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Cha p t e r 7

Conclusions

We have been battling with the signful fermions in this thesis. We have not
really gotten very far with the microscopic approach. The reformulation of the
Anderson-Higgs mechanism for bosonic systems and the understanding of its ab-
sence in fermionic systems from the worldline perspective are interesting stories
by themselves [Chapter 2]. The Mott-insulator picture of the free fermion nodal
structure deepens our understanding of fermionic statistics [Chapter 3]. How-
ever, we are still far from a satisfying general understanding of the fermion sign
problem. Probably we theorists should be more modest. It can be that there is
actually no way to solve the sign problem once and for all. The NP hardness
of this problem already tells us that a mathematically rigorous approach is im-
possible, which is not necessarily bad news: it hints strongly at surprising new
discoveries. The task of theorists is thus to find the prototype, be it in the form
of a wavefunction, an effective field theory, or even using the language of string
theory, to model emergent phenomena.

From this point of view, the natural question to ask is whether the different
worldline theories and different nodal structures can serve as prototypes of new
forms of matter. A scalar field theory on the worldline represents a bosonic parti-
cle. Inclusion of Grassmann fields changes the statistics to become fermionic. Dif-
ferent statistics are encodes in the different field content of the 0+1-dimensional
worldline field theory. Along this line of thinking, it would be interesting to see
whether it is possible to construct a more complex worldline field theory that
can represent fermions without double occupancy, as appears in the t-J model.
Such particles have essentially different statistics as compared to conventional
fermions. When the extra worldline fields are gapped, they can be integrate out,
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leaving us with a normal fermionic particle. In this way the second-order phase
transition in the worldline field theory may explain the continuous nature of the
transition from the usual fermions to the projected fermions in the t-J model.

In order to understand Mott physics from the worldline formalism, we also
need a better way of dealing with the effect of the lattice. The essence of the
existence of the lattice is that the number of available states is greatly reduced.
This is a necessary condition for the electrons to experience jamming and produce
a Mott insulating state. Pictorially the effect of the lattice can be modeled by
replacing the point particles by finite size hard core spheres. And the Mott
transition corresponds to the jamming transition of such spheres.

A generalization of the 0+1-dimensional worldline field theory to 1+1-
dimensional worldsheet would lead to string theory. Having in mind the equiva-
lence of the Anderson-Higgs mechanism and infinite winding, an obvious question
to ask is what happens when the strings have long windings. Here one considers
a finite density of strings. And to calculate the free energy of this system, one
needs to sum over all possible permutations of the initial or finial string config-
urations. Such a string condensation will backreact to the space-time geometry,
and will have important cosmological implications.

We do learn important lessons from wrestling with the fermion nodal struc-
ture. The traditional way to understand the different phases of matter is to use
symmetry properties of the wave functions. The nodal structure provides a more
topological perspective. Wen and collaborators have used the pattern of zeros
of the wave functions to characterize the topological order in fractional quantum
Hall states [296–298]. There the nodes are at discrete points where two particles
coincide. The pattern of zeros describes how fast the wavefunction approaches
to zero near the nodes.

The number of nodal cells is an adiabatic invariant for quantum-mechanical
systems [299]. We have seen in Chapter 3 that for the Fermi gas, there are
two nodal cells. The immediate consequence is that for the Fermi liquid, which
can be adiabatically continued to the Fermi gas, there should also be just two
nodal cells. This number can be used to characterize the different phases of
interacting fermions. In the Mott insulating state, the particles localize and
the number of nodal cells is expected to be N !, with N the total number of
particles. So as the repulsion between the particles increases, and the metallic
Fermi liquid ground state is driven to become a Mott insulator, there must be a
phase transition in-between to open up more nodal cells. One can imagine that
the initial nodal hypersurface becomes more and more wrinkled, as we approach
the critical point, and eventually topology changes and more nodal cells are
created. At the critical point, the nodal hypersurface has to be scale invariant,
thus a fractal structure [229]. This process can happen smoothly, and a second-
order phase transition is plausible. It’s still not clear to us what is the universality
class of this transition. The problem is how to make such intuitive pictures into
concrete mathematical equations, and calculate the normal state properties of
the system at finite temperatures.
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A less ambitious project is to simply do perturbation theory around the Fermi
gas. We already have some preliminary results on this problem. The Feynman
rules in such first-quantized formalism have been constructed and in principle
everything that can be done in the conventional second-quantized formalism can
also be done using the worldline language. The partition function and all the
correlation functions can be expressed in terms of the N-particle density matrix.
The question is what can we learn by doing this. What we can hope for is to
write down a sign-free perturbation theory for fermions. From the perturbation
corrected density matrix, we can read off the perturbed nodal surface. And then
we can carry out the constrained path integral using the new nodal constraints,
which will produce a new density matrix. Such a process can be repeated untill
the result converges to some fixed point. We can see clearly from this process the
difference of the fermionic RG from the usual bosonic RG. The geometric nodal
hypersurface provides new dimensions for the parameter space, arising from the
constraints on the paths. A natural question to ask at this point is what are the
possible fixed-point nodal surfaces. One possible geometry is the one correspond-
ing to free fermions, a dN − 1-dimensional hypersurface that divides the whole
dN -dimensional configuration space into 2 parts. Another possible geometry is
the one corresponding to Mott insulators with infinitely large Hubbard U. This
fixed-point geometry is simply the whole dN -dimensional space with several dis-
crete points deleted. A more interesting fixed-point geometry is the fractal nodal
surface [229]. With such a fractal boundary, one may expect to have ”multifrac-
tal” behavior in the physical observables, i.e. scaling behavior with a continuous
spectrum of exponents.

The macroscopic approach has been more rewarding up to now. The sim-
ple scaling theory of superconductivity we proposed for quantum critical met-
als [Chapter 5] turns out to have surprising connections with other pursuits of
strongly correlated electron systems. One such connection is with the numerical
work on the two dimensional Hubbard model. The Hubbard model is now ac-
cepted as the de facto model for cuprates. Numerical calculations of the Hubbard
model strongly support the idea of a finite-doping QCP separating the low-doping
region, found to be a non-Fermi liquid, from a higher doping Fermi liquid region.
In the vicinity of the QCP, calculations also show that for a wide range of temper-
atures, the doping and temperature dependence of the single-particle properties
are consistent with marginal Fermi liquid behavior. The critical doping seems to
be in close proximity to the optimal doping for superconductivity as found both
in the context of the Hubbard and t-J models. This proximity already indicates
that a QCP enhances pairing, though the detailed mechanism is largely unknown.

We have been working together with Jarrell’s group, using the dynamical
cluster approximation to understand the proximity of the superconducting dome
to the QCP in the Hubbard model [300]. The full pairing susceptibility is de-
composed into the bare susceptibility, which is constructed from the dressed
one-particle Green’s function, and the vertex function. The d-wave channel is
found to be the most divergent one. The bare pair susceptibility and the vertex
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function are then projected to the d-wave channel. At critical doping, as one
lowers the temperature, the magnetic susceptibility saturates, the charge suscep-
tibility is strongly enhanced, and the d-wave pairing susceptibility diverges at
a certain temperature. An interesting result is that the d-wave pairing vertex
falls monotonically with increasing doping. And it changes smoothly across the
critical doping. In contrast, the bare d-wave pairing susceptibility exhibits sig-
nificantly different features close to and away from the QCP. In the underdoped
region, it saturates at low temperatures. In the overdoped region, it displays
the normal Fermi liquid type log divergence. However at the critical doping, it
diverges more quickly with decreasing temperature, roughly following the power-
law behavior 1/

√
T . Decomposing the pairing vertex into different channels, it

is also found that as the QCP is approached, the pairing originates predomi-
nantly from the spin channel. The basic observation of the Hubbard model is
that pairing in the critical region is due to an algebraic temperature-dependence
of the bare pair susceptibility rather than an enhanced d-wave pairing vertex,
supporting our QCBCS picture of superconductivity in such systems.

Another interesting connection is with the newly developed string theoret-
ical approach to condensed matter systems. A class of superconductors have
been constructed theoretically, which have a mathematical description in terms
of charged black holes with nontrivial ‘hair’ [285]. This approach is based on the
idea of the AdS/CFT correspondence, which states that the strong coupling limit
of a gauge theory can be described by a weak coupling gravitational theory in
one dimension higher and with negative cosmological constant [123–125]. In the
gravitational description, black holes will play the role of temperature. Super-
conductivity follows from the spontaneous breaking of the U(1) symmetry, i.e.
the formation of a non-zero condensate. On the gravity side, such condensates
correspond to static non-zero fields outside the black holes, usually called black
holes ’hair’. In AdS space, the negative cosmological constant plays the role
of a confining box, and the charged particles pair-created from the vacuum via
the Schwinger effect will be confined to the region near the horizon, producing
the black hole ’hair’. A coupled system of gravity, Maxwell field and a charged
scalar is enough to produce a superfluid/superconducting condensate. Due to
the asymptotic AdS background, the pairing susceptibility in such models will
automatically have a power-law behavior at high frequency. Near zero frequency,
it also displays the usual hydrodynamic behavior. So this class of models can be
looked upon as a more sophisticated way of incorporating scaling in the presence
of superconductivity, along the same line as our QCBCS approach. In Chapter
5, we have used as a toy model the scaling function from 1+1 dimensional CFT.
The AdS/CFT approach will provide us with the truly high dimensional scaling
functions.

The big theme that emerges from this thesis is the instability of QCPs. It is
by now an empirical fact based on experiments that the quantum critical metals
are more susceptible than normal metals and superconductors. States of matter
that can not be constructed from stable states like normal metals or supercon-
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ductors can be built near the QCPs. We still do not have a good theoretical
understanding of this fact. The general reasoning is that since the QCP is a
highly degenerate state, a tiny perturbation may make it unstable. Chapter 5 of
this thesis is based on such logic, where we incorporate this idea in a scaling the-
ory of superconductivity. For the Fermi liquid, the superconducting instability is
driven by a marginally relevant four-point interaction between excitations about
the Fermi surface. The exponential form of the gap equation follows from the
marginal nature of the interaction. One may speculate that in quantum critical
metals, the superconducting instability becomes truly relevant, resulting in the
algebraic gap equation of Chapter 5.

A more difficult question is, for particular materials which perturbation will
finally dominate and determine the fate of the QCP. In many materials, su-
perconductivity seems to be a plausible end of QCPs. We have seen another
possibility in Chapter 4 that, in the presence of competing orders, the second-
order phase transitions may become first order at low temperatures, with the
immediate consequence that spatially modulated inhomogeneous phases are ex-
pected to be present near the QCPs. Other examples include the nematic phase
around the metamagnetic QCP in the bilayer ruthenate Sr3Ru2O7 [93–96]. A
better understanding of this problem will provide theoretical guidance for the
search for exotic materials in systems involving QCPs.
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