Dynamics in electron transfer protein complexes
Bashir, Q.

Citation

Version: Corrected Publisher’s Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/16077

Note: To cite this publication please use the final published version (if applicable).
Appendices
Appendix A

Expression and purification of Cytochrome c

Cc is produced in E. coli BL21 competent cells. The competent cells are transformed with the relevant pUC-Cc plasmid (containing yeast haem lyase gene and yCc or hCc gene), spread on LB/Amp plates and incubated overnight at 37ºC. The next morning a 3 ml culture (LB with 0.1 g/L Amp) is inoculated with the single colony and grown at 37ºC and 250 rpm shaking until turbidity is evident (3 - 4 hours). One milliliter of the pre-culture is used to inoculate larger cultures. For expression of the 15N labelled protein, 1 ml of the pre-culture is used to inoculate 1 L of M9 minimal medium in a 2 L flask and grown at 37ºC and 200 rpm shaking for 36 hours. For the expression of unlabelled protein, 1 ml of the pre-culture is used to inoculate 1.7 L of rich medium (LB with 0.1 g/L Amp and 1 mM KNO₃) in a 2 L flask. The culture is grown semi-anaerobically at 37ºC with 160 rpm shaking, for 24 hours.

The cells are harvested by centrifugation at 7000 rpm for 15 minutes. The pellet is resuspended in 50 mM Tris-HCl pH 6.8 containing 1 mM EDTA. A few milligrams of lysozyme, DNAse and RNAse are added and the mixture is stirred at 4ºC until smooth (about 1 hour). The cells are broken by passing through a pre-cooled French press at 1200 lb/psi. The solution is mixed with 326 g/L of (NH₄)₂SO₄ and stirred at 4ºC for about 30 minutes. The solution is centrifuged at 8000 rpm for 30 minutes and the red coloured supernatant is collected. The red coloured protein solution is put in dialysis bags (3000 M₅ cut-off) leaving three-fourth of the bag empty to allow for expansion.

For yeast Cc and its mutants, the protein solution is dialyzed against 2 L of 46 mM NaPi pH 6.8 for 3 hours followed by a change of buffer and overnight dialysis. The dialysate is centrifuged at 6000 rpm for 15 minutes to get rid of any precipitate. The supernatant is loaded to CM column equilibrated with 46 mM NaPi pH 6.8. The protein is eluted with a linear gradient of the equilibration buffer containing 0-0.5 M NaCl.

For horse Cc and its mutants, the protein solution is dialyzed against 2 L of 46 mM NaPi pH 6.0 for 3 hours followed by a change of buffer and overnight dialysis. The dialysate is centrifuged at 6000 rpm for 15 minutes to get rid of any precipitate. The
supernatant is filtered and loaded to SP column equilibrated with 46 mM NaPi pH 6.0. The protein is eluted with a linear gradient of equilibration buffer containing 0-0.5 M NaCl.

The elution profile is monitored at 410 nm. The fractions containing Cc are combined, mixed with a few crystals of $K_3[Fe(CN)_6]$ to oxidize the protein, exchanged in 20 mM NaPi pH 6.0 containing 100 mM NaCl and concentrated in an Amicon fitted with a YM3 membrane. The concentrated protein solution is then applied to G-75 gel-filtration column equilibrated with 20 mM NaPi pH 6.0 containing 100 mM NaCl and eluted with the equilibration buffer. A single peak corresponding to the pure Cc is recorded at 280 nm. The protein concentration is estimated from the UV-vis absorbance at 410 nm ($\varepsilon = 106.1 \text{ mM}^{-1} \text{cm}^{-1}$, Mr = 12,100) for both Cc.

Expression and purification of cytochrome c peroxidase

E. coli BL21 competent cells are transformed with the pT7-CcP plasmid, spread on LB/Amp plates and incubated overnight at 37°C. The next morning a 3 ml culture (SB with 0.1 g/L Amp) is inoculated with single colony and grown at 37°C and 250 rpm shaking until turbidity is evident (3 - 4 hours). Larger culture (50 ml SB/Amp in a 250 ml flask) is inoculated with 0.5 ml of the pre-culture and further grown for 3 hours at 37°C and 250 rpm shaking. The final culture (750 ml SB/Amp in a 2 L flask) is inoculated with 0.75 ml of the above culture and grown for 10-11 hours at 37°C and 250 rpm shaking followed by addition of 1.6 ml of IPTG (0.125 g/ml stock, sterile-filtered) and followed by 3 hours of incubation.

The cells are harvested by centrifugation at 7000 rpm for 15 minutes. The pellet is re-suspended in the minimal volume of the lysis buffer (0.1 M KPi pH 6.0 containing 1 mM EDTA and 1 mM PMSF). A few milligrams of lysozyme are added and the mixture is stirred at 4°C until smooth (about 1 hour). The smooth cell paste is frozen in liquid nitrogen and stored at -80°C. The frozen cell pellet is thawed, a few milligrams of DNAse, RNAse and 10 ml of MgCl₂ are added and the mixture is stirred at 4°C for about 1 hour. The mixture is then centrifuged at 8500 rpm for 30 minutes and the supernatant is collected.
Appendix A

A 10-50 fold molar excess of hemin is dissolved in 1 ml of 0.1 M NaOH and diluted with 10 ml of the lysis buffer. The hemin solution is added to the protein solution and stirred at 4°C for 1 hour during which the haem is incorporated in the apoenzyme. The protein solution is then acidified to pH 5.0 with 1.0 N acetic acid and frozen at -20°C. The protein solution is thawed and incubated at 37°C for 2-3 hours. The protein solution is then centrifuged at 12000 rpm for 25 minutes to get rid of the precipitated proteins. The supernatant is filled in dialysis bags (6000 M, cut-off) and dialyzed overnight against 3 L of 50 mM sodium acetate pH 5.0. The dialyzed protein solution is centrifuged at 8000 rpm for 15 minutes and the supernatant is loaded on a DEAE column equilibrated with 50 mM sodium acetate pH 5.0. The protein is eluted with a linear gradient of the equilibration buffer containing 0-0.4 M NaCl. The protein elution is monitored at 410 nm. The fractions containing CcP are pooled and incubated with 10 mM DTT for 2-3 hours, in case of cysteine mutants. The protein is exchanged into 20 mM NaPi pH 6.0 containing 100 mM NaCl and 1 mM DTT, and concentrated in an Amicon fitted with a YM10 membrane. The concentrated protein is applied to G-75 gel-filtration column equilibrated with the 20 mM NaPi pH 6.0 containing 100 mM NaCl and 1 mM DTT and eluted with the equilibration buffer. A single peak corresponding to the pure CcP is recorded at 280 nm. The protein concentration is estimated from the UV-vis absorbance at 408 nm (ε = 98 mM⁻¹cm⁻¹, Mr = 34,100).

Site-specific spin labeling of cytochrome c peroxidase

The required CcP mutant is exchanged in 100 mM Tris-HCl buffer pH 8.0 containing 0.1 M NaCl and incubated with 10 mM DTT at room temperature for about 2 hours. Then DTT is removed by passing the protein solution through a PD-10 column. The protein concentration is measured and the protein solution is divided into two equal portions. A 7-fold excess of MTSL or MTS is added to each portion and the mixture is incubated at room temperature for overnight.

Next morning the unreacted MTSL or MTS is removed through a PD-10 column. The protein solution containing CcP-MTS or CcP-MTSL is exchanged in 20 mM NaPi pH 6.0 containing 0.1 M NaCl and concentrated to 0.6-0.8 mM.
Appendix B

Input file (for XPLOR-NIH) to determine distances from CcP-SL to Cc amides

! NB SL1,2,3,4 = N38,N200,T288,S263 (this order)
! N38 = store1, store2 (calc., obs.)
! N200 = store3, store4 (calc., obs.)
! T288 = store5, store6 (calc., obs.)
! S263 = store7, store8 (calc., obs.)

set mess=off end
set echo=off end

!----------------VARIABLEs ---
eval ($rescc = 103) ! last residue in Cc
eval ($frst = -5) ! 1st residue in Cc
eval ($nrrescc = 107) ! number of residues in Cc minus 1
eval ($nrprocc = 4) ! number of PRO in Cc
eval ($nrrealcc = $nrrescc - $nrprocc) ! number of structures in the ensemble
eval ($nrstruc = 1) ! number of structures in the ensemble
eval ($ensm = "wtcc_new_1701") ! name of the ensemble
eval ($frmajor = 0.000001) ! fraction of well-defined form
eval ($frminor = 1 - $frmajor) ! fraction of the ensemble
eval ($startfile = "cc_ccp_4sl.pdb")
eval ($ccpfile = "CCP.pdb.con") ! name of the CCP file in the same orientation as the one used to create ensemble
eval ($SL_FILE="cc_ccp_rand_SL_inclCc_01.pdb.SL") ! name of file with new spin label oxygen positions

!----------------PARAMETERS & STRUCTURE --------------------------------
structure @cc_ccp/cc_ccp_4sl.psf end
parameter @cc_ccp_4sl.par end
coor @$startfile
coor init SELE=(segid=SL) end
coor @$SL_FILE
@learn_ccp.xpl
@learn_cc.xpl
!write coor OUTPUT=test1.pdb end

!--
set mess=off end
set echo=off end

eval ($count=$frst+1)
while ($count < $rescc) loop A1
 vector do (store1=0.00) (atom "cytc" $count HN)
 vector do (store3=0.00) (atom "cytc" $count HN)

137
vector do (store5=0.00) (atom "cytc" $count HN)
vector do (store7=0.00) (atom "cytc" $count HN)
eval ($count=$count+1)
end loop A1

vector idend (store9) ((name ca) and (segid="cytc"))
eval ($struc1 = 0)
eval ($struc2 = 0)
eval ($struc3 = 0)
eval ($struc4 = 0)
!
----------------READ STRUCTURES--
!NOTE in the structure, only have cytc coordinates present, otherwise
!loop !becomes too long
! (loop-too-long error)
coor DISP=COMP @$ccpfile end !read CcP file from
coor fit SELE=(segid="ccp" and name = CA) end !fit CcP in complex
coor copy SELE=(not segid="cytc") end !copy CcP t o COMP
!write coor OUTPUT=test1c.pdb end

eval ($w = 1)
while ($w LE $nrstruc) loop A2
coor swap SELE=(segid="cytc") end !move MC CA atoms to main and
coor init SELE=(segid="cytc") end !initialize
coor swap SELE=(segid="cytc") end !move cytc back to main for fitting
eval ($file = "cytc." + encode($w) + ".pqr.ed")
coor DISP=COMP @@$file end !read new MC CA atoms
coor fit SELE=(segid="cytc" and name CA) end !fit all main atoms,
coor copy SELE=(not segid="cytc") end !using Cc CA atoms
!copy original CcP+SL for
!later use CcP is now in same orientation as ccpfile and Cc is
!fitted to new MC Cc orientation
!write coor OUTPUT=test2.pdb end

----------------CALCULATING DISTANCES FOR THE ENSEMBLE ----------------
eval ($a = 1)
while ($a < 5) loop main !number of SL + 1
 eval ($cont1="no")
eval ($cont2="no")
eval ($cont3="no")
eval ($cont4="no")
for $b02 in ID (store9) loop contact !CA atoms of Cytc; check for
 pick bond (ID $b02) (atom SL $a O1) geom
 if ($RESULT < 5.0) then eval ($cont1 = "yes") end if
pick bond (ID $b02) (atom SL $a O2) geom
if ($RESULT < 5.0) then eval ($cont2 = "yes") end if
pick bond (ID $b02) (atom SL $a O3) geom
if ($RESULT < 5.0) then eval ($cont3 = "yes") end if
pick bond (ID $b02) (atom SL $a O4) geom
if ($RESULT < 5.0) then eval ($cont4 = "yes") end if
end loop contact

eval ($count=$frst+1)
while ($count LE $rescc) loop A1
if ($count # 0) then
 vector show elem (resn) (atom "cytc" $count N)
 if ($RESULT # "PRO") then
 eval ($b01 = 0)
 eval ($avgA = 0)
 if ($cont1="no") then
 pick bond (atom "cytc" $count HN) (atom SL $a O1) geom
 eval ($a1=$RESULT^(-6))
 eval ($b01 = $b01 +1)
 else eval ($a1 = 0)
 end if
 if ($cont2="no") then
 pick bond (atom "cytc" $count HN) (atom SL $a O2) geom
 eval ($a2=$RESULT^(-6))
 eval ($b01 = $b01 +1)
 else eval ($a2 = 0)
 end if
 if ($cont3="no") then
 pick bond (atom "cytc" $count HN) (atom SL $a O3) geom
 eval ($a3=$RESULT^(-6))
 eval ($b01 = $b01 +1)
 else eval ($a3 = 0)
 end if
 if ($cont4="no") then
 pick bond (atom "cytc" $count HN) (atom SL $a O4) geom
 eval ($a4=$RESULT^(-6))
 eval ($b01 = $b01 +1)
 else eval ($a4 = 0)
 end if
 if ($b01 # 0) then
 eval ($avgA = ($a1+$a2+$a3+$a4)/$b01)*1E10)
 else eval ($avgA = 0)
 end if
 if ($a = 1) then
 vector show element (store1) (atom "cytc" $count HN)
 eval ($v3 = $RESULT + $avgA)
 vector do (store1=$v3) (atom "cytc" $count HN)
 if ($avgA # 0) then eval ($struc1 = $struc1 + 1) end if
 display QQQQQQ $avgA $count $struc1 $b01 $a1 $a2 $a3 $a4
 elseif ($a = 2) then
vector show element (store3) (atom "cytc" $count HN)
eval ($v3 = $RESULT + $avgA)
vector do (store3=$v3) (atom "cytc" $count HN)
if ($avgA # 0) then eval ($struc2 = $struc2 + 1) end if
elseif ($a = 3) then
 vector show element (store5) (atom "cytc" $count HN)
eval ($v3 = $RESULT + $avgA)
 vector do (store5=$v3) (atom "cytc" $count HN)
 if ($avgA # 0) then eval ($struc3 = $struc3 + 1) end if
 elseif ($a = 4) then
 vector show element (store7) (atom "cytc" $count HN)
eval ($v3 = $RESULT + $avgA)
 vector do (store7=$v3) (atom "cytc" $count HN)
 if ($avgA # 0) then eval ($struc4 = $struc4 + 1) end if
 end if
end if
end if
eval ($count=$count+1)
end loop A1
eval ($a = $a + 1)
end loop main
eval ($w = $w + 1)
end loop A2
! calculate number of structures used for each spin label
display SSSSSS $struc1 $struc2 $struc3 $struc4
eval ($struc1 = $struc1/$nrrealcc)
eval ($struc2 = $struc2/$nrrealcc)
eval ($struc3 = $struc3/$nrrealcc)
eval ($struc4 = $struc4/$nrrealcc)
display SSSSSS $struc1 $struc2 $struc3 $struc4

!----------------CALCULATING DISTANCES FOR THE WELL-DEFINED ONE---------
coor init SELE=(all) end
coor @$startfile
coor init SELE=(segid=SL) end
coor @$SL_FILE
write coor OUTPUT=test4.pdb end
!calculate correction factors for fraction well-defind for each spin label
eval ($corr1 = $struc1*$frmajor/$frminor)
eval ($corr2 = $struc2*$frmajor/$frminor)
eval ($corr3 = $struc3*$frmajor/$frminor)
eval ($corr4 = $struc4*$frmajor/$frminor)
eval ($a = 1)
while ($a < 5) loop main2 !number of SL + 1
eval ($cont1="no")
eval ($cont2="no")
eval ($cont3="no")
eval ($cont4="no")
for $b02 in ID (store9) loop contact !CA atoms of Cc; check for contacts
pick bond (ID $b02) (atom SL $a O1) geom
if ($RESULT < 5.0) then eval ($cont1 = "yes") end if
pick bond (ID $b02) (atom SL $a O2) geom
if ($RESULT < 5.0) then eval ($cont2 = "yes") end if
pick bond (ID $b02) (atom SL $a O3) geom
if ($RESULT < 5.0) then eval ($cont3 = "yes") end if
pick bond (ID $b02) (atom SL $a O4) geom
if ($RESULT < 5.0) then eval ($cont4 = "yes") end if
end loop contact
eval ($count=$frst+1)
while ($count LE $rescc) loop A1
 if ($count # 0) then
 vector show elem (resn) (atom "cytc" $count N)
 if ($RESULT # "PRO") then
 eval ($b01 = 0)
eval ($avgA = 0)
if ($cont1="no") then
 pick bond (atom "cytc" $count HN) (atom SL $a O1) geom
 eval ($a1=$RESULT^(-6))
eval ($b01 = $b01 +1)
else eval ($a1 = 0)
end if
if ($cont2="no") then
 pick bond (atom "cytc" $count HN) (atom SL $a O2) geom
 eval ($a2=$RESULT^(-6))
eval ($b01 = $b01 +1)
else eval ($a2 = 0)
end if
if ($cont3="no") then
 pick bond (atom "cytc" $count HN) (atom SL $a O3) geom
 eval ($a3=$RESULT^(-6))
eval ($b01 = $b01 +1)
else eval ($a3 = 0)
end if
if ($cont4="no") then
 pick bond (atom "cytc" $count HN) (atom SL $a O4) geom
 eval ($a4=$RESULT^(-6))
eval ($b01 = $b01 +1)
else eval ($a4 = 0)
end if
if ($b01 # 0) then
 eval ($avgA=((($a1+$a2+$a3+$a4)/$b01)*1E10)
else eval ($avgA = 0)
end if
if ($a = 1) then
 vector show element (store1) (atom "cytc" $count HN)
eval ($v3 = $RESULT + $avgA*$corr1)
 vector do (store1=$v3) (atom "cytc" $count HN)
Appendix B

! display QQQQQQ $avgA $count $corr1 $b01 $a1 $a2 $a3 $a4
elseif ($a = 2) then
 vector show element (store3) (atom "cytc" $count HN)
 eval ($v3 = $RESULT + $avgA*$corr2)
 vector do (store3=$v3) (atom "cytc" $count HN)
 !display QQQQQQ $avgA $count $corr2 $b01 $v3 $RESULT $a1 $a2 $a3 $a4
elseif ($a = 3) then
 vector show element (store5) (atom "cytc" $count HN)
 eval ($v3 = $RESULT + $avgA*$corr3)
 vector do (store5=$v3) (atom "cytc" $count HN)
 !display QQQQQQ $avgA $count $corr3 $b01 $v3 $RESULT $a1 $a2 $a3 $a4
elseif ($a = 4) then
 vector show element (store7) (atom "cytc" $count HN)
 eval ($v3 = $RESULT + $avgA*$corr4)
 vector do (store7=$v3) (atom "cytc" $count HN)
end if
end if
end if
end if

end loop A1

eval ($a = $a + 1)
end loop main2

!----------------WRITE OUTPUT --
! read distances from observed PREs for comparison

@n38c.xpl
set display="ens_viol_n38c.dat" end
display Experimental and ensemble-averaged (r-6) distances for yeast Cc and N38C-SL CcP
display name of the ensemble: $ensm
display name of ccp/cc startfile: $startfile
display name of ccp orientation file: $ccpfile
display name of spin label coordinate file: $SL_FILE
display # structures used: $struc1
display fraction well-defined: $frmajor virtual # structure: $corr1
display Date: $DATE Time: $TIME
display RES ATOM d(obs) d(calc)
set display=OUTPUT end

for $ide in ID (store2) loop OUT
 vector show elem (store1) (ID $ide)
eval ($w1 = (($RESULT/(1E10*($struc1 + $corr1)))^(-1/6)))
 vector show elem (resi) (ID $ide)
eval ($w2 = $RESULT)
 vector show elem (name) (ID $ide)
eval ($w3 = $RESULT)
 vector show elem (store2) (ID $ide)
eval ($w4 = $RESULT)
set display="ens_viol_n38c.dat" end
display $w2 $w3 $w4 $w1
set display=OUTPUT end
end loop OUT

@n200c.xpl
set display="ens_viol_n200c.dat" end
display Experimental and ensemble-averaged (r-6) distances for yeast Cc and N200C-SL CCP
display name of the ensemble: $ensm
display name of ccp/cc startfile: $startfile
display name of ccp orientation file: $ccpfile
display name of spin label coordinate file: $SL_FILE
display # structures used: $struc2
display fraction well-defined: $frmajor virtual # structure: $corr2
display Date: $DATE Time: $TIME
display
display RES ATOM d(obs) d(calc)
set display=OUTPUT end
for $ide in ID (store4) loop OUT
 vector show elem (store3) (ID $ide)
 eval ($w1 = (($RESULT/(1E10*($struc2 + $corr2)))^(-1/6)))
 vector show elem (resi) (ID $ide)
 eval ($w2 = $RESULT)
 vector show elem (name) (ID $ide)
 eval ($w3 = $RESULT)
 vector show elem (store4) (ID $ide)
 eval ($w4 = $RESULT)
 set display="ens_viol_n200c.dat" end
display $w2 $w3 $w4 $w1
set display=OUTPUT end
end loop OUT

@t288c.xpl
set display="ens_viol_t288c.dat" end
display Experimental and ensemble-averaged (r-6) distances for yeast Cc and T288C-SL CCP
display name of the ensemble: $ensm
display name of ccp/cc startfile: $startfile
display name of ccp orientation file: $ccpfile
display name of spin label coordinate file: $SL_FILE
display # structures used: $struc3
display fraction well-defined: $frmajor virtual # structure: $corr3
display Date: $DATE Time: $TIME
display
display RES ATOM d(obs) d(calc)
set display=OUTPUT end
for $ide in ID (store6) loop OUT
 vector show elem (store5) (ID $ide)
 eval ($w1 = (($RESULT/(1E10*($struc3 + $corr3)))^(-1/6)))
 vector show elem (resi) (ID $ide)
 eval ($w2 = $RESULT)
 vector show elem (name) (ID $ide)
 eval ($w3 = $RESULT)
 vector show elem (store4) (ID $ide)
 eval ($w4 = $RESULT)
 set display="ens_viol_t288c.dat" end
display $w2 $w3 $w4 $w1
set display=OUTPUT end
end loop OUT
Appendix B

@s263c.xpl
set display="ens_viol_s263c.dat" end
display Experimental and ensemble-averaged (r-6) distances for yeast Cc
and S263C-SL CcP
display name of the ensemble: $ensm
display name of ccp/cc startfile: $startfile
display name of ccp orientation file: $ccpfile
display name of spin label coordinate file: $SL_FILE
display # structures used: $struc4
display fraction well-defined: $frmajor virtual # structure: $corr4
display Date: $DATE Time: $TIME
display
display RES ATOM d(obs) d(calc)
set display=OUTPUT end

for $ide in ID (store8) loop OUT
 vector show elem (store7) (ID $ide)
 eval ($w1 = (($RESULT/(1E10*($struc4 + $corr4)))^(-1/6)))
 vector show elem (resi) (ID $ide)
 eval ($w2 = $RESULT)
 vector show elem (name) (ID $ide)
 eval ($w3 = $RESULT)
 vector show elem (store8) (ID $ide)
 eval ($w4 = $RESULT)
set display="ens_viol_s263c.dat" end
display $w2 $w3 $w4 $w1
set display=OUTPUT end
end loop OUT
stop
Appendix C

Input file (for XPLOR-NIH) to determine DRMS between ensemble structure and XRD structure

```
set mess=off end
set echo=off end

!----------------VARIABLEs-----------------------------------------------
eval ($rescc = 103)  ! last residue in Cc
eval ($frst = -4)  ! 1st residue in Cc (NB -4 in ensemble)
eval ($nrrescc = 108)  ! number of residues in Cc
eval ($resccp = 294)
eval ($frstccp = 2)
eval ($nrstepcc = 3)
eval ($nrsteppcc = 10)
eval ($nrstruc = 1)  ! number of structures in the ensemble
eval ($nm = "wtcc_new_1701")  ! name of the ensemble (whatever you like)
eval ($startfile = "cc_ccp_4sl.pdb")
eval ($ccpfile = "CCP.pdb.con")  ! name of the CcP file in the same
orientation as the one used to create ensemble
eval ($SL_FILE="cc_ccp_rand_SL_inclCc_01.pdb.SL")  ! name of file with new spin label oxygen

eval ($rescc = 103)  ! last residue in Cc
eval ($frst = -4)  ! 1st residue in Cc (NB -4 in ensemble)
eval ($nrrescc = 108)  ! number of residues in Cc
eval ($resccp = 294)
eval ($frstccp = 2)
eval ($nrstepcc = 3)
eval ($nrsteppcc = 10)
eval ($nrstruc = 1)  ! number of structures in the ensemble
eval ($nm = "wtcc_new_1701")  ! name of the ensemble (whatever you like)
eval ($startfile = "cc_ccp_4sl.pdb")
eval ($ccpfile = "CCP.pdb.con")  ! name of the CcP file in the same
orientation as the one used to create ensemble
eval ($SL_FILE="cc_ccp_rand_SL_inclCc_01.pdb.SL")  ! name of file with new spin label oxygen

!----------------PARAMETERS & STRUCTURE-----------------------------------
structure @cc_ccp_4sl.psf end
parameter @cc_ccp_4sl.par end
coor @$startfile
coor init SELE=(segid=SL) end
coor @$SL_FILE
@learn_ccp.xpl
@learn_cc.xpl
!write coor OUTPUT=test1.pdb end

set mess=off end
set echo=off end

!----------------READ STRUCTURES--------------------------------------
!NOTE in the structure, only have cytc coordinates present, otherwise
!loop becomes too long
! (loop-too-long error)
coor DISP=COMP @$ccpfile end  !read CcP file from MC in COMP
coor fit SELE=(segid="ccp" and name = CA) end  !fit CcP in complex
!to CcP from MC
coor copy SELE=(not segid="cytc") end  !copy CcP to COMP
```
!write coor OUTPUT=test1b.pdb end

eval ($w = 1)

set display="rmsd.dat" end
display struc rmsd drms
set display=OUTPUT end
while ($w LE $nrstruc) loop A2

coor swap SELE=(segid="cytc") end !move MC CA atoms to main
and initialize

coor init SELE=(segid="cytc") end

coor swap SELE=(segid="cytc") end !move Cc back to main for fitting

eval ($file = "cytc." + encode($w) + ".pqr.ed")

coor DISP=COMP @@$file end !read new MC CA atoms

coor rms SELE=(segid="cytc" and name CA) end !rms all main atoms, using
!Cc CA atoms

eval ($rmsd = $RESULT)

eval ($drms = 0)
eval ($g01 = $frst)
eval ($g03 = 0)
while ($g01 LE $rescc) loop G1

if ($g01 = 0) then eval ($g01 = $g01 +1) end if
if ($g01 = 102) then eval ($g01 = $g01 +1) end if

eval ($g02 = $frstccp)
while ($g02 LE $resccp) loop G2

pick bond (atom "cytc" $g01 CA) (atom "ccp" $g02 CA) geom
eval ($d1=$RESULT)

coor swap SELE=(all) end

pick bond (atom "cytc" $g01 CA) (atom "ccp" $g02 CA) geom
eval ($d2=$RESULT)

coor swap SELE=(all) end
eval ($d3 = $d2 - $d1)
eval ($drms = $drms + ABS($d3))

eval ($g03 = $g03 + 1) !total number of pairs
eval ($g02 = $g02 + $nrstepsccp)
end loop G2

eval ($g01 = $g01 + $nrstepscc)
end loop G1

eval ($drms = $drms/$g03)

write coor OUTPUT=test2.pdb end

set display="rmsd.dat" end
display $w = $w $rmsd $drms
set display=OUTPUT end

eval ($w = $w + 1)
end loop A2

stop
Appendix D

Input file (for XPLOR-NIH) to determine theta and phi

set mess=off end
set echo=off end

!----------------VARIABLEs---
eval ($nrstruc = 1701) ! number of structures in
! the ensemble
eval ($startfile = "cc_ccp_4sl.pdb")
eval {$ccpfile = "ccp_from_ensemble.pdb"} ! name of the CcP ensemble
! file
eval {($dum="cytc-cm.wt.1701.pdb.ed2")} ! dummy atoms of CoM of Cc
! from ensemble
eval {($outfile = "wt_new_1701_reori.pdb")} ! output file

!----------------PARAMETERS & STRUCTURE----------------------------------
structure @cc_ccp_4sl.psf end
parameter @cc_ccp_4sl.par end
coor
@$startfile
@learn_ccp.xpl
@learn_cc.xpl
topology mass G 1.0 residue GB atom G type=G charge=0 end end end
set mess=off end
set echo=off end
segment
 molecule name="GB" number=2 end
end
vector do (SEGId="C") (atom * * G)
topology mass D 1.0 residue DUM atom CM type=D charge=0 end end end
segment
 molecule name="DUM" number=$nrstruc end
end

!----------------READ STRUCTURES--
vector do {segid=" "} (segid="ccp")
coor DISP=COMP @$ccpfile !read CCP file from MC in COMP
coor DISP=COMP @$dum end !read dummies file from MC in COMP
vector do {segid="ccp") (segid=" ") (segid="ccp")
coor fit SELE=(segid="ccp" and name = CA) end !fit CCP in complex
to CCP from MC
coor swap SELE=(all) end
coor copy SELE=(resn DUM) end !copy DUM to COMP
coor swap SELE=(all) end

!write coor OUTPUT=test1.pdb end

coor orient SELE=(segid="cytc" and not resn HEM) MASS=true LSQ=false end
vector do (X=0) (atom "C" 2 G)
vector do (Y=0) (atom "C" 2 G)
vector do (Z=0) (atom "C" 2 G)

coor orient SELE=(segid="ccp" and not resn HEM) MASS=true LSQ=false end
vector do (X=0) (atom "C" 1 G)
vector do (Y=0) (atom "C" 1 G)
vector do (Z=0) (atom "C" 1 G)

vector show (x) (atom "C" 2 G)
eval ($xb1=$RESULT)
vector show (y) (atom "C" 2 G)
eval ($yb1=$RESULT)
vector show (z) (atom "C" 2 G)
eval ($zb1=$RESULT)

eval ($r=SQRT($xb1^2+$yb1^2+$zb1^2))
eval ($th=ACOS($zb1/$r))
eval ($xr=-$yb1/$xb1)
coor rota sele=(all) cent=(0 0 0) axis=($xr, 1, 0) $th end

vector show (x) (atom "C" 1 G)
vector show (y) (atom "C" 1 G)
vector show (x) (atom "C" 1 G)

vector show (x) (atom "C" 2 G)
eval ($x00=$RESULT)
vector show (y) (atom "C" 2 G)
eval ($y00=$RESULT)
vector show (z) (atom "C" 2 G)
eval ($z00=$RESULT)

write coor OUTPUT=$outfile end
stop
Appendix E

Input file (for XPLOR-NIH) for rigid body docking of Cc-CcP complex using PRE derived distance restraints

```
set mess=off end
set echo=off end

!----------------PARAMETERS & STRUCTURE ---------------------------------

parameter @cc_ccp_4sl.par end

structure @cc_ccp_4sl.psf end

eval ($inifile="cc_ccp_4sl.pdb")
coordinates @$inifile

@learn.cc_ccp.par

constraints fix (segid="ccp" or segid="SLA" or segid="SLB" or segid="SLC" or segid="SLD") end

!-------------DEFINE VARIABLES-------------------------------------------

eval ($a01 = 1) !cycle counter

eval ($a05 = 10) !total nr cycles / $a53

eval ($a53 = 1000) !nr of steps

eval ($a54 = 0.01) !timestep in ps

eval ($a61 = $a54*$a53) !time per cycle (ps)

eval ($a80 = $a61*$a05) !total time (ps)

eval ($a58=30.0) !velocity factor

eval ($a56=1.5) !fbeta

eval ($sqconst=0.2) !general scaling rest. !0.002

eval ($a55=300.0) !TBATH

eval ($a57=0.0) !signpenalty factor

eval ($a59=500) !.pdb writing threshold

eval ($van=100.0) ! vdw writing threshold

eval ($a59a=0.01*$a59) !vx-reset minimum

eval ($a60=0) !.pdb lag factor !5

eval ($a301=1.0) !VDW repel scale factor

eval ($a93=1) !time-spent factor: 0<$a93<1

eval ($sqexp=2) !sqexponent in the NOE statement

eval ($viol_cutoff=200.0) !violation writing threshold

eval ($scale=1.0) !scale factor for CL2a (d<13A)

eval ($low1=14.0) !lower(d_minus) limit (restraints with lower limit !only)

eval ($up1=100.0) !upper(d_plus) limit (restraints with lower limit !only)

eval ($low2a=12.5) !lower(d_minus) limit (SLA restraints with !upper limit only)

eval ($low2b=13.0) !lower(d_minus) limit (SLB restraints with upper !limit only)

eval ($low2c=12.3) !lower(d_minus) limit (SLC restraints with upper !limit only)

eval ($low3=4.0) !lower(d_minus) limit (restraints with both limits)
```
Appendix E

eval ($up3=4.0) !upper(d_plus) limit (restraints with both limits)
eval ($a86=306) !nr of restraints

!---------------------DO NOT CHANGE ANYTHING HERE------------------
eval ($a48=$cpu*1e4)
set seed=$a48 end
eval ($a14=0)
eval ($a15=0)
eval ($a16=0)
eval ($a17=0)
eval ($a18=0)
eval ($a19=1)
eval ($a210=0)
eval ($a211=1)
eval ($nout1=0) ! Number of structures output per run
eval ($nout=0) ! Number of structures below violation cut-off per run
eval ($min1=9999.0)

!--
set display=coor.dat end !write parameters
display xx -----------------------PARAMETERS----------------------------
display xx startdate: $DATE
display xx starttime: $TIME
display xx ini.file: $inifile
display xx pc_rota: cent=(0 0 0) axis(0 1 0) -20.0
display xx pc_tran: x+120.0 y+50.0 z-50.0 (update 30.12.2003)
display xx timestep (ps): $a54
display xx nr of steps: $a53 time /cycle (ps): $a61
display xx nr of cycles: $a05 total time (ps): $a80
display xx time-spent fact: $a93 signpenalty fact: $a57
display xx general scale: $sqconst
display xx TBATH: $a55 velocity factor: $a56 fbeta: $a58
display xx .pdb threshold $a59
display xx .pdb lag factor $a60
display xx Local minin. impulse after 10 cycles with 'constant' Etot > $a59a
display xx ---
display set display=OUTPUT end

!-----------------------SET CONDITIONS--------------------------------
flag exclude elec bond angl dihe impr include vdw noe end

vector do (fbeta=$a58) (segid="B")
vector do (vx=$a56) (segid="B")
vector do (vy=$a56) (segid="B")
vector do (vz=$a56) (segid="B")

set disp=ener.dat end
display Energies for the output structures
display file Etot VDW NOE
display ---
set disp=OUTPUT end

set disp=toten.dat end
display Energies for all cycles

150
display Cycle Etot
display --
set disp=OUTPUT end
!
-------------------DEFINE RESTRAINTS-----------------------
set echo=off end
set mess=off end
noe
NRES=2000
end

@noeA.16ns.xpl ! Defines restraints
@noeB.16ns.xpl
@noeC.16ns.xpl
@noeD.16ns.xpl
set echo=off end
set mess=off end
!
--
!---------------------DYNAMICS RUN & OUTPUT-----------------------------
!--
parameter
@nbfix.4sl_expl.xpl
nbonds
cutnb=8.5
inhi=0.25
ctofnb=7.5
ctonnb=6.5
repe=0.6
!0.6
NBXMod=-2
rexp=2
irex=2
rcon=\$a301
wmin=1.5
end
end
constraints
interactions (segid="ccp") (segid="B")
end
energy end
while ($a01 LE $a05) loop calc
display cycle $a01
dynamics rigid
dt=$a54
group=(segid="B")
dynmode=TCOU
tbath=$a55
nprint=50
nstep=$a53
end
Appendix E

NTRFRQ=0 !new for XPLOR vs 3.8
end

eval ($a17=$a16) !write .pdb structures
eval ($a16=$a15) !write energy data of each structure
eval ($a15=$a14)
eval ($a14=$ENER)
eval ($a13=$VDW)

if ($a14<$a15) then
 if ($a14<$a16) then
 if ($a14<$a17) then
 if ($a14<$a59) then
 if ($abc<$van) then
 eval ($nout1=$nout1+1)
eval ($pdb="structure_"+$out1*.pdb")
 set disp=ener.dat end
display $nout1 $a14 $VDW $NOE
 set disp=OUTPUT end
 write coord output=$pdb end
 if ($a14<$min1) then
 eval ($ref=$nout1)
 end if
 eval ($min1=min($a14,$min1))
 pick bond (segid="ccp" and name FE) (segid="B" and name FE) geom
 eval ($a50=$RESULT)
 set disp=coor.dat end
display Cycle: $a01 File#: $a19 Fe-Fe: $a50 temp: $TEMP
display Etot: $a14 Evdw: $VDW Enoe: $NOE
display --
 set disp=OUTPUT end
 eval ($a18=0)
eval ($a19=$a19+1)
 end if
 end if
 end if
 end if
 end if
 eval ($a18=$a18+1)

set disp=toten.dat end
display $a01 $a14
set disp=OUTPUT end

if ($TEMP>200000.0) then !correct excessive temperature
 eval ($a45=RAND()+0.01)
 vector do (vx=$a56*$a45*rand()) (segid="B")
 vector do (vy=$a56*$a45*rand()) (segid="B")
 vector do (vz=$a56*$a45*rand()) (segid="B")
 end if

if ($a210=10) then !impulse to escape local minimum
 if ($ENER>$a59a) then
 eval ($a212=$ENER/$a211)
 if ($a212>0.8) then

if ($a212<2.0) then
 eval ($a213=100*(rand()-0.5))
 eval ($a214=100*(rand()-0.5))
 eval ($a215=100*(rand()-0.5))
 vector do (x=x+$a213) (segid="B")
 vector do (y=y+$a214) (segid="B")
 vector do (z=z+$a215) (segid="B")
 vector do (vx=50) (segid="B")
 vector do (vy=50) (segid="B")
 vector do (vz=50) (segid="B")
 set disp=coor.dat end
 display cycle $a01: impulse: $a213, $a214, $a215 to x,y,z; v=50
 set disp=OUTPUT end
 display cycle $a01: impulse: $a213, $a214, $a215 to x,y,z; v=50
end if
end if

else
 eval ($a211=1)
end if

eval ($a210=0)
end if

eval ($a210=$a210+1)

end loop calc

!-----------------------FINISH--
!

vector idend (store9) (name ca or name n or name c) !backbone

set disp=OUTPUT end

set display=rms.dat end

display Backbone pairwise RMSD from the lowest energy structutre

set display=OUTPUT end

coor disp=comp @@$ref_file

eval ($count1=0)

while ($count1 < $nout1) loop fill
 evaluate ($count1=$count1+1)
 evaluate ($file="structure_"+encode($count1)+".pdb")
 coor init end
 coor @@$file
 coor sele=(recall 9) fit end
 coor sele=(recall 9) rms end
 eval ($b1 = $result)

end loop fill

end loop fill

set display=OUTPUT end
!@viol_final.xpl ! Writes viol.dat file

set echo=true end

stop