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Cha p t e r 5

Superconducting Instability in
Quantum Critical Metals

5.1 Introduction

The ‘mystery superconductors’ of current interest share the property that their
normal states are poorly understood ‘non Fermi-liquids’. Experiments reveal that
these are governed by a scale invariance of their quantum dynamics. The best
documented examples are found in the heavy fermion (HF) systems [23, 25, 81,
82, 182–186]. As function of pressure or magnetic field one can drive a magnetic
phase transition to zero temperature. On both sides of this quantum critical point
(QCP) one finds Fermi-liquids characterized by quasiparticle masses that tend
to diverge at the QCP. At the QCP one finds a ‘strange metal’ revealing traits
of scale invariance, while at a ‘low’ temperature a transition follows most often
to a superconducting state with a maximum Tc right at the QCP. It is widely
believed that a similar ‘fermionic quantum criticality’ is governing the normal
state in optimally doped cuprate high Tc superconductors. The best evidence
is perhaps the ’Planckian’ relaxation time observed in transport experiments
τ~ ' ~/(kBT ) [187, 188] indicating that this normal state has no knowledge of
the scale EF since in a Fermi-liquid τ = (EF /kBT )τ~. Very recently indications
have been found that even the iron based superconductors might be governed by
quantum critical normal states associated with a magnetic and/or structural zero
temperature transition, giving rise to a novel scaling behavior of the electronic
specific heat [189,190].
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The idea that superconductivity can be caused by a quantum phase transi-
tion involving a bosonic order parameter has a long history, starting with the
marginal Fermi-liquid ideas of Varma [191] in the context of cuprates of the late
1980’s and the ideas of spin-fluctuation driven heavy fermion superconductivity
dating back to Lonzarich et al. [82]. The bulk of the large theoretical litera-
ture [192–227] dealing with this subject that evolved since then departs from an
assumption dating back to the seminal work of Hertz in the 1970’s [143]. This in-
volves the nature of the ultraviolet: at some relatively short time scale where the
electron system has closely approached a Fermi-liquid the influence of the criti-
cal order parameter fluctuations become noticable. The Fermi surface and Fermi
energy of this quasiparticle system can then be used as building blocks together
with the bosonic field theory describing the critical order parameter fluctuations
to construct a perturbative framework dealing with the coupling between these
fermionic- and bosonic sectors. The lowest order effect of this coupling is that
the fermi gas of quasiparticles acts as a heat bath damping the bosonic order pa-
rameter fluctuations, with the effect that the effective space-time dimensionality
of the bosonic field theory exceeds the upper critical dimension. These dressed
order parameter fluctuations than ’back react’ on the quasiparticle system caus-
ing ’singular’ interactions in the Cooper channel, yielding in turn a rational for
a generic ’high Tc’ superconductivity at QCP’s.

The crucial assumption in this ’Hertz philosophy’ is that the fermion physics
is eventually controlled by the Fermi gas. In the cases of empirical interest it is
generally agreed that in the UV the interaction energies are much larger than the
bare kinetic energies, while there is no obvious signature in the experiments for a
renormalization flow that brings the system close to a weakly interacting fermion
gas before entering the singular ’Hertz’ critical regime. From the theoretical side,
the introduction of this UV Fermi gas can be viewed as an intuitive leap. The
only truly fermionic state of matter that is understood mathematically is the
Fermi gas and its perturbative ’derivative’ (the Fermi liquid): the fermion sign
problem makes it impossible to address fermionic matter in general mathematical
terms [228]. However, very recently the ’grib of the Fermi-gas’ has started to
loosen specifically in the context of fermionic critical matter. A first step in this
direction is the demonstration of proof of principle that truly critical fermionic
states of matter can exist that have no knowledge whatever of the statistical Fermi
energy scale: the fermionic Feynman backflow wavefunction Ansatz [229]. The
substantive development is the recent work addressing fermion physics using the
string theoretical AdS/CFT correspondence. It appears that this duality between
quantum field theory and gravitational physics is capable of describing Fermi-
liquids that emerge from a manifestly strongly interacting, critical ultraviolet
[230]. In another implementation, one finds an IR physics describing ’near’ Fermi-
liquids characterized by ’critical’ Fermi surfaces [179] controlled by an emergent
conformal symmetry implying the absence of energy scales like the Fermi-energy
[231,232].

This lengthy consideration is required to motivate the subject of this pa-



5.1 Introduction 105

per: a phenomenological scaling theory for a Bardeen-Cooper-Schrieffer (BCS)
type superconductivity starting from the postulate that the normal state is not
a Fermi-liquid, but instead a truly conformal fermionic state of matter. With
’BCS type’ we mean the following: we assume as in BCS that besides the elec-
tron system a bosonic modes are present that cause attractive electron-electron
interactions. This ’glue’ is retarded in the sense that the characteristic energy
scale of this external bosonic system ωB is small as compared to the ultraviolet
cut-off scale of the quantum critical fermion system ωc . Having a small Migdal
parameter, the glue-electron vertex corrections can then be ignored and the the
effects of the glue are described in terms of the Migdal-Eliashberg time depen-
dent mean field theory, reducing to the static BCS mean field theory in the weak
coupling limit [233]. All information coming from the electron system that is
required for the pairing instability is encapsulated in the electronic pair suscep-
tibility. Instead of using the Fermi gas pair susceptibility (as in conventional
BCS), we rely on the fact that conformal invariance fixes the analytical form of
this response function in terms of two free parameters: an overall UV cut-off scale
(T0) and the anomalous scaling dimension of the pair susceptibility, expressed in
a dynamical critical exponent z and correlation function exponent ηp. The out-
come is a scaling theory for superconductivity that is in essence very simple;
much of the technical considerations that follow are dealing with details associ-
ated with modeling accurately the effects of the breaking of conformal invariance
by temperature and the superconducting instability. This theory is however sur-
prisingly economical in yielding phenomenological insights. Conventional BCS
appears as a special ’marginal’ case, and our main result is the generalized gap
equation, Eq. (5.10). The surprise it reveals is the role of retardation: when
the Migdal parameter ωB/ωc is small (where the mathematical control is best)
we find at small coupling constants λ̃ a completely different behavior compared
to conventional BCS: the gap magnitude ∆ becomes similar to the glue energy
ωB . To illustrate the case with numbers, a moderate coupling to phonons like
λ̃ = 0.3 with a frequency ωB = 50 meV will yield rather independently of scaling
dimensions a gap of 40 meV and a Tc of 100 Kelvin or so: these are numbers of
relevance to cuprate superconductors!

The theory has more in store. Incorporating the motive that on both sides of
the quantum critical point heavy Fermi liquids emerge from the quantum critical
metal as in the heavy fermion systems, we show that the superconducting ’dome’
surrounding the quantum critical point emerges naturally without changing the
coupling to the bosonic glue. The form of this dome is governed by the correlation
length, but we find via the pair susceptibility a direct relation with the effective
mass of the quasiparticles of the Fermi-liquids. Last but not least, we analyze the
orbital limiting upper critical magnetic field, finding out that pending the value of
the dynamical critical exponent it can diverge very rapidly upon approaching the
QCP, offering an explanation for the observations in the ferromagnetic URhGe
heavy fermion superconductor [234].

The scaling phenomenology we present here is simple and obvious, but it ap-
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pears to be overlooked so far. Earlier work by Balatsky [235], Sudbo [236] and
Yin and Chakravarty [237] is similar in spirit but yet quite different. These au-
thors depart from a Luttinger liquid type single particle propagators to compute
the pair susceptibility from the bare fermion particle-particle loop. Although this
leads to pair susceptibility similar (although not identical) to ours, it is concep-
tually misleading since in any non Fermi-liquid, there is no such simple relation
between two-point and four-point correlators. This is particularly well under-
stood for conformal field theories: for the higher dimensional cases the AdS/CFT
correspondence demonstrates that two point CFT correlators are determined by
kinematics in AdS while the four- and higher point correlators require a tree
level computation [238–245]. More serious for the phenomenology, this older
work ignores the role played by retardation; it is a-priori unclear whether one
can construct a mathematically controlled scaling theory for BCS without the
help of a small Migdal parameter.

The remainder of this chapter is organized as follows. In section 5.2 we review
a somewhat unfamiliar formulation of the classic BCS theory that makes very
explicit the role of the pair susceptibility. We then introduce the scaling forms for
the pair susceptibilities as follow from conformal invariance. By crudely treating
the modifications in the pair susceptibility at low energies associated with the
presence of the pair condensate we obtain the new gap equation Eq. ((5.10)).
This catches already the essence of the BCS superconductivity of quantum criti-
cal metals and we discuss its implications in detail. In section 5.3 we focus in on
intricacies associated with determining the transition temperature. Conformal
invariance is now broken and one needs to know the scaling functions in some
detail. We use the exact results of 1+1 dimensional conformal field theory as
a model to address these matters. In section 5.4 we turn to the harder prob-
lem of modeling the crossover from the large energy critical pair susceptibility
to the low energy, zero temperature infrared that is governed by conventional
Bogoliubov fermions, as needed to devise a more accurate zero temperature gap
equation. The casual reader might want to skip both sections. The moral is
that information on the cross-over behavior of the pair susceptibility is required
that is beyond simple scaling considerations to address what happens when the
conformal invariance is broken either by temperature (as of relevance to the value
of Tc) or by the presence of the BCS condensate (of relevance for the zero tem-
perature gap). The conclusion will be that although the gross behaviors are not
affected, it appears to be impossible to compute numbers like the gap to Tc ratio
accurately since these are sensitive to the details of the cross-over behaviors. In
section 5.5 we explore the theory away from the critical point, assuming that
cross-overs follow to heavy Fermi-liquids, where we address the origin of the su-
perconducting dome. Finally, in section 5.6 we address the scaling behavior of
the orbital limited upper critical field.
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5.2 BCS theory and the scaling of the pair sus-
ceptibility

Let us first revisit the backbone of Migdal-Eliashberg theory. We need a formu-
lation that is avoiding the explicit references to the Fermi gas of the text book
formulation, but it is of course well known how to accomplish this. Under the
condition of strong retardation and small couplings, the effects of the glue are
completely enumerated by the gap equation [246] ignoring angular momentum
channels (s,d waves, etcetera) for the time being,

1− gχ′ret(~q = 0, ω = 0,∆, T ) = 0, (5.1)

where g is the effective coupling strength of the glue, while χ′ret is the zero fre-
quency value of the real part of the retarded pair susceptibility at a temperature
T in the presence of the gap ∆. This effective χ′ret also incorporates the ef-
fects of retardation. The textbooks with their focus on non-interacting electrons
accomplish this in a rather indirect way, by putting constraints on momentum
integrations. Retardation is however about time scales and the general way to
incorporate retardation is by computing χ′ret by employing the Kramers-Kronig
relation starting from the imaginary part of the full electronic pair susceptibility
χ′′p . For a glue characterized by a single frequency ωB ,

χ′ret(ω = 0) = 2P
∫ 2ωB

0

dω′
χ′′p(ω′)

ω′
. (5.2)

with the full pair susceptibility given by the Kubo formula,

χp(~q, ω) = −i
∫ ∞

0

dtei(ω+iη)t
〈
[b†(~q, 0), b(~q, t)]

〉
, (5.3)

associated with the pair operator b†(~q, t) =
∑
~kc
†
~k+ ~q

2 ,↑
(t)c†
−~k+ ~q

2 ,↓
(t).

In the case of conventional superconductors the normal state is a Fermi-liquid,
formed from (nearly) non-interacting quasiparticles. One can get away with a
’bare fermion loop’ pair susceptibility. The specialty of this pair susceptibility is
that its imaginary part is frequency independent at zero temperature. It extends
up to the Fermi energy of the Fermi-liquid and from the unitary condition,∫ ∞

0

χ′′p(ω)dω = 1 (5.4)

it follows that at zero temperature χ′′(ω) = N0 = 1/(2EF ). In logarithmic
accuracy the gap enters as the low frequency cut-off in Eq. (5.2) such that,

χ′ret(ω = 0,∆, T = 0) =

∫ 2ωB

∆

dω′

EFω′
=

1

EF
log

2ωB
∆

, (5.5)
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and from Eq. (5.1) the famous BCS gap equation follows: ∆ = 2ωBe
−1/λ, where

λ = g/EF .
This formulation of BCS has the benefit that it makes very explicit that all the

information on the electron system required for the understanding of the pairing
instability is encoded in the pair susceptibility. This is in turn a bosonic response
function of the electron system since it involves the response of two fermions,
much like the dynamical susceptibilities associated with charge- or spin densities.
In addition one needs the fact that the pair density is a non-conserved quantity,
in the same sense as a staggered magnetization. When the quantum system
is conformal (i.e. the zero temperature quantum critical metal) the analytical
form of the dynamical pair susceptibility is fixed at zero temperature by the
requirement of invariance under scale transformations [40],

χ(ω) = lim
δ→0

Z ′′(−(ω + iδ)2)−
2−ηp

2z , (5.6)

as determined by the a-priori unknown unknown exponents ηp and z, the anoma-
lous scaling dimension of the pair operator and the dynamical critical expo-
nent, respectively. The normalization constant Z ′′ is via the unitarity condition
Eq.(5.4) determined by the UV cut-off scale ωc. Because we invoke a small Migdal
parameter we are interested in the ’deep infrared’ of the theory that is not very
sensitive to the precise choice of this UV energy scale. A reasonable choice is the
energy where the thermal de Broglie wavelength becomes of order of the elec-
tron separation, i.e. the Fermi energy of an equivalent system of non-interacting
electrons. Defining αp =

2−ηp
z and using Eq. (5.4) with the cut-off scale ωc, we

find,

Z ′′ =
1− αp

sin(π2αp)

1

ω
1−αp
c

, (5.7)

observing that αp < 1 in order for this function to be normalizable: this is the
well known unitary bound on the operator dimensions. The real and imaginary
parts of the zero temperature critical pair susceptibility are related by a phase
angle π

2αp,

χ(ω) =
Z ′′

ωαp

(
cos(

π

2
αp) + i sin(

π

2
αp)
)
. (5.8)

According to general conformal wisdoms, the pair operator is called irrelevant
when αp < 0 such that χ” increases with frequency, relevant when 0 < αp < 1
when χ′′ decreases with frequency and marginal when αp = 0, such that χ′′p is
frequency independent, see Fig 1. From this scaling perspective, the Fermi liquid
pair operator is just the special marginal case, and the BCS superconductor with
its logarithmically running coupling constant falls quite literally in the same
category as the asymptotically free quantum chromo dynamics in 3+1D and
the Kondo effect. Another familiar case is the pair susceptibility derived from
the ’Dirac fermions’ of graphene [247, 248] and transition metal dichalcogenides
[249, 250] characterized by αp = −1: in this ’irrelevant case’ one needs a finite
glue interaction to satisfy the instability criterium.
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Figure 5.1: Illustration of the imaginary part of the pair susceptibility, comparing
the relevant (Ising class), marginal (BCS case) and irrelevant (graphene class).

The scaling exponent αp =
2−ηp
z is respectively 0 < αp < 1, αp = 0, αp < 0. For

the Ising class, the magnitude of the imaginary part of the pair susceptibility
becomes larger and larger as one lowers the frequency. For the BCS case, the
magnitude stays constant as the frequency is changed. For the graphene class,
the magnitude decreases to zero in the low frequency infrared region.

The scaling behavior of the free fermion case is special and the pair operator
in a general conformal fermionic state can be characterized by a scaling dimension
that is any real number smaller than one. Obviously, the interesting case is the
relevant one where αp > 0 (Fig.1). Let us here consider the zero temperature
gap equation. In Eq. (5.6) we have already fully specified χ′′p in the critical state.
However, due to the zero temperature condensate the scale invariance is broken
and the low frequency part of χ′′p will now be dominated by an emergent BCS
spectrum including a s− or d−wave gap, Bogoliubov fermions and so forth. This
will be discussed in detail in section V. Let us here introduce the gap in the BCS
style by just assuming that the imaginary part of the pair susceptibility vanishes
at energies less than ∆. Under this assumption the gap equation becomes,

1− 2g

∫ 2ωB

∆

dω

ω

Z ′′ sin((π/2)αp)

ω(2−ηp)/z
= 0, (5.9)

evaluating the integral this becomes our ’quantum critical gap equation’ ,

∆ = 2ωB

(
1 +

1

λ̃

(
2ωB
ωc

)αp)− 1
αp

, (5.10)

with

λ̃ = 2λ
1− αp
αp

, (5.11)

and λ ≡ g/ωc. The numerator (1 − αp) in λ̃ comes from the normalization
constant Z ′′, while the denominator αp from integrating over ω. Notice that λ has
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Figure 5.2: (a)The ratio of gap to retardation frequency ∆/(2ωB) as a function of
glue strength λ for various retardation ranges ωB/ωc with fixed scaling dimension
αp = 3/4. (b)The same plot, but with fixed retardation ωB/ωc = 0.1 and various
scaling dimensions αp. The dotted lines are the standard BCS result.

the same meaning of a conventional, say, dimensionless electron-phonon coupling
constant. The dimensionful coupling constant g parametrizes the interaction
strength between microscopic electrons and -lattice vibrations, and ωc has the
same status as the Fermi-energy in a conventional metal as the energy scale that
is required to balance g. We argued earlier that ωc is of order of the bare Fermi
energy and therefore it make sense to use here values for e.g. the electron-phonon
coupling constant as quoted in the LDA literature. Notice however that for a
given λ the effective coupling constant λ̃ that appears in Eq. (5.10) is decreasing
when αp is becoming more relevant, i.e. when αp → 1. From the frequency
integral

∫
dωω−(1+αp), one would anticipate that the gap would increase for a

more relevant pair susceptibility. The unitary condition imposes however an
extra condition on the pair susceptibility. These two compensating effects lead
to the important result that the gap is rather sensitive to the relevancy of the
pair susceptibility. All what really matters is whether the pair susceptibility is
relevant rather than marginal or irrelevant, and the degree of the relevancy is
remarkably unimportant.

Eq.(5.10) is a quite different gap equation than the BCS one with its exponen-
tial dependence on the coupling λ. The multiplicative structure associated with
the Fermi-liquid is scaling wise quite special, while Eq. (5.10) reflects directly
the algebraic structure rooted in scale invariance. The surprise is that retar-
dation acts quite differently when power laws are ruling. In Fig. (1) we show
the dependence of the ∆/ωB ratio on the coupling constant λ, both for different
Migdal parameters and fixed αp, as well as for various scaling dimensions and
the Migdal parameter fixed. The comparison with the BCS result shows that
drastic changes happen already for small scaling dimensions αp especially in the
small λ regime. Our equation actually predicts that the gap to glue frequency
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ratio becomes of order one alrady for couplings that are as small as λ = 0.1 when
the Migdal parameter is small. To place this in the context of high Tc supercon-
ductivity, let us assume that the pairing glue in the cuprates is entirely rooted
in the ’glue peak’ at ωB ∼ 50meV that is consistently detected photoemission,
tunneling spectroscopy and optical spectroscopy [251–253] . The electronic cut-
off in the cuprates is likely of order ωc = 0.5 eV such that the Migdal parameter
ωB/ωc ' 0.1. A typical gap value is 40 meV and we read off Fig. 1 that we
need λ = 0.45 or 0.43 for αp = 3/4, 1/4 while using the BCS equation λ = 1.1!
Taking this serious implies that in principle one needs no more than a standard
electron-phonon coupling to explain superconductivity at a high temperature in
cuprate superconductors. Of course this does not solve the problem: although
one gets a high Tc for free it still remains in the dark how to form a fermionic
quantum critical state with a high cut-off energy, characterized by a relevant pair
susceptibility.

Eq.(5.10) is also very different from the gap equations obtained in the pre-
vious attempts to apply scaling theory to superconducting transition by Bal-
atsky [235], Sudbo [236] and Yin and Chakravarty [237]. A crucial property of
their results is that even in the relevant case one needs to exceed a critical value
for λ to find a superconducting instability. The present scaling theory is in this
regard a more natural generalization of BCS theory, where the standard BCS
is just the ’marginal end’ of the relevant regime where the Cooper instability
cannot be avoided for attractive interactions. The previous approaches [235–237]
start by considering the single particle spectral function, generalizing its analytic
structure from simple poles to branch cuts. This way of thinking stems from the
Fermi-liquid type assumption that the single particle Green’s function is the only
primary operator of the system, and all the higher point functions are secondary
operators, to be determined by the single particle Green’s function. But for crit-
ical systems, such assumptions are generally not to satisfied. It is well known
for example from the AdS/CFT correspondence, that the four-point functions
of strongly interacting conformal fields are much more complex than the combi-
nation of two-point functions [238–245]. Our basic assumption is that the pair
susceptibility is by itself a primary operator subjected to conformal invariance
which is the most divergent operator at the critical point.

5.3 Determining the transition temperature

Let us now turn to finite temperatures. A complicating fact is that temperature
breaks conformal invariance, since in the euclidean formulation of the field theory
its effect is that the periodic imaginary time acquires a finite compactification
radius Rτ = ~/kBT . The pair susceptibility therefore acquires the finite size
scaling form [40]

χ(ω) ≡ χ(~q = 0, ω) = ZT−(2−ηp)/zΦ
(ω
T

)
, (5.12)
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where Φ is a universal scaling function and Z is a UV renormalization constant,
while ηp and z are the anomalous scaling dimension of the pair operator and the
dynamical critical exponent, respectively. At zero temperature this turns into
the banch cut as shown in Eq.(5.6), while in the opposite high temperature or
hydrodynamical regime (~ω << kBT ) it takes the form [40]

χ(ω) = Z ′T−(2−ηp)/z 1

1− iωτrel
, (5.13)

where τrel ≈ ~/kBT . The crossover from the hydrodynamical- (Eq. 5.6) to the
high frequency coherent regime(Eq. 5.13) occurs at an energy ∼ kBT . The
superconducting transition temperature is now determined by the gap equation
through 1 − gχ′ret(kBTc) = 0. The problem is that χ′ret is via the Kramers-
Kronig transformation largely set by the cross-over regime in χ′′p . One needs the
full solutions of the CFT’s to determine the detailed form of Φ in this crossover
regime and these are not available in higher dimensions.

In 1+1D these are however completely determined by conformal invariance,
and for our present purposes these results might well represent a reasonable
model since the gap equation is only sensitive to rather generic features of the
cross-over behavior. Given the exponents ηp and z, the exact result for the finite
temperature χ′′ in 1+1D is well known [40],

χ′′(k, ω) = Z
sinh( ω

2T )

T 2(1−2s)
B(s+i

ω + k

4πT
, s−iω + k

4πT
)B(s+i

ω − k
4πT

, s−iω − k
4πT

), (5.14)

with 1−2s =
2−ηp

2z . The temperature and frequency dependencies of this function
for k = 0 are illustrated in Fig.(3). Indeed χ′′(ω) → 0 in a linear fashion with
ω with a slope set by 1/T , while for ω >> T the temperature dependence drops
out, recovering the power law. The crossover occurs at ω ' 2kBT/~ where χ′′(ω)
has a maximum.

When temperature goes to zero the limiting form of the beta function be-
comes,

lim
u→∞

B(s+ iu, s− iu) =
2π

Γ(2s)
e−πuu2s−1, (5.15)

and the imaginary part of the pair susceptibility Eq. (5.14) acquires the power
law form

χ′′(ω) =
2π2(4π)αp

[Γ(2s)]2
Z

1

ωαp
. (5.16)

Comparing this with Eq.(5.7) yields the normalization factor in terms of the
cut-off scale

Z =
[Γ(2s)]2(1− αp)
2π2(4π)αpω

1−αp
c

. (5.17)
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Figure 5.3: (a)Illustration of the imaginary part of the pair susceptibility χ′′(k =
0, ω, T ) divided by the overall numerical factor Z, as a function of frequency ω
for various temperatures. Here we’ve chosen αp = 3/4, so s = 5/16. (b) The
same plot, but χ′′ is further divided by ω. At zero temperature one has the power
law scaling form. At finite temperature χ′′(ω) goes to zero, as ω goes to zero
(χ′′(ω)/ω → constant, as ω → 0), and approaches the same power law behavior
at large frequency. As one increases temperature, the maximum of χ′′(ω) goes
down, and the corresponding ωmax shifts to larger frequency.

Combining Eq.’s (5.1),(5.2),(5.14),(5.17), we obtain the equation determining
the critical temperature,

1− C′λ
(

2ωB
ωc

)−αp ( Tc
2ωB

)−αp
F
(

2ωB
Tc

)
= 0, (5.18)

where

F(y) =

∫ y

0

dx

x
sinh(

x

2
)
(

B(s+ i
x

4π
, s− i x

4π
)
)2

, (5.19)

and x = ω/T . The overall coefficient is

C′ =
[Γ(2s)]2(1− αp)

π2(4π)αp
. (5.20)

We plot in Fig.(4) the ratio of Tc to retardation frequency as function of glue
strength, retardation and the scaling dimensions. One infers that the behavior
of Tc is very similar to that of the zero temperature gap, plotted in Fig. (2).
We observe that they are of the same order of magnitude Tc ∼ ∆, and this
can be understood from the behavior of χ′′/ω plotted in Fig.(3b). Since the
large frequency behavior of χ′′(ω)/ω’s are the same for different temperatures,
all what matters is the low frequency part. The gap imposes a cut-off for the zero
temperature χ′′(ω)/ω, and its value is determined such that the area under this
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Figure 5.4: (a)The ratio of transition temperature to retardation frequency
Tc/(2ωB) as a function of glue strength λ for various retardation ranges ωB/ωc,
with scaling dimension fixed αp = 3/4. (b)The same plot, but fix the retarda-
tion ωB/ωc = 0.1 while varying the scaling dimensions αp. The dotted lines are
the standard BCS result. The magnitude and dependence on glue strength and
retardation are all similar to those of the gap.

curve including the low frequency cut-off, is the same as the area under the curve
corresponding to Tc without a cut-off: by inspecting Fig.(3b) one infers directly
that the gap and Tc will be of the same order. The same logic is actually at
work in the standard BCS case. The finite temperature Fermi gas susceptibility
is χ′′(ω) = 1

2EF
tanh( 1

4βω) [246], and the familiar Tc equation follows,

1− λ
∫ 2ωB

0

dω

ω
tanh(

1

4
βω) = 0, (5.21)

such that Tc ' 1.14ωBe
−1/λ, of the same order as the BCS gap ∆ = 2ωBe

−1/λ.
Now the effect of temperature is encoded in the tanh function. Although the
Fermi-gas is not truly conformal, It is easy to check that this ’fermionic’ tanh
factor adds a temperature dependence to the χ′′ that is nearly indistinguishable
from what one obtains from the truly conformal marginal case that one obtains
by setting s = 1/2 in Eq. (5.14).

We notice that conformal invariance imposes severe constraints on the finite
temperature behavior of the pair susceptibility, thereby simplifying the calcula-
tion of Tc. In the 1+1-dimensional ’model’ nearly everything is fixed by conformal
invariance. The only free parameters that enter the calculation are the scaling
dimension αp, the cut-off scale ωc and the glue quantities. As we will now argue
the situation is actually much less straightforward for the zero temperature gap
because this involves a detailed knowledge of the crossover to the physics of the
superconductor ruling the low energy realms.
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Figure 5.5: Illustration of the imaginary part of the pair susceptibility without a
gap and in the presence of an s- and d- wave gap, for (a) the BCS case, and (b)
the quantum critical case (here we’ve plotted using the parameter αp = 3/4). In
the absence of gap, χ′′ is a constant (for BCS) or has a simple power law behavior
(for critical fermions). In the presence of a s-wave gap, the states below the gap
are gapped out and there is a power law singularity right above the gap. When
there is a d-wave gap, the low frequency part (way below the gap) is governed by
a Dirac cone structure, thus a linear susceptibility, while near the gap a van Hove
singularity is at work, leading to logarithmic divergences on both sides. The high
frequency region for both s- and d-wave gap goes over to the case without a gap.

5.4 More about the gap equation

It is part of our postulate that when superconductivity sets in BCS ‘normalcy’
returns at low energies in the form of the sharp Bogoliubov fermions and so
forth. Regardless the critical nature of the normal state, the scale invariance gets
broken by the instability where the charge 2e Cooper pairs form, and this stable
fixed point also dictates the nature of the low lying excitations. However, we are
dealing with the same basic problem as in the previous section: in the absence
of a solution to the full, unknown theory it is impossible to address the precise
nature of the cross-over regime between the BCS scaling limit and the critical
state at high energy. This information is however required to further improve
the gap equation Eq. (5.10) of section II that was derived by crudely modeling
χ′′ in the presence of the superconducting condensate.

So much is clear that the crossover scale itself is set by the gap magnitude
∆. However, assuming that this affair has dealings with e.g. optimally doped
cuprate superconductors, we can rest on experimental information: in optimally
doped cuprates at low temperatures the coherent Bogoliubov fermions persist
as bound states all the way to the gap maximum. Up to these energies it is
therefore reasonable to assume that χ′′p is determined by the bare fermion loops,
and this regime has to be smoothly connected to the branch cut form of the χ′′p at
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Figure 5.6: The ratio of the gap to retardation ∆/(2ωB) as a function of the
glue strength λ, for various retardation ranges, with (a) a s-wave gap and (b) a
d-wave gap. Here we’ve chosen αp = 3/4. The dotted lines are the standard BCS
result. The dependence on glue strength and and retardation is similar but the
magnitude of the gap is much enhanced compared to the previous treatment of
gap as a simple IR cutoff. The d-wave case is enhanced even more.

higher energies. This implies that the standard BCS gap singularities have to be
incorporated in our zero temperature pair susceptibility. As a final requirement,
the pair susceptibility has to stay normalized according to Eq. (5.4), which
significantly limits the modelling freedom.

Let us first consider the case of an isotropic s-wave gap singularity. The high
frequency modes are still critical, and therefore the high frequency limit of the
imaginary part of the pair susceptibility is determined by,

lim
ω→∞

χ′′(ω,∆, T = 0) =
A
ωαp

. (5.22)

In the presence of the superconducting condensate, the low energy modes below
the gap have their energy raised above the gap, since we require χ′′(ω < ∆,∆, T =
0) = 0. The spectral weight is conserved according to Eq. (5.4), and since
we assumed that the Bogoliubov excitations of the BCS fixed point survive at
energies of order of the gap we need to incorporate a BCS s-wave type power law
divergence right above the gap in the imaginary part of the pair susceptibility.
The simplest function satisfying these conditions is,

χ′′(ω,∆) = A 1

ωαp

(
ω√

ω2 − (2∆2)

)1+αp

Θ(ω − 2∆), (5.23)

with A = (1−αp)ω
−(1−αp)
c (see Fig.5b). We notice in passing that the BCS gap
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corresponds to the case αp = 0,

χ′′BCS(ω,∆) =
1

2EF

ω√
ω2 − (2∆)2

Θ(ω − 2∆). (5.24)

The quantum critical gap equation for the s-wave superconductor now becomes,

1− 2(1− αp)λ
(

2ωB
ωc

)−αp ( ∆

ωB

)−αp ∫ ωB
∆

1

dx

(x2 − 1)(1+αp)/2
= 0. (5.25)

Turning to the d-wave case the gap equation becomes necessarily a bit more
complicated since we have to account for massless Bogolubiov fermions. At low
frequencies ω << 2∆ the pair susceptibility is now governed by free fermion
loops and the Dirac-cone structure in the spectrum leads to a linear frequency
dependence in the pair susceptibility, χ′′(ω) = A1ω. Near the gap, a logarithmic
divergence is expected due to the Van Hove singularity, and therefore χ′′(ω) =

A2 log
qc+
√

2∆−ω+q2
c

−qc+
√

2∆−ω+q2
c

for ω < 2∆, while χ′′(ω) = A3 log
qc+
√
ω−2∆+q2

c

−qc+
√
ω−2∆+q2

c

for ω >

2∆, with qc a cutoff. When the frequency is high compared to the gap scale,
the pair susceptibility has the scaling form χ′′(ω) = A4ω

−αp . Matching these
regimes at 2∆ − ω1 and 2∆ + ω2, with 0 < ω1 < 2∆ and 0 < ω2 < 2ωB − 2∆,
and assuming continuity of the pair susceptibility both below and above the gap
(see Fig. 5b), we arrive at the gap equation for the d-wave case,

1

2g
= A1(2∆− ω1) + A2

q2
c

2∆

∫ ω1/q
2
c

0

dx

1− xq2
c/(2∆)

log
1 +
√
x+ 1

−1 +
√
x+ 1

+ A3
q2
c

2∆

∫ ω2/q
2
c

0

dx

1 + xq2
c/(2∆)

log
1 +
√
x+ 1

−1 +
√
x+ 1

+
A4

αp

[
(2∆ + ω2)−αp − (2ωB)−αp

]
. (5.26)

This contains a number of free parameters that are partially constrained by the
spectral weight conservation. This however does not suffice to determine the
gap uniquely. In the following we will make further choice of the parameters,
to plot the gap. We choose the scaling dimension αp = 3/4, and the cut-off in

the logarithm to be of order the square root of the gap, say qc/
√

2∆ = 3, the
width of the logarithmic region to be 20 percent of the magnitude of the gap
on both sides of the gap, that is ω1/(2∆) = ω2/(2∆) = 0.2, the coefficient of

the high frequency part A4 = 1/(4ω
3/4
c ), and further define ω1/q

2
c = ω2/q

2
c ≡

a, b ≡
∫ a

0
dx log 1+

√
x+1

−1+
√
x+1

, c ≡ log 1+
√
a+1

−1+
√
a+1

, d ≡ 4×1.21/4−1.2−3/4×9b/c
0.32+7.2b/c , thus the
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corresponding d-wave gap equation reads,

1 − 1

2
λ

(
2ωB
ωc

)− 3
4
(

∆

ωB

)− 3
4

(0.8d + 7.2
d

c

∫ a

0

dx

1− 9x
log

1 +
√
x+ 1

−1 +
√
x+ 1

+ 9
1.2−

3
4

c

∫ a

0

dx

1 + 9x
log

1 +
√
x+ 1

−1 +
√
x+ 1

+
4

3
(1.2−

3
4 − (

∆

ωB
)

3
4 ) ) = 0,(5.27)

We plot in Fig.(6) the behavior of the gap function in the s- and d-wave cases,
to be compared with the outcomes Fig. (2) of the approach taken in section II
where the gap simply entered as an IR cut-off scale, Eq. (5.9). One can see
that in both cases the magnitude of the gap is enhanced by treating the singu-
larity more carefully, while in the d-wave case this enhancement is even more
pronounced than in the s-wave case. These effects can be understood in terms of
the redistribution of the spectral weight, since the low frequency part is enhanced
by the factor 1/ω in the Kramers-Kronig frequency integral. The dependence of
the gap on the glue strength and retardation does however not change signifi-
cantly compared to what we found in section II, which can be understood from
the fact that the gap depends on the combination λ(2ωB/ωc)

−αp . One also no-
tices in Fig.(6) that the magnitude of the gap saturates already at small λ for
modest retardation. This is an artifact of the modeling. In real system the power
law (s-wave) or logarithmic (d-wave) spectral singularities will be damped (see
e.g. [254–257]), and the endpoints at finite λ in Fig.(6) will turn into smooth
functions..

The gap to Tc ratio is expected to be a number order unity number. However,
it is quite sensitive to the details of the crossover regime between the high fre-
quency critical behavior and the low frequency superconducting behavior as of rel-
evance to the zero temperature gap. Numerically evaluating Eq.’s (5.18,5.25,5.27)
we obtain gap to Tc ratio’s as indicated in Fig. (7). Different from the Migdal-
Eliasbergh case we find that these ratio’s are rather strongly dependent on both
the Migdal- and the coupling parameter, while the ratio becomes large for small
coupling, in striking contrast with conventional strong coupling superconductiv-
ity. Invariably we find the ratio to be larger than the weak coupling BCS case,
reflecting the strongly dissipative nature of quantum critical states at finite tem-
perature that plays apparently a similar role as the ’pair-breaking’ phonon heat
bath in conventional superconductors.

5.5 Away from the critical points

Our scaling theory yields a simple and natural explanation for the superconduct-
ing domes surrounding the QCP’s. This is usually explained in the Moriya-Hertz-
Millis framework [143, 144, 258, 259] that asserts that the critical fluctuations of
the bosonic order parameter turn into glue with singular strength while the Fermi-
liquid is still in some sense surviving. We instead assert that the glue is some
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Figure 5.7: (a)The gap to Tc ratio 2∆/Tc as a function of glue strength λ for
various retardation ranges ωB/ωc with fixed scaling dimension αp = 3/4, for s-
wave pairing. The dotted line is the standard BCS result, where 2∆/Tc = 3.5. (b)
The same plot for d-wave pairing. The gap to Tc ratio decreases with increasing
glue strength and retardation for both s- and d-wave gap. The ratios for different
retardation ranges approach the same constant as λ→ 0.
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Figure 5.8: Illustration of the imaginary part of the pair susceptibility away from
the critical point. For ω > T ∗, it has the critical scaling behavior, while for
ω < T ∗, it retains the BCS form. T ∗ is the cross-over scale. The effective mass
m∗ is identified as the magnitude of the imaginary part of the pair susceptibility
in the BCS region. The gap ∆ acts as a low energy cut-off, and the retardation
2ωB as a high energy cut-off. When T ∗ lies between ∆ and 2ωB , as is the case
shown above, both the critical modes and Fermi liquid modes contribute. When
∆ > T ∗, only the critical modes contribute. When 2ωB < T ∗, only the Fermi
liquid modes contribute.
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Figure 5.9: The ratio of Tc to retardation as a function of the distance away from
criticality (a) for various scaling exponent αp’s with λ = 0.06, ωB/ωc = 0.1, νz =
3/2, (b) for various glue strength λ’s with ωB/ωc = 0.1, νz = 3/2, αp = 5/6. (c)
for various retardation over cut-off ωB/ωc’s with λ = 0.06, νz = 3/2, αp = 5/6.
(d) for various inverse Grüneisen exponent νz’s with λ = 0.06, ωB/ωc = 0.1, αp =
5/6.
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Figure 5.10: (a):The superconducting transition temperature Tc as a function
of the distance from the critical point, for given crossover temperature T ∗ and
retardation ωB . The parameters are chosen as z = 2, ν = 1/3, ηp = 1, λ =
0.05, ωB/ωc = 0.1. (b):The same plot for a different set of parameters z =
3, η = 0.5, ν = 1/2, λ = 0.05, ωB/ωc = 0.1. In-between the two points δc ± δ̃,
at which the transition temperature coincides with the cross-over temperature
Tc(δc±δ̃) = T ∗(δc±δ̃), the critical temperature remains constant. For T ∗ > 2ωB ,
Tc decays exponentially. The schematic behavior of the effective mass m∗ is also
included. It diverges when approaching the critical point.

external agent (e.g., the phonons but not necessarily so) that is blind to the
critical point, but the fermionic criticality boosts the SC instability at the QCP
according to Eq. (5.10). By studying in detail the variation of the SC properties
in the vicinity of the QCP it should be possible to test our hypothesis. The data
set that is required is not available in the literature and let us present here a
crude sketch of what can be done. In at least some heavy fermion systems [260]
a rather sudden cross-over is found between the high temperature critical state
and a low temperature heavy Fermi-liquid, at a temperature T ∗ ∼ |δ−δc|νz, with
ν behaving like a correlation length exponent ξ ∼ |δ − δc|−ν as function of the
zero temperature tuning parameter δ. Moving away from the QPT this means
for the SC instability that an increasingly larger part of the frequency interval
of χ′′ below ωB is governed by the Fermi-liquid ’flow’ with the effect that Tc
decreases. We can crudely model this by asserting that the imaginary part of the
pair susceptibility acquires the critical form for ω > T ∗ and the Fermi-liquid form
for ω < T ∗, while we impose that it is continuous at ω = T ∗. This model has the
implication that the magnitude of χ′′ in the Fermi-liquid regime is determined by
T ∗ and ηp and we find explicitly that N0 ∝ m∗ ∝ |δ−δc|−ν(2−ηp). We notice that
this should not be taken literally, since this cross-over behavior can be a priori
more complicated. In fact, from thermodynamic scaling it is known [261, 262]
that m∗ ∼ |δ − δc|ν(d−z). Fig. (8) would imply that αp = 1 − d/z. This is not



122 Superconducting Instability in Quantum Critical Metals

implied by scaling.
Given these assumptions, the gap equation away from the quantum critical

point becomes,

1− 2g

(∫ T∗

∆

dω

ω
χ′′BCS(ω) +

∫ 2ωB

T∗

dω

ω
χ′′crit(ω)

)
= 0 (5.28)

We are interested in the superconducting transition temperature, which has been
shown in the previous section to be approximately the gap magnitude Tc '
∆. The imaginary part of the pair susceptibility in the critical region has still
the power law form χ′′crit(ω) = Z ′′ sin(αpπ/2)ω−αp , while in the BCS region it
is a constant determined by continuity at ω = T ∗ and therefore χ′′BCS(ω) =
Z ′′ sin(αpπ/2)(T ∗)−αp .

Consequently we find in the regime Tc < T ∗ < 2ωB the solution for the gap
equation,

Tc = 2ωBx
νz exp

[
1

αp

(
1− xν(2−ηp) − 1

λ̃
(
2ωB
ωc

)αpxν(2−ηp)

)]
, (5.29)

where xνz = T ∗/(2ωB). For T ∗ < Tc a plateau is found since only the critical
modes contribute to the pairing, while for T ∗ > 2ωB the BCS exponent takes
over since only the (heavy) Fermi-liquid quasiparticles contribute having as a
consequence,

Tc = 2ωB exp

(
−(

2ωB
ωc

)
2−ηp
z

xν(2−ηp)

αpλ̃

)
. (5.30)

The outcomes are illustrated in Fig. (9,10). One notices in all cases that
the dome shapes are concave with a tendency for a flat ’maximum’. This is
automatically implied by our starting assumptions. When Tc is larger than T ∗

only the critical regime is ’felt’ by the pairing instability and when this criterium
is satisfied Tc does not vary, explaining the flat maximum. When Tc starts
to drop below T ∗ the superconductivity gets gradually depressed because the
Fermi-liquid regime increasingly contributes. Eventually, far out in the ’wings’,
one would still have superconductivity but with transition temperatures that
become exponentially small. The domes reflect just the enhancement of the
pairing instability by the critical fermion liquid relative to the Fermi-liquid.

The trends seen in Fig. 9 are easily understood. When the scaling dimension
αp is increasing, i.e. the pair operator is becoming more relevant, the maximum
Tc increases while not much happens with the width of the dome (Fig. 9a),
for the simple reason that the critical metal becomes more and more unstable
towards the superconductor. When the coupling strength λ increases one finds
in addition that the dome gets broader (Fig. 9b) because the ’contrast’ between
Fermi-liquid and quantum critical BCS is becoming less, illustrating the surprise
that especially weakly coupled quantum critical superconductors are much better
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than their traditional cousins. The same moral is found back when the Migdal
parameter is varied (Fig. 9c), illustrating that at very strong retardation the
differences are the greatest. Finally, in Fig. (9d) the evolution of the domes are
illustrated when one changes the exponents relating T ∗ to the reduced coupling
constant. We find that the dome changes from a quite ’box like’ appearance to
a ’peak’ pending the value of νz. The mechanism can be deduced from Fig. 10,
comparing the situation that the quantum critical ’wedge’ is concave (fig. 10a,
νz < 1) with a convex wedge (fig. 10b, νz > 1). Because T ∗ is varying more
slowly in he latter case with the reduced coupling constant, the quantum critical
regime becomes effectively broader with the effect that the quantum critical BCS
keeps control over a wider coupling constant range. The trends in Fig.’s (9, 10)
are quite generic and it would be interesting to find out whether by systematical
experimental effort these behaviors can be falsified or confirmed.

5.6 The upper critical field

Another experimental observable that should be quite revealing with regard to
scaling behavior is the orbital limiting upper critical field. The orbital limit-
ing field is set by the condition that the magnetic length becomes of order of
the coherence length, and the latter relates to the ’time like’ Tc merely by the
dynamical critical exponent z. In more detail, assuming a gap of the form [263],

∆(~r) = ∆0 exp

(
− r2

2l2

)
, (5.31)

the linearized gap equation in the presence of an orbital limiting magnetic field
becomes [27],

1

Ωd−1g
=

∫ ∞
r0

K0(r, β) exp

(
− r2

2l2

)
rd−1dr, (5.32)

where Ωd−1 is the volume of the d− 1-dimensional unit sphere, l is the magnetic
length related to the field by H = φ0/(2πl

2) where φ0 = hc/e, while K0(r, β) is
the real space pair susceptibility, which is the Fourier transform of χ′ [264, 265].
For free fermions, the real space pair susceptibility is (see eg. [264]),

K0(r, β) =

(
kF
2πr

)d−1
1

v2
Fβ

1

sinh( 2πr
βvF

)
, (5.33)

with a power law behavior K0(r, β) ∼ r−d at short distances or low temperatures
where r < βvF , and an exponential decay at large distances or high tempera-
ture. Let us consider critical fermions at T = 0, such that the pair suscepti-
bility has the power law form χ(ω) ∼ ω−(2−η)/z. The momentum dependence
can be determined by replacing ω by kz, such that χ(k) ∼ k−(2−η). It follows
that the real space pair susceptibility has the power law form K0(r, T = 0) ∼
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∫
χ(k) exp(i~k · ~r)dd~k ∼ r−(d−2+ηp). Associate with the retardation a short dis-

tance cutoff r0, and assume a scaling 2ωB/ωc = (r0/ac)
−z, where ac is the lattice

constant. The magnetic length acts as a long distance cutoff and therefore,

1

Ωd−1g
=

∫ l

r0

Ch
rd−2+ηp

rd−1dr, (5.34)

with the normalization factor Ch ' 2z(1 − αp)Ω
−(d−1)ωc

−1a
−(2−η)
c , so that

(1/Ωd−1)
∫
ac
Kcrit(r)r

d−1dr ' 1
ωc

, to give the right scale. The zero tempera-
ture upper critical field has then the same form as the one for Tc except for the
occurrence of z,

2πHc2(0)

φ0r
−2
0

'
(

1 +
1

λ̃

(
2ωB
ωc

)αp)− 2
2−ηp

, (5.35)

and it follows,

2πHc2(0)

φ0a
−2
c

'
(
Tc
ωc

)2/z

. (5.36)

In the BCS case one has Hc2(0)/(Bφ0k
2
F ) = (Tc/EF )2, with B ' 3.26 for d = 3

[266]. The moral is obvious: in Lorentz-invariant (z = 1) systems the relation
between Hc2 and Tc is the same as for standard BCS, but when the normal
state is governed by a universality class characterized by z > 1, Hc2(0) will
be amplified for a given Tc relative to conventional superconductors because
Tc/ωc, Tc/EF � 1.

Modeling the variation of Hc2 in the vicinity of the QPT as in the previous
paragraph, where the critical modes govern the short distance and BCS type be-
havior is recovered at large distance, while converting the cross-over temperature
to a length scale r∗, by T ∗/ωc = (r∗/ac)

−z, we find that Hc2 is determined by
the equation,

1

Ωd−1g
=

∫ r∗

r0

Ch
rd−2+ηp

rd−1dr +

∫ l

r∗

C′h
rd
rd−1dr, (5.37)

with the matching condition Ch = (r∗)−2+ηpC′h. We find that one just has to
replace the first two dynamic exponent z’s in Eq. (5.29) by 2 while an extra
factor of 2 has to be added to the second term in the exponent,

Hc2 =
φ0a
−2
c

2π
x2ν

(
2ωB
ωc

)2/z

exp

[
2

2− ηp

(
1− xν(2−ηp) − (

2ωB
ωc

)αp
xν(2−ηp)

λ̃

)]
.

(5.38)
In the region where only the Fermi-liquid quasiparticles contribute, the upper
critical field has still an exponential form,

Hc2 =
φ0a
−2
c

2π

(
2ωB
ωc

)2/z

exp

[
−2(

2ωB
ωc

)
2−ηp
z

xν(2−ηp)

(2− η)λ̃

]
. (5.39)
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Figure 5.11: The upper critical field Hc2 over H0 ≡ φ0a
−2
c /(2π) as a function

of the distance away from criticality (a) for various scaling exponent αp’s with
λ = 0.06, ωB/ωc = 0.1, ν = 1/2, z = 3, (b) for various glue strength λ’s with
ωB/ωc = 0.1, ν = 1/2, z = 3, αp = 5/6, (c) for various ν’s with λ = 0.06, ωB/ωc =
0.1, αp = 5/6, z = 3, (d) for various retardation ranges with λ = 0.06, ν =
1/2, z = 3, αp = 5/6.
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Figure 5.12: (a)Illustration of the different behavior of Tc and upper critical field
Hc2 as the quantum critical point is approached. Hc2 increases much faster than
Tc. Thus for a small Tc one can still have a large upper critical field. Here we
plotted using the parameters λ = 0.05, ωB/ωc = 0.1, ν = 1/2, z = 3, η = −1.
(b) The difference Hc2/H0 − Tc/ωc as a function of the distance away from
the critical point for different dynamical exponent z’s. Here H0 ≡ φ0a

−2
c /(2π),

λ = 0.06, ωB/ωc = 0.1, νz = 0.5, αp = 0.4. For z = 2, the difference is 0. For
z = 3, 4, the difference is positive and increases rapidly when approaching the
critical point. For the case with z = 1, the difference is negative.
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The dependence of Hc2 on various parameters is shown in Fig. 11, and one
infers that Hc2 behaves in ways very similar Tc (Fig. 10). The interesting part
is illustrated in Fig.(12b) where we plot Hc2/H0 − Tc/ωc as a function of the
distance away from the critical point for different dynamical exponent z’s, keeping
all other quantities fixed, defining H0 ≡ φ0a

−2
c /(2π). One infers that when z > 2,

Hc2/H0 − Tc/ωc increases rapidly when approaching the critical point.

Using a ’ferromagnetic’ dynamical exponent z = 3 and a Grüneisen exponent
1/νz = 2/3 inspired on recent experiments [267,268] as well as theoretical consid-
erations [143,144,179,186,258,259] we obtain the results in Fig. (12a). Compared
to Tc, Hc2 peaks much more strongly towards the QCP. This is in remarkable
qualitative agreement with the recent results by Levy et al. on the behavior of
the orbital limiting field in URhGe exhibiting a ferromagnetic QCP [234], where
the highest Tc is about 0.5 K [118], while the upper critical field exceeds 28 T.
It has also been observed in noncentrosymmetric heavy fermion superconductors
CeRhSi3 [269, 270] and CeIrSi3 [271, 272], where the Pauli limiting effect is sup-
pressed due to lack of inversion center of the crystal structures and the orbital
limiting effect plays the main role of pair breaking. Near the quantum critical
points, Hc2 can be as high as about 30 K, although the zero field Tc is of order
1K [273, 274]. This class of experiments can be understood in our framework
as resulting from the change of the scaling relation between Hc2 and Tc. (See
also [275] for a tentative explanation from the customary Hertz-Millis-Moriya
perspective.)

5.7 Conclusions

Perhaps the real significance of the above arguments is no more than to supply
a cartoon, a metaphor to train the minds on thinking about pairing instabilities
in non Fermi-liquids. This scaling theory has the merit of being mathematically
controlled, given the starting assumptions of the ’retarded glue’ and conformal
invariance. The Migdal parameter plays an identical role as in conventional BCS
theory to yield a full control over the glue-fermion system dynamics, while we
trade in Fermi-liquid principle for the even greater powers of scale invariance. The
outcomes are gap and Tc equations where the standard BCS/Eliasberg equations
show up as quite special cases associated with the marginality of the pair oper-
ators of the Fermi gas. The difficulty is of course to demonstrate that these
starting assumptions have dealings with either nature itself and/or microscopic
theories of electron systems where they should show up as emergent phenom-
ena at low energy. However, the same objections apply to much of the current
thinking regarding superconducting instabilities at quantum critical points with
their implicit referral to a hidden Fermi gas. In such considerations there is
an automatism to assume that eventually the superconductivity has to be gov-
erned by Eliashberg type equations. At the least, the present analysis indicates
that such equations are not divine as long as the Fermi-liquid is not detected di-
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rectly. Stronger, in line with the present analysis one might wish to conclude that
superconducting instabilities will be generically more muscular in any non-Fermi-
liquid. The Fermi-liquid is singular in the regard that its degrees of freedom are
stored in the Fermi-sea, and this basic physics is responsible for the exponen-
tial smallness of the gap in terms of the coupling constant. This exponential
smallness should be alien to any non Fermi-liquid.

How about experiment? Scaling theories have a special status in physics be-
cause they guide the analysis of experimental data in terms of a minimal a-priori
knowledge other than scale invariance. The present theory has potentially the
capacity to produce high quality empirical tests in the form of scaling collapses.
However, there is a great inconvenience: one has to be able to vary the glue
coupling strength, retardation parameters and so forth, at will to test the scaling
structure of the equations. These are parameters associated with the materi-
als themselves, and one runs into the standard difficulty that it is impossible to
vary these in a controlled manner. What remain are the rather indirect strate-
gies discussed in the last two sections: find out whether hidden relations exist
between the detailed shape of the superconducting and the crossover lines; are
there scaling relations between Hc2 and Tc as discussed in the last section? We
look forward to experimental groups taking up this challenge.

There appears to be one way to interrogate our starting assumptions in a
very direct way by experiment. Inspired by theoretical work by Ferrell [276]
and Scalapino [277], Anderson and Goldman showed quite some time ago [278]
that the dynamical pair susceptibility can be measured directly using the AC
Josephon effect – see also [279, 280], for a recent review see ref. [281]. It would
be interesting to find out whether this technique can be improved to measure the
pair susceptibility over the large frequency range, ’high’ temperatures and high
resolution to find out whether it has the conformal shape. It appears to us that
the quantum critical heavy fermion superconductors offer in this regard better
opportunities than e.g. the cuprates given their intrinsically much smaller energy
scales. This will be the topic of next chapter.

In conclusion, exploiting the motives of retardation and conformal invariance
we have devised a phenomenological scaling theory for superconductivity that
generalizes the usual BCS theory to non Fermi-liquid quantum critical metals.
The most important message of this simple construction is that it demonstrates
the limitations of the usual Fermi-liquid BCS theory. The exponential smallness
of the gap in the coupling is just reflecting the ’asymptotic freedom’ of the Fermi-
liquid, and this is of course a very special case within the landscape of scaling
behaviors. Considering the case that the pair operator is relevant, we find instead
an ’algebraic’ gap equation revealing that at weak couplings and strong retarda-
tion the rules change drastically: as long as the electronic UV cut-off and the glue
energy are large, one can expect high Tc’s already for quite weak electron-phonon
like couplings. If our hypothesis turns out to be correct, this solves the problem
of superconductivity at a high temperature although it remains to be explained
why quantum critical normal states can form with the required properties. It
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is however not straightforward to device a critical test for our hypothesis. The
problem is the usual one that pair susceptibilities, λ’s or α2F ’s, and so forth can-
not be measured directly and one has to rely on imprecise modelling. However, it
appears to us that ’quantum critical BCS superconductivity’ works so differently
from the Fermi-liquid case that it eventually should be possible to nail it down
in the laboratory. We hope that the sketches in the above will form a source of
inspiration for future work.


