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Cha p t e r 1

Introduction

In the early days of quantum physics, the study of many-body systems was re-
garded as messy, ugly and undignified. The solution of the Schrödinger equation
for the hydrogen atom was the hallmark of modern physics. But trying to gen-
eralize this procedure to 1023 atoms interacting with each other, as is the case
in real materials, seems pointless. A huge number of approximations need to be
made before one can arrive at any concrete conclusions. Pauli, himself one of the
pioneers of the field, had called the study of many-body systems ‘dirt physics’.

Thanks to the hard work of several generations of researchers, including the
greatest names of all time, such as Lev Landau, John Bardeen, Ken Wilson,
Phil Anderson and Bob Laughlin, it has become clear today that many-body
physics, under the name Condensed Matter Physics replacing the old one Solid
State Physics, is indeed governed by deep and simple physical principles, which
are different from those governing the individual atoms constituting the system.
The symmetry of the macroscopic system can be different from that of the micro-
scopic Hamiltonian. The excitations of the macroscopic system can have different
charge, spin and statistics as compared to the constituent microscopic particles.
These new principles operating at the macroscopic scale are called emergent. The
appearance of this theme led Anderson to coin the phrase ‘More is Different’, em-
phasizing that the study of many-body physics is as equal and fundamental as,
say the study of the elementary particles. Sometimes these new principles are
written in terms of the sophisticated and beautiful language of higher mathe-
matics, and the Einstein-Dirac type thinking can lead to fruitful discoveries in
many-body physics.
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The two most important organizing principles that came out of the several
decades’ investigation of emergent phenomena are spontaneous symmetry break-
ing (SSB) and adiabatic continuity. SSB refers to the fact that the symmetry
of the ground state is different from the symmetry of space or the Hamiltonian
describing the system. This is actually something we meet constantly in our
everyday life: our desk does not have the translational and rotational symmetry
that the Schrödinger equation describing its atomic degrees of freedom possesses.
Nevertheless this principle is extremely powerful: instead of describing the sys-
tem using 1023 variables, which is an impossible task, we can now use only one
or a few. These few variables are called order parameters (OP). SSB is a quite
universal principle, capturing the physics of diverse phenomena, ranging from
simple crystals to various density waves, smectic and nematic ordering, from
magnetism to superfluidity and superconductivity, even generation of mass. The
order parameters can fluctuate in space and time, and field-theoretical methods
can be employed. This has opened the door to a whole new world. Later on
gauge fields were incorporated, and very recently even gravitational fields have
been used to model condensed matter systems.

The prototype of adiabatic continuity is Landau’s theory of Fermi liquids.
It describes strongly interacting electron systems, for which naive perturbation
theory obviously breaks down. The basic insight is that the low energy and low
temperature properties of such systems are governed by Fermi-Dirac statistics.
The simplest system that possesses this statistics is the free Fermi gas. One can
imagine the following process: start from the non-interacting free Fermi gas, and
gradually turn on interactions. As long as the system stays away from any phase
transitions, the qualitative behavior of the system does not change. For Fermi
liquids at low temperature, the specific heat has a linear temperature dependence,
the resistivity is quadratic and the spin susceptibility nearly constant, as is the
case for free Fermi gas. The main focus here are the excitations. Let us think
about the energy levels of the system during this process. There is a shift in each
energy level, but they do not cross each other. In other words, the labeling of
the energy levels does not change. In this framework, such strongly interacting
many-body systems can again be characterized by a rather small number of
parameters.

These two principles are so powerful that they have dominated the landscape
of condensed matter physics for years, leaving most theorists doing just engineer-
ing work: bosonic order parameters + Fermi gas + perturbations around them.
However, as always, dark clouds appear in the perfect sky. In 1982, a new state
of matter was discovered in the two-dimensional electron gases under a strong
magnetic field, the so-called fractional quantum hall states. These states can not
be adiabatically continued to free fermions. They do not break any continuous
symmetry and can not be described by a conventional order parameter. They
are actually topological in nature. Investigations in this direction lead to fruitful
outcomes, with groundbreaking wavefunctions, beautiful field theories and even
predictions of new states of matter.
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The second dark cloud that has develpoed into a serious intellectual crisis over
the last twenty years or so is in the condensed matter physics enterprise dealing
with strongly interacting electrons in solids. This field is flourishing right now
and there is a general perception that after a slump in the 1990’s the field has
reinvented itself. What is this intellectual crisis about? Substantial progress has
been made on the experimental side, both with regard to the discovery of elec-
tron systems in solids that behave in very interesting and puzzling ways (high-Tc
superconductors [1] and other oxides [2], heavy fermion intermetallics [3], or-
ganics [4], 2DEG’s in semiconductors [5]), and in the rapid progress of new in-
struments that make it possible to probe deeper and farther in these mysterious
electron worlds (scanning tunneling spectroscopy [6], photoemission [7], neutron-
[8] and resonant X-ray scattering [9]). On the theoretical side there is also much
action. This is energized by the ‘quantum field theory’ (QFT) revolution that
started in the 1970’s in high energy physics, and is still in the process of un-
folding its full potential in the low energy realms, as exemplified by topological
quantum computation, quantum criticality and so forth. However, the QFT ap-
proach still lies within the framework of bosonic order parameters + Fermi gas
+ perturbations.

We are forced by experimentalists to face the problem of building a theory
for the system of strongly interacting fermions that can neither be adiabatically
continued to a free Fermi gas, nor be described in terms of bosonic order parame-
ters. And this will be the target of this thesis. In our opinion, the key point that
hinders this task is the fermion sign problem. Via the Euclidean path integral,
the theory of interacting bosons boils down to exercises in equilibrium statistical
physics. It is about computing probabilistic partition sums in euclidean space-
time following the recipe of Boltzmann and this seems to have no secrets left.
However, this Boltzmannian path integral logic does not work at all when one
wants to describe problems characterized by a finite density of fermionic particles.
The culprit is that the path integral is suffering from the fermion sign problem.
The Boltzmannian computation is spoiled by ‘negative probabilities’ rendering
the approach to be mathematically ill-defined. In fact, the mathematics is as
bad as can be: Troyer and Wiese [10] showed recently that the sign problem
falls in the mathematical complexity class ‘NP hard’, and the Clay Mathematics
Institute has put one of its seven one million dollar prizes on the proof that such
problems cannot be solved in polynomial time.

Although not always appreciated, the fermion sign problem is quite conse-
quential for the understanding of the physical world. Understanding matter
revolves around the understanding of the emergence principles prescribing how
a large number of simple constituents (like elementary particles) manage to ac-
quire very different properties when they form a wholeness. The path integral
is telling us that in the absence of the signs these principles are the same for
quantum matter as they are for classical matter. But these classical emergence
principles are in turn resting on Bolzmannian statistical physics. When this fails
because of the fermion signs, we can no longer be confident regarding our un-
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derstanding of emergence. To put it positively, dealing with fermionic quantum
matter there is room for surprises that can be very different from anything we
know from the classical realms that shape our intuition. In fact, we have only
comprehended one such form of fermionic matter: the Fermi gas, and its ‘deriva-
tive’ the Fermi liquid. The embarrassment is that we are completely in the dark
regarding the nature of other forms of fermionic matter, although we know that
they exist because the experiments are telling us so.

Quantum Critical

xQCP

Disordered
SC

Ordered

T

Figure 1.1: Illustration of the interplay of quantum criticality and superconduc-
tivity. x is the tuning parameter, which can be pressure, magnetic field or doping.
The superconducting temperature usually has the highest value right above the
QCP.

This thesis explores the emergent phenomena in the signful fermionic matters.
In section 1.1, we introduce the two prototype materials of this thesis: cuprates
and heavy fermions. The theme coming out the experimental findings is the
phase diagram (1.1). By applying pressure, magnetic field, or doping, a second-
order phase transition can be tuned to zero temperature, producing a quantum
critical point (QCP). Such a singular point spreads out influence over a wide re-
gion in the phase diagram. Anomalous scaling behaviors thus emerge in various
finite-temperature properties of the system, such as specific heat, resistivity and
magnetic susceptibility, which go far beyond our conventional understanding of
metals. Moreover, the QCP is a highly degenerate state. On approach to the
QCP, a perturbation that was deemed irrelevant initially, takes over and domi-
nates at low temperature, replacing the QCP by an alternative stable phase. In
this way new states of matter that can not be constructed from stable states like
normal metals or superconductors can be built. One common way to avoid the
critical singularity is that the electrons organize themselves collectively into a
superconducting state before they reach the critical point.

In section 1.2, we give a somewhat unconventional discussion of Fermi liq-
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uids. To get the problem sharply in focus, we step back from the usual textbook
viewpoint and instead consider the Fermi liquid from the perspective of the emer-
gence principles governing classical and bosonic matter. We then proceed in two
opposite directions. One direction is to go microscopic and try to deconstruct
the existing principles of emergence. We explore the worldline formulation of
many particle systems initiated by Feynman. A simple introduction is given in
section 1.3. The other direction is to go macroscopic and search for new organiz-
ing principles. The keyword here is quantum criticality, which will be introduced
in section 1.4. In section 1.5, we outline the basic structure of the remainder of
this thesis and summarize the main results.

1.1 The prototype materials of this thesis

1.1.1 Cuprates

Cuprates are a kind of transition metal oxides with layered structure made up of
one or more copper oxygen planes. The initial interest in cuprates was triggered
by the fact that they can become superconducting at anomalously high temper-
atures [11]. After more than 20 years’ extensive study, with sample preparation
sufficiently advanced and nearly all possible experimental tools applied, it has
become clear that cuprates means much more than a high transition tempera-
ture, a number that can be as large as 160. Their properties in the normal state
above the superconducting temperature are even more exotic, and that may also
account for the unusually high Tc (see [12] for a comprehensive review).

It is now generally agreed that the active physics of cuprates lies in the CuO2

plane, and the effect of the c-axis is basically to tune the electronic structure of the
CuO2 plane. For the parent compound without doping, each copper is surrounded
by 4 oxygens in the planes, with the copper ion in the d9 configuration, providing
per unit cell a single 3d hole, and the oxygen ion in the p6 configuration. The
tetragonal environment promotes the dx2−y2 orbital of the copper ions to higher
energy level, which further mixes with the oxygen px and py orbitals, forming
a strong covalent bond. The question is then where the holes reside. A crucial
insight is that there is a strong repulsion when two electrons or two holes are
placed on the same ion. The energy to doubly occupy the copper d orbital is
actually the largest energy scale in the problem. It also costs more energy for
the holes to be placed at the oxygen p orbitals than at the copper d orbitals.
When this energy difference is large enough, as is the case for cuprates, the
holes will mainly just stay at the lattice sites of copper atoms, forming a charge
transfer insulator with localized moments [13]. Virtual hopping to nearby oxygen
p orbitals induces an exchange interaction between these local moments, and the
insulator is actually in an antiferromagnetic ground state.

When replacing, say some La by Sr, more holes are added to the CuO2 plane.
These extra holes will occupy the oxygen p orbitals at the first place. A metallic
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state is formed when these holes hop around among the oxygen p orbitals. How-
ever, the Cu-O hybridization creates a new low lying resonate state, in which the
local moment on the copper lattice site forms a local spin singlet with the spin
of the doped hole residing on the neighboring square of the oxygen atoms [14].
These singlets can hop from one site to another, and the low energy physics is
captured by a one-band tight-binding model on the square lattice. This way,
cuprates present an almost perfect realization of the simple single-band Hubbard
model, with the energy difference between the oxygen p orbital and copper d
orbital playing the role of the Hubbard U. When this energy difference is large,
the problem is further reduced to the t-J model,

H = −P

 ∑
<ij>,σ

tijc
†
iσciσ

P +
∑
<ij>

JijSi · Sj , (1.1)

where c†iσ and ciσ are the fermion creation and annihilation operators, and Si the
spin operator. The crucial part is the Gutzwiller projection operator P which
eliminates double occupancies. The essential physics of the t-J model is encap-
sulated by the trial wavefunctions proposed by Anderson: ΨtJ(r1, · · · , rN ) =
PΦHF(r1, · · · , rN ), with ΦHF a Hatree-Fock wavefunction for either conventional
Fermi liquid or BCS superconductor. The projection operator is a singular trans-
formation. Thus ΨtJ and ΦHF can not be adiabatically continued to each other.

0 0.05 0.1 0.15 0.2 0.25 0.3

T
(K
)

Hole doping x

~ T2

~ T + T 2

or

T
FL
?

T
coh

?

~ T

(T )
S-shaped

T *

d-wave SC

~ Tn

(1 < n < 2)
A
F
M

upturns
in (T )

Figure 1.2: Phase diagram of cuprates as determined by transport measurements
(from Hussey [15]).
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Figure 1.3: Change of the cuprate Fermi surface between the overdoped and
underdoped regions deduced from quantum oscillation (from Jaudet et al. [16]).

Now let us look at the phase diagram of cuprates [15]. A large variety of
emergent phenomena flourish in the underdoped region, such as stripes, vertex
liquids, quantum liquid crystals and the intra-unit cell spontaneous diamagnetic
currents. This part of the phase diagram is still attracting most of the attentions
of the researchers in the field. There is ample evidence that at large doping (the
so-called overdoped region), cuprates gradually conform to the laws of Landau
Fermi liquid, with the T 2 component of the resistivity dominating over the T -
linear component.

The arguably most mysterious part of the phase diagram is the strange metal
phase above the superconducting dome. The behavior in this region is actually
extremely simple and universal, of mathematical purity. The defining property
of such states is the linear temperature dependence of the resistivity for a wide
temperature range. The optical conductivity measurement (in optimally doped
Bi2Sr2Ca0.92Y0.08Cu2O8+δ) also shows clear scaling behavior. The absorptive
and reactive parts combine to produce a nearly perfect power law behavior in
the complex optical conductivity, with σ(ω) ∼ (−iω)γ−2, where the exponent is
determined to be γ ' 1.35.

So one would suspect that the strange metal phase is in some critical state.
And with temperature the most prominent energy scale in this regime, one would
be tempted to further associate this state with a zero temperature quantum
critical point near optimal doping. We notice that, different from the quantum
critical states in many heavy fermion systems, which will be the topic of the
next subsection, the electronic specific heat of this state displays an ordinary
Fermi liquid type behavior, C = γT , with γ nearly constant for a wide range of
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temperature and doping. There is no evidence for quasiparticle mass divergence.
Neither is it inconsistent with quantum criticality. Anyhow, it is clear that the
stange metal phase is not a conventional Fermi liquid. It is well established by
ARPES measurements that in the normal state at optimal doping, although there
is well defined Fermi surface in momentum space, sharp quasi-particle peaks cease
to exist near the (π, 0) point of the Brillouin zone.

An immediate question would be what is changing across such a QCP. In the
overdoped regime, a large closed Fermi surface characteristic of a normal metal is
observed. In the underdoped regime, ARPES sees only disconnected arcs shape
residues of Fermi surface, while quantum oscillations reveal small closed pockets
of Fermi surface. It has also been proposed by Zaanen and Overbosch that such
QCP actually corresponds to a statistics changing transition [17]. The crucial
insight is that in the underdoped regime, the t-J model actually encodes a com-
pletely different quantum statistical principle, which is fundamentally different
from the Fermi-Dirac statistics governing the overdoped regime. It is a great the-
oretically challenge to reconcile such abrupt change with the second order nature
of the transition as expected from the scaling behavior in the normal state. To
our knowledge, up to now, we do not even have a simple proof-of-principle model
demonstrating such compatibility.

1.1.2 Heavy fermions

The term ‘heavy fermions’ stands for a class of rare earth or actinide compounds,
the electronic excitations of which can be as much as thousand times heavier than
that in copper. These systems show a diversity of orderings, including ferro-
magnetism, antiferromagnetism and unconventional superconductivity. The con-
ventional wisdom of mutual exclusion of magnetism and superconductivity was
invalidated by the discovery of superconductivity in such f-electron systems, first
in the compound CeCu2Si2 by Steglich, Aarts et al. in 1976 [18] and confirmed
in 1983 in UBe13 [19]. In 1994, von Lohneyson et al. discovered that by changing
pressure or the gold concentration, the heavy fermion alloy CeCu6−xAux can be
tuned through an antiferromagnetic quantum phase transition [20]. The finite
temperature properties of the system above the critical point show pronounced
deviations from the predictions of conventional Landau Fermi liquid theory (for
a comprehensive review see [21]).

The basic picture of the heavy fermion systems is that of a dense lattice of
magnetic moments immersed in the sea of conduction electrons. The f-electrons
associated with the rare earth or actinide ions have strong on-site Coulomb re-
pulsion and they localize into magnetic moments, as in the Mott insulators. The
local moments interact antiferromagnetically with the spin density of the con-
duction electron fluid, generating a lattice analog of the single ion Kondo effect.
A heavy electron band is thus formed out of the resonances created in each unit
cell. Resistivity drops down at low temperature when coherence develops. The
f-electrons are effectively dissolved in the conduction electron fluid, with the net
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effect that the Fermi surface volume counts the number of both conduction elec-
trons and f-electrons.

The local moments also induce Friedel oscillations in the spin density of the
conduction electron liquid. These oscillations again couple to the other local mo-
ments, resulting in an effective magnetic interaction between the local moments.
Such conduction-electron-mediated interactions between magnetic moments are
called RKKY interactions, named after Ruderman, Kittel, Kasuya and Yosida.
The RKKY interaction favors an antiferromagnetic ground state for the local
moments. When the f-electrons are locked into the local moments, the Fermi
surface volume just counts the number of conduction electrons.

All these ingredients can be grouped together into the following Hamiltonian,
usually called the Kondo lattice model,

H =
∑
kα

εkc
†
kαckα +

JK
2

∑
i

Si · c†iασαβciβ +
∑
i,j

JRKKY
ij Si · Sj , (1.2)

where ckα represents the conduction electrons and Si the local moments. JK
parameterizes the Kondo coupling between the conduction electrons and the local
moments, and JRKKY

ij the RKKY interaction between the local moments. The
Kondo coupling is proportional to the square of the hybridization matrix element
V between the conduction electrons and f-electrons, JK ∼ V 2, and the RKKY
interaction is proportional to the conduction electron density of states and the
square of the Kondo coupling, JRKKY ∼ J2

Kρ.
The canonical picture of Kondo lattice, due to Doniach, is that the com-

petition between the Kondo coupling and RKKY interaction governs the phase
diagram [22]. Daniach’s reasoning is based on a comparison of energy scales.
There are two characteristic energy scales in such system: the single ion Kondo
temperature TK = De−1/(2JKρ) with D the bandwidth and the RKKY temper-
ature TRKKY = J2

Kρ. For JKρ large, the Kondo temperature is the larger one
and the ground state is the heavy Fermi liquid with a large Fermi surface. For
JKρ small, the RKKY temperature is larger, resulting in an antiferromagnetic
ground state with a small Fermi surface.

Let us look at one example: the heavy fermion alloy CeCu6−xAux. The par-
ent compound CeCu6 is a heavy fermion metal showing no long-range magnetic
order above 5 mK. Antiferromagnetic fluctuations have been observed in inelastic
neutron scattering. By replacing some copper atoms by gold atoms, the lattice
expands, leading to a reduction in the hybridization between the Ce 4f electrons
and the conduction electrons. And the RKKY interaction becomes more impor-
tant. Actually in the doping range 0.1 6 x 6 1, the Neel temperature is linear in
x, TN ∝ (x−0.1). By decreasing x or adding pressure, the Neel temperature can
be tuned to essentially zero, where we get a continuous phase transition at zero
temperature. Such phase transitions will be dominated by quantum mechanical
fluctuations, and are thus called quantum phase transitions (QPTs).

There are two aspects of such transitions. One is that the system goes from a
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magnetically ordered state to a magnetically disordered state, for which an order
parameter can be asigned that captures such a transition. The other aspect is
that the Fermi surface also changes across the transition. One would expect that
the Fermi surface changes continuously from the phase with a large Fermi surface
to the other phase with a small Fermi surface. A spin density wave transition
would give rise to such a result. However de Haas-van Alphen measurements have
shown that at least for some QPTs, e.g. the pressure-tuned QPT in CeRhIn5,
there is a sudden change in the Fermi surface area right at the transition point
(see Fig.1.4). How to reconcile the second-order nature of the phase transition
with the sudden change in the Fermi surface area is a serious challenge to the-
orists, which obviously goes beyond the conventional paradigm of spontaneous
symmetry breaking.
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Figure 1.4: Pressure dependence of the de Haas-van Alphen frequency and cy-
clotron mass in CeRhIn5. Pc denotes the critical pressure (from Gegenwart et
al. [23], measurement by Shishido et al. [24]).

Associated with such unconventional zero-temperature phase transitions are
the various exotic behaviors in the finite temperature properties of the system
above the QCPs, widely known as the non-Fermi liquid behavior (see [25] and
references therein), signaling our ignorance of such states. In various systems,
the specific heat coefficient shows an upturn at low temperature, which is usu-
ally best fitted by a logarithmic divergence, CV /T ∼ − log T , e.g. CeCoIn5,
CeCu6−xAux, U2Pt2In, UxTh1−xCu2Si2, YbRh2Si2, YbAgGe, and sometimes
equally well or even better fitted by a power-law divergence, CV /T ∼ T−1+λ

with 0 < λ < 1, e.g. Ce1−xThxRhSb, UCu4−xPd1+x, UxY1−xPd3. Think-
ing Fermi liquid, this would mean that the quasiparticle effective mass diverges
m∗/m → ∞. The transport properties of such systems are also quite differ-
ent from that of Fermi liquid. For CeCoIn5 (along the c-axis), CeCu2Ge2,
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CeCu6−xAux, UCu4−xPd1+x, UCu4+xPt1−x, U2Cu12Al5, YbRh2Si2, YbAgGe
and YbRh2Si2−xGex, the resistivity has a (quasi-)linear temperature dependence,
reminiscent of the strange metal phase of cuprates. In many other systems,
the resistivity obeys the power law ρ = ρ0 + ATα, with the power α obvi-
ously smaller than 2, e.g. CeCu2Si2, CePd2Si2, CeNi2Ge2, Ce(Ru1−xRhx)2Si2,
CeIrIn5, CeRu4Sb12, U2Co2Sn5, UBe13, UPt13, UCoAl, UxTh1−xCu2Si2 and
YbCu3+xAl2−x. The Fermi-liquid-type scattering can not account for such be-
havior. The critical fluctuations evade the locking of the Fermi-Dirac statistics.

Another important feature of the quantum critical state in heavy fermion
systems, which is also observed in cuprates, is the so-called locality. For example,
for CeCu6−xAux, the scale-invariant part of the dynamical spin susceptibility
shows the same ω/T scaling for different momenta, which implies that the critical
excitations are local.

It is surprisingly universal that as one lowers temperature, new phases appear
near the QCP. Most commonly observed to date is the superconducting phase
(see [26] and references therein). The phenomenon of a superconducting dome
enclosing the region near the QCP is quite general (see Fig.1.1). The proto-
type material in heavy fermions with such a phase diagram is the intermetallic
compound CePd2Si2. At ambient pressure, CePd2Si2 orders antiferromagneti-
cally below about 10 K. Applying pressure reduces the Neel temperature, and at
about 28 kbar, the Neel temperature vanishes, where one expects the existence of
a QCP. However, in the immediate vicinity of the critical pressure, superconduc-
tivity appears, with highest Tc about 0.4 K. Above the superconducting dome, the
electrical resistivity shows anomalous scaling behavior, with quasi-linear temper-
ature dependence over almost two orders of magnitude in temperature. Other
materials with a similar phase diagram include CeIn3, CeCu2Si2, CeCu2Ge2,
UGe2, URhGe and UCoGe.

1.2 Fermions: the main target of this thesis

The new experimental findings in cuprates and heavy fermions clearly indicate the
breakdown of the old paradigm of Landau. At this time, it is helpful to go back
to basics, deconstruct the old laws, and get detoxified from the stubborn beliefs
of the traditional way of thinking, which we have been following for decades.

The experimentalists measure systems formed from electrons and electrons are
fermions. The only exactly solvable many Fermion problem is the non-interacting
Fermi gas. Surely, every student in physics knows the canonical solution. Intro-
duce creation and annihilation operators that anti-commute,

{c†~k, c~k′} = δ~k,~k′ , (1.3a)

{c†~k, c
†
~k′
} = {c~k, c~k′} = 0, (1.3b)
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and the Hamiltonian is

H0 =
∑
~k

εkc
†
~k
c~k, (1.4)

where ~k is some set of single particle quantum numbers; a representative example
is the spinless gas in the continuum where ~k represents single particle momen-
tum and εk = ~2k2/2m. It follows from standard manipulations that its grand
canonical free energy is

FG = − 1

β

∑
~k

ln
(

1 + e−β(ε~k−µ)
)
, (1.5)

where β = 1/(kBT ) and µ the chemical potential, tending to the Fermi-energy
EF when T → 0. The particle number is

N =
∑
~k

n~k, (1.6a)

n~k =
1

eβ(ε~k−µ) − 1
, (1.6b)

where n~k is recognized as the momentum distribution function. At zero temper-
ature this momentum distribution function turns into a step function: n~k = 1

for |~k| ≤ kF and zero otherwise where the Fermi-momentum kF =
√

2mEF /~2.
The step smears at finite temperature, and this is another way of stating the fact
that only at zero temperature one is dealing with a Fermi-surface with a precise
locus in single particle momentum space separating occupied- and unoccupied
states.

The simplicity of the Fermi gas is deceptive. This can be highlighted by a
less familiar but illuminating argument. As Landau guessed correctly [27], the
Fermi gas can be adiabatically continued to the interacting Fermi liquid. The
meaning of this statement is that when one considers the system at sufficiently
large times and distances and sufficiently small temperatures(‘scaling limit’) a
state of interacting fermionic matter exists that is physically indistinguishable
from the Fermi gas. It is characterized by a sharp Fermi surface and a Fermi
energy but now these are formed from a gas of non-interacting quasiparticles that
have still a finite overlap (‘pole strength’ Z~k) with the bare fermions, because the
former are just perturbatively dressed versions of the latter, differing from each
other only on microscopic scales [27]. This is the standard lore, but let us now
consider these matters with a bit more rigor. The term describing the interactions
between the bare fermions will have the general form,

H1 =
∑
~k,~k′~q

V (~k, ~k′, ~q)c†~k+~q
c~kc
†
~k′−~q

c~k′ . (1.7)
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It is obvious that single particle momentum does not commute with the in-
teraction term, [

c†~k
c~k, H1

]
6= 0, (1.8)

henceforth, single particle momentum is in the presence of interactions no longer
a quantum number and single particle momentum space becomes therefore a
fuzzy, quantum fluctuating entity. But according to Landau we can still point at
a surface with a sharp locus in this space although this space does not exist in a
rigorous manner in the presence of interactions!

In the textbook treatments of the Fermi liquid this obvious difficulty is worked
under the rug. Since the above argument is rigorous, it has to be the case that
the Fermi-surface does not exist when one is dealing with any finite number of
particles! Since we know empirically that the Fermi liquid exists in the precise
sense that interacting Fermi-systems are characterized by a Fermi-surface that
is precisely localized in momentum space in the thermodynamic limit it has to
be that this system profits from the singular nature of the thermodynamic limit,
in analogy with the mechanism of spontaneously symmetry breaking that rules
bosonic matter.

We refer to the peculiarity of bosonic- and classical systems that (quantum)
phases of matter acquire a sharp identity only when they are formed from an
infinity of constituents [28]. Consider for instance the quantum crystal, breaking
spatial translations and rotations. Surely, one can employ a STM needle to
find out that the atoms making up the crystal take definite positions in space
but this is manifestly violating the quantum mechanical requirement that ‘true’
quantum objects should delocalize over all of space when it is homogeneous and
isotropic. The resolution of this apparent paradox is well known. One should add
to the Hamiltonian an ‘order parameter’ potential V (R) where R refers to the
dN dimensional configuration space of N atoms in d dimensional space, having
little potential valleys at the real space positions of the atoms in the crystal. It
is then a matter of order of limits,

lim
N→∞

lim
V→0
〈
∑
i

δ(~ri − ~r0
i )〉 = 0, (1.9a)

lim
V→0

lim
N→∞

〈
∑
i

δ(~ri − ~r0
i )〉 6= 0, (1.9b)

where ~ri and ~r0
i are the position operator and the equilibrium position of the i-th

atom forming the crystal. Henceforth, the precise positions of the atoms in the
solid, violating the demands of quantum mechanical invariance, emerge in the
thermodynamic limit – we know that a small number of atoms cannot form a
crystal in a rigorous sense.

Returning to the Fermi liquid, the commonality with conventional symmetry
breaking is that in both cases non existent quantum numbers (position of atoms
in a crystal, single particle momentum in the Fermi liquid) come into existence
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via an ‘asymptotic’ emergence mechanism requiring an infinite number of con-
stituents, at least in principle. But this is as far the analogy goes. In every other
regard, the Fermi liquid has no dealings with the classical emergence principles,
that also govern bosonic matter.

Although it is unavoidable that the Fermi liquid needs the thermodynamic
limit it is not at all clear what to take for the order parameter potential V . In
this regard, the Fermi liquid is plainly mysterious. The textbook treatises of the
Fermi liquid, including the quite sophisticated ‘existence proofs’, share a very
perturbative attitude. The best treatments on the market are the ones based on
functional renormalization and the closely related constructive field theory [29].
Their essence is as follows: start out with a Fermi gas and add an infinitesimal
interaction, follow the (functional) renormalization flow from the UV to the IR to
find out that all interactions are irrelevant operators. Undoubtedly, the conclu-
sions from these tedious calculations that the Fermi gas is in a renormalization
group sense stable against small perturbations are correct. The problem is that
these perturbative treatments lack the mighty general emergence principles that
we worship when dealing with classical and bosonic matter.

To stress this further, let us consider a rather classic problem that seems to
be more or less forgotten although it was quite famous a long time ago: the
puzzle of the 3He Fermi liquid. The 3He liquid at temperatures in the Kelvin
range is not yet cohering and it is well understood that it forms a dense van der
Waals liquid. Such liquids have a bad reputation; all motions in such a classical
liquid are highly cooperative to an extent that all one can do is to put them into
a computer and solve the equations of motions by brute force using molecular
dynamics. When one cools this to the millikelvin range, quantum coherence
sets in and eventually one finds the impeccable textbook version of the Fermi
liquid: the macroscopic properties arise from dressed helium atoms that have
become completely transparent to each other, except that they communicate via
the Pauli principle, while they are roughly ten times as heavy as real 3He atoms.
When one now measures the liquid structure factor using neutron scattering one
finds out that on microscopic scales this Helium Fermi liquid is more or less
indistinguishable from the classical van der Waals fluid! Hence, at microscopic
scales one is dealing with the same ‘crowded disco’ dynamics as in the classical
liquid except that now the atoms are kept going by the quantum zero-point
motions. On the microscopic scale there is of course no such thing as a Fermi
surface. For sure, the idea of renormalization flow should still apply, and since
one knows what is going on in the UV and IR one can guess the workings of the
renormalization flow in the 3He case: one starts out with a messy van der Waals
ultraviolet, and when one renormalizes by integrating out short distance degrees
of freedom one meets a ‘relevant operator creating the Fermi-surface’. At a time
scale that is supposedly coincident with the inverse renormalized Fermi-energy
this relevant operator takes over and drags the system to the stable Fermi liquid
fixed point. How to construct such a ‘Fermi-surface creation operator’? Nobody
seems to have a clue!
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Although the microscopic details are quite different, the situation one encoun-
ters in interesting electron system like the ones realized in manganites [2, 30],
heavy fermion intermetallics [3] and cuprate superconductors [1] is in gross out-
lines very similar as in 3He. In various guises one finds coherent quasiparticles
(or variations on the theme, like the Bogoliubons in the cuprates) only at very
low energies and low temperatures. Undoubtedly the UV in these systems has
much more to do with the van der Waals quantum liquid than with a free Fermi
gas. Still, the only activity the theorists seem capable off is to declare the UV to
be a Fermi gas that is hit by small interactions. It is not because these theorists
are incompetent: humanity is facing the proverbial brick wall called the fermion
sign problem that frustrates any attempt to do better.

The other ‘anomaly’ of the Fermi liquid appears again as rather innocent when
one has just worked oneself through a fermiology textbook. However, giving this
a further thought, it is actually the most remarkable and most mysterious feature
of the Fermi liquid. Without exaggeration, one can call it a ‘UV-IR connection’,
indicating the rather unreasonable way in which microscopic information is re-
membered in the scaling limit. It refers to the well known fermiology fact that by
measuring magneto-oscillations in the electrical transport (De Haas-van Alphen,
and Shubnikov- de Haas effects) one can determine directly the average distance
between the microscopic fermions by executing measurements on a macroscopic
scale. This is as a rule fundamentally impossible in strongly interacting classical-
and sign free quantum matter. Surely, this is possible in a weakly interacting
and dilute classical gas, as used with great effect by van der Waals in the 19-th
century to proof the existence of molecules. But the trick does not work in dense,
strongly interacting classical fluids: from the hydrodynamics of water one cannot
extract any data regarding the properties of water molecules. Surely, the weakly
interacting Fermi gas is similar to the van der Waals gas but a more relevant ex-
ample is the strongly interacting 3He, or either the heavy fermion Fermi liquid.
At microscopic scales it is of course trivial to measure the inter-particle distances
and the liquid structure factor of 3He will directly reveal that the helium atoms
are apart by 4 angstroms or so. But we already convinced the reader that there
is no such thing as a Fermi surface on these scales. Descending to the scaling
limit, a Fermi-surface emerges and it encloses a volume that is protected by the
famous Luttinger theorem [31,32]: it has to enclose the same volume as the non-
interacting Fermi gas at the same density. Using macroscopic magnetic fields,
macroscopic samples and macroscopic distances between the electrical contacts
one can now measure via de Haas van Alphen effect, etcetera, what kF is and
the Fermi momentum is just the inverse of the inter-particle distance modulo
factors of 2π. This is strictly unreasonable. We repeat, on microscopic scales the
system has knowledge about the inter-particle distance but there is no Fermi-
surface; the Fermi surface emerges on a scale that is supposedly in some heavy
fermion systems a factor 100 or even 1000 larger than the microscopic scale. But
this emerging Fermi-surface still gets its information from somewhere, so that
it knows to fix its volume satisfying Luttinger’s rule! In Chapter 3 we hope to
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shed some light on the ‘mysteries’ addressed here using Ceperley’s path integral
but we are still completely in the dark regarding this particular issue. It might
well be that there are even much deeper meanings involved; we believe that it
has dealings with the famous anomalies in quantum field theories [33]. These
are tied to Dirac fermions and the bottom line is that these process in rather
mysterious ways ultraviolet (Planck scale) information to the infrared, with the
effect that a gauge symmetry that is manifest on the classical level is destroyed
by this ‘quantum effect’.

To summarize, in this section we have discussed the features of the Fermi
liquid that appear to be utterly mysterious to a physicist believing that any true
understanding of physics has to rest on Boltzmannian principle:
(i) What is the order parameter and order parameter potential of the zero tem-
perature Fermi liquid?
(ii) How to construct a ‘Fermi-surface creation operator’, which is supposed to
be the relevant operator associated with the IR stability in the renormalization
group flow?
(iii) Why is it possible to retrieve microscopic information via the Luttinger sum
rule by performing macroscopic magneto-transport measurements, even in the
asymptotically strongly interacting Fermi liquid?

1.3 Feynmanian deconstruction of the order pa-
rameter

A better way to understand symmetry breaking is to inspect the dual represen-
tation in terms of the worldline path integral [34, 35], which will be the task of
Chapters 2 and 3 of this thesis. In such first-quantized formalism, the order
parameter is deconstructed, in the sense that the condensate can be expressed
directly in terms of the microscopic constituents of the system. The indistin-
guishability of the bosons and fermions translates into the recipe that one has to
trace about all possible ways the worldlines can wind around the periodic imag-
inary time axis. For a bosonic system, at the temperature where the average of
the topological winding number w becomes macroscopic, limN→∞〈w〉/N 6= 0, a
phase transition occurs either to the BEC or the superfluid. Bose condensation
means that a macroscopic number of particles ‘share the same worldline’ and
the only difference between a BEC and a superfluid is that in the latter this
condensate is somewhat depleted.

What is more attractive to us is that the worldline formalism has also the
merit of making the fermion sign most transparent. Fermionic worldlines with
an even winding number have positive signs, while those having an odd winding
number carry negative signs, and they are the origin of the fermion sign problem.
It is in this formalism that a partial solution of the sign problem is proposed
[Chapter 3]. The basic idea is to discard the worldlines with odd winding numbers
and in compensation, some of the even winding worldlines also need to be thrown
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away.

Feynman’s worldline path integral formulation of many body system is now a
textbook problem, although we are aware of only one textbook where it is worked
out in detail: Kleinert’s Path integral book [36]. Consider the partition function
for Bosons or Fermions; this can be written as an integral over configuration
space R = (r1, . . . , rN ) ∈ RNd of the diagonal density matrix evaluated at an
imaginary ~β,

Z = Tre−βH =

∫
dRρ(R,R;β). (1.10)

The path integral formulation of the partition function rests on a formal anal-

ogy between the quantum mechanical time evolution operator in real time e−iĤt/~

and the finite temperature quantum statistical density operator ρ̂ = e−βĤ , where
the inverse temperature β = 1/kBT has to be identified with the imaginary time
it/~. The partition function defined as the trace of this operator and expres-
sion (1.10) simply evaluates this trace in position space. More formally this can
viewed as a Wick rotation of the quantum mechanical path integral, and requires
a proper analytic continuation to complex times. This rotation tells us that the
path integral defining the partition function lives in D-dimensional Euclidean
space, with D = d + 1 and d the spatial dimension of the equilibrium system.
This analogy tells us that to study the equilibrium statistical mechanics of a
quantum system in d space dimensions, we can study the quantum system in a
Euclidean space of dimension d+ 1, where the extra dimension is now identified
as a ‘thermal’ circle of extent β. At finite temperature this circle is compact and
world-lines of particles in the many-body path integral (1.10) then wrap around
the circle, with appropriate boundary conditions for bosons or fermions. The dis-
crete Matsubara frequencies that arise from Fourier transforming modes on this
circle carry the idea of Kaluza-Klein compactification to statistical mechanics.

For distinguishable particles interacting via a potential V the density matrix
can be written in a worldline path integral form as,

ρD(R,R′;β) =

∫
R→R′

DR exp(−S[R]/~), (1.11a)

S[R] =

∫ ~β

0

dτ
(m

2
Ṙ2(τ) + V (R(τ))

)
, (1.11b)

but for indistinguishable bosons or fermions one has also to sum over all N !
permutations P of the particle coordinates,

ρB/F (R,R;β) =
1

N !

∑
P

(±1)pρD(R,PR;β), (1.12)

where p is he parity of the permutation. For the bosons one gets away with the
positive sign, but for fermions the contribution of a permutation with uneven
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Figure 1.5: Worldline configuration corresponding to a cyclic exchange of three
particles, 1 → 2, 2 → 3, and 3 → 1, or in short notation (123) (upper left).
On a cylinder (upper right), the worldlines form a closed loop winding w = 3
times around the cylinder. In the extended zone scheme (bottom), the exchange
process of three particles can be identified with a worldline of a single particle at
an effective inverse temperature 3β.

parity to the partition sum is a ‘negative probability’, as required by the anti-
symmetry of the fermionic density matrix. This is the origin of the fermion sign
problem, which will be discussed in more detail in section 2.

The partition sum describes worldlines that ‘lasso’ the circle in the time di-
rection. Every permutation in the sum is composed out of so called permutation
cycles. For instance, consider three particles. One particular contribution is given
by a cyclic exchange of the three particles corresponding with a single worldline
that winds three times around the time direction with winding number w = 3 (see
Fig. 1.5), a next class of contributions correspond with a ‘one cycle’ with w = 1
and a two-cycle with w = 2 (one particle returns to itself while the other two
particles are exchanged), and finally one can have three one cycles (all particles
return to their initial positions).

The crucial insight of Feynman was that quantum mechanics actually renders
a strongly interacting Bose or Fermi liquid to act like a system of free particles,
with renormalized parameters ( [34], [35]). The main task here is to characterize
the important trajectories for the partition sum. One can neglect the contribu-
tions from configurations R(0) and motions R(τ) which give small contributions.
Let us consider the contribution from moving a single particle i from its initial
position ri(0) to a final position ri(β). ri(β) might be the same as ri(0), or
rj(0) for another particle j. As a simple model that captures the essence of the
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problem, imagine the interaction to be of very short range. So the important
initial configurations are those for which particles are far apart. There may be
other particles in the way of the path ri(τ), and they will interact with particle
i due to the potential energy V . It is also possible that as particle i moves, the
other particles move out of its way, avoiding to interact with it. For some special
paths R(τ), it can be that the particles have adjusted their motions so well that
during the whole motion, the total potential energy of all the particles is nearly
equal to the potential energy of the original configuration R(0). Instead of in-
creasing their potential energy, for which the time integral is proportional to β,
the particles just need to pay an increase of kinetic energy for the readjustment
of their coordinates, which varies as the square of the velocity of particle i and
has time integral inversely proportional to β. The change in kinetic energy can
be accounted for by assigning a larger mass to particle i. The net effect is that for
every trajectory, the particle behaves like a free particle with a shifted effective
mass.

So we can proceed by considering as fixed point theory the non-interacting
Bose and Fermi gas, keeping in mind that mass m is now a renormalized quantity.
The evaluation of their path integrals reduces to a combinatorial exercise. Let us
first illustrate these matters for the example of N = 3 particles. It is straightfor-
ward to demonstrate, that the identity permutation gives a contribution Z0(β)3

to the partition function (here Z0(β) denotes the partition function of a single
particle), whereas an exchange of all three particles contribute as Z0(3β). The
meaning is simple: in the absence of interactions the 3-cycle can be identified
with a single particle worldline returning to its initial position at an effective
inverse temperature 3β (see Fig. 1.5). Further on, a permutation consisting of
a w = 1 and a w = 2 cycle contributes with Z0(β)Z0(2β). To write down the
canonical partition function for N = 3 non-interacting bosons or fermions we
only have to know the combinatorial factors (e.g. there are 3 permutations made
out of a w = 1 and a w = 2 cycle) and the parity of the permutation to obtain

Z
(N=3)
B/F (β) =

1

3!
[Z0(β)3 ± 3Z0(β)Z0(2β) + 2Z0(3β)]. (1.13)

This result can easily be generalized to N particles. We denote the number
of 1-cycles, 2-cycles, 3-cycles, . . . N -cycles the permutation is build of with C1,
C2, C3,. . ., CN and denote the combinatorial factors counting the numbers of
permutations with the same cycle decomposition C1, . . . CN with M(C1, . . . CN ).
For N particles we have to respect the overall constraint N =

∑
w Cw and obtain

Z
(N)
B/F (β) =

1

N !

N=
∑
w Cw∑

C1,...CN

M(C1, . . . CN )(±1)
∑
w(w−1)Cw

N∏
w=1

[Z0(wβ)]
Cw . (1.14)

Although the combinatorial factors can be written down in closed form,

M(C1, . . . CN ) =
N !∏

w Cw!wCw
, (1.15)
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the canonical partition function (1.14) is very clumsy to work with because of the
constraint acting on the sum over cycle decompositions. The constraint problem
can be circumvented by going to the grand-canonical ensemble. After simple
algebraic manipulations we arrive at the grand-canonical partition function

ZG(β, µ) =

∞∑
N=0

Z
(N)
B/F (β)eβµN

= exp

( ∞∑
w=1

(±1)w−1Z0(wβ)

w
ewβµ

)
, (1.16)

corresponding to a grand-canonical free energy

FG(β) = − 1

β
lnZG(β, µ) = − 1

β

∞∑
w=1

(±1)w−1Z0(wβ)

w
eβwµ, (1.17)

with the ± inside the sum referring to bosons (+) and fermions (−), respectively.
This is a quite elegant result: in the grand-canonical ensemble one can just sum
over worldlines that wind w times around the time axis; the cycle combinatorics
just adds a factor 1/w while Z0(wβ) exp (βwµ) refers to the return probability
of a single worldline of overall length wβ. In the case of zero external potential
we can further simplify

Z0(wβ) =
V d√

2π~2wβ/M
d

= Z0(β)
1

wd/2
, (1.18)

to obtain for the free energy and average particle number NG, respectively,

FG = −Z0(β)

β

∞∑
w=1

(±1)w−1 eβwµ

wd/2+1
, (1.19a)

NG = −∂FG
∂µ

= Z0(β)

∞∑
w=1

(±1)w−1 e
βwµ

wd/2
. (1.19b)

To establish contact with the textbook results for the Bose and Fermi gas one
just needs that the sums over windings can be written in an integral representa-
tion as,

∞∑
w=1

(±1)w−1 e
βwµ

wν
=

1

Γ(ν)

∫ ∞
0

dε
εν−1

eβ(ε−µ) ∓ 1
, (1.20)

and one recognizes the usual expressions involving an integral of the density of
states (N(ε) ∼ εd/2 in d space dimensions) weighted by Bose-Einstein or Fermi-
Dirac factors.

For bosons, by using the worldline path integral formalism, the quantum me-
chanical problem is reduced to a purely classical equilibrium ring polymer prob-
lem. At the transition µ→ 0, one directly infers from Eq. (1.19) that very long
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worldlines corresponding with winding numbers w ∼ N are no longer penalized,
while there are many more long winding- than short winding contributions in the
sum. It is straightforward to show that in the thermodynamic limit worldlines
with w between

√
N and N have a vanishing weight above the BEC temperature,

while these infinite long lines dominate the partition sum in the condensate [37].
One starts with a summation over a finite number of winding worldlines and take
the infinite winding limit, or equivalently the infinite particle number limit, at
the end of the day.

The number of particles contained in worldlines with winding number w is

Nw =
ewβµ

wd/2

[
D

λ
W

(
(
D

λ
)2 π

w

)]d
, (1.21)

where W (x) =
∑∞
n=−∞ e−xn

2

comes from a summation over all discrete momen-

tums, and λ = ~
√

2πβ/m is the de Broglie thermal wavelength. It is easy to
show that for d = 3 the fraction of particles contained in the long loops is

lim
N→∞

1

N

N∑
w=
√
N

Nw =

{
0 for T > Tc

1−
(
T
Tc

)3/2

for T 6 Tc.
(1.22)

while for d = 2 the result is

lim
N→∞

1

N

N∑
w=
√
N

Nw =

{
0 for T > 0
1 for T = 0.

(1.23)

A related issue is the well known fact that the non-interacting Bose-Einstein
condensate and the superfluid that occurs in the presence of finite repulsions are
adiabatically connected: when one switches on interactions the free condensate
just turns smoothly into the superfluid and there is no sign of a phase transition.
This can be seen easily from the canonical Bogoliubov theory. Again, although
the algebra is fine matters are a bit mysterious. The superfluid breaks sponta-
neous U(1) symmetry, thereby carrying rigidity as examplified by the fact that
it carries a Goldstone sound mode while it expels vorticity. The free conden-
sate is a non-rigid state, that does not break symmetry manifestly, so why are
they adiabatically connected? The answer is obvious in the path-integral rep-
resentation [38, 39]. The superfluid density ρS can be written in terms of the
mean-squared winding number in the spatial direction,

ρS =
m

~2

〈
W 2
〉
L2−d

dβ
. (1.24)

Here periodic boundary condition is imposed. d is the dimensionality, L is the
size of the periodic cell, which is assumed to be the same for all spatial directions.
The winding number W describes the net number of times the paths of the N
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particles have wound around the periodic cell, WL =
∑N
i=1(rPi − ri). Although

interactions will hinder the free meandering of the polymers, a lot of this hin-
drance is required to make it impossible for worldlines to become infinitely long
below some temperature. The fraction of infinitely long worldlines is just the
condensate fraction ρS/ρ and even in the very strongly coupled 4He superfluid
these still make up for roughly 30% of all worldlines! The only way one can get
rid of the infinite windings in the interacting system is to turn it into a static
array of one cycles - the 4He crystal.

1.4 Quantum criticality: a new organizing prin-
ciple

Quantum criticality is an important concept that has dominated the landscape
of modern condensed matter physics for the last decade [40]. The idea behind
quantum criticality is simple and powerful. Imagine competing interactions that
typically drive the transitions between different phases. Logically one has to
allow for the possibility that the relative strength of these competing interactions
is tunable as a function of the external control parameters such as pressure,
magnetic field or doping; we deliberately omit temperature as a control parameter
since quantum phase transitions (QPTs) will occur at T=0. The simplest route
to arrive at a QPT is to consider a line of finite temperature phase transition as
a function of some control parameter, such as pressure P , magnetic field B or
doping x. At T = 0 this line will indicate a critical value of the control parameter.
This specific value of the control parameter, where one expects a precise balance
between tendency to different phases or states, is called a quantum critical point
(QCP). Near this point, competing interactions nearly compensate each other.
It is often asserted that it is the physics of frustration and competition which
leads to the finite temperature transition, and that also controls and enables the
interesting properties of materials as they are brought to the T = 0 QCP.

In this section, we intend to give a short introduction to the theoretical idea
of quantum criticality. In the previous section, we have seen the experimental
evidence that by applying pressure, magnetic field, or doping, a second-order
phase transition can be tuned to zero temperature, producing a quantum crit-
ical point. Associated with such a singular point, ordinarily anomalous scaling
behaviors emerge in various finite-temperature properties of the system, such as
specific heat, resistivity and magnetic susceptibility, which goes far beyond our
conventional understanding of metals. One of the basic questions arising from
the experimental findings is how the zero temperature phase transition point is
related to the finite temperature behavior of the system. The theoretical idea of
quantum criticality states that the zero temperature QCPs actually profoundly
modify finite temperature properties of the quantum critical metals.

The basic concepts of quantum criticality is best illustrated by a simple model:
the 1+1-dimensional Ising chain in a transverse field. This model can be solved
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exactly and it is the hydrogen atom of quantum phase transitions. One can
find a comprehensive introduction to this model in Sachdev’s book [40]. We will
summarize the essential points here. The Hamiltonian is of the form,

HI = −J
∑
i

(
σ̂zi σ̂

z
i+1 + gσ̂xi

)
. (1.25)

Here the overall coefficient J > 0 is an exchange constant. It sets the microscopic
energy scale of the system. When temperature is much larger than J , the proper-
ties are nonuniversal. In the following, we consider temperature within the range
T � J . σ̂’s are the Pauli matrices. g > 0 is a dimensionless coupling. When
g = 0, the ground state is a product of eigenstates of σ̂zi . It is a ferromagnetic
state, with all the spins aligned up, either all in the spin up state or all in the
spin down state. The Z2 symmetry, σ̂zi → −σ̂zi , σ̂xi → σ̂xi , is broken. For g →∞,
the ground state is a product of eigenstates of σ̂xi , | →〉i = (| ↑〉i + | ↓〉i)/

√
2.

This state restores the above Z2 symmetry. Then the question is what happens
in-between the two limits.

This quantum model can be mapped to a classical model in 2 dimension.
Temperature in the quantum model corresponds to the total length of the classical
system in the time direction, and gap in the quantum model is mapped to the
correlation length along the time direction. One can introduce the concept of
dynamical critical exponent z, which relates the scaling in the time direction to
the space direction, and frequency scales with momentum as ω ∼ kz. In the
quantum Ising model, z = 1.

The immediate consequence of this mapping is that the zero temperature
phase transition in the quantum Ising model is second order. The Hamil-
tonian is invariant under the above Z2 transformation. So this symmetry
can only be broken spontaneously, which also points to a second order phase
transition. For g � 1, the correlation in σ̂zi is short-ranged, decaying as
〈0|σ̂zi σ̂zj |0〉 ∼ exp(−|xi − xj |/ξ) at long distance, with ξ the correlation length.
For g � 1, there is spontaneous symmetry breaking, with 〈0|σ̂zi |0〉 finite.

This model can be mapped to a free fermion problem and solved exactly.
By making the Jordan-Wigner transformation, with the spin axes rotated by
π/4 about the y axis, σ̂xi = 1 − 2c†i ci, σ̂

z
i = −

∏
j<i(1 − 2c†jcj)(ci + c†i ), the

Hamiltonian reads in momentum space

HI = J
∑
k

(
2[g − cos(ka)]c†kck − i sin(ka)[c†−kc

†
k + c−kck]− g

)
, (1.26)

where a is the lattice spacing. A Bogliubov transformation ck = ukγk + ivkγ
†
−k

brings the above quadratic Hamiltonian into the simple form, HI =
∑
k εk(γ†kγk−

1
2 ), with εk = 2J

√
1 + g2 − 2g cos k. For g 6= 1, there is an energy gap at k = 0,

with amplitude 2J |1−g|, which vanishes at g = 1. So g = 1 is expected to be the
phase transition point, at which fermions dominate the low energy properties.
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Near this point, the system is described by a universal continuum field theory,
with partition function

Z =

∫
DΨDΨ† exp

(
−
∫ β

0

dτdxLI

)

LI = Ψ†
∂Ψ

∂τ
+
c

2

(
Ψ†

∂Ψ†

∂x
−Ψ

∂Ψ

∂x

)
+ ∆Ψ†Ψ,

(1.27)

with higher order terms all irrelevant. Here the continuum Fermi field Ψ(xi) =
ci/
√
a, and coupling constants c = 2Ja,∆ = 2J(1 − g). At the critical point,

g = 1 and ∆ = 0. We also notice that above the energy scale J , lattice effects
will be important, and the above critical field theory is no longer adequate to
describe the system. So J is the ultraviolet cutoff ωc of the critical theory. Here
∆ is the most relevant perturbation about the QCP and it has scaling dimension
1. The correlation length scales as ξ ∼ |g−gc|−ν , and one can read off the critical
exponent ν = 1.

The two-point correlation functions read for τ > 0,

〈Ψ(x, τ)Ψ†(0, 0)〉 =
T

4c

(
1

sin(πT (τ − ix/c))
+

1

sin(πT (τ + ix/c))

)
,

〈Ψ(x, τ)Ψ(0, 0)〉 =i
T

4c

(
1

sin(πT (τ − ix/c))
− 1

sin(πT (τ + ix/c))

)
.

(1.28)

The T = 0 result and T > 0 result is connected by the conformal mapping from
a plane to a cylinder,

cτ ± ix→ c

πT
sin

(
πT

c
(cτ ± ix)

)
. (1.29)

The central object of this model is the order parameter correlation function
C(xi, t) = 〈σ̂z(xi, t)σ̂z(0, 0)〉. The equal-time correlation function can be cal-
culated from the fermion representation. At long distance, it has the scaling
form

lim
|x|→∞

C(x, 0) = ZT 2sGI

(
∆

T

)
exp

[
−T |x|

c
FI

(
∆

T

)]
. (1.30)

The operator σ̂z has dimension s = 1/8. FI and GI are universal scaling func-
tions, and they are smooth across the critical point ∆ = 0. One can see clearly
from the above expression that there is only long-range order at zero temperature.
At any finite temperature, the correlation decays exponentially, with correlation
length ξ = c/(TFI). With ξ behaving qualitatively differently in different re-
gions of the parameter space, the phase diagram is divided into several different
regions. This can already been seen by just comparing the two energy scales ∆
and T . And the crossover lines are at ∆ ∼ T . When ∆ > 0, T � ∆, one has
ξ−1 = (2|∆|T/πc2)1/2 exp(−|∆|/T ). For ∆ < 0, T � |∆|, the correlation length
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is given by ξ−1 = |∆|/c+ (2|∆|T/πc2)1/2 exp(−|∆|/T ) and reaches a finite value
as T → 0. In the region with T � |∆|, the correlation length is ξ = 4c/πT ,
which has the quantum critical scaling form T−1/z, and this region is called the
quantum critical region (see Fig. (1.6)).

Quantum Critical

ggc

T

Figure 1.6: Theoretical phase diagram of the 1+1-dimensional quantum Ising
model. The dashed lines are the crossover lines |∆| = 2J |g − gc| ∼ T , with the
critical coupling gc = 1. The dotted line represents the ultraviolet cutoff energy
scale T ∼ J . The thick solid line at T = 0, 0 < g < gc is the region in the phase
diagram with long-range order. The ground state at T = 0, g > gc is a quantum
paramagnet. The triangular region in the center is the quantum critical region.

In the quantum critical region, the order parameter susceptibility can be
easily derived from the universal two-point correlator at an imaginary time τ .
One starts from the equal-time correlator at T = 0,∆ = 0,

C(x, 0) ∼ 1

(|x|/c)2s
. (1.31)

The consideration here is quite general, not just restricted to the Ising model,
which has s = 1/8. Due to Lorentz invariance, the time direction can be included
simply,

C(x, τ) ∼ 1

(τ2 + x2/c2)s
. (1.32)

The finite temperature result can be obtained through the transformation (1.29),

C(x, τ) = Z̃
T 2s

(sin[πT (τ − ix)] sin[πT (τ + ix)])
s . (1.33)

The analytical continuation to real time τ → it yields the real time two-point
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correlation function

C(x, t) = Z̃
T 2s

(i sinh[πT (t− x)]i sinh[πT (t+ x)])
s , (1.34)

with a Fourier transform corresponding to the dynamic structure factor

S(k, ω) =

∫ ∞
−∞

dx

∫ ∞
−∞

dtC(x, t)e−i(kx−ωt). (1.35)

A convenient way to perform the Fourier transform is by factorizing C(x, t) into
left-moving and right-moving modes, C(x, t) = C−(t − x)C+(t + x), to subse-
quently integrate over t± x. The result is

S(k, ω) = Ze
ω
2T

1

T 2(1−2s)
B(s+ i

ω + k

4πT
, s− iω + k

4πT
)B(s+ i

ω − k
4πT

, s− iω − k
4πT

),

(1.36)
where B is the beta function, and the overall numerical coefficient Z =
24s−3π2(s−1)Z̃. The fluctuation-dissipation theorem

S(k, ω) =
2

1− e−ω/T
χ′′(k,w) (1.37)

then yields the imaginary part of the order parameter susceptibility,

χ′′(k, ω) = Z
sinh( ω

2T )

T 2(1−2s)
B(s+i

ω + k

4πT
, s−iω + k

4πT
)B(s+i

ω − k
4πT

, s−iω − k
4πT

). (1.38)

Indeed χ′′(ω) → 0 in a linear fashion with ω with a slope set by 1/T , while for
ω >> T the temperature dependence drops out, recovering the power law. The
crossover occurs at ω ' 2kBT/~ where χ′′(ω) has a maximum. This result will be
used in the later chapters when we consider superconductivity in quantum critical
metals. The real part can be computed from the Kramers-Kronig transform,

χ′(k, ω) = Z′

T 2(1−2s)

(
−iπ

s−iω+k
4πT

sin(2sπ− ik
2T )

sinh( k
2T )

Γ(2s)Γ(2s− ik
2πT )

Γ(1− ik
2πT )

3F2(2s, s− iω+k
4πT , 2s−

ik
2πT ; 1 + s− iω+k

4πT , 1−
ik

2πT ; 1) + (k → −k)
)

,(1.39)

where F is the generalized hypergeometric function.
In summary, we have shown that for the 1+1-dimensional quantum Ising chain

in the quantum critical region |∆| � T � J , the finite temperature properties
of the system are related to its property at the zero temperature critical point
∆ = 0, T = 0 simply by conformal mapping (1.29). As one approaches the QCP,
the correlation length scales as ξ ∼ |g − gc|−ν , and the correlation time scales as
ξτ ∼ ξz. Here the critical exponents are z = 1, ν = 1. For higher dimensional
systems, the mapping will be more complex. But the basic idea of finite size
scaling in the temporal direction is the same. The critical exponents are different
for different universal classes. The fact that there is only long-range order at
zero temperature is the special property of 1+1 dimension. In higher dimensional
systems, the ordered phase can extend to finite temperature, occupying a finite
region in the phase diagram.
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1.5 This thesis

This thesis is divided into two parts. The first part (Chapters 2 and 3) is about
worldline path integrals and the fermion nodal structure. The second part (Chap-
ters 4, 5, 6) is about quantum criticality and its interplay with superconductivity.
There are actually intrinsic connections between the two, though they look far
apart at first glance. The study of the nodal structure of the fermionic wavefunc-
tions and density matrices serves as an antidote to the conventional Fermi gas
way of thinking. What we learn from exploring the nodes is that the world of
condensed matter systems is not just about the single particle Green’s functions,
and the many-body entanglement perspective is crucial for the understanding of
emergent phenomena. Nature has already revealed this to us when the FQHE
was discovered: Laughlin’s wavefunction contains much more information than
a single particle Green’s function, or even earlier, when Schrieffer wrote down
the simple wave function for the superconducting ground state. A simple step
going beyond the Fermi gas way of thinking would be to consider the two particle
correlation functions, e.g. charge susceptibility, spin susceptibility and pairing
susceptibility, to be as fundamental as the single particle Green’s functions, which
is the basic idea of Chapter 5.

We start in Chapter 2 with the signful worldline path integrals. The Feyn-
manian deconstruction of the order parameter is shown explicitly by calculating,
in the first quantized path integral formalism, the effect of the condensation of a
gas of charged particles in the background magnetic field. Coupling to a bosonic
condensate generates a mass term for the background magnetic field, leading to
the Anderson-Higgs effect. The value of the mass is determined by the number
density of the condensed particles. In this formalism, the fermionic statistics
are encoded via the inclusion of additional Grassmann coordinates in a manner
that leads to a manifest worldline supersymmetry. This extra symmetry is key
in demonstrating the absence of the Anderson-Higgs effect for charged fermions.

In Chapter 3, we study the fermion sign problem in the worldline path inte-
gral formalism. The insightful work of Ceperley in constructing fermionic path
integrals in terms of constrained world-lines is reviewed. In this representation,
the minus signs associated with Fermi-Dirac statistics are self consistently trans-
lated into a geometrical constraint structure, the nodal hypersurface, acting on
an effective bosonic dynamics. Working with the path integral in momentum
space, we then show that the Fermi gas can be understood by analogy to a Mott
insulator in a harmonic trap. Going back to real space, we discuss the topological
properties of the nodal cells, and suggest a new holographic conjecture relating
Fermi liquids in higher dimensions to soft-core bosons in one dimension.

We turn to the exploration of quantum criticality in Chapter 4. In this chap-
ter, we consider the dynamics of the bosonic order parameters around the QCPs,
assuming that the fermionic degrees of freedom can be integrated out. We are
interested in the stability of QCPs in the presence of two competing phases.
These phases near QCPs are assumed to be either classical or quantum and as-
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sumed to repulsively interact via square-square interactions. We find that for
any dynamical exponents and for any dimensionality strong enough interaction
renders QCPs unstable, and drives transitions to become first order. We propose
that this instability and the onset of first-order transitions lead to spatially inho-
mogeneous states in practical materials near putative QCPs. Our analysis also
leads us to suggest that there is a breakdown of Conformal Field Theory (CFT)
scaling in the Anti de Sitter models, and in fact these models contain first-order
transitions in the strong coupling limit.

In particular, we carry out the renormalization group (RG) analysis of two
coupled order parameters with different dynamical exponents, and we find a line
of fixed points in such theories. The RG analysis of such models is not an easy
task. The conventional picture is that in d spatial dimensions, the quantum field
theory of a bosonic field with dynamical exponent z is equivalent to a classical
field theory in d + z dimensions. This picture still holds when there are more than
one field, but all the fields have the same dynamical exponent. However, when
the coupled fields have different dynamical exponents, this picture is no longer
valid: the fields are frustrated in choosing their effective dimensions. Techni-
cally, this problem arises in the RG analysis for example when one calculates
the loop diagrams containing internal lines corresponding to fields with different
dynamical exponents. If we think more carefully about how one arrives at the
conventional way of counting effective dimensions, we will find that one has to
rescale the parameters to absorb the generally dimensionfull coefficient in the fre-
quency dependent terms, the presence of which ensures these terms to have the
right dimensions. We will show explicitly such rescaling. With distinct dynam-
ical exponents, one can no longer rescale out these coefficients. They actually
lead to dramatically different scaling behavior in the RG structure.

In Chapter 5, we present a simple phenomenological scaling theory for the
pairing instability of a quantum critical metal. It can be viewed as a minimal
generalization of the classical BCS theory of superconductivity for normal Fermi
liquid metals. We assume that attractive interactions are induced in the fermion
system by an external bosonic glue that is strongly retarded. Resting on the
small Migdal parameter, all the required information from the fermion system
needed to address the superconductivity enters through the pairing susceptibility.
Asserting that the normal state is a strongly interacting quantum critical state
of fermions, the form of this susceptibility is governed by conformal invariance
and one only has the scaling dimension of the pair operator as free parameter.
Within this scaling framework, conventional BCS theory appears as the marginal
case but it is now easily generalized to the (ir)relevant scaling regimes. In the
relevant regime an algebraic singularity takes over from the BCS logarithm with
the obvious effect that the pairing instability becomes stronger. However, it is
more surprising that this effect is strongest for small couplings and small Migdal
parameters, highlighting an unanticipated important role of retardation. Using
exact forms for the finite-temperature pair susceptibility from 1+1D conformal
field theory as models, we study the transition temperatures, finding that the gap



1.5 This thesis 29

to transition temperature ratios is generically large compared to the BCS case,
showing, however, an opposite trend as a function of the coupling strength com-
pared to the conventional Migdal-Eliashberg theory. We show that our scaling
theory naturally produces the superconducting domes surrounding the quantum
critical points, even when the coupling to the glue itself is not changing at all.
We argue that hidden relations will exist between the location of the crossover
lines to the Fermi liquids away from the quantum critical points and the detailed
form of the dome when the glue strength is independent of the zero-temperature
control parameter. Finally, we discuss the behavior of the orbital-limited upper
critical magnetic field as a function of the zero-temperature coupling constant.
Compared to the variation in the transition temperature, the critical field might
show a much stronger variation pending the value of the dynamical critical ex-
ponent.

In Chapter 6, we propose to use the second order Josephson effect as a direct
probe of the Cooper channel of quantum critical metals, to shed light on the
problem of unconventional superconductivity in such systems. We review the
idea of Ferrell and Scalapino who suggested a superconductor-insulator-normal
(SIN) tunneling setup in which a strong superconductor acts as an effective ex-
ternal probe for a normal metallic state above its superconducting transition
temperature Tc. The fluctuating pair field of the metal is coupled to the rigid
pair-field of the strong superconductor, and this leads to an additional contri-
bution to the total tunneling current, on top of the well-known SIN-junction
quasiparticle current. This additional tunneling current is proportional to the
imaginary part of the pair(ing) susceptibility in the metallic state. We calculate
the pair susceptibility for several different scenarios of the pairing mechanism for
quantum critical metals, to provide templates for experimentalists. We find that
different models differ qualitatively.
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