugs from 
the market,  for which the clinical pharmacology profile was known to determine efficacy 
and safety across different therapeutic areas, such as rofecoxib (2004), rimonabant (2008) 
and efalizumab (2009) [8-10]. Although complex interactions in mechanisms underlie the 
pathophysiology of chronic inflammatory conditions, the role of the COX-2  enzyme in the 
production of inflammatory mediators such as thromboxane B2 (TXB2) and prostaglandins 
(PG) has been clearly elucidated [11]. Selective COX-2 inhibitors are known to primarily 
inhibit  PG synthesis [12]. 
Based on the aforementioned classification [7], PGE2 and TXB2 rank as biomarkers that 
reflect target engagement. Notably, the therapeutic dose range for chronic inflammatory 
pain for most non-selective and many of the selective  COX-inhibitors has been defined 
according to empirical evidence of pain relief and analgesia after administration of discrete 
dose levels in clinical trials, regardless of the underlying pharmacology[13, 14]. It has been 
demonstrated, however, that pain relief appears to occur at PGE2 inhibition levels of  around 
80%, i.e., complete suppression of COX-2 activity is not required to translate pharmacology 
into clinical improvement [15]. from these findings it can also be inferred that analgesia will 
also be observed at still higher levels of COX-2 inhibition, but such levels will lead to long 
term disruption of the normal physiological and homeostatic functions of the prostacyclin 
system, including tissue repair [16].
We use data from GW406381, an investigational and potent COX-2 inhibitor with 
demonstrated pre-clinical anti-inflammatory and analgesic activity [17, 18], to show that the 
study of such a mechanistic biomarker should be at the cornerstone of analgesic and anti-
inflammatory drug development. The compound’s pharmacokinetics as well as its effects on 
PGE2 and TXB2 were evaluated in an ascending dose study in healthy subjects, allowing the 
use of a biomarker-driven approach to select the doses for a Phase 2 study [19]. With the 
help of simulation scenarios we illustrate how biomarkers can be harnessed to explore the 
need for treatment personalisation (e.g., hepatic impairment) and quantitatively evaluate 
the rationale for the dosing regimen (e.g., optimised benefit-risk ratio). 
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METHODS 

Clinical studies
Data from a human pharmacology study in healthy male subjects from the GSK 
(GlaxoSmithKline) clinical trial repository was used for the purposes of our analysis. This 
was a randomized, placebo controlled, double blind dose escalation parallel group study 
aimed at the evaluation of safety, tolerability, pharmacokinetics and pharmacodynamics 
of GW406381. Treatment consisted of a single dose followed by a 10-day repeated dosing 
phase (n=9 for the active and n=3 for the placebo arm).  Data from placebo, 35 and 70 mg 
dose arms after the single dose phase and 35 mg dose arm after repeated dosing were 
used in our analysis. The study was conducted according to the principles of good clinical 
practice (GCP) and the declaration of Helsinki pertaining to research on human subjects 
[20, 21]. All subjects provided their written informed consent for participation and the 
study was approved by the Institutional ethics committee. further information on subject 
demographics and the study protocol is provided in Table 7.3 (see appendix).

Pharmacokinetic-pharmacodynamic modelling
To guide the model building, exploratory analysis was carried out by plotting the time course 
of the biomarker levels as well as the drug concentration vs. biomarker levels profile. The 
PKPD   analysis was subsequently carried out sequentially in two steps, with modelling of 
PKPD data after completion of the pharmacokinetic analysis. Details on the pharmacokinetic 
modelling can be found in the appendix to this manuscript. All modelling was performed 
in NONMEM®, version 7.2 (Icon, Dublin Ireland), using the fOCE (first order conditional 
estimation) method. PsN 3.5.3 was used to run NONMEM, whilst data manipulation and 
plots were performed in R 2.13[22].
Both for the PK and PKPD analysis, a parameter Θ for an individual i was described by the 
following expression:
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Where ΘTV is the typical (population) value of the parameter, η is a random variable with 
zero mean and a variance ω2.
Inter-individual variability (IIV) was parameterised using an exponential distribution 
model. The square root of the variance is reported for IIV, as this is an approximation to 
the apparent coefficient of variation of a normal distribution on log-scale. The residual 
variability comprising measurement and model misspecification errors was described with 
an exponential model, thus for
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Where Y is the jth observed concentration in the ith individual.
F is the predicted concentration and ε  is a random variable with zero mean and variance σ2.
The concentration-biomarker response relationships were described by the following 
equation/expression for the sigmoid Imax model
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Where Imax represents the maximum inhibitory response to GW406381 plasma concentrations 
(C), I0 is the baseline production of PGE2 and γ is the Hill factor. The covariate effects of 
baseline PGE2 on the parameter I0 was tested according to the following expression
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where I0i represents the parameter value for the ith individual, I0TV is the population value of 
the parameter, BASi and MED represent the individual and median values of the  baseline 
PGE2, respectively.

Model evaluation and validation procedures
Parameter inclusion and thus final model selection was based on the likelihood ratio test, 
parameter point estimates and their respective 95% confidence intervals (CI) as well as 
goodness of fit plots. for the likelihood ratio tests, the significance level was set at 0.01 
which corresponds with a decrease of 6.63 points after the inclusion of one parameter 
in the minimum value of the objective function (MVOf) under the assumption that the 
difference in MVOf between two nested models is χ2 distributed. Visual goodness of fit 
plots comprised individual vs. population or individual predictions, and weighted residuals 
vs. time or population predicted values. Minimisation was considered successful in case the 
minimisation occurred with a positive covariance step and no associated error messages.

Validation 
The precision of estimated model parameters was assessed using a non-parametric 
bootstrap. Two thousand bootstrap samples were generated in PsN 3.5.3 [23]. Results 
were used to assess model stability and obtain estimates for the coefficient of variation 
for relevant model parameters. The mean and standard errors of the parameters obtained 
from bootstrapping were subsequently compared with those obtained by fitting the 
model to the original dataset. finally visual predictive checks were used to visually inspect 
the concordance between simulated data and real observations. Using the final model 
parameters, 2000 datasets were simulated and the simulated data overlaid with the real 
observations.
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Simulations
The last part of this work was to simulate analgesic doses in patients based on biomarker 
inhibition data from human subjects, under the assumption that pharmacodynamics in the 
target population are comparable, other than differences in baseline levels of inflammatory 
mediators due to differences in disease conditions. Most importantly, it was assumed that 
the analysis was  based on the premise that PGE2 inhibition represents a causal step in the 
pain cascade [24]. The drug effect was parameterised in terms of ICn as per the following 
expression [15]. 
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where n = the degree or extent of COX-2 inhibition in percentage.
Using the final PKPD model, concentration-biomarker response profiles were simulated for 
a number of clinical scenarios are presented in Table 7.1 below.

Table 7.1: factors altering drug exposure 

Scenario Altered 
parameters

Remarks Reference

Liver dysfunction Cl: -25%

Cl: -50%

Cl: -75%

Mild, moderate and severe liver 
dysfunction-as per Child Pugh scores

Schmitt-Hoffmann et al,     
2009[25]

Systemic 
vasculitis (General 
inflammation)

I0: +30%

I0: +50%

 Significant interferon inhibitory activity 
attributed to increased levels of soluble 
interferon receptors, PGE2 levels and 
interferon inhibitory protein

Ambrus JL, et al. 
1997[26]

CyP3A4 induction Cl: +25%

Cl: +50%

 Induction of CyP3a4 Maronpot et al. 2009[27]

Hewitt et al. 2007[28]
Combination of liver 
dysfunction and 
general inflammation

Cl: -25% - I0: +30%

Cl: -50% - I0: +50%

Lower clearance with general 
inflammation

 Vet, N et al. 2011[29]

Once vs. twice daily 
dosing

 None  The same regimen was compared as 
once vs. twice daily doses

NA

for each scenario, concentrations at steady state were generated for 50 subjects per dose 
group, assuming treatment for two weeks using a q.d. regimen. The dose range used for 
these scenarios was  0, 20, 35, 70, 100, 150, 250 and 400 mg. Samples were collected on 
the first and last treatment day before and at 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, 16, 24 h after 
administration.
The simulated scenarios were based on the anticipated clinical relevance (i.e., safety and 
efficacy), of different levels of COX inhibition. A summary of the simulation algorithm is 
depicted in  figure 7.1.
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Final validated  
model  

 
•Dose range from 20-400mg/day 
•50 subjects /dose group 
•2 week dosing (steady state concentrations) 
•Rich PK and BM sampling on day 1 and day 
 14 of drug administration 
 

 

Simulations  

normal organ  
Function (Phs II  

population) 

hepatic  
dysfunction 

hepatic  
Enzyme induction Systemic vasculitis 

 
SIMULATED PROFILES 

 

OD Vs BD Dose 

Simulated Cmin compared  
to IC80-95 

Dosing Recommendation 

Figure 7.1: Diagram depicting the simulation protocol. five different clinical scenarios were simulated; each having 
the characteristics shown in the box above the simulated profiles. The simulated trough (Cmin) concentrations were 
compared to the estimated IC80-95 to assess deviations from the putative therapeutic window.

The simulations were also used to calculate the putative therapeutic windows at dose level. 
for each dose, trough concentrations at the steady state (Cmin) were simulated and compared 
to the benchmark values, namely IC80 (efficacious levels), IC90 (maximum desirable response) 
and IC95 (potential safety risk). A ratio of 1 represented optimum desired concentrations 
while IC90/Cmin of 2.5 was assumed to be the upper margin of the therapeutic window. 
At concentrations of around or greater than the IC95, safety events were assumed to be 
expected. Therefore, effective but non-toxic doses were defined as those at which the Cmin 

values at steady state were around the IC80, while the Cmax was below the IC95. In addition, 
given that for meaningful analgesic response, i.e., not only the attainment but also the 
maintenance of pain relief is important, the time span during which  drug concentrations 
remained within the therapeutic window (i.e., between IC80 and IC95) was evaluated for 
twice daily dosing and compared with the standard q.d. regimen.

RESULTS

Pharmacokinetic Analysis
A two-compartment model with first order absorption and elimination best described the 
PK of GW406381 in adults. Due to high variability in the data, higher concentrations were 
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found to be slightly under predicted. This discrepancy may be due to the absence of data 
on influential covariates, which means that not all of the observed variability could be fully 
characterised. Nevertheless, interindividual variability (IIV) was identified on the peripheral 
volume (V3), clearance (CL), absorption rate constant (ka) and bioavailability (f1). Residual 
variability was best described using an exponential error model. The PK parameters from 
the final model as well as the results of a non-parametric bootstrap are presented in Table 
7.2.

Table 7.2: final pharmacokinetic and pharmacodynamic model parameter estimates and the results of a non-
parametric bootstrap (n=2000).

Model estimates Bootstrap Results

Parameter Final Model 
estimates

CV% Median %5 CI 95% CI

V2 (L) 252.38 35.06 242.93 160.39 416.84

V3(L) 959.78 60.54 954.25 476.81 2115.03

CL (L/h) 30.21 43.97 29.89 17.86 58.61

Ka (h
-1) 15.24 78.7 10.83 3.92 35.81

Q (h-1) 37.28 35.82 35.6 23.83 62.44

Lag time (h) 0.47 6.05 0.47 0.41 0.49

F1 35 1.00 FIXED FIXED FIXED FIXED

F1 70 0.49 44.2 0.48 0.25 0.93

IIV V3 93% 73.05 98% 30% 145%

IIV CL 56% 76.4 53% 32% 84%

IIV Ka 198% 48.84 166% 98% 258%

IIV F1 95% 50.58 91% 53% 133%

Residual error 0.11 58.99 0.1 0.05 0.23

PD parameters PD  Bootstrap Results

I0 (pg/ml) 63196.80 9.74 63077.60 53861.30 73871.50

Imax (pg/ml) 479.00 FIXED FIXED FIXED FIXED

IC50 (ng/ml) 43.25 12.22 43.69 36.04 53.21

Hill factor 1.59 10.37 1.61 1.42 1.94

IIV I0 44% 28.63 42% 33% 54%

IIV Imax 272% 107.38 241% 0% 343%

Residual error 0.002 10.91 0.002 0.001 0.002

Where V2 and V3 =central and peripheral volumes of distribution respectively, Cl=clearance from the central 
compartment, Q=intercompartmental clearance,F1=relative bioavailability

Although the coefficient of variation for some of the parameter estimates was high, all 
findings were comparable to the bootstrap median results except for Ka, which showed 
50% higher variation than the bootstrap median. The observed profiles and model fits are 
presented in the supplemental material (figure 7.6), along with diagnostics of individual 
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and population predictions as well as an individual predicted profile. The high IIV was 
reflected in the visual predictive check. The medians of the predicted and observed data are 
very similar, however, the uncertainty around the predictions, is maximum above the 95% 
quartile, especially in the multiple-dose-phase for the 35 mg dose group (see figure 7.7).

PKPD analysis
GW406381 did not have any effect on TXB2 levels. Therefore, only PGE2 data were analysed. 
The Imax model was fitted using the PK parameters estimated during the PK analysis. The 
PKPD model was able to describe the data adequately, as assessed by the basic goodness of 
fit plots (see right panel figure 7.6, in the appendix). High variability was seen in the baseline 
(I0) PGE2, which is most conspicuous in the placebo group. Interindividual variability was 
modelled exponentially and IIV identified only on two parameters. Not all subjects showed 
high concentrations due to highly variable exposure, whereas maximum PGE2 inhibition was 
observed in only 3 subjects. A summary of the PD parameters from the final model along 
with the estimates from the nonparametric bootstrap estimates are presented in Table 7.2. 
from the visual predictive checks, it can be seen that variability is inflated at the upper 
boundary of the confidence interval (see figure 7.7 in the appendix).

Simulation scenarios
We have assumed that effective analgesic and anti-inflammatory effects could be achieved 
and maintained when PGE2 inhibition are kept above 80%, but below 95%.  Based on the 
predicted potency estimates, a range of doses from 20-400 mg/day was investigated. from 
a physiological perspective, two parameters were considered to fluctuate in the target 
population, depending on intrinsic or extrinsic factors, such as differences in metabolism 
and disease conditions, namely CL and I0. 

Patients with Normal Organ Function
Patients with normal organ function were used as a reference for the other scenarios. The 
objective of this scenario was to provide the range of doses which provide clinically relevant 
target engagement. As can be observed from the concentration vs. time profiles, the median 
peak concentrations lie below the IC95 after a dose of 100 mg daily. Biomarker response 
increases in a nonlinear manner, with trough concentrations reaching IC80 values after 250 
mg given as a once daily dose regimen. However, at this dose level peak concentrations are 
above IC95. Consequently, to remain within the proposed therapeutic range (i.e., >80% and 
< 95% inhibition), the median effective therapeutic dose appears to lie between 70 mg and 
<250mg/day. (See figure 7.2).
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Figure 7.2: Patients with normal organ function. (Left panel) GW406381  concentration vs. time stratified  by dose 
group.  Black solid line depicts median concentrations in patients with reference parameter values whilst the 
shaded area represents the 90% confidence interval (right panel). forest plots showing drug response associated 
with different dose levels. X-axis shows the concentration at trough, relative to the IC80 of GW406381 stratified by 
dose group. The solid black circles depict median concentration whilst solid lines represent the 90% confidence 
interval. Green solid line: IC80. Orange dashed line: IC90. Red dotted line: IC95. 

Patients with hepatic impairment
Given the metabolic elimination route (CyP3A4) of GW406381, patients with hepatic 
impairment are likely to show decreased clearance of the drug. In this scenario, we explored 
how changes in clearance alter drug exposure and consequently biomarker response. 
Patients with severe liver impairment needed a longer time to reach steady state (>5 days), 
especially in the higher dose groups. furthermore, the trough concentrations were found 
to be higher than IC95 values for the dose groups receiving >250mg. The forest plot (figure 
7.3) reveals that the median trough concentration reached the IC80 for the mild, moderate 
and severe forms of liver impairment at doses of 150, 100 and 35 mg, respectively. Based 
on these findings, the doses of GW406381 to be used in mild hepatic impairment should be 
between 100-150mg, whilst for moderate and severe impairment further reductions should 
be considered (i.e., from 70-100 mg and 20-35 mg respectively).See figure 7.3.

Metabolic (CYP3A4) induction
The dose required to reach IC80 trough concentrations was higher in this scenario, as 
compared to patients with normal organ function. GW406381 concentrations were overall 
lower, and steady state concentrations were reached soon after start of the treatment.
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Figure 7.3: Patients with decreased liver function. Panel (a-left) GW406381 concentration vs. time stratified by 
dose group. Black solid line depict median concentrations in patients with hepatic impairment, whist the shaded 
area represents the 90% confidence interval. Panel (b-right) forest plots showing the different dose levels. X-axis 
indicates drug concentrations at trough, relative to the IC80 of GW406381 stratified by dose group.  Percentages 
reflect the predicted change (%) in hepatic function. Solid black circles: median concentration. Solid lines: 90% 
confidence interval. Green solid line: IC80. Orange dashed line: IC90. Red dotted line: IC95. 

Figure 7.4: Metabolic enzyme (CyP3A4) induction, with 25% CL and 50% increase in CL. Panel (a-Right) Concentration 
vs. time stratified by dose group. Panel (b-Left) forest plots showing the different dose levels. Percentages reflect 
the predicted change (%) in hepatic function.
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The difference between 25% and 50% increase in clearance are negligible, as evident from 
the forest plots. The overall trough concentrations relative to the IC80 are lower than what 
was observed in the reference groups with normal organ function. IC80 values are reached 
at trough levels for doses between 250 and 400 mg when total clearances increased by 
25%. Median plasma concentrations of GW406381 were below IC80 values throughout the 
simulated dose range when 50% increase in clearance was considered. See figure 7.4.

Inflammatory conditions
A scenario was considered in which symptoms worsen as compared to standard inflammatory 
diseases such as in systemic vasculitis or generalised septicaemia. Interestingly, the dose 
range required to yield effective exposure in these patients remained the same as in 
patients with normal organ function. Elevations in baseline PGE2 did not appear to alter 
the concentration-effect relationships. Consequently, these findings indicate that no dose 
adjustment is required in patients showing variable degrees of inflammatory response. 
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Figure 7.5: Time above the IC80,90,95 respectively for once daily (OD, left panel) and twice daily  (BID, right panel) 
stratified by dose group, in patients with normal organ function. Red bars depict the 5 and 95% Confidence intervals 
respectively.

Once daily (q.d.) vs. twice daily (b.i.d.) dosing regimens
Given the proposed therapeutic range (i.e., >80% and < 95% inhibition), it was found that a 
b.i.d. regimen allowed peak concentrations to remain above the IC95 for a shorter time and 
at much higher dosages, without significant effect on trough concentrations, which were 
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comparable to those achieved with an q.d. regimen. furthermore, important differences 
can be noticed in the total time plasma concentrations remain above IC80, IC90 and IC95.  
Whilst no differences are observed for the ratio between trough concentrations to IC80, the 
total time above IC95 was significantly lower (see figure 7.5).

DISCUSSION
The rationale for the therapeutic dose range has always been a difficult aspect of drug 
development. Recommended doses and dosing regimens are often defined early on in 
development when information on the drug’s pharmacology is scarce. As can be deduced 
from the number of drugs for which the recommended dose has undergone revisions, dose 
selection remains a point of concern in even in the post marketing phase[30]. The possibility 
of generating data on a compound’s pharmacology represents an opportunity to optimise 
and personalise treatment during the development programme.
Phase I studies have traditionally been designed with the aim of evaluating the maximum 
tolerated dose (MTD) in humans [4, 31] . Even though the scope of these studies has 
expanded in recent years to allow the early evaluation of pharmacodynamics, challenge 
models in healthy subjects, similar to animal models of pain, reproduce symptoms rather 
than expressing the pharmacology of the compound[32]. In fact, their translational relevance 
is questionable. Data from these models  have been documented to be non-specific and can 
at times yield contradictory results [33]. 
Conceptually, dose selection and optimisation of pain control have been primarily 
determined by techniques such as titration to effect [13]. In addition,  subjective scales have 
been endorsed as clinical endpoints of choice for  the evaluation of analgesia in regulatory 
guidance documents for neuropathic as well as nociceptive pain[34, 35].Not surprisingly, 
there is little evidence in the published literature of clinical trials in which the dose selection 
for appropriate analgesia has been based on pharmacological activity. Here we  have 
illustrated the concept of biomarker driven dose selection and emphasise the importance 
of gaining insight into the clinical pharmacological properties of a compound to ensure 
accurate assessment of  safety and efficacy early in the clinical development programme. 
Specifically, we show how such biomarkers can be used in a quantitative manner to guide 
the dose selection and identify the conditions requiring dose adjustment. With the help  
of simulation scenarios, we show how the scope of Phase I studies may be expanded to 
understand the pharmacology of candidate compounds, taking into account different 
characteristics of target sub-populations, who would be likely recipients of  the drug later in 
the clinical development programme. 
from a methodological perspective, even in circumstances where high variability exists 
in the data, the use of a model-based approach in conjunction with biologically relevant 
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model parameterisation allows one to explore the impact of individual differences in 
pharmacokinetics and pharmacodynamics and quantify the overall consequences (i.e., 
uncertainty or true interindividual variation) of variability on dose selection for different 
groups in the target patient population. In our example, the variability in the actual data 
was attributable firstly to the hepatic metabolism of GW406381, as it is a CyP3A4 substrate 
[17, 36]. It is well known that CyP3A4 substrates show high IIV in metabolism [37]. Secondly, 
considerable IIV has been reported in the degree of COX-2 inhibition and selectivity in 
similar assays of enzymatic activity in healthy subjects [38]. The high variability observed 
in healthy subjects also exposes a limitation of using in vitro potency as a benchmark to 
compare compounds in early clinical development, which does not reflect differences in 
selectivity or metabolic activity in vivo. In fact, fries et al. showed that despite the higher 
potency of rofecoxib relative to celecoxib in vitro, their in vivo selectivity is likely to be the 
same [38]. Likewise, the in vitro potency of GW406381 was estimated to be approximately 
30 times as high as rofecoxib[39]. However, the optimal recommended dose range proposed 
from our simulations lies between 150-250 mg, while that for rofecoxib is 25-50mg[40]. 
This is mostly explained by the inter-individual differences in pharmacokinetics and enzyme 
activity described above. 
We acknowledge that such an exercise presumes the availability of biomarkers of 
pharmacology, which may not always be readily measurable in a different disease or 
therapeutic indication. yet, there are some general principles of basic pharmacology that 
can be extended to clinical pharmacology studies, i.e., that target engagement determines 
therapeutic response and as such needs to be taken into account for the purposes of dose 
selection [2, 3]. Evidence of clinical efficacy and safety without further characterisation of 
the underlying pharmacological activity is misleading. Of particular relevance in the case 
of COX-inhibitors for the treatment of chronic inflammatory pain is the fact that clinical 
response is reached below maximum target engagement [24, 41]. Similarly, the use of target 
engagement or target receptor occupancy may be applied to the evaluation of various 
other drugs (e.g., antibodies, cannabinoids and centrally acting analgesics), subject to the 
availability of a suitable mechanistic biomarker of response. 
In chronic pain, hypersensitivity is the result of downstream effects of COX-2 production 
which, in turn, is mediated by PGE2 and TXA2 [11, 42]. However, pain scales are considered 
pre-requisites for demonstrating evidence of analgesic and anti-inflammatory response ,[43, 
44]. Various issues arise from such an empirical, fragmented approach to drug development; 
the most important one being the inability to define the true therapeutic window. By 
contrast, the use of a biomarker-driven approach provided us insight into the therapeutic 
window. Under the assumption that drug exposure levels leading to > 95% inhibition in 
biomarkers (i.e.,IC95) is above the therapeutic margin, we could  show how the risk of 
adverse events (AEs) can be mitigated by ensuring drug levels at doses yielding exposure 
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within IC80-IC95 values. This therapeutic window is based on the investigation of Huntjens et 
al. who have shown that analgesic therapeutic plasma concentration is directly correlated 
with IC80[45]. At COX-2 inhibition >90%, treatment effects suppress the physiological levels 
of COX-2, which are also present under healthy conditions. In addition, for some drugs, COX-
2 selectivity may also be lost, which would then result in adverse events associated with 
COX-1 inhibition. This subtle balance has been highlighted by Capone et al. who have shown 
that a correlation exists between COX-2 inhibition greater than 90% and elevated risk of 
cardiovascular events [46]). Clearly, our work illustrates how the pharmacodynamics of this 
class of compounds can be used as a proxy or predictor of clinical response.
In contrast to traditional non-steroidal anti-inflammatory drugs, selective COX-2 inhibitors do 
not alter TXB2 levels, which act as a pro-coagulant [12, 47]. In fact, concerns about the safety 
of selective COX-2 inhibitors arise from the pharmacological activity on its primary target 
[48-51]. As can be seen from our simulations, the  reported cardiovascular events with this 
class of compounds is likely to be the result of an inappropriately high dose, the selection of 
which was not based on pharmacological activity, but rather on the statistical significance 
of the differences between active and placebo treatment arms [52-55]. McGettigan et al. 
have proposed that there exists gradient of cardiovascular risk for COX-2 inhibitors which 
runs from protective to risk-inducing, i.e., lower doses are cardio protective, becoming risk-
inducing at higher doses[56]. furthermore, additional evidence points to a time-dependent 
effect, suggesting that it’s the prolonged suppression of COX-2 activity that may ultimately 
determine adverse cardiovascular outcome [57].
Lastly, we have attempted to show how different dosing regimens affect the therapeutic 
window in clinical practice. Our analysis reveal that optimal exposure to GW406381 can 
be achieved by constraining drug concentrations to fluctuate within the range comprised 
between IC80 and the IC95 values. Such a requirement can be met by the administration of 
GW406381 according to a twice daily dosing regimen. This finding can be partly substantiated 
by the safety profile of celecoxib, which is also prescribed as b.i.d. regimen [58].

Methodological   Limitations
Our exercise had some limitations, which for the sake of clarity are worth mentioning. We 
assumed that PGE2 inhibition is required not only for the onset but also the maintenance 
of pain response. The role of secondary, downstream mediators known to contribute to 
the inflammatory process has been excluded from our analysis [59]. In addition, the data 
available for this exercise did not include any other intrinsic factor or covariate that might 
contribute to further changes in response to COX inhibition, such as differences in receptor 
density or other mediators that might antagonise the effects of COX-2 inhibition. We have also 
assumed that the disease status and processes do not alter during the time span considered 
for the simulation scenarios. However, it has been shown that in certain conditions, such as 
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systemic inflammation (vasculitis or rheumatoid arthritis), other circulating mediators such 
as cytokines vary over time and  may therefore influence pain response over time [60]. 
Another obvious criticism is the lack of prospective validation of the simulation scenarios 
and availability of data confirming the suggested dose recommendations. As this is the crux 
of matter in terms of the concepts implemented here, we refer the reader to a few examples 
from published literature in which population-based approaches have been used for dose 
selection and extrapolation purposes [61-63].  The most compelling example is provided by 
the work of Huntjens et al. With the help of PKPD modelling, they have analysed human 
in vitro and ex vivo PGE2 inhibition data and were able to demonstrate that IC80 estimates 
for fenoprofen were similar between healthy subjects and patients with systemic lupus 
erythematosus (SLE)[64]. Subsequently, based on simulations the authors conclude that 
doses above 600-800 mg/day yield concentrations above IC80 for at least 80% of the dosing 
interval (24hrs). This compares favourably with the recommended total daily analgesic 
fenoprofen dose of 800-1200 mg for the relief of mild to moderate pain in adults [65]. 
The common denominator in all these examples is that the biological substrate across the 
populations or experimental groups is the same.
In conclusion, the role of biomarkers expands beyond the potential diagnostic and 
prognostic value currently perceived by most investigators in industry and academia.  In 
contrast to many of the translational efforts using pre-clinical species [66], biomarkers 
offer a mechanistic basis for the characterisation of PKPD relationships and as such provide 
valuable guidance for the dose selection as well as for the design of subsequent studies 
during drug development. Moreover, this approach contributes to further dismantling of 
an entrenched belief that still pervades the field of clinical pharmacology, i.e., that the 
maximum tolerated dose should be evaluated in subsequent efficacy trials, irrespective of 
any evidence of underlying target engagement.
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Figure 7.6: Diagnostics (goodness-of-fit plots) for the pharmacokinetic (left panels) and pharmacokinetic-
pharmacodynamic (right panels) models. The upper panels show the observed data, the individual and population 
predictions vs. time (PK panels) or concentration (PD panels). The lower left graph shows the observed data vs. 
individual predictions, whereas the lower right graph depicts an individual predicted profile.

Figure 7.7: Visual Predictive checks of final pharmacokinetic model (left  panels) and PKPD model (right panel). The 
dots represent the actual observations, whereas the lines represent the median (solid line) and the 5th and 95th 
percentile (dashed line) of the real data. for the VPC on the right, the black lines represent the 5th, 50th  and 95th 
percentile of the simulated data, respectively.
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