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Cha p t e r 3

Fermions in the Constrained
Path Integral: towards the

Minus Sign Problem

3.1 Introduction

The ‘quantum weirdness’ of the Fermi-gas is obvious: how to understand the
Fermi-surface, the Fermi-energy and so forth, just knowing about classical sta-
tistical physics? The interacting Fermi-liquid is a bit more than the Fermi-gas,
but focusing on the emergence principles it is deep inside the same thing. As
Landau pointed out, the Fermi-liquid is connected by adiabatic continuation to
the Fermi-gas meaning that the two are qualitatively indistinguishable at the
long times and distances where emergence is in full effect. The great framework
of diagrammatic perturbation theory developed in the 1950’s [27] does allow to
arrive at quite non trivial statements associated with the presence of the interac-
tions but it only works under the condition that the Fermi-liquid is adiabatically
connected to the Fermi gas. But conventional Feynman diagrams are impotent
with regard to revealing the nature of ‘non Fermi liquids’. To complete the
‘fermionic’ repertoire of theoretical physics, Bardeen, Cooper and Schrieffer dis-
covered the ‘Hartree-Fock’ mechanism, showing how the Fermi-gas can become
unstable towards a bosonic state, like the superfluids- and conductors, charge-
and spin density wave states and so forth. Despite fermionic peculiarities (like
the gap function), this is eventually a recipe telling us how the fermi-gas can
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turn into bosonic matter that is in turn ruled by the Ginzburg-Landau-Wilson
classical emergence rules.

Given the present repertoire of theoretical physics, all we know to do with
fermionic matter is to hope that it is a Fermi gas or bound in bosons. But we
are facing a zoo of ‘non-Fermi-liquid’ states of electrons coming out of the exper-
imental laboratories and the theorists are standing empty handed because the
fermion signs render all the fancy theoretical technologies to be useless. The NP
hardness of the sign problem tells us that there is no mathematically exact solu-
tion but how many features of the physical world we understand well are actually
based on exact mathematics? Nearly all of it is based on an effective description,
mathematics that is tractable while it does describe accurately what nature is
doing although it is not derived with exact mathematics from the first principles.
Is there a way to handle non-Fermi-liquid matter on this phenomenological level?

The remainder of this chapter is dedicated to the case that there is reason to
be optimistic. This optimism is based on a brilliant discovery some fifteen years
ago of an alternative path-integral description of the fermion problem by David
Ceperley [73,74]. This ‘constrained’ or ‘Ceperley’ path integral has a Boltzman-
nian structure (i.e., only positive probabilities) but the signs are traded in for
another unfamiliar structure: a structure of constraints acting on a ‘bosonic’ con-
figuration space that is coding for all the effects of Fermi-Dirac statistics. This is
called the reach and it amounts to the requirement that for all imaginary times
τ between zero and ~β (β = 1/(kBT )) the worldline configurations should not
cross the hypersurface determined by the zero’s of the full N -particle, imaginary
time density matrix. Although the constrained path integral suffers from a self-
consistency problem since the exact constrain structure is not known except for
the non-interacting Fermi-gas, it appears that this path integral is quite power-
ful for the construction of phenomenological effective theories. The information
carried by the reach lives ‘inside’ the functional integral and should therefore be
averaged. This implies that only global- and averaged properties of this reach
should matter for the physics in the scaling limit. The reach is in essence a high
dimensional geometrical object, closely related to the more familiar ‘nodal hy-
persurface’ associated with the sign changes of ground state wave function. The
theoretical program is to classify the geometrical and topological properties of
the reach in general terms, to find out how this information is averaged over in
the path integral, with the potential to yield eventually a systematic classification
of phenomenological theories of fermionic matter.

Given that Ceperley derived his path integral already quite some time ago,
why is it not famous affair? These path integral are not so easy to handle.
Although various interesting results were obtained [75], even the attempt to re-
construct the Fermi-liquid in this language stalled. But these efforts were limited
to a very small community, with a focus on large scale numerical calculations.
The potential of the Ceperley path integral to address matters of principle ap-
pears to be overlooked in the past. We discovered the Ceperley path integral in
an attempt to understand the scale invariant fermionic quantum critical states as
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found in the heavy fermion intermetallics. We started out on the more primitive
level of wave function nodal structure, discovering by accident the much more
powerful Ceperley path integral approach. We believe that we have delivered
proof of principle that this language gives penetrating insights in the nature of a
prominent non-Fermi liquid state: the fermionic quantum critical states realized
in the heavy fermion intermetallics. Since this work is still under review we will
not address it in any detail. However, to make further progress, we were con-
fronted with the need to better understand the detailed workings of the Ceperley
path integral and we decided to revisit the description of the Fermi gas and the
Fermi liquid. The outcomes of this pursuit are summarized in this chapter.

This remainder of this chapter is organized as follows. In section 3.2 we
introduce the Ceperley path integral, reviewing it’s derivation as well as various
other technical issues. Section 3.3 is intended to be the highlight of this chapter.
We present a quite simple solution of the Ceperley path integral for the Fermi-
gas: the Fermi-gas turns out to be in one-to-one correspondence with a system
of cold atoms in an harmonic trap, subjected to a deep optical lattice potential
such that the atoms form a perfect Bose Mott-insulator! Finally in section 3.4
we turn to the real space description of the Fermi-gas. The presence of the reach
changes radically the winding statistics as compared to the boson case and it
appears that the windings of the Ceperley particles in any higher dimension are
counted as if they are the windings associated with soft core bosons living in one
space dimension.

3.2 Ceperley’s constrained path integral

In this section we review Ceperley’s 1991 discovery of a path integral represen-
tation for arbitrary fermion problems that is not suffering from the ‘negative
probabilities’ of the standard formulation [73]. Surely, one cannot negotiate with
the NP-hardness of the fermion problem and Ceperley’s path integral is not
solving this problem in a mathematical sense. However, the negative signs are
transformed away at the expense of a structure of constraints limiting the Boltz-
mannian sum over world-line configurations. These constraints in turn can be
related to a geometrical manifold embedded in configuration space: the ‘reach’,
which is a generalization of the nodal hypersurface characterizing wave functions
to the fermion density matrix. This reach should be computed self-consistently:
it is governed by the constrained path integral that needs itself the reach to
be computed. This is again a NP-hard problem and Ceperley’s path integral
is therefore not solving the sign problem. However, the reach contains all the
data associated with the differences between bosonic and fermionic matter, and
only its average and global properties should matter for the physics in the scal-
ing limit since it acts on worldline configurations that themselves are averaged.
Henceforth, it should be possible in principle to classify all forms of fermionic
matter in a phenomenological way by classifying the average geometrical- and
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topological properties of the reach, to subsequently use this data as an input to
solve the resulting bosonic path integral problem. This procedure is supposedly
a unique extension of the Ginzburg-Landau-Wilson paradigm for bosonic matter
to fermionic matter. We do not have a mathematical proof that this procedure
will yield a complete classification of fermionic matter, but we have some very
strong circumferential evidences in the offering that it will work. The status of
our claim is conjectural in the mathematical sense.

Let us start out presenting the answer. Ceperley proved in 1991 that the
following path integral is strictly equivalent to the standard fermion path integral
Eq. (1.11,1.12), as we reviewed in the introduction,

ρF (R,R;β) =
1

N !

∑
P,even

∫ γ∈Γβ(R)

γ:R→PR
DRe−S[R]/~. (3.1)

This is quite like the standard path integral, except that one should only
sum over even permutations (the reason to address this in section IV), while the
allowed worldline configurations γ are constrained to lie ‘within the reach Γ’.
This reach is defined as,

Γβ(R) = {γ : R→ R′|ρF (R,R(τ); τ) 6= 0} (3.2)

for all imaginary times 0 < τ < ~β. In words, only those wordline configurations
should be taken into account in Eq. (3.1) that do not cause a sign change of
the full density matrix at every intermediate imaginary time between 0 and ~β.
In outline, the proof of this result is as follows. The fermion density matrix is
defined as a solution to the Bloch equation

dρF (R0,R;β)

dβ
= −HρF (R0,R;β) (3.3)

with initial conditions

ρF (R0,R;β = 0) =
1

N !

∑
P

(−1)pδ(R0 − PR). (3.4)

In the following we fix the reference point R0 and define the reach Γ(R0, τ) as
before as the set of points {Rτ} for which there exists a continuous space-time
path with ρF (R0,Rτ ′ ; τ

′) > 0 for 0 ≤ τ ′ < τ . Suppose that the reach is known in
advance. It is a simple matter to show that the problematical initial condition,
Eq. (3.4), imposing the anti-symmetry can be replaced by a zero boundary
condition on the surface of the reach. It follows because the fermion density
matrix is a unique solution to the Bloch equation (3.3) with the zero boundary
condition. One can now find a path integral solution without the minus signs.
One simply restricts the paths to lie in the reach Γ(R0, τ) imposing the zero
boundary condition on the surface of the reach. The odd permutations fall for
sure out of the reach since ρF (R0,PoddR0) = −ρF (R0,R0).
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The Ceperley path integral revolves around the reach. How to think about
this object? The way the path integral is constructed seems to break imaginary
time translations. One has to first pick some ‘reference point’ R in configuration
space at imaginary time 0 or ~β. Starting from this set of particle coordinates, one
has to spread them out in the form of wordline configurations to check at every
time slice that the density matrix does not change sign. The dimensionality of
the density matrix is 2dN+1 (twice configuration space plus a time axis) and the
dimensionality of the reach is therefore 2dN (one overall constraint). However,
when we first pick a reference point R and we focus on a particular imaginary
time the dimensionality of this restricted reach is dN − 1. In the limit τ → ∞
this restricted reach turns into a more familiar object: the nodal hypersurface
associated with the ground state wave function. The density matrix becomes for
a given R in this limit,

ρ(R,R′;β =∞) = Ψ∗(R)Ψ(R′) (3.5)

and the zero’s of the density matrix are just coincident with the nodes of the
ground-state wave function, Ψ(R) = 0, where we have assumed that the ground
state is non-degenerate. The wave function is anti-symmetric in terms of the
fermion coordinates,

Ψ(· · · , ri, · · · , rj , · · · ) = −Ψ(· · · , rj , · · · , ri, · · · ), (3.6)

and therefore the nodal hypersurface

Ω = {R ∈ RNd|Ψ(R) = 0} (3.7)

is a manifold of dimensionality dimΩ = Nd − 1 embedded in Nd-dimensional
configuration space. This nodal surface Ω is surely an object that is simpler
than the full reach Γ and it is rather natural to train the intuition using the
former. According to Ceperley’s numerical results [73], it appears that at least
for the Fermi gas the main features of the reach are already encoded in Ω. In a
way, the dependence on imaginary time is remarkably smooth and unspectacular.
A greater concern is the role of the reference point, or either the fact that the
reach depends on two configuration space coordinates. In the long imaginary
time limit, the reach factorizes in the nodal surfaces (Eq. (3.5)), which means
that one can get away just considering the nodal surface of the ground state
wave function, but this is not the case at finite imaginary times. It is not at
all that clear what role the ‘relative distance’ R − R′ plays, although there is
some evidence that it can be quite important as we will discuss in Section IX.
Notice that the conventional ‘fixed-node’ quantum Monte-Carlo methods aim at
a description of the ground state, using typically diffusion Monte-Carlo methods.
As input for the ‘fermionic-side’, these only require the wave function nodal
structure. The difference between the reach and this nodal structure is telling us
eventually about the special nature of the excitations in the fermion systems since
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Figure 3.1: Cut through the nodal hypersurface of the ground-state wave function
ofN = 49 free, spinless fermions in a two-dimensional box with periodic boundary
conditions. The cut is obtained by fixing N − 1 fermions at random positions
(black dots) and moving the remaining particle (white dot) over the system. The
lines indicate the zeros of the wave function (nodes). Note that the nodal surface
cut has to connect the N − 1 fixed particles since the Pauli surface is a lower
dimensional submanifold of dimension Nd−d included in the nodal hypersurface
with dimension Nd− 1.

the Ceperley path integral can be used to calculate dynamics, either in the form
of finite temperature thermodynamics or, by Wick rotation to real time, about
dynamical linear response. At this moment in time it is not well understood
what the precise meaning is of these ‘dynamical signs’ encoded in the non-local
nature of the reach.

Another useful geometrical object associated with Fermi-Dirac statistics is the
Pauli surface, corresponding with the hypersurface in configuration space where
the wave function vanishes because the fermions are coincident in real space,

P =
⋃
i 6=j

Pij

Pij = {R ∈ RNd|ri = rj}. (3.8)

Obviously, the Pauli surface is a submanifold of the nodal hypersurface of
dimension dimP = Nd−d. The specialty of one dimension is that the Pauli- and
nodal hypersurfaces are coincident. This property that the nodes are ‘attached’
to the particles is the key to the special status of one dimensional physics as we
will explain in detail in the next section.

In the next sections we will discuss in more detail the few facts that are known
about the reach and nodal hypersurface geometry and topology. To complete the
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Figure 3.2: Nodal constraint structure in space-time seen by one particular par-
ticle. In the constraint path integral only world-line configurations {rτ} are
allowed that do not cross or touch a node of the density matrix on all time slices,
ρF (R0,Rτ , τ) 6= 0 for 0 ≤ τ < ~β. Therefore, a particular particle (white cir-
cle) is constrained by the dynamical nodal tent (grey surface) spanned by the
N −1 remaining particles trajectories (black circles). In a Fermi liquid the nodal
tent has a characteristic dimensions and particles feel the nodal constraints at
an average time scale τc. Later we will see that these scales are in one-to-one
correspondence with the Fermi degeneracy scale EF .

discussion of the basic structure of the Ceperley Path Integral, let us once more
emphasize that according to its definition Eq. (3.1) one still has to sum over
even permutations in so far these do not violate the reach. As for the signful
path integral, this translates via the sum over cycles into a sum over winding
numbers that are now associated with triple exchanges of particles. We explained
already in detail in section IV that this has the peculiar consequence that it
codes for supersymmetry when one is dealing with the free quantum gas that
just knows about the even permutation requirement. Because of the constraints,
the ‘particles’ of the Ceperley path integral are actually very strongly interacting
and it is unclear to what extent this supersymmetry is of any relevance to the
final solution. In fact, we do know for the Fermi-gas that the combined effect
of the constraints and the triple exchanges is to eventually give back a free gas
with Fermi-Dirac statistics. As we discussed in section IV, there is a ‘don’t worry
theorem’ at work because the thermodynamics of the supersymmetric gas is quite
similar to the Bose gas.

In conclusion, Ceperley has demonstrated that in principle fermion problems
can be formulated in a probabilistic, Boltzmannian mathematical language, pay-
ing the prize of a far from trivial constraint structure that is a-priori not known
while it cannot be exactly computed. Qualitatively, the reach is like the nodal
structure of a wave function. It is obvious that the nodal structure codes for
physics but this connection is largely unexplored, while the remainder of this
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chapter is dedicated to the case that it is actually quite easy to make progress,
at least with regard to the Fermi-liquid. One particular property is so important
that it should be already introduced here. Any wave function of a system of
fermions has the anti-symmetry property Eq. (3.6) and naively one could inter-
pret this as ‘any physical system of fermions has its fermionic physics encoded in
a Nd − 1 dimensional nodal surface’. This is obviously not the case. It is easy
to identify a variety of fermionic systems where many more nodes are present
in the fermion wave function than are required to encode the physics. A first
example are Mott-insulating antiferromagnets on bipartite lattices. Because the
electrons are localized they become effectively distinguishable. One can therefore
transform away remnant signs in the Heisenberg spin problem by Marshall sign
transformations: the bottom line is that such Mott-insulators can be handled by
standard bosonic quantum Monte Carlo methods. A next example is physics in
one dimensions, as we will discuss in the next section, where again the fermion
signs can be transformed away completely, in a way that can be neatly under-
stood in terms of the topology of the nodal surface. Nodal structure is therefore
like a gauge field: it carries redundant information that is inconsequential for the
physics. Nodal structure that is in this ‘gauge volume’ we call reducible nodal
structure, while the ‘gauge invariant’ (physical) part of the nodal structure we call
irreducible, and as a first step one should always first isolate the true, irreducible
signs.

3.3 The Fermi gas as a cold atom Mott-insulator
in momentum space

The Fermi-gas of the canonical formalism is very easy to solve exactly, and one
would expect that in one or the other way this should mean that the constrained
path integral is also easy to solve. This is not true at all in the position rep-
resentation, as we will discuss in the next section. However, considering the
derivation of the Ceperley path integral there is actually no preferred status of
real space. The construction is completely independent of the representation one
chooses for the single particle states. On the canonical side momentum space is
the convenient representation to start from in the galilean continuum, or either
any other basis that diagonalizes the single particle problem. As we will show in
this section, also the Ceperley path integral of the Fermi-gas becomes very easy
indeed when one chooses to formulate it in momentum space. After a couple of
straightforward manipulations one finds a sign free, Boltzmannian path integral
showing a most entertaining correspondence: the Fermi-gas is in one-to-one cor-
respondence with a system of classical atoms forming a Mott insulating state in
the presence of a commensurate optical lattice of infinite strength, living in a
harmonic potential trap of finite strength (see Fig. 3.3a). This is literal and the
only oddity is that this trap lives in momentum space instead of real space; the
Fermi surface is just the boundary between the occupied optical lattice sites and
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V(r)= αr2

x

y

µ

kx

ky

kx

ky
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Figure 3.3: (a) a system of classical atoms forming a Mott insulating state in the
presence of a commensurate optical lattice of infinite strength, living in a har-
monic potential trap V (~r) = αr2 of finite strength; (b) the trap in momentum
space kx, ky instead of real space; the Fermi surface is just the boundary between
the occupied optical lattice sites and the empty ones; (c) a grid of allowed mo-
mentum states k = (2π/L)(kx, ky, kz, ....) where the ki’s are the usual integers
and any worldline just closes on itself along the imaginary time τ direction 0→ β
: single particle momentum conservations prohibit anything but the one cycles.

the empty ones. This boundary is sharp at zero temperature but it smears at
finite temperature because of the entropy that can be gained by exciting atoms
out of the trap! When you are quick, you should already have realized that
this trap interpretation is actually consistent with everything we know about the
Fermi-gas. Let us now proof it by constructing the Ceperley path integral.

The central wheel of the Ceperley path integral is the fermion density matrix.
One should first guess an ansatz, use it to construct the path integral, to check
if the same density matrix is produced by the path integral. Surely we know the
full fermion density matrix for the Fermi gas, and in momentum space this turns
out to be a remarkably simple affair. The k-space density matrix can be written
as the determinant formed from imaginary time single particle propagators in
the galilean continuum,

g(k,k′; τ) = 2πδ(k− k′)e−
|k|2τ
2~M . (3.9)

Since we live in the space of exact single quantum numbers these propaga-
tors are diagonal; in the galilean continuum this just means the conservation of
momentum, but when translational symmetry is broken one should use here just
the basis diagonalizing the single particle Hamiltonian.

Consider now the full momentum configuration space K = (k1, . . . ,kN ) imag-
inary time density matrix,

ρF (K,K′; τ) =
1

N !

∑
P

(−1)p
N∏
i=1

g
(
kp(i),k

′
i; τ
)
. (3.10)
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We find that the delta functions cause a great simplification. Substituting
the single-fermion expression Eq. (3.9) in this expression for the density matrix
Eq. (3.10) we obtain:

ρF (K,K′; τ) =
1

N !
e−

∑N
i=1

|ki|
2τ

2~M

×
∑
P

(−1)p
N∏
i=1

2πδ(kp(i) − k′i). (3.11)

Since the single particle propagators are eigenstates of the Hamiltonian, the
momentum world lines go ‘straight up’ in the time direction until they arrive at
the time τ where the reconnections can take place associated with the permuta-
tions. But the δ function enforces that the permuted momentum has to be the
same as the non-permuted one, and the worldlines can therefore not wind except
when the momenta of some pairs of fermions coincide. But now the sum of the
permutations in Eq. (3.11) is zero due to the Pauli principle. Mathematically,
this follows from the fact that the expression on the right hand side of Eq. (3.11)
is actually a Slater determinant formed from the delta-functions 2πδ(kp(i) − k′i)
as the matrix elements of the Nd × Nd matrix, that are indexed by momenta
{kp(i),k′i}. Hence, when two of the momenta coincide (e.g. ki = kj , i 6= j )there
are two coinciding raws/columns in the matrix and the Slater determinant equals
zero. The result is that Eq. (3.10) factorizes in N ! relabeling copies, associated
with N ! nodal cells like in 1+1D, of the following simple density matrix describing
distinguishable and localized particles in momentum space,

ρF (K,K′; τ) =

N∏
k1 6=k2 6=···6=kN

2πδ(ki − k′i)e
− |ki|

2τ

2~M . (3.12)

This has the structure of a Boltzmannian partition sum of a system subjected
to steric constraints: it is actually the solution of the Ceperley path integral for
the Fermi gas in momentum space! Let us apply periodic boundary conditions
so that on every time slice of the Ceperley path integral we find a grid of allowed
momentum states ki = (2π/L)(ki,x, ki,y, ki,z, ....) where the ki,α’s are the usual
integers (see Fig. 3.3b). We learn directly from Eq. (3.12) that we can ascribe
a distinguishable particle with every momentum cell, with a worldline that just
closes on itself along the time direction: single particle momentum conservation
prohibits anything but the one cycles (see Fig. 3.3c). In addition, we find that
the reach just collapses to the Pauli hypersurface, just as in one dimensions: per
momentum space cell either zero or one worldline can be present. These world-
lines are given by Eq. (3.9): since we are living in exact quantum number space
these just go straight up along the time direction, since there are no quantum
fluctuations: these are actually classical particles living in momentum space. We
do have to remember that these world ‘rods’ carry a fugacity set by a potential



3.3 Fermi gas as Mott-insulator 57

|k|2τ
~M . Henceforth, we have a problem of an ensemble of classical hard core parti-

cles that live on a lattice of ‘cells’ in momentum space where every cell can either
contain one or no particle, with an overall harmonic potential envelope centered
at k = 0: this is literally the problem of cold atoms living in a harmonic trap,
subjected to an infinite strong optical lattice potential, tuned such that they form
a Mott-insulating state. The ground state is simple: occupy the cells starting
at k = 0, while the particles are put into cells at increasing trap potential until
the trap is filled up with the available particles. At zero temperature there are
no fluctuations and when one exceeds the chemical potential the cells remain
empty, and there is a sharp (d− 1)-dimensional interface between the occupied-
and unoccupied trap states. This is of course the way we explain the Fermi-gas
to our undergraduate students. It invokes an odd metaphor that however turns
out to express an exact identification since we learned to handle the Ceperley
path integral!

Having a statistical physics interpretation, can we now address the questions
posed in section II? First, what is the order parameter of the Fermi-liquid? The
answer is: the same order parameter that governs the Mott-insulator. This order
parameter is well understood, although it is of an unconventional kind: it is the
‘stay at home’ emergent U(1) gauge symmetry [76], stating that at every site
and at all times there is precisely one particle per site. The particle number is
locally conserved and henceforth a local U(1) symmetry emerges. The ‘disorder
operators’ that govern the finite temperature fate of the order parameter are just
substitutional-interstitial defects: there is a finite thermal probability to excite a
particle out of the trap, and the presence of the vacancies destroys the U(1) gauge
symmetry. Since the disorder operators are zero-dimensional particles regardless
the dimensionality of momentum space, thermal melting of the Mott-insulator
occurs at any finite temperature regardless dimensionality.

We repeat, this is just a rephrasing of the standard Fermi gas wisdoms in
a non-standard language. The strange powers of the Ceperley path integral
become more obvious when interactions are switched on. In the presence of the
interactions single-particle momentum is no longer conserved, and this means
that the worldlines of the Ceperley particles in momentum states get quantized:
it is analogous to making the optical potential barriers finite in the cold gas Mott-
insulator with the effect that the particles acquire a finite tunneling rate between
the potential wells. One gets directly a hint regarding the stability of the Fermi-
liquid: Mott-insulators are stable states that need a rather large tunneling rate to
get destroyed. But the story is quite a bit more interesting than that, as can be
easily argued from the knowledge on the canonical side. Let’s consider first what
would happen in a literal cold atom Mott insulator when we start to quantize the
atoms. Deep inside the trap motions are only possibly by doubly occupying the
nodal cells and given that in the non-interacting limit the ‘Hubbard U’ is infinite
(expressing the Pauli surface) such processes are strongly suppressed. In the bulk
of the trap the Mott state would be very robust. However, at the boundary one
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can make cheap particle-hole excitations, and at any finite t the interface would
no longer be infinitely sharp on the microscopic scale: the density profile would
change smoothly. Eventually one would meet the ‘wedding cake’ situation where
the bulk is still Mott-insulating while the interface would turn into a superfluid
(we live in a bosonic world). How different is the Fermi-liquid! We know how it
behaves from the canonical side. The single-fermion self-energy tells us directly
about the fate of the k-space Mott insulator. We learn that the time required
to loose information on single-particle momentum is just given by the imaginary
part of the self-energy and that behaves as [27] 1/τk ∼ (k − kF )2, Henceforth,
it diverges at the interface while it get shorter moving into the bulk. In the
Ceperley bosonic language the Fermi-liquid is like a grilled marshmallow: It has
a ‘crispy’, solid Mott insulating crust while it becomes increasingly fluid when
one moves inside!

More precisely, the worldlines near the interface are fluctuating at short times,
since we know that the momentum distribution of the bare electrons do smear
around the Fermi-momentum - they do ‘spill out of the trap’. However, the effect
of integrating out these microscopic fluctuations is to renormalize the ‘optical
lattice potential’ upwards. This has to be the case because in the scaling limit
the renormalized worldlines represent the quasiparticles and since they produce
a perfectly sharp interface (i.e. unit jump in the quasiparticle nk), the Mottness
has to be perfect. This can only be caused by infinitely high effective potential
barriers. This physics is of course coming from the modifications happening in
the reach when interactions are turned on. The phase space restrictions giving
rise to Σ′′ ∼ ω2 are rooted in Fermi-Dirac statistics and all the statistical effects
are coded in the reach when dealing with the Ceperley formalism. These aspects
can be computed by controlled perturbation theory and in a future publication
they will be analyzed in detail.

3.4 The Fermi-liquid in real space: holographic
duality

We showed in the previous section that at least for the Fermi gas the momentum
space Ceperley path integral becomes a quite simple affair. Momentum space
is a natural place to be when one is dealing with a quantum gas or -liquid, but
dealing with a bosonic- or statistical physics systems one invariably runs into the
general notion of duality [77,78]. Dealing with conjugate degrees of freedom, like
momentum and position or phase and number, one can reformulate the mani-
festly local order on one ‘side’ into some non-local topological order parameter
on the dual side. An elementary example is the Bose-Einstein condensate. In
the language of the previous section, one can either form a ‘black hole’ in the
momentum space ‘trap’, by putting all bosons in the k = 0 ‘optical lattice cell’.
But one can also view it in real space, to discover the lively world of Section III
where the local order in momentum space translates into a global, topological
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description revolving around the infinite windings of worldlines around the time
direction. Such duality structures are ubiquitous in Bolzmannian systems, and
they are at the heart of our complete understanding of such systems: when one
has a complete duality ‘map’ one understands the system from all possible sides
and there is no room for surprises. For instance, when one is dealing with a
strongly interacting system like 4He one prefers the real space side because it
is much easier to track the effects of the interactions [38]. Also in the strongly
interacting fermion systems one expects that one is better off on the real space
side. In this concluding section we will address the issue of the dual, real space
description of the Fermi-liquid in the Ceperley path integral formalism. This real
space side is remarkably complex: despite an intense effort even Ceperley and
coworkers got stuck to the degree that they even did not manage to get things
working by brute computer force. They ran into a rather mysterious ‘reference
point glassification’ problem in their quantum Monte Carlo simulations, likely
related to a contrived ‘energy landscape’ problem associated with the workings
of the reach.

This is a fascinating problem: there has to be a simple, dual real space de-
scription of the Fermi gas. The obvious difficulty as compared to straightforward
bosonic duality is the presence of the reach. One has to dualize not only the ‘life
of the worldlines’ but also the constraints coding for the Fermi-Dirac statistics.
Topology is at the heart of duality constructions and in this regard Ceperley [73],
and more recently Mitas [79], have obtained some remarkably deep results, which
will be discussed at length in the first subsection: the topology of the reach of
the Fermi-liquid in d ≥ 2 is such that the reach is open for all cycles of Ceperley
worldlines based on even permutations or triple exchange. Henceforth, there is
no topological principle that prevents infinitely long worldlines to occur and in
subsection B we will argue that the zero temperature order of the Fermi-liquid
has to be a Bose condensate of the ‘Ceperley particles’. This is conjectural but
if it proves to be correct the Fermi-liquid holography we discussed in section 3.2
acquires a fascinating meaning: the scaling limit thermodynamics of the Fermi-
gas in any spatial dimension d > 1 is governed entirely by the statistical physics
associated with distributing the Ceperley worldlines over the cycles associated
with even permutations, and this effective partition sum is indistinguishable from
the partition sum enumerating the cycles of a soft-core boson system in one space
dimension.

3.4.1 The topology of the Fermi-liquid nodal surface

To decipher the structure of constraints as needed for the real space Ceperley path
integral one has to find out where the zero’s of the real space density matrix are.
By continuation, these should be in qualitative regards the same in the Fermi-
liquid as in the Fermi gas, and in the latter case we have an expression of the
full density matrix in closed form,
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ρF (R0,R; τ) = (4πλτ)−dN/2 × det exp

[
− (ri − rj0)2

4λτ

]
, (3.13)

where λ = ~2/(2M). Henceforth, one needs to find out the zero’s of this quantity
for all R0,R in the imaginary time interval 0 < τ < β. In real space, this
is not an easy task. Part of the trouble is that at low temperature the zero’s
of the determinant depend on all coordinates at the same time. Only in the
high temperature limit (τ → 0) the nodal surface of the density matrix becomes
extremely simple [73]. To see this, define first a permutation cell ∆P(R0) as the
set of points closer to PR0 than to any other P ′R0. Obviously, the configuration
space is divided into N ! permutation cells which are convex polyhedra bounded
by hyperplanes, R · (PR0−P ′R0) = 0. The density matrix is simply a sum over
all permutations and for R ∈ ∆P(R0) and sufficiently high temperatures this
sum is completely dominated by the term (−1)p exp[−(R− PR0)2/(4λτ)] since
all the other terms are exponentially damped relative to it. Therefore, in the high
temperature limit, ρF (R0,R; τ) will have the sign of P inside of ∆P(R0) and the
nodal hypersurface is simply given by the common faces shared by permutation
cells of different parities.

The reach acts both in a local way, much in the same way as we learned in
the (1+1)-dimensional case as a special ‘steric hindrance’ structure having to do
with entropic interactions, etcetera. However, it also carries global, topological
properties and these are now well understood because of some remarkable results
by Mitas [79], who managed to proof the ‘two nodal cell’ (or ‘nodal domain’)
property of the higher dimensional Fermi-gas reach [73]. The topology of the
nodal surface is associated with the structure of cycles as discussed in section III
but now for the Ceperley path integral. The latter can be written as

Z =
∑
Pe

∫
dRρ̃D(R,PeR;β), (3.14)

where Pe refers to even permutations, while ρ̃D refers to the density matrix of
distinguishable particles that are however still subjected to the reach constraints.
As in the case of the Feynman path integral, this sum over even permutations
can be recasted in a sum over cycles associated with all possible ways one can
reconnect the worldlines at the temporal boundary, of course limiting this sum to
those cycles that are associated with even permutations. We learned in section
IV that for free wordlines even permutations translate into the supersymmetric
quantum gas. But the Ceperley particles are not at all free, and the topology
of the nodal surface tells us about global restrictions on the cycles that can
contribute to Eq. (3.14).

It is immediately clear that the counting of cycles is governed by topology:
to find out how to reconnect wordlines arriving at the temporal boundary from
the imaginary time past, to worldlines that depart to the imaginary time future
one needs obviously global data. This global information residing in the reach is
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just the division of the reach in nodal cells we already encountered in the (1+1)-
dimensional context and the momentum space Fermi gas. There we found that
the space of all permutations got divided in N ! nodal cells, with the ramification
that the sum in Eq. (3.14) is actually reduced to one cycles. Mitas has delivered
the proof that in d ≥ 2 the reach carries a two nodal cell topology, implying
that all cycles based on even permutations lie within the reach. Since only
this topological property of the reach can impose that certain cycles have to
rigorously disappear from the cycle sum, this does imply that all cycles based
on even permutations can contribute to the partition sum, including the cycles
containing macroscopic winding numbers. Henceforth, the Ceperley worldlines
can Bose condense in principle and it is now just matter of finding out what
the distributions of the winding numbers are as function of temperature. This is
what really matters for the main line of this story. Finding out the the way that
Mitas determined the two-cell property is quite interesting and we will sketch it
here for those who are interested. When you just want to understand the big
picture, you might want to skip the remainder of this subsection.

Quite recently Mitas [79] proved a conjecture due to Ceperley [73], stating that
the reach of the higher dimensional Fermi gas is ‘maximal’ in the sense that, for
a given R0 and τ , the nodal surface of ρF (R0,R; τ) separates the configuration
space in just two nodal cells, corresponding with ρF being positive- and negative
respectively. This is a quite remarkable property: for every pair R and R′ in the
same domain (lets say ρF > 0), one can change R into R′ without encountering
a zero crossing of ρF .

The easy way to prove this property goes as follows [79]. First, it can be
demonstrated [73] that once there are only two nodal cells at some initial τ0 than
this property has to hold for any τ > τ0. This follows straightforwardly from the
imaginary time Bloch equation for the density matrix,

− ∂ρ(R,R′; τ)

∂τ
= Hρ(R,R′; τ) (3.15)

with initial condition,

ρ(R,R′; 0) = det
[
δ(ri − r′j)

]
(3.16)

and the Bloch equation is a linear equation. This is a very powerful result because
it gives away that the two-cell property ‘descents for the ultraviolet’: one has just
to prove it at an arbitrary short imaginary time which is the same as arbitrary
high temperature. Ignoring Planck scale uncertainties, etcetera, the form Eq.
(3.13) has to become asymptotically exact for sufficiently small β, also in the
presence of arbitrary interactions as long as they are not UV-singular! As we
already noticed, this high temperature limit is rather tractable.

We now need to realize that we still have to take into account the ‘remnant’
of quantum statistics in the form of even permutations. Every even permutation
can be written as a succession of exchanges of three particles i, j, k → j, k, i
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because these amount to two particle exchanges. When such an exchange does
not cross a node (i.e. it resides inside the reach) the three particles are called
‘connected’. By successions of three particle exchanges one can build up clusters
of connected particles. All one has now to demonstrate is that a point Rt exists
where all particles are connected in a single cluster, because this complete set of
even permutations exhaust all permutations for a cell of one sign, because the
odd permutations necessarily change the sign. One now needs a second property
called tiling stating that when the particles are connected for the special point
Rt this has also to be the case for all points in the cell. And tiling is proved
by Ceperley for non-degenerate ground states and also for finite temperature.
Actually due to the linearity of the Bloch equation, its fixed node solution is
unique, and the tiling property in the high temperature limit will lead to the
same property at any lower temperature.

Before we prove that the above holds for the high temperature limit density
matrix, let us just dwell for a second on what this means for the winding proper-
ties of the constrained path integral. The even permutation requirement means
that, as for the standard worldline pathintegrals, we have to connect the world-
lines with each other at the temporal boundary, but now we have to take care
that we single out those cycles corresponding with even (or three particle) ex-
changes. The ‘maximal reach’ just means that cycles containing worldlines that
wind an arbitrary large number of times around the time axis never encounter
a node ! As noted before by Ceperley, this has the peculiar implication that
in some non-obvious way the Fermi-gas has to know about Bose condensation.
Since nodal constraints do allow for infinite windings there seems to be no ‘force
in the universe’ that can forbid these infinite windings to happen and since the
Cepereley path integral is probabilistic, when these infinite windings happen one
has to accept it as Bose condensation. We will come back to this theme in a
moment.

Following Mitas, one can now prove the two cell property of the high temper-
ature limit using an inductive method. Assume that all N particles in the low β
limit at a fixed R0 are connected in one cluster, to see what happens when an
additional N + 1 particle is added. Single out two other particles N − 1, N and
move these three particles away from the rest without crossing a node. Now we
can profit from the fact that in the low β limit the density becomes factorizable:
the determinant factors into a product of the determinant of the three special
particles and the determinant of the rest. It is easy to show that the three par-
ticle determinant has the two cell property, proving that the N+1’s particle is in
the cluster of N particles. Since this is true for any N , the starting assumption
that all particles in the cluster is hereby proven.

For free fermions, Mitas also proved the two nodal cell property for non-
degenerate ground states using a similar induction procedure. The trick is to
choose a special point Rt in the configuration space, at which one can easily show
how all the particles are connected into a single cluster. Once proven for this
single point, tiling ensures that the same is true for the entire nodal cell. Mitas



3.4 The Fermi-liquid in real space: holographic duality 63

aligned the particles into lines and planes, thus forming some square lattice in the
real space. This way the number of arguments of the wave functions is reduced
and more importantly, the higher dimensional wave functions can be factorized
into products of sine functions and the one dimensional wave functions, which
are much easier to deal with than their higher dimensional counterparts. One
distinct property of the 1 dimensional wave functions is that they are invariant
under cyclic exchanges of odd numbers of particles, namely for N odd,

Cx+1Ψ1D(1, · · · , N) = Ψ1D(1, · · · , N), (3.17)

where Cx+1 represents the action to move every particle by one site in the +x
direction, with the last particle moved to the position of the first one, that is
1→ 2, 2→ 3, · · · , N → 1.

Consider for example the non-degenerate ground state of 5 particles in 2 di-
mensions. For this state, it becomes straightforward to show that each group
of the 3 near neighbors living in the real space square lattice are connected by
products of four triplet exchanges, which are all performed along the 1 dimen-
sional lines. Proven this, one can proceed as in the high temperature limit, by
adding more particles to the lattice. And these newly added particles can be
shown to be connected to the original particles’ cluster by the similar method
used for 5 particles. The only difference is that now one needs to consider the
whole line of particles, on which the new particle is added, and thus a sequence of
four cyclic exchanges, instead of the special triplet exchanges are required. Since
for non-degenerate ground states, there are odd number of particles on each line,
cyclic exchanges will not produce extra minus signs, thus leading to the same
result as triplet exchanges. This completes the proof for 2 dimensions, and the
high dimensional cases are essentially the same.

However, winding is a topological property that should be independent of
representation. In the long time β → ∞ limit the path integral contains the
same information as the ground state wave function, and for the Fermi-gas we can
actually easily determine the winding properties inside one of the nodal cells using
the random permutation theory. This demonstrates that at zero temperature the
Fermi-gas is indeed precisely equivalent to the Bose gas, within the nodal cell.

3.4.2 There is only room for winding at the bottom

The conclusion of the previous subsection is that the Ceperley wordlines can in
principle become infinitely long because the topology of the reach allows them to
become macroscopic. Does this mean that the zero-temperature order parameter
of the Fermi-liquid is just an algebraic bose condensate of Ceperley wordlines
characterized by a domination of the partition sum by macroscopic cycles? The
two nodal cell topological property is a necessary but insufficient condition for
this to be true. However, there are more reasons to believe that the Fermi-liquid
has to be of this kind.
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However the zero- and finite temperature Fermi-liquid are separated by a
phase transition and it appears that only the winding sector of the Ceperley
path integral can be responsible for this transition. The argument is simple and
general. With regard to ordering dynamics the real space Ceperley path integral
is governed by Boltzmannian principle and let us find out what ‘substance’ is
available to form an order parameter. The nodal surface in isolation cannot be
responsible, since it is an immaterial object that just governs the behavior of the
‘Ceperley particles’ . Henceforth, whatever its (singular) properties, these have
to be reflected in the behavior of the matter. In principle one can imagine subtle
topological changes occurring in the nodal surface but in the previous subsec-
tion we found this not to be the case in the Fermi-gas. Henceforth, searching
for the thermodynamic singularity we should keep our eyes on the worldlines
and these should be subjected to the generalities associated with bosonic matter.
One source of thermodynamic singularity is that the system of bosons breaks the
translational- and/or rotational symmetry of space, forming a crystal or some
liquid crystal. Although the one dimensional Fermi-gas is such a crystal in dis-
guise, it is impossible to hide a (partial) crystallization in higher dimensions:
the higher dimensional Fermi-liquid is undoubtedly a true liquid. The worldlines
have to be delocalized, but dealing with indistinguishable particles, being bosons
or the ‘even permuting’ Ceperley particles, one has to account for an extra set of
degrees of freedom: the reconnections at the temporal boundary. From a statis-
tical physics perspective, Bose condensation appears as an order out of disorder
phenomenon. Lowering temperature has the net effect of increasing the ‘configu-
rational entropy’ associated with all possible ways of reconnecting worldlines, or
either the appearances of cycles characterized by different windings. Worldlines
get longer and thereby the length over which they can meander increases, and
this in turn increases effectively the fugacity of long cycles. The more cycles
can contribute, the larger the ‘configurational entropy’ associated with the cycles
and this gain in space time ‘configurational entropy’ (physically the decrease of
quantum zero point energy) causes eventually a flat distribution of the winding
configurations, and in the Bose system this sets in at a sudden phase transition.
Since all particles ‘are part of the same wordline’ the Bose condensate is macro-
scopically coherent. We learned that the reach allows the Ceperley particles to
form infinite windings. We learn from the Bose condensate that at zero temper-
ature only crystallization can prohibit the ‘reconnection entropy’ to take over,
because the thermal de Broglie wavelength diverges. Henceforth, there does not
seem to be any feature of the reach that can prohibit this to happen as well to
the Ceperley worldlines at zero temperature.

There is a quite direct argument to support this view which was put forward
by Ceperley some time ago [73,74]. As we already emphasized a number of times,
on the canonical side the Fermi-liquid order manifests itself through the jump
in the momentum distribution. Let us now turn to the zero temperature single
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particle density matrix,

n(r) =

∫
dRρ(r1, r2, · · · rN ; r1 + r, r2, · · · rN ;∞)

=

∫
dkeik·rnk. (3.18)

In the boson condensate nB(r) → constant revealing the off-diagonal long-
range order which is equivalent to the domination of infinite cycles. In the Femi-
liquid on the other hand,

nF (r) ' 1

(kF r)d/2
Jd/2(kF r). (3.19)

The oscillations governed by the Bessel function Jd/2(kF r) can be easily traced
back to the size of the nodal pocket as discussed in a moment. However, the en-
velope function (kF r)

−d/2 just behaves like the one particle density matrix of
a Bose condensate showing off-diagonal long range order, like in the interacting
Bose system in 1+1D at zero temperature. Relating this to the real space Ceper-
ley path integral, this signals the presence of infinite cycles formed from Ceperley
world lines.
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