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ABSTRACT
The high variability in the response to evoked pain prevents accurate ranking of compounds 
during the screening of drugs for inflammatory and neuropathic pain.  In this study, we 
explore the feasibility of introducing optimality concepts to experimental protocols, enabling 
estimation of parameter and model uncertainty. 
Pharmacokinetic and pharmacodynamic data from different experiments in rats were 
pooled and modelled using nonlinear mixed effects modelling. Pain data on gabapentin and 
placebo-treated animals were generated in the complete Freund’s adjuvant (CFA) model of 
neuropathic pain. A logistic regression model was applied to  optimise sampling times and 
dose levels to be used in an experimental protocol. Drug potency (EC50) and inter individual 
variability (IIV) were considered the parameters of interest. Different experimental designs 
were tested and validated by SSE (stochastic simulation and estimation) taking into account 
relevant exposure ranges.
The pharmacokinetics of gabapentin was described by a two-compartment PK model 
with first order absorption (V2=0.118 l, V3=0.253 l, Cl=0.159 l/h, Ka=0.26 h-1, Q=1.22 l/h). 
Drug potency (EC50) for the anti-allodynic effects was estimated as 1400ng/ml. Protocol 
optimisation improved  bias and precision of the EC50 improved by 6 and 11.9.%, respectively, 
whilst interindividual variability (IIV) estimates showed improvement of 31.89  and 14.91%, 
respectively. 
Variability in behavioural models of evoked pain response leads to uncertainty in drug 
potency estimates and consequently to inaccurate ranking of compounds during screening. 
As illustrated for gabapentin, ED-optimality concepts enable analysis of discrete data taking 
into account experimental constraints.
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INTRODUCTION
Despite the number of compounds entering early clinical development, neuropathic pain is 
an area of high attrition rate, with most treatments failing at proof-of-concept in patients. 
This situation is critical if one considers that currently available drugs for neuropathic pain 
show less than 50% efficacy in the overall target population [1]. Among other factors, the 
lack of efficacy in humans has been assigned to the poor correlation between evoked pain 
in pre-clinical models of disease and the differences in aetiology in humans [2]. On the other 
hand, another important point which has remained less evident is the fact that experimental 
protocols in pain research are often based on empirical criteria[3] and little or no attention 
is given to basic concepts such as accuracy and precision. Poor experimental designs often 
lead to biased and inaccurate parameter estimates [4], which consequently may influence 
the selection of suitable candidate molecules for progression into humans.
In early drug development, screening of compounds ought to rely on accurate ranking of 
their pharmacokinetic (PK) and pharmacodynamic (PD) properties, yielding evidence of 
their pharmacokinetic-pharmacodynamic (PKPD) relationships [5]. However, the use of 
a model-based approach for the analysis of such experiments, while desirable, is often 
precluded by practical constraints and resources [6]. Suitable designs entail the use of 
repeated measurements that describe the time course of drug concentrations and the 
pharmacological effects of interest. Feasibility considerations often limit the collection of 
repeated samples in individual animal and thus compromise the design of the experiment. 
Given the requirement for sparse sampling, appropriate sampling times become critical 
[7]. Therefore, accurate and precise model parameters estimates depend greatly on the 
experimental design.
In the current investigation, we use the CFA model, a well-known experimental animal 
model of inflammatory pain [8, 9], as paradigm to explore the feasibility of introducing 
optimality concepts in the screening of analgesic compounds. Dichotomisation of response 
is proposed as the basis for generalisation of a model-based approach in this phase of 
development. In optimal experimental design, D-optimality is by far the most used criterion 
in individual, and population modelling studies. Herein optimisation is carried out assuming 
there is no uncertainty (imprecision around the parameters of interest) i.e. there is no 
uncertainty distribution around this parameter. This assumption is also a disadvantage 
since for D-optimality to be applied, the true parameter value should be determined based 
on prior knowledge or model fitting in a previous exercise [10]. Although D-optimality has 
been considered the classic approach to designing an experiment optimally [11, 12], this 
method may not be suitable for prospective evaluation of the compounds during screening 
experiments when little data is available and prior knowledge about the pharmacokinetic 
and pharmacodynamic properties are limited. 
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Here we apply ED-optimality, an approach which has been applied in different areas of 
clinical research when the model parameters have uncertainty distributions [4]. The use of 
ED-optimality assumes a prior distribution around the parameters of interest [13]. While 
optimal design has been extensively used for optimizing different types of continuous 
repeated measurements, with non-linear mixed-effects modelling, little work has been done 
with discrete data [14]. We aimed at defining optimal design requirements for screening 
experiments, assuming EC50 and inter-individual variability as the parameters of interest for 
optimisation.
We anticipate that improved parameter precision and accuracy will contribute to better 
ranking of compounds and enhanced ability in discriminating false positives from false 
negatives during the screening of compounds for neuropathic pain.

MATERIALS AND METHODS

Experimental Procedures
In the CFA model, central sensitisation (NP) is induced following injection of an algogen. 
Allodynia or pain with a non-noxious stimulus is then measured as threshold to affected paw 
withdrawal with increasing diameter of von Frey filaments [15]. The experimental protocol 
was performed according to a double-blind, randomized, placebo controlled study with 
9 animals per cohort. Sprague-Dawley rats received single doses of 0, 10, 30,100 mg/kg 
gabapentin orally. The study was approved by the Institutional ethics committee.

Pharmacodynamic measurements
The threshold to paw withdrawal to a normally non-noxious stimulus was measured as a 
marker of the anti-allodynic effect, whilst the change in threshold relative to baseline was 
selected as the PD endpoint. PD measurements were collected at hourly intervals for 4 h 
post-dose for each animal.

Pharmacokinetic experiments / measurements
PK data were obtained from 2 separate experiments in conscious rats. In the first, 
gabapentin was administered orally in the doses 0, 10, 100, 300 mg/kg in a formalin induced 
hypersensitivity experiment [16]. There were three rats per dose group, with each animal 
being sampled four times up to 6 hours post dose.  In a second experiment, 63 animals 
received 50 mg/kg of gabapentin as an IV infusion. The rats were sampled 8 times up to 24 
h post dose [17].
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Data Analysis
Model parameterisation 

The threshold for paw withdrawal was dichotomised as a binary response variable, with 
response being defined as changes in the threshold for paw withdrawal were >30% relative 
to baseline. The exposure-response relationship was modelled using a logistic regression 
(LR) model, using a parameterisation previously described by [18]:
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Where p is the probability of an event P, x are parameters and independent variables 
respectively. The odds of the event are therefore given by p/1−p and its logit may be 
expressed as:
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An Emax model was considered for the characterisation of the drug effect on the logit space. 
Random effects were denoted by η. This term represented both inter individual (IIV) as well 
as the random variability. Substituting for drug effects and p, the odds of an event may be 
represented by the following expression:
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Drug concentrations at time points corresponding to PD measures were simulated using a 
two-compartment pharmacokinetic model with dose-limited absorption (see Figure 4.1).  
The model was built using a two-step approach. First, IV data from a previous experiment 
was modelled to obtain parameter estimates. Subsequently, using these parameters, 
bioavailability estimates were obtained for oral data. Details of the PK analysis are presented 
in the appendix (supplemental material). 
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Figur e 4.1: Two-compartment model used to describe the pharmacokineti cs of gabapenti n.

ka=absorpti on rate constant, kel=eliminati on rate constant, Cl=clearance,V2 and V3=volume of distributi on in the 
central and peripheral compartments, respecti vely, Q=intercompartmental clearance.

ED-Opti mal Design 
Since drug potency is the parameter of interest, we focused on opti mizing the experimental 
design in order to yield precise esti mates of EC50 as well as the corresponding IIV.  A summary 
of the model parameters used for the opti misati on are given in Table 4.1. Non-linear mixed 
eff ects modelling based on the maximum likelihood esti mati on method was used for 
opti misati on purposes.  Theoreti cal aspects on the opti misati on strategy are described in 
the appendix (see supplemental material).
We assumed drug exposure to be a determinant of response and thus opti mised for sampling 
ti mes and dose levels. Given that the bioavailable fracti on of gabapenti n is dose-dependent, 
the doses were opti mised taking into account such diff erences. Other experimental variables 
were kept constant keeping in mind experimental constraints. These included, sample size (9 
per cohort), number of measurements /individual (5), no of dose groups (4) and a maximum 
dose of 300mg/kg. Any predicted sampling ti mes which were identi fi ed to occur within 30 
minutes interval were moved apart from each other to ensure at least 30 min diff erence 
between two consecuti ve sampling ti mes. A diagram of the general opti misati on process is 
outlined in figure 4.2. The empirical design was the benchmark design and the parameters 
of interest were EC50 and IIV.
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Table 4.1: PK and PKPD model parameter estimates used in the optimisation process. RSE is shown between 
parentheses.

Model parameters Values

Pharmacokinetics

Central compartment volume (V1) (l) 0.118 (9.8)

Peripheral volume (V2) (l) 0.253  (4.2)

Clearance (Cl) (l h-1) 0.159 (4.1)

Intercompartmental clearance(Q) (l h-1) 1.22 (0.25)

Bioavailability fractions(F) 1, 0.75, 0.22, 0.087*

Absorption Rate constant (Ka) (/h) 0.26 (20)

Random error 0.30 (3.3)

Pharmacodynamics 

Emax (%) 97 (25)

Baseline/placebo effect (%) 2.81 (40)

EC50(ng ml-1) 1400 (145)

IIV 3.14 (74)

* for doses 10, 30,100,300 mg/kg respectively
Optimization Strategy

Figure 4.2: Overview of the  general Optimisation procedures used during the analysis. 

IIV= inter individual variability, SSE=stochastic simulation and estimation, EC50=drug potency.  

Prior parameter misspecification and uncertainty was incorporated into the optimisation by 
ED-optimality. A lognormal distribution was assumed for the parameters of interest, with 
mean values fixed as the true estimate. The maximum prior parameter misspecification was 
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predetermined to be 50%. An additional scenario was simulated and optimized to account 
for the effects of linear pharmacokinetics, assuming no change in the bioavailability across 
dose levels. The standard deviation of the priors was chosen so as to take into account 
expected parameter uncertainty and was defined as a distribution rather than a point value. 
The validation of the optimised design was carried out using stochastic simulation and 
estimation (SSE). 

Stochastic simulation & estimation (SSE)
SSE was used to test the robustness of the optimal designs. In brief, during optimisation, 
gabapentin concentrations were simulated using the PK the model. The combined PKPD 
model was then used to simulate ‘optimal sampling scenarios’. The initial values of the 
PD parameters in these models were considered the ‘true estimates’ and specified as the 
upper, lower and middle points of the distribution. The simulated optimal sampling datasets 
were then fitted to a pharmacodynamic model using nonlinear mixed effects modelling to 
assess the parameter estimates yielded by the proposed design. This two-step process 
was performed 500 times for each optimal design scenario. Estimation was considered 
successful when a normal flag (minimization successful) was obtained. Values of the 500 
first successful estimations were recorded and summarised for each SSE run, along with 
their standard errors (SEs).  To prevent numerical problems causing failure of the design, 
we began by first applying the ED-optimal design criteria with point values for priors (i.e., 
D-optimality) then increased prior breadth, until they reached the relevant uncertainty.

Concordance between optimised parameters and true values
Agreement between estimated and values used for simulations (‘true values’) were assessed 
using the mean of the estimation, the mean prediction error (MPE) and root mean square 
error (RMSE), which reflect precision and bias in model parameters [19]. Their calculation 
is as follows:

ij i

ij i

f(P,X ,η )

ij f(P,X ,η )

ep =
1+ e

 

 

 

max ij ij
ij

50 ij 50 ij

E ×C 1- placebo ×C
p = placebo+ = placebo+

EC +C EC +C
 

 

2
i
2

mean((Est -True) )RMSE =
True

 

 

imean(Est -True)MPE =
True

 

 

SE Est
RSE =

True
 

 

 

			   	 (4)

ij i

ij i

f(P,X ,η )

ij f(P,X ,η )

ep =
1+ e

 

 

 

max ij ij
ij

50 ij 50 ij

E ×C 1- placebo ×C
p = placebo+ = placebo+

EC +C EC +C
 

 

2
i
2

mean((Est -True) )RMSE =
True

 

 

imean(Est -True)MPE =
True

 

 

SE Est
RSE =

True
 

 

 

			   	 (5)

        
where Esti is the ith parameter estimate and True is the simulation value (initial estimate) 
of the parameter. Matlab 7.9 (The Mathworks Inc., Natick, MA, 2008) and popED 2.11 
(University of Uppsala, Sweden) were used for implementation of the optimization. PsN 
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3.12 (University of Uppsala, Sweden) and NONMEM 7.1 (ICON Development Solutions. 
Ellicott City, MD) were used for SSE. Data manipulation, graphical and statistical summaries 
were performed in R (www.r-project.org)

RESULTS

PK and PKPD model parameter estimation
An overview of the estimated PK and PKPD parameters are presented in Table 4.1. As can 
be seen from Figure 4.3(a), the simulated concentration profiles for all three doses of 
gabapentin are not significantly different from each other. When corrected for differences 
in bioavailability the observed exposures are equivalent to doses of 22.3, 22.5 and 27mg/
kg respectively. Relative bioavailability was found to decrease nonlinearly from 100% at 10 
mg/kg to 9% at 300 mg/ kg. The resulting logistic model for the response data is shown in 
Figure 4.3(b). 

Figure 4.3: (a) Simulated plasma concentration vs. time profiles of gabapentin in rats after administration of 
10(dashed line), 30(dotted line), 100(dash-dotted line), 300(solid line) mg/kg doses. (b) Logistic regression model 
showing the exposure-response curve (gabapentin concentration vs. probability of response). Symbols depict the 
proportion of observed responses after doses of 30(open diamond), 100(crossed circle), 300(filled square) mg/kg 
whereas the curve is the model-predicted probability. 
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Table 4.2: Priors used in the experimental protocol optimisation

Parameter True Value ED-optimal Design 
(0% variance)

ED-optimal Design 
(10% variance)

ED-optimal Design 
(50% variance)

Misspecification % Mean Misspecification % Mean Misspecification % Mean 

EC50
# 1400 0 1400 10% 1400 50% 1400

IIV (η) 3.14 0 3.14 10% 3.14 50% 3.14
# values were applied to the logit space 

Design optimisation 
As shown in Table 4.2, uncertainty in parameter estimation was explored with prior 
distributions of 10% (initial runs) and 50% (final run). As it can be seen in Table 4.3, whilst 
the same sampling scheme is used irrespective of dose in a typical empirical protocol, 
optimal designs require a different scheme for each dose. The optimised design performed 
equally irrespective of the uncertainty (i.e., 10 or 50% variance in parameter distribution). 

Table 4.3: Comparison of dose levels and sampling times for the empirical and optimised protocol designs. Dose 
levels are shown in mg/kg, sampling times are in hours (h).

Design variables Empirical design ED-optimal 
(10% variance)

ED-optimal
(50% variance)

Dose  1
Sampling times

0
0,1,2,3,4

0
0, 3.15, 4.72, 7.80, 9.93

0
0, 3.11, 4.23, 6.34, 10

Dose  2
Sampling times

30
0,1,2,3,4

100
0, 1, 1.5, 2, 4.9

100
0, 1.45, 2.49, 3.54, 4.54

Dose  3
Sampling times

100
0,1,2,3,4

150
0, 1.8, 2.80, 3.10, 4.10

150
0, 0.57, 1.7, 5.51, 6.01

Dose  4
Sampling times

300
0,1,2,3,4

300
0, 0.62, 1.12, 7.23, 8.23

300
0, 0.69, 1.19, 1.69, 5.67

Table 4.4:  Impact of nonlinear absorption on protocol design optimisation.

Dose level (mg/kg) 
Sampling times (h)

Empirical design Bioavailable dose level ED-optimal
(50% variance)

Dose  1 0
0,1,2,3,4

0 0
0, 2.74, 3.45, 5.78, 8.45

Dose  2 30
0,1,2,3,4

29.5 100
6.15, 6.65, 7.65, 8.15

Dose  3 100
0,1,2,3,4

41.7 150
0, 1.34, 4.79, 5.29, 5.79

Dose  4 300
0,1,2,3,4

87.6 300
0, 0.50, 1, 1.5, 2

Findings with gabapentin show that bioavailability decreases with increasing dose levels. Dose levels are shown in 
mg/kg, sampling times are in hours (h)
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Comparison of parameter estimates & respective standard errors
Optimal estimates were closer to the true estimates and parameter standard errors 
decreased by more than half when sampling was based on ED-optimality concepts. Figure 
4.4 reveals that improvements can be achieved not only in parameter estimates but also in 
SEs after design optimisation as compared to empirical protocol designs. Furthermore, we 
show that with varying bioavailability (Table 4.4), the difference between the optimised and 
empirical protocols is more marked. As shown in Table 4.5, parameter precision increases 
and bias is lower. 

Figure 4.4: Comparison of model parameters (EC50 and IIV) and the corresponding estimates of bias and precision 
for various design scenarios described in Table 4.4. Dashed line indicates true estimate values.

Table 4.5: Comparison of parameter estimates for empirical and optimised experimental designs. 

Design type EC50*
median (range)

IIV (omega)
mean (SD)

Empirical 1205.5 (200-1714) 4.82 (3.30)

ED-optimality (variance 10%) 1258 (876-1601) 3.70 (2.13)

ED-optimality (variance 50%) 1252 (806-1709) 3.96 (2.30)

Empirical with varying F 319 (223-1963) 4. 62 (3.25)

ED-optimality with varying F (variance 50%) 1211(191.7-1754.90) 4.78 (3.31)

True Value 1400 3.13

unit of measurement ng /ml
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Bias and precision of parameter estimates
Uncertainty was introduced in a stepwise manner. RMSE is indicative of precision whilst 
MPE reflects bias in parameter estimates. In Table 4.6, the RMSE & MPE obtained after 
empirical and optimal designs are compared with each other.  The implications of optimised 
sampling times in experimental protocols is shown graphically in Figure 4.5.  As indicated 
by the different symbols response is sampled at time points where drug concentrations are 
informative of the expected drug potency. The sampling points for the empirical designs 
describe a monotonic pattern while those for the optimal designs are different for each dose 
and distribute around the EC50. 

Figure 4.5: Selected sampling times relative to EC50 values (dashed line) based on a typical empirical protocol 
(left panels) and ED-optimal design (right panels). Based on theoretical principles, optimal sampling times should 
provide concentration values supporting the estimation of the parameter of interest. For gabapentin, our analysis 
show that variable bioavailability must be considered during optimisation to ensure accurate sampling times 
(lower panels). Symbols represent different dose levels namely; 30(open diamond), 100(crossed-circle), 300 (filled 
squares) mg/kg for all scenarios, except the top right panel where the optimal doses were, 100, 150 and 300mg/kg. 
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Table  4.6: Comparison of RMSE and MPE for the empirical and ED-optimal designs.

Design Type
EC50 Omega
RMSE MPE RMSE MPE

Empirical 23.17 7.95 41.61 54.21
ED-optimal(50% variance) 11.27 2.37 26.70 22.32
Empirical with varying F 63.43 44.39 39.08 47.81
ED-optimality with varying F
(variance 50%)

22.10 7.025 41.08 52.84

DISCUSSION AND CONCLUSIONS 
The rat CFA model is typically classified as a model of inflammatory somatic pain. However 
the typical symptoms of allodynia and hyperalgesia are reproduced in this experimental 
model, which are considered indicative of central sensitization [20]. Hence this test is 
commonly employed as part of the battery of screening experiments when looking for 
analgesic/anti-neuropathic pain activity.
It is evident that challenges exist in the identification of suitable targets for the treatment of 
neuropathic pain [21]. Given the gaps in the understanding of the mechanisms underlying 
neuropathic pain disorders, drugs are tested pre-clinically without evidence as to which 
target will yield a clinically relevant response. However, this is further compounded by 
the paradigm currently used for the screening of compounds, which relies on evoked-pain 
response associated with general positive symptoms such as allodynia and hyperalgesia [22, 
23]. Ongoing research strongly suggests that evidence of concentration-effect relationships 
is necessary for translational purposes and accurate ranking of compounds [24].
Although further advancement of the field will certainly depend on the identification of 
specific biomarkers of disease, the assessment of pharmacokinetic-pharmacodynamic 
relationships remains fundamental for characterising the properties of novel compounds 
and interpreting response across species. Unfortunately, screening procedures and 
protocols do not consider the implication of empirical designs, which can result in estimates 
of drug properties such as potency, which are often imprecise and extremely variable[25]. 
As a consequence, inaccurate ranking of compounds is likely to occur during the screening 
stage, which then progress into development. Our investigation illustrates the implications 
of optimality concepts to better design experimental protocols and obtain more precise and 
accurate parameter estimates.
There have been numerous attempts in the implementation of optimal designs for 
experimental protocols [26], but most designs were explored under the assumption of no 
parameter uncertainty [27], a condition which does not correspond to the screening phase 
of novel molecule candidates. Furthermore, application of optimality concepts imposes 
the availability of a model, which is unknown at the early stages of drug discovery and 
development, as is the case during the screening phase.  These conceptual constraints are 
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further complicated by practical challenges during the experiments, such as the potential 
interference of blood sampling for pharmacokinetics between behavioural measurements 
and limited sampling frequency due to habituation and other possible effects on 
pharmacodynamics.
Here we have shown how the use of a binary response can overcome technical limitations 
associated with model building, by emphasising the assessment of drug- and system-specific 
parameters. The parameterisation of drug effects in terms of EC50 allows discrimination of 
drug properties, whereas baseline and maximum response Emax reflect experimental model 
characteristics and as such can be estimated in conjunction with historical data, which are 
incorporated as parameter priors. In addition, as shown in the different scenarios, ED-
optimality also allows the inclusion of uncertainty in a formal manner. 
Our analysis focused on the simultaneous optimisation of two design variables, namely dose 
and sampling times, in a similar way to what has been previously reported by Nyberg and 
collaborators [28]. In contrast to empirical designs, the results show that the use of optimality 
concepts yields sampling at time points around the expected parameter estimate (Figure 
4.5), thereby maximizing the information obtained from the an experimental protocol. Even 
in the case parameter misspecification, ED-optimality appears to provide more informative 
data than designs based on ‘best guess’ estimates.
Since gabapentin exhibits carrier-mediated absorption, bioavailability was found to be 
nonlinear, decreasing with increasing doses [29]. This effect caused an unusual situation 
in which changes in the bioavailable fraction resulted in practically the same exposure 
across the different dose levels. In such circumstances, the ‘best guess’ estimates were 
not as biased as one would normally observe. To illustrate the effect of such nonlinearity 
we have therefore investigated an optimisation scenario in which bioavailability estimates 
decreased with increasing doses but yielding wide variation in plasma concentrations. The 
results reveal that empirical protocols perform much more poorly (as defined by the bias 
and precision of EC50) than optimised designs. 

Limitations
The optimisation procedures were constrained by the effect on nonlinear absorption 
and relatively sparse availability of oral pharmacokinetic data, which prevented accurate 
estimation of the pharmacokinetic parameters of interest. Therefore, drug concentrations 
from an IV experiment were used to support the estimation of clearance and volume of 
distribution. Whilst data were accurately fitted to the model, we did not attempt to describe 
the transporter-limited absorption of gabapentin in a mechanism-based manner. Instead, 
we applied a ‘curve linearization’ approach, under the assumption that bioavailability 
decreased linearly across the dose range. 
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In addition, it has been documented that optimal designs based on D-optimality have a 
tendency to cluster at parameter point estimates because model expectations is assumed 
to be the same for each individual. Apparently, this clustering effect may be minimised 
by the use of priors [30]. Regardless of the use of priors clustering was observed during 
the analysis, but this issue was resolved by imposing minimum interval between sampling 
times, as describe in the methods section. We have not performed a sensitivity analysis to 
explore the potential impact on the estimates of bias and precision obtained for the different 
optimisation scenarios.  We anticipate however that the use of stepwise iterations during 
optimisation should minimise such issues, including failure due to numerical problems. 
Lastly, it should be noted that IIV estimates were higher with varying bioavailability. It is not 
clear if these findings may have been caused by inflated random residual variability in this 
specific scenario.
In conclusion, our study reveals that experimental requirements must be considered for 
the purposes of screening and ranking of compounds. Accurate estimation of drug potency 
(EC50) entails modification to the protocol design, including specific changes to sampling 
procedures and dosing rationale, which cannot be guessed without applying ED-optimisation 
concepts. It is time for experimentalists to understand the implications of empirical 
protocols and make sure experiments are suitable for the evaluation of pharmacokinetic-
pharmacodynamic properties of novel molecules. 
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APPENDIX 1:  PK AND PKPD MODELLING DETAILS
The pharmacokinetics of gabapentin was described by macro-constants according to the 
following expression[31]:
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Where ka=absorption rate constant, V1=central volume of distribution , F=bioavailability of 
the administered dose, λ1 and λ2 correspond to the initial and terminal slopes representing 
bi-exponential decline respectively and K21 is a rate transfer microconstant between 
compartments 1 and 2.                                		

Figure 4.6: Goodness-of-fit plots for the pharmacokinetic (left panel) and PKPD (right panel) models. Lines represent 
the observed data, whereas the shaded area depicts the 90% confidence intervals



Application of ED optimality to screening experiments for analgesic compounds

Ch
ap

te
r 4

97

APPENDIX 2: - OPTIMISATION CONCEPTS FOR BINARY RESPONSE

In optimal design, the probability density p(yi|θ) of the experimental observations yi  
depends on a vector of likelihood parameters θ, where 
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The maximum likelihood estimate θ is the value that maximises the joint log-likelihood 
function:
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As a result of a smaller covariance matrix, the lower the FIM-1 the greater is the precision, 
where FIM is defined as:
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By choosing the optimal design variables X^  that minimize FIM-1, one obtains the design 
variables that yield the smallest possible lower bound for the covariance matrix of the 
population parameter estimates [4].

Using the ED-optimality criterion, the parameters of interest are assigned a prior distribution 
and an expectation. A design XD is said to be ED-optimal if it minimises the negative expected 
(Eα) determinant of the FIM with respect to the parameter priors.
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ED ED
nx = argmax [j (x)]            

          (13)  

	 (13)

Laplace approximation was used for calculation of the FIM. The optimization criteria used 
was D-/ED optimal (i.e., optimizing the determinant of FIM). The Latin hypercube (LH) 
sampling was used in the MC calculation of the likelihood to speed up and stabilise the 
likelihood calculation. The number of LH samples differed between the different models 
but was between 40-200 individual samples. The FIM was calculated both using the 
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expectation of the gradient product of the first derivative of the log-likelihood with respect 
to the parameters as well as the expectation of the negative 2nd order derivative of the log-
likelihood with respect to the parameters.
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Figure 4.7: Fisher Information Matrix surface versus the highest dose (300mg/kg) and sample times combination 
for ED design with 50% variance in the expected parameter estimates. The dark red surface represents the optimal 
design for this dose and sampling time’s combination.
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