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Abstract

Vascular lipid accumulation is an atherogenic pathological consequence of serum 
dyslipidemia. Extravasation of VLDL and LDL facilitates plaque lipid accumulation, 
while HDL exerts a protective function. Regardless of the mode of entry, vascular 
lipid deposits will not only affect the biomechanical integrity, but also the ongoing 
inflammatory processes and thrombogenicity of the plaque. Particularly in advanced 
atherosclerotic lesions, specific lipids might form a high risk area for plaque insta-
bility and rupture. A detailed analysis of lipid composition and distribution pattern 
among plaques is essential to identify high risk areas for plaque instability.
Here, we have applied imaging mass spectrometry (IMS) via time-of-flight secondary 
ion mass spectrometry (TOF-SIMS) for verification and spatial localization of lipids, 
and in particular the highly thrombogenic lysophosphatidic acid (LPA), in carotid ar-
tery lesions from LDLr-/- mice. For the identification of mouse atherosclerotic oxidized 
(phospho)lipids, reference lipid samples were simultaneously analyzed. IMS yielded 
spatial and chemical information of each analyte detected. For instance, fatty acids, 
cholesterol, phosphocholine, LPA species, phosphatidic acids, sphingosine 1-phos-
phate (S1P) and triglycerides all could be detected and localized within the plaque. 
Atherosclerotic plaques showed strong phosphate and phosphocholine accumula-
tion in the cell-rich regions of the lesion. The majority of plaque lipids such as choles-
terol and LPA, but surprisingly also S1P, were deposited mainly in the non-nucleated 
regions of the lesion, representing the necrotic core. The valuable information gener-
ated in this study warrants further research using IMS, with TOF-SIMS, in unraveling 
the specific composition of atherosclerotic lesions, and particularly the composition 
of high risk areas for plaque instability and rupture.

4 Lipid Cartography of Mouse Atherosclerotic 
Plaques by Cluster-TOF-SIMS Imaging
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Introduction

Atherosclerosis is a chronic, lipid-driven inflammatory disease affecting arterial blood 
vessels. Lipids traditionally have been viewed as constituent of the intimal thicken-
ing, but this paradigm has shifted and nowadays lipids are not only integral building 
blocks of the lesion, but also appear to be active players in many processes crucial 
to the pathogenesis of the disease1. In all stages of atherosclerosis, lipids accumu-
late in the intimal layer to promote apoptosis and reactive oxygen species (ROS) 
production and ensuing lipid oxidation, smooth muscle cell proliferation and the up-
regulation of pro-inflammatory genes2. Various lipid classes have been implicated 
in the processes that lead to atherosclerotic lesion progression. Oxysterols, e.g. 
7-ketocholesterol, are derivatives of cholesterol and have been suggested to play 
an active role in atherosclerosis development in part by ROS-induced apoptosis of 
cells3-5. Oxidized phospholipids have been implicated in atherosclerosis by the as-
sociation of high plasma levels of these oxidized phospholipids with increased risk 
of cardiovascular events6. In addition, particular species of oxidized phospholipids, 
such as those derived from 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine 
(oxPAPC), have been demonstrated to induce the production of chemotactic factors, 
such as interleukin-8, by endothelial cells7. 
In advanced atherosclerotic lesions and in particular in unstable plaques, consisting 
of a large lipid core and an overlying thin fibrous cap, lipids are deposited extracel-
lularly rather than intracellularly and represent a rich source of thrombogenic activity. 
These unstable plaques are considered vulnerable to rupture8,9. Upon rupture of 
the fibrous cap, the thrombogenic lipid content of the plaque will be exposed to the 
blood circulation and trigger the coagulation cascade, leading to thrombus formation 
and acute coronary syndromes10,11. Phosphatidylserine (PS) is a phospholipid that 
has been implicated in this process by augmentation of the procoagulant activity of 
tissue factor (TF), the main cellular initiator of blood coagulation12. Membrane mic-
roparticles (MP) shed by apoptotic cells are sequestered within the atherosclerotic 
plaque and contain PS and TF, which upon plaque rupture will be exposed to the 
blood circulation and lead to thrombus formation12. Also a major thrombogenic con-
stituents of the lipid core was demonstrated to be lysophosphatidic acid (LPA)13-15, 
a group of bioactive lysolipid species consisting of a glycerol backbone, with either 
a saturated or an unsaturated fatty acid bonded to the carbon-1 or -2 position and 
a phosphate group bonded to carbon-3. LPA was shown to be an important media-
tor of prothrombotic actions attributed to low-density lipoprotein (LDL)13. In contrast, 
high-density lipoprotein (HDL) contains a structurally related sphingolipid, sphingo-
sine 1-phosphate (S1P), which is at least in part responsible for the anti-atherogenic 
effects of HDL16. 
Thus, the specific spatial localization and identification of lipids and oxidized lipids 
but also that of specific cell components, enzymes and cytokines in atherosclerotic 
lesions is of great importance for identification of high risk areas within an athero-
sclerotic vessel. Molecular imaging techniques are emerging that provide more de-
tailed information on the spatial and dynamical configuration of the diseased vessel 
wall and that give gross insights into the composition and biomechanical features of 
an atherosclerotic plaque. With appropriate targeted contrast agents or probes even 
localization of marker proteins or processes in lesion-prone areas, intraplaque ves-
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sels and plaque-associated thrombi comes within reach, but precise knowledge of 
the chemical composition of the vessel wall is often limited17. Antibodies and fluores-
cent probes18,19 have frequently been used for assessing the localization of lipids in 
atherosclerotic lesions but sample preparation20 and probe specificity are commonly 
encountered sources of artefacts21. Imaging mass spectrometry has emerged as a 
promising technique for the compositional analysis of tissue sections, as it allows 
chemical identification and localization of unknown surface molecules with excellent 
spatial resolution22-26. In recent years, optimization of sample preparation techniques 
has led to enhanced detection of intact molecules27, clearly increasing the potential 
of biomolecular surface imaging by time-of-flight secondary ion mass spectrometry 
(TOF-SIMS). Here, we set out to apply imaging mass spectrometry to visualize in-
traplaque lipid distribution patterns and to identify high risk areas within the carotid 
artery lesion from LDL receptor deficient (LDLr-/-) mice, a mouse model for athero-
sclerotic lesion formation with a human-like lipoprotein pattern. 

Methods

Animals
All animal work was approved by the regulatory authority of Leiden University and 
performed in compliance with Dutch government guidelines. Male LDLr-/- mice, ob-
tained from Jackson Laboratories and bred in our local animal breeding facility, were 
fed a Western type diet containing 0.25% cholesterol and 15% cocoa butter (Special 
Diet Services, Sussex, UK) two weeks prior to surgery and throughout the experi-
ment. The spatial lipid composition of mouse plaques was visualized in atheroscle-
rotic carotid artery lesions induced by perivascular collar placement as described 
previously28. Mice were anesthetized by subcutaneous injection of ketamine (60 mg/
kg, Eurovet Animal Health, Bladel, The Netherlands), fentanyl citrate and fluanisone 
(1.26 mg/kg and 2 mg/kg respectively, Janssen Animal Health, Sauderton, UK).

Tissue harvesting
Lipid distribution of carotid artery plaques in LDLr-/- mice was determined at 9 weeks 
after perivascular collar placement. Hereto, mice were sacrificed by perfusion 
through the left cardiac ventricle with phosphate buffered saline (150 mM NaCl, 1.5 
mM NaH2PO4, 8.6 mM Na2HPO4, pH 7.4) followed by perfusion with 0.128 M ammo-
nium bicarbonate to remove salts which interfere with SIMS measurements. Subse-
quently, the common carotid arteries were both excised, embedded in 10% gelatin at 
30ºC and snap-frozen in liquid nitrogen for optimal lipid preservation. The specimens 
were stored at -80°C until further use. Transverse 10 μm cryosections were prepared 
on a Leica CM 3050 cryostat (Leica microsytems, Rijswijk, the Netherlands) at -20 
ºC. The sections were cut in a proximal direction from the carotid bifurcation and 
mounted in order on a parallel series of glass slides, alternating between 1% gelatin 
coated slides for immunohistological staining and conductive, transparent indium tin 
oxide (ITO)-coated slides (Delta Technologies, Stillwater, MN, USA) for TOF-SIMS, 
which are stored at -80°C until further use. Conservation of morphology was checked 
by optical microscopy during the sectioning process.
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Histology
A series of sections on a gelatin-coated slide were stained with hematoxylin (Sigma 
Diagnostics, Zwijndrecht, the Netherlands) and eosin (Merck Diagnostica, Darm-
stadt, Germany). A consecutive series of sections on a gelatin-coated slide were 
stained immunohistochemically with antibodies directed against mouse macrophages 
(monoclonal mouse IgG2a, clone monocyte + macrophage antibody-2 [MOMA-2], di-
lution 1:50; Sigma Diagnostics).

Gold Deposition
The sample surface of a series of sections mounted on conductive slides were sput-
ter coated with gold using a Quorum Technologies (Newhaven, East Sussex, UK) 
SC7640 sputter coater.

Reference samples
18:1/18:1 PA  (Sigma-Aldrich, Zwijndrecht, the Netherlands), 18:1 LPA (Sigma-Al-
drich) and S1P (Cayman chemical, MI, USA) were dissolved in methanol 100% and 
80%, respectively, and prepared by droplet deposition onto a clean steel metal holder 
before mass spectrometry analysis. Mass spectrometry analysis was performed with 
SIMS and matrix-enhanced SIMS (ME-SIMS). For ME-SIMS matrix was deposited 
by electrospray preparation with either 2,5-dihydroxybenzoic acid (DHB) or α-cyano-
4-hydroxycinamic acid (HCCA).

Mass spectrometry
All static SIMS experiments were performed on a Physical Electronics (Eden Prai-
rie, MN, USA) TRIFT-II time-of-flight SIMS (TOF-SIMS) instrument described else-
where27 and newly equipped with a gold liquid metal ion gun. Secondary ions were 
extracted through a 3.2 keV electric field into the TOF analyzer and post-accelerated 
by an additional 8 keV field prior to detection on a dual multichannel plate/phosphor 
screen detector. All experiments were performed with a primary ion beam current 
of 1 nA, a primary pulse length of 18 ns and a primary ion energy of 22 keV. The 
ion dose was such that all analyses were conducted at or under the static SIMS 
threshold (1013 ions/cm2) for reduced fragmentation of analytes. The instrument was 
calibrated in both positive and negative mode on high occurrence elements and frag-
ments such as H+/-, CHn+, Na+, K+, O-, OH-. 
An image is measured by rastering, in a 256*256 position pattern, a focused pri-
mary ion beam on the sample surface, in a tile of adjustable dimension (below 150 
microns) and recording the mass spectra together with the position of the primary 
ion beam in the raster. In the so called mosaic mode, large areas are measured by 
dividing them in a mosaic of such tiles measured successively, moving the sample 
between each tile. For all lipid standards, both in positive and negative mode, mea-
surements of 15 seconds per tile of a small mosaic of 4*4 tiles of 125 microns were 
acquired in order to average the mass spectrum on a large surface. This will reduce 
unevenness of distribution due to sample preparation. For measurement of artery 
sections, mosaics of 8*8 tiles of 67.5 microns each were measured, forming total im-
ages of 540*540 micron, large enough to fully enclose each artery section. Images 
were acquired both in positive and negative mode and without or with gold coating (1 
nm, meta-SIMS). Spatial resolution of the mass spectrometry images was around 1 
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micron. The chemical images were compared to histological images of consecutive 
sections.

Ion identification
Lipidomic analyses of plaque lipid pools and reference lipids performed at the de-
partment of biochemistry and cell biology of the Utrecht university enabled us to 
identify individual LPA species, which appeared by electrospray ionization (ESI) as 
[M-H]- anions as described in chapter 3 of this thesis (Table 1).

Table 1. Negative mode m/z from LPA species identified by ESI at the department of biochemistry and 
cell biology of the Utrecht university.  

Table 2. Expected/theoretical masses (m/z) of anorganic and lipid plaque constituents as assessed by 
negative and positive mode image mass spectrometry. NEFA; non-esterified fatty acids.

18:1 436.3 435.3
18:0 438.3 437.3

14:0

16:0
16:1

20:3
20:2
22:5
22:4 482.4

molecular
weight
382.3

458.4
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480.4

481.4

381.3

18:3 432.3 431.3
18:2 434.3 433.3

457.4
459.4
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Lipid species expected to be present in and of importance to atherosclerosis were 
searched for on the basis of their potential ion mass with similar ionization pathways 
as observed in literature25,26,29-32 and from previous experiments, including several 
ionizing sources (ESI at Utrecht, electron impact (EI) in the LIPID Metabolites And 
Pathways Strategy spectra database, and SIMS/ME-SIMS performed in the lab on 
standards) (Table 1 and 2). Mass selected images were extracted from the full IMS 
dataset and specific localization lead to discussion and interpretation from a biologi-
cal point of view. However, it must be noted that as no MS/MS has been performed 
the actual molecular assignment of mass peaks should be taken with caution at this 
stage.

Figure 1. Reference sample analysis in negative mode SIMS. (A) SIMS spectrum of 18:1/18:1 PA. (B) 
SIMS spectrum of 18:1 LPA. (C) SIMS spectrum of S1P. (D) Chemical structures of the reference com-
pounds and their theoretical fragmentation patterns. The tables show m/z of the detected fragmentation 
products of PA, LPA and S1P and detection in SIMS and ME-SIMS (using matrices DHB or HCCA).
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Results

Reference lipids in SIMS
SIMS analysis shows strong signals for inorganic ions and ionized organic com-
pounds derived from fragmentation of surface molecules. As shown before27, the use 
of gold coating (meta-SIMS) resulted in great enhancement of the sensitivity for as-
sessment of middle to high mass range compounds (>200 m/z) in tissue. To ensure 
correct identification of the lipid species of interest, reference samples of 18:1/18:1 
PA, 18:1 LPA and S1P were analyzed with SIMS and ME-SIMS. Negative polarity 
reference spectra from the reference samples are shown in figure 1A-C. Figure 1D 
shows the chemical structures of the reference compounds, their theoretical frag-
mentation pattern and the corresponding m/z in the negative ion mode.

Imaging mass spectrometry of carotid artery plaques by SIMS
Surface rastering of atherosclerotic carotid artery sections generated multiple sec-
ondary ions in the m/z range between 1 and 1000, corresponding mostly to sin-
gly charged ions. The lower mass peaks (<200 m/z) in positive mode showed the 
presence of phosphocholine-containing phospholipids such as phosphatidylcholine 
which could be identified by characteristic fragmentation products such as a glycero-
phosphatidylcholine fragment at m/z 86 and phosphocholine headgroup (m/z 184). 
Cholesterol could be detected in the intermediate mass peaks (m/z 200 to 500) 
through the well-defined peak at m/z 369 [M+H-H2O]+ and a minor peak at m/z 385 
[M-H]+ (Figure 2). In the negative mode, SIMS spectra in the lower mass region were 
dominated by CN-, CNO- and various phosphates, such as PO2

- (m/z 63) and PO3
- 

(m/z 79), and sulfur-containing ions, such as SO2
- and SO3

-. 

Figure 2. TOF-SIMS spectrum of cholesterol recorded from an atherosclerotic artery segment in positive 
mode.

Fatty acids could be typically detected as [M-H]- in the negative mode (Figure 3A). 
The m/z mid-range showed several peaks that were tentatively assigned to non-es-
terified fatty acids: palmitic (C16:0, m/z 255), palmitoleic (C16:1, m/z 253), stearic 
(C18:0, m/z 283), oleic (C18:1, m/z 281), linoleic (18:2, m/z 279), gamma-linolenic 
(C18:3, m/z 277) or arachidonic (C20:4, m/z 303). Also cholesterol gave a well-de-
fined peak at m/z 385 in negative mode. As we were particularly interested in the 
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spatial distribution and accumulation of LPA species, S1P and sphinganine 1-phos-
phate in atherosclerotic lesions, we next focused on these lipid species. Assessment 
of the intraplaque distribution of these lipids was performed on the basis of their 
intact mass anions [M-H]-, as determined by LC-MS of crude plaque lipid pools like 
described in chapter 3 (Table 1) or obtained from literature (Table 2): 14:0 LPA (m/z 
381) 16:0 LPA (m/z 409), 16:1 LPA (m/z 407), 17:1 LPA (m/z 421), 18:0 LPA (m/z 
437), 18:1 LPA (m/z 435), 18:2 LPA (m/z 433), 18:3 LPA (m/z 431), 20:2 LPA (m/z 
459), 20:3 LPA (m/z 457), 22:4 LPA (m/z 481), 22:5 LPA (m/z 479), sphingosine (m/z 
298), S1P (m/z 378), sphinganine (m/z 300) and sphinganine 1-phosphate (m/z 380) 
(Figure 3B). Finally, vitamin E was imaged via its intact mass as well as the mass of 
one of its fragment at respectively m/z 429 and 157, whereas phosphatidic acids and 
triglycerides were detected at mass ranges m/z 650-750 and 829-882, respectively 
(Figure 3C).  

Figure 3. TOF-SIMS spectra recorded from an atherosclerotic artery segment in negative mode with ten-
tative peak assignments: (A) Fatty acids. (B) Lysophosphatidic acid species. (C) Triglycerides.
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To correlate intraplaque lipid distribution profiles to morphological features, flanking 
sections were stained for HE and macrophage content (Figure 4 and 5). Figure 4 
displays an HE (Figure 4A) and MOMA-2 macrophage staining (Figure 4B) as well 
as the positive ion images (Figure 4C, 4D) of the corresponding sections for a se-
lected set of lipids as assigned from the above defined m/z peaks. Color intensity of 
the ion micrographs corresponded to signal strength. As expected the distribution of 
both Na+ and cholesterol was seen to correlate with the non-nucleated regions of the 
carotid artery lesion, while phosphocholine fragments derived from phosphocholine-
containing phospholipids correlated with the more cellular regions of the intima.

Figure 4. (A) HE staining of a mouse atherosclerotic lesion. (B) MOMA-2 staining showing presence of 
macrophages in the plaque section. (C,D) Positive ion micrographs of a flanking section of the atheroscle-
rotic artery lesion analyzed by TOF-SIMS showing in artificial color the signal distribution from single ion 
peaks. Yellow color intensity corresponds to signal strength. (C) Total ion current (TIC). (D) Intraplaque 
localization of sodium, cholesterol, fragmented glycerophosphatidylcholine and phosphocholine head-
group. Scale bar indicates 100 microns.

Figure 5 displays the HE (Figure 5A) and MOMA-2 macrophage staining (Figure 
5B) as well as the corresponding negative ion images (Figure 5C, 5D) of the le-
sion. The nucleated regions of the intima were particularly enriched in phosphates, 
while sulfates, non-esterified fatty acids, cholesterol, the multiple LPA species, S1P, 
sphinganine 1-phosphate, phosphatidic acids, triglycerides and vitamin E all showed 
accumulation in the non-cellular core region of the plaque, despite remarkable differ-
ences in site of synthesis and lipophilicity.

Overlay images obtained for various relevant ions by positive and negative mode 
spectrometry are depicted in figure 6. Overlay of positive ion micrographs clearly 
illustrated the divergent distribution patterns of cholesterol and choline-containing 
groups (Figure 6A, 6B). Likewise, the overlay of negative ion micrographs estab-
lished non-overlapping distribution of cholesterol and phosphates, and colocaliza-
tion of cholesterol with sulfur-containing ions (Figure 6C, 6D).

Fragment of glycero-
phosphatidylcholine

Phosphocholine
headgroupNa+ CholesterolD

TICCA B
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Figure 5. HE staining (A) and MOMA-2 macrophage staining (B) of a mouse carotid artery lesion. Nega-
tive ion micrographs of a flanking lesion analyzed by TOF-SIMS. Yellow color intensity corresponds to 
signal strength.  (C) Total ion current (TIC). (D) Intraplaque distribution patterns of a selection of relevant 
ions including phosphates, sulfates and several lipid species. Scale bar indicates 100 microns.
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Figure 6. (A) Overlay image of phosphocholine (red), sodium (blue) and cholesterol (green) micrographs 
of a mouse carotid artery lesion analyzed in positive mode. (B) Overlay image of choline (red), sodium 
(blue) and cholesterol (green) micrographs of a mouse carotid artery lesion analyzed in positive mode. 
(C,D) Overlay images of phosphate (red), cholesterol (blue) and sulfate (green) micrographs of a mouse 
carotid artery lesion analyzed in negative mode. Scale bar indicates 100 microns.

Discussion

TOF-SIMS spatial mass spectrometry/cartography imaging allowed us to not only 
detect but also localize key lipids in atherogenesis such as fatty acids, cholesterol, 
LPA, S1P, sphinganine 1-phosphate, phosphatidic acids and triglycerides in mouse 
carotid artery lesions. As expected most lipids, among which highly thrombogenic 
LPA species, were deposited in the non-nucleated compartments of the intima, while 
phosphates and phosphocholine-containing phospholipids were preferentially local-
ized in cellular regions of the atherosclerotic lesion. Previous studies have described 
that presence of PO3 and phosphocholine indicate cellular contributions such as vas-
cular smooth muscle cells25. The striking colocalization of phosphate and phospho-
choline signals in the cellular domains of the mouse carotid artery lesion therefore 
suggests the presence of VSMCs, but could also indicate the influx of leukocytes 
such as macrophages. The spatial information on the distribution pattern of individual 
plaque constituents presented in this study warrants further research on image mass 
spectrometry, with TOF-SIMS to unravel the chemical composition of atherosclerotic 
lesions, and particularly of high risk plaques, potentially yielding new chemical enti-
ties for molecular imaging of the latter plaque. Moreover, it will help to detect in situ 
activity of critical enzymes or processes such as hypoxia, oxidative stress, redox 
potential and metabolic activity in the diseased arterial wall during atherogenesis.
The overt presence of free fatty acids and cholesterol in non-nucleated region of the 
intima may be lipoprotein-derived and either directly or after uptake by macrophages 
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deposited in the core, further illustrating the relevance of accumulation of lipoprotein 
particles in necrotic core formation. It also indicates that lipoprotein derived triglycer-
ides have probably been hydrolyzed to yield free fatty acids and free cholesterol by 
lipases (e.g. endothelial hormone sensitive and lipoprotein lipase), and esterases, 
respectively, present not only at the luminal endothelium but also close to the lipid 
core33. Free fatty acids have a broad range of effects on VSMCs, and specifically 
palmitate and arachidonic acid, as shown in this study to be abundantly present in 
the intima of atherosclerotic lesions, are known to promote reactive oxygen species 
production by VSMCs34 and induce apoptosis of VSMCs35,36. Since smooth muscle 
cells form the protective fibrous cap overlying the lipid-laden and thrombogenic ne-
crotic core of atherosclerotic lesions, free fatty acid-induced apoptosis can cause 
cap thinning thereby contributing to plaque destabilization. Conversely, fatty acids 
can beneficially modulate inflammatory processes involved in atherosclerosis by ac-
tivation of nuclear receptors in macrophages and VSMCs37-39.
LPA has been shown to be an integral component of LDL and an important media-
tor for the pro-thrombotic actions of LDL13, suggesting the preferential presence of 
this lipid at sites of LDL accumulation. Indeed, the necrotic core, the most prominent 
site of LDL and cholesterol accumulation, was seen to contain the majority of LPA 
species (as judged from the intensity of mass peaks in the SIMS spectrum that was 
tentatively assigned to LPA class lipids). However, LPA may not only originate from 
LDL accumulation but can also be formed in situ by lesion macrophages which dis-
play an altered LPA homeostasis favoring net synthesis (Bot et al., chapter 3 of this 
thesis). Unfortunately, we were unable to establish colocalization of LPA deposits 
and MOMA-2-positive macrophages. Possibly other macrophage markers, whether 
by SIMS or by immunohistochemistry, may be used to pinpoint the relative portion 
of LPA that colocalizes with macrophages. Interestingly, also a compound which on 
the basis of its mass could be attributed to S1P, which in the blood is mostly associ-
ated with HDL, localized in the same core regions. Surprisingly, 7-ketocholesterol, 
one of the oxysterols described to be implicated in atherosclerosis development, 
could not be detected in the mouse carotid artery lesions. Finally, vitamin E, which 
has anti-oxidant properties40, was also found to localize to lipid-rich areas in the ath-
erosclerotic lesion. As to what extent vitamin E can be beneficial in this context, still 
has to be established.
Despite these promising results of IMS the data analyses should be approached with 
caution. Analysis of the references shows that the fragmentation patterns of LPA and 
PA overlap considerably rendering it difficult to assign the mass peak to one of these 
lipids on the basis of single MS measurements. However, references were mea-
sured in pure SIMS, while artery sections were gold-coated. Coating sections with 
matrix or gold enhances detection of intact molecules, as was shown previously27, 
suggesting that peak masses more often refer to intact lipids than to lipid fragments 
in gold-coated sample mass spectra. Indeed, analysis of reference lipids with ME-
SIMS improved the intact molecule signals. Nevertheless, future analyses of artery 
sections by ME-SIMS and subsequent matrix-assisted laser desorption/ionization 
(MALDI) MS/MS will help to unambiguously identify the chemical identity of the de-
tected mass peaks in the cartography.  
In conclusion, this proof-of-concept study shows that imaging mass spectrometry is 
a powerful technique for metabolic and compositional analysis of mouse atheroscle-
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rotic plaques at high resolution. It underlines the significance of TOF-SIMS as valu-
able technology to unveil spatial information of a multitude of low molecular weight 
molecules and ions directly in biological specimen in only a single experiment, as 
also demonstrated for other tissues22-26. We, in addition, are the first to address the 
biologically relevant question of localization of thrombogenic lipids such as LPA with-
in an atherosclerotic plaque. LPA-associated peaks proved to be mainly localized in 
the lipid-rich, non-nucleated core regions. To our surprise its related anti-atherogenic 
counterpart, S1P, seems to colocalize with LPA and mainly accumulates in core re-
gions as well, despite its much lower lipophilicity, reflecting a balance of pro-athero-
genic, plaque destabilizing LPA and anti-atherogenic S1P within the mouse plaque. 
Whether the same equilibrium holds for human lesions and at other (more advanced) 
stages of lesion formation in mice remains to be investigated. Nevertheless, these 
promising results warrant further IMS studies on atherosclerotic tissue, with TOF-
SIMS as well as MALDI, to unravel the chemical composition of atherosclerotic and 
in particular high risk lesions and to spatially pinpoint biochemical processes within 
the plaque at different stages of disease development.
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