
Premanifest Huntington's disease : a study of early biomarkers
Jurgens, C.K.

Citation
Jurgens, C. K. (2011, February 1). Premanifest Huntington's disease : a study of early biomarkers. Retrieved from
https://hdl.handle.net/1887/16439
 
Version: Corrected Publisher’s Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded
from: https://hdl.handle.net/1887/16439

 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16439


General introduction

Chapter 1



10 Chapter 1 11General introduction

1
on the disease state. A better understanding of the phenoconversion phase from premanifest to 

manifest HD is, therefore, critical.

Premanifest Huntington’s disease
Patients and/or relatives often report symptoms before they reach a point where the disease 

becomes manifest and a medical specialist confirms the diagnosis. The availability of the genetic 

test has made it possible to study changes in the premanifest phase of HD. Results from cross-

sectional studies in gene-tested, premanifest carriers (described hereafter as carriers) showed that 

subtle motor, cognitive and behavioural abnormalities can be demonstrated before the onset of 

unequivocal motor signs. Some studies showed abnormalities in motor functioning in carriers, 

e.g. oculomotor, functional motor and psychomotor slowing.11,12 Others found that on cognitive 

functioning tests, carriers perform worse than non-carriers. Impaired cognitive domains include: 

intelligence indices, diverse aspects of memory, visuoconstruction, psychomotor and executive 

skills.13-15 Furthermore, premanifest behavioural and personality changes have been described and 

include depressive mood, irritability and aggressive behaviour.10,16,17 

Longitudinal studies have provided the possibility of finding out whether measures that prove 

sensitive in detecting premanifest abnormalities can also demonstrate a decline over time, and be 

used to monitor whether carriers approaching clinical disease onset display abnormalities in specific 

areas. Follow-up designs show discrepant results. Some studies, varying in follow-up period from 2 

to 4 years, could not demonstrate changes in motor and cognitive functioning in carriers compared 

to non-carriers.18-20 Others found changes over the years (1 to 10 years) in motor functioning, 

psychomotor speed, executive functioning, attention and memory.21-25 Discrepancies between 

findings in premanifest studies are often attributed to heterogeneity in time to onset, variation in 

sample size, differing strictness of inclusion criteria for the presence of motor signs and diversity 

in follow-up periods. Furthermore, there is inconsistency in the comprehensiveness of the used 

neuropsychological test batteries. For example the study with the most extended follow-up period 

did not include memory tasks,25 whereas psychomotor and executive tests are included almost 

consistently. Additional longitudinal studies with a comprehensive test battery and lengthy follow-

up period should give more insight into the tasks most sensitive to tracking clinical decline in the 

premanifest phase and to determining whether clinical instruments are useful for monitoring future 

therapeutic trials.  

Detecting clinical deterioration before the onset of unequivocal motor signs has prompted research 

into understanding the nature of neuropathological changes in premanifest HD. Brain imaging tools 

enable to observe ongoing pathological processes in vivo and to examine associations with the 

evolution of clinical characteristics. 

MRI in Huntington’s disease
Magnetic Resonance Imaging (MRI) is a widely available, non-invasive tool allowing the visualisation 

of the brain in vivo with high spatial resolution and the opportunity to quantify brain parameters. 

Huntington’s disease (HD) is an autosomal dominantly inherited, neurodegenerative disease 

characterised by disorders of movement, cognition and behaviour. The genetic defect causing HD is 

an abnormal CAG expansion in the gene that codes for the protein, huntingtin, on chromosome 4.1 

In healthy individuals the number of CAG repeats is less than 27; the presence of 36 or more repeats 

indicates that the individual will develop HD. By means of predictive testing, individuals at risk of 

inheriting the mutation can be identified prior to the disease becoming clinically manifest. The 

length of the CAG repeat explains 50-70% of the variability in clinical onset age, a greater number of 

repeats tending to result in earlier age at onset.2 The mean age at symptom onset is in the mid-40’s 

and the mean disease duration ranges between 15 and 20 years.3 In The Netherlands, the number 

of HD patients is estimated at 1,200-1,500 and approximately 6,000-9,000 individuals are at risk. 

Slightly less than half of the at-risk carriers carry the HD mutation and will eventually develop HD.

Through different mechanisms, the abnormal huntingtin is believed to promote neuronal cell 

death and dysfunction in a variety of brain regions, particularly the basal ganglia. The most striking 

neuropathological changes are found in the caudate nucleus and the putamen, but other subcortical 

and cortical regions of the brain also exhibit neuronal loss.4-6 HD neuropathology leads in particular 

to disruption of cortical-basal ganglia brain circuits involved in motor, cognitive and behavioural 

processes.7 At present, many symptomatic treatments are available but there are as yet no means of 

preventing, slowing down or curing HD. 

The major motor disturbance in HD is the presence of unwanted choreatic movements. Oculomotor 

abnormalities and impaired voluntary movements are also among the earliest signs and are present 

in the vast majority of patients.1 Bradykinesia and rigidity often dominate the late stages of disease. 

Cognitive deterioration is a second key feature of HD and is characterised by memory dysfunction, 

executive dysfunction, impaired psychomotor skills, and attention deficits.1,8 Behavioural symptoms 

associated with HD are more variable in their expression than the motor and cognitive changes 

and do not follow the same progressive course. Common symptoms are a depressed mood, anxiety, 

irritability, and apathy.9,10 Although motor disturbances severely debilitate the patient, cognitive and 

behavioural changes are often reported to be more distressing for both patients and caregivers. 

The clinical diagnosis of manifest HD is generally based on the appearance of unequivocal 

motor signs identified by a neurologist, along with a positive family history and confirmation 

by DNA-testing. However, it is well recognised that there is great variation in the age at onset of 

clinical signs, the initial sign presentation, the clinical course of HD, and the duration of illness. 

Accumulating research supports a premanifest phase, during which symptoms and signs gradually 

appear and progress until a definite diagnosis can be made based on neurological examination.  

In the search for a causal treatment of HD, there is an urgent need for objective measures that 

provide more insight into early clinical alterations and morphological and neurophysiological brain 

changes in HD. Although the genetic mutation serves as a trait marker, it provides no information 
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The P3 is a positive, large amplitude potential with a typical peak latency between 300 and 500 ms, 

and is elicited in response to deviant stimuli in simple auditory or visual discrimination tasks. The 

amplitude of the P3 reflects attention to stimulus information when representations are updated.48 

The P3 latency is considered as stimulus classification speed and is sensitive to task processing 

demands and cognitive abilities. P3 abnormalities have been shown in HD patients as well as 

premanifest carriers. Studies with auditory and visual oddball paradigms, showed an increased 

P3 latency in both patients and carriers, while the P3 amplitude was altered in patients only.49,50 In 

contrast, a study by de Tommaso et al. showed that P3 latency was within the normal range in most 

HD patients and in all carriers.51 The P3 has also been used to examine processes related to inhibition 

in Go/No-go paradigms. Beste et al. showed a strongly decreased P3 amplitude during No-go trials in 

HD patients and showed an association with higher CAG repeat length.52 

Interestingly, the P3 is reported to be partly generated by the basal ganglia.53 Since degeneration 

of these brain structures starts many years before clinical disease onset, studying the interplay 

between P3 and basal ganglia in premanifest HD would lead to new insights into the disease 

process.

Outline of the thesis
Objective measures, also called biomarkers, that provide more insight into early clinical 

abnormalities and morphological and neurophysiological brain alterations in HD need to 

be identified. They should contribute to the early detection of change, the development of 

neuroprotective agents, and to the monitoring of disease progression and treatment. In addition 

they should help in the establishment of better criteria for the definition of onset for clinical 

practice.

The general objective of this thesis was, therefore, to investigate whether early clinical alterations 

and structural and functional brain markers could be detected in carriers of the HD gene who are 

still without manifest motor signs. Furthermore we investigated associations between clinical 

measures and several quantitative MRI and EEG markers. 

First of all, we aimed to detect brain deficits using MRI before carriers of the HD gene showed 

clinical manifest signs of HD. Therefore, volumetric MRI (chapter 2), Magnetisation Transfer Imaging 

(MTI) (chapter 3) and basal ganglia hypointensities on T2-weighted scans (chapter 4) were compared 

between carriers and non-carriers. Furthermore, we reported whether these measurements could be 

associated with phenotypical and genotypical characteristics in carriers. 

The second aim was to investigate whether EEG parameters during cognitive challenging would 

reveal abnormalities in brain functioning in premanifest HD. EEG activity during memory activation 

was studied in carriers compared to non-carriers (chapter 5). Furthermore we analysed P3 ERP during 

a Go/No-go sustained attention task and we described the relation with basal ganglia volumes in 

carriers of the HD gene (chapter 6). 

Atrophy of the striatum (caudate nucleus and putamen) on MRI is a well-known marker for manifest 

HD and has been linked to motor impairment and cognitive deficits.26,27 Structural changes in 

manifest HD have also been demonstrated in other subcortical (e.g. globus pallidus, thalamus) and 

cortical regions. White matter atrophy and smaller thalamus volume were associated with worse 

cognitive functioning, emphasising the contribution of extra-striatal abnormalities in the phenotype 

of HD.28,29 

Volumetric studies in premanifest carriers showed significant striatal atrophy many years prior to 

manifest HD.30-33 Atrophy becomes more severe as clinical disease onset approaches.32 Extra-striatal 

volume reductions in the globus pallidus and thalamus were also reported, but were found to 

begin later.34 Recent Voxel Based Morphometry (VBM), Diffusion Tensor Imaging (DTI) and Positron 

Emission Tomography (PET) studies have also demonstrated sensitivity for premanifest subcortical 

and cortical changes.35-39 Furthermore, early white matter volume loss, cortical thinning and grey 

matter abnormalities have been demonstrated.32,37,40 Relatively few studies focused on associations 

between structural abnormalities and clinical functions in premanifest HD. Smaller striatal volume 

has been linked to subtle motor abnormalities,31,41,42 worse psychomotor performance31 and lower 

scores on a verbal episodic memory task.31,43 Quantitative MRI techniques may further improve our 

understanding of how regional and diffuse brain changes in HD develop and how these are related 

to the genotype and heterogeneous phenotype of HD. 

EEG in Huntington’s disease
Electroencephalography (EEG) is used to record the electrical brain activity. It is a cost-effective, non-

invasive tool, sensitive to functional brain changes. In contrast with MRI, EEG has high temporal but 

low spatial resolution. Neurodegenerative disease and dementia have been associated with slow 

EEG activity.44 While many recent studies have focused on MRI techniques in HD, comparatively 

fewer have utilised electrophysiological measures. In patients with HD, EEG abnormalities consist 

of increased theta and reduced alpha power.44,45 In mild to moderate HD, decreased global alpha 

and frontal theta power and increased global delta and beta power were demonstrated and were 

found to be associated with motor and cognitive impairment.46 Only one study focused on EEG in 

premanifest HD carriers and found that alpha activity was reduced, specifically in individuals near 

clinical onset age.45 In most clinical EEG studies registration is limited to standard conditions. In EEG 

studies of the continuum of cognitive decline, it was shown that cognitive challenging during EEG 

revealed abnormalities in Mild Cognitive Impairment (MCI), while conventional EEG conditions did 

not.47 As neuropsychological studies have described subtle abnormalities in executive functioning 

and memory in premanifest carriers, EEG combined with memory or executive tests might reveal 

early changes in brain functioning in HD before clinical signs become overt. 

Another potentially useful electrophysiological technique for the detailed analysis of HD-related 

neuronal and cognitive deterioration is the recording of Event-Related Potentials (ERP). The ERP 

provides information on the efficiency of stimulus processing, which depends mainly on the integrity 

of complex functional neuronal circuits. The P3 is the most extensively studied ERP.  
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