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Cha p t e r 6

Measuring the Pair
Susceptibility Directly

6.1 Introduction

Dynamical correlation functions provide crucial insights for the understanding
of strongly correlated electron systems. By measuring the wavevector- and
frequency-dependent magnetic susceptibility, inelastic neutron scattering has be-
come one of the most powerful tools in characterizing magnetism. In these exper-
iments, the beam of scattering external particles couple to the order parameter
of the system, in the case of magnetism the spin density of the sample, and the
resulting differential scattering cross-section is a direct measure of the autocor-
relation function of the order parameter.

For superconductivity, one would ideally also like to measure the susceptibility
associated with the order parameter. However, the superconducting pairing order
parameter ∆ is off-diagonal in particle number space, ∆ ∼ 〈c↓c↑〉, and nature
does not endow us with an external electromagnetic field that couples directly
to the order parameter, like it does for magnetism. A probe of the ‘pairing’
susceptibility thus always requires an indirect measurement.

Such an indirect probe has been known for 40 years. Based on the Josephson
effect, in which the order parameters of two superconductors are coupled to
each other, in 1970 Ferrell [276] and Scalapino [277] suggested a superconductor-
insulator-normal (SIN) tunneling setup in which a strong superconductor acts as
an effective external probe for a normal metallic state above its superconducting
transition temperature Tc; the fluctuating pair field of the metal is coupled to
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the rigid pair-field of the strong superconductor, and this leads to an additional
contribution to the total tunneling current, on top of the well-known SIN-junction
quasiparticle current. This additional tunneling current is proportional to the
imaginary part of the pair(ing) susceptibility of the pairing order parameter of
the metallic state (see also [282]).

This scheme has been used to study the pair fluctuations near the super-
conducting transition temperature. A divergence in the pair susceptibility is
universally expected as the phase transition is approached, and a ‘relaxational’
peak characteristic for Gaussian fluctuations was indeed confirmed experimen-
tally very early on in the work by Goldman and collaborators [278] in aluminum
and lead (i.e., conventional s-wave materials), and much more recent also in
junctions of d-wave cuprates [283].

Up to now, all the efforts on the pair tunneling experiments have been confined
to the region near Tc. The pair susceptibility at higher temperatures may have
been ignored because for conventional Fermi liquids it is expected to be boring.
The main purpose of this chapter is to make it clear to experimentalists that with
the recent advances in unconventional superconductivity, especially for systems
near the quantum critical points (QCPs), it has become worthwhile to measure
the dynamic pair susceptibility away from the transition temperature. The basic
point is that the frequency and temperature dependence of the pair susceptibility
further away from Tc actually contains important information about the normal
state properties of the non-Fermi liquid materials. Such information is vital for
the understanding of both the exotic pairing mechanism in such systems and the
underlying non-Fermi liquid parent state. Experimentalists have been able to
measure the single particle properties of these systems using ARPES and STM,
as well as the properties in the particle-hole channel, using for example INS, ESR.
However, a direct probe in the particle-particle channel is still lacking, though its
importance is obvious, since pairing itself happens in the particle-particle channel.
We would like to convince the reader that the pair tunneling experiment actually
provides such a highly desired Cooper channel probe .

We will calculate the pair susceptibility for different scenarios of the pairing
mechanism for quantum critical metals. Although there exists no proper micro-
scopic description for quantum critical materials, right at the quantum critical
point the rules of criticality nevertheless come to our aid, in the sense that we
can work with effective models without the need for a microscopic description.
We will consider several limiting cases of the whole manifold of possible effective
theories. One class of models assumes the separation of the electronic part and
the glue part, in which one scenario further assumes that the glue part becomes
critical in the quantum critical state; another assumes the electronic part to be
critical. The former is best represented by the quantum critical γ-model inves-
tigated by Chubukov and collaborators [284]. The latter is the quantum critical
BCS (QC-BCS) model that was explored by two of the present authors [121].
There also exist another class of models which do not distinguish between the
electronic part and the glue part, only dealing with the bosonic order parameters,
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while incorporating scale invariance at high temperature and high frequency. This
is the holographic superconductors proposed by Hartnoll, Herzog and Horowitz,
for which the superconductor is effectively described by a gravitational theory in
one dimension higher [126,285]. We will calculate the dynamic pair susceptibility
for these models, in addition to the conventional Fermi liquid BCS model, which
is used as a reference point. To our knowledge, this has not been done before.
The previous investigations have been focusing on the superconducting transi-
tion temperature, for which only the information at zero frequency is needed.
The equations we will be solving for the pair correlation functions can be viewed
as the finite frequency generalizations of the heavily investigated gap equations,
which lie at zero frequency.

In order to experimentally distinguish the various scenarios it is necessary
to measure the pair susceptibility away from Tc; to be more precise, a reduced
temperature τ = (T −Tc)/Tc > 1 is required. To access such a temperature win-
dow clearly demands that the strong superconductor has a significantly larger
transition temperature than the quantum critical material of interest. This sug-
gest to consider probing a heavy fermion material at its quantum critical point,
where both quantum critical behavior and relatively low Tc (' 1 K) are expected.
The strong side superconductor should have Tc > 10K to allow for a practical
temperature window.

The supposed d-wave symmetry of the order parameter in most materials of
interest presents both a challenge and an opportunity. The calculations in this
chapter presume s-wave symmetry, but hold equally well for d-wave after projec-
tion in the relevant channel. The only real requirement is a non-zero Josephson
coupling, in other words a non-zero dc Josephson current at T = 0. There is
also no hard requirement for the type of interface; a planar junction, point con-
tact, or scanning tunneling tip interface all qualify in essence (for the results
in this chapter we work in the tunneling regime). The relaxational peak has
been observed in d-wave to d-wave planar junction at very high temperatures
60–80K [283], providing both experimental proof of principle and great promise
for lower temperature experiments.

For all the models to be considered in this chapter, we assume a mean field
type superconducting phase transition. This is likely true for the quantum critical
materials we are interested: optimally doped cuprates and heavy fermions. For
underdoped cuprates phase fluctuations are expected to play an important role
as well; these are not captured by the current analysis.

The core of this chapter is devoted to numerically determine the pair suscepti-
bility for the three models, as function of frequency and temperature. We will use
Eliashberg-like equations throughout this chapter. Eliashberg theory is a fully
dynamical theory, where the momentum dependence is assumed to be relatively
smooth, and the crucial information is in the frequency dependent part. The
solution of these Eliashberg-like equations can only be determined numerically.
We extract from the particular parameter sets the general features of the differ-
ent models. Our main result is summarized graphically in Fig. (6.4) where we
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plot the pair susceptibility χp(ω, T ) for the three distinct models (using typical
parameters) at the same scale.

The remainder of this chapter is organized as follows. In section 6.2, we give a
brief introduction to the tunneling experiment proposed by Ferrell and Scalapino,
and realized by Goldman and more recently by Bergeal et al. . In section 6.3 and
section 6.4, we turn to theory. Three different models are reviewed in section 6.3,
all of which assume electron-glue dualism. These different models are presented
in a unified framework using Eliashberg-type integral equations. In section 6.4,
we first review the basic idea of the holographic superconductors and then we
outline how the pair susceptibility can be calculated by solving the equation of
motion for a scalar field. The main results are analyzed in section 6.5. Section 6.6
is devoted to proposing a realistic experiment, including the candidate materials
and experimental setup.

6.2 The pair tunneling experiment

The formal definition of the pair susceptibility is as follows,

χp(q, ω) = −i
∫ ∞

0

dteiωt−0+t〈
[
b†(q, 0), b(q, t)

]
〉, (6.1)

where b†(q, t) =
∑

k c
†
k+q/2,↑(t)c

†
−k+q/2,↓(t), and c

(†)
k,σ the usual annihilation (cre-

ation) operators for electrons with momentum k and spin σ. For a non-interacting
Fermi gas the pair susceptibility can be calculated directly in terms of single
particle Green’s functions, and gives χ′′p(ω) = π

2N(ω2 ) tanh ω
4T . For interacting

non-Fermi liquid materials the pair susceptibility is a true two-particle property
containing particle-particle pair channel information.

It was realized by Ferrell [276] and worked out further by Scalapino [277] that
the pair susceptibility is observable in the tunneling current of an SIN junction.
They considered the tunneling regime, i.e., large insulating barrier and conse-
quently small tunneling amplitude γ. In this regime the tunneling current can
be calculated perturbatively in the tunneling amplitude. The lowest non-zero
contribution to the tunneling current is the well-known linear response result
of single quasiparticles tunneling between normal metal and superconductor, of
order |γ|2 ∼ RN , where RN is the resistance of the entire junction in a normal
state (i.e, NIN junction). This famous, and by now textbook result was observed
in the pioneering experiments of Giaever and predicts that at zero temperature
(for s-wave superconductor) ItunRN =

√
V 2 −∆2 θ(V − ∆); at finite tempera-

tures there is an exponential suppression of the tunneling current at bias voltages
below the gap ∆.

To order |γ|2 only isolated quasiparticles can give a non-zero tunneling cur-
rent. However, at order |γ|4 it is possible for Cooper pairs to tunnel, and Cooper
pairs are not constraint by the quasiparticle gap ∆. This is what Ferrell and
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Scalapino predicted, that there is a contribution to the tunneling current from
tunneling Cooper pairs of order |γ|4, on top of the quasiparticle tunneling current
(contributing at order |γ|2 and |γ|4). On the normal metal side, this tunneling
process corresponds precisely to the imaginary part of the pair susceptibility
χ′′p(q = 0, ω) where ~ω = 2eVbias [277].

Up to order |γ|4, the tunneling current in a SIN is of the form,

Itun(V ) = Iqp(V ) + Iχ′′p (V ), (6.2)

Iχ′′p (V ) ∝ χ′′p(2eV/~). (6.3)

The proportionality factor obviously includes the factor |γ|4, but also local den-
sities of state of both S and N materials and effective junction area; since these
factors are highly sample-dependent, the overall magnitude of the pair suscep-
tibility contribution to the tunneling current will generally be an experimental
fitting parameter. Note that this higher order Cooper pair tunneling process is a
second order Josephson effect: if at low temperaturers the regular dc Josephson
effect can be observed (i.e., a finite supercurrent at zero bias in SIS configura-
tion), then the higher order tunneling Cooper pair process is likely to occur in
the SIN configuration at finite bias.

The pair susceptibility can also be probed at non-zero wave vector q, by
applying a magnetic field parallel to the interface surface, which creates the
necessary momentum offset of the tunneling pairs [277]. In this chapter we are
only concerned with zero momentum q = 0, and we restrict to this case from
now on.

The experimental challenge is thus to fabricate a junction that has a discern-
able second order Josephson tunneling effect. The imaginary part of the pair
susceptibility can then be determined up to an unknown overall proportionality
factor from the tunneling I-V -curve by subtracting the quasiparticle tunneling
current contribution. One may worry that the pair susceptibility signal, of order
|γ|4, will be so small that it will always drown in the quasiparticle tunneling
current signal of order |γ|2. There are two reasons why this will likely not be a
problem at all: (i) there exist exact expressions for the quasiparticle tunneling
current through the Blonders-Tinkham-Klapwijk ‘BTK’- formula [286] which has
been generalized to d-wave superconductors as well [287]; therefore the quasipar-
ticle tunneling current can be subtracted with rather high precision. And (ii),
the quasiparticle tunneling current is rather featureless and suppressed for bias
voltages below the gap; close to Tc the pair susceptibility signal is extremely
enhanced for V � ∆. The true experimental challenge lies in extending the tem-
perature range in which χ′′p(ω) can be detected from the total tunneling current
to temperatures (T − Tc)/Tc > 1.

Goldman and collaborators demonstrated that the proposal by Ferrell and
Scalapino is indeed observable in experiment [278]; they considered planar junc-
tions between conventional s-wave superconductors and normal metals, e.g., a
aluminum (Tc ≈ 2K) – aluminum-oxide – lead (Tc ≈ 7K) NIS interface; this
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setup sets an upper bound to the reduced temperature τ = (T − Tc)/Tc of
∼ (7 − 2)/2 = 2.5. They measured tunneling current I-V -curves similar to
the ones plotted in Fig. 6.1. They observed a discernable peak with a quasi-
Lorentzian line-shape up to T ≈ 3K (reduced temperature τ ≈ 0.5), and at
temperature close to Tc, namely at 0.01 < τ < 0.05 they found the peak to lie at
bias voltage ωmax ' 8kB(T − Tc)/~π.

Bergeal et al. recently managed to observe the pair susceptibility at a SIN
interface for d-wave materials [283]; they devised a planar junction of an un-
derdoped cuprate (Tc ≈ 60K) and optimally doped cuprate (Tc ≈ 90K). This
configuration naturally constraints reduced temperature τ to be smaller than
0.5. There are more differences compared with the experiments by Goldman.
Instead of directly measuring the tunneling current Bergeal et al. observed the
differential conductance. Also, they did not use a generalized BTK formula to
subtract the quasiparticle current (instead they noticed that microwave radiation
suppressed to peak, and they used this to set the background). The experiment
by Bergeal et al. was designed to verify a theoretical prediction by Janko et al.
for phase fluctuations in underdoped cuprates [288]; Janko et al. predicted a
resonance, instead Bergeal et al. found relaxational behavior. The temperature
at which Bergeal et al. performed their experiments are actually rather favorable
for our intended target: if the pair susceptibility can be detected at temperatures
T > 60K the signal should be substantially sharper for temperatures below 10 K,
while at the same time allowing reduced temperature to be large. Furthermore,
Bergeal et al. observed the relaxational peak that we expect for all different
models considered in this chapter. Whether to measure the tunneling current
directly or the differential conductance is an experimental trade-off, in principle
they carry the same information.

6.3 Pairing mechanisms with electron-glue dual-
ism

The pairing mechanism in quantum critical metals is still under intense debate.
Different scenarios have been proposed. It is vital to have an experimental tool to
test these scenarios directly. Since superconductivity, i.e., pairing, happens in the
Cooper channel, it is surely desirable to be able to measure the Cooper channel
directly. Such an experiment has been described in detail in the previous section.
The central object that will be measured in such tunneling experiments is the
imaginary part of the full dynamical pairing susceptibility. In this section, we
will introduce several different scenarios of superconductivity for quantum critical
metals. We intend to use these scenarios to represent the different limits of the
whole manifold of theories. We study in detail the frequency and temperature
evolution of the pair susceptibility in these scenarios. The whole formalism is
presented in this section, and the numerical results will be analyzed in the next
section.
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Figure 6.1: Sketch of typical tunneling current Itun(V ) (solid line) as measured
in experiments by Goldman. At a temperature T = ∆/4 the usual quasiparticle
current for a SIN tunneling junction is given by the dotted line. The difference
between the total tunneling current and the quasiparticle current is the pair
susceptibility χ′′p(ω = 2eV ): characterized by a small peak at a relatively low
voltage. For reference are plotted as well the zero temperature quasiparticle
current (dashed line) and the high temperature linear Ohmic behavior (dotdashed
line).

Let us look at the pair susceptibility. The full pair susceptibility contains
contributions from all forms of interactions. The general strategy is to separate
it into two parts: the electronic part and the glue part. The electronic part is
non-singular down to extremely low temperatures. The Coulomb interaction is
included in this part. The bosonic glue mediates an attractive electron-electron
interaction. It may arise from the coupling of the electrons to lattice distor-
tions. It can also be the collective excitations of the electrons themselves. In
some heavy fermion compounds in the vicinity of magnetic quantum phase tran-
sitions, magnetic fluctuations may act as glue for superconductivity. For some
superconductors, like cuprates, it is questionable whether the glue part is even
relevant, since it has a much lower energy scale than that of the electronic in-
teraction, say U and J [289]. We will see later on that in some scenarios the
peculiarity of the quantum critical states can lead to the surprising result that
even a weak glue can have tremendous effect on superconductivity.

The glue is generally retarded in the sense that its characteristic energy scale
ωb is small compared to the ultraviolet cut-off scale of the electronic part ωc.
With a small Migdal parameter ωb/ωc, the electron-glue vertex corrections can
then be ignored and the effects of the glue are described by the Migdal-Eliashberg
time-dependent mean field theory. And we have the Bethe-Salpeter equation (see
Fig. 6.2),

χ(k, k′; q) = χ0(k, k′; q) + u2
∑
k1,k2

χ0(k, k1; q)D(k2 − k1)χ(k2, k
′; q), (6.4)
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Figure 6.2: Feynman diagram of the Cooper channel Bethe-Salpeter equation.
The dark gray square represents the four-point correlation function in the Cooper
channel and the light gray rectangle is the corresponding electronic part. The
solid lines stand for the electron propagator and the dashed line is the glue
propagator.

where χ(k, k′; q) represents the full four-point correlation function with incoming
momenta/frequencies (−k, k+q) and outgoing momenta/frequencies (−k′, k′+q)
and χ0(k, k′; q) is the corresponding electronic part; D(p) is the glue propagator
and u the electron-glue coupling strength taken to be constant below the ultravi-
olet cut-off scale. The momentum and frequency are grouped in a single symbol
here, i.e., four-vector notation q = (q, ω). The pair susceptibility is obtained from
the four-point correlation function by performing a summation over the relative
momenta/frequencies, χp(q) =

∑
k,k′ χ(k, k′; q).

Further simplification can be made by assuming that the pairing problem in
quantum critical metals can still be treated within the Eliashberg-type theory,
with the electronic vertex operator χ0 and the glue propagator D strongly fre-
quency dependent, but no substantial momentum dependence. The glue part
will only appear in the form of a frequency-dependent pairing interaction λ(Ω) =∫
ddqD(q; Ω). A partial summation over the outgoing momenta/frequencies gives

the vertex operator Γ(k; q) =
∑
k′ χ(k, k′; q). Also performing the integration

over the relative momentum in Γ0, and taking the total momentum to be van-
ishing, i.e. Γ0(ν;ω) =

∫
dkΓ0(k, ν; q = 0, ω), we arrive at the final form of the

Bethe-Salpeter equation with only (imaginary) frequency arguments,

Γ(iν; iΩ) = Γ0(iν; iΩ) + AΓ0(iν; iΩ)
∑
ν′

λ(iν′ − iν)Γ(iν′; iΩ). (6.5)

A further frequency summation over ν yields the pair susceptibility χp(iΩ,q =
0) =

∑
ν Γ(iν; iΩ) at imaginary frequency iΩ; analytic continuation iΩ→ ω+ iη

will give the desired pair susceptibility at real frequency χp(ω).
The superconducting transition happens when the real part of the full pair

susceptibility at ω = 0 diverges. The gap equation is the ω = 0 limit of the
Bethe-Salpeter equation,

Γ(iν) = Γ0(iν) +AΓ0(iν)
∑
ν′

λ(iν′ − iν)Γ(iν′), (6.6)

with Γ(iν) = Γ(iν; iΩ = 0).
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The Bethe-Salpeter equation (6.5) can be solved either by iteration or by
direct matrix inversion. The transition temperature Tc is determined by setting
the determinant of the kernel equal to zero at zero Matsubara frequency. We will
compare three different approaches to pairing in the remainder of this section.

6.3.1 Fermi liquid BCS

We first present as point of reference the case of Fermi liquid BCS. We consider
a free Fermi gas, interacting via a normal glue, say an Einstein phonon. The
electronic part of the pair susceptibility is simply the convolution of single-particle
Green’s functions,

χ0(q, iΩ) =
T

N

∑
k,n

G (−k,−iνn)G (k + q, iνn + iΩ) . (6.7)

For this model, we ignore the self-energy correction, and use the free fermion
Green’s function G(k, iω) = 1/(iωn − εk). The imaginary part of the bare pair
susceptibility has the simple form χ′′0(ω) = 1

ωc
tanh

(
1
4βω

)
at q = 0. Here the

Fermi energy acts as the ultraviolet cut-off, with ωc = 2
πN(0) ' EF . The bare

vertex operator reads

Γ0(iνn, iΩ) =
2T

ωc(2νn + Ω)
[θ(νn + Ω)− θ(−νn)] , (6.8)

with θ(x) the Heaviside step function. Γ0(iνn, iΩ) vanishes in the interval −Ω <
νn < 0, and decays as 1/νn for νn large. It is symmetric under the transformation
νn → −Ω−νn. This symmetry can be made more explicit by writing Γ0(iνn, iΩ)
in terms of the relative frequencies ν̃n = Ω/2 + νn,

Γ0(iνn, iΩ) =
T

ωcν̃n

[
θ(

Ω

2
+ ν̃n)− θ(Ω

2
− ν̃n)

]
. (6.9)

For iΩ = 0, Γ0(iνn, iΩ) is simply T/(ωc|νn|). A BCS-type paring interaction

λ(ν′ − ν) =

{
g/A for |ν̃|, |ν̃′| < ωb,
0 otherwise,

(6.10)

leads to the gap equation

1− g
∑
|ν|<ωb

Γ0(iνn,Ω = 0) = 0, (6.11)

which gives immediately for the Fermi liquid BCS model an exponentially small
transition temperature Tc ' ωb exp (−1/λ), with λ = gN(0).
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We also note that the BCS-type paring interaction (6.10) leads to a simple
RPA form for the full pair susceptibility,

χ(ω) =
χ0(ω)

1− gχ0(ω)
, (6.12)

where retardation enters through the bare pair susceptibility, χ0(ω) =∑
|ν̃|<ωb Γ0(ν;ω).
However, for the subsequent numerical calculation of the full dynamical pair

susceptibility, we will instead use the pairing interaction from a single Einstein
phonon,

λ(iΩ) =
g

A
ω2
b

ω2
b + Ω2

, (6.13)

which has the nice property that it is smooth and nonsingular for all frequencies,
and does not give extra artificial features in the result.

6.3.2 The Critical Glue Model

Now we will start to consider the new models proposed for quantum critical met-
als that go beyond the conventional Fermi liquid BCS theory. In this subsection,
we will present one class of scenarios that attribute the novelty of unconventional
superconductivity in such systems to the peculiar behavior of the glue when ap-
proaching the QCP. The glue part is assumed to become critical near the QCP,
while the electronic part is still kept a conventional fermion bubble, though with
self-energy corrections. We will call such scenarios the critical glue model.

This class of scenarios are arguably best represented by the models introduced
by Chubukov and collaborators [284], where they assume that pairing is mediated
by a gapless boson, and the pairing interaction is of the power-law form

λ(iΩ) =

(
Ω0

|Ω|

)γ
. (6.14)

Here the exponent γ parameterizes the different models, and it is usually assumed
to take values between 0 and 1. For example, an antiferromagnetic QCP gives
rise to a pairing interaction with γ = 1/2, and a ferromagnetic QCP has γ = 1/3.
The pairing interaction has a singular frequency dependence, which makes the
pairing problem in such models qualitatively different from that of the Fermi
liquid BCS model. The coupling strength is absorbed in the single scale-full
parameter Ω0.

The electronic part of the pair susceptibility is assumed to be still just the con-
volution of the single particle Green’s functions, i.e., of the same form as Eq. (6.7).
But now the massless boson also contributes a nontrivial self-energy, Σ(iωn) =
iωn (Ω0/|ωn|)γ S(γ, n), where S(γ, n) = |n + 1/2|γ−1

[
ζ(γ)− ζ(γ, |n+ 1

2 |+
1
2 )
]
,

with ζ(γ) the Riemann zeta function and ζ(γ, n) the generalized Riemann zeta
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function. Let us define Z(ωn) = 1 + (Ω0/|ωn|)γ S(γ, n). The bare pair suscepti-
bility thus reads

χp,0(iΩ) =
T

N

∑
k,νn

1

−iνnZ(−νn)− ξk
1

i(νn + Ω)Z(νn + Ω)− ξk
. (6.15)

And the corresponding bare vertex operator becomes

Γ0(iνn, iΩ) =
2T

ωc[(νn + Ω)Z(νn + Ω) + νnZ(−νn)]
×

[θ((νn + Ω)Z(νn + Ω))− θ(−νnZ(−νn))] . (6.16)

With the glue becoming critical, the only scale in such models is Ω0. And
the superconducting transition temperature is proportional to Ω0, with a model-
dependent coefficient, Tc = A(γ)Ω0.

6.3.3 Quantum Critical BCS

In this subsection we will consider another scenario for superconductivity in quan-
tum critical metals, which is orthogonal to the critical glue mode presented in the
last subsection. In this approach, the novelty of unconventional superconductiv-
ity in such systems is attributed solely to the critical behavior of the electronic
part, with the glue part assumed featureless. Hereafter this approach will be
dubbed quantum critical BCS (QCBCS) scenario [121].

According to its behavior in the scaling limit, the electronic part of the pair
susceptibility χp,0 was classified into three different categories: marginal, relevant
and irrelevant. The prototype of the marginal case is the free Fermi gas, for which
the imaginary part of the bare pair susceptibility χ′′p,0 is essentially constant at low
temperatures. In the QCBCS scenario, the quantum critical metals were assumed
to fall into another category tagged as relevant, i.e., χ′′p,0 increases when going
to lower frequency or lower temperature. More spectral weight is accumulated
at lower energy scales, where pairing is more effective. Thus it is much easier to
get superconductivity in such models. The gap equation becomes algebraic, and
even a weak glue can give rise to a high temperature superconductor. The basic
logic behind such construction is the empirical fact the quantum critical metals
are more susceptible than Fermi liquid metals. When approaching the QCP,
an interaction that was deemed irrelevant initially, takes over and dominates,
replacing the QCP by a new stable phase.

A massless boson, as was considered in the critical glue model, modifies the
electronic part of the pair susceptibility through self-energy corrections, giving
a nice example of an irrelevant pair susceptibility, i.e., χ′′p,0 decreases when go-
ing to lower frequency or lower temperature. We emphasize that this does not
necessarily imply that the critical glue model is ineffective in producing pairing.
The massless boson is providing self-energy corrections to single particle Green’s
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functions and inducing an attractive interaction between electrons at the same
time. The two effects compensate, and it is actually possible to produce a high
transition temperature.

Coming back to the QCBCS scenario, at zero temperature, the imaginary
part of the bare pair susceptibility has the scaling form χ′′p,0(ω) ∼ ω−αp , with
the exponent αp parameterizing different models; αp = 0, i.e., χ′′p,0(ω) constant,
corresponds to the marginal case. When αp > 0, χ′′p,0 increases at lower frequency,
describing a relevant pair susceptibility; αp < 0 corresponds to the irrelevant case.

Aiming at the dynamical pairing susceptibility, let us now consider the
QCBCS scenario at finite temperature. Temperature breaks conformal invariance
and in the euclidean formulation of field theory the imaginary time direction is
compactified, leading to the finite size scaling form of the bare pair susceptibility,

χp,0(ω, T ) =
Z

Tαp
F
(ω
T

)
, (6.17)

with the exponent 0 < αp < 1, Z a UV renormalization constant and F a scaling
function. The upper bound on αp stems from unitarity requirements. At zero
temperature, this turns into the branch cut as shown above, χ0 ∼ ω−αp , while in
the opposite high temperature or hydrodynamical regime (~ω � kBT ) it takes
the form

χp,0(ω, T ) =
Z ′

Tαp
1

1− iωτrel
, (6.18)

where τrel ≈ ~/kBT .
One example of such a scaling function F(ω/T ) that possesses the above two

limiting forms at low and high temperatures is the following one, borrowed from
exact solutions in 1 + 1-dimensional conformal field theory,

F ′′(y) = sinh(
y

2
)B2(s+ i

y

4π
, s− i y

4π
), (6.19)

where B is the Euler beta function, and s = 1/2− αp/4. Another example that
results in such a scaling function is a simple generalization of the free fermion
vertex operator (6.9),

Γ0(iνn, iΩ) =
(1− α)T

ω1−α
c sgn(ν̃n)|ν̃n|α+1

[
θ(

Ω

2
+ ν̃n)− θ(Ω

2
− ν̃n)

]
. (6.20)

One can check that this vertex operator actually leads to a relevant pair suscep-
tibility with αp = α, a power-law tail at high frequency, and the linear hydro-
dynamic behavior at low frequency. There is a peak at frequencies of order the
temperature. We will use this latter one to calculate the full pair susceptibility.

Combining the BCS-type pairing interaction (6.10) and the above vertex oper-
ator (6.20) one arrives at an algebraic gap equation characteristic of the QCBCS
scenario,

1− 2g
1− αp
ω

1−αp
c

∫ ωb

Tc

dν

ναp+1
= 0, (6.21)
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As in the Fermi liquid BCS case, we will also use the smooth and nonsingu-
lar pairing ‘Einstein phonon’ interaction (6.13) to calculate the dynamical pair
susceptibility in the QCBCS scenario.

6.4 Holographic superconductors

The three different models we considered in the last section all assume the sep-
aration of the electronic part and the glue part. There also exist another class
of models for which superconductivity is ”glueless” and instead driven by the
extreme instability of the zero temperature critical state itself. This class of
models are based upon the AdS/CFT correspondence of string theory and are
called ”holographic superconductors” (HS). The simplest model to obtain a holo-
graphic superconductor with quite similar behavior to real superconductors was
first built in [285,290] through Einstein gravity which is minimally coupled to a
Maxwell field and a charged complex scalar with a potential term. The system
is described by the action

S =

∫
d4x
√
−g
[
R+

6

L2
− 1

4
FµνF

µν−m2Ψ∗Ψ−(∇µΨ−iqAµΨ)∗(∇µΨ−iqAµΨ)

]
.

(6.22)
Here we consider the superconductor to be 2+1 dimensional. A generalization to
3+1 dimension is straightforward.

Below some critical temperature Tc, the charged black hole solutions develop
a nonzero static scalar field outside the horizon, which is usually called a non-
trivial hair. There are two possible reasons for this instability on the gravity
side. One is that the effective mass for the scalar field is m2

eff = m2 + q2gttA2
t .

Since the last term is negative, there is a chance that m2
eff becomes sufficiently

negative near the horizon to destabilize the scalar field. Furthermore, as one
lowers the temperature of a charged black hole, it becomes closer to extremal
which means that gtt is closer to developing a double zero at the horizon. So at
low temperatures, |gtt| is large and instability becomes strong. Another reason
for the instability comes from the fact that at low temperatures the horizon
geometry of the near extremal RN black hole has an AdS2 near-horizon throat.
Then an asymptotically stable negative mass squared scalar field can become
unstable because the Breitenlohner-Freedman (BF) bound is different for the
near horizon AdS2 and the asymptotic AdS4. This gives the chance that we can
have the condensate even for uncharged scalar field with q = 0.

The combined effects of these two mechanisms lead the charged black holes to
develop scalar hair at low temperatures. According to the AdS/CFT dictionary,
on the dual field theory side there is a global U(1) symmetry which corresponds
to the U(1) gauge symmetry on the gravity side. From the point of view of the
dual field theory, this U(1) symmetry is broken below Tc at a finite charged den-
sity because of the condensation of the charged scalar. The complex scalar Ψ
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corresponds to the scalar operator of the order parameter O of the dual field the-
ory. In the following, we focus on the normal state of holographic superconductor
which is described by RN-AdS black hole

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dx2 + dy2), (6.23)

f(r) = r2 − 1

r

(
r3
+ +

ρ2

4r+

)
+

ρ2

4r2
, (6.24)

A = ρ

(
1

r+
− 1

r

)
dt, (6.25)

The black hole is characterized by two parameters, the location of the horizon r+

and the charge density ρ. They are related to the mass and charge of RN-AdS
black hole respectively. The Hawking temperature of the black hole, which is
identified as the temperature of the dual field theory in the AdS/CFT duality,
is T = (3r+/4π)[1 − ρ2/(12r4

+)]. When r → ∞, At → µ − ρ/r. Here µ and ρ
are identified as the chemical potential and the charge density of the dual field
theory respectively. In the following, we fix the charge density to be ρ0 = 1.

Since the dual operator of Ψ is the order parameter, the two-point retarded
Green’s function of the dual operator for the fluctuation of Ψ gives the pair
susceptibility,

χ(k, ω) = GRO†O(k, ω). (6.26)

We will calculate the two-point retarded Green’s function for the fluctuation of
Ψ in the normal phase above the transition temperature Tc, i.e. our calculation
is in the RN-AdS black hole background. We consider the zero momentum mode
of δΨ and expand it as δΨ(r, x, t) = ψ(r)e−iwt. The equation of motion for ψ(r)
is

ψ′′ +

(
f ′

f
+

2

r

)
ψ′ +

(
(w + qAt)

2

f2
− m2

f

)
ψ = 0. (6.27)

Since we are interested in the retarded Green’s function, we impose the infalling
boundary condition in the near horizon geometry [291], i.e.

ψ(r) ' (r − r+)−i
w

4πT as r → r+. (6.28)

Near the boundary, the scalar field goes as

ψ(r) ' ψ−
rM−

+
ψ+

rM+
as r →∞, (6.29)

where M±= 3
2 ± ν with ν =

√
9 + 4m2/2.

In 3+1 dimensional gravity theory in asymptotical AdS4 spacetime, the BF
bound for the scalar is m2 ≥ −9/4, so ν is always non-negative. For ν = 0,
the two terms ψ± will be degenerate and a new logarithmic term appears. We
will not consider this case for simplicity. For ν ∈ (0, 1], both modes ψ± are
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normalizable. We can choose either ψ+ or ψ− as the source and treat the other as
the corresponding response, and the dual operators are O− and O+ respectively.
We can calculate the retarded Green’s function for the two operators respectively
[291,292],

GRO†−O−
∼ ψ−
ψ+

, GRO†+O+
∼ ψ+

ψ−
. (6.30)

When w/T → ∞, the Green’s function approaches the form in pure AdS4

spactime, i.e. GR
O†−O−

∼ 1/w2ν and GR
O†+O+

∼ w2ν . For ν > 1, only ψ+ is

normalizable. We can only take ψ− as the source and treat ψ+ as the corre-
sponding response. The dual operator is O+ and we can calculate the retarded
Green’s function for it as above.

We notice from the equation of motion (6.27) and the infalling boundary
condition (6.28) for ψ, the holographic superconductor has the symmetry χq(ω) =
χ∗−q(−ω). For q 6= 0, one generally has χ′′q (ω) 6= −χ′′q (−ω), and only for very high
temperatures, the symmetry χ′′(ω) = −χ′′(−ω) is restored. For the three models
we considered in the last section, one always has χ′′(ω) = −χ′′(−ω). We regard
this as an artifact of the present minimal model of holographic superconductors.
It would be interesting to see how the particle-hole symmetry can emerge in such
holographic models.

6.5 Evolution of the full pair susceptibility

Using a SIN tunneling junction, experimentalists can measure the imaginary part
of the full dynamical pair susceptibility χ′′p in the normal state of the quantum
critical metals. In this section we investigate in detail theoretically the tem-
perature and frequency evolution of χ′′p(ω, T ) for the three different scenarios
introduced in the last section. We intend to use these models as templates that
can be compared with future experimental results. Let us imagine what the
experimentalists will do. They will take a sample, say some heavy fermion com-
pound, tune it to the critical state by applying pressure or doping, scan the
tunneling current for various bias voltages at different temperatures, and finally
subtract the quasiparticle contributions to get the pair tunneling part. The su-
perconducting transition temperature is fixed for this particular sample. So in
our calculation, we will choose some particular sets of parameters, i.e., retarda-
tion scale, glue strength, etc., so that the three different models produce the same
Tc. The overall magnitude of the measured χ′′p(ω, T ) depends on the details of
the tunneling junction and is therefore difficult to predict on an absolute scale.
The good news is that the difference of the various models also lies in the pattern
of the relative change of the amplitude with frequency and temperature. So in
the following study, we will normalize the amplitude with respect to its value at
some particular reference temperature and frequency, and consider the quantity
χ′′p(ω, T )/χ′′p(ω∗, T ∗).
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For the three models with electron-glue dualism, we have formulated the equa-
tions in Matsubara frequency. Generically though, to obtain the real-frequency
dynamical pair susceptibility, a crucial step is the analytic continuation, i.e.,
the replacement iΩ → ω + iδ, which is generally a non-trivial procedure. We
choose the method of Padé approximants. Historically the Padé approximant
analytic continuation method is based on continued fractions but the method of
matrix inversion actually works much faster. Although the Padé approximant
method is uncontrolled it seems to work very well in our case, probably because
the pair susceptibility is a very smooth function with only a single characteris-
tic peak/feature. Furthermore, our calculation has no statistical noise (it is not
quantum Monte-Carlo), and in principle we can improve the precision arbitrarily
by (i) increasing matrix size, (ii) increasing numerical precision in all steps, and
(iii) increasing the number of Padé points iΩn, until computational resources run
out.

With the form of Γ0(iνn; iΩ) and λ(iΩ) specified as in Eqs. (6.8,6.16,6.20) and
(6.13,6.14), we proceed to solve the Bethe-Salpeter equation (6.5) for the three
different models, using matrix inversion to get Γ(iνn; iΩ). Then we sum over
νn and arrive at the imaginary frequency pair susceptibility χ(iΩ), the analytic
continuation of which, by the method of Padé approximants, gives the final result
for the dynamical pair susceptibility χp(ω).

For holographic superconductors, we solve the differential equation 6.27 with
the boundary condition 6.28 near the horizon, and then extract the two coeffi-
cients ψ± near the boundary. The ratio of the two gives the pair susceptibility.

Figure 6.4 displays the temperature and frequency evolution of the imagi-
nary part of the full dynamical pair susceptibility χ′′p(ω, T ) for the four different
models in a false-color plot. Here the UV cut-off scale is set to ωc ≡ 1. The
exponents, coupling strengths and retardation scales are tuned to give the same
Tc = 0.01 for all three models with electron-glue dualism. For Fermi liquid BCS,
the parameters are ωb = 0.2, g = 0.3667545. For the critical glue model, γ = 1/3,
Ω0 = 0.00267089 (matrix size is 1000, number of Padé points is 16). For quantum
critical BCS, α = 1/2, ωb = 0.2, g = 0.2131115. For holographic superconductor,
Tc = 0.1468. For all the four models, the horizontal axis is normalized with
respect to Tc. The labeling ω should be understood as ω/(100Tc).

There is stunning difference for the four different scenarios. For FLBCS, there
is a clear division of a core part and an external part. The core part corresponds
to the peak, which dies out quickly away from Tc. The external part comes from
the electronic pair susceptibility. Extrapolating the ‘external’ contours from high
temperatures to lower temperatures, one finds that they converge to a single
point. This convergence is readily read off from the bare pair susceptibility
χp,0 ∼ tanh(ω/4T ), the contours of which converge to T = 0, or τ = −1.

The contours of the full pair susceptibility in QCBCS, HS and CG are all
self-similar. However in CG, they are of elliptic shape, which is totally different
from the corresponding bare one. This is clear sign that the effects of the critical
glue persists even at high temperatures. In QCBCS and HS, the contours of the
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Figure 6.3: The imaginary part of the full pair susceptibility as function of
frequency and temperatures for the three different models. Here we plot
χ′′(ω, τ)/χ′′(ωmax, τ = 1). τ = (T − Tc)/Tc goes from 1 to 20. Frequency is
normalized in terms of Tc, and the horizontal axis represents ω/(200Tc).

full pair susceptibility have the shape of a mountain with cliff on the right and
they are quite similar to those of the bare ones, meaning that the electronic part
dominates away from Tc.

Next we will consider linecuts of χ′′p(ω, T ) at various fixed temperatures. The
gross feature is that for all the models considered, except the holographic su-
perconductors with very small charge q, above Tc, χ

′′
p(ω) always has just one

peak. As temperature increases, the peak becomes broader, with the peak loca-
tion moving to higher frequency, and the peak height decreasing. However the
different models show subtle differences in the way how the peak changes with
temperature. We will proceed to characterize the peak evolution, first near Tc
and then away from Tc.
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Figure 6.4: The imaginary part of the bare pair susceptibility as function of fre-
quency and temperatures for the three different models. For holographic super-
conductor, we plot the corresponding result in Schwarzschild-AdS background.

For holographic superconductors with q near zero, we find that on top of the
conformal peak, which has its origin from the asymptotic AdS geometry and thus
insensitive to temperature, another peak gradually builds up as one approaches
Tc. And in the temperature range Tc < T . 5Tc, we observe a peak-dip-hump
structure plus the conformal tail at high frequencies.

The behavior of the pair susceptibility near Tc characterizes the nature of the
superconducting transition. Here in the three models with electron-glue dualism,
aiming at optimally doped cuprates as well as heavy fermion systems, we assume
a mean field type transition, ignoring phase fluctuations altogether. The pairing
fluctuations near Tc are thus diffusive in nature, and the pair susceptibility has
a diffusive pole

χp(ω) ∝ −N(0)Tc
1

iω − τ−1
GL

. (6.31)
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Figure 6.5: Scaling collapse of the imaginary part of the full pair susceptibility
near Tc for the four different models: FLBCS, CG, QCBCS and Holographic
superconductor. In each figure, we have plotted 4 different temperatures T/Tc =
1.01, 1.03, 1.07, 1.1.

Here the characteristic relaxation rate τ−1
GL, stemming from pair breaking effects,

can be determined from a Ginzburg-Landau calculation [277, 282]. Assuming
preformed pairs above Tc would lead to a propagating nature for the pairing
fluctuations and thus a different form of χp(ω). But as already mentioned, we
will not consider this possibility here. The proportionality factor in Eq. (6.31) is
model dependent and for FLBCS is 8kB/λ

2π~.
The immediate consequence of the diffusive pole in Eq. (6.31) is that near Tc

the imaginary part of the pair susceptibility has a quasi-Lorentzian line-shape,
i.e., a typical relaxational peak,

χ′′p(ω) ∝ N(0)

τ

ω τGL

1 + (ω τGL)2
, (6.32)

independent of the particular pairing mechanism. Here we have defined the
reduced temperature τ = (T − Tc)/Tc.

The peak evolution thus shows universal quasi-Lorentzian peak behavior near
Tc for these three models. The peak location is at ωmax ' τ−1

GL ∝ (T −Tc), which
goes to 0 linearly as T → Tc. The peak height is χ′′p,max ∝ N(0)Tc/(T − Tc),
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Figure 6.6: Scaling collapse of the imaginary part of the full pair susceptibility
at high temperatures for the four different models: FLBCS, CG, QCBCS and
holographic superconductor (from top to bottom). In each figure, we have plotted
4 different temperatures: T/Tc = 11, 14, 17, 21.

which diverges as (T − Tc)−1 when T → Tc. The full width at half maximum of
the peak width is ωwid = 2

√
3ωmax, which also vanishes linearly as T → Tc. The

fact that peak width and the peak location move together is a robust property
of the peak and is used as self consistency check of our numerical calculations.

Above we wrote ωmax ' τ−1
GL, and this was meant literally: in our numerical

results we never find the exact relation ωmax = 8kB
π~ (T −Tc). Instead, we find de-

viations from this result up to 10 percent for the FLBCS and CG models, and up
to factor 3 difference for the QCBCS model. So, although the relaxational peak
itself is universal for these three models, the precise location of the peak ωmax

does have some model-dependent information. Furthermore, the peak location
ωmax can be measured experimentally without fitting , i.e., parameter free. Un-
fortunately, the precise value of ωmax depends also on non-universal parameters
such as the glue coupling strengthλ. The only conclusive outcome that may arise
is that if ωmax differs from τ−1

GL by a factor of 1.5 or more, then the FLBCS and
CG models are very improbable.

For holographic superconductor, as one approaches Tc, the pair susceptibility
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becomes of the form

χp(ω) =
χ(0)

1− iωτ1 − ωτ2
, (6.33)

where χ(0) is frequency independent and diverges when approaching Tc. τ1, τ2
are real numbers and both of them diverge as T → Tc, τ1 = A1/(T − Tc), τ2 =
A2/(T −Tc). The ratio A1/A2 is of order 1 even at Tc. In addition to the obvious
frequency asymmetry, one can see the difference of the holographic superconduc-
tor with the other three models from the shape of the peak at positive frequencies
near Tc (Fig. 6.5).
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Figure 6.7: Evolution of the ratio of the peak width and peak location for Fermi
liquid BCS (top left), Critical Glue (top right), QCBCS (bottom left) and holo-
graphic superconductor (bottom right).

Away from Tc, the pair susceptibility probes the normal state properties of the
system, revealing the particular underlying pairing mechanisms. Different models
give different predictions for the behavior of χ′′p(ω) and the pair tunneling mea-
surement can be used to further distinguish between the different models. The
results for the four models introduced in the last section are shown in Figs. 6.6,
6.7.

The basic picture is that for the quantum critical BCS and holographic su-
perconductors, the relaxational peak will cross over to the quantum critical peak
originated from the electronic part of the pair susceptibility, while for Fermi liq-
uid BCS and critical glue model, the peak simply dies out, and χ′′p(ω) becomes
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more and more flat at higher and higher temperatures. We plot in Fig. 6.6 the
scaling collapse of the pair susceptibility. Scale invariance is spoiled by pertur-
bative corrections in the critical glue model, and it does not have a good scaling
collapse. The best-fit exponent actually changes as one fits different frequency
ranges. All the other three models do have ω/T scaling. Another obvious feature
one can read off from Fig. 6.6 is that the pair susceptibility in QCBCS and HS
is more peaky than the other two models.

Such difference can be shown quantitatively by extracting the evolution of
the peak location, peak height and peak width. The most revealing quantity
is the ratio of the peak width and peak location (Figs. 6.7). For FLBCS and
CG, the width and also the ratio grows exponentially at higher temperatures.
For QCBCS and holographic superconductors, both the peak width and peak
location increases linearly with temperature, and they are locked together again
at high temperature, as they were in the region near Tc. We can see clearly in
the ratio of the two, the crossover from one region dominated by the relaxational
peak to a plateau dominated by the quantum critical peak. The behavior of the
peak height in QCBCS and holographic superconductor is also quite different
from the other two models. At high temperature, the peak height tends to a
constant in FLBCS and CG, while for QCBCS and holographic superconductor
it decays as power-law with exponent αp, χ

′′
p,max ∼ T−αp . These will be the

smoking gun evidences for QCBCS/HS.

6.6 Outlook: towards a realistic experiment

We have proposed to use the the second-order Josephson effect in SIN junctions
to measure the pair susceptibility of the quantum critical metals. There are
two possible experimental approaches using modern thin-film preparations and
STM/STS techniques with a superconducting tip. Recently there has been signif-
icant progress employing multi-target pulsed laser deposition (PLD) to grow epi-
taxial layers of complex (ternary, quarternary , etc.) compounds [283]. Here the
grand challenge would be to form a a tunnel junction between a high-temperature
superconductor (HTS) and a heavy-fermion superconductor(HFS). For exam-
ple, as proof of principal we suggest YBCO with Tc = 90K and CeIrIn5 with
Tc = 0.4K and the quantum critical region persisting to about 30K, both prob-
ably d-wave superconductors. With the enormous spread in transition tempera-
tures one could thereby reach τ -values of about 70 over a wide range of frequencies
ω at the lower temperatures. The advantage of HF-CeIrIn5 is that around am-
bient pressures the superconducting dome is surrounded by regime of quantum
critical behavior [293].

A second innovative method, now in development, is the scanning tunneling
(STM/STS) measurement which has just been demonstrated as striking effective
in probing the gap formations of URu2Si2 [294, 295]. We would suggest using a
superconducting tip formed from the HTS either by etching down a single crystal
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or gluing tiny crystallites of YBCO to a normal Ir or Pt tip. Such scanning
experiments have never been attempted between a HTS and the cleaved surface
of a HFS, e.g. CeIrIn5, another grand challenge for the heavy fermion community.
Stimulated by our pair-susceptibility calculations, we hope the experimentalists
will evaluate the above possibilities in their efforts toward novel thin film and
tunneling investigations.
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