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1. Atherosclerosis

Atherosclerosis, a disease of medium- to large-sized arteries, is the primary cause 
of heart disease and stroke, and the major contributor to death in the world1. This 
chronic disease is already initiated in the second decade of life and is characterized 
by the accumulation of lipids and fibrous components in the arterial vascular wall2. 
Although clinical complications can be caused by plaques which display flow-limit-
ing stenosis, the most severe clinical events are induced by plaque rupture, which 
exposes pro-thrombotic material entrapped in the plaque to the blood, initiating the 
coagulation cascade and causing luminal thrombus formation. 
Atherosclerotic plaque formation occurs mainly at high risk areas such as branching 
points and bifurcations in the arterial tree3,4. The high vulnerability of these predilec-
tion sites to atherogenesis is attributable to hemodynamic factors, such as low shear 
stress, oscillatory flow and turbulent flow5. Atherosclerosis is a multifactorial disease 
in which lipids, inflammation, vascular potency and thrombosis all contribute to the 
development and final outcome of the disease. In the last decades a wide variety 
of risk factors have been identified for atherosclerosis, which can be divided in be-
havioral factors such as smoking, high fat diet, stress and physical inactivity, and 
genetic factors and disorders such as diabetes, dyslipidemia, hypertension, hyper-
homocysteinemia and obesity, all acting in concert influencing the incidence of ath-
erosclerosis6-9. Current therapies are mainly aimed at decreasing risk factors, such 
as lowering of plasma cholesterol by improvement of diet or the use of statins. Also 
hypertension can be beneficially influenced by lifestyle modification or medication. 
In addition, surgical intervention by e.g. bypass surgery, percutaneous transluminal 
coronary angioplasty (PTCA), stenting or atherectomy is frequently applied to re-
store impeded blood flow. The success rate of these interventions is often impaired 
by recurrence of lesions10. Despite the efficacy of these therapeutic measures, car-
diovascular disease still continues to be the major cause of death in westernized 
societies, part of which is caused by patients who do not react to either lifestyle or 
pharmacological intervention. Therefore, the search for disease-targeted and tailor-
made therapies against atherosclerosis is still a clinically highly relevant challenge.

2. Atherosclerotic Lesion Development

2.1 Lesion Initiation
The arterial wall normally consists of an endothelial layer covering a medial layer 
of smooth muscle cells flanked by internal and external elastic lamina. Outside the 
external elastic lamina, the artery is surrounded by adventitial tissue. The first step 
in lesion formation is endothelial barrier dysfunction by factors such as turbulent 
or oscillatory shear stress and certain risk factors (e.g. smoking, hypertension and 
elevated levels of atherogenic lipoproteins), which results in enhanced endotheli-
al permeability and expression of adhesion molecules such as E- and P-selectin, 
which mediate monocytes “rolling” on top of the endothelium. Vascular cell adhesion 
molecule (VCAM)-1, intracellular adhesion molecule (ICAM)-1 and some of the CC 
chemokine receptors (CCRs) enable the subsequent firm adherence of circulating 
leukocytes to the endothelium. These leukocytes, expressing among others P-selec-

Thesis Martine.indd   10 12/1/2008   1:59:47 PM



11

General Introduction

tin glycoprotein ligand (PSGL)-1, very late antigen (VLA)-4 and CCR211-13, migrate 
through the endothelial layer into the subendothelial space (Figure 1A, 2A). The 
critical importance of these adhesion molecules was conclusively demonstrated in 
genetically altered mice. Deficiency or truncated forms of adhesion molecules such 
as P-selectin, E-selectin, VCAM-1, and CCR2, or deficiency for monocyte chemoat-
tractant protein (MCP)-1, which is the ligand for CCR2, all show decreased plaque 
formation14-18.
Once extravasated, monocytes will differentiate into tissue macrophages in the 
presence of a plethora of mediators such as macrophage colony stimulating factor 
(M-CSF) and tumor necrosis factor (TNF)-α, derived from residing tissue macro-
phages19,20. In addition, monocyte differentiation can be induced by growth factors 
like transforming growth factor (TGF)-β, platelet-derived growth factor (PDGF) and 
insulin-like growth factor (IGF)-1. 
But not only monocytes are instrumental in the initiation of atherosclerosis. Besides 
influx of monocytes, the initiation of atherosclerosis is characterized by a concomi-
tant lipid influx and a disturbed lipid metabolism, which are also crucial contributors 
in this process. Due to the increased permeability of the endothelial barrier and thus 
of the vessel wall, lipoproteins and especially low-density lipoprotein (LDL)-choles-
terol can penetrate and stick to proteoglycans in the vessel wall. LDL-particles will, 
by virtue of oxidative stress in the subendothelial tissue, be modified into minimally-
modified LDL (mmLDL) or mildly-oxidized LDL (moxLDL), become more extensively 
oxidized (oxLDL) and be taken up via scavenger receptors (CD36, CD68, CXC che-
mokine ligand 16, lectin type oxLDL receptors 1, scavenger receptor A and BI and 
macrophage receptor with collagenous structure) by subendothelially accumulated 
tissue macrophages21-23, which in turn develop into foam cells. Altogether, this will 
subsequently lead to early lesion development (Figure 1B). 
As the lesion progresses, inflammatory processes initiated by tissue macrophages 
will, under the influence of chemotactic molecules, attract other inflammatory cells 
such as T cells, which can produce interferon (IFN)-γ, TNF-α and pro-inflammatory 
interleukins (e.g. interleukin [IL]-1 and 2), thereby promoting lesion progression. Ad-
ditionally, vascular smooth muscle cells (VSMCs) begin to migrate towards the lu-
minal side of the lesion under the influence of PDGF, fibroblast growth factor (FGF) 
and TGF-β24. 

2.2 Lesion Progression
The early lesions, fatty streaks, are clinically asymptomatic, but can progress to 
more intermediate lesions characterized by the accumulation of extracellular lipid-
rich debris due to either apoptosis/necrosis of intimal lipid-laden macrophages or  
disassembly of infiltrated lipoprotein particles under a layer of migrated VSMCs. 
These plaques are considered as true atherosclerotic or pre-atheroma plaques25-27, 
and further progress to advanced and more complex lesions. The intimal lipid de-
posits will expand into large cell-free lipid pools containing a substantial amount of 
cholesterol crystals. At this point in development the lesion is referred to as an ath-
eroma and in the central atheroma hypoxia will occur due to large distances to the 
vascular supply and thus to necessary nutrients. Therefore, this central atheroma 
has to be nurtured by microvessels sprouted from the vasa vasorum, which is a net-
work of small arterioles, capillaries and venules that supply the perivascular tissue of 
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large blood vessels of essential materials. Formation and functionality of these vasa 
vasora-derived neovessels are regulated via an organized system of sympathetic 
and hormonal stimuli and they represent a permanent communication route between 
circulation and the central atheroma, allowing the influx of detrimental agents and 
hematopoietic subsets, such as monocytes and erythrocytes28.
  

Figure 1. (A) Endothelial dysfunction in atherosclerosis. (B) Fatty-streak formation. (C) Formation of 
an advanced, complicated lesion. (D) Unstable fibrous plaques. (adapted from Ross R. N Eng J Med. 
1999)19.

At later stages more VSMCs will migrate to the luminal side of the lesion and prolif-
erate to accumulate subendothelially and produce extracellular matrix material like 
collagen and proteoglycans, forming a fibrous cap, which covers the lipid core24 (Fig-
ure 1C). Plaques at this stage of development are called fibro-atheromas29 and are 
freely exposed to blood flow forces. They will become biomechanically vulnerably 
after fibrous cap erosion and most plaque ruptures take place in this lesion type30. 
The final stage of lesion progression represents ruptured or eroded lesions with in-
tramural or luminal thrombi, or lesions containing hemorrhage (Figure 1D). This end 
stage of disease is described as atherothrombosis, defined as the process in which 
atherosclerotic lesions develop a thrombus, and is characterized by a ruptured ath-
erosclerotic lesion containing superimposed thrombi. In fact, it is the major cause of 
the acute coronary syndromes (e.g. myocardial infarction, stroke, transient ischemic 
attack [TIA] or peripheral artery diseases) and death31.  
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3. Unstable Lesions

Plaques that have progressed to the thin-cap fibro-atheroma stage or further are 
considered “unstable”. These plaques are responsible for the majority of clinical 
manifestations as stroke and myocardial infarction. When the balance between the 
size and consistency of the necrotic core and the strength of the fibrous cap is dis-
turbed, the fibrous cap may rupture leading to direct contact of the highly thrombo-
genic content of the lipid core with the circulation and activation of the coagulation 
system. Several factors are thought to reduce the stability of atherosclerotic lesions, 
including matrix degradation, fibrous cap degradation and lipid core enlargement. 
The small microvessels that contribute to plaque neovascularization are often dys-
functional and do not contain a pericyte sheet, which makes them vulnerable for 
intraplaque hemorrhage which destabilizes the lesion30. Additionally, inflammatory 
cells present in the plaque can influence its instability. IFN-γ produced by T helper 1 
cells can cause instability by its inhibitory effect on VSMC proliferation and collagen 
production32,33. Furthermore, macrophages can reduce plaque stability via the pro-
duction of matrix-degrading proteases such as matrix metalloproteinase (MMP)-1, 
MMP-8, MMP-9 and MMP-1334-37 and cathepsins38. Also the presence of mast cells 
in the adventitia deteriorates lesion progression and increased mast cell activation 
increases the vulnerability of lesions39,40.

4. Research Models

Preclinical research on atherosclerosis largely depends on representative in vitro 
and in vivo models. Specific responses of individual cell types to atherogenic stimuli 
are best studied in in vitro models. As this lacks the complexity and cross interac-
tions with multiple cell types it does not come near the complexity of the human 
atheroma. Animal models of atherosclerosis on the other hand may provide informa-
tion of the net effect in a complex disorder such as atherosclerosis and may thus 
be particularly useful for the preclinical screening of therapeutic strategies. Results 
obtained in different animal models can, however, not always be extrapolated to the 
human situation as not all processes are regulated in the exact same way in different 
species. Numerous species have been used to elucidate the mechanisms of athero-
sclerotic lesion development, such as non-human primates29, swine41, rabbits42,43, 
rats and transgenic mice. 
The mouse has emerged as the model of choice in atherosclerosis research be-
cause of the advantages that they are small, relatively cheap and currently several 
transgenic and knockout mice are available to study the role of single genes in this 
disease. Conventional wild-type mice are not suitable for studies on atherosclerotic 
lesion development because of their high resistance to atherogenic stimuli. Even 
lesion-prone C57Bl/6 mice only develop small fatty streak-like lesions in the aorta 
when fed a rather unphysiological high cholesterol, cholate containing diet44. Hyper-
lipidemic mice that are prone to lesion development are the apolipoprotein E deficient 
(ApoE-/-)45,46, the ApoE*3-Leiden transgenic47 and the LDL receptor deficient (LDLr-/-) 
mouse48. While the latter two develop atherosclerosis when fed a high cholesterol 
diet, the ApoE-/- mouse already suffers from hypercholesterolemia on chow diet and 
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spontaneously develop large, complex atherosclerotic plaques49. These lesions are 
characterized by foam cell formation, a smooth muscle cell cap, lipid accumulation, 
high collagen content and the presence of a necrotic core. Similar to humans with 
familial hypercholesterolemia having defective LDL receptors, LDL receptor deficient 
mice have elevated levels of total cholesterol upon feeding of a high cholesterol diet 
and develop macrophage-rich lesions. Compared to ApoE-/- mice, atherosclerotic le-
sions in LDLr-/- mice develop more slowly and are less severe. The ApoE*3-Leiden 
transgenic mouse has been developed as a model for familial dysbetalipoprotein-
emia47. These mice express a dominant dysfunctional lipoprotein E*3-Leiden and 
these mice exhibit high levels of cholesterol and high triglyceride levels, mainly in 
very-low-density lipoprotein (VLDL) and LDL, which results in initial and advanced 
atherosclerotic lesions in the sinus valves and the carotid arteries upon cholesterol 
feeding47.
As lesion development in these atherosclerosis-prone mice still can take months to 
develop and sites of lesion development are difficult to reach for experimental ma-
nipulation, strategies have been elaborated to speed up atherogenesis. Atheroscle-
rosis was considerably accelerated after placement of a silastic collar or a cylinder 
with a tapered lumen perivascularly at the carotid arteries of hypercholesterolemic 
mice50,51. Lesion formation in these models was shown to be completely lipid and 
flow dependent. When studying atherothrombosis in mice, we have to deal with 
the attendant fact that in mice true and spontaneous plaque rupture and subse-
quent thrombus formation has hardly ever been observed52. Johnson et al. have 
thoroughly investigated the brachiocephalic artery of ApoE-/- mice for indications of 
plaque rupture53. While they did observe intraplaque hemorrhage and buried caps 
that were tentatively claimed to represent healed cap ruptures, no actual thrombotic 
occlusions but fibrin deposits were observed. Thus, the relevance of this model for 
plaque rupture research has been disputed54-56. However, intraplaque hemorrhage 
is a phenomenon which is more often observed in mouse models as compared to 
plaque rupture (either spontaneous or after intervention)57,58 or thrombus formation 
and as described previously, intraplaque hemorrhage is deemed to be associated 
with plaque destabilization59,60.

As different transgenic and knockout mouse models are developed, more and more 
research questions are addressed on involvement of specific proteins in different 
stages of atherosclerotic lesion development. However, to investigate the role of 
these proteins in atherosclerosis most of these animals need to be backcrossed to 
mice with an atherosclerotic-prone background as strains can differ quite consider-
ably in their susceptibility to atherosclerosis61. As this is often very laborious due 
to the necessity of backcrossing 9 generations into a specific background strain 
and sometimes only the effects of leukocyte expression of these proteins are of 
relevance, a total-body transgenic or knockout is unsuitable. It also happens that 
transgenics or knockouts are embryonically lethal or die 2-3 weeks after gestation, 
which also hinders investigation of the role of these proteins in atherosclerosis de-
velopment. Since 1995 it has been possible to partly circumvent these issues and 
perform bone marrow transplantations in mouse models for atherosclerosis62-65. Le-
thal irradiation of the animals will destroy their endogenous bone marrow and, by 
intravenously injecting donor bone marrow cells or fetal liver cells from transgenic or 
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knockout animals (on a corresponding genetic background), repopulation will take 
place of bone marrow expressing or lacking the gene of interest. This gives rise to a 
new area of leukocyte targeted research64-67, in which the contribution of hematopoi-
etic expression of these genes can be investigated. In addition, this technique gives 
the possibility to differentiate between the contribution of hematopoietic versus non-
hematopoietic gene expression.  

5. Plaque Inflammation

5.1 Macrophages
The atherosclerotic plaque contains different cell types such as endothelial cells, vas-
cular smooth muscle cells, macrophages and T lymphocytes, which all can express 
inflammatory mediators in response to injury. Next to vascular smooth muscle cells, 
macrophages are the most abundant cell type within the lesion19. They are part of the 
innate immune system responsible for the first line of defense against pathogens. 
The uptake of oxLDL by macrophages via the scavenger receptors not only leads to 
cell activation but also results in the formation of foam cells (Figure 2B)21,23. Another 
pathway for macrophage activation proceeds through Toll-like receptors (TLRs, Fig-
ure 2B)11. Activation of these receptors by e.g. bacterial toxins such as lipopolysac-
charide (LPS), stress proteins such as heat shock protein (HSP)60, but also by ox-
LDL, will trigger the production and secretion of pro-inflammatory cytokines such as 
TNF-α, which is considered pro-atherogenic. Important as antigen-presenting cells 
(APCs), macrophages will process the ingested oxLDL. Epitopes derived from ox-
LDL will be presented on major histocompatibility complex (MHC) class II molecules 
and can, via T cell receptor (TCR), activate antigen specific CD4+ T cells to induce 
an epitope-specific humoral or cellular immune response (Figure 2C). 

5.2 T Cells
A possible role of T cells within human atherosclerotic plaques has been described 
already in 198668. It has now become clear that the majority of T cells present in or 
nearby the atherosclerotic lesion are activated CD4+ T cells and that activated T-cell 
numbers increase with the severity of coronary syndrome69-71. Their importance in 
atherogenesis has been demonstrated by multiple studies in ApoE-/- or LDLr-/- mice. 
Deficiency in CD4+ T cells and thus a deficiency in adaptive immunity leads to re-
duced atherosclerosis, while transfer of CD4+ T cells accelerates atherosclerosis in 
immune deficient scid/scid mice72-75. Depletion of CD4+ T cells via antibody admin-
istration or CD4 deficiency reduced fatty streak formation in C57Bl/6 mice76. CD8+ 
T cells have also been detected within the human atherosclerotic lesions71, but con-
trasting data exist on their role in atherosclerosis, most likely depending on which 
subset of CD8+ T cells are targeted (memory CD8+ T cells or cytotoxic CD8+ T cells). 
Absence of the total CD8+ T-cell population (ApoE-/-CD8-/- mice) has no effect on le-
sion formation75, while another study demonstrated an acceleration of atherogenesis 
due to CD8+ T-cell activation77.
CD4+ T cells can be subdivided in several subclasses such as T helper (Th) cells 
and regulatory T cells (Treg). The T helper cells can be further categorized in Th1 
and Th2 cells based upon their secretion pattern of cytokines, which are immune 
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modulators that mediate and control inflammatory responses. Th1 cells produce pro-
inflammatory cytokines such as IL-1, IL-2, IFN-γ, IL-12, IL-18, and TNF-α, and are 
regarded pro-atherogenic, while the Th2 subpopulation, which produce cytokines 
such as IL-4, IL-5, IL-10, IL-13 and TGF-β, is considered mainly anti-atherogenic. As 
levels of IL-2 and IFN-γ are elevated in atherosclerotic lesions71, most of the CD4+ 
T cells within the atherosclerotic lesion are of the Th1 type. These Th1 cells can, by 
secreting cytokines and by direct binding to macrophages, stimulate these macro-
phages to produce more pro-inflammatory cytokines (Figure 2D)11,71. 

Figure 2. (A) Diffusion of low-density lipoprotein (LDL) and migration of monocytes and T cells into the 
arterial tissue. (B) Macrophage activation and foam cell formation. (C) T cell activation by antigen-present-
ing cells (APCs). (D) Th1 cells produce cytokines including interferon (IFN)-γ and tumor necrosis factor 
(TNF), and express CD40 ligand (CD40L), by which they can activate endothelial cells and macrophages. 
(E) Regulatory T cells and macrophages can produce anti-inflammatory cytokines interleukin (IL)-10 and 
transforming growth factor (TGF)-β, which might attenuate plaque inflammation. VLA-4, very late anti-
gen-4; VCAM-1, Vascular cell adhesion molecule-1; oxLDL, oxidized LDL; TLR, Toll-like receptor; LPS, 
lipopolysaccharide; HSP60, heat shock protein 60; M-CSF, macrophage colony stimulating factor; MHC, 
major histocompatibility complex; TCR, T-cell receptor. (Adapted from Hansson GK, Libby P. Nat Rev 
Immunol. 2006)11.
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The pro-inflammatory and atherogenic potential of the Th1 cytokines has been dem-
onstrated in multiple animal studies on IL-1 and its natural inhibitor IL-1 receptor 
antagonist78-87, IL-288, IFN-γ89-93, IL-1294,95, IL-1896,97 and TNF-α98, of which the latter is 
also produced by macrophages and other cell types.
Th2 cytokines are considered mostly atheroprotective (Figure 2E). This notion is 
supported by studies performed on IL-599, IL-10100-105 and TGF-β106-110. Next to the 
dampening effect on atherogenic T cell responses and inhibition of leukocyte re-
cruitment, TGF-β can also affect plaque stability as it has the capacity to induce 
collagen synthesis and tissue inhibitors of MMPs and to inhibit foam cell formation. 
Conversely, data on IL-4, a prototype of a Th2 cytokine, are inconclusive and appear 
dependent on the stage of atherosclerosis, IL-4 being anti-atherogenic at early and 
pro-atherogenic at advanced stages of atherosclerosis76,111-114. These divergent find-
ings, under different experimental conditions reflect the functional complexity of IL-4. 
Therefore, defining the role of Th2 cells in atherosclerosis needs further study.
In atherosclerosis, Th function is thought to be biased towards a Th1 type response, 
which is supported by the fact that C57Bl/6 mice, prone to a Th1 type immune re-
sponse, develop fatty streaks on high cholesterol diet, while BALB/c mice, prone to 
Th2 immune responses, are protected against atherosclerosis44,76. Although tempting 
this Th1/Th2 theory has its limitations as some Th2 cytokines may promote progres-
sion of atherosclerotic lesions at certain stages. A new, distinct subset of T cells has 
been discovered, the Tregs, which can suppress both the Th1 and Th2 pathogenic 
immune responses against foreign or self-antigens, and in this way control T cell 
homeostasis115,116. Stimulation of Treg activity has been demonstrated to attenuate 
atherosclerotic lesion development117,118. The mode of action of Tregs is only starting 
to become understood. Proposed mechanisms for suppression of activated T cells, 
which are not completely elucidated yet, are cell contact-dependent suppression, 
limitation of growth factors and the production and secretion of inhibitory cytokines 
such as IL-10 and TGF-β119. 

5.3 Mast Cells
Another inflammatory cell type of the innate immune system, the mast cell120,121, has 
been shown to accumulate in the rupture-prone shoulder region of human athero-
mas122. Additionally, activated mast cells at rupture sites of human coronary artery 
specimens were demonstrated to contain proteases such as tryptase and chymase123-

126. Moreover, human coronary artery specimens were seen to contain TNF-α-rich 
activated mast cells127,128, with the capacity to aggravate the ongoing inflammatory 
response and destabilize plaques129. Not only intimal inflammation but also inflam-
mation of the arterial adventitia was shown to influence the plaque vulnerability130. 
Activated mast cells have been identified in the adventitia of vulnerable and ruptured 
lesions in patients with myocardial infarction131-133 and more importantly, their number 
was found to correlate with the incidence of plaque rupture and erosion131. As mast 
cells are particularly abundant in the perivascular adventitia and near the neovessels 
of atherosclerotic lesions, and are regarded as a major source of a plethora of an-
giogenic and pro-inflammatory mediators and histamine133, their activation will cause 
vascular leakage, chemotaxis to the atheroma and angiogenesis and apoptosis in 
the atheroma, all of which are adverse features in disease development (Figure 3). 
Recently, it has been demonstrated that systemic mast cell activation during athero-
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genesis leads to increased plaque progression in ApoE-/- mice134. Moreover, focal 
activation of mast cells in the adventitia of advanced carotid artery plaques promotes 
macrophage apoptosis, microvascular leakage and de novo leukocyte influx, which 
culminates in a greatly enhanced incidence of intraplaque hemorrhage. Stabilization 
of the mast cells by cromolyn was seen to prevent these pathophysiological events. 
Sun et al. demonstrated that absence of mast cells, and in particular the mast cell-
derived IL-6 and IFN-γ, decreased atherosclerotic lesion development in LDLr-/-135.

Figure 3. Putative functions of mast cells during atherogenesis. (Adapted from Libby P, Shi GP. Circula-
tion. 2007;115:2471-2473)136.

As mast cells contain, among others, a range of proteases (chymase, tryptase, ca-
thepsins and MMPs), histamine, heparin, growth factors (vascular endothelial growth 
factor, basic FGF) and cytokines such as TNF-α, it is obvious that these cell types 
will have a strong impact on plaque stability. Mast cell proteases are capable of direct 
degradation of the extracellular matrix (ECM) components (e.g. collagen), necessary 
for plaque stability137, but also indirectly via chymase/tryptase-induced activation of 
MMP-1 and -3138,139. Mast cell-derived IL-6 and IFN-γ can further destabilize plaque 
integrity by inducing cathepsin expression in endothelial cells and SMCs, promoting 
ECM degradation135. Furthermore, chymase induces SMC apoptosis by degrading 
fibronectin, a matrix component necessary for SMC adhesion and survival140,141. Ac-
tivated mast cells are able to promote endothelial cell apoptosis mainly by secreting 
chymase and TNF-α142. Chymase secretion will lead to inactivation of focal adhesion 
kinase-mediated cell survival signaling, while TNF-α secretion will directly trigger 
apoptosis143. Recently, it has been demonstrated that activated subendothelial mast 
cells may have the capacity to affect endothelial erosion by releasing tryptase, chy-
mase and cathepsin G, which are capable of degrading VE-cadherin and fibronec-
tion144. Furthermore, chymases convert Angiotensin I to pro-inflammatory Angioten-
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sin II similar to angiotensin coverting enzyme (ACE), activate TGF-β and IL-1β and 
modulate lipid metabolism by degrading LDL, thus facilitating foam cell formation145. 
In conclusion, mast cells and derived granulae constituents can have profound ef-
fects on plaque morphology and stability, although it is not quite clear how and when 
mast cell are activated in atherosclerotic lesions and in its adventitia. 

6. Vascular Smooth Muscle Cells 

As previously described, VSMCs are one of the major cell types in atherosclerotic 
lesion development. Already at the early stages of lesion development growth fac-
tors and cytokines can induce phenotypic change of VSMCs from the quiescent 
“contractile” phenotype to the active “synthetic” phenotype, which can migrate from 
the media to the luminal side of the lesion where they accumulate subendothelially 
and proliferate. The migratory and proliferative activities of VSMCs are regulated 
by growth promoters such as PDGF, endothelin (ET)-1, thrombin, FGF, IL-1 and 
inhibitors such as heparin sulfates, nitric oxide (NO) and TGF-β. The MMPs could 
also participate in this process by catalyzing and removing the basement membrane 
and facilitating contacts of VSMCs with the interstitial matrix thereby promoting the 
change from quiescent, contractile VSMCs to cells capable of migration and prolif-
eration. These responses are accompanied by accumulation of new ECM material, 
like collagen and proteoglycans, produced by VSMCs forming a fibrous cap covering 
the lipid core24. VSMCs are essential in the stability of atherosclerotic lesions and 
plaque rupture. Plaque rupture is often associated with an increase in fibrous cap 
macrophages and MMP production, while VSMC apoptosis is increased with con-
comitant reduced fibrous cap VSMC content. Therefore, factors that influence VSMC 
migration, proliferation and apoptosis are highly important in maintaining fibrous cap 
integrity146. For instance, the Th2 cytokine, IL-4 may decrease plaque stability by 
induction of SMC apoptosis and MMP-12 production114. Furthermore, mast cell-de-
rived chymase induces VSMC apoptosis by degrading fibronectin, a matrix compo-
nent necessary for VSMC adhesion and survival140,141. 
In addition, VSMCs are also very important in maintaining plaque stability as un-
der inflamed conditions they can influence the ECM homeostasis. The VSMCs are 
largely responsible for controlling production versus breakdown of the ECM by pro-
duction of collagen, elastin, glycoproteins and proteoglycans versus production of 
cathepsins and other extracellular matrix degrading enzymes such as MMPs147 and 
ADAMs (A disintegrin and metalloproteinases)148,149. As previously mentioned IFN-γ 
can cause plaque destabilization at least in part by inhibiting VSMC proliferation 
and collagen production32,33, but also by induction of cathepsin expression in SMCs 
thereby increasing extracellular matrix degradation135. These are only a few exam-
ples of how VSMCs can be influenced by a wide range of mediators from different 
cell types. Therefore, additional therapies to prevent fibrous cap thinning or matrix 
degradation are highly relevant to prevent clinical events in atherosclerosis.
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7. Bioactive Lipids in Atherosclerosis

It has long been undisputed that dyslipidemia is instrumental in atherogenesis at all 
stages of disease progression. In addition to circulating lipids, intimal lipids were also 
regarded as prominent determinants of the biomechanical stability of the atheroscle-
rotic plaques and are in fact used as an important criterion for plaque stability. The 
last decade of research has culminated in the recognition that lipids not only contrib-
ute to the disease as major constituents of the neointima, but also that specific lipids 
in the circulation as well as in plaques can independently modulate processes that 
are instrumental in disease initiation and progression. During atherogenesis, lipids 
accumulate in the core of the lesion. These lipids enter the plaque via influx of LDL, 
(β)VLDL and high-density lipoprotein (HDL) particles through vascular leakage and 
retention on proteoglycans150. These particles, mainly LDL, can become oxidized 
and are taken up by macrophages, rendering them foam cells. As these foam cells 
show unlimited uptake of lipids, they undergo apoptosis or necrosis, leading to the 
formation of a lipid core. Therefore, modified LDL (e.g. mmLDL, moxLDL or oxLDL) 
is widely recognized as a key factor in the pathogenesis of atherosclerosis and its 
thrombotic complications151, as it activates endothelial cells, VSMCs and platelets, 
which are all involved in the progression of atherosclerosis. The modified LDL par-
ticles contain different atherogenic lipids, such as oxPAPC152, lysophosphatidylcho-
line, phosphatidic acid, lysophosphatidic acid (LPA)153,154 and sphingosine 1-phos-
phate (S1P). In this thesis, we shall focus on the two major bioactive phospholipids 
that were recently shown to be potentially important mediators in atherogenesis: 
LPA and S1P. While structurally unrelated, these lysolipids both act as agonists of 
G-protein-coupled receptor family members expressed on the surface of all vascular 
wall cell types involved in atherosclerosis, and are complementary in their mode of 
action. LPA showed to be an important mediator for the pro-thrombotic actions of 
LDL153. S1P, on the other hand, proved to be mainly associated with HDL, in which 
it contributed to its anti-atherogenic effects155-157. Chapter 2 will present the current 
knowledge on their homeostasis and their physiological activity in the context of 
atherosclerosis.

8. Study Aims

The bioactive lipids LPA and S1P appear to have opposing roles in atherogenesis. 
As LPA is considered pro-atherogenic, we aimed to outline LPA homeostasis during 
atherogenesis and study the effects of LPA on atherosclerosis development and sta-
bility. As S1P is considered anti-atherogenic, we aimed to delineate the role of S1P 
receptor agonism on atherogenesis. 

9. Thesis Outline

The research described in this thesis is focused on two bioactive lysolipids, LPA 
and S1P. First, in chapter 2 a detailed review is given on the current status of LPA 
and S1P research and encompasses their formation and bioavailability, (possible) 
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involvement in atherosclerosis and cell type specific effects. In chapter 3 we estab-
lished the suitability of the LDLr-/- atherosclerotic mouse model for evaluation of LPA 
homeostasis. In human atherosclerosis, LPA was found to accumulate in the lipid 
core of atherosclerotic lesions and identified as the primary platelet-activating lipid. 
Thus, it is conceivably, at least in part, that LPA is responsible for the thrombogenic 
activity of the plaque lipid core. The LPA content of advanced mouse lesions ap-
peared to be very similar to that of human carotid artery specimens, and, in addition, 
we established in mouse lesions the accumulation of highly-unsaturated long-chain 
LPA species, which have high platelet-activating capacity. To further investigate the 
origin of lesion LPA, we performed expression profiling of key proteins in LPA metab-
olism and signaling. In chapter 4 we investigated localization of LPA species within 
the atherosclerotic lesions by imaging secondary ion mass spectrometry (SIMS). In 
this study we also tried to determine colocalization with other constituents of the le-
sions, and the lipid core in particular.
Chapter 5 and 6 describe studies in which LPA was administered either locally (chap-
ter 5) or systemically (chapter 6). In human and mouse studies a relationship has 
been demonstrated between the mast cell content and activation status in the adven-
titia and severity of disease. LPA has recently been discovered to be a potent mast 
cell activator158-160. Therefore, local LPA challenge was performed on the adventitia 
of carotid artery lesions induced by perivascular collar placement in ApoE-/- mice to 
establish the effects of an LPA boost on mast cell activation and concomitant plaque 
destabilization. Besides effects on mast cells, LPA also has profound effects on other 
cell types such as endothelial cells, macrophages and VSMCs. To investigate long-
term effects of increased plasma LPA concentrations on lesion development and 
morphology, we have induced carotid artery lesions in ApoE-/- mice that were treated 
systemically with LPA or phosphate buffered saline as a control by repeated intra-
peritoneal injection for 5 weeks. 
In chapter 7 and 8 the effects of S1P receptor agonism on atherosclerosis develop-
ment are illustrated. Numerous in vitro studies suggest that S1P, a bioactive lyso-
sphingolipid associated with high-density lipoproteins, may account at least partly 
for the potent anti-inflammatory properties of HDL and, thereby, contributes to the 
anti-atherogenic potential attributed to high-density lipoproteins. We have investi-
gated whether modulation of S1P signaling by FTY720, a sphingosine analogue, 
affects atherosclerosis in LDLr-/- mice (chapter 7). This sphingosine analogue can, in 
its phosphorylated form (FTY720-P), act on several S1P receptors. In addition, we 
have attempted to elucidate the underlying mechanism by which FTY720 can affect 
atherosclerosis. To further explore the effects of altering S1P signaling on athero-
genesis, we performed a study on increased endogenous S1P availability by bone 
marrow transplantation with S1P lyase deficient bone marrow (chapter 8).
Finally, Chapter 9 provides a discussion of the most relevant findings of this thesis 
and an overview of future perspectives of these studies and their therapeutic impli-
cations.
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