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Cha p t e r 4

Stability of Quantum Critical
Points: the Bosonic Story

4.1 Introduction

In this chapter, we start our exploration of the idea of quantum criticality. Much
of the attention on quantum criticality has been focused on the finite tempera-
ture scaling properties [40, 80, 81]. Temperature is the only relevant scale in the
quantum critical region above the QCP, bounded by the crossover line T ∗ ∼ |r|νz.
The parameter r measures the distance to the QCP, ν is the correlation-length
exponent in ξ ∼ rν and z is the dynamical exponent in ξτ ∼ ξz. With the corre-
lation length ξ and correlation time ξτ much larger than any other scale of the
system, power law behavior is expected for many physical observables, e. g. the
specific heat, magnetic susceptibility, and most notably resistivity. Clear devi-
ations from the Fermi liquid predictions are experimentally detected, and these
phases are commonly termed non-Fermi liquids. In many systems, the anomalous
finite temperature scaling properties are asserted to result from the underlying
zero temperature QCPs.

In this chapter, we would like to emphasize another aspect of quantum crit-
icality, namely that it serves as a driving force for new exotic phenomena at
extremely low temperatures and in extremely clean systems. One possibility is
the appearance of new phases around the QCPs. It has been found in numerous
experiments as one lowers temperature, seemingly inevitably in all the systems
available, new phases appear near the QCP. Most commonly observed to date is
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the superconducting phase. The phenomenon of a superconducting dome enclos-
ing the region near the QCP is quite general (see Fig. 1). It has been identified in
many heavy fermion systems [23,25,82], plausibly also in cuprates [83], even pos-
sibly in pnictides [84–89], and probably in organic charge-transfer salts [90–92].
Other examples include the nematic phase around the metamagnetic QCP in the
bilayer ruthenate Sr3Ru2O7 [93–96], the origin of which is still under intense de-
bate [97–101]. The emerging quantum paraelectric - ferroelectric phase diagram
is also very reminiscent [102, 103], as is the disproportionation-superconducting
phase in doped bismuth oxide superconductors [104–109].
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Figure 4.1: Illustration of the competing phases and superconducting dome. Here
for concreteness, we consider the ordered phase to be an antiferromagnetic phase.
x is the tuning parameter. It can be pressure, magnetic field or doping. The
superconducting temperature usually has the highest value right above the QCP.

It has also been discovered recently that, as samples are becoming cleaner, on
the approach to QCP we encounter first order transitions, and the new phases
near the QCP are usually inhomogeneous and exhibit finite wavevector order-
ings (see [26, 110, 111] and references therein). For example, the heavy fermion
compound CeRhIn5 orders antiferromagnetically at low temperature and ambi-
ent pressure. As pressure increases, the Neel temperature decreases and at some
pressure the antiferromagnetic phase is replaced by a superconducting phase
through a first-order phase transition. There are also evidences for a compet-
itive coexistence of the two phases within the antiferromagnetic phase, as in
some organic charge-transfer superconductor precursor antiferromagnetic phases.
Such coexistence was also observed in Rh-doped CeIrIn5. The heavy fermion su-
perconductor CeCoIn5 has the unusual property that when a magnetic field is
applied to suppress superconductivity, the superconducting phase transition be-
comes first-order below T0 ' 0.7K. For the superconducting ferromagnet UGe2,
where superconductivity exists within the ferromagnetic state, the two magnetic
transitions (ferromagnetic to paramagnetic and large-moment ferromagnetic to
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small-moment ferromagnetic) are both first order [112–114]. Other examples
of continuous phase transitions turning first-order at low temperatures include
CeRh2Si2 [115,116], CeIn3 [117], URhGe [118], ZrZn2 [119] and MnSi [120]. The
prevailing point of view seems to be that this happens only in a few cases and
these are considered exceptions. Yet we are facing a rapidly growing list of these
”exceptions”, and we take the view here that they rather represent a general
property of QCPs.

The point is that, on approach to the QCP, an interaction that was deemed
irrelevant initially, takes over and dominates. For example it has been proposed
recently that the superconducting instability, which is marginal in the usual Fermi
liquids, becomes relevant near the QCP and leads to a high transition temper-
ature [121]. Actually these instabilities are numerous and can vary, depending
on the system at hand. However there seems to be a unifying theme of those
instabilities. We suggest that QCPs are unstable precisely for the reasons we
are interested in these points: extreme softness and extreme susceptibility of the
system in the vicinity of QCPs. We regard the recently discovered first order
transitions as indicators of a more fundamental and thus powerful phsyics. We
are often prevented from reaching quantum criticality, and often the destruction
is relatively trivial and certainly not as appealing and elegant as quantum crit-
icality. We can draw an analogy from gravitational physics, where the naked
singularities are believed to be prevented from happening due to many kinds of
relevant instabilities. This is generally known as the ”cosmic censorship conjec-
ture” [122]. The recently proposed AdS/CFT correspondence [123–125], which
maps a non-gravitational field theory to a higher dimensional gravitational the-
ory, adds more to this story. Here researchers have begun to realize that the
Reissner-Nordstrom black holes in AdS space, which should have a macroscopic
entropy at zero temperature, are unstable to the spontaneous creation of particle-
antiparticle pairs, and tend to collapse to a state with lower entropy [126,127].

There have appeared in the literature scattered examples of first-order quan-
tum phase transitions at the supposed-to-be continuous QCPs [80,128–134], how-
ever it appears that the universality of this phenomenon is not widely appreciated.
This universality is the main motivation for our work. We will systematically
study the different possibilities for converting a continuous QPT to first order.

The first striking example how fluctuations of one of the order parameters
can qualitatively change the nature of the transition comes from the Coleman-
Weinberg model [135], where they showed how gauge fluctuations of the charged
field introduce a first order transition. In this work it was shown that in dimen-
sion d = 3, for any weak coupling strength, one develops a logarithmic singularity,
and therefore the effective field theory has a first-order phase transition. Subse-
quently, this result was extended to include classical gauge field fluctuations by
Halperin, Lubensky and Ma [136], where a cubic correction to the free energy
was found. Nontrivial gradient terms can also induce an inhomogeneous phase
and/or glassy behavior [137].

A prototypical example for the competing phases and superconducting dome
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is shown schematically in Fig.1. Below, we apply the renormalization group (RG)
and scaling analysis to infer the stability if the QCP as a result of competition.
We find in our analysis that the QCP is indeed unstable towards a first order
transition as a result of competition. Obviously details of the collapse of a QCP
and the resulting phase diagram depend on details of the nature of the fluctuating
field and details of the interactions. We find that the most relevant parameters
that enter into criterion for stability of a QCP are the strength of interactions be-
tween competing phases: we take this interaction to be repulsive between squares
of the competing order parameters. When the two order parameters break dif-
ferent symmetries, the coupling will be between the squares of them. Another
important factor that controls the phase diagram is the dynamical exponents z of
the fields. The nature of the competition also depends on the classical or quan-
tum character of the fields. Here by classical we do not necessarily mean a finite
temperature phase transition, but rather that the typical energy scale is above
the ultraviolet cutoff, and the finite frequency modes of the order parameters
can be ignored, so that a simple description in terms of free energy is enough to
capture the physics. We analyzed three possibilities for the competing orders:

i) classical + classical. Here we found that interactions generally reduce the
region of coexistence, and when interaction strength exceeds some critical value,
the second-order phase transitions become first order.

ii) classical + quantum. Here the quantum field is integrated out, giving rise
to a correction to the effective potential of the classical order parameter. For a
massive fluctuating field with d + z 6 6, or a massless one with d + z 6 4, the
second-order quantum phase transition becomes first order.

iii) quantum + quantum. Here RG analysis was employed, and we found
that in the high dimensional parameter space, there are generally regions with
runaway flow, indicating a first-order quantum phase transition.

It has been proposed recently that alternative route to the breakdown of
quantum criticality is through the basic collapse of Landau-Wilson paradigm of
conventional order parameters and formation of the deconfined quantum critical
phases ( [138, 139]). This is a possibility that has been discussed for specific
models and requires a different approach than the one taken here. We are not
addressing this possibility.

The plan of this chapter is as follows. In section 4.2, we consider coupling
two classical order parameter fields together. Both fields are characterized by
their free energies and Landau mean field theory will be used. In section 4.3,
we consider coupling a classical order parameter to a quantum mechanical one,
which can have different dynamical exponents. The classical field is described
by its free energy and the quantum field by its action; the latter is integrated
out to produce a correction to the effective potential for the former. In section
4.4, we consider coupling two quantum mechanical fields together. With both
fields described by their actions, we use RG equations to examine the stability
conditions. In particular, we study in detail the case where the two coupled
order parameters have different dynamical exponents, which, to our knowledge,
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has not been considered previously. In the conclusion section, we summarize
our findings. Details of the RG calculation for two quantum fields with different
dynamical exponents are included in the Appendix 4.6.

4.2 Two competing classical fields

We consider in this section two competing classical fields. Examples are the
superconducting order and antiferromagnetic order in CeRhIn5 and Rh-doped
CeIrIn5, and the superconducting order and ferromagnetic order near the large-
moment to small-moment transition in UGe2. We will follow the standard text-
book approach, and this case is presented as a template for the more complex
problems studied later on.

We first study the problem at zero temperature. For simplicity, both of them
are assumed to be real scalars. The free energy of the system consists of three
parts, the two free parts Fψ, FM and the interacting part Fint:

F =Fψ + FM + Fint;

Fψ =
ρ

2
(∇ψ)2 − αψ2 +

β

2
ψ4;

FM =
ρM
2

(∇M)2 − αMM2 +
βM
2
M4;

Fint =γψ2M2.

(4.1)

Here, by changing α, αM , the system is tuned through the phase transition points.
When the two fields are decoupled, with γ = 0, there will be two separated
second-order phase transitions. Assume the corresponding values of the tuning
parameter x at these two transition points are x1 and x2, we can parameterize
α, αM as α = a(x− x1) and αM = aM (x2 − x), where a, aM are constants.

We would like to know the ground state of the system. Following the
standard procedure, we first find the homogeneous field configurations satis-
fying ∂F

∂ψ = ∂F
∂M = 0, and then compare the corresponding free energy. It

is easy to see that the above equations have four solutions, with (|ψ|, |M |) =
(0, 0), (0,

√
αM/βM ), (

√
α/β, 0), (ψ∗,M∗), where

αψ2
∗ =

γ′ − β′M
γ′2 − β′β′M

,

αMM
2
∗ =

γ′ − β′

γ′2 − β′β′M
,

(4.2)

and the rescaled parameters are γ′ = γ/ααM , β
′ = β/α2, β′M = βM/α

2
M . When

γ = 0, the fourth solution reduces to (ψ∗,M∗) = (
√
α/β,

√
αM/βM ), with the

two orders coexisting but decoupled. We are interested in the case where the two
orders are competing, thus a relatively large positive γ.
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Figure 4.2: Illustration of the mean field phase diagram for two competing orders.
Here for concreteness we consider antiferromagnetic and superconducting orders.
The two orders coexist in the yellow region, whose area shrinks as the coupling
increases from left to right. The left figure has γ = 0, the central one has
0 < γ <

√
ββM , and the right one has γ >

√
ββM . When γ exceeds the critical

value
√
ββM , the two second-order phase transition lines merge and become first

order (the thick vertical line).

For x1 < x < x2, we have α > 0, αM > 0. The necessary condition for the
existence of the fourth solution is γ′ > β′, β′M ,

√
β′β′M or γ′ < β′, β′M ,

√
β′β′M .

In this case, the configuration (0, 0) has the highest free energy F [0, 0] = 0. For
the configuration (ψ∗,M∗) with coexisting orders to have lower free energy than
the two configurations with single order, one needs to have γ′ <

√
β′β′M , which

reflects the simple fact that when the competition between the two orders is too
large, their coexistence is not favored. Thus the condition for the configuration
(ψ∗,M∗) to be the ground state of the system is γ′ < β′ and γ′ < β′M . If
γ′ > min{β′, β′M}, one of the fields has to vanish.

Next we observe that, for x near x1, β′M remains finite, α ∼ (x− x1), and γ′

diverges as 1/(x − x1), while β′ diverges as 1/(x − x1)2. So the lowest energy
configuration is ψ = 0, |M | =

√
αM/βM . Similarly, near x2, the ground state is

(
√
α/β, 0). The region with coexisting orders shrinks to

γaMx2 + βMax1

γaM + βMa
< x <

γax1 + βaMx2

γa+ βaM
. (4.3)

For γ <
√
ββM , this region has finite width. In this region, (0, 0) is the global
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maximum of the free energy, (0,
√
αM/βM ), (

√
α/β, 0) are saddle points, and

(ψ∗,M∗) is the global minimum. The phase with coexisting order is sandwiched
between the two singly ordered phases, and the two phase transitions are both
second-order. The shift in spin-density wave ordering and Ising-nematic ordering
due to a nearby competing superconducting order has been studied recently by
Moon and Sachdev [140, 141], where they found that the fermionic degrees of
freedom can play important roles. The competition of magnetism and supercon-
ductivity in the iron arsenides was also investigated by Fernandes and Schmalian
in [142]. They found that the phase diagram is sensitive to the symmetry of
the pairing wavefunctions. It would be interesting to generalize our formalism to
include all these effects.

For γ >
√
ββM , this intermediate region with coexisting orders vanishes,

and the two singly ordered phases are separated by a first-order quantum phase
transition. The location of the phase transition point is determined by equating
the two free energies at this point,

F

[√
α(xc)

β
, 0

]
= F

[
0,

√
αM (xc)

βM

]
, (4.4)

which gives xc = (x2 + Ax1)/(1 + A), with A = (a/aM )
√
βM/β. The slope of

the free energy changes discontinuously across the phase transition point, with a
jump

δF (1) ≡

∣∣∣∣∣
(
dF

dx

)
x+
c

−
(
dF

dx

)
x−c

∣∣∣∣∣ =
aaM√
ββM

(x2 − x1). (4.5)

The size of a first-order thermal phase transition can be characterized by
the ratio of latent heat to the jump in specific heat in a reference second-order
phase transition [136]. A similar quantity can be defined for a quantum phase
transition, where the role of temperature is now played by the tuning parameter
x. We choose as our reference point γ = 0, where the two order parameters
are decoupled. For x < x1, one has d2F/dx2 = −a2

M/βM ; for x > x2, one has
d2F/dx2 = −a2/β; and d2F/dx2 = −a2

M/βM − a2/β for x1 < x < x2. We take
the average of the absolute value of the two jumps to obtain

δF (2) =
1

2
(a2
M/βM + a2/β). (4.6)

So the size of this first-order quantum phase transition is

δx =
δF (1)

δF (2)
=

2

√
β̃β̃M

β̃ + β̃M
(x2 − x1), (4.7)

with β̃ = β/a2 and β̃M = βM/a
2
M . It is of order x2−x1, when β̃ and β̃M are not

hugely different.
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The above consideration can be generalized to finite temperature, by including
the temperature dependence of all the parameters. Specially, there exists some
temperature T ∗, where x1(T ∗) = x2(T ∗). In this way we obtain phase diagrams
similar to those observed in experiments (see Fig. 4.2).

4.3 Effects of quantum fluctuations

In this section, we consider coupling an order parameter ψ to another field φ,
which is fluctuating quantum mechanically. The original field ψ is still treated
classically, meaning any finite frequency modes are ignored. For the quantum
fields, in the spirit of Hertz-Millis-Moriya [143–145], we assume that the fermionic
degrees of freedom can be integrated out, and we will only deal with the bosonic
order parameters. This model may, for example, explain the first-order ferromag-
netic to paramagnetic transition in UGe2, where the quantum fluctuations of the
superconducting order parameter are coupled with the ferromagnetic order pa-
rameter, which can be regarded as classical near the superconducting transition
point.

We will integrate out the quantum field to obtain the effective free energy of
a classical field. The partition function has the form

Z[ψ(r)] =

∫
Dφ(r, τ) exp

(
−Fψ
T
− Sφ − Sψφ

)
. (4.8)

The free energy is of the same form as in the previous section with Fψ =
∫
ddrFψ.

Thus, in the absence of coupling to other fields, the system goes through a second-
order quantum phase transition as one tunes the control parameter x across its
critical value. We consider a simple coupling

Sψφ = g

∫
ddrdτψ2φ2. (4.9)

The action of the φ field depends on its dynamical exponent z. We notice that
such classical + quantum formalism has been used to investigate the competing
orders in cuprates in [146].

The saddle point equation for ψ reads

δ lnZ[ψ(r)]

δψ(r)
= 0, (4.10)

which gives [
−α+ βψ2(r)− ρ

2
∇2 + g〈φ2(r)〉

]
ψ(r) = 0. (4.11)

Here we have defined the expectation value,

〈φ2(r)〉 =
1

β

∫
Dφ(r′, τ ′)

∫ β

0

dτφ2(r, τ) exp (−Sφ − Sψφ) . (4.12)
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It can also be written in terms of the different frequency modes,

〈φ2(r)〉 =T
∑
ωn

〈φ(r, ωn)φ(r,−ωn)〉

=T
∑
ωn

∫
Dφ(r′, νs)φ(r, ωn)φ(r,−ωn) exp (−Sφ − Sψφ) .

(4.13)

The quadratic term in Sφ is of the form

S
(2)
φ =

∑
νs

∫
ddr′

∫
ddr′′φ(r′, νs)χ

−1
0 (r′, r′′, νs)φ(r′′,−νs), (4.14)

or more conveniently, in terms of momentum and frequency,

S
(2)
φ =

∑
νs

∫
ddk

(2π)d
φ(k, νs)χ

−1
0 (k, νs)φ(−k,−νs). (4.15)

So in the presence of translational symmetry, we find

〈φ2〉 = T
∑
ωn

∫
ddk

(2π)d
1

χ−1
0 (k, ωn) + gψ2

. (4.16)

This leads to the 1-loop correction to the effective potential for ψ, determined by

δV
(1)
eff [ψ]

δψ
= 2g〈φ2〉ψ. (4.17)

So far we have been general in this analysis. Further analysis requires us to
make more specific assumptions about the dimensionality and dynamical expo-
nents.

When the φ field has dynamical exponent z = 1, its propagator is of the form

χ0(k, ωn) =
1

ω2
n + k2 + ξ−2

. (4.18)

A special case is a gauge boson, which has zero bare mass, and thus ξ → ∞.
This problem has been studied in detail by Halperin, Lubensky and Ma [136] for
a classical phase transition (see also [147]), and by Coleman and Weinberg [135]
for relativistic quantum field theory. Other examples are critical fluctuations
associated with spin-density wave transitions and superconducting transitions
in clean systems. We also note that Continentino and collaborators have used
the method of effective potential to investigate some special examples of the
fluctuation-induced first order quantum phase transition [80,129–132].

Let us consider T = 0, for which the summation T
∑
ωn

can be replaced by

the integral
∫
dω/(2π). We then get for the one-loop correction to the effective

potential

δV
(1)
eff [ψ]

δψ
= 2gψ

∫
dω

2π

∫
ddk

(2π)d
1

ω2 + k2 + ξ−2 + gψ2
. (4.19)
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Figure 4.3: Schematic illustration of the fluctuation-induced first-order phase
transition. Here, for concreteness, we consider ferromagnetic and superconduct-
ing orders. The ferromagnetic order is regarded as classical, while the super-
conducting one as quantum mechanical. At low temperatures, the second-order
ferromagnetic to paramagnetic phase transition becomes first order (the thick
vertical line), due to fluctuations of the superconducting order parameter.

Carrying out the frequency integral, we obtain for d = 3,

δV
(1)
eff [ψ]

δψ
=

gψ

2π2

∫ Λ

0

dk
k2√

k2 + ξ−2 + gψ2
, (4.20)

where an ultraviolet cutoff is imposed. Integrating out momentum gives

δV
(1)
eff [ψ]

δψ
=

gψ

4π2

[
Λ
√

Λ2 + ξ−2 + gψ2 − (ξ−2 + gψ2) ln

(
Λ +

√
Λ2 + ξ−2 + gψ2√
ξ−2 + gψ2

)]
,

(4.21)
which can be simplified as

δV
(1)
eff [ψ]

δψ
=

gψ

4π2

[
Λ2 +

1

2
(ξ−2 + gψ2)− (ξ−2 + gψ2) ln

(
2Λ√

ξ−2 + gψ2

)]
.

(4.22)
Combined with the bare part,

V
(0)
eff (ψ) = −αψ2 +

1

2
βψ4, (4.23)

we get the effective potential to one-loop order,

Veff(ψ) = −α̂ψ2 +
1

2
β̂ψ4 − 1

16π2
(ξ−2 + gψ2)2 ln

(
2Λ√

ξ−2 + gψ2

)
, (4.24)
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with the quadratic and quartic terms renormalized by α̂ = α − g(4Λ2 +

ξ−2)/(32π2) and β̂ = β + 3g/(32π2). When φ field is critical with ξ → ∞,

the third term is of the well-known Coleman-Weinberg form ψ4 ln(2Λ/
√
gψ2),

which drives the second-order quantum phase transition to first order.
For ξ large but finite, we can expand the third term as a power series in

ξ−2/(gψ2), and the effective potential is of the form

Veff(ψ) = −ᾱψ2 +
1

2
β̄ψ4 − 1

16π2
(2ξ−2gψ2 + g2ψ4) ln

2Λ√
gψ2

. (4.25)

In addition to the Coleman-Weinberg term, there is another term of the form
ψ2 lnψ, and again we have also a first-order phase transition.

To study the generic case where the φ field is massive, we rescale the ψ field
and cutoff, defining

u2 ≡ gψ2

ξ−2
, Λ̃ ≡ 2Λ

ξ−1
. (4.26)

The rescaled effective potential takes the form

Ṽeff(u) = −Ãu2 +
1

2
B̃u4 − (1 + u2)2 ln

(
Λ̃√

1 + u2

)
, (4.27)

which can be further simplified as

V̂eff(u) = −Au2 +
1

2
Bu4 + (1 + u2)2 ln(1 + u2). (4.28)

The above potential is plotted in Fig. 4.3. We notice that with large enough
cutoff Λ, one generally has B = B̃ − ln Λ̃ large and negative. For A < 1, u = 0
is a local minimum. There are also another two local minima with u2 ≡ y a
positive solution of equation

2(1 + y) ln(1 + y) + (1 +B)y + 1−A = 0. (4.29)

So we generally have a first-order quantum phase transition in this case (see Fig.
3 for a schematic picture).

With dynamical exponent z = 2, the propagator of φ field is

χ0(k, ωn) =
1

|ωn|τ0 + k2 + ξ−2
. (4.30)

Examples are charge-density-wave and antiferromagnetic fluctuations. In the
presence of dissipation, superconducting transitions also have dynamical expo-
nent z = 2.

So the one-loop correction to the effective potential at zero temperature be-
comes

δV
(1)
eff [ψ]

δψ
= 2gψ

∫
dω

2π

∫
ddk

(2π)d
1

|ω|τ0 + k2 + ξ−2 + gψ2
. (4.31)
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Figure 4.4: The effective potential as a function of the rescaled field u for various
parameters in the case d = 3, z = 1. Here Veff(u) = −Au2 + 1

2Bu
4 + (1 +

u2)2 ln(1 + u2), with B = −5, and A = −0.25,−0.116, 0 from top to bottom.
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Figure 4.5: The effective potential as a function of the rescaled field u for (a)
d = 3, z = 2, where we have plotted Veff(u) = −Au2 + 1

2Bu
4 + (1 + u2)5/2 − 1,

with B = −8, and A = −3,−2.597,−2.2 from top to bottom; (b) d = 3, z =
3, where Veff(u) = −Au2 + 1

2Bu
4 + (1 + u2)3 ln(1 + u2), with B = −10, and

A = 0.1, 0.208, 0.3 from top to bottom; (c) d = 1, z = 2, where we have plotted
Veff(u) = −Au2+ 1

2Bu
4−(1+u2)3/2+1, with B = 0.1, and A = −5.3,−5.1413,−5

from top to bottom; (d) d = 1, z = 1, where we have plotted Veff(u) = −Au2 +
1
2Bu

4 − (1 + u2) ln(1 + u2), with B = 0.3, and A = −1.45,−1.412,−1.39 from
top to bottom. All these plots are of similar shape. However, we notice that the
scales are quite different.
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The momentum integral is cutoff at |k| = Λ, and correspondingly the frequency
integral is cutoff at |ω|τ0 = Λ2. First, we integrate out frequency to obtain

δV
(1)
eff [ψ]

δψ
=

gψ

π3τ0

∫ Λ

0

dkk2 ln

(
1 +

Λ2

k2 + ξ−2 + gψ2

)
, (4.32)

and then integrate out momentum, with the final result

δV
(1)
eff [ψ]

δψ
=

gψ

3π3τ0

[
Λ3 ln

(
ξ−2 + gψ2 + 2Λ2

ξ−2 + gψ2 + Λ2

)
+ 2Λ3

+2(ξ−2 + gψ2)3/2 arctan
Λ√

ξ−2 + gψ2

−2(ξ−2 + gψ2 + Λ2)3/2 arctan
Λ√

ξ−2 + gψ2 + Λ2

]
.

(4.33)

Up to order Λ0, this is

δV
(1)
eff [ψ]

δψ
=

gψ

3π3τ0

[
Λ3
(

2 + ln 2− π

2

)
+

3π

4
Λ(ξ−2 + gψ2) + π(ξ−2 + gψ2)3/2

]
.

(4.34)
The first two terms just renormalize the bare α and β. When the φ field is critical,
ξ → ∞, the third term becomes of order ψ5, and is thus irrelevant. When ξ is
large but not infinite, we get the effective potential

Veff(ψ) = −ᾱψ2 +
1

2
β̄ψ4 +

g3/2ξ−2

15π2τ0
|ψ|3 +

g5/2

15π2τ0
|ψ|5. (4.35)

In addition to the ψ5 term there is another term of order ψ3, which may drive
the second-order quantum phase transition to first order.

Let us consider a massive φ field. Carrying out the same rescaling as we made
for z = 1, we get the rescaled effective potential of the form

V̂eff(u) = −Au2 +
1

2
Bu4 + (1 + u2)5/2. (4.36)

For large negative B, we obtain a first-order quantum phase transition (see Fig.
4.5(a)).

When the φ field has dynamical exponent z = 3, e.g. for ferromagnetic
fluctuations, its propagator is

χ0(k, ωn) =
1

γ |ωn|k + k2 + ξ−2
. (4.37)

Thus the one-loop correction to the effective potential at T = 0 is determined
from

δV
(1)
eff [ψ]

δψ
= 2gψ

∫
dω

2π

∫
ddk

(2π)d
1

γ |ω|k + k2 + ξ−2 + gψ2
, (4.38)
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with a momentum cutoff at |k| = Λ, and a frequency cutoff at γ|ω| = Λ3. The
frequency integral gives

δV
(1)
eff [ψ]

δψ
=

gψ

4π4γ

∫ Λ

0

dkk3 ln

[
1 +

Λ3

k3 + k(ξ−2 + gψ2)

]
, (4.39)

and the momentum integral further leads to the result

Veff(ψ) = −ᾱψ2 +
1

2
β̄ψ4 +

1

96π4γ
(ξ−2 + gψ2)3 ln(ξ−2 + gψ2). (4.40)

When φ is critical, ξ → ∞, the third term is of the form ψ6 lnψ, which is
irrelevant. For finite ξ, there is also a term of the form ψ4 lnψ, which will drive
the second-order quantum phase transition to first order.

For general ξ, the rescaled effective potential reads

V̂eff(u) = −Au2 +
1

2
Bu4 + (1 + u2)3 ln(1 + u2). (4.41)

We define x ≡ u2. To produce the energy barrier in a first-order transition,
dV̂eff/dx = 0 needs to have two distinct positive solutions. For A a freely tunable
parameter, the condition for −Bx + A = f(x) ≡ (1 + x)2(1 + 3 log(1 + x)) to
have two distinct positive solutions is that −B > min [f ′(x)] = f ′(0) = 5. So
when the renormalized parameter satisfies the condition B < −5, we obtain a
first-order quantum phase transition (see fig. 4.5(b)).

For a dirty metallic ferromagnet, the dynamical exponent is z = 4. In this
case, with the propagator

χ0(k, ωn) =
1

γ′ |ωn|k2 + k2 + ξ−2
, (4.42)

the rescaled effective potential reads

V̂eff(u) = −Au2 +
1

2
Bu4 − (1 + u2)7/2. (4.43)

Higher order terms need to be included at large u to maintain stability. When
the φ field is critical, the third term is of order φ7, which is irrelevant. When the
φ field is massive but light, there will also be a term of order φ5 which is again
irrelevant. For general φ, in order for u = 0 to be a local minimum, we need to
have A < −7/2. In this case, V̂ ′eff(u) = 0 has only one positive solution. Thus we
have a second-order quantum phase transition.

We can calculate the fluctuation-induced effective potential in other dimen-
sions in the same way as above. For d = 2, z = 1, and also for d = 1, z = 2, with

the rescaled field defined by u2 ≡ gψ2

ξ−2 , the rescaled effective potential is of the
form

V̂eff(u) = −Au2 +
1

2
Bu4 − (1 + u2)3/2. (4.44)
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When the φ field is critical, the third term becomes of order −|ψ|3, of the
Halperin-Lubensky-Ma type, thus the quantum phase transition is first-order.
Generally when A < −1.5, AB > −0.5, B(A+B) > −0.25, u = 0 will be a local
minimum of the rescaled effective potential V̂eff , and there are two other local
minima at nonzero u. Hence there is again a first-order quantum phase transition
(see Fig. 4.5(c)). Otherwise there will be a second-order phase transition.

The effective potential in the case with d = 2, z = 2, and d = 1, z = 3 turns
out be of the same form as that of d = 3, z = 1, as expected from the fact that
both cases have the same effective dimension d+ z = 4. The case d = 2, z = 3 is
the same as d = 3, z = 2.

For d = 1, z = 1, the effective potential takes the form

V̂eff(u) = −Au2 +
1

2
Bu4 − (1 + u2) ln(1 + u2), (4.45)

which leads to a first-order phase transition for B < 1 (see Fig. 4.5(d)). The
third term reduces to ψ2 lnψ when φ is critical. In this case the quantum phase
transition is always first order for any positive value of B.

In the table below, we list the most dangerous terms generated from integrat-
ing out the fluctuating fields. The second row in the table corresponds to the
case where φ is critical or massless, and the third row has φ massive.

d+ z 2 3 4 5 6 7
massless ψ2 lnψ ψ3 ψ4 lnψ ψ5 ψ6 lnψ ψ7

massive (ψ2 + 1) lnψ ψ3 + ψ ψ2 lnψ ψ3 ψ4 lnψ ψ5

One can clearly see that in the massless case, the fluctuations are irrelevant
when d + z > 5, while in the massive case, they are irrelevant for d + z > 7.
Otherwise the second-order quantum phase transition can be driven to first order.
The order of the correction is readily understood from the general structure
of the integrals. With effective dimension d + z, in the massless case one has
δV/δψ ∼ ψ

∫
dd+zk(1/k2). Since k2 ∼ ψ2, this gives the correct power δV ∼

ψd+z. Replacing gψ2 by gψ2 + ξ−2 and then carrying out the expansion in
ξ−2/gψ2, one gets for the massive case a reduction by 2 in the power. We
also notice the even/odd effect in the effective potential: for d + z even, there
are logarithmic corrections. The case d + z = 4 can be easily understood, as
the system is in the upper critical dimension, and logarithmic corrections are
expected. We still do not have a simple intuitive understanding of the logarithm
for d+ z = 2, 6.

4.4 Two fluctuating fields

We consider in this section the case where the two coupled quantum fields are
both fluctuating substantially. The partition function now becomes

Z =

∫
Dψ(r, τ)

∫
Dφ(r, τ) exp (−Sψ − Sφ − Sψφ) . (4.46)
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We will use RG equations to determine the phase diagram of this system. When
there is no stable fixed point, or the initial parameters lie outside the basin
of attraction of the stable fixed points, the flow trajectories will show runaway
behavior, which implies a first-order phase transition [147–151]. The spin-density-
wave transitions in some cuprates and pnictides fall in this category [152–165].
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Figure 4.6: Illustration of the fluctuation-induced first-order phase transition in
the case of two quantum fields. Here for concreteness we consider the antifer-
romagnetic order and superconducting order. At low temperatures, the phase
transitions may become first order (the thick vertical lines), due to fluctuations.

We have considered in the previous sections coupling two single component
fields, having in mind that this simplified model captures the main physics of
competing orders. However, we will see below that when the quantum fluctu-
ations of both fields are taken into account, the number of components of the
order parameters do play important roles. So from now on we consider explic-
itly a n1-component vector field ψ and a n2-component vector field φ coupled
together. When both fields have dynamical exponent z = 1, the action reads

Sψ =

∫
ddrdτ

[
−α1|ψ|2 +

1

2
β1|ψ|4 +

1

2
|∂µψ|2

]
,

Sφ =

∫
ddrdτ

[
−α2|φ|2 +

1

2
β2|φ|4 +

1

2
|∂µφ|2

]
,

Sψφ =g

∫
ddrdτ |ψ|2|φ|2,

(4.47)

where µ = 0, 1, · · · , d. This quantum mechanical problem is equivalent to a
classical problem in one higher dimension. Then one can follow the standard
procedure of RG: first decompose the action into the fast-moving part, the slow-
moving part and the coupling between them. The Green’s functions are Gψ =
1/(−2α1 + k2 + ω2) and Gφ = 1/(−2α2 + k2 + ω2). The relevant vertices are
β1ψ

2
sψ

2
f , β2φ

2
sφ

2
f , gψ

2
sφ

2
f , gψ

2
fφ

2
s, gψsψfφsφf . To simplify the notation we rescale

the momentum and frequency according to k→ k/Λ, ω → ω/Λ, so that they lie
in the interval [0, 1]. The control parameters and couplings are rescaled according
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to α1,2 → α1,2Λ2, β1,2 → β1,2Λ3−d, g → gΛ3−d. Afterwards we integrate out the
fast modes with the rescaled momentum and frequency in the range [b−1, 1].
Finally, we rescale the momentum and frequency back to the interval [0, 1], thus
k→ bk, ω → bω, and the fields are rescaled accordingly with ψ → b(d−1)/2ψ, φ→
b(d−1)/2φ. Using an ε-expansion, where ε = 3 − d, one obtains the set of RG
equations to one-loop order,

dαi
dl

=2αi −
1

8π2
[(ni + 2)βi(1 + 2αi) + njg(1 + 2αj)],

dβi
dl

=εβi −
1

4π2
[(ni + 8)β2

i + njg
2],

dg

dl
=g

(
ε− 1

4π2
[(n1 + 2)β1 + (n2 + 2)β2 + 4g]

)
,

(4.48)

with index i, j = 1, 2, and i 6= j. These equations are actually more general than
considered above. They also apply to generic models where two fields with the
same dynamical exponent z are coupled together. Generally one has ε = 4−d−z,
thus a quantum mechanical model with dynamical exponent z is equivalent to a
classical model in dimension d+ z.
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Figure 4.7: Plot of the RG trajectories in the β1 − β2 plane for two quantum
fields with the same dynamical exponent below the upper critical dimension.
Here we have chosen ε = 4 − d − z = 0.1. The RG trajectories have been pro-
jected onto a constant g plane with g = g∗, and g∗ the value of the coupling
strength at the stable fixed point. (a) corresponds to the case n1 = n2 = 1,
where the fixed point is at β∗1 = β∗2 = g∗ = 4π2ε/(n1 + n2 + 8) ' 0.3948.
(b) corresponds to the case n1 = 2, n2 = 3, where the fixed point is at
(β∗1 , β

∗
2 , g
∗) = 4π2ε(0.0905, 0.0847, 0.0536) ' (0.3573, 0.3344, 0.2116). In both

cases we found that, above some curve (the dashed lines), the RG trajectories
flow to the corresponding stable fixed point, while below this curve, the RG
trajectories show runaway behavior.

It is known that the above equations have six fixed points [166], four of which
have the two fields decoupled, i.e., g∗ = 0. They are the Gaussian-Gaussian point
at (β∗1 , β

∗
2) = (0, 0), the Heisenberg-Gaussian point at (β∗1 , β

∗
2) = (4π2ε/(n1 +

8), 0), the Gaussian-Heisenberg point at (β∗1 , β
∗
2) = (0, 4π2ε/(n2 + 8)), and the
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decoupled Heisenberg-Heisenberg point at (β∗1 , β
∗
2) = (4π2ε/(n1 + 8), 4π2ε/(n2 +

8)). The isotropic Heisenberg fixed point is at β∗1 = β∗2 = g∗ = 4π2ε/(n1 +
n2 + 8), α∗1 = α∗2 = ε(n1 + n2 + 2)/4(n1 + n2 + 8). Finally there is the biconical
fixed point with generally unequal values of β∗1 , β∗2 , and g∗. In the case, with
n1 = n2 = 1, this is at (β∗1 , β

∗
2 , g
∗) = 2π2ε/9(1, 1, 3). For n1 = 2, n2 = 3, one has

(β∗1 , β
∗
2 , g
∗) = 4π2ε(0.0905, 0.0847, 0.0536).

We find that there is always just one stable fixed point for d + z < 4, below
the upper critical dimension [166]. The isotropic Heisenberg fixed point is stable
when n1 + n2 < nc = 4 − 2ε + O(ε2), the biconical fixed point is stable when
nc < n1 + n2 < 16 − n1n2/2 + O(ε), and when n1n2 + 2(n1 + n2) > 32 + O(ε),
the decoupled Heisenberg-Heisenberg point is the stable one. When the initial
parameters are not in the basin of attraction of the stable fixed point, one obtains
runaway flow, strongly suggestive of a first-order phase transition. Consider for
example n1 = 2, n2 = 3, where the biconical fixed point is stable. For two critical
points not too separated, that is, |α1 − α2| not too large, when g >

√
β1β2

the RG flow shows runaway behavior, and one gets a first-order quantum phase
transition. The corresponding classical problem has been discussed in [167]. We
notice the difference from the case with two competing classical fields, where
one also obtains the same condition for the couplings γ >

√
β1β2 in order to

have a first-order phase transition. There, the two ordered phases are required
to overlap in the absence of the coupling, in other words, one needs to have
x1 < x2. However, in the quantum mechanical case we are considering here,
this is not necessary. We plot in Fig. 4.7 the RG trajectories for two cases (a)
n1 = n2 = 1 and (b) n1 = 2, n3 = 3, where in both cases, below some curve,
runaway behavior in the RG trajectories is found.

When d+ z = 4, all the other fixed points coalesce with the Gaussian point,
forming an unstable fixed point, thus leading to a first-order phase transition
(see Fig. 4.8(a) ). A similar model with an extra coupling and n1 = n2 = 3 has
been discussed by Qi And Xu [133], where runaway flows were also identified.
Another similar problem with d = 2, z = 2 was studied by Millis recently [134],
where a fluctuation-induced first-order quantum phase transition was shown to
occur. We also notice that in some situations, including fluctuations of the order
parameter itself may drive the supposed-to-be first-order transitions to second
order for both classical and quantum phase transitions [168–171].

For d + z > 4, the stabilities are interchanged. The Gaussian fixed point
becomes the most stable one. So the basin of attraction of the stable fixed
point changes. We found numerically that for a given coupling strength g, in
the β1 − β2 plane, the RG trajectories show runaway behavior when the initial
points lie below some curve (see Fig. 4.8(b)). That is, when the coupling between
the two fields is strong enough, the QPTs become first order. Just above these
curves, we found that the RG trajectories will enter the domain with negative β1

or negative β2, and then converge to the Gaussian fixed point. For β1, β2 large
enough, the RG trajectories just converge to the Gaussian fixed point without
entering the negative domain.
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Figure 4.8: Plot of the RG trajectories in the β1−β2 plane for two quantum fields
with the same dynamical exponent in and above the upper critical dimension.
The RG trajectories have been projected to a constant g plane. And we have
chosen n1 = n2 = 3. (a) corresponds to the case exactly at the critical dimension
with ε = 4− d− z = 0. In this case there is only one fixed point with β∗1 = β∗2 =
g∗ = 0, the Gaussian fixed point, which is unstable. We found runaway flows
everywhere. (b) corresponds to the case above the critical dimension, where the
Gaussian fixed point is the stable one. Here we have chosen ε = 4−d−z = −0.1.
We found, below some curve (the dashed line), that the RG trajectories show
runaway behavior.

4.4.1 Competing orders with different dynamical expo-
nents

We consider next coupling a z = 1 field to another field with dynamical exponent
z = z1 > 2. To our knowledge, such models of two competing order parameters
with different dynamical exponents have not been studied previously. The action
now takes the form

Sψ =

∫
ddkdω

(
−α1 +

k2

2
+
γ1

2

|ω|
kz1−2

)
|ψ|2 +

∫
ddrdτ

1

2
β1|ψ|4,

Sφ =

∫
ddrdτ

[
−α2|φ|2 +

1

2
β2|φ|4 +

1

2
|∂µφ|2

]
,

Sψφ =g

∫
ddrdτ |ψ|2|φ|2.

(4.49)

The RG analysis of such models is not an easy task. The conventional pic-
ture is that in d spatial dimensions, the quantum field theory of a bosonic field
with dynamical exponent z is equivalent to a classical field theory in d + z di-
mensions. This picture still holds when there are more than one field, but all
the fields have the same dynamical exponent. However, when the coupled fields
have different dynamical exponents, this picture is no longer valid: the fields are
frustrated in choosing their effective dimensions. Technically, this problem arises
in the RG analysis for example when one calculates the loop diagrams containing
internal lines corresponding to fields with different dynamical exponents. If we
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think more carefully about how one arrives at the conventional way of counting
effective dimensions, we will find that one has to rescale the parameters to ab-
sorb the generally dimensionfull γ parameters, the presence of which ensures the
frequency dependent terms in the action to have the right dimensions. We will
show explicitly such rescaling below. With distinct dynamical exponents, one
can no longer rescale out these γ parameters. They actually lead to dramatically
different scaling behavior in the RG structure: there is now a line of fixed points.

The new parameter γ1 has dimension [γ1] = L1−z, and its one-loop RG equa-
tion is simply

dγ1

dl
= (z − 1)γ1. (4.50)

The Green’s function for the ψ field becomes Gψ = 1/(−2α1 +k2 +γ1|ω|/kz1−2).
The RG equations for the other parameters are modified accordingly,

dα1

dl
=2α1 −

Ωd
πγ1

(n1 + 2)β1(ln 2 + 2α1)− Ωd+1n2g(2 + 2α2),

dα2

dl
=2α2 − Ωd+1(n2 + 2)β2(2 + 2α2)− Ωd

πγ1
n1g(ln 2 + 2α1),

dβ1

dl
=εβ1 −

2Ωd
πγ1

(n1 + 8)β2
1 − 2Ωd+1n2g

2,

dβ2

dl
=εβ2 − 2Ωd+1(n2 + 8)β2

2 −
2Ωd
πγ1

n1g
2,

dg

dl
=g

(
ε− 2Ωd

πγ1
(n1 + 2)β1 − 2Ωd+1(n2 + 2)β2 − 8

Ωd
2π

2γ1 ln γ1 + π

1 + γ2
1

g

)
,

(4.51)

where ε = 3− d and Ωd = 2πd/2/(2π)dΓ[d/2] is the volume of the d-dimensional
unit sphere. The derivation of the above RG equations is included in the ap-
pendix. We notice from the above procedure that when the two fields have the
same dynamical exponent z > 1, one can rescale the couplings to β̃1 = β1/γ, β̃2 =
β2/γ, g̃ = g/γ, and these new parameters satisfy the RG equations (4.48) with
ε̃ = 4− d− z.

The presence of two different dynamical exponents obviously complicates the
problem. It is generally expected that the modes with a larger dynamical ex-
ponent dominates the specific heat of the system, since they have a large phase
space, while the modes with a smaller dynamical exponent may produce infrared
singularities, since they have a smaller upper critical dimension [172]. In the
absence of the coupling between the two fields, we have the RG equations

dβ̃1

dl
=(4− d− z)β̃1 −

2Ωd
π

(n1 + 8)β̃2
1 ,

dβ2

dl
=(3− d)β2 − 2Ωd+1(n2 + 8)β2

2 .

(4.52)
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For d = 3, β2 is marginal with an unstable fixed point, while β̃1 is irrelevant and
its Gaussian fixed point is stable.
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Figure 4.9: Plot of the RG trajectories in the β1 − β2 plane for two coupled
quantum fields with different dynamical exponents. The RG trajectories have
been projected to a constant g plane with g = 1. We have chosen the spatial
dimension to be d = 3, the dynamical exponents z1 = 2, z2 = 1 and the number
of field components n1 = n2 = 3. (a) shows the RG trajectories originating from
the region below the dashed line, which flow to negative β1 or negative β2 regions.
(b) shows the RG trajectories originating from the region above the dashed line,
and those flow to the stable points on the positive axes of β1, the location of
which is sensitive to the initial value of the parameters.

Generally, for z > 1, if the initial value of γ1 is nonzero, the absolute value of
γ1 will increase exponentially. The RG equation for β2 becomes independent of
other parameters,

dβ2

dl
= εβ2 − 2Ωd+1(n2 + 8)β2

2 . (4.53)

We are interested in the case ε = 0, for which β2 is readily solved to be

β2(l) =
1

β̄−1
2 + 2Ω4(n2 + 8)(l − lcr)

, (4.54)

with β̄2 taken at the crossover scale lcr at which the β2
2 term begins to dominate

the g2 term. Only the sign of β̄2 matters. If β̄2 > 0, as l increases, β2 will decay
to zero, flowing to its Gaussian fixed point. From the simplified RG equations
for g,

dg

dl
= −2Ω4(n2 + 2)gβ2, (4.55)

one can see that with a lower power in β2, g drops to zero even more quickly than
β2. Taking β2 as quasi-static when considering the evolution of g, one notices
that g decays exponentially as g(l) ∼ exp(−2Ω4(n2 + 2)β2l). So dβ1/dl also
decays exponentially, and before β2 goes to zero, β1 already stabilizes to a finite
value β∗1 , which depends on the initial value of β1. Actually from the simplified
RG equations for β1, β2, g with 1/γ1 set to zero, one can see directly that the
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fixed points are at β∗2 = g∗ = 0, with β∗1 any real number: we have a line of
fixed points. When β∗1 > 0, there will be a second-order phase transition. When
β∗1 < 0, the transition becomes first order (see Fig. 4.9).

If β̄2 < 0, the absolute value of β2 will increase without bound. Subsequently
g and β1 also diverge, leading to runaway flows.

4.5 Conclusions

Quantum criticality in the presence of competing interactions is an important
guiding concept that allows us to organize a framework for emergent states near
QCPs. Here we investigated the stability of a quantum critical point in the
presence of competing orders. We focused on a simple quadratic-quadratic inter-
action, where coupling between two competing phases is assumed to be of gψ2φ2

form. We find that QCPs are often unstable and transform into first order lines
of transitions. The detailed scenario on how the instability develops depends
on the precise nature of the competing interactions, dynamical exponents and
strength of the coupling. The general trend we observe is that competing in-
teractions, be they classical or quantum, often lead to the instability of QCPs.
This instability in fact always occurs, in the cases we have investigated, if the
coupling g is strong enough. We thus conclude that breakdown of QCPs is a
ubiquitous phenomenon. The magnitude of the specific heat jump in some first
order transitions (the classical + classical case) is of the same order as the spe-
cific heat released in a second order transition and these first order transitions
are strong, and not weakly first order as found in Halperin-Lubensky-Ma. An
immediate consequence of this breakdown is that we can expect spatially mod-
ulated inhomogeneous phases to be present near QCPs, given their propensity
to turn into first order transitions. The wide likelihood identified here of first
order transitions preempting a QCP leads us to anticipate the nucleation and
metastability phenomena associated with such transitions [173]. Additionally,
proximity to first-order transitions makes auxiliary fields (e. g. magnetic field,
strain) and disorder very important over substantial parameter regions [174].

The broad similarities we pointed out between QCPs and AdS/CFT models
offers an interesting possibility that in fact AdS models are also spatially inho-
mogeneous. More detailed analysis that allows breakdown of scaling, specific for
AdS/CFT is suggested.

We derived the renormalization group equations for two coupled order pa-
rameters with different dynamical exponents. We found that there are a line of
fixed points, which is quite different from the case where two order parameters
have the same dynamical exponent. Very recently, there have appeared some
interesting reports [172,175] investigating the effects of the presence of two order
parameters with different dynamical exponents near the Pomeranchuk instabil-
ity [176], as examples of multiscale quantum criticality. It would be interesting
to see how the presence of two different dynamical exponents, and the coupling
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between the corresponding order parameters, affect the scaling of resistivity, es-
pecially whether a linear-resistivity is possible, overcoming the ”no-go” theorem
for single parameter scaling [177].

In this chapter, we have confined ourselves to the framework of Hertz-Millis-
Moriya [143–145], considering only the interplay of bosonic order parameters.
It would also be interesting to study the electronic instabilities, to see whether
the superconducting instabilities and Pomeranchuk instabilities are enhanced in
fermionic quantum critical states. Fermi liquids, even with repulsive interac-
tions, are unstable towards forming a superconducting state, due to the Kohn-
Luttinger effect [178] resulting from the presence of a sharp Fermi surface. For the
fermionic quantum critical states, the momentum distribution function may have
only higher order singularities [179]. It would be interesting to check whether
the Kohn-Luttinger effect is still active in this case.

4.6 Appendix: RG equations for two fields with
different dynamical exponents

In this appendix, we will derive the RG equations of two competing orders with
different dynamical exponents. We follow the notation of [180]. Our starting
point is the action ((4.49)). First we count the dimensions of the field operators
and all the parameters:

[r] = [τ ] =L,

[k] = [ω] =L−1,

[ψ] = [φ] =L(1−d)/2,

[α1] = [α2] =L−2,

[β1] = [β2] =Ld−3,

[g] =Ld−3,

[γ1] =L1−z.

(4.56)
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Then we decompose the action into slow and fast modes. The action for the slow
modes reads

S(s) =S
(s)
ψ + S

(s)
φ + S

(s)
ψφ,

S
(s)
ψ =

∫
ddkdω

(
−α1 +

k2

2
+
γ1

2

|ω|
kz1−2

)
|ψs|2 +

∫
ddrdτ

1

2
β1|ψs|4,

S
(s)
φ =

∫
ddrdτ

[
−α2|φs|2 +

1

2
β2|φs|4 +

1

2
|∂µφs|2

]
,

S
(s)
ψφ =g

∫
ddrdτ |ψs|2|φs|2.

(4.57)

Since we will only consider RG to one-loop order, the interaction terms in the fast
modes, the contraction of which leads to second-order diagrams, can be ignored.
Thus we obtain the action for the fast modes,

S(f) =S
(f)
ψ + S

(f)
φ ,

S
(f)
ψ =

∫
ddkdω

(
−α1 +

k2

2
+
γ1

2

|ω|
kz1−2

)
|ψf |2,

S
(f)
φ =

∫
ddrdτ

[
−α2|φf |2 +

1

2
|∂µφf |2

]
,

(4.58)

from which one can easily identify the Green’s functions as

Gfij [ψ] =
δij

−2α1 + k2 + γ1
|ω|

kz1−2

,

Gfij [φ] =
δij

−2α2 + k2 + ω2
.

(4.59)

The coupling between the slow modes and fast modes takes the form

Sc =

∫
ddrdτ

∑
ijkl

Fijkl

(
3β1ψ

i
fψ

j
fψ

k
sψ

l
s + 3β2φ

i
fφ

j
fφ

k
sφ

l
s

)
+g|ψs|2|φf |2 + g|ψf |2|φs|2 + 4g(ψs ·ψf )(φs · φf )

]
,

(4.60)

with the tensor Fijkl = 1
3 (δijδkl + δikδjl + δilδjk).

Now we can integrate out the fast modes and see how the different parameters
change accordingly. The effective action of the slow modes is determined by

exp
[
−S(s)

eff

]
= exp

[
−S(s)

]
exp

[
−〈Sc〉f +

1

2
〈S2
c 〉con
f

]
. (4.61)
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In the S2
c term we take a connected average, thus the superscript ”con”. The

coefficients in the RG equations will depend on the different renormalization
schemes. Here we will use the procedure that is most convenient for the problem
at hand, similar in spirit to what was outlined in [181]. We integrate over the
momentum interval Λ/b < k < Λ, which after rescaling k → k/Λ, gives b−1 <
k < 1. The frequency part is more complicated. We will introduce a cutoff when
it is necessary, otherwise just integrate over the whole range −∞ < ω < ∞.
The main reason for us to choose this RG scheme is that in calculating the third
correction to the coupling g, the two internal lines come from order parameters
with different dynamical exponents, thus the two frequencies scale differently with
momentum, and this RG scheme offers a simple and self-consistent treatment of
the cutoffs.

γ1 does not receive corrections up to first-order.

Figure 4.10: One-loop diagrams contributing to the first order correction of α1.
The solid lines represent the ψ fields, and the dashed lines represent the φ fields.
The external lines are slow modes, and the internal lines are fast modes.

Two terms in the action (4.60) contribute to the first-order corrections of α1.
The coupling ψ2

sψ
2
f leads to the correction

δ(1)S[α1] = 3β1

∑
ijkl

Fijkl

∫
f

dd+1q′

(2π)d+1
〈ψif (q′)ψjf (−q′)〉

∫
s

dd+1q

(2π)d+1
ψks (q)ψls(−q).

(4.62)
Using the identity, ∑

i

Fiikl =
n1 + 2

3
δkl, (4.63)

one obtains

δ(1)S[α1] = (n1 + 2)β1
Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

−2α1 + k2 + γ1
|ω|

kz1−2∫
s

dd+1q

(2π)d+1
ψs(q) ·ψs(−q).

(4.64)

Assuming that the ψ field is near its critical point, thus α1 is a small parameter,
the Green’s function can be expanded in terms of −2α1. The correction term
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can be written as

δ(1)S[α1] = (n1 + 2)β1
Ωd
2π

(I1 + 2α1I2)

∫
s

dd+1q

(2π)d+1
ψs(q) ·ψs(−q), (4.65)

where we have defined the series of functions

In =

∫
dω

∫ 1

b−1

dkkd−1 1(
k2 + γ1

|ω|
kz1−2

)n . (4.66)

Let us first calculate I1. The frequency integral requires a cutoff. From dimen-
sional analysis, we choose to integrate over the region −1 < γ1ω < 1, and obtain
the result

I1 =
2

γ1

∫ 1

b−1

dkkd+z1−3 ln

(
1 + kz1

kz1

)
. (4.67)

To proceed further, we are required to specify the dimension and dynamical
exponent. Consider d = 3, z1 = 2, where one has

I1 =
2

3γ1

[
ln 2− b−3 ln

(
1 + b−2

b−2

)
+ 2(1− b−1)− 2 arctan 1 + 2 arctan b−1

]
.

(4.68)
Expanded to first order in (1− b−1), it is simply

I1 =
2 ln 2

γ1
(1− b−1). (4.69)

For d = 2, z1 = 2, we obtain

I1 =
1

γ1

[
2 ln 2− (1 + b−2) ln(1 + b−2) + b−2 ln b−2

]
, (4.70)

which leads to the same result (4.69) when expanded to first order in (1− b−1).
This result can also be obtained more crudely by setting k = 1 in the integrand
of (4.67). I2 can be calculated similarly, with the result

I2 =
2

γ1
(1− b−1). (4.71)

So the one-loop correction to α1 coming from the coupling ψ2
sψ

2
f is

δ(1)S[α1] = (n1 +2)β1
Ωd
πγ1

(1−b−1)(ln 2+2α1)

∫
s

dd+1q

(2π)d+1
ψs(q) ·ψs(−q), (4.72)

We next calculate contributions from the coupling ψ2
sφ

2
f , which takes the form

δ(2)S[α1] = g
∑
ijkl

F ′ijkl

∫
f

dd+1q′

(2π)d+1
〈φif (q′)φjf (−q′)〉

∫
s

dd+1q

(2π)d+1
ψks (q)ψls(−q),

(4.73)
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with F ′ijkl = δijδkl. So we have simply the identity∑
i

F ′iikl = n2δkl, (4.74)

which gives

δ(2)S[α1] = n2g
Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

−2α2 + k2 + ω2

∫
s

dd+1q

(2π)d+1
ψs(q) ·ψs(−q).

(4.75)
Defining the new set of functions

I ′n =

∫
dω

∫ 1

b−1

dkkd−1 1

(k2 + ω2)
n , (4.76)

one obtains

δ(2)S[α1] = n2g
Ωd
2π

(I ′1 + 2α2I
′
2)

∫
s

dd+1q

(2π)d+1
ψs(q) ·ψs(−q). (4.77)

Here we integrate over frequencies in the range −∞ < ω <∞, and get

I ′1 = π

∫ 1

b−1

dkkd−2, (4.78)

which is, to first order in (1− b−1),

I ′1 = π(1− b−1). (4.79)

Similarly for I ′2 we have

I ′2 =
π

2

∫ 1

b−1

dkkd−4, (4.80)

thus
I ′2 =

π

2
(1− b−1). (4.81)

Near d = 3, one has Ωd/4 ' Ωd+1. Grouping all these together, we obtain the
second term in the correction to α1 as

δ(2)S[α1] = n2gΩd+1(1− b−1)(2 + 2α2)

∫
s

dd+1q

(2π)d+1
ψs(q) ·ψs(−q). (4.82)

The calculation of the first order corrections to α2 is quite similar to that of
α1. There are again two terms contributing. The coupling ψ2

fφ
2
s gives rise to a

term of the form

δ(1)S[α2] = g
∑
ijkl

F ′ijkl

∫
f

dd+1q′

(2π)d+1
〈ψif (q′)ψjf (−q′)〉

∫
s

dd+1q

(2π)d+1
φks(q)φls(−q),

(4.83)
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Figure 4.11: One-loop diagrams contributing to the first order correction of α2.
The solid lines represent the ψ fields, and the dashed lines represent the φ fields.
The external lines are slow modes, and the internal lines are fast modes.

Summing over the field indices,∑
i

F ′iiklφ
k
sφ

l
s = n1|φs|2, (4.84)

we obtain

δ(1)S[α2] = n1g
Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

−2α1 + k2 + γ1
|ω|

kz1−2∫
s

dd+1q

(2π)d+1
φs(q) · φs(−q),

(4.85)

which can be expanded as

δ(1)S[α2] = n1g
Ωd
2π

(I1 + 2α1I2)

∫
s

dd+1q

(2π)d+1
φs(q) · φs(−q). (4.86)

The result is

δ(1)S[α2] = n1g
Ωd
πγ1

(1− b−1)(ln 2 + 2α1)

∫
s

dd+1q

(2π)d+1
φs(q) · φs(−q). (4.87)

The other term comes from the coupling φ2
fφ

2
s. It has the form

δ(2)S[α2] = 3β2

∑
ijkl

Fijkl

∫
f

dd+1q′

(2π)d+1
〈φif (q′)φjf (−q′)〉

∫
s

dd+1q

(2π)d+1
φks(q)φls(−q).

(4.88)
We first sum over the field indices,∑

i

Fiiklφ
k
sφ

l
s =

n2 + 2

3
|φs|2, (4.89)
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resulting in

δ(2)S[α2] = (n2 + 2)β2
Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

−2α2 + k2 + ω2∫
s

dd+1q

(2π)d+1
φs(q) · φs(−q).

(4.90)

Expanding to first order in α2, one has

δ(2)S[α2] = (n2 + 2)β2
Ωd
2π

(I ′1 + 2α2I
′
2)

∫
s

dd+1q

(2π)d+1
φs(q) · φs(−q), (4.91)

and the final result is

δ(2)S[α2] = (n2 + 2)β2Ωd+1(1− b−1)(2 + 2α2)

∫
s

dd+1q

(2π)d+1
φs(q) ·φs(−q), (4.92)

Figure 4.12: One-loop diagrams contributing to the first order correction of β1.
The solid lines represent the ψ fields, and the dashed lines represent the φ fields.
The external lines are slow modes, and the internal lines are fast modes.

The first order correction to β1 comes from two one-loop diagrams, one with
two internal ψf lines, the other with two φf lines. The dependence of the internal
lines on the external momenta and frequencies can be ignored here, since they
are of higher order.

The first term with ψf internal lines is of the form

δ(1)S[β1] =− (3β1)2
∑

k1k2l1l2

∑
i1i2j1j2

Fi1j1k1l1Fi2j2k2l2

∫
f

dd+1q′

(2π)d+1
〈ψi1f (q′)ψi2f (−q′)〉

〈ψj1f (q′)ψj2f (−q′)〉
∫
ddrdτψk1

s ψ
k2
s ψ

l1
s ψ

l2
s + 2 permutations.

(4.93)

Using the identity,∑
ij

Fijk1l1Fijk2l2 =
1

9
[(n1 + 4)δk1l1δk2l2 + 2δk1k2

δl1l2 + 2δk1l2δk2l1 ] , (4.94)
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combined with the 2 other permutations of the external lines, the part containing
the field component indices can be simplified as∑
k1k2l1l2

∑
ij

Fijk1l1Fijk2l2ψ
k1
s ψ

k2
s ψ

l1
s ψ

l2
s + 2 permutations =

n1 + 8

9
|ψs|4. (4.95)

Thus the first correction to β1 reads

δ(1)S[β1] = −(n1+8)β2
1

Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

(−2α1 + k2 + γ1
|ω|

kz1−2 )2

∫
ddrdτ |ψs|4,

(4.96)
which is, to leading order of α1,

δ(1)S[β1] = −(n1 + 8)β2
1

Ωd
2π
I2

∫
ddrdτ |ψs|4. (4.97)

Substituting the explicit expression for I2, we get the result

δ(1)S[β1] = −(n1 + 8)β2
1

Ωd
πγ1

(1− b−1)

∫
ddrdτ |ψs|4. (4.98)

The second term has two φf internal lines, and takes the form

δ(2)S[β1] =− g2
∑

i1i2j1j2

∑
k1k2l1l2

F ′i1j1k1l1F
′
i2j2k2l2

∫
f

dd+1q′

(2π)d+1
〈φi1f (q′)φi2f (−q′)〉

〈φj1f (q′)φj2f (−q′)〉
∫
ddrdτψk1

s ψ
k2
s ψ

l1
s ψ

l2
s + 2 permutations.

(4.99)

The part with the field component indices gives∑
k1k2l1l2

∑
ij

F ′ijk1l1F
′
ijk2l2ψ

k1
s ψ

k2
s ψ

l1
s ψ

l2
s + 2 permutations = n2|ψs|4, (4.100)

which further leads to the result

δ(2)S[β1] = −n2g
2 Ωd

2π

∫
dω

∫ 1

b−1

dkkd−1 1

(−2α2 + k2 + ω2)2

∫
ddrdτ |ψs|4.

(4.101)
To leading order in α2, it is

δ(2)S[β1] = −n2g
2 Ωd

2π
I ′2

∫
ddrdτ |ψs|4, (4.102)

or more explicitly,

δ(2)S[β1] = −n2g
2Ωd+1(1− b−1)

∫
ddrdτ |ψs|4. (4.103)
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Figure 4.13: One-loop diagrams contributing to the first order correction of β2.
The solid lines represent the ψ fields, and the dashed lines represent the φ fields.
The external lines are slow modes, and the internal lines are fast modes.

The first order correction to the β2 term also comes from two diagrams. The
first one has two ψf internal lines, and is of the form

δ(1)S[β2] =− g2
∑

i1i2j1j2

∑
k1k2l1l2

F ′i1j1k1l1F
′
i2j2k2l2

∫
f

dd+1q′

(2π)d+1
〈ψi1f (q′)ψi2f (−q′)〉

〈ψj1f (q′)ψj2f (−q′)〉
∫
ddrdτφk1

s φ
k2
s φ

l1
s φ

l2
s + 2 permutations.

(4.104)

Summing over different field components, where one has

∑
k1k2l1l2

∑
ij

F ′ijk1l1F
′
ijk2l2φ

k1
s φ

k2
s φ

l1
s φ

l2
s + 2 permutations = n1|φs|4, (4.105)

the first correction to the β2 term is

δ(1)S[β2] = −n1g
2 Ωd

2π

∫
dω

∫ 1

b−1

dkkd−1 1

(−2α1 + k2 + γ1
|ω|

kz1−2 )2

∫
ddrdτ |φs|4.

(4.106)
To first order in α1, it is simply

δ(1)S[β2] = −n1g
2 Ωd

2π
I2

∫
ddrdτ |φs|4, (4.107)

which can be written as

δ(1)S[β2] = −n1g
2 Ωd
πγ1

(1− b−1)

∫
ddrdτ |φs|4. (4.108)
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The second diagram contains two φf internal lines, thus the correction reads

δ(2)S[β2] =− (3β2)2
∑

k1k2l1l2

∑
i1i2j1j2

Fi1j1k1l1Fi2j2k2l2

∫
f

dd+1q′

(2π)d+1
〈φi1f (q′)φi2f (−q′)〉

〈φj1f (q′)φj2f (−q′)〉
∫
ddrdτφk1

s φ
k2
s φ

l1
s φ

l2
s + 2 permutations.

(4.109)

The summation over the field indices gives∑
k1k2l1l2

∑
ij

Fijk1l1Fijk2l2φ
k1
s φ

k2
s φ

l1
s φ

l2
s + 2 permutations =

n2 + 8

9
|φs|4. (4.110)

Thus the second correction to β2 reads

δ(2)S[β2] = −(n2 + 8)β2
2

Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

(−2α2 + k2 + ω2)2

∫
ddrdτ |φs|4.

(4.111)
When the φ field is near its critical point, the above expression can be simplified
to be

δ(2)S[β2] = −(n2 + 8)β2
2

Ωd
2π
I ′2

∫
ddrdτ |φs|4, (4.112)

which is

δ(2)S[β2] = −(n2 + 8)β2
2Ωd+1(1− b−1)

∫
ddrdτ |φs|4. (4.113)

There are three diagrams contributing to the first order corrections of the
coupling g between the squares of the two fields. The first diagram has two ψf
fields as internal lines. This term takes the form

δ(1)S[g] =− 1

2
× 2× 2(3β1)g

∑
k1k2l1l2

∑
i1i2j1j2

Fi1j1k1l1F
′
i2j2k2l2

∫
f

dd+1q′

(2π)d+1

〈ψi1f (q′)ψi2f (−q′)〉〈ψj1f (q′)ψj2f (−q′)〉
∫
ddrdτψk1

s ψ
l1
s φ

k2
s φ

l2
s .

(4.114)

The 1/2 comes from (1/2)S2
c , and the two 2 factors come from the expansion in

S2
c and the number of contractions in 〈ψfψf (x)ψfψf (y)〉. We first sum over the

field indices,∑
k1k2l1l2

∑
ij

Fijk1l1F
′
ijk2l2ψ

k1
s ψ

l1
s φ

k2
s φ

l2
s =

n1 + 2

3
|ψs|2|φs|2, (4.115)
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Figure 4.14: One-loop diagrams contributing to the first order correction of g.
The solid lines represent the ψ fields, and the dashed lines represent the φ fields.
The external lines are slow modes, and the internal lines are fast modes.

and then substitute the Green’s functions,

δ(1)S[g] = −2β1g(n1 + 2)
Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

(−2α1 + k2 + γ1
|ω|

kz1−2 )2∫
ddrdτ |ψs|2|φs|2.

(4.116)

Keeping only the leading order term,

δ(1)S[g] = −2β1g(n1 + 2)
Ωd
2π
I2

∫
ddrdτ |ψs|2|φs|2, (4.117)

one arrives at the result,

δ(1)S[g] = −2β1g(n1 + 2)
Ωd
πγ1

(1− b−1)

∫
ddrdτ |ψs|2|φs|2. (4.118)

The internal lines of the second diagram are two φf fields. The corresponding
correction term is now

δ(2)S[g] =− 1

2
× 2× 2(3β2)g

∑
k1k2l1l2

∑
i1i2j1j2

Fi1j1k1l1F
′
i2j2k2l2

∫
f

dd+1q′

(2π)d+1

〈φi1f (q′)φi2f (−q′)〉〈φj1f (q′)φj2f (−q′)〉
∫
ddrdτφk1

s φ
l1
s ψ

k2
s ψ

l2
s .

(4.119)

The summation over field indices is similar to the first term,∑
k1k2l1l2

∑
ij

Fijk1l1F
′
ijk2l2φ

k1
s φ

l1
s ψ

k2
s ψ

l2
s =

n2 + 2

3
|ψs|2|φs|2. (4.120)
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Thus the correction to the action is also similar,

δ(2)S[g] = −2β2g(n2+2)
Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

(−2α2 + k2 + ω2)2

∫
ddrdτ |ψs|2|φs|2,

(4.121)
which is, to leading order in α2,

δ(2)S[g] = −2β2g(n2 + 2)
Ωd
2π
I ′2

∫
ddrdτ |ψs|2|φs|2, (4.122)

or

δ(2)S[g] = −2β2g(n2 + 2)Ωd+1(1− b−1)

∫
ddrdτ |ψs|2|φs|2. (4.123)

The third diagram has one φf internal line, and one ψf internal line. The
correction takes the form

δ(3)S[g] =− 1

2
(4g)2

∑
k1k2l1l2

∑
i1i2j1j2

F ′i1j1k1l1F
′
i2j2k2l2

∫
f

dd+1q′

(2π)d+1

〈ψi1f (q′)ψi2f (−q′)〉〈φj1f (q′)φj2f (−q′)〉
∫
ddrdτψk1

s φ
l1
s ψ

k2
s φ

l2
s .

(4.124)

With the summation∑
k1k2l1l2

∑
ij

F ′ik1jl1F
′
ik2jl2ψ

k1
s φ

l1
s ψ

k2
s φ

l2
s = |ψs|2|φs|2, (4.125)

we obtain

δ(3)S[g] = −8g2 Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

−2α2 + k2 + ω2

1

−2α1 + k2 + γ1
|ω|

kz1−2∫
ddrdτ |ψs|2|φs|2.

(4.126)

Assuming both fields are near their critical points, the above equation is approx-
imately

δ(3)S[g] = −8g2 Ωd
2π
I ′′
∫
ddrdτ |ψs|2|φs|2, (4.127)

with the new function I ′′ defined as

I ′′ =

∫ ∞
−∞

dω

∫ 1

b−1

dkkd−1 1

k2 + ω2

1

k2 + γ1
|ω|

kz1−2

. (4.128)

As mentioned before, here in our RG scheme, frequency is integrated over the
whole real axes. In the two propagators, frequency scales differently with mo-
mentum. For the ψ field, γ1ω ∼ kz1 ; for the φ field, ω ∼ k. And a finite cut-off
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in frequency would lead to inconsistencies for such cases with miscellaneous dy-
namical exponents. Here the frequency integral gives

I ′′ =

∫ 1

b−1

dkkd+z1−3 1

γ2
1k

2 + k2z1

(
−γ1 ln

k2z1−2

γ2
1

+ πkz1−1

)
. (4.129)

To leading order in (1− b−1), we have

I ′′ =
1

1 + γ2
1

(1− b−1) (2γ1 ln γ1 + π) . (4.130)

This leads to the third term in the correction to the g term

δ(3)S[g] = −8g2 Ωd
2π

2γ1 ln γ1 + π

1 + γ2
1

(1− b−1)

∫
ddrdτ |ψs|2|φs|2, (4.131)

Now combining all the above results for the corrections of the different pa-
rameters, and carrying out the rescaling

r→r/b,

τ →τ/b,
ψ →b(d−1)/2ψ,

φ→b(d−1)/2φ,

(4.132)

we obtain the RG equations

γ1 →bz−1γ1,

−α1 →b2
[
−α1 + (n1 + 2)β1

Ωd
πγ1

(1− b−1)(ln 2 + 2α1) + n2gΩd+1(1− b−1)(2 + 2α2)

]
,

−α2 →b2
[
−α2 + (n2 + 2)β2Ωd+1(1− b−1)(2 + 2α2) + n1g

Ωd
πγ1

(1− b−1)(ln 2 + 2α1)

]
,

β1

2
→bε

[
β1

2
− (n1 + 8)β2

1

Ωd
πγ1

(1− b−1)− n2g
2Ωd+1(1− b−1)

]
,

β2

2
→bε

[
β2

2
− n1g

2 Ωd
πγ1

(1− b−1)− (n2 + 8)β2
2Ωd+1(1− b−1)

]
,

g →bε
[
g − 2β1g(n1 + 2)

Ωd
πγ1

(1− b−1)− 2β2g(n2 + 2)Ωd+1(1− b−1)

−8g2 Ωd
2π

2γ1 ln γ1 + π

1 + γ2
1

(1− b−1)

]
,

(4.133)

the differential form of which has been presented in equations (4.50, 4.51).
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