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Cha p t e r 2

Fermions in the Worldline Path
Integral: Absence of

Anderson-Higgs Mechanism

2.1 Introduction

The Meissner effect [41], the expulsion of magnetic fields from superconducting
regions, is a salient feature of superconductivity which distinguishes it from per-
fect conductivity. It can be described in a phenomenological way via the London
equations [42], but a microscopic understanding requires an accounting of the
pairing mechanism [43–45] leading to condensation in the ground state, and the
concomitant generation of an effective mass for the photon, [46,47]. The modern
viewpoint takes the spontaneous breaking of a gauge invariance as the central
idea, though of course this is strictly speaking not correct, as a gauge symmetry
can never be broken, but rather serves as a good description in a perturbative
expansion around the breaking of a global symmetry. The breaking of a global
symmetry is also relevant to the study of Bose-Einstein condensation. An under-
standing of this phenomena, in the case of strongly interacting Helium and the
superfluid transition, was advanced by the introduction of the methods of first
quantized path integrals [48, 49], wherein it is understood as the proliferation of
worldlines of bosons [50,51]. In fact, the partition function for the worldlines can
be mapped onto a second quantized Euclidean path integral (over fields) of the
Landau-Ginzburg type.
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The idea of spontaneously broken gauge symmetry has been used to great
advantage in high energy physics. It had long been assumed that a renormaliz-
able theory of massive vector bosons could not be gauge invariant, until it was
suggested [52–57] that a microscopic gauge invariant theory involving massless
vector bosons could still account for massive vector bosons at low energy (like
the W± and Z0 in electroweak theory), if the symmetry gauged by such modes
is spontaneously broken at some scale (assumed to be around a few hundred
GeV for electroweak theory). This realization guided the construction of the
electroweak theory [58, 59], now a cornerstone of the standard model of particle
physics.

In electroweak theory the symmetry breaking is driven by condensation of a
bosonic Higgs field, the search for which is one of the main motivations for recent
efforts in experimental high energy physics. Various technical issues (such as the
hierarchy problem) have led to the suggestion that the Higgs particle is not in fact
elementary, but gives an effective description of some as yet unknown underlying
physics (such as technicolor [60]), in much the same way that superconductivity
is often described as Bose-Einstein condensation of bound Cooper pairs [61].

One might wonder if this mechanism is specific to bosons, or whether it can
be realized using fermionic constituents. In relativistically invariant systems,
condensation of fermionic operators would lead to a breaking of Lorentz invari-
ance. More generaly such a condensation leads to a vacuum expectation value
for the fields of the form 〈0|Ô|0〉 = v, with |0〉 the vacuum state of the system,
and Ô either a bosonic or fermionic operator. Since fermionic operators connect
bosonic states to fermionic ones and vice-versa, and it assumed that the vacuum
state has a definite character (in fact nearly always assumed bosonic), the vev
v must necessarily vanish. This argument shows that spontaneous symmetry
breaking driven by fermions (if at all possible) must take a form different from
the familiar picture described in terms of bosonic order parameters. In fact this
argument can also be made in the sense of superselection rules, which limit the
allowed possible observations made on a quantum system by disallowing matrix
elements between certain classes of states, and separating the Hilbert space into
superselction sectors from which linear combinations of basis vectors can not be
made. It has been suggested [62] that a superselection rule exists which obstructs
the assembling of states which are superpositions of bosons and fermions. Since
a coherent state of fermions would necessarily mix both bosonic and fermionic
statistics, it is then not possible to construct condensates of fermions. In fact,
the question of whether such a superselection rule is operative is one to be de-
termined by experiment, and it has recently been proposed [63] that observation
of coherent superpositions of even and odd numbers of fermions in mesoscopic
quantum dots can be used as a test of supersymmetry.

Considering the importance of, and the many mysterious issues surrounding
the mechanism of spontaneous symmetry breaking, it is valuable to have an
alternative view of it. Here we will explore the formalism due to Feynmann [48,
49], where one considers a representation in terms of the worldline path integral.
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The indistinguishability of the bosons translates into the recipie that one has to
trace over all possible ways the worldlines can wind around the periodic imaginary
time axis. At the temperature where the average of the topological winding
number w becomes macroscopic, limN→∞〈w〉/N 6= 0, the system undergoes a
phase transition either to a Bose-Einstein condensate, or a superfluid. Bose-
Einstein condensation means that a macroscopic number of particles ‘share the
same worldline’ with difference between BEC and superfluidity being that in
the latter this condensate is somewhat depleted. This formalism turns out to
be very efficient for numerical calculation of properties of strongly interacting
bosonic systems such as Helium4 [50,51], where it is also shown that the average
winding number corresponds directly to the superfluid density.

It is more difficult but perhaps even more interesting to consider the fermionic
particles in this formalism. One can easily show [36] that below the Fermi temper-
ature, worldlines with macroscopic winding number also proliferate in fermionic
systems; this leads to a puzzle: the macroscopic worldlines lead to a Meissner ef-
fect, via the Anderson-Higgs mechanism, in charged bosonic systems, but surely
such phenomenon can not happen in charged fermionic systems 1.

It is the aim of this chapter to show in the worldline formalism, in a certain
limit, that particles obeying fermionic statistics can not drive an Anderson-Higgs
transition. In the next section we begin by recalling the single particle path
integral for a spinless boson, which we couple to a background magnetic field, and
write the partition function for the many-body system, from which we compute
the second order perturbative correction to the effective action. Focusing on a
special subclass of winding modes, we demonstrate the appearance of a mass for
the magnetic field. We then generalize this logic to the case of a spin-1/2 particle
by way of introduction of appropriate terms in the action for Grassmannian
degrees of freedom coupled to the particle worldlines. Underlying our observation
on the behaviour of fermionic systems in this language is the existence of a
worldline (though not target space, where the particle trajectory is embedded)
supersymmetry. The inclusion of the particle statistics leads to an additional term
in the effective action, and this addition is shown to lead to the disappearance of
the effect manifested for charged bosons.

1In the BCS theory of superconductivity, pairs of fermions form Cooper pairs, which have
a bosonic character, and whose condensation then leads to superconductivity.
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2.2 Spinless Bosons in background Magnetic
Field

We begin by considering a single spinless boson, in the non-relativistic limit,
whose action reads 2

Ae,0 =

∫ τb

τa

dτ
M

2
ẋ2(τ) , (2.1)

with τ the proper time along the particle’s worldline. In the presence of the
electromagnetic field, one needs to add the interaction term 3

Ae,int = i e

∫ τb

τa

dτ ẋi(τ)Ai(x(τ)) , (2.2)

where the dot in ẋ denotes a derivative with respect to proper time of the particle,
which should not be confused with the Euclidean time in target space. Here
i, j = 1, · · · , d, with d the dimension of space. We shall only be interested in
the study of particles immersed in an external magnetic field. Hence, in the
following we set the electric field to zero, Ei = 0, and consider only the response
to a magnetic field Bi. We drop the inter-particle Coulomb repulsion.

Since we are interested in using the single- and many-body path integrals
in first-quantized form, we are restricted to considering non-relativistic physics.
Standard problems with negative probabilities and pair production would force
us to rely on the second-quantized quantum field theory language to address the
relativistic problem.

We now study the condensation of bosonic particles in a background magnetic
field, giving a new vantage point on the Meissner effect, before we turn to apply
the same ideas to the study of fermionic systems. The partition function of N
identical bosons sums over all permutations P of the particle coordinates (with
no relative minus sign)

ZN =
1

N !

∫
dx1 · · ·

∫
dxN

∑
P

∏
i

(
xp(i), β|xi, 0

)
, (2.3)

with (
xp(i), β|xi, 0

)
≡
∫ xp(i)

xi

Dx e−A
(i)
e . (2.4)

We study the system at finite temperature, which is reflected in the fact that the
worldlines wrap around the imaginary (thermal) time direction, with τ running

from 0 to β, i.e. the action involves A =
∫ β

0
. . . dτ .

2As shown by Feynman [48, 49], interactions in the worldline formalism are best handled
by working in a relativistic formalism, where worldlines are parameterized in terms of a local
proper-time coordinate. Our approach, while non-relativistic, uses a similar parametrization of
worldlines.

3We work throughout in units where ~ = c = 1.
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Consider a general partition of the orbits of N particles grouped into different
winding cycles via permutation,

N =

N∑
w=1

w Cw . (2.5)

In this decomposition we keep track of the number of cycles (which we denote
by Cw) each of length w, so that with each permutation we associate a series
of numbers Cw, with w = 1, ..., N . Then, a sum over all permutations can be
rewritten as a sum over all integers assigned to the various Cw, subject of course
to an overall constraint, this constraint being that the total length of all cycles
taken together must be N (for a discussion of this point, see 4). The number of
permutations with such a decomposition is

M(C1, C2, · · · , CN ) =
N !∏N

w=1 Cw!wCw
. (2.6)

The partition function of N bosons is a summation over different partitions

Z(N)(β) =
1

N !

∑
{C1,··· ,CN}

M(C1, · · · , CN )

N∏
w=1

[Z(wβ)]Cw , (2.7)

where for each loop one has

Z(wβ) =

∫
ddx

∫
Cw
Dx e−

∫wβ
0

dτ(M2 ẋ
2+i ec ẋiA

i) , (2.8)

with the loop winding w times around the imaginary time direction.
We consider first a single winding loop with length w. To study the Meissner

effects, we employ a standard procedure, namely to first expand the interaction
part of the partition function exp(−ie

∫
dτẋiA

i) as a power series, and then
compute the average of each term with respect to the free particle action, which
leads to corrections of the form 〈An〉0, i.e. averages taken with respect to the
free system. Define for this particular winding loop the correction to the effective
action to be ∆Γ(wβ) = Z(wβ)−Z0(wβ). Here the lowest order non-trivial term
is of order A2, and its contribution to the Euclidean effective action reads

∆Γ(wβ) =
e2

2

〈∫
dτ1

∫
dτ2 ẋi(τ1)Ai(x(τ1)) ẋj(τ2)Aj(x(τ2))

〉
0
, (2.9)

where by definition the average of the operator O with respect to the free
action is < O[x] >0∼

∫
ddx

∫
Dxe−A0O[x], up to a normalization factor.

We will work with the Fourier transform of the gauge potential A(x) =

4See appendix of [64].
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∫
ddk

(2π)d
eikxÃ(k), and will have to evaluate expectation values of the form <

eik1x(τ1)eik2x(τ2)ẋ(τ1)ẋ(τ2) >0. To do so, we expand the position as the sum
of an average and a fluctuation part x(τ) = x0 + δx(τ), where the average is the
same for all coordinates appearing above. The desired expectation value then
factorizes into < ei(k1+k2)x0 >0< δẋ(τ1)eik1δx(τ1)δẋ(τ2)eik2δx(τ2) >0 (indices have
been suppressed in an obvious fashion). The first factor is easily shown to result
in a delta function (2π/L)dδ(k1 + k2), ensuring momentum conservation, and we
evaluate the second factor by applying Wick’s theorem. We get that

∆Γ(wβ) =
e2

2Ld

2∏
α=1

∫
ddkα δ(k1 + k2) Ãi(k1)Ãj(k2)

∫ wβ

0

dτ1

∫ wβ

0

dτ2

[
∂2G

∂τ1∂τ2
δij + ki1k

j
1

∂G

∂τ1

∂G

∂τ2

]
e(k2

1+k2
2)G′ .

(2.10)

Note that the τ integrals now run from 0 to wβ. Here we used the standard
language of Green’s functions, which is explained as follows: for a single particle,
the Green’s function is defined as

δijG1(τ1, τ2) ≡
〈
xi(τ1)xj(τ2)

〉
0
, (2.11)

which in the path integral formalism reads

G1(τ1, τ2) =

∫
ddx

∫
Dx e−Ae,0x(τ1)x(τ2) . (2.12)

This Green’s function can be derived from the zero frequency limit of the finite
temperature harmonic oscillator, after a subtraction of an infinite contribution
due to the zero Matsubara frequency, yielding

G1(τ1, τ2) = −τ1 − τ2
2

+
(τ1 − τ2)2

2β
+

β

12
. (2.13)

For a many particle system, we define the Green’s function for a particular per-
mutation pattern as

GN (τ1, τ2) ≡
∫
dx1 · · · dxN

∫ xp(1)

x1

Dx(1) · · ·
∫ xp(N)

xN

Dx(N)

e−(A(1)
e +···+A(N)

e )x(τ1)x(τ2) ,

(2.14)

or
δijGN (τ1, τ2) ≡

〈
xi(τ1)xj(τ2)

〉
P , (2.15)

and the result for the chosen winding loop is just the one-particle Green’s function
with β replaced by wβ

Gw(τ1, τ2) = −τ1 − τ2
2

+
(τ1 − τ2)2

2wβ
+
wβ

12
. (2.16)
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Furthermore, the subtracted Green’s function 5 is defined as

G′(τi, τj) ≡ G(τi, τj)−G(τi, τi). (2.17)

We now proceed to calculate the correction to the effective action (2.10). The δ-
function forces k1 = −k2, and since the integrand only depends on the difference
τ1 − τ2, one of the τ integrals can be easily calculated, giving only an overall
factor. In this way (2.10) simplifies to

∆Γ =
wβe2

2M2Ld

∫
ddk Ãi(k)Ãj(−k) Ωij(k) , (2.18)

where all the relevant information is encapsulated in the momentum dependent
function

Ωij(k) = (k2δij − kikj)
∫ wβ

0

dτ

(
−1

2
+

τ

wβ

)2

e
k2

M (− τ2 + τ2

2wβ ) . (2.19)

When w is finite, including the case with only a single particle, the k2δij−kikj
term will give rise to two differentials on the gauge field when transformed back
to real space, giving the spatial part of the well known vacuum polarization∫

ddx Fij(x) Π(−∂2) F ij(x) , (2.20)

with the field strength Fij(x) = ∂iAj(x) − ∂jAi(x). Π(−∂2) is the self-energy
of the electromagnetic field, with corrections arising from polarization effects
induced by the bosons which are coupled to the electromagnetic field.

In the limit w →∞, a partial integration on Eq.(2.19) leads to the result

Ωij(k) = (k2δij − kikj)M
k2

(
1−

∫ 1
2

− 1
2

dyewβ
k2

2M (y2−1/4)

)
, (2.21)

with y = τ/wβ − 1/2. The second term in the bracket vanishes when w → ∞.
Thus the k2 term is killed, and we get a mass term for the transverse component
of the gauge field

∆Γ =
m2

2

∫
ddx A⊥i A

⊥
i , (2.22)

with A⊥i = (δij − ∂i∂j/∂2)Aj . This is exactly the desired Meissner effect. The
contribution to the mass term coming from a single winding loop is

∆Γ(wβ) ∝ e2n

M

wβ

N
A2
⊥, (2.23)

5This Green’s function can be related to the zero frequency limit of a harmonic oscilla-
tor Green’s function, and the subtraction removes a divergent term arising in this limit; the
divergence can be traced to the contribution of the zero Matsubara frequency.
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where n = N/Ld is the number density. In the following, we ignore the backre-
action of A⊥ on the condensate.

To get the mass of the gauge field, one needs to sum over different cycle
decompositions. The correction to the effective action of the whole system is

∆Γ =
1

N !

∑
{Cw}

M({Cw})
N∏
w=1

[Z0(wβ)]Cw
N∑
w=1

Cw∆Γ(wβ) . (2.24)

The mass term is gotten by taking the thermodynamic limit of the above equation
and keeping only terms with infinite winding. Here we need to be careful about
the order of limits to take. As shown above, only those permutation patterns
containing infinitely long winding loops (in the thermodynamic limit), will con-
tribute to the mass term. So we will first take the limit that the winding number
goes to infinity. To do so, we also need to take the total number of particles
N , and the size of the system L, to infinity, while keeping the particle number
density n = N/Ld fixed. We employ a cutoff Nc for the winding number, which
goes to infinity as the particle number N → ∞, and count only those winding
loops longer than Nc. For example, one can take Nc to be Nα with 0 < α < 1.
In a box with side length L, the partition function of free bosons for a winding
loop with length w is

Z0(wβ) =

(
L

λ
√
w

∞∑
n=−∞

e−n
2(Lλ )2 π

w

)d
, (2.25)

with the thermal de Broglie wavelength λ =
√

2πβ/M . Consider the case of
three dimensions, where Bose-Einstein condensation is known to occur at finite
temperature, and where 2/3 < α < 1. In the limit w →∞, L/λ

√
w goes to zero

and Z0(wβ) → 1 for w > Nc. Thus for a particular cycle decomposition, the
contribution to the mass term from the long loops reads

N∑
w=Nc

Cw∆Γ(wβ) ∼ e2n

MN

(
N∑

w=Nc

w Cw

)
A2
⊥ . (2.26)

Here
∑N
w=Nc

wCw just counts the number of long loops in this cycle decompo-
sition, and since it is only these longs loops which contribute, the mass square
becomes

m2 =
e2n

2M

∑
{Cw}

M({Cw})
N !

(
N∏
w=1

[Z0(wβ)]Cw

) (∑N
w′=Nc

w′Cw′

N

)
. (2.27)

Since for w large, Z0(wβ) ' 1, the temperature dependence is fully encoded in
the contributions from small w. When tempereture goes to zero, Z0(wβ) → 1
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even for small w. The mass square thus reads

m2 =
e2n

2M

∑
{Cw}

M({Cw})
N !

∑N
w=Nc

wCw

N
. (2.28)

The combinatorial factor in the above equation can be calculated by using random
permutation theory [65,66]. It can be rewritten in the form

1

N

N∑
w=Nc

[N/w]∑
k=1

kwP (Cw = k) , (2.29)

where P (Cw = k) is the probability to have k cycles of length w, and according
to [65,66], is

P (Cw = k) =
w−k

k!

[N/w]−k∑
j=0

(−1)j
w−j

j!
. (2.30)

We can estimate the magnitude of the combinatorial factor as follows. For large
winding number w, the probability to have large number k of them is extremely
small. Thus we can concentrate on small k, where P (Cw = k) is approximately
1
k!e
−1/ww−k. Summing over k gives roughly

∑
k kwP (Cw = k) ' 1. Taking Nc

to be of order
√
N , the combinatorial factor is then approximately one. Thus as

the temperature goes to zero, the mass square goes over to

m2 =
e2n

M
. (2.31)

With the closed-form formula given above, one can also calculate the combina-
torial factor numerically and it converges to one very quickly 6. The bottom line
is that a finite value of mass can be gotten by summing over the long winding
loops.

It is conceptually the same, but technically even easier to work in the grand-
canonical ensemble, where the partition function for free bosons is

FG(β) = − 1

β

∞∑
w=1

(±1)
w−1 Z0(wβ)

w
ewβµ , (2.32)

with the plus sign for bosons and the minus sign for fermions. In the presence
of an electromagnetic field, one needs only to replace Z0(wβ) by Z(wβ). The
change in the free energy due to the background field is

∆F =
1

β

e2n

M
A2
⊥

1

N

∞∑
w=Nc

ewβµ

w
wβ. (2.33)

6For N = 100, 10000, 40000, it is correspondingly 0.91, 0.9901, 0, 995025.
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The quantity NL =
∑∞
w=Nc

ewβµ is just the number of particles residing in the
long loops, or equivalently the number of particles in the condensate. This can
be shown by counting the number of particles

N =

∞∑
w=1

Z0(wβ)ewβµ . (2.34)

For small winding, Z0(wβ) is approximately (L/λ
√
w)d, while for large winding

approximately (L/λ
√
w)d + 1. Thus N can be rewritten as

N =

∞∑
w=1

(
L

λ
√
w

)d
ewβµ +

∞∑
w=Nc

ewβµ , (2.35)

where the first term represents the number of particles NS living in the short
loops, and the second term the long loops. Consider again the case of three di-
mensions, where the critical temperature Tc is determined by setting the chemical
potential µ = 0 and equating N = NS , that is N =

∑∞
w=1(L/λc)

3w−3/2, where

λc =
√

2π/TcM . In this way the ratio of the size of the system and the thermal
de Broglie wavelength can be expressed as

L

λ
=

(
N

ζ(3/2)

)1/3(
T

Tc

)1/2

. (2.36)

This result can be derived via standard statistical mechanics methods; see for
example [36] and references therein. One can show that when Bose-Einstein
condensation occurs (and thus µ = 0), the number of particles winding in the
short loops is

NS = N

(
T

Tc

)3/2

. (2.37)

Thus the fraction of the particles living in the long loops is

NL
N

= 1−
(
T

Tc

)3/2

. (2.38)

When there is no condensation (and thus µ < 0), NL/N vanishes in an obvi-
ous way. The conclusion is that the mass square of the transverse photons is
determined by the number density of the condensed particles

m2 =
e2ncod

M
. (2.39)

It has been shown [67] using perturbation theory that for an ideal charged
Bose gas, with the Coulomb interaction ignored and only the magnetic coupling
~p · ~A, when there is condensation, there is a Meissner effect. The inverse screen-
ing length squared is known to be 1/λ2 = (e2/M)ncod. The calculation above
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agrees perfectly with this result. Inclusion of the Coulomb repulsion between
the charged particles would lead to a renormalization of the superfluid density.
These phenomena are well understood in quantum field theory. The above first
quantized formalism gives a new picture of these well known effects.

2.3 Inclusion of Spin and Fermionic Statistics

We begin by recalling that the Hilbert space structure of a system is given by
the path integral for zero Hamiltonian (H = 0), wherein the exponent appearing
in the path integral sum consists simply of a Berry phase term of the form
pq̇, arising from overlaps of complete sets of position and momentum states at
neighboring time slices. Consider a non-relativistic point particle system in three
space dimensions, given by the following path integral for Grassmann variables
θi(t) [36]

Z =

∫
Dθ ei

∫
dt i4 θj θ̇

j

for j = 1, 2, 3, (2.40)

which is a pure Berry phase term. This path integral takes as its starting point the
classical mechanics of spin, and can be constructed via spin coherent states [68]7.
The momentum conjugate to θj(t) is given by pj = −(i/4)θj , the sign arising from
the Grassmann nature of θ. The equation of motion forces the variable θ to be
time independent, θ̇j(t) = 0. That the momentum is proportional to the position
is a reflection of the fact that systems that are first order in time derivatives (like
the Dirac equation) represent constrained systems. The second-class constraints
are

χj = pj +
i

4
θj = 0 . (2.41)

The origin of the constraint lies in the fact that the transformation from La-
grangian configuration space q, q̇, to the phase space q, p, is singular with a
vanishing Jacobian determinant, which means we can not invert the velocities
to solve for the momenta, and results in a Hamiltonian which is defined only on
the constraint surface. Dirac [70] has shown that such systems can be handled if
one extends the notion of Poisson brackets to Dirac brackets, defined as

{A,B}D = {A,B} − {A,χi} Ci,j {χj , B} , (2.42)

and Ci,j are the components of the matrix inverse of C, whose elements are are
built from the Poisson brackets of the constraints

Ci,j ≡ {χi, χj} . (2.43)

7See [69] for a general review of applications of worldline formalism to perturbative quantum
field theory
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Care must be taken that the Poisson brackets of Grassmann valued fields are
defined as [71]

{f(θi, pj), g(θi, pj)} = −
( ∂f
∂θk

∂g

∂pk
+

∂g

∂θk

∂f

∂pk

)
, (2.44)

in order to satisfy natural algebraic properties and yield a proper quantization
for fermions. With these, we see that the Dirac bracket associated to (2.40) is

{pi, θj}D = −1

2
δi,j . (2.45)

Canonical quantization proceeds by replacing the Dirac bracket with the anti-
commutator (for fermions), as {, }D → −i [, ]+. Making this substitution and
enforcing the constraints (2.41), we have the operator equation[

θ̂i , θ̂j
]
+

= 2δij . (2.46)

In three dimensions, the operators θi can be defined via their matrix elements as

〈α|θ̂i|β〉 ≡ σiα,β , (2.47)

with the range of the spinor indices α, β = 1, 2, and the σ matrices being the
standard Pauli matrices, after which (2.46) is a simple identity for the Pauli
matrices. A classical spin vector can also be defined

Si = − i
4
εijkθjθk , (2.48)

which after canonical quantization, gives an operator representation of the spin
algebra [

Ŝi , Ŝj
]
− = iεijkŜk . (2.49)

Now consider the addition to the zero Hamiltonian path integral a term de-
scribing the coupling of a spin to an external magnetic field ~B, H = −~S · ~B, the
spin vector having already been defined by (2.48). Taking account of (2.47), we
see that [36] matrix elements of the operator

ei
∫
dt ~B·~σ2 , (2.50)

has the path integral representation∫
Dθ ei

∫
dt i4 (θj θ̇j + εjklBjθkθl) . (2.51)

The trace of the operator (2.50) can then be computed by summing the path
integral (2.51) over all anti-periodic paths, for which θj(τb) = −θj(τa). For
zero external magnetic field this fixes the normalization of the Berry phase term
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(2.40). This normalization simply counts the dimension of the relevant spinor
representation in d dimensions∫

Dθ exp

[
i

4

∫ τb=τa

τa

dτ θj θ̇
j

]
= 2d−2 , (2.52)

which for d = 3 coincides with the dimension of the Pauli matrices (2.47).
The free particle action (2.1) can now be modified for the inclusion of spin

degrees of freedom as follows [36]

Ae,0 =

∫ τb

τa

dτ

(
M

2
ẋ2(τ)− i

4
θj(τ)θ̇j(τ)

)
, (2.53)

while the coupling to the electromagnetic field becomes

Ae,int = i
e

c

∫ τb

τa

dτ

(
ẋjA

j + i
1

4M
Fjkθ

jθk
)
. (2.54)

This action contains an “orbital” contribution associated with the particle’s mo-
tion x, together with a “spin” contribution arising from the Grassmann coor-
dinates θ. The Grassmann field obeys antiperiodic boundary condition with
θ(τb) = −θ(τa), in contrast to the periodic boundary condition for x.

An important property of the spinfull interacting action (2.53) and (2.54),
is an underlying worldline supersymmetry, mixing the bosonic and fermionic
degrees of freedom, given by [36,72]

δxj(τ) = iαθj(τ) ,

δθj(τ) = αẋj(τ) , (2.55)

with α an arbitrary Grassmann parameter. We will show that this symmetry has
far reaching consequences for the properties of the fermionic system. The non-
existence of the Anderson-Higgs effect can be traced to a non-renormalization
resulting from this symmetry. Note that this worldline supersymmetry does
not imply a supersymmetric system in the target space in which the particle is
embedded, which represents just a bosonic system; it acts as a short-hand to
capture the particle statistics in the target space.

We now turn our attention to the study of N spin- 1
2 fermions, which follows

essentially the same logic as for bosons, except that now we must deal with
the action given in (2.53) and (2.54), which as already pointed out manifests a
worldline supersymmetry. In the presence of many particles, the worldline can
wind many times around the temporal direction, and the functional integral over
the Grassman fields we introduced serves to keep track of the exchange statistics,∫

Dθ exp

[
i

4

∫ wβ

0

dτθj θ̇
j

]
∝ (−1)w−1 , (2.56)
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providing a minus sign for an even winding (corresponding to an odd permuta-
tion), and a plus sign for odd winding (corresponding to an even permutation),
and the proportionality constant counting the number of fermionic degrees of
freedom. This sign agrees with the (−1)w−1 factor in the grand-canonical for-
malism (2.32).

Proceeding as we did earlier for bosons, we set the electric field to zero,
pick out the long windings and expand the interaction term, and we get for the
effective action the correction

∆Γ(wβ) =
e2

2

〈∫
dτ1

∫
dτ2

{
ẋi(τ1)Ai(x(τ1)) ẋj(τ2)Aj(x(τ2))

− 1

(4M)2
Fij(τ1)θi(τ1)θj(τ1)Fkl(τ2)θk(τ2)θl(τ2)

}〉
0
,

(2.57)

Here in addition to the bosonic Green’s function, we also need the fermionic
contribution

2δijGfw(τ1, τ2) ≡
〈
θi(τ1)θj(τ2)

〉
N,0

, (2.58)

which is calculated to be

Gfw(τ1, τ2) =
1

2
θ(τ1 − τ2) , (2.59)

with θ(τ) the step function. Carrying out the steps as before, we get the same
result for the effective actions as in (2.18), with the observation that we need
to add a fermionic contribution to Ωij(k), which shifts the term (− 1

2 + τ
Nβ )2 to

(− 1
2 + τ

Nβ )2 − 1
4 , that is

Ωij(k) = (k2δij − kikj)
∫ wβ

0

dτ

(
(−1

2
+

τ

wβ
)2 − 1

4

)
e
k2

M (− τ2 + τ2

2wβ ) . (2.60)

and the new addition will make a critical impact.
The qualitative picture remains the same for w finite. There is still the

vacuum polarization effect. However, in the limit w → ∞, the picture changes
completely. The integral appearing in Ωij(k) (2.60), becomes∫ wβ

0

dτ

[
(−1

2
+

τ

wβ
)2 − 1

4

]
e
k2

M (− τ2 + τ2

2wβ )

=
M

k2

(
1−
√
π

2

(w̃ + 2)√
w̃

e−w̃/4Erfi[
√
w̃/2]

)
,

(2.61)

with w̃ = wβ k2

2M , and the imaginary error function given by Erfi[x] = 2√
π

∫ x
0
et

2

dt.

One can see that the function (2.61) vanishes in the limit w →∞, thus

lim
w→∞

Ωij(k) = 0, (2.62)
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a result that can also arrived at by making a saddle point expansion of the left-
hand side. That is to say that the contribution to the effective action arising
from the fermionic part cancels precisely that of the bosonic part in the limit
of large N . In the Grassmannian language, it is the worldline supersymmetry
between the bosonic coordinate x and the fermionic coordinate θ that destroys
the Anderson-Higgs or Meissner effect. We note again that the Grassmann fields
simply encapsulate the fermion signs, and it is these signs which transform the
behaviour in the case of fermions in an essential way.

2.4 Conclusions

Below some finite critical temperature, infinitely long windings proliferate in
both bosonic and fermionic systems. For the former this drives Bose-Einstein
condensation, while for the latter it occurs at the Fermi temperature TF . Owing
to the statistics of the particles involved though, the long windings generate
vastly different physics. For the Bose system, it gives rise to superfluidity for
neutral systems and superconductivity for charged ones. Both are consequences
of spontaneous symmetry breaking, breaking a global symmetry in the neutral
superfluid and a gauge symmetry for the charged superconductor (seen as the
Anderson-Higgs mechanism, and responsible for the Meissner effect).

We have attacked the question of whether fermions can drive spontaneous
symmetry breaking of a local nature with the tools of the signful path integral.
We managed the fermion signs by introducing a new Grassmannian coordinate,
leading to a supersymmetric worldline theory. It is supersymmetry then that
eliminates the Meissner effect for a gas of charged fermions. The question still
remains whether one can find an order parameter for the phase transition involv-
ing fermions, even in the free case, and how to understand the sharpness of the
Fermi surface.
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