
Fermions, criticality and superconductivity
She, J.H.

Citation
She, J. H. (2011, May 3). Fermions, criticality and superconductivity. Casimir
PhD Series. Faculty of Science, Leiden University. Retrieved from
https://hdl.handle.net/1887/17607
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/17607
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/17607


Fermions, Criticality and

Superconductivity

P R O E F S C H R I F T

ter verkrijging van de graad
van Doctor aan de Universiteit Leiden, op gezag van
Rector Magnificus Prof. mr. P. F. van der Heijden,
volgens besluit van het College voor Promoties

te verdedigen op dinsdag 3 mei 2011
te klokke 13.45 uur

door

Jian-Huang She

geboren te Rudong, China,

in 1981



Promotiecommissie:

Promotor: Prof. dr. J. Zaanen
Overige leden: Prof. dr. J. M. van Ruitenbeek (Universiteit Leiden)

Prof. dr. A. V. Balatsky (Los Alamos National Laboratory)
Prof. dr. D. van der Marel (University of Geneva)
Prof. dr. ir. H. Hilgenkamp (Universiteit Leiden en Universiteit Twente)
Prof. dr. C. W. J. Beenakker (Universiteit Leiden)
Dr. K. E. Schalm (Universiteit Leiden)

Casimir PhD Series, Delft-Leiden, 2011-06
ISBN 978-90-8593-095-2

The research described in this thesis was supported by the Netherlands Organi-
sation for Scientific Research (NWO) through a Spinoza Prize grant.

ii



To my family



iv



Contents

1 Introduction 1

1.1 The prototype materials of this thesis . . . . . . . . . . . . . . . . 5

1.1.1 Cuprates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Heavy fermions . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Fermions: the main target of this thesis . . . . . . . . . . . . . . . 11

1.3 Feynmanian deconstruction of the order parameter . . . . . . . . . 16

1.4 Quantum criticality: a new organizing principle . . . . . . . . . . . 22

1.5 This thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Fermions in the Worldline Path Integral 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Spinless Bosons in background Magnetic Field . . . . . . . . . . . . 34

2.3 Inclusion of Spin and Fermionic Statistics . . . . . . . . . . . . . . 41

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Fermions in the Constrained Path Integral 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Ceperley’s constrained path integral . . . . . . . . . . . . . . . . . 49

3.3 Fermi gas as Mott-insulator . . . . . . . . . . . . . . . . . . . . . . 54

3.4 The Fermi-liquid in real space: holographic duality . . . . . . . . . 58

3.4.1 The topology of the Fermi-liquid nodal surface . . . . . . . 59

3.4.2 There is only room for winding at the bottom . . . . . . . . 63

4 Stability of Quantum Critical Points: the Bosonic Story 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Two competing classical fields . . . . . . . . . . . . . . . . . . . . . 71

4.3 Effects of quantum fluctuations . . . . . . . . . . . . . . . . . . . . 74

4.4 Two fluctuating fields . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 Competing orders with different dynamical exponents . . . 85

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



vi CONTENTS

5 Superconducting Instability in Quantum Critical Metals 103
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 BCS theory and the scaling of the pair susceptibility . . . . . . . . 107
5.3 Determining the transition temperature . . . . . . . . . . . . . . . 111
5.4 More about the gap equation . . . . . . . . . . . . . . . . . . . . . 115
5.5 Away from the critical points . . . . . . . . . . . . . . . . . . . . . 118
5.6 The upper critical field . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6 Measuring the Pair Susceptibility Directly 129
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 The pair tunneling experiment . . . . . . . . . . . . . . . . . . . . 132
6.3 Pairing mechanisms with electron-glue dualism . . . . . . . . . . . 134

6.3.1 Fermi liquid BCS . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.2 The Critical Glue Model . . . . . . . . . . . . . . . . . . . . 138
6.3.3 Quantum Critical BCS . . . . . . . . . . . . . . . . . . . . . 139

6.4 Holographic superconductors . . . . . . . . . . . . . . . . . . . . . 141
6.5 Evolution of the full pair susceptibility . . . . . . . . . . . . . . . . 143
6.6 Outlook: towards a realistic experiment . . . . . . . . . . . . . . . 150

7 Conclusions 153

Bibliography 159

Samenvatting 175

Summary 177

Publications 181

Curriculum Vitae 183

Acknowledgements 185



Cha p t e r 1

Introduction

In the early days of quantum physics, the study of many-body systems was re-
garded as messy, ugly and undignified. The solution of the Schrödinger equation
for the hydrogen atom was the hallmark of modern physics. But trying to gen-
eralize this procedure to 1023 atoms interacting with each other, as is the case
in real materials, seems pointless. A huge number of approximations need to be
made before one can arrive at any concrete conclusions. Pauli, himself one of the
pioneers of the field, had called the study of many-body systems ‘dirt physics’.

Thanks to the hard work of several generations of researchers, including the
greatest names of all time, such as Lev Landau, John Bardeen, Ken Wilson,
Phil Anderson and Bob Laughlin, it has become clear today that many-body
physics, under the name Condensed Matter Physics replacing the old one Solid
State Physics, is indeed governed by deep and simple physical principles, which
are different from those governing the individual atoms constituting the system.
The symmetry of the macroscopic system can be different from that of the micro-
scopic Hamiltonian. The excitations of the macroscopic system can have different
charge, spin and statistics as compared to the constituent microscopic particles.
These new principles operating at the macroscopic scale are called emergent. The
appearance of this theme led Anderson to coin the phrase ‘More is Different’, em-
phasizing that the study of many-body physics is as equal and fundamental as,
say the study of the elementary particles. Sometimes these new principles are
written in terms of the sophisticated and beautiful language of higher mathe-
matics, and the Einstein-Dirac type thinking can lead to fruitful discoveries in
many-body physics.
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The two most important organizing principles that came out of the several
decades’ investigation of emergent phenomena are spontaneous symmetry break-
ing (SSB) and adiabatic continuity. SSB refers to the fact that the symmetry
of the ground state is different from the symmetry of space or the Hamiltonian
describing the system. This is actually something we meet constantly in our
everyday life: our desk does not have the translational and rotational symmetry
that the Schrödinger equation describing its atomic degrees of freedom possesses.
Nevertheless this principle is extremely powerful: instead of describing the sys-
tem using 1023 variables, which is an impossible task, we can now use only one
or a few. These few variables are called order parameters (OP). SSB is a quite
universal principle, capturing the physics of diverse phenomena, ranging from
simple crystals to various density waves, smectic and nematic ordering, from
magnetism to superfluidity and superconductivity, even generation of mass. The
order parameters can fluctuate in space and time, and field-theoretical methods
can be employed. This has opened the door to a whole new world. Later on
gauge fields were incorporated, and very recently even gravitational fields have
been used to model condensed matter systems.

The prototype of adiabatic continuity is Landau’s theory of Fermi liquids.
It describes strongly interacting electron systems, for which naive perturbation
theory obviously breaks down. The basic insight is that the low energy and low
temperature properties of such systems are governed by Fermi-Dirac statistics.
The simplest system that possesses this statistics is the free Fermi gas. One can
imagine the following process: start from the non-interacting free Fermi gas, and
gradually turn on interactions. As long as the system stays away from any phase
transitions, the qualitative behavior of the system does not change. For Fermi
liquids at low temperature, the specific heat has a linear temperature dependence,
the resistivity is quadratic and the spin susceptibility nearly constant, as is the
case for free Fermi gas. The main focus here are the excitations. Let us think
about the energy levels of the system during this process. There is a shift in each
energy level, but they do not cross each other. In other words, the labeling of
the energy levels does not change. In this framework, such strongly interacting
many-body systems can again be characterized by a rather small number of
parameters.

These two principles are so powerful that they have dominated the landscape
of condensed matter physics for years, leaving most theorists doing just engineer-
ing work: bosonic order parameters + Fermi gas + perturbations around them.
However, as always, dark clouds appear in the perfect sky. In 1982, a new state
of matter was discovered in the two-dimensional electron gases under a strong
magnetic field, the so-called fractional quantum hall states. These states can not
be adiabatically continued to free fermions. They do not break any continuous
symmetry and can not be described by a conventional order parameter. They
are actually topological in nature. Investigations in this direction lead to fruitful
outcomes, with groundbreaking wavefunctions, beautiful field theories and even
predictions of new states of matter.



3

The second dark cloud that has develpoed into a serious intellectual crisis over
the last twenty years or so is in the condensed matter physics enterprise dealing
with strongly interacting electrons in solids. This field is flourishing right now
and there is a general perception that after a slump in the 1990’s the field has
reinvented itself. What is this intellectual crisis about? Substantial progress has
been made on the experimental side, both with regard to the discovery of elec-
tron systems in solids that behave in very interesting and puzzling ways (high-Tc
superconductors [1] and other oxides [2], heavy fermion intermetallics [3], or-
ganics [4], 2DEG’s in semiconductors [5]), and in the rapid progress of new in-
struments that make it possible to probe deeper and farther in these mysterious
electron worlds (scanning tunneling spectroscopy [6], photoemission [7], neutron-
[8] and resonant X-ray scattering [9]). On the theoretical side there is also much
action. This is energized by the ‘quantum field theory’ (QFT) revolution that
started in the 1970’s in high energy physics, and is still in the process of un-
folding its full potential in the low energy realms, as exemplified by topological
quantum computation, quantum criticality and so forth. However, the QFT ap-
proach still lies within the framework of bosonic order parameters + Fermi gas
+ perturbations.

We are forced by experimentalists to face the problem of building a theory
for the system of strongly interacting fermions that can neither be adiabatically
continued to a free Fermi gas, nor be described in terms of bosonic order parame-
ters. And this will be the target of this thesis. In our opinion, the key point that
hinders this task is the fermion sign problem. Via the Euclidean path integral,
the theory of interacting bosons boils down to exercises in equilibrium statistical
physics. It is about computing probabilistic partition sums in euclidean space-
time following the recipe of Boltzmann and this seems to have no secrets left.
However, this Boltzmannian path integral logic does not work at all when one
wants to describe problems characterized by a finite density of fermionic particles.
The culprit is that the path integral is suffering from the fermion sign problem.
The Boltzmannian computation is spoiled by ‘negative probabilities’ rendering
the approach to be mathematically ill-defined. In fact, the mathematics is as
bad as can be: Troyer and Wiese [10] showed recently that the sign problem
falls in the mathematical complexity class ‘NP hard’, and the Clay Mathematics
Institute has put one of its seven one million dollar prizes on the proof that such
problems cannot be solved in polynomial time.

Although not always appreciated, the fermion sign problem is quite conse-
quential for the understanding of the physical world. Understanding matter
revolves around the understanding of the emergence principles prescribing how
a large number of simple constituents (like elementary particles) manage to ac-
quire very different properties when they form a wholeness. The path integral
is telling us that in the absence of the signs these principles are the same for
quantum matter as they are for classical matter. But these classical emergence
principles are in turn resting on Bolzmannian statistical physics. When this fails
because of the fermion signs, we can no longer be confident regarding our un-
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derstanding of emergence. To put it positively, dealing with fermionic quantum
matter there is room for surprises that can be very different from anything we
know from the classical realms that shape our intuition. In fact, we have only
comprehended one such form of fermionic matter: the Fermi gas, and its ‘deriva-
tive’ the Fermi liquid. The embarrassment is that we are completely in the dark
regarding the nature of other forms of fermionic matter, although we know that
they exist because the experiments are telling us so.

Quantum Critical

xQCP

Disordered
SC

Ordered

T

Figure 1.1: Illustration of the interplay of quantum criticality and superconduc-
tivity. x is the tuning parameter, which can be pressure, magnetic field or doping.
The superconducting temperature usually has the highest value right above the
QCP.

This thesis explores the emergent phenomena in the signful fermionic matters.
In section 1.1, we introduce the two prototype materials of this thesis: cuprates
and heavy fermions. The theme coming out the experimental findings is the
phase diagram (1.1). By applying pressure, magnetic field, or doping, a second-
order phase transition can be tuned to zero temperature, producing a quantum
critical point (QCP). Such a singular point spreads out influence over a wide re-
gion in the phase diagram. Anomalous scaling behaviors thus emerge in various
finite-temperature properties of the system, such as specific heat, resistivity and
magnetic susceptibility, which go far beyond our conventional understanding of
metals. Moreover, the QCP is a highly degenerate state. On approach to the
QCP, a perturbation that was deemed irrelevant initially, takes over and domi-
nates at low temperature, replacing the QCP by an alternative stable phase. In
this way new states of matter that can not be constructed from stable states like
normal metals or superconductors can be built. One common way to avoid the
critical singularity is that the electrons organize themselves collectively into a
superconducting state before they reach the critical point.

In section 1.2, we give a somewhat unconventional discussion of Fermi liq-
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uids. To get the problem sharply in focus, we step back from the usual textbook
viewpoint and instead consider the Fermi liquid from the perspective of the emer-
gence principles governing classical and bosonic matter. We then proceed in two
opposite directions. One direction is to go microscopic and try to deconstruct
the existing principles of emergence. We explore the worldline formulation of
many particle systems initiated by Feynman. A simple introduction is given in
section 1.3. The other direction is to go macroscopic and search for new organiz-
ing principles. The keyword here is quantum criticality, which will be introduced
in section 1.4. In section 1.5, we outline the basic structure of the remainder of
this thesis and summarize the main results.

1.1 The prototype materials of this thesis

1.1.1 Cuprates

Cuprates are a kind of transition metal oxides with layered structure made up of
one or more copper oxygen planes. The initial interest in cuprates was triggered
by the fact that they can become superconducting at anomalously high temper-
atures [11]. After more than 20 years’ extensive study, with sample preparation
sufficiently advanced and nearly all possible experimental tools applied, it has
become clear that cuprates means much more than a high transition tempera-
ture, a number that can be as large as 160. Their properties in the normal state
above the superconducting temperature are even more exotic, and that may also
account for the unusually high Tc (see [12] for a comprehensive review).

It is now generally agreed that the active physics of cuprates lies in the CuO2

plane, and the effect of the c-axis is basically to tune the electronic structure of the
CuO2 plane. For the parent compound without doping, each copper is surrounded
by 4 oxygens in the planes, with the copper ion in the d9 configuration, providing
per unit cell a single 3d hole, and the oxygen ion in the p6 configuration. The
tetragonal environment promotes the dx2−y2 orbital of the copper ions to higher
energy level, which further mixes with the oxygen px and py orbitals, forming
a strong covalent bond. The question is then where the holes reside. A crucial
insight is that there is a strong repulsion when two electrons or two holes are
placed on the same ion. The energy to doubly occupy the copper d orbital is
actually the largest energy scale in the problem. It also costs more energy for
the holes to be placed at the oxygen p orbitals than at the copper d orbitals.
When this energy difference is large enough, as is the case for cuprates, the
holes will mainly just stay at the lattice sites of copper atoms, forming a charge
transfer insulator with localized moments [13]. Virtual hopping to nearby oxygen
p orbitals induces an exchange interaction between these local moments, and the
insulator is actually in an antiferromagnetic ground state.

When replacing, say some La by Sr, more holes are added to the CuO2 plane.
These extra holes will occupy the oxygen p orbitals at the first place. A metallic
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state is formed when these holes hop around among the oxygen p orbitals. How-
ever, the Cu-O hybridization creates a new low lying resonate state, in which the
local moment on the copper lattice site forms a local spin singlet with the spin
of the doped hole residing on the neighboring square of the oxygen atoms [14].
These singlets can hop from one site to another, and the low energy physics is
captured by a one-band tight-binding model on the square lattice. This way,
cuprates present an almost perfect realization of the simple single-band Hubbard
model, with the energy difference between the oxygen p orbital and copper d
orbital playing the role of the Hubbard U. When this energy difference is large,
the problem is further reduced to the t-J model,

H = −P

 ∑
<ij>,σ

tijc
†
iσciσ

P +
∑
<ij>

JijSi · Sj , (1.1)

where c†iσ and ciσ are the fermion creation and annihilation operators, and Si the
spin operator. The crucial part is the Gutzwiller projection operator P which
eliminates double occupancies. The essential physics of the t-J model is encap-
sulated by the trial wavefunctions proposed by Anderson: ΨtJ(r1, · · · , rN ) =
PΦHF(r1, · · · , rN ), with ΦHF a Hatree-Fock wavefunction for either conventional
Fermi liquid or BCS superconductor. The projection operator is a singular trans-
formation. Thus ΨtJ and ΦHF can not be adiabatically continued to each other.
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Figure 1.2: Phase diagram of cuprates as determined by transport measurements
(from Hussey [15]).



1.1 The prototype materials of this thesis 7

0 1 2 10 15 20 25
0.0

0.5

1.0

 

 

Fo
ur

ie
r a

m
pl

itu
de

 (a
.u

.)

F (kT)

X

Overdoped
Tl

2
Ba

2
CuO

6+

F=18 kT

Underdoped
YBa

2
Cu

3
O

6.5

F=0.54 kT

Figure 1.3: Change of the cuprate Fermi surface between the overdoped and
underdoped regions deduced from quantum oscillation (from Jaudet et al. [16]).

Now let us look at the phase diagram of cuprates [15]. A large variety of
emergent phenomena flourish in the underdoped region, such as stripes, vertex
liquids, quantum liquid crystals and the intra-unit cell spontaneous diamagnetic
currents. This part of the phase diagram is still attracting most of the attentions
of the researchers in the field. There is ample evidence that at large doping (the
so-called overdoped region), cuprates gradually conform to the laws of Landau
Fermi liquid, with the T 2 component of the resistivity dominating over the T -
linear component.

The arguably most mysterious part of the phase diagram is the strange metal
phase above the superconducting dome. The behavior in this region is actually
extremely simple and universal, of mathematical purity. The defining property
of such states is the linear temperature dependence of the resistivity for a wide
temperature range. The optical conductivity measurement (in optimally doped
Bi2Sr2Ca0.92Y0.08Cu2O8+δ) also shows clear scaling behavior. The absorptive
and reactive parts combine to produce a nearly perfect power law behavior in
the complex optical conductivity, with σ(ω) ∼ (−iω)γ−2, where the exponent is
determined to be γ ' 1.35.

So one would suspect that the strange metal phase is in some critical state.
And with temperature the most prominent energy scale in this regime, one would
be tempted to further associate this state with a zero temperature quantum
critical point near optimal doping. We notice that, different from the quantum
critical states in many heavy fermion systems, which will be the topic of the
next subsection, the electronic specific heat of this state displays an ordinary
Fermi liquid type behavior, C = γT , with γ nearly constant for a wide range of
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temperature and doping. There is no evidence for quasiparticle mass divergence.
Neither is it inconsistent with quantum criticality. Anyhow, it is clear that the
stange metal phase is not a conventional Fermi liquid. It is well established by
ARPES measurements that in the normal state at optimal doping, although there
is well defined Fermi surface in momentum space, sharp quasi-particle peaks cease
to exist near the (π, 0) point of the Brillouin zone.

An immediate question would be what is changing across such a QCP. In the
overdoped regime, a large closed Fermi surface characteristic of a normal metal is
observed. In the underdoped regime, ARPES sees only disconnected arcs shape
residues of Fermi surface, while quantum oscillations reveal small closed pockets
of Fermi surface. It has also been proposed by Zaanen and Overbosch that such
QCP actually corresponds to a statistics changing transition [17]. The crucial
insight is that in the underdoped regime, the t-J model actually encodes a com-
pletely different quantum statistical principle, which is fundamentally different
from the Fermi-Dirac statistics governing the overdoped regime. It is a great the-
oretically challenge to reconcile such abrupt change with the second order nature
of the transition as expected from the scaling behavior in the normal state. To
our knowledge, up to now, we do not even have a simple proof-of-principle model
demonstrating such compatibility.

1.1.2 Heavy fermions

The term ‘heavy fermions’ stands for a class of rare earth or actinide compounds,
the electronic excitations of which can be as much as thousand times heavier than
that in copper. These systems show a diversity of orderings, including ferro-
magnetism, antiferromagnetism and unconventional superconductivity. The con-
ventional wisdom of mutual exclusion of magnetism and superconductivity was
invalidated by the discovery of superconductivity in such f-electron systems, first
in the compound CeCu2Si2 by Steglich, Aarts et al. in 1976 [18] and confirmed
in 1983 in UBe13 [19]. In 1994, von Lohneyson et al. discovered that by changing
pressure or the gold concentration, the heavy fermion alloy CeCu6−xAux can be
tuned through an antiferromagnetic quantum phase transition [20]. The finite
temperature properties of the system above the critical point show pronounced
deviations from the predictions of conventional Landau Fermi liquid theory (for
a comprehensive review see [21]).

The basic picture of the heavy fermion systems is that of a dense lattice of
magnetic moments immersed in the sea of conduction electrons. The f-electrons
associated with the rare earth or actinide ions have strong on-site Coulomb re-
pulsion and they localize into magnetic moments, as in the Mott insulators. The
local moments interact antiferromagnetically with the spin density of the con-
duction electron fluid, generating a lattice analog of the single ion Kondo effect.
A heavy electron band is thus formed out of the resonances created in each unit
cell. Resistivity drops down at low temperature when coherence develops. The
f-electrons are effectively dissolved in the conduction electron fluid, with the net
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effect that the Fermi surface volume counts the number of both conduction elec-
trons and f-electrons.

The local moments also induce Friedel oscillations in the spin density of the
conduction electron liquid. These oscillations again couple to the other local mo-
ments, resulting in an effective magnetic interaction between the local moments.
Such conduction-electron-mediated interactions between magnetic moments are
called RKKY interactions, named after Ruderman, Kittel, Kasuya and Yosida.
The RKKY interaction favors an antiferromagnetic ground state for the local
moments. When the f-electrons are locked into the local moments, the Fermi
surface volume just counts the number of conduction electrons.

All these ingredients can be grouped together into the following Hamiltonian,
usually called the Kondo lattice model,

H =
∑
kα

εkc
†
kαckα +

JK
2

∑
i

Si · c†iασαβciβ +
∑
i,j

JRKKY
ij Si · Sj , (1.2)

where ckα represents the conduction electrons and Si the local moments. JK
parameterizes the Kondo coupling between the conduction electrons and the local
moments, and JRKKY

ij the RKKY interaction between the local moments. The
Kondo coupling is proportional to the square of the hybridization matrix element
V between the conduction electrons and f-electrons, JK ∼ V 2, and the RKKY
interaction is proportional to the conduction electron density of states and the
square of the Kondo coupling, JRKKY ∼ J2

Kρ.
The canonical picture of Kondo lattice, due to Doniach, is that the com-

petition between the Kondo coupling and RKKY interaction governs the phase
diagram [22]. Daniach’s reasoning is based on a comparison of energy scales.
There are two characteristic energy scales in such system: the single ion Kondo
temperature TK = De−1/(2JKρ) with D the bandwidth and the RKKY temper-
ature TRKKY = J2

Kρ. For JKρ large, the Kondo temperature is the larger one
and the ground state is the heavy Fermi liquid with a large Fermi surface. For
JKρ small, the RKKY temperature is larger, resulting in an antiferromagnetic
ground state with a small Fermi surface.

Let us look at one example: the heavy fermion alloy CeCu6−xAux. The par-
ent compound CeCu6 is a heavy fermion metal showing no long-range magnetic
order above 5 mK. Antiferromagnetic fluctuations have been observed in inelastic
neutron scattering. By replacing some copper atoms by gold atoms, the lattice
expands, leading to a reduction in the hybridization between the Ce 4f electrons
and the conduction electrons. And the RKKY interaction becomes more impor-
tant. Actually in the doping range 0.1 6 x 6 1, the Neel temperature is linear in
x, TN ∝ (x−0.1). By decreasing x or adding pressure, the Neel temperature can
be tuned to essentially zero, where we get a continuous phase transition at zero
temperature. Such phase transitions will be dominated by quantum mechanical
fluctuations, and are thus called quantum phase transitions (QPTs).

There are two aspects of such transitions. One is that the system goes from a
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magnetically ordered state to a magnetically disordered state, for which an order
parameter can be asigned that captures such a transition. The other aspect is
that the Fermi surface also changes across the transition. One would expect that
the Fermi surface changes continuously from the phase with a large Fermi surface
to the other phase with a small Fermi surface. A spin density wave transition
would give rise to such a result. However de Haas-van Alphen measurements have
shown that at least for some QPTs, e.g. the pressure-tuned QPT in CeRhIn5,
there is a sudden change in the Fermi surface area right at the transition point
(see Fig.1.4). How to reconcile the second-order nature of the phase transition
with the sudden change in the Fermi surface area is a serious challenge to the-
orists, which obviously goes beyond the conventional paradigm of spontaneous
symmetry breaking.
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Figure 1.4: Pressure dependence of the de Haas-van Alphen frequency and cy-
clotron mass in CeRhIn5. Pc denotes the critical pressure (from Gegenwart et
al. [23], measurement by Shishido et al. [24]).

Associated with such unconventional zero-temperature phase transitions are
the various exotic behaviors in the finite temperature properties of the system
above the QCPs, widely known as the non-Fermi liquid behavior (see [25] and
references therein), signaling our ignorance of such states. In various systems,
the specific heat coefficient shows an upturn at low temperature, which is usu-
ally best fitted by a logarithmic divergence, CV /T ∼ − log T , e.g. CeCoIn5,
CeCu6−xAux, U2Pt2In, UxTh1−xCu2Si2, YbRh2Si2, YbAgGe, and sometimes
equally well or even better fitted by a power-law divergence, CV /T ∼ T−1+λ

with 0 < λ < 1, e.g. Ce1−xThxRhSb, UCu4−xPd1+x, UxY1−xPd3. Think-
ing Fermi liquid, this would mean that the quasiparticle effective mass diverges
m∗/m → ∞. The transport properties of such systems are also quite differ-
ent from that of Fermi liquid. For CeCoIn5 (along the c-axis), CeCu2Ge2,
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CeCu6−xAux, UCu4−xPd1+x, UCu4+xPt1−x, U2Cu12Al5, YbRh2Si2, YbAgGe
and YbRh2Si2−xGex, the resistivity has a (quasi-)linear temperature dependence,
reminiscent of the strange metal phase of cuprates. In many other systems,
the resistivity obeys the power law ρ = ρ0 + ATα, with the power α obvi-
ously smaller than 2, e.g. CeCu2Si2, CePd2Si2, CeNi2Ge2, Ce(Ru1−xRhx)2Si2,
CeIrIn5, CeRu4Sb12, U2Co2Sn5, UBe13, UPt13, UCoAl, UxTh1−xCu2Si2 and
YbCu3+xAl2−x. The Fermi-liquid-type scattering can not account for such be-
havior. The critical fluctuations evade the locking of the Fermi-Dirac statistics.

Another important feature of the quantum critical state in heavy fermion
systems, which is also observed in cuprates, is the so-called locality. For example,
for CeCu6−xAux, the scale-invariant part of the dynamical spin susceptibility
shows the same ω/T scaling for different momenta, which implies that the critical
excitations are local.

It is surprisingly universal that as one lowers temperature, new phases appear
near the QCP. Most commonly observed to date is the superconducting phase
(see [26] and references therein). The phenomenon of a superconducting dome
enclosing the region near the QCP is quite general (see Fig.1.1). The proto-
type material in heavy fermions with such a phase diagram is the intermetallic
compound CePd2Si2. At ambient pressure, CePd2Si2 orders antiferromagneti-
cally below about 10 K. Applying pressure reduces the Neel temperature, and at
about 28 kbar, the Neel temperature vanishes, where one expects the existence of
a QCP. However, in the immediate vicinity of the critical pressure, superconduc-
tivity appears, with highest Tc about 0.4 K. Above the superconducting dome, the
electrical resistivity shows anomalous scaling behavior, with quasi-linear temper-
ature dependence over almost two orders of magnitude in temperature. Other
materials with a similar phase diagram include CeIn3, CeCu2Si2, CeCu2Ge2,
UGe2, URhGe and UCoGe.

1.2 Fermions: the main target of this thesis

The new experimental findings in cuprates and heavy fermions clearly indicate the
breakdown of the old paradigm of Landau. At this time, it is helpful to go back
to basics, deconstruct the old laws, and get detoxified from the stubborn beliefs
of the traditional way of thinking, which we have been following for decades.

The experimentalists measure systems formed from electrons and electrons are
fermions. The only exactly solvable many Fermion problem is the non-interacting
Fermi gas. Surely, every student in physics knows the canonical solution. Intro-
duce creation and annihilation operators that anti-commute,

{c†~k, c~k′} = δ~k,~k′ , (1.3a)

{c†~k, c
†
~k′
} = {c~k, c~k′} = 0, (1.3b)
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and the Hamiltonian is

H0 =
∑
~k

εkc
†
~k
c~k, (1.4)

where ~k is some set of single particle quantum numbers; a representative example
is the spinless gas in the continuum where ~k represents single particle momen-
tum and εk = ~2k2/2m. It follows from standard manipulations that its grand
canonical free energy is

FG = − 1

β

∑
~k

ln
(

1 + e−β(ε~k−µ)
)
, (1.5)

where β = 1/(kBT ) and µ the chemical potential, tending to the Fermi-energy
EF when T → 0. The particle number is

N =
∑
~k

n~k, (1.6a)

n~k =
1

eβ(ε~k−µ) − 1
, (1.6b)

where n~k is recognized as the momentum distribution function. At zero temper-
ature this momentum distribution function turns into a step function: n~k = 1

for |~k| ≤ kF and zero otherwise where the Fermi-momentum kF =
√

2mEF /~2.
The step smears at finite temperature, and this is another way of stating the fact
that only at zero temperature one is dealing with a Fermi-surface with a precise
locus in single particle momentum space separating occupied- and unoccupied
states.

The simplicity of the Fermi gas is deceptive. This can be highlighted by a
less familiar but illuminating argument. As Landau guessed correctly [27], the
Fermi gas can be adiabatically continued to the interacting Fermi liquid. The
meaning of this statement is that when one considers the system at sufficiently
large times and distances and sufficiently small temperatures(‘scaling limit’) a
state of interacting fermionic matter exists that is physically indistinguishable
from the Fermi gas. It is characterized by a sharp Fermi surface and a Fermi
energy but now these are formed from a gas of non-interacting quasiparticles that
have still a finite overlap (‘pole strength’ Z~k) with the bare fermions, because the
former are just perturbatively dressed versions of the latter, differing from each
other only on microscopic scales [27]. This is the standard lore, but let us now
consider these matters with a bit more rigor. The term describing the interactions
between the bare fermions will have the general form,

H1 =
∑
~k,~k′~q

V (~k, ~k′, ~q)c†~k+~q
c~kc
†
~k′−~q

c~k′ . (1.7)
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It is obvious that single particle momentum does not commute with the in-
teraction term, [

c†~k
c~k, H1

]
6= 0, (1.8)

henceforth, single particle momentum is in the presence of interactions no longer
a quantum number and single particle momentum space becomes therefore a
fuzzy, quantum fluctuating entity. But according to Landau we can still point at
a surface with a sharp locus in this space although this space does not exist in a
rigorous manner in the presence of interactions!

In the textbook treatments of the Fermi liquid this obvious difficulty is worked
under the rug. Since the above argument is rigorous, it has to be the case that
the Fermi-surface does not exist when one is dealing with any finite number of
particles! Since we know empirically that the Fermi liquid exists in the precise
sense that interacting Fermi-systems are characterized by a Fermi-surface that
is precisely localized in momentum space in the thermodynamic limit it has to
be that this system profits from the singular nature of the thermodynamic limit,
in analogy with the mechanism of spontaneously symmetry breaking that rules
bosonic matter.

We refer to the peculiarity of bosonic- and classical systems that (quantum)
phases of matter acquire a sharp identity only when they are formed from an
infinity of constituents [28]. Consider for instance the quantum crystal, breaking
spatial translations and rotations. Surely, one can employ a STM needle to
find out that the atoms making up the crystal take definite positions in space
but this is manifestly violating the quantum mechanical requirement that ‘true’
quantum objects should delocalize over all of space when it is homogeneous and
isotropic. The resolution of this apparent paradox is well known. One should add
to the Hamiltonian an ‘order parameter’ potential V (R) where R refers to the
dN dimensional configuration space of N atoms in d dimensional space, having
little potential valleys at the real space positions of the atoms in the crystal. It
is then a matter of order of limits,

lim
N→∞

lim
V→0
〈
∑
i

δ(~ri − ~r0
i )〉 = 0, (1.9a)

lim
V→0

lim
N→∞

〈
∑
i

δ(~ri − ~r0
i )〉 6= 0, (1.9b)

where ~ri and ~r0
i are the position operator and the equilibrium position of the i-th

atom forming the crystal. Henceforth, the precise positions of the atoms in the
solid, violating the demands of quantum mechanical invariance, emerge in the
thermodynamic limit – we know that a small number of atoms cannot form a
crystal in a rigorous sense.

Returning to the Fermi liquid, the commonality with conventional symmetry
breaking is that in both cases non existent quantum numbers (position of atoms
in a crystal, single particle momentum in the Fermi liquid) come into existence
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via an ‘asymptotic’ emergence mechanism requiring an infinite number of con-
stituents, at least in principle. But this is as far the analogy goes. In every other
regard, the Fermi liquid has no dealings with the classical emergence principles,
that also govern bosonic matter.

Although it is unavoidable that the Fermi liquid needs the thermodynamic
limit it is not at all clear what to take for the order parameter potential V . In
this regard, the Fermi liquid is plainly mysterious. The textbook treatises of the
Fermi liquid, including the quite sophisticated ‘existence proofs’, share a very
perturbative attitude. The best treatments on the market are the ones based on
functional renormalization and the closely related constructive field theory [29].
Their essence is as follows: start out with a Fermi gas and add an infinitesimal
interaction, follow the (functional) renormalization flow from the UV to the IR to
find out that all interactions are irrelevant operators. Undoubtedly, the conclu-
sions from these tedious calculations that the Fermi gas is in a renormalization
group sense stable against small perturbations are correct. The problem is that
these perturbative treatments lack the mighty general emergence principles that
we worship when dealing with classical and bosonic matter.

To stress this further, let us consider a rather classic problem that seems to
be more or less forgotten although it was quite famous a long time ago: the
puzzle of the 3He Fermi liquid. The 3He liquid at temperatures in the Kelvin
range is not yet cohering and it is well understood that it forms a dense van der
Waals liquid. Such liquids have a bad reputation; all motions in such a classical
liquid are highly cooperative to an extent that all one can do is to put them into
a computer and solve the equations of motions by brute force using molecular
dynamics. When one cools this to the millikelvin range, quantum coherence
sets in and eventually one finds the impeccable textbook version of the Fermi
liquid: the macroscopic properties arise from dressed helium atoms that have
become completely transparent to each other, except that they communicate via
the Pauli principle, while they are roughly ten times as heavy as real 3He atoms.
When one now measures the liquid structure factor using neutron scattering one
finds out that on microscopic scales this Helium Fermi liquid is more or less
indistinguishable from the classical van der Waals fluid! Hence, at microscopic
scales one is dealing with the same ‘crowded disco’ dynamics as in the classical
liquid except that now the atoms are kept going by the quantum zero-point
motions. On the microscopic scale there is of course no such thing as a Fermi
surface. For sure, the idea of renormalization flow should still apply, and since
one knows what is going on in the UV and IR one can guess the workings of the
renormalization flow in the 3He case: one starts out with a messy van der Waals
ultraviolet, and when one renormalizes by integrating out short distance degrees
of freedom one meets a ‘relevant operator creating the Fermi-surface’. At a time
scale that is supposedly coincident with the inverse renormalized Fermi-energy
this relevant operator takes over and drags the system to the stable Fermi liquid
fixed point. How to construct such a ‘Fermi-surface creation operator’? Nobody
seems to have a clue!
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Although the microscopic details are quite different, the situation one encoun-
ters in interesting electron system like the ones realized in manganites [2, 30],
heavy fermion intermetallics [3] and cuprate superconductors [1] is in gross out-
lines very similar as in 3He. In various guises one finds coherent quasiparticles
(or variations on the theme, like the Bogoliubons in the cuprates) only at very
low energies and low temperatures. Undoubtedly the UV in these systems has
much more to do with the van der Waals quantum liquid than with a free Fermi
gas. Still, the only activity the theorists seem capable off is to declare the UV to
be a Fermi gas that is hit by small interactions. It is not because these theorists
are incompetent: humanity is facing the proverbial brick wall called the fermion
sign problem that frustrates any attempt to do better.

The other ‘anomaly’ of the Fermi liquid appears again as rather innocent when
one has just worked oneself through a fermiology textbook. However, giving this
a further thought, it is actually the most remarkable and most mysterious feature
of the Fermi liquid. Without exaggeration, one can call it a ‘UV-IR connection’,
indicating the rather unreasonable way in which microscopic information is re-
membered in the scaling limit. It refers to the well known fermiology fact that by
measuring magneto-oscillations in the electrical transport (De Haas-van Alphen,
and Shubnikov- de Haas effects) one can determine directly the average distance
between the microscopic fermions by executing measurements on a macroscopic
scale. This is as a rule fundamentally impossible in strongly interacting classical-
and sign free quantum matter. Surely, this is possible in a weakly interacting
and dilute classical gas, as used with great effect by van der Waals in the 19-th
century to proof the existence of molecules. But the trick does not work in dense,
strongly interacting classical fluids: from the hydrodynamics of water one cannot
extract any data regarding the properties of water molecules. Surely, the weakly
interacting Fermi gas is similar to the van der Waals gas but a more relevant ex-
ample is the strongly interacting 3He, or either the heavy fermion Fermi liquid.
At microscopic scales it is of course trivial to measure the inter-particle distances
and the liquid structure factor of 3He will directly reveal that the helium atoms
are apart by 4 angstroms or so. But we already convinced the reader that there
is no such thing as a Fermi surface on these scales. Descending to the scaling
limit, a Fermi-surface emerges and it encloses a volume that is protected by the
famous Luttinger theorem [31,32]: it has to enclose the same volume as the non-
interacting Fermi gas at the same density. Using macroscopic magnetic fields,
macroscopic samples and macroscopic distances between the electrical contacts
one can now measure via de Haas van Alphen effect, etcetera, what kF is and
the Fermi momentum is just the inverse of the inter-particle distance modulo
factors of 2π. This is strictly unreasonable. We repeat, on microscopic scales the
system has knowledge about the inter-particle distance but there is no Fermi-
surface; the Fermi surface emerges on a scale that is supposedly in some heavy
fermion systems a factor 100 or even 1000 larger than the microscopic scale. But
this emerging Fermi-surface still gets its information from somewhere, so that
it knows to fix its volume satisfying Luttinger’s rule! In Chapter 3 we hope to
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shed some light on the ‘mysteries’ addressed here using Ceperley’s path integral
but we are still completely in the dark regarding this particular issue. It might
well be that there are even much deeper meanings involved; we believe that it
has dealings with the famous anomalies in quantum field theories [33]. These
are tied to Dirac fermions and the bottom line is that these process in rather
mysterious ways ultraviolet (Planck scale) information to the infrared, with the
effect that a gauge symmetry that is manifest on the classical level is destroyed
by this ‘quantum effect’.

To summarize, in this section we have discussed the features of the Fermi
liquid that appear to be utterly mysterious to a physicist believing that any true
understanding of physics has to rest on Boltzmannian principle:
(i) What is the order parameter and order parameter potential of the zero tem-
perature Fermi liquid?
(ii) How to construct a ‘Fermi-surface creation operator’, which is supposed to
be the relevant operator associated with the IR stability in the renormalization
group flow?
(iii) Why is it possible to retrieve microscopic information via the Luttinger sum
rule by performing macroscopic magneto-transport measurements, even in the
asymptotically strongly interacting Fermi liquid?

1.3 Feynmanian deconstruction of the order pa-
rameter

A better way to understand symmetry breaking is to inspect the dual represen-
tation in terms of the worldline path integral [34, 35], which will be the task of
Chapters 2 and 3 of this thesis. In such first-quantized formalism, the order
parameter is deconstructed, in the sense that the condensate can be expressed
directly in terms of the microscopic constituents of the system. The indistin-
guishability of the bosons and fermions translates into the recipe that one has to
trace about all possible ways the worldlines can wind around the periodic imag-
inary time axis. For a bosonic system, at the temperature where the average of
the topological winding number w becomes macroscopic, limN→∞〈w〉/N 6= 0, a
phase transition occurs either to the BEC or the superfluid. Bose condensation
means that a macroscopic number of particles ‘share the same worldline’ and
the only difference between a BEC and a superfluid is that in the latter this
condensate is somewhat depleted.

What is more attractive to us is that the worldline formalism has also the
merit of making the fermion sign most transparent. Fermionic worldlines with
an even winding number have positive signs, while those having an odd winding
number carry negative signs, and they are the origin of the fermion sign problem.
It is in this formalism that a partial solution of the sign problem is proposed
[Chapter 3]. The basic idea is to discard the worldlines with odd winding numbers
and in compensation, some of the even winding worldlines also need to be thrown
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away.

Feynman’s worldline path integral formulation of many body system is now a
textbook problem, although we are aware of only one textbook where it is worked
out in detail: Kleinert’s Path integral book [36]. Consider the partition function
for Bosons or Fermions; this can be written as an integral over configuration
space R = (r1, . . . , rN ) ∈ RNd of the diagonal density matrix evaluated at an
imaginary ~β,

Z = Tre−βH =

∫
dRρ(R,R;β). (1.10)

The path integral formulation of the partition function rests on a formal anal-

ogy between the quantum mechanical time evolution operator in real time e−iĤt/~

and the finite temperature quantum statistical density operator ρ̂ = e−βĤ , where
the inverse temperature β = 1/kBT has to be identified with the imaginary time
it/~. The partition function defined as the trace of this operator and expres-
sion (1.10) simply evaluates this trace in position space. More formally this can
viewed as a Wick rotation of the quantum mechanical path integral, and requires
a proper analytic continuation to complex times. This rotation tells us that the
path integral defining the partition function lives in D-dimensional Euclidean
space, with D = d + 1 and d the spatial dimension of the equilibrium system.
This analogy tells us that to study the equilibrium statistical mechanics of a
quantum system in d space dimensions, we can study the quantum system in a
Euclidean space of dimension d+ 1, where the extra dimension is now identified
as a ‘thermal’ circle of extent β. At finite temperature this circle is compact and
world-lines of particles in the many-body path integral (1.10) then wrap around
the circle, with appropriate boundary conditions for bosons or fermions. The dis-
crete Matsubara frequencies that arise from Fourier transforming modes on this
circle carry the idea of Kaluza-Klein compactification to statistical mechanics.

For distinguishable particles interacting via a potential V the density matrix
can be written in a worldline path integral form as,

ρD(R,R′;β) =

∫
R→R′

DR exp(−S[R]/~), (1.11a)

S[R] =

∫ ~β

0

dτ
(m

2
Ṙ2(τ) + V (R(τ))

)
, (1.11b)

but for indistinguishable bosons or fermions one has also to sum over all N !
permutations P of the particle coordinates,

ρB/F (R,R;β) =
1

N !

∑
P

(±1)pρD(R,PR;β), (1.12)

where p is he parity of the permutation. For the bosons one gets away with the
positive sign, but for fermions the contribution of a permutation with uneven
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Figure 1.5: Worldline configuration corresponding to a cyclic exchange of three
particles, 1 → 2, 2 → 3, and 3 → 1, or in short notation (123) (upper left).
On a cylinder (upper right), the worldlines form a closed loop winding w = 3
times around the cylinder. In the extended zone scheme (bottom), the exchange
process of three particles can be identified with a worldline of a single particle at
an effective inverse temperature 3β.

parity to the partition sum is a ‘negative probability’, as required by the anti-
symmetry of the fermionic density matrix. This is the origin of the fermion sign
problem, which will be discussed in more detail in section 2.

The partition sum describes worldlines that ‘lasso’ the circle in the time di-
rection. Every permutation in the sum is composed out of so called permutation
cycles. For instance, consider three particles. One particular contribution is given
by a cyclic exchange of the three particles corresponding with a single worldline
that winds three times around the time direction with winding number w = 3 (see
Fig. 1.5), a next class of contributions correspond with a ‘one cycle’ with w = 1
and a two-cycle with w = 2 (one particle returns to itself while the other two
particles are exchanged), and finally one can have three one cycles (all particles
return to their initial positions).

The crucial insight of Feynman was that quantum mechanics actually renders
a strongly interacting Bose or Fermi liquid to act like a system of free particles,
with renormalized parameters ( [34], [35]). The main task here is to characterize
the important trajectories for the partition sum. One can neglect the contribu-
tions from configurations R(0) and motions R(τ) which give small contributions.
Let us consider the contribution from moving a single particle i from its initial
position ri(0) to a final position ri(β). ri(β) might be the same as ri(0), or
rj(0) for another particle j. As a simple model that captures the essence of the
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problem, imagine the interaction to be of very short range. So the important
initial configurations are those for which particles are far apart. There may be
other particles in the way of the path ri(τ), and they will interact with particle
i due to the potential energy V . It is also possible that as particle i moves, the
other particles move out of its way, avoiding to interact with it. For some special
paths R(τ), it can be that the particles have adjusted their motions so well that
during the whole motion, the total potential energy of all the particles is nearly
equal to the potential energy of the original configuration R(0). Instead of in-
creasing their potential energy, for which the time integral is proportional to β,
the particles just need to pay an increase of kinetic energy for the readjustment
of their coordinates, which varies as the square of the velocity of particle i and
has time integral inversely proportional to β. The change in kinetic energy can
be accounted for by assigning a larger mass to particle i. The net effect is that for
every trajectory, the particle behaves like a free particle with a shifted effective
mass.

So we can proceed by considering as fixed point theory the non-interacting
Bose and Fermi gas, keeping in mind that mass m is now a renormalized quantity.
The evaluation of their path integrals reduces to a combinatorial exercise. Let us
first illustrate these matters for the example of N = 3 particles. It is straightfor-
ward to demonstrate, that the identity permutation gives a contribution Z0(β)3

to the partition function (here Z0(β) denotes the partition function of a single
particle), whereas an exchange of all three particles contribute as Z0(3β). The
meaning is simple: in the absence of interactions the 3-cycle can be identified
with a single particle worldline returning to its initial position at an effective
inverse temperature 3β (see Fig. 1.5). Further on, a permutation consisting of
a w = 1 and a w = 2 cycle contributes with Z0(β)Z0(2β). To write down the
canonical partition function for N = 3 non-interacting bosons or fermions we
only have to know the combinatorial factors (e.g. there are 3 permutations made
out of a w = 1 and a w = 2 cycle) and the parity of the permutation to obtain

Z
(N=3)
B/F (β) =

1

3!
[Z0(β)3 ± 3Z0(β)Z0(2β) + 2Z0(3β)]. (1.13)

This result can easily be generalized to N particles. We denote the number
of 1-cycles, 2-cycles, 3-cycles, . . . N -cycles the permutation is build of with C1,
C2, C3,. . ., CN and denote the combinatorial factors counting the numbers of
permutations with the same cycle decomposition C1, . . . CN with M(C1, . . . CN ).
For N particles we have to respect the overall constraint N =

∑
w Cw and obtain

Z
(N)
B/F (β) =

1

N !

N=
∑
w Cw∑

C1,...CN

M(C1, . . . CN )(±1)
∑
w(w−1)Cw

N∏
w=1

[Z0(wβ)]
Cw . (1.14)

Although the combinatorial factors can be written down in closed form,

M(C1, . . . CN ) =
N !∏

w Cw!wCw
, (1.15)
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the canonical partition function (1.14) is very clumsy to work with because of the
constraint acting on the sum over cycle decompositions. The constraint problem
can be circumvented by going to the grand-canonical ensemble. After simple
algebraic manipulations we arrive at the grand-canonical partition function

ZG(β, µ) =

∞∑
N=0

Z
(N)
B/F (β)eβµN

= exp

( ∞∑
w=1

(±1)w−1Z0(wβ)

w
ewβµ

)
, (1.16)

corresponding to a grand-canonical free energy

FG(β) = − 1

β
lnZG(β, µ) = − 1

β

∞∑
w=1

(±1)w−1Z0(wβ)

w
eβwµ, (1.17)

with the ± inside the sum referring to bosons (+) and fermions (−), respectively.
This is a quite elegant result: in the grand-canonical ensemble one can just sum
over worldlines that wind w times around the time axis; the cycle combinatorics
just adds a factor 1/w while Z0(wβ) exp (βwµ) refers to the return probability
of a single worldline of overall length wβ. In the case of zero external potential
we can further simplify

Z0(wβ) =
V d√

2π~2wβ/M
d

= Z0(β)
1

wd/2
, (1.18)

to obtain for the free energy and average particle number NG, respectively,

FG = −Z0(β)

β

∞∑
w=1

(±1)w−1 eβwµ

wd/2+1
, (1.19a)

NG = −∂FG
∂µ

= Z0(β)

∞∑
w=1

(±1)w−1 e
βwµ

wd/2
. (1.19b)

To establish contact with the textbook results for the Bose and Fermi gas one
just needs that the sums over windings can be written in an integral representa-
tion as,

∞∑
w=1

(±1)w−1 e
βwµ

wν
=

1

Γ(ν)

∫ ∞
0

dε
εν−1

eβ(ε−µ) ∓ 1
, (1.20)

and one recognizes the usual expressions involving an integral of the density of
states (N(ε) ∼ εd/2 in d space dimensions) weighted by Bose-Einstein or Fermi-
Dirac factors.

For bosons, by using the worldline path integral formalism, the quantum me-
chanical problem is reduced to a purely classical equilibrium ring polymer prob-
lem. At the transition µ→ 0, one directly infers from Eq. (1.19) that very long
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worldlines corresponding with winding numbers w ∼ N are no longer penalized,
while there are many more long winding- than short winding contributions in the
sum. It is straightforward to show that in the thermodynamic limit worldlines
with w between

√
N and N have a vanishing weight above the BEC temperature,

while these infinite long lines dominate the partition sum in the condensate [37].
One starts with a summation over a finite number of winding worldlines and take
the infinite winding limit, or equivalently the infinite particle number limit, at
the end of the day.

The number of particles contained in worldlines with winding number w is

Nw =
ewβµ

wd/2

[
D

λ
W

(
(
D

λ
)2 π

w

)]d
, (1.21)

where W (x) =
∑∞
n=−∞ e−xn

2

comes from a summation over all discrete momen-

tums, and λ = ~
√

2πβ/m is the de Broglie thermal wavelength. It is easy to
show that for d = 3 the fraction of particles contained in the long loops is

lim
N→∞

1

N

N∑
w=
√
N

Nw =

{
0 for T > Tc

1−
(
T
Tc

)3/2

for T 6 Tc.
(1.22)

while for d = 2 the result is

lim
N→∞

1

N

N∑
w=
√
N

Nw =

{
0 for T > 0
1 for T = 0.

(1.23)

A related issue is the well known fact that the non-interacting Bose-Einstein
condensate and the superfluid that occurs in the presence of finite repulsions are
adiabatically connected: when one switches on interactions the free condensate
just turns smoothly into the superfluid and there is no sign of a phase transition.
This can be seen easily from the canonical Bogoliubov theory. Again, although
the algebra is fine matters are a bit mysterious. The superfluid breaks sponta-
neous U(1) symmetry, thereby carrying rigidity as examplified by the fact that
it carries a Goldstone sound mode while it expels vorticity. The free conden-
sate is a non-rigid state, that does not break symmetry manifestly, so why are
they adiabatically connected? The answer is obvious in the path-integral rep-
resentation [38, 39]. The superfluid density ρS can be written in terms of the
mean-squared winding number in the spatial direction,

ρS =
m

~2

〈
W 2
〉
L2−d

dβ
. (1.24)

Here periodic boundary condition is imposed. d is the dimensionality, L is the
size of the periodic cell, which is assumed to be the same for all spatial directions.
The winding number W describes the net number of times the paths of the N
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particles have wound around the periodic cell, WL =
∑N
i=1(rPi − ri). Although

interactions will hinder the free meandering of the polymers, a lot of this hin-
drance is required to make it impossible for worldlines to become infinitely long
below some temperature. The fraction of infinitely long worldlines is just the
condensate fraction ρS/ρ and even in the very strongly coupled 4He superfluid
these still make up for roughly 30% of all worldlines! The only way one can get
rid of the infinite windings in the interacting system is to turn it into a static
array of one cycles - the 4He crystal.

1.4 Quantum criticality: a new organizing prin-
ciple

Quantum criticality is an important concept that has dominated the landscape
of modern condensed matter physics for the last decade [40]. The idea behind
quantum criticality is simple and powerful. Imagine competing interactions that
typically drive the transitions between different phases. Logically one has to
allow for the possibility that the relative strength of these competing interactions
is tunable as a function of the external control parameters such as pressure,
magnetic field or doping; we deliberately omit temperature as a control parameter
since quantum phase transitions (QPTs) will occur at T=0. The simplest route
to arrive at a QPT is to consider a line of finite temperature phase transition as
a function of some control parameter, such as pressure P , magnetic field B or
doping x. At T = 0 this line will indicate a critical value of the control parameter.
This specific value of the control parameter, where one expects a precise balance
between tendency to different phases or states, is called a quantum critical point
(QCP). Near this point, competing interactions nearly compensate each other.
It is often asserted that it is the physics of frustration and competition which
leads to the finite temperature transition, and that also controls and enables the
interesting properties of materials as they are brought to the T = 0 QCP.

In this section, we intend to give a short introduction to the theoretical idea
of quantum criticality. In the previous section, we have seen the experimental
evidence that by applying pressure, magnetic field, or doping, a second-order
phase transition can be tuned to zero temperature, producing a quantum crit-
ical point. Associated with such a singular point, ordinarily anomalous scaling
behaviors emerge in various finite-temperature properties of the system, such as
specific heat, resistivity and magnetic susceptibility, which goes far beyond our
conventional understanding of metals. One of the basic questions arising from
the experimental findings is how the zero temperature phase transition point is
related to the finite temperature behavior of the system. The theoretical idea of
quantum criticality states that the zero temperature QCPs actually profoundly
modify finite temperature properties of the quantum critical metals.

The basic concepts of quantum criticality is best illustrated by a simple model:
the 1+1-dimensional Ising chain in a transverse field. This model can be solved
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exactly and it is the hydrogen atom of quantum phase transitions. One can
find a comprehensive introduction to this model in Sachdev’s book [40]. We will
summarize the essential points here. The Hamiltonian is of the form,

HI = −J
∑
i

(
σ̂zi σ̂

z
i+1 + gσ̂xi

)
. (1.25)

Here the overall coefficient J > 0 is an exchange constant. It sets the microscopic
energy scale of the system. When temperature is much larger than J , the proper-
ties are nonuniversal. In the following, we consider temperature within the range
T � J . σ̂’s are the Pauli matrices. g > 0 is a dimensionless coupling. When
g = 0, the ground state is a product of eigenstates of σ̂zi . It is a ferromagnetic
state, with all the spins aligned up, either all in the spin up state or all in the
spin down state. The Z2 symmetry, σ̂zi → −σ̂zi , σ̂xi → σ̂xi , is broken. For g →∞,
the ground state is a product of eigenstates of σ̂xi , | →〉i = (| ↑〉i + | ↓〉i)/

√
2.

This state restores the above Z2 symmetry. Then the question is what happens
in-between the two limits.

This quantum model can be mapped to a classical model in 2 dimension.
Temperature in the quantum model corresponds to the total length of the classical
system in the time direction, and gap in the quantum model is mapped to the
correlation length along the time direction. One can introduce the concept of
dynamical critical exponent z, which relates the scaling in the time direction to
the space direction, and frequency scales with momentum as ω ∼ kz. In the
quantum Ising model, z = 1.

The immediate consequence of this mapping is that the zero temperature
phase transition in the quantum Ising model is second order. The Hamil-
tonian is invariant under the above Z2 transformation. So this symmetry
can only be broken spontaneously, which also points to a second order phase
transition. For g � 1, the correlation in σ̂zi is short-ranged, decaying as
〈0|σ̂zi σ̂zj |0〉 ∼ exp(−|xi − xj |/ξ) at long distance, with ξ the correlation length.
For g � 1, there is spontaneous symmetry breaking, with 〈0|σ̂zi |0〉 finite.

This model can be mapped to a free fermion problem and solved exactly.
By making the Jordan-Wigner transformation, with the spin axes rotated by
π/4 about the y axis, σ̂xi = 1 − 2c†i ci, σ̂

z
i = −

∏
j<i(1 − 2c†jcj)(ci + c†i ), the

Hamiltonian reads in momentum space

HI = J
∑
k

(
2[g − cos(ka)]c†kck − i sin(ka)[c†−kc

†
k + c−kck]− g

)
, (1.26)

where a is the lattice spacing. A Bogliubov transformation ck = ukγk + ivkγ
†
−k

brings the above quadratic Hamiltonian into the simple form, HI =
∑
k εk(γ†kγk−

1
2 ), with εk = 2J

√
1 + g2 − 2g cos k. For g 6= 1, there is an energy gap at k = 0,

with amplitude 2J |1−g|, which vanishes at g = 1. So g = 1 is expected to be the
phase transition point, at which fermions dominate the low energy properties.
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Near this point, the system is described by a universal continuum field theory,
with partition function

Z =

∫
DΨDΨ† exp

(
−
∫ β

0

dτdxLI

)

LI = Ψ†
∂Ψ

∂τ
+
c

2

(
Ψ†

∂Ψ†

∂x
−Ψ

∂Ψ

∂x

)
+ ∆Ψ†Ψ,

(1.27)

with higher order terms all irrelevant. Here the continuum Fermi field Ψ(xi) =
ci/
√
a, and coupling constants c = 2Ja,∆ = 2J(1 − g). At the critical point,

g = 1 and ∆ = 0. We also notice that above the energy scale J , lattice effects
will be important, and the above critical field theory is no longer adequate to
describe the system. So J is the ultraviolet cutoff ωc of the critical theory. Here
∆ is the most relevant perturbation about the QCP and it has scaling dimension
1. The correlation length scales as ξ ∼ |g−gc|−ν , and one can read off the critical
exponent ν = 1.

The two-point correlation functions read for τ > 0,

〈Ψ(x, τ)Ψ†(0, 0)〉 =
T

4c

(
1

sin(πT (τ − ix/c))
+

1

sin(πT (τ + ix/c))

)
,

〈Ψ(x, τ)Ψ(0, 0)〉 =i
T

4c

(
1

sin(πT (τ − ix/c))
− 1

sin(πT (τ + ix/c))

)
.

(1.28)

The T = 0 result and T > 0 result is connected by the conformal mapping from
a plane to a cylinder,

cτ ± ix→ c

πT
sin

(
πT

c
(cτ ± ix)

)
. (1.29)

The central object of this model is the order parameter correlation function
C(xi, t) = 〈σ̂z(xi, t)σ̂z(0, 0)〉. The equal-time correlation function can be cal-
culated from the fermion representation. At long distance, it has the scaling
form

lim
|x|→∞

C(x, 0) = ZT 2sGI

(
∆

T

)
exp

[
−T |x|

c
FI

(
∆

T

)]
. (1.30)

The operator σ̂z has dimension s = 1/8. FI and GI are universal scaling func-
tions, and they are smooth across the critical point ∆ = 0. One can see clearly
from the above expression that there is only long-range order at zero temperature.
At any finite temperature, the correlation decays exponentially, with correlation
length ξ = c/(TFI). With ξ behaving qualitatively differently in different re-
gions of the parameter space, the phase diagram is divided into several different
regions. This can already been seen by just comparing the two energy scales ∆
and T . And the crossover lines are at ∆ ∼ T . When ∆ > 0, T � ∆, one has
ξ−1 = (2|∆|T/πc2)1/2 exp(−|∆|/T ). For ∆ < 0, T � |∆|, the correlation length
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is given by ξ−1 = |∆|/c+ (2|∆|T/πc2)1/2 exp(−|∆|/T ) and reaches a finite value
as T → 0. In the region with T � |∆|, the correlation length is ξ = 4c/πT ,
which has the quantum critical scaling form T−1/z, and this region is called the
quantum critical region (see Fig. (1.6)).

Quantum Critical

ggc

T

Figure 1.6: Theoretical phase diagram of the 1+1-dimensional quantum Ising
model. The dashed lines are the crossover lines |∆| = 2J |g − gc| ∼ T , with the
critical coupling gc = 1. The dotted line represents the ultraviolet cutoff energy
scale T ∼ J . The thick solid line at T = 0, 0 < g < gc is the region in the phase
diagram with long-range order. The ground state at T = 0, g > gc is a quantum
paramagnet. The triangular region in the center is the quantum critical region.

In the quantum critical region, the order parameter susceptibility can be
easily derived from the universal two-point correlator at an imaginary time τ .
One starts from the equal-time correlator at T = 0,∆ = 0,

C(x, 0) ∼ 1

(|x|/c)2s
. (1.31)

The consideration here is quite general, not just restricted to the Ising model,
which has s = 1/8. Due to Lorentz invariance, the time direction can be included
simply,

C(x, τ) ∼ 1

(τ2 + x2/c2)s
. (1.32)

The finite temperature result can be obtained through the transformation (1.29),

C(x, τ) = Z̃
T 2s

(sin[πT (τ − ix)] sin[πT (τ + ix)])
s . (1.33)

The analytical continuation to real time τ → it yields the real time two-point
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correlation function

C(x, t) = Z̃
T 2s

(i sinh[πT (t− x)]i sinh[πT (t+ x)])
s , (1.34)

with a Fourier transform corresponding to the dynamic structure factor

S(k, ω) =

∫ ∞
−∞

dx

∫ ∞
−∞

dtC(x, t)e−i(kx−ωt). (1.35)

A convenient way to perform the Fourier transform is by factorizing C(x, t) into
left-moving and right-moving modes, C(x, t) = C−(t − x)C+(t + x), to subse-
quently integrate over t± x. The result is

S(k, ω) = Ze
ω
2T

1

T 2(1−2s)
B(s+ i

ω + k

4πT
, s− iω + k

4πT
)B(s+ i

ω − k
4πT

, s− iω − k
4πT

),

(1.36)
where B is the beta function, and the overall numerical coefficient Z =
24s−3π2(s−1)Z̃. The fluctuation-dissipation theorem

S(k, ω) =
2

1− e−ω/T
χ′′(k,w) (1.37)

then yields the imaginary part of the order parameter susceptibility,

χ′′(k, ω) = Z
sinh( ω

2T )

T 2(1−2s)
B(s+i

ω + k

4πT
, s−iω + k

4πT
)B(s+i

ω − k
4πT

, s−iω − k
4πT

). (1.38)

Indeed χ′′(ω) → 0 in a linear fashion with ω with a slope set by 1/T , while for
ω >> T the temperature dependence drops out, recovering the power law. The
crossover occurs at ω ' 2kBT/~ where χ′′(ω) has a maximum. This result will be
used in the later chapters when we consider superconductivity in quantum critical
metals. The real part can be computed from the Kramers-Kronig transform,

χ′(k, ω) = Z′

T 2(1−2s)

(
−iπ

s−iω+k
4πT

sin(2sπ− ik
2T )

sinh( k
2T )

Γ(2s)Γ(2s− ik
2πT )

Γ(1− ik
2πT )

3F2(2s, s− iω+k
4πT , 2s−

ik
2πT ; 1 + s− iω+k

4πT , 1−
ik

2πT ; 1) + (k → −k)
)

,(1.39)

where F is the generalized hypergeometric function.
In summary, we have shown that for the 1+1-dimensional quantum Ising chain

in the quantum critical region |∆| � T � J , the finite temperature properties
of the system are related to its property at the zero temperature critical point
∆ = 0, T = 0 simply by conformal mapping (1.29). As one approaches the QCP,
the correlation length scales as ξ ∼ |g − gc|−ν , and the correlation time scales as
ξτ ∼ ξz. Here the critical exponents are z = 1, ν = 1. For higher dimensional
systems, the mapping will be more complex. But the basic idea of finite size
scaling in the temporal direction is the same. The critical exponents are different
for different universal classes. The fact that there is only long-range order at
zero temperature is the special property of 1+1 dimension. In higher dimensional
systems, the ordered phase can extend to finite temperature, occupying a finite
region in the phase diagram.
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1.5 This thesis

This thesis is divided into two parts. The first part (Chapters 2 and 3) is about
worldline path integrals and the fermion nodal structure. The second part (Chap-
ters 4, 5, 6) is about quantum criticality and its interplay with superconductivity.
There are actually intrinsic connections between the two, though they look far
apart at first glance. The study of the nodal structure of the fermionic wavefunc-
tions and density matrices serves as an antidote to the conventional Fermi gas
way of thinking. What we learn from exploring the nodes is that the world of
condensed matter systems is not just about the single particle Green’s functions,
and the many-body entanglement perspective is crucial for the understanding of
emergent phenomena. Nature has already revealed this to us when the FQHE
was discovered: Laughlin’s wavefunction contains much more information than
a single particle Green’s function, or even earlier, when Schrieffer wrote down
the simple wave function for the superconducting ground state. A simple step
going beyond the Fermi gas way of thinking would be to consider the two particle
correlation functions, e.g. charge susceptibility, spin susceptibility and pairing
susceptibility, to be as fundamental as the single particle Green’s functions, which
is the basic idea of Chapter 5.

We start in Chapter 2 with the signful worldline path integrals. The Feyn-
manian deconstruction of the order parameter is shown explicitly by calculating,
in the first quantized path integral formalism, the effect of the condensation of a
gas of charged particles in the background magnetic field. Coupling to a bosonic
condensate generates a mass term for the background magnetic field, leading to
the Anderson-Higgs effect. The value of the mass is determined by the number
density of the condensed particles. In this formalism, the fermionic statistics
are encoded via the inclusion of additional Grassmann coordinates in a manner
that leads to a manifest worldline supersymmetry. This extra symmetry is key
in demonstrating the absence of the Anderson-Higgs effect for charged fermions.

In Chapter 3, we study the fermion sign problem in the worldline path inte-
gral formalism. The insightful work of Ceperley in constructing fermionic path
integrals in terms of constrained world-lines is reviewed. In this representation,
the minus signs associated with Fermi-Dirac statistics are self consistently trans-
lated into a geometrical constraint structure, the nodal hypersurface, acting on
an effective bosonic dynamics. Working with the path integral in momentum
space, we then show that the Fermi gas can be understood by analogy to a Mott
insulator in a harmonic trap. Going back to real space, we discuss the topological
properties of the nodal cells, and suggest a new holographic conjecture relating
Fermi liquids in higher dimensions to soft-core bosons in one dimension.

We turn to the exploration of quantum criticality in Chapter 4. In this chap-
ter, we consider the dynamics of the bosonic order parameters around the QCPs,
assuming that the fermionic degrees of freedom can be integrated out. We are
interested in the stability of QCPs in the presence of two competing phases.
These phases near QCPs are assumed to be either classical or quantum and as-



28 Introduction

sumed to repulsively interact via square-square interactions. We find that for
any dynamical exponents and for any dimensionality strong enough interaction
renders QCPs unstable, and drives transitions to become first order. We propose
that this instability and the onset of first-order transitions lead to spatially inho-
mogeneous states in practical materials near putative QCPs. Our analysis also
leads us to suggest that there is a breakdown of Conformal Field Theory (CFT)
scaling in the Anti de Sitter models, and in fact these models contain first-order
transitions in the strong coupling limit.

In particular, we carry out the renormalization group (RG) analysis of two
coupled order parameters with different dynamical exponents, and we find a line
of fixed points in such theories. The RG analysis of such models is not an easy
task. The conventional picture is that in d spatial dimensions, the quantum field
theory of a bosonic field with dynamical exponent z is equivalent to a classical
field theory in d + z dimensions. This picture still holds when there are more than
one field, but all the fields have the same dynamical exponent. However, when
the coupled fields have different dynamical exponents, this picture is no longer
valid: the fields are frustrated in choosing their effective dimensions. Techni-
cally, this problem arises in the RG analysis for example when one calculates
the loop diagrams containing internal lines corresponding to fields with different
dynamical exponents. If we think more carefully about how one arrives at the
conventional way of counting effective dimensions, we will find that one has to
rescale the parameters to absorb the generally dimensionfull coefficient in the fre-
quency dependent terms, the presence of which ensures these terms to have the
right dimensions. We will show explicitly such rescaling. With distinct dynam-
ical exponents, one can no longer rescale out these coefficients. They actually
lead to dramatically different scaling behavior in the RG structure.

In Chapter 5, we present a simple phenomenological scaling theory for the
pairing instability of a quantum critical metal. It can be viewed as a minimal
generalization of the classical BCS theory of superconductivity for normal Fermi
liquid metals. We assume that attractive interactions are induced in the fermion
system by an external bosonic glue that is strongly retarded. Resting on the
small Migdal parameter, all the required information from the fermion system
needed to address the superconductivity enters through the pairing susceptibility.
Asserting that the normal state is a strongly interacting quantum critical state
of fermions, the form of this susceptibility is governed by conformal invariance
and one only has the scaling dimension of the pair operator as free parameter.
Within this scaling framework, conventional BCS theory appears as the marginal
case but it is now easily generalized to the (ir)relevant scaling regimes. In the
relevant regime an algebraic singularity takes over from the BCS logarithm with
the obvious effect that the pairing instability becomes stronger. However, it is
more surprising that this effect is strongest for small couplings and small Migdal
parameters, highlighting an unanticipated important role of retardation. Using
exact forms for the finite-temperature pair susceptibility from 1+1D conformal
field theory as models, we study the transition temperatures, finding that the gap
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to transition temperature ratios is generically large compared to the BCS case,
showing, however, an opposite trend as a function of the coupling strength com-
pared to the conventional Migdal-Eliashberg theory. We show that our scaling
theory naturally produces the superconducting domes surrounding the quantum
critical points, even when the coupling to the glue itself is not changing at all.
We argue that hidden relations will exist between the location of the crossover
lines to the Fermi liquids away from the quantum critical points and the detailed
form of the dome when the glue strength is independent of the zero-temperature
control parameter. Finally, we discuss the behavior of the orbital-limited upper
critical magnetic field as a function of the zero-temperature coupling constant.
Compared to the variation in the transition temperature, the critical field might
show a much stronger variation pending the value of the dynamical critical ex-
ponent.

In Chapter 6, we propose to use the second order Josephson effect as a direct
probe of the Cooper channel of quantum critical metals, to shed light on the
problem of unconventional superconductivity in such systems. We review the
idea of Ferrell and Scalapino who suggested a superconductor-insulator-normal
(SIN) tunneling setup in which a strong superconductor acts as an effective ex-
ternal probe for a normal metallic state above its superconducting transition
temperature Tc. The fluctuating pair field of the metal is coupled to the rigid
pair-field of the strong superconductor, and this leads to an additional contri-
bution to the total tunneling current, on top of the well-known SIN-junction
quasiparticle current. This additional tunneling current is proportional to the
imaginary part of the pair(ing) susceptibility in the metallic state. We calculate
the pair susceptibility for several different scenarios of the pairing mechanism for
quantum critical metals, to provide templates for experimentalists. We find that
different models differ qualitatively.
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Cha p t e r 2

Fermions in the Worldline Path
Integral: Absence of

Anderson-Higgs Mechanism

2.1 Introduction

The Meissner effect [41], the expulsion of magnetic fields from superconducting
regions, is a salient feature of superconductivity which distinguishes it from per-
fect conductivity. It can be described in a phenomenological way via the London
equations [42], but a microscopic understanding requires an accounting of the
pairing mechanism [43–45] leading to condensation in the ground state, and the
concomitant generation of an effective mass for the photon, [46,47]. The modern
viewpoint takes the spontaneous breaking of a gauge invariance as the central
idea, though of course this is strictly speaking not correct, as a gauge symmetry
can never be broken, but rather serves as a good description in a perturbative
expansion around the breaking of a global symmetry. The breaking of a global
symmetry is also relevant to the study of Bose-Einstein condensation. An under-
standing of this phenomena, in the case of strongly interacting Helium and the
superfluid transition, was advanced by the introduction of the methods of first
quantized path integrals [48, 49], wherein it is understood as the proliferation of
worldlines of bosons [50,51]. In fact, the partition function for the worldlines can
be mapped onto a second quantized Euclidean path integral (over fields) of the
Landau-Ginzburg type.
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The idea of spontaneously broken gauge symmetry has been used to great
advantage in high energy physics. It had long been assumed that a renormaliz-
able theory of massive vector bosons could not be gauge invariant, until it was
suggested [52–57] that a microscopic gauge invariant theory involving massless
vector bosons could still account for massive vector bosons at low energy (like
the W± and Z0 in electroweak theory), if the symmetry gauged by such modes
is spontaneously broken at some scale (assumed to be around a few hundred
GeV for electroweak theory). This realization guided the construction of the
electroweak theory [58, 59], now a cornerstone of the standard model of particle
physics.

In electroweak theory the symmetry breaking is driven by condensation of a
bosonic Higgs field, the search for which is one of the main motivations for recent
efforts in experimental high energy physics. Various technical issues (such as the
hierarchy problem) have led to the suggestion that the Higgs particle is not in fact
elementary, but gives an effective description of some as yet unknown underlying
physics (such as technicolor [60]), in much the same way that superconductivity
is often described as Bose-Einstein condensation of bound Cooper pairs [61].

One might wonder if this mechanism is specific to bosons, or whether it can
be realized using fermionic constituents. In relativistically invariant systems,
condensation of fermionic operators would lead to a breaking of Lorentz invari-
ance. More generaly such a condensation leads to a vacuum expectation value
for the fields of the form 〈0|Ô|0〉 = v, with |0〉 the vacuum state of the system,
and Ô either a bosonic or fermionic operator. Since fermionic operators connect
bosonic states to fermionic ones and vice-versa, and it assumed that the vacuum
state has a definite character (in fact nearly always assumed bosonic), the vev
v must necessarily vanish. This argument shows that spontaneous symmetry
breaking driven by fermions (if at all possible) must take a form different from
the familiar picture described in terms of bosonic order parameters. In fact this
argument can also be made in the sense of superselection rules, which limit the
allowed possible observations made on a quantum system by disallowing matrix
elements between certain classes of states, and separating the Hilbert space into
superselction sectors from which linear combinations of basis vectors can not be
made. It has been suggested [62] that a superselection rule exists which obstructs
the assembling of states which are superpositions of bosons and fermions. Since
a coherent state of fermions would necessarily mix both bosonic and fermionic
statistics, it is then not possible to construct condensates of fermions. In fact,
the question of whether such a superselection rule is operative is one to be de-
termined by experiment, and it has recently been proposed [63] that observation
of coherent superpositions of even and odd numbers of fermions in mesoscopic
quantum dots can be used as a test of supersymmetry.

Considering the importance of, and the many mysterious issues surrounding
the mechanism of spontaneous symmetry breaking, it is valuable to have an
alternative view of it. Here we will explore the formalism due to Feynmann [48,
49], where one considers a representation in terms of the worldline path integral.
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The indistinguishability of the bosons translates into the recipie that one has to
trace over all possible ways the worldlines can wind around the periodic imaginary
time axis. At the temperature where the average of the topological winding
number w becomes macroscopic, limN→∞〈w〉/N 6= 0, the system undergoes a
phase transition either to a Bose-Einstein condensate, or a superfluid. Bose-
Einstein condensation means that a macroscopic number of particles ‘share the
same worldline’ with difference between BEC and superfluidity being that in
the latter this condensate is somewhat depleted. This formalism turns out to
be very efficient for numerical calculation of properties of strongly interacting
bosonic systems such as Helium4 [50,51], where it is also shown that the average
winding number corresponds directly to the superfluid density.

It is more difficult but perhaps even more interesting to consider the fermionic
particles in this formalism. One can easily show [36] that below the Fermi temper-
ature, worldlines with macroscopic winding number also proliferate in fermionic
systems; this leads to a puzzle: the macroscopic worldlines lead to a Meissner ef-
fect, via the Anderson-Higgs mechanism, in charged bosonic systems, but surely
such phenomenon can not happen in charged fermionic systems 1.

It is the aim of this chapter to show in the worldline formalism, in a certain
limit, that particles obeying fermionic statistics can not drive an Anderson-Higgs
transition. In the next section we begin by recalling the single particle path
integral for a spinless boson, which we couple to a background magnetic field, and
write the partition function for the many-body system, from which we compute
the second order perturbative correction to the effective action. Focusing on a
special subclass of winding modes, we demonstrate the appearance of a mass for
the magnetic field. We then generalize this logic to the case of a spin-1/2 particle
by way of introduction of appropriate terms in the action for Grassmannian
degrees of freedom coupled to the particle worldlines. Underlying our observation
on the behaviour of fermionic systems in this language is the existence of a
worldline (though not target space, where the particle trajectory is embedded)
supersymmetry. The inclusion of the particle statistics leads to an additional term
in the effective action, and this addition is shown to lead to the disappearance of
the effect manifested for charged bosons.

1In the BCS theory of superconductivity, pairs of fermions form Cooper pairs, which have
a bosonic character, and whose condensation then leads to superconductivity.
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2.2 Spinless Bosons in background Magnetic
Field

We begin by considering a single spinless boson, in the non-relativistic limit,
whose action reads 2

Ae,0 =

∫ τb

τa

dτ
M

2
ẋ2(τ) , (2.1)

with τ the proper time along the particle’s worldline. In the presence of the
electromagnetic field, one needs to add the interaction term 3

Ae,int = i e

∫ τb

τa

dτ ẋi(τ)Ai(x(τ)) , (2.2)

where the dot in ẋ denotes a derivative with respect to proper time of the particle,
which should not be confused with the Euclidean time in target space. Here
i, j = 1, · · · , d, with d the dimension of space. We shall only be interested in
the study of particles immersed in an external magnetic field. Hence, in the
following we set the electric field to zero, Ei = 0, and consider only the response
to a magnetic field Bi. We drop the inter-particle Coulomb repulsion.

Since we are interested in using the single- and many-body path integrals
in first-quantized form, we are restricted to considering non-relativistic physics.
Standard problems with negative probabilities and pair production would force
us to rely on the second-quantized quantum field theory language to address the
relativistic problem.

We now study the condensation of bosonic particles in a background magnetic
field, giving a new vantage point on the Meissner effect, before we turn to apply
the same ideas to the study of fermionic systems. The partition function of N
identical bosons sums over all permutations P of the particle coordinates (with
no relative minus sign)

ZN =
1

N !

∫
dx1 · · ·

∫
dxN

∑
P

∏
i

(
xp(i), β|xi, 0

)
, (2.3)

with (
xp(i), β|xi, 0

)
≡
∫ xp(i)

xi

Dx e−A
(i)
e . (2.4)

We study the system at finite temperature, which is reflected in the fact that the
worldlines wrap around the imaginary (thermal) time direction, with τ running

from 0 to β, i.e. the action involves A =
∫ β

0
. . . dτ .

2As shown by Feynman [48, 49], interactions in the worldline formalism are best handled
by working in a relativistic formalism, where worldlines are parameterized in terms of a local
proper-time coordinate. Our approach, while non-relativistic, uses a similar parametrization of
worldlines.

3We work throughout in units where ~ = c = 1.
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Consider a general partition of the orbits of N particles grouped into different
winding cycles via permutation,

N =

N∑
w=1

w Cw . (2.5)

In this decomposition we keep track of the number of cycles (which we denote
by Cw) each of length w, so that with each permutation we associate a series
of numbers Cw, with w = 1, ..., N . Then, a sum over all permutations can be
rewritten as a sum over all integers assigned to the various Cw, subject of course
to an overall constraint, this constraint being that the total length of all cycles
taken together must be N (for a discussion of this point, see 4). The number of
permutations with such a decomposition is

M(C1, C2, · · · , CN ) =
N !∏N

w=1 Cw!wCw
. (2.6)

The partition function of N bosons is a summation over different partitions

Z(N)(β) =
1

N !

∑
{C1,··· ,CN}

M(C1, · · · , CN )

N∏
w=1

[Z(wβ)]Cw , (2.7)

where for each loop one has

Z(wβ) =

∫
ddx

∫
Cw
Dx e−

∫wβ
0

dτ(M2 ẋ
2+i ec ẋiA

i) , (2.8)

with the loop winding w times around the imaginary time direction.
We consider first a single winding loop with length w. To study the Meissner

effects, we employ a standard procedure, namely to first expand the interaction
part of the partition function exp(−ie

∫
dτẋiA

i) as a power series, and then
compute the average of each term with respect to the free particle action, which
leads to corrections of the form 〈An〉0, i.e. averages taken with respect to the
free system. Define for this particular winding loop the correction to the effective
action to be ∆Γ(wβ) = Z(wβ)−Z0(wβ). Here the lowest order non-trivial term
is of order A2, and its contribution to the Euclidean effective action reads

∆Γ(wβ) =
e2

2

〈∫
dτ1

∫
dτ2 ẋi(τ1)Ai(x(τ1)) ẋj(τ2)Aj(x(τ2))

〉
0
, (2.9)

where by definition the average of the operator O with respect to the free
action is < O[x] >0∼

∫
ddx

∫
Dxe−A0O[x], up to a normalization factor.

We will work with the Fourier transform of the gauge potential A(x) =

4See appendix of [64].
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∫
ddk

(2π)d
eikxÃ(k), and will have to evaluate expectation values of the form <

eik1x(τ1)eik2x(τ2)ẋ(τ1)ẋ(τ2) >0. To do so, we expand the position as the sum
of an average and a fluctuation part x(τ) = x0 + δx(τ), where the average is the
same for all coordinates appearing above. The desired expectation value then
factorizes into < ei(k1+k2)x0 >0< δẋ(τ1)eik1δx(τ1)δẋ(τ2)eik2δx(τ2) >0 (indices have
been suppressed in an obvious fashion). The first factor is easily shown to result
in a delta function (2π/L)dδ(k1 + k2), ensuring momentum conservation, and we
evaluate the second factor by applying Wick’s theorem. We get that

∆Γ(wβ) =
e2

2Ld

2∏
α=1

∫
ddkα δ(k1 + k2) Ãi(k1)Ãj(k2)

∫ wβ

0

dτ1

∫ wβ

0

dτ2

[
∂2G

∂τ1∂τ2
δij + ki1k

j
1

∂G

∂τ1

∂G

∂τ2

]
e(k2

1+k2
2)G′ .

(2.10)

Note that the τ integrals now run from 0 to wβ. Here we used the standard
language of Green’s functions, which is explained as follows: for a single particle,
the Green’s function is defined as

δijG1(τ1, τ2) ≡
〈
xi(τ1)xj(τ2)

〉
0
, (2.11)

which in the path integral formalism reads

G1(τ1, τ2) =

∫
ddx

∫
Dx e−Ae,0x(τ1)x(τ2) . (2.12)

This Green’s function can be derived from the zero frequency limit of the finite
temperature harmonic oscillator, after a subtraction of an infinite contribution
due to the zero Matsubara frequency, yielding

G1(τ1, τ2) = −τ1 − τ2
2

+
(τ1 − τ2)2

2β
+

β

12
. (2.13)

For a many particle system, we define the Green’s function for a particular per-
mutation pattern as

GN (τ1, τ2) ≡
∫
dx1 · · · dxN

∫ xp(1)

x1

Dx(1) · · ·
∫ xp(N)

xN

Dx(N)

e−(A(1)
e +···+A(N)

e )x(τ1)x(τ2) ,

(2.14)

or
δijGN (τ1, τ2) ≡

〈
xi(τ1)xj(τ2)

〉
P , (2.15)

and the result for the chosen winding loop is just the one-particle Green’s function
with β replaced by wβ

Gw(τ1, τ2) = −τ1 − τ2
2

+
(τ1 − τ2)2

2wβ
+
wβ

12
. (2.16)
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Furthermore, the subtracted Green’s function 5 is defined as

G′(τi, τj) ≡ G(τi, τj)−G(τi, τi). (2.17)

We now proceed to calculate the correction to the effective action (2.10). The δ-
function forces k1 = −k2, and since the integrand only depends on the difference
τ1 − τ2, one of the τ integrals can be easily calculated, giving only an overall
factor. In this way (2.10) simplifies to

∆Γ =
wβe2

2M2Ld

∫
ddk Ãi(k)Ãj(−k) Ωij(k) , (2.18)

where all the relevant information is encapsulated in the momentum dependent
function

Ωij(k) = (k2δij − kikj)
∫ wβ

0

dτ

(
−1

2
+

τ

wβ

)2

e
k2

M (− τ2 + τ2

2wβ ) . (2.19)

When w is finite, including the case with only a single particle, the k2δij−kikj
term will give rise to two differentials on the gauge field when transformed back
to real space, giving the spatial part of the well known vacuum polarization∫

ddx Fij(x) Π(−∂2) F ij(x) , (2.20)

with the field strength Fij(x) = ∂iAj(x) − ∂jAi(x). Π(−∂2) is the self-energy
of the electromagnetic field, with corrections arising from polarization effects
induced by the bosons which are coupled to the electromagnetic field.

In the limit w →∞, a partial integration on Eq.(2.19) leads to the result

Ωij(k) = (k2δij − kikj)M
k2

(
1−

∫ 1
2

− 1
2

dyewβ
k2

2M (y2−1/4)

)
, (2.21)

with y = τ/wβ − 1/2. The second term in the bracket vanishes when w → ∞.
Thus the k2 term is killed, and we get a mass term for the transverse component
of the gauge field

∆Γ =
m2

2

∫
ddx A⊥i A

⊥
i , (2.22)

with A⊥i = (δij − ∂i∂j/∂2)Aj . This is exactly the desired Meissner effect. The
contribution to the mass term coming from a single winding loop is

∆Γ(wβ) ∝ e2n

M

wβ

N
A2
⊥, (2.23)

5This Green’s function can be related to the zero frequency limit of a harmonic oscilla-
tor Green’s function, and the subtraction removes a divergent term arising in this limit; the
divergence can be traced to the contribution of the zero Matsubara frequency.
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where n = N/Ld is the number density. In the following, we ignore the backre-
action of A⊥ on the condensate.

To get the mass of the gauge field, one needs to sum over different cycle
decompositions. The correction to the effective action of the whole system is

∆Γ =
1

N !

∑
{Cw}

M({Cw})
N∏
w=1

[Z0(wβ)]Cw
N∑
w=1

Cw∆Γ(wβ) . (2.24)

The mass term is gotten by taking the thermodynamic limit of the above equation
and keeping only terms with infinite winding. Here we need to be careful about
the order of limits to take. As shown above, only those permutation patterns
containing infinitely long winding loops (in the thermodynamic limit), will con-
tribute to the mass term. So we will first take the limit that the winding number
goes to infinity. To do so, we also need to take the total number of particles
N , and the size of the system L, to infinity, while keeping the particle number
density n = N/Ld fixed. We employ a cutoff Nc for the winding number, which
goes to infinity as the particle number N → ∞, and count only those winding
loops longer than Nc. For example, one can take Nc to be Nα with 0 < α < 1.
In a box with side length L, the partition function of free bosons for a winding
loop with length w is

Z0(wβ) =

(
L

λ
√
w

∞∑
n=−∞

e−n
2(Lλ )2 π

w

)d
, (2.25)

with the thermal de Broglie wavelength λ =
√

2πβ/M . Consider the case of
three dimensions, where Bose-Einstein condensation is known to occur at finite
temperature, and where 2/3 < α < 1. In the limit w →∞, L/λ

√
w goes to zero

and Z0(wβ) → 1 for w > Nc. Thus for a particular cycle decomposition, the
contribution to the mass term from the long loops reads

N∑
w=Nc

Cw∆Γ(wβ) ∼ e2n

MN

(
N∑

w=Nc

w Cw

)
A2
⊥ . (2.26)

Here
∑N
w=Nc

wCw just counts the number of long loops in this cycle decompo-
sition, and since it is only these longs loops which contribute, the mass square
becomes

m2 =
e2n

2M

∑
{Cw}

M({Cw})
N !

(
N∏
w=1

[Z0(wβ)]Cw

) (∑N
w′=Nc

w′Cw′

N

)
. (2.27)

Since for w large, Z0(wβ) ' 1, the temperature dependence is fully encoded in
the contributions from small w. When tempereture goes to zero, Z0(wβ) → 1
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even for small w. The mass square thus reads

m2 =
e2n

2M

∑
{Cw}

M({Cw})
N !

∑N
w=Nc

wCw

N
. (2.28)

The combinatorial factor in the above equation can be calculated by using random
permutation theory [65,66]. It can be rewritten in the form

1

N

N∑
w=Nc

[N/w]∑
k=1

kwP (Cw = k) , (2.29)

where P (Cw = k) is the probability to have k cycles of length w, and according
to [65,66], is

P (Cw = k) =
w−k

k!

[N/w]−k∑
j=0

(−1)j
w−j

j!
. (2.30)

We can estimate the magnitude of the combinatorial factor as follows. For large
winding number w, the probability to have large number k of them is extremely
small. Thus we can concentrate on small k, where P (Cw = k) is approximately
1
k!e
−1/ww−k. Summing over k gives roughly

∑
k kwP (Cw = k) ' 1. Taking Nc

to be of order
√
N , the combinatorial factor is then approximately one. Thus as

the temperature goes to zero, the mass square goes over to

m2 =
e2n

M
. (2.31)

With the closed-form formula given above, one can also calculate the combina-
torial factor numerically and it converges to one very quickly 6. The bottom line
is that a finite value of mass can be gotten by summing over the long winding
loops.

It is conceptually the same, but technically even easier to work in the grand-
canonical ensemble, where the partition function for free bosons is

FG(β) = − 1

β

∞∑
w=1

(±1)
w−1 Z0(wβ)

w
ewβµ , (2.32)

with the plus sign for bosons and the minus sign for fermions. In the presence
of an electromagnetic field, one needs only to replace Z0(wβ) by Z(wβ). The
change in the free energy due to the background field is

∆F =
1

β

e2n

M
A2
⊥

1

N

∞∑
w=Nc

ewβµ

w
wβ. (2.33)

6For N = 100, 10000, 40000, it is correspondingly 0.91, 0.9901, 0, 995025.
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The quantity NL =
∑∞
w=Nc

ewβµ is just the number of particles residing in the
long loops, or equivalently the number of particles in the condensate. This can
be shown by counting the number of particles

N =

∞∑
w=1

Z0(wβ)ewβµ . (2.34)

For small winding, Z0(wβ) is approximately (L/λ
√
w)d, while for large winding

approximately (L/λ
√
w)d + 1. Thus N can be rewritten as

N =

∞∑
w=1

(
L

λ
√
w

)d
ewβµ +

∞∑
w=Nc

ewβµ , (2.35)

where the first term represents the number of particles NS living in the short
loops, and the second term the long loops. Consider again the case of three di-
mensions, where the critical temperature Tc is determined by setting the chemical
potential µ = 0 and equating N = NS , that is N =

∑∞
w=1(L/λc)

3w−3/2, where

λc =
√

2π/TcM . In this way the ratio of the size of the system and the thermal
de Broglie wavelength can be expressed as

L

λ
=

(
N

ζ(3/2)

)1/3(
T

Tc

)1/2

. (2.36)

This result can be derived via standard statistical mechanics methods; see for
example [36] and references therein. One can show that when Bose-Einstein
condensation occurs (and thus µ = 0), the number of particles winding in the
short loops is

NS = N

(
T

Tc

)3/2

. (2.37)

Thus the fraction of the particles living in the long loops is

NL
N

= 1−
(
T

Tc

)3/2

. (2.38)

When there is no condensation (and thus µ < 0), NL/N vanishes in an obvi-
ous way. The conclusion is that the mass square of the transverse photons is
determined by the number density of the condensed particles

m2 =
e2ncod

M
. (2.39)

It has been shown [67] using perturbation theory that for an ideal charged
Bose gas, with the Coulomb interaction ignored and only the magnetic coupling
~p · ~A, when there is condensation, there is a Meissner effect. The inverse screen-
ing length squared is known to be 1/λ2 = (e2/M)ncod. The calculation above
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agrees perfectly with this result. Inclusion of the Coulomb repulsion between
the charged particles would lead to a renormalization of the superfluid density.
These phenomena are well understood in quantum field theory. The above first
quantized formalism gives a new picture of these well known effects.

2.3 Inclusion of Spin and Fermionic Statistics

We begin by recalling that the Hilbert space structure of a system is given by
the path integral for zero Hamiltonian (H = 0), wherein the exponent appearing
in the path integral sum consists simply of a Berry phase term of the form
pq̇, arising from overlaps of complete sets of position and momentum states at
neighboring time slices. Consider a non-relativistic point particle system in three
space dimensions, given by the following path integral for Grassmann variables
θi(t) [36]

Z =

∫
Dθ ei

∫
dt i4 θj θ̇

j

for j = 1, 2, 3, (2.40)

which is a pure Berry phase term. This path integral takes as its starting point the
classical mechanics of spin, and can be constructed via spin coherent states [68]7.
The momentum conjugate to θj(t) is given by pj = −(i/4)θj , the sign arising from
the Grassmann nature of θ. The equation of motion forces the variable θ to be
time independent, θ̇j(t) = 0. That the momentum is proportional to the position
is a reflection of the fact that systems that are first order in time derivatives (like
the Dirac equation) represent constrained systems. The second-class constraints
are

χj = pj +
i

4
θj = 0 . (2.41)

The origin of the constraint lies in the fact that the transformation from La-
grangian configuration space q, q̇, to the phase space q, p, is singular with a
vanishing Jacobian determinant, which means we can not invert the velocities
to solve for the momenta, and results in a Hamiltonian which is defined only on
the constraint surface. Dirac [70] has shown that such systems can be handled if
one extends the notion of Poisson brackets to Dirac brackets, defined as

{A,B}D = {A,B} − {A,χi} Ci,j {χj , B} , (2.42)

and Ci,j are the components of the matrix inverse of C, whose elements are are
built from the Poisson brackets of the constraints

Ci,j ≡ {χi, χj} . (2.43)

7See [69] for a general review of applications of worldline formalism to perturbative quantum
field theory



42 Fermions in the Worldline Path Integral

Care must be taken that the Poisson brackets of Grassmann valued fields are
defined as [71]

{f(θi, pj), g(θi, pj)} = −
( ∂f
∂θk

∂g

∂pk
+

∂g

∂θk

∂f

∂pk

)
, (2.44)

in order to satisfy natural algebraic properties and yield a proper quantization
for fermions. With these, we see that the Dirac bracket associated to (2.40) is

{pi, θj}D = −1

2
δi,j . (2.45)

Canonical quantization proceeds by replacing the Dirac bracket with the anti-
commutator (for fermions), as {, }D → −i [, ]+. Making this substitution and
enforcing the constraints (2.41), we have the operator equation[

θ̂i , θ̂j
]
+

= 2δij . (2.46)

In three dimensions, the operators θi can be defined via their matrix elements as

〈α|θ̂i|β〉 ≡ σiα,β , (2.47)

with the range of the spinor indices α, β = 1, 2, and the σ matrices being the
standard Pauli matrices, after which (2.46) is a simple identity for the Pauli
matrices. A classical spin vector can also be defined

Si = − i
4
εijkθjθk , (2.48)

which after canonical quantization, gives an operator representation of the spin
algebra [

Ŝi , Ŝj
]
− = iεijkŜk . (2.49)

Now consider the addition to the zero Hamiltonian path integral a term de-
scribing the coupling of a spin to an external magnetic field ~B, H = −~S · ~B, the
spin vector having already been defined by (2.48). Taking account of (2.47), we
see that [36] matrix elements of the operator

ei
∫
dt ~B·~σ2 , (2.50)

has the path integral representation∫
Dθ ei

∫
dt i4 (θj θ̇j + εjklBjθkθl) . (2.51)

The trace of the operator (2.50) can then be computed by summing the path
integral (2.51) over all anti-periodic paths, for which θj(τb) = −θj(τa). For
zero external magnetic field this fixes the normalization of the Berry phase term
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(2.40). This normalization simply counts the dimension of the relevant spinor
representation in d dimensions∫

Dθ exp

[
i

4

∫ τb=τa

τa

dτ θj θ̇
j

]
= 2d−2 , (2.52)

which for d = 3 coincides with the dimension of the Pauli matrices (2.47).
The free particle action (2.1) can now be modified for the inclusion of spin

degrees of freedom as follows [36]

Ae,0 =

∫ τb

τa

dτ

(
M

2
ẋ2(τ)− i

4
θj(τ)θ̇j(τ)

)
, (2.53)

while the coupling to the electromagnetic field becomes

Ae,int = i
e

c

∫ τb

τa

dτ

(
ẋjA

j + i
1

4M
Fjkθ

jθk
)
. (2.54)

This action contains an “orbital” contribution associated with the particle’s mo-
tion x, together with a “spin” contribution arising from the Grassmann coor-
dinates θ. The Grassmann field obeys antiperiodic boundary condition with
θ(τb) = −θ(τa), in contrast to the periodic boundary condition for x.

An important property of the spinfull interacting action (2.53) and (2.54),
is an underlying worldline supersymmetry, mixing the bosonic and fermionic
degrees of freedom, given by [36,72]

δxj(τ) = iαθj(τ) ,

δθj(τ) = αẋj(τ) , (2.55)

with α an arbitrary Grassmann parameter. We will show that this symmetry has
far reaching consequences for the properties of the fermionic system. The non-
existence of the Anderson-Higgs effect can be traced to a non-renormalization
resulting from this symmetry. Note that this worldline supersymmetry does
not imply a supersymmetric system in the target space in which the particle is
embedded, which represents just a bosonic system; it acts as a short-hand to
capture the particle statistics in the target space.

We now turn our attention to the study of N spin- 1
2 fermions, which follows

essentially the same logic as for bosons, except that now we must deal with
the action given in (2.53) and (2.54), which as already pointed out manifests a
worldline supersymmetry. In the presence of many particles, the worldline can
wind many times around the temporal direction, and the functional integral over
the Grassman fields we introduced serves to keep track of the exchange statistics,∫

Dθ exp

[
i

4

∫ wβ

0

dτθj θ̇
j

]
∝ (−1)w−1 , (2.56)
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providing a minus sign for an even winding (corresponding to an odd permuta-
tion), and a plus sign for odd winding (corresponding to an even permutation),
and the proportionality constant counting the number of fermionic degrees of
freedom. This sign agrees with the (−1)w−1 factor in the grand-canonical for-
malism (2.32).

Proceeding as we did earlier for bosons, we set the electric field to zero,
pick out the long windings and expand the interaction term, and we get for the
effective action the correction

∆Γ(wβ) =
e2

2

〈∫
dτ1

∫
dτ2

{
ẋi(τ1)Ai(x(τ1)) ẋj(τ2)Aj(x(τ2))

− 1

(4M)2
Fij(τ1)θi(τ1)θj(τ1)Fkl(τ2)θk(τ2)θl(τ2)

}〉
0
,

(2.57)

Here in addition to the bosonic Green’s function, we also need the fermionic
contribution

2δijGfw(τ1, τ2) ≡
〈
θi(τ1)θj(τ2)

〉
N,0

, (2.58)

which is calculated to be

Gfw(τ1, τ2) =
1

2
θ(τ1 − τ2) , (2.59)

with θ(τ) the step function. Carrying out the steps as before, we get the same
result for the effective actions as in (2.18), with the observation that we need
to add a fermionic contribution to Ωij(k), which shifts the term (− 1

2 + τ
Nβ )2 to

(− 1
2 + τ

Nβ )2 − 1
4 , that is

Ωij(k) = (k2δij − kikj)
∫ wβ

0

dτ

(
(−1

2
+

τ

wβ
)2 − 1

4

)
e
k2

M (− τ2 + τ2

2wβ ) . (2.60)

and the new addition will make a critical impact.
The qualitative picture remains the same for w finite. There is still the

vacuum polarization effect. However, in the limit w → ∞, the picture changes
completely. The integral appearing in Ωij(k) (2.60), becomes∫ wβ

0

dτ

[
(−1

2
+

τ

wβ
)2 − 1

4

]
e
k2

M (− τ2 + τ2

2wβ )

=
M

k2

(
1−
√
π

2

(w̃ + 2)√
w̃

e−w̃/4Erfi[
√
w̃/2]

)
,

(2.61)

with w̃ = wβ k2

2M , and the imaginary error function given by Erfi[x] = 2√
π

∫ x
0
et

2

dt.

One can see that the function (2.61) vanishes in the limit w →∞, thus

lim
w→∞

Ωij(k) = 0, (2.62)
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a result that can also arrived at by making a saddle point expansion of the left-
hand side. That is to say that the contribution to the effective action arising
from the fermionic part cancels precisely that of the bosonic part in the limit
of large N . In the Grassmannian language, it is the worldline supersymmetry
between the bosonic coordinate x and the fermionic coordinate θ that destroys
the Anderson-Higgs or Meissner effect. We note again that the Grassmann fields
simply encapsulate the fermion signs, and it is these signs which transform the
behaviour in the case of fermions in an essential way.

2.4 Conclusions

Below some finite critical temperature, infinitely long windings proliferate in
both bosonic and fermionic systems. For the former this drives Bose-Einstein
condensation, while for the latter it occurs at the Fermi temperature TF . Owing
to the statistics of the particles involved though, the long windings generate
vastly different physics. For the Bose system, it gives rise to superfluidity for
neutral systems and superconductivity for charged ones. Both are consequences
of spontaneous symmetry breaking, breaking a global symmetry in the neutral
superfluid and a gauge symmetry for the charged superconductor (seen as the
Anderson-Higgs mechanism, and responsible for the Meissner effect).

We have attacked the question of whether fermions can drive spontaneous
symmetry breaking of a local nature with the tools of the signful path integral.
We managed the fermion signs by introducing a new Grassmannian coordinate,
leading to a supersymmetric worldline theory. It is supersymmetry then that
eliminates the Meissner effect for a gas of charged fermions. The question still
remains whether one can find an order parameter for the phase transition involv-
ing fermions, even in the free case, and how to understand the sharpness of the
Fermi surface.
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Cha p t e r 3

Fermions in the Constrained
Path Integral: towards the

Minus Sign Problem

3.1 Introduction

The ‘quantum weirdness’ of the Fermi-gas is obvious: how to understand the
Fermi-surface, the Fermi-energy and so forth, just knowing about classical sta-
tistical physics? The interacting Fermi-liquid is a bit more than the Fermi-gas,
but focusing on the emergence principles it is deep inside the same thing. As
Landau pointed out, the Fermi-liquid is connected by adiabatic continuation to
the Fermi-gas meaning that the two are qualitatively indistinguishable at the
long times and distances where emergence is in full effect. The great framework
of diagrammatic perturbation theory developed in the 1950’s [27] does allow to
arrive at quite non trivial statements associated with the presence of the interac-
tions but it only works under the condition that the Fermi-liquid is adiabatically
connected to the Fermi gas. But conventional Feynman diagrams are impotent
with regard to revealing the nature of ‘non Fermi liquids’. To complete the
‘fermionic’ repertoire of theoretical physics, Bardeen, Cooper and Schrieffer dis-
covered the ‘Hartree-Fock’ mechanism, showing how the Fermi-gas can become
unstable towards a bosonic state, like the superfluids- and conductors, charge-
and spin density wave states and so forth. Despite fermionic peculiarities (like
the gap function), this is eventually a recipe telling us how the fermi-gas can



48 Fermions in the Constrained Path Integral

turn into bosonic matter that is in turn ruled by the Ginzburg-Landau-Wilson
classical emergence rules.

Given the present repertoire of theoretical physics, all we know to do with
fermionic matter is to hope that it is a Fermi gas or bound in bosons. But we
are facing a zoo of ‘non-Fermi-liquid’ states of electrons coming out of the exper-
imental laboratories and the theorists are standing empty handed because the
fermion signs render all the fancy theoretical technologies to be useless. The NP
hardness of the sign problem tells us that there is no mathematically exact solu-
tion but how many features of the physical world we understand well are actually
based on exact mathematics? Nearly all of it is based on an effective description,
mathematics that is tractable while it does describe accurately what nature is
doing although it is not derived with exact mathematics from the first principles.
Is there a way to handle non-Fermi-liquid matter on this phenomenological level?

The remainder of this chapter is dedicated to the case that there is reason to
be optimistic. This optimism is based on a brilliant discovery some fifteen years
ago of an alternative path-integral description of the fermion problem by David
Ceperley [73,74]. This ‘constrained’ or ‘Ceperley’ path integral has a Boltzman-
nian structure (i.e., only positive probabilities) but the signs are traded in for
another unfamiliar structure: a structure of constraints acting on a ‘bosonic’ con-
figuration space that is coding for all the effects of Fermi-Dirac statistics. This is
called the reach and it amounts to the requirement that for all imaginary times
τ between zero and ~β (β = 1/(kBT )) the worldline configurations should not
cross the hypersurface determined by the zero’s of the full N -particle, imaginary
time density matrix. Although the constrained path integral suffers from a self-
consistency problem since the exact constrain structure is not known except for
the non-interacting Fermi-gas, it appears that this path integral is quite power-
ful for the construction of phenomenological effective theories. The information
carried by the reach lives ‘inside’ the functional integral and should therefore be
averaged. This implies that only global- and averaged properties of this reach
should matter for the physics in the scaling limit. The reach is in essence a high
dimensional geometrical object, closely related to the more familiar ‘nodal hy-
persurface’ associated with the sign changes of ground state wave function. The
theoretical program is to classify the geometrical and topological properties of
the reach in general terms, to find out how this information is averaged over in
the path integral, with the potential to yield eventually a systematic classification
of phenomenological theories of fermionic matter.

Given that Ceperley derived his path integral already quite some time ago,
why is it not famous affair? These path integral are not so easy to handle.
Although various interesting results were obtained [75], even the attempt to re-
construct the Fermi-liquid in this language stalled. But these efforts were limited
to a very small community, with a focus on large scale numerical calculations.
The potential of the Ceperley path integral to address matters of principle ap-
pears to be overlooked in the past. We discovered the Ceperley path integral in
an attempt to understand the scale invariant fermionic quantum critical states as
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found in the heavy fermion intermetallics. We started out on the more primitive
level of wave function nodal structure, discovering by accident the much more
powerful Ceperley path integral approach. We believe that we have delivered
proof of principle that this language gives penetrating insights in the nature of a
prominent non-Fermi liquid state: the fermionic quantum critical states realized
in the heavy fermion intermetallics. Since this work is still under review we will
not address it in any detail. However, to make further progress, we were con-
fronted with the need to better understand the detailed workings of the Ceperley
path integral and we decided to revisit the description of the Fermi gas and the
Fermi liquid. The outcomes of this pursuit are summarized in this chapter.

This remainder of this chapter is organized as follows. In section 3.2 we
introduce the Ceperley path integral, reviewing it’s derivation as well as various
other technical issues. Section 3.3 is intended to be the highlight of this chapter.
We present a quite simple solution of the Ceperley path integral for the Fermi-
gas: the Fermi-gas turns out to be in one-to-one correspondence with a system
of cold atoms in an harmonic trap, subjected to a deep optical lattice potential
such that the atoms form a perfect Bose Mott-insulator! Finally in section 3.4
we turn to the real space description of the Fermi-gas. The presence of the reach
changes radically the winding statistics as compared to the boson case and it
appears that the windings of the Ceperley particles in any higher dimension are
counted as if they are the windings associated with soft core bosons living in one
space dimension.

3.2 Ceperley’s constrained path integral

In this section we review Ceperley’s 1991 discovery of a path integral represen-
tation for arbitrary fermion problems that is not suffering from the ‘negative
probabilities’ of the standard formulation [73]. Surely, one cannot negotiate with
the NP-hardness of the fermion problem and Ceperley’s path integral is not
solving this problem in a mathematical sense. However, the negative signs are
transformed away at the expense of a structure of constraints limiting the Boltz-
mannian sum over world-line configurations. These constraints in turn can be
related to a geometrical manifold embedded in configuration space: the ‘reach’,
which is a generalization of the nodal hypersurface characterizing wave functions
to the fermion density matrix. This reach should be computed self-consistently:
it is governed by the constrained path integral that needs itself the reach to
be computed. This is again a NP-hard problem and Ceperley’s path integral
is therefore not solving the sign problem. However, the reach contains all the
data associated with the differences between bosonic and fermionic matter, and
only its average and global properties should matter for the physics in the scal-
ing limit since it acts on worldline configurations that themselves are averaged.
Henceforth, it should be possible in principle to classify all forms of fermionic
matter in a phenomenological way by classifying the average geometrical- and
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topological properties of the reach, to subsequently use this data as an input to
solve the resulting bosonic path integral problem. This procedure is supposedly
a unique extension of the Ginzburg-Landau-Wilson paradigm for bosonic matter
to fermionic matter. We do not have a mathematical proof that this procedure
will yield a complete classification of fermionic matter, but we have some very
strong circumferential evidences in the offering that it will work. The status of
our claim is conjectural in the mathematical sense.

Let us start out presenting the answer. Ceperley proved in 1991 that the
following path integral is strictly equivalent to the standard fermion path integral
Eq. (1.11,1.12), as we reviewed in the introduction,

ρF (R,R;β) =
1

N !

∑
P,even

∫ γ∈Γβ(R)

γ:R→PR
DRe−S[R]/~. (3.1)

This is quite like the standard path integral, except that one should only
sum over even permutations (the reason to address this in section IV), while the
allowed worldline configurations γ are constrained to lie ‘within the reach Γ’.
This reach is defined as,

Γβ(R) = {γ : R→ R′|ρF (R,R(τ); τ) 6= 0} (3.2)

for all imaginary times 0 < τ < ~β. In words, only those wordline configurations
should be taken into account in Eq. (3.1) that do not cause a sign change of
the full density matrix at every intermediate imaginary time between 0 and ~β.
In outline, the proof of this result is as follows. The fermion density matrix is
defined as a solution to the Bloch equation

dρF (R0,R;β)

dβ
= −HρF (R0,R;β) (3.3)

with initial conditions

ρF (R0,R;β = 0) =
1

N !

∑
P

(−1)pδ(R0 − PR). (3.4)

In the following we fix the reference point R0 and define the reach Γ(R0, τ) as
before as the set of points {Rτ} for which there exists a continuous space-time
path with ρF (R0,Rτ ′ ; τ

′) > 0 for 0 ≤ τ ′ < τ . Suppose that the reach is known in
advance. It is a simple matter to show that the problematical initial condition,
Eq. (3.4), imposing the anti-symmetry can be replaced by a zero boundary
condition on the surface of the reach. It follows because the fermion density
matrix is a unique solution to the Bloch equation (3.3) with the zero boundary
condition. One can now find a path integral solution without the minus signs.
One simply restricts the paths to lie in the reach Γ(R0, τ) imposing the zero
boundary condition on the surface of the reach. The odd permutations fall for
sure out of the reach since ρF (R0,PoddR0) = −ρF (R0,R0).
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The Ceperley path integral revolves around the reach. How to think about
this object? The way the path integral is constructed seems to break imaginary
time translations. One has to first pick some ‘reference point’ R in configuration
space at imaginary time 0 or ~β. Starting from this set of particle coordinates, one
has to spread them out in the form of wordline configurations to check at every
time slice that the density matrix does not change sign. The dimensionality of
the density matrix is 2dN+1 (twice configuration space plus a time axis) and the
dimensionality of the reach is therefore 2dN (one overall constraint). However,
when we first pick a reference point R and we focus on a particular imaginary
time the dimensionality of this restricted reach is dN − 1. In the limit τ → ∞
this restricted reach turns into a more familiar object: the nodal hypersurface
associated with the ground state wave function. The density matrix becomes for
a given R in this limit,

ρ(R,R′;β =∞) = Ψ∗(R)Ψ(R′) (3.5)

and the zero’s of the density matrix are just coincident with the nodes of the
ground-state wave function, Ψ(R) = 0, where we have assumed that the ground
state is non-degenerate. The wave function is anti-symmetric in terms of the
fermion coordinates,

Ψ(· · · , ri, · · · , rj , · · · ) = −Ψ(· · · , rj , · · · , ri, · · · ), (3.6)

and therefore the nodal hypersurface

Ω = {R ∈ RNd|Ψ(R) = 0} (3.7)

is a manifold of dimensionality dimΩ = Nd − 1 embedded in Nd-dimensional
configuration space. This nodal surface Ω is surely an object that is simpler
than the full reach Γ and it is rather natural to train the intuition using the
former. According to Ceperley’s numerical results [73], it appears that at least
for the Fermi gas the main features of the reach are already encoded in Ω. In a
way, the dependence on imaginary time is remarkably smooth and unspectacular.
A greater concern is the role of the reference point, or either the fact that the
reach depends on two configuration space coordinates. In the long imaginary
time limit, the reach factorizes in the nodal surfaces (Eq. (3.5)), which means
that one can get away just considering the nodal surface of the ground state
wave function, but this is not the case at finite imaginary times. It is not at
all that clear what role the ‘relative distance’ R − R′ plays, although there is
some evidence that it can be quite important as we will discuss in Section IX.
Notice that the conventional ‘fixed-node’ quantum Monte-Carlo methods aim at
a description of the ground state, using typically diffusion Monte-Carlo methods.
As input for the ‘fermionic-side’, these only require the wave function nodal
structure. The difference between the reach and this nodal structure is telling us
eventually about the special nature of the excitations in the fermion systems since
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Figure 3.1: Cut through the nodal hypersurface of the ground-state wave function
ofN = 49 free, spinless fermions in a two-dimensional box with periodic boundary
conditions. The cut is obtained by fixing N − 1 fermions at random positions
(black dots) and moving the remaining particle (white dot) over the system. The
lines indicate the zeros of the wave function (nodes). Note that the nodal surface
cut has to connect the N − 1 fixed particles since the Pauli surface is a lower
dimensional submanifold of dimension Nd−d included in the nodal hypersurface
with dimension Nd− 1.

the Ceperley path integral can be used to calculate dynamics, either in the form
of finite temperature thermodynamics or, by Wick rotation to real time, about
dynamical linear response. At this moment in time it is not well understood
what the precise meaning is of these ‘dynamical signs’ encoded in the non-local
nature of the reach.

Another useful geometrical object associated with Fermi-Dirac statistics is the
Pauli surface, corresponding with the hypersurface in configuration space where
the wave function vanishes because the fermions are coincident in real space,

P =
⋃
i 6=j

Pij

Pij = {R ∈ RNd|ri = rj}. (3.8)

Obviously, the Pauli surface is a submanifold of the nodal hypersurface of
dimension dimP = Nd−d. The specialty of one dimension is that the Pauli- and
nodal hypersurfaces are coincident. This property that the nodes are ‘attached’
to the particles is the key to the special status of one dimensional physics as we
will explain in detail in the next section.

In the next sections we will discuss in more detail the few facts that are known
about the reach and nodal hypersurface geometry and topology. To complete the
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Figure 3.2: Nodal constraint structure in space-time seen by one particular par-
ticle. In the constraint path integral only world-line configurations {rτ} are
allowed that do not cross or touch a node of the density matrix on all time slices,
ρF (R0,Rτ , τ) 6= 0 for 0 ≤ τ < ~β. Therefore, a particular particle (white cir-
cle) is constrained by the dynamical nodal tent (grey surface) spanned by the
N −1 remaining particles trajectories (black circles). In a Fermi liquid the nodal
tent has a characteristic dimensions and particles feel the nodal constraints at
an average time scale τc. Later we will see that these scales are in one-to-one
correspondence with the Fermi degeneracy scale EF .

discussion of the basic structure of the Ceperley Path Integral, let us once more
emphasize that according to its definition Eq. (3.1) one still has to sum over
even permutations in so far these do not violate the reach. As for the signful
path integral, this translates via the sum over cycles into a sum over winding
numbers that are now associated with triple exchanges of particles. We explained
already in detail in section IV that this has the peculiar consequence that it
codes for supersymmetry when one is dealing with the free quantum gas that
just knows about the even permutation requirement. Because of the constraints,
the ‘particles’ of the Ceperley path integral are actually very strongly interacting
and it is unclear to what extent this supersymmetry is of any relevance to the
final solution. In fact, we do know for the Fermi-gas that the combined effect
of the constraints and the triple exchanges is to eventually give back a free gas
with Fermi-Dirac statistics. As we discussed in section IV, there is a ‘don’t worry
theorem’ at work because the thermodynamics of the supersymmetric gas is quite
similar to the Bose gas.

In conclusion, Ceperley has demonstrated that in principle fermion problems
can be formulated in a probabilistic, Boltzmannian mathematical language, pay-
ing the prize of a far from trivial constraint structure that is a-priori not known
while it cannot be exactly computed. Qualitatively, the reach is like the nodal
structure of a wave function. It is obvious that the nodal structure codes for
physics but this connection is largely unexplored, while the remainder of this
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chapter is dedicated to the case that it is actually quite easy to make progress,
at least with regard to the Fermi-liquid. One particular property is so important
that it should be already introduced here. Any wave function of a system of
fermions has the anti-symmetry property Eq. (3.6) and naively one could inter-
pret this as ‘any physical system of fermions has its fermionic physics encoded in
a Nd − 1 dimensional nodal surface’. This is obviously not the case. It is easy
to identify a variety of fermionic systems where many more nodes are present
in the fermion wave function than are required to encode the physics. A first
example are Mott-insulating antiferromagnets on bipartite lattices. Because the
electrons are localized they become effectively distinguishable. One can therefore
transform away remnant signs in the Heisenberg spin problem by Marshall sign
transformations: the bottom line is that such Mott-insulators can be handled by
standard bosonic quantum Monte Carlo methods. A next example is physics in
one dimensions, as we will discuss in the next section, where again the fermion
signs can be transformed away completely, in a way that can be neatly under-
stood in terms of the topology of the nodal surface. Nodal structure is therefore
like a gauge field: it carries redundant information that is inconsequential for the
physics. Nodal structure that is in this ‘gauge volume’ we call reducible nodal
structure, while the ‘gauge invariant’ (physical) part of the nodal structure we call
irreducible, and as a first step one should always first isolate the true, irreducible
signs.

3.3 The Fermi gas as a cold atom Mott-insulator
in momentum space

The Fermi-gas of the canonical formalism is very easy to solve exactly, and one
would expect that in one or the other way this should mean that the constrained
path integral is also easy to solve. This is not true at all in the position rep-
resentation, as we will discuss in the next section. However, considering the
derivation of the Ceperley path integral there is actually no preferred status of
real space. The construction is completely independent of the representation one
chooses for the single particle states. On the canonical side momentum space is
the convenient representation to start from in the galilean continuum, or either
any other basis that diagonalizes the single particle problem. As we will show in
this section, also the Ceperley path integral of the Fermi-gas becomes very easy
indeed when one chooses to formulate it in momentum space. After a couple of
straightforward manipulations one finds a sign free, Boltzmannian path integral
showing a most entertaining correspondence: the Fermi-gas is in one-to-one cor-
respondence with a system of classical atoms forming a Mott insulating state in
the presence of a commensurate optical lattice of infinite strength, living in a
harmonic potential trap of finite strength (see Fig. 3.3a). This is literal and the
only oddity is that this trap lives in momentum space instead of real space; the
Fermi surface is just the boundary between the occupied optical lattice sites and
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Figure 3.3: (a) a system of classical atoms forming a Mott insulating state in the
presence of a commensurate optical lattice of infinite strength, living in a har-
monic potential trap V (~r) = αr2 of finite strength; (b) the trap in momentum
space kx, ky instead of real space; the Fermi surface is just the boundary between
the occupied optical lattice sites and the empty ones; (c) a grid of allowed mo-
mentum states k = (2π/L)(kx, ky, kz, ....) where the ki’s are the usual integers
and any worldline just closes on itself along the imaginary time τ direction 0→ β
: single particle momentum conservations prohibit anything but the one cycles.

the empty ones. This boundary is sharp at zero temperature but it smears at
finite temperature because of the entropy that can be gained by exciting atoms
out of the trap! When you are quick, you should already have realized that
this trap interpretation is actually consistent with everything we know about the
Fermi-gas. Let us now proof it by constructing the Ceperley path integral.

The central wheel of the Ceperley path integral is the fermion density matrix.
One should first guess an ansatz, use it to construct the path integral, to check
if the same density matrix is produced by the path integral. Surely we know the
full fermion density matrix for the Fermi gas, and in momentum space this turns
out to be a remarkably simple affair. The k-space density matrix can be written
as the determinant formed from imaginary time single particle propagators in
the galilean continuum,

g(k,k′; τ) = 2πδ(k− k′)e−
|k|2τ
2~M . (3.9)

Since we live in the space of exact single quantum numbers these propaga-
tors are diagonal; in the galilean continuum this just means the conservation of
momentum, but when translational symmetry is broken one should use here just
the basis diagonalizing the single particle Hamiltonian.

Consider now the full momentum configuration space K = (k1, . . . ,kN ) imag-
inary time density matrix,

ρF (K,K′; τ) =
1

N !

∑
P

(−1)p
N∏
i=1

g
(
kp(i),k

′
i; τ
)
. (3.10)
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We find that the delta functions cause a great simplification. Substituting
the single-fermion expression Eq. (3.9) in this expression for the density matrix
Eq. (3.10) we obtain:

ρF (K,K′; τ) =
1

N !
e−

∑N
i=1

|ki|
2τ

2~M

×
∑
P

(−1)p
N∏
i=1

2πδ(kp(i) − k′i). (3.11)

Since the single particle propagators are eigenstates of the Hamiltonian, the
momentum world lines go ‘straight up’ in the time direction until they arrive at
the time τ where the reconnections can take place associated with the permuta-
tions. But the δ function enforces that the permuted momentum has to be the
same as the non-permuted one, and the worldlines can therefore not wind except
when the momenta of some pairs of fermions coincide. But now the sum of the
permutations in Eq. (3.11) is zero due to the Pauli principle. Mathematically,
this follows from the fact that the expression on the right hand side of Eq. (3.11)
is actually a Slater determinant formed from the delta-functions 2πδ(kp(i) − k′i)
as the matrix elements of the Nd × Nd matrix, that are indexed by momenta
{kp(i),k′i}. Hence, when two of the momenta coincide (e.g. ki = kj , i 6= j )there
are two coinciding raws/columns in the matrix and the Slater determinant equals
zero. The result is that Eq. (3.10) factorizes in N ! relabeling copies, associated
with N ! nodal cells like in 1+1D, of the following simple density matrix describing
distinguishable and localized particles in momentum space,

ρF (K,K′; τ) =

N∏
k1 6=k2 6=···6=kN

2πδ(ki − k′i)e
− |ki|

2τ

2~M . (3.12)

This has the structure of a Boltzmannian partition sum of a system subjected
to steric constraints: it is actually the solution of the Ceperley path integral for
the Fermi gas in momentum space! Let us apply periodic boundary conditions
so that on every time slice of the Ceperley path integral we find a grid of allowed
momentum states ki = (2π/L)(ki,x, ki,y, ki,z, ....) where the ki,α’s are the usual
integers (see Fig. 3.3b). We learn directly from Eq. (3.12) that we can ascribe
a distinguishable particle with every momentum cell, with a worldline that just
closes on itself along the time direction: single particle momentum conservation
prohibits anything but the one cycles (see Fig. 3.3c). In addition, we find that
the reach just collapses to the Pauli hypersurface, just as in one dimensions: per
momentum space cell either zero or one worldline can be present. These world-
lines are given by Eq. (3.9): since we are living in exact quantum number space
these just go straight up along the time direction, since there are no quantum
fluctuations: these are actually classical particles living in momentum space. We
do have to remember that these world ‘rods’ carry a fugacity set by a potential
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|k|2τ
~M . Henceforth, we have a problem of an ensemble of classical hard core parti-

cles that live on a lattice of ‘cells’ in momentum space where every cell can either
contain one or no particle, with an overall harmonic potential envelope centered
at k = 0: this is literally the problem of cold atoms living in a harmonic trap,
subjected to an infinite strong optical lattice potential, tuned such that they form
a Mott-insulating state. The ground state is simple: occupy the cells starting
at k = 0, while the particles are put into cells at increasing trap potential until
the trap is filled up with the available particles. At zero temperature there are
no fluctuations and when one exceeds the chemical potential the cells remain
empty, and there is a sharp (d− 1)-dimensional interface between the occupied-
and unoccupied trap states. This is of course the way we explain the Fermi-gas
to our undergraduate students. It invokes an odd metaphor that however turns
out to express an exact identification since we learned to handle the Ceperley
path integral!

Having a statistical physics interpretation, can we now address the questions
posed in section II? First, what is the order parameter of the Fermi-liquid? The
answer is: the same order parameter that governs the Mott-insulator. This order
parameter is well understood, although it is of an unconventional kind: it is the
‘stay at home’ emergent U(1) gauge symmetry [76], stating that at every site
and at all times there is precisely one particle per site. The particle number is
locally conserved and henceforth a local U(1) symmetry emerges. The ‘disorder
operators’ that govern the finite temperature fate of the order parameter are just
substitutional-interstitial defects: there is a finite thermal probability to excite a
particle out of the trap, and the presence of the vacancies destroys the U(1) gauge
symmetry. Since the disorder operators are zero-dimensional particles regardless
the dimensionality of momentum space, thermal melting of the Mott-insulator
occurs at any finite temperature regardless dimensionality.

We repeat, this is just a rephrasing of the standard Fermi gas wisdoms in
a non-standard language. The strange powers of the Ceperley path integral
become more obvious when interactions are switched on. In the presence of the
interactions single-particle momentum is no longer conserved, and this means
that the worldlines of the Ceperley particles in momentum states get quantized:
it is analogous to making the optical potential barriers finite in the cold gas Mott-
insulator with the effect that the particles acquire a finite tunneling rate between
the potential wells. One gets directly a hint regarding the stability of the Fermi-
liquid: Mott-insulators are stable states that need a rather large tunneling rate to
get destroyed. But the story is quite a bit more interesting than that, as can be
easily argued from the knowledge on the canonical side. Let’s consider first what
would happen in a literal cold atom Mott insulator when we start to quantize the
atoms. Deep inside the trap motions are only possibly by doubly occupying the
nodal cells and given that in the non-interacting limit the ‘Hubbard U’ is infinite
(expressing the Pauli surface) such processes are strongly suppressed. In the bulk
of the trap the Mott state would be very robust. However, at the boundary one
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can make cheap particle-hole excitations, and at any finite t the interface would
no longer be infinitely sharp on the microscopic scale: the density profile would
change smoothly. Eventually one would meet the ‘wedding cake’ situation where
the bulk is still Mott-insulating while the interface would turn into a superfluid
(we live in a bosonic world). How different is the Fermi-liquid! We know how it
behaves from the canonical side. The single-fermion self-energy tells us directly
about the fate of the k-space Mott insulator. We learn that the time required
to loose information on single-particle momentum is just given by the imaginary
part of the self-energy and that behaves as [27] 1/τk ∼ (k − kF )2, Henceforth,
it diverges at the interface while it get shorter moving into the bulk. In the
Ceperley bosonic language the Fermi-liquid is like a grilled marshmallow: It has
a ‘crispy’, solid Mott insulating crust while it becomes increasingly fluid when
one moves inside!

More precisely, the worldlines near the interface are fluctuating at short times,
since we know that the momentum distribution of the bare electrons do smear
around the Fermi-momentum - they do ‘spill out of the trap’. However, the effect
of integrating out these microscopic fluctuations is to renormalize the ‘optical
lattice potential’ upwards. This has to be the case because in the scaling limit
the renormalized worldlines represent the quasiparticles and since they produce
a perfectly sharp interface (i.e. unit jump in the quasiparticle nk), the Mottness
has to be perfect. This can only be caused by infinitely high effective potential
barriers. This physics is of course coming from the modifications happening in
the reach when interactions are turned on. The phase space restrictions giving
rise to Σ′′ ∼ ω2 are rooted in Fermi-Dirac statistics and all the statistical effects
are coded in the reach when dealing with the Ceperley formalism. These aspects
can be computed by controlled perturbation theory and in a future publication
they will be analyzed in detail.

3.4 The Fermi-liquid in real space: holographic
duality

We showed in the previous section that at least for the Fermi gas the momentum
space Ceperley path integral becomes a quite simple affair. Momentum space
is a natural place to be when one is dealing with a quantum gas or -liquid, but
dealing with a bosonic- or statistical physics systems one invariably runs into the
general notion of duality [77,78]. Dealing with conjugate degrees of freedom, like
momentum and position or phase and number, one can reformulate the mani-
festly local order on one ‘side’ into some non-local topological order parameter
on the dual side. An elementary example is the Bose-Einstein condensate. In
the language of the previous section, one can either form a ‘black hole’ in the
momentum space ‘trap’, by putting all bosons in the k = 0 ‘optical lattice cell’.
But one can also view it in real space, to discover the lively world of Section III
where the local order in momentum space translates into a global, topological
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description revolving around the infinite windings of worldlines around the time
direction. Such duality structures are ubiquitous in Bolzmannian systems, and
they are at the heart of our complete understanding of such systems: when one
has a complete duality ‘map’ one understands the system from all possible sides
and there is no room for surprises. For instance, when one is dealing with a
strongly interacting system like 4He one prefers the real space side because it
is much easier to track the effects of the interactions [38]. Also in the strongly
interacting fermion systems one expects that one is better off on the real space
side. In this concluding section we will address the issue of the dual, real space
description of the Fermi-liquid in the Ceperley path integral formalism. This real
space side is remarkably complex: despite an intense effort even Ceperley and
coworkers got stuck to the degree that they even did not manage to get things
working by brute computer force. They ran into a rather mysterious ‘reference
point glassification’ problem in their quantum Monte Carlo simulations, likely
related to a contrived ‘energy landscape’ problem associated with the workings
of the reach.

This is a fascinating problem: there has to be a simple, dual real space de-
scription of the Fermi gas. The obvious difficulty as compared to straightforward
bosonic duality is the presence of the reach. One has to dualize not only the ‘life
of the worldlines’ but also the constraints coding for the Fermi-Dirac statistics.
Topology is at the heart of duality constructions and in this regard Ceperley [73],
and more recently Mitas [79], have obtained some remarkably deep results, which
will be discussed at length in the first subsection: the topology of the reach of
the Fermi-liquid in d ≥ 2 is such that the reach is open for all cycles of Ceperley
worldlines based on even permutations or triple exchange. Henceforth, there is
no topological principle that prevents infinitely long worldlines to occur and in
subsection B we will argue that the zero temperature order of the Fermi-liquid
has to be a Bose condensate of the ‘Ceperley particles’. This is conjectural but
if it proves to be correct the Fermi-liquid holography we discussed in section 3.2
acquires a fascinating meaning: the scaling limit thermodynamics of the Fermi-
gas in any spatial dimension d > 1 is governed entirely by the statistical physics
associated with distributing the Ceperley worldlines over the cycles associated
with even permutations, and this effective partition sum is indistinguishable from
the partition sum enumerating the cycles of a soft-core boson system in one space
dimension.

3.4.1 The topology of the Fermi-liquid nodal surface

To decipher the structure of constraints as needed for the real space Ceperley path
integral one has to find out where the zero’s of the real space density matrix are.
By continuation, these should be in qualitative regards the same in the Fermi-
liquid as in the Fermi gas, and in the latter case we have an expression of the
full density matrix in closed form,
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ρF (R0,R; τ) = (4πλτ)−dN/2 × det exp

[
− (ri − rj0)2

4λτ

]
, (3.13)

where λ = ~2/(2M). Henceforth, one needs to find out the zero’s of this quantity
for all R0,R in the imaginary time interval 0 < τ < β. In real space, this
is not an easy task. Part of the trouble is that at low temperature the zero’s
of the determinant depend on all coordinates at the same time. Only in the
high temperature limit (τ → 0) the nodal surface of the density matrix becomes
extremely simple [73]. To see this, define first a permutation cell ∆P(R0) as the
set of points closer to PR0 than to any other P ′R0. Obviously, the configuration
space is divided into N ! permutation cells which are convex polyhedra bounded
by hyperplanes, R · (PR0−P ′R0) = 0. The density matrix is simply a sum over
all permutations and for R ∈ ∆P(R0) and sufficiently high temperatures this
sum is completely dominated by the term (−1)p exp[−(R− PR0)2/(4λτ)] since
all the other terms are exponentially damped relative to it. Therefore, in the high
temperature limit, ρF (R0,R; τ) will have the sign of P inside of ∆P(R0) and the
nodal hypersurface is simply given by the common faces shared by permutation
cells of different parities.

The reach acts both in a local way, much in the same way as we learned in
the (1+1)-dimensional case as a special ‘steric hindrance’ structure having to do
with entropic interactions, etcetera. However, it also carries global, topological
properties and these are now well understood because of some remarkable results
by Mitas [79], who managed to proof the ‘two nodal cell’ (or ‘nodal domain’)
property of the higher dimensional Fermi-gas reach [73]. The topology of the
nodal surface is associated with the structure of cycles as discussed in section III
but now for the Ceperley path integral. The latter can be written as

Z =
∑
Pe

∫
dRρ̃D(R,PeR;β), (3.14)

where Pe refers to even permutations, while ρ̃D refers to the density matrix of
distinguishable particles that are however still subjected to the reach constraints.
As in the case of the Feynman path integral, this sum over even permutations
can be recasted in a sum over cycles associated with all possible ways one can
reconnect the worldlines at the temporal boundary, of course limiting this sum to
those cycles that are associated with even permutations. We learned in section
IV that for free wordlines even permutations translate into the supersymmetric
quantum gas. But the Ceperley particles are not at all free, and the topology
of the nodal surface tells us about global restrictions on the cycles that can
contribute to Eq. (3.14).

It is immediately clear that the counting of cycles is governed by topology:
to find out how to reconnect wordlines arriving at the temporal boundary from
the imaginary time past, to worldlines that depart to the imaginary time future
one needs obviously global data. This global information residing in the reach is
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just the division of the reach in nodal cells we already encountered in the (1+1)-
dimensional context and the momentum space Fermi gas. There we found that
the space of all permutations got divided in N ! nodal cells, with the ramification
that the sum in Eq. (3.14) is actually reduced to one cycles. Mitas has delivered
the proof that in d ≥ 2 the reach carries a two nodal cell topology, implying
that all cycles based on even permutations lie within the reach. Since only
this topological property of the reach can impose that certain cycles have to
rigorously disappear from the cycle sum, this does imply that all cycles based
on even permutations can contribute to the partition sum, including the cycles
containing macroscopic winding numbers. Henceforth, the Ceperley worldlines
can Bose condense in principle and it is now just matter of finding out what
the distributions of the winding numbers are as function of temperature. This is
what really matters for the main line of this story. Finding out the the way that
Mitas determined the two-cell property is quite interesting and we will sketch it
here for those who are interested. When you just want to understand the big
picture, you might want to skip the remainder of this subsection.

Quite recently Mitas [79] proved a conjecture due to Ceperley [73], stating that
the reach of the higher dimensional Fermi gas is ‘maximal’ in the sense that, for
a given R0 and τ , the nodal surface of ρF (R0,R; τ) separates the configuration
space in just two nodal cells, corresponding with ρF being positive- and negative
respectively. This is a quite remarkable property: for every pair R and R′ in the
same domain (lets say ρF > 0), one can change R into R′ without encountering
a zero crossing of ρF .

The easy way to prove this property goes as follows [79]. First, it can be
demonstrated [73] that once there are only two nodal cells at some initial τ0 than
this property has to hold for any τ > τ0. This follows straightforwardly from the
imaginary time Bloch equation for the density matrix,

− ∂ρ(R,R′; τ)

∂τ
= Hρ(R,R′; τ) (3.15)

with initial condition,

ρ(R,R′; 0) = det
[
δ(ri − r′j)

]
(3.16)

and the Bloch equation is a linear equation. This is a very powerful result because
it gives away that the two-cell property ‘descents for the ultraviolet’: one has just
to prove it at an arbitrary short imaginary time which is the same as arbitrary
high temperature. Ignoring Planck scale uncertainties, etcetera, the form Eq.
(3.13) has to become asymptotically exact for sufficiently small β, also in the
presence of arbitrary interactions as long as they are not UV-singular! As we
already noticed, this high temperature limit is rather tractable.

We now need to realize that we still have to take into account the ‘remnant’
of quantum statistics in the form of even permutations. Every even permutation
can be written as a succession of exchanges of three particles i, j, k → j, k, i
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because these amount to two particle exchanges. When such an exchange does
not cross a node (i.e. it resides inside the reach) the three particles are called
‘connected’. By successions of three particle exchanges one can build up clusters
of connected particles. All one has now to demonstrate is that a point Rt exists
where all particles are connected in a single cluster, because this complete set of
even permutations exhaust all permutations for a cell of one sign, because the
odd permutations necessarily change the sign. One now needs a second property
called tiling stating that when the particles are connected for the special point
Rt this has also to be the case for all points in the cell. And tiling is proved
by Ceperley for non-degenerate ground states and also for finite temperature.
Actually due to the linearity of the Bloch equation, its fixed node solution is
unique, and the tiling property in the high temperature limit will lead to the
same property at any lower temperature.

Before we prove that the above holds for the high temperature limit density
matrix, let us just dwell for a second on what this means for the winding proper-
ties of the constrained path integral. The even permutation requirement means
that, as for the standard worldline pathintegrals, we have to connect the world-
lines with each other at the temporal boundary, but now we have to take care
that we single out those cycles corresponding with even (or three particle) ex-
changes. The ‘maximal reach’ just means that cycles containing worldlines that
wind an arbitrary large number of times around the time axis never encounter
a node ! As noted before by Ceperley, this has the peculiar implication that
in some non-obvious way the Fermi-gas has to know about Bose condensation.
Since nodal constraints do allow for infinite windings there seems to be no ‘force
in the universe’ that can forbid these infinite windings to happen and since the
Cepereley path integral is probabilistic, when these infinite windings happen one
has to accept it as Bose condensation. We will come back to this theme in a
moment.

Following Mitas, one can now prove the two cell property of the high temper-
ature limit using an inductive method. Assume that all N particles in the low β
limit at a fixed R0 are connected in one cluster, to see what happens when an
additional N + 1 particle is added. Single out two other particles N − 1, N and
move these three particles away from the rest without crossing a node. Now we
can profit from the fact that in the low β limit the density becomes factorizable:
the determinant factors into a product of the determinant of the three special
particles and the determinant of the rest. It is easy to show that the three par-
ticle determinant has the two cell property, proving that the N+1’s particle is in
the cluster of N particles. Since this is true for any N , the starting assumption
that all particles in the cluster is hereby proven.

For free fermions, Mitas also proved the two nodal cell property for non-
degenerate ground states using a similar induction procedure. The trick is to
choose a special point Rt in the configuration space, at which one can easily show
how all the particles are connected into a single cluster. Once proven for this
single point, tiling ensures that the same is true for the entire nodal cell. Mitas
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aligned the particles into lines and planes, thus forming some square lattice in the
real space. This way the number of arguments of the wave functions is reduced
and more importantly, the higher dimensional wave functions can be factorized
into products of sine functions and the one dimensional wave functions, which
are much easier to deal with than their higher dimensional counterparts. One
distinct property of the 1 dimensional wave functions is that they are invariant
under cyclic exchanges of odd numbers of particles, namely for N odd,

Cx+1Ψ1D(1, · · · , N) = Ψ1D(1, · · · , N), (3.17)

where Cx+1 represents the action to move every particle by one site in the +x
direction, with the last particle moved to the position of the first one, that is
1→ 2, 2→ 3, · · · , N → 1.

Consider for example the non-degenerate ground state of 5 particles in 2 di-
mensions. For this state, it becomes straightforward to show that each group
of the 3 near neighbors living in the real space square lattice are connected by
products of four triplet exchanges, which are all performed along the 1 dimen-
sional lines. Proven this, one can proceed as in the high temperature limit, by
adding more particles to the lattice. And these newly added particles can be
shown to be connected to the original particles’ cluster by the similar method
used for 5 particles. The only difference is that now one needs to consider the
whole line of particles, on which the new particle is added, and thus a sequence of
four cyclic exchanges, instead of the special triplet exchanges are required. Since
for non-degenerate ground states, there are odd number of particles on each line,
cyclic exchanges will not produce extra minus signs, thus leading to the same
result as triplet exchanges. This completes the proof for 2 dimensions, and the
high dimensional cases are essentially the same.

However, winding is a topological property that should be independent of
representation. In the long time β → ∞ limit the path integral contains the
same information as the ground state wave function, and for the Fermi-gas we can
actually easily determine the winding properties inside one of the nodal cells using
the random permutation theory. This demonstrates that at zero temperature the
Fermi-gas is indeed precisely equivalent to the Bose gas, within the nodal cell.

3.4.2 There is only room for winding at the bottom

The conclusion of the previous subsection is that the Ceperley wordlines can in
principle become infinitely long because the topology of the reach allows them to
become macroscopic. Does this mean that the zero-temperature order parameter
of the Fermi-liquid is just an algebraic bose condensate of Ceperley wordlines
characterized by a domination of the partition sum by macroscopic cycles? The
two nodal cell topological property is a necessary but insufficient condition for
this to be true. However, there are more reasons to believe that the Fermi-liquid
has to be of this kind.
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However the zero- and finite temperature Fermi-liquid are separated by a
phase transition and it appears that only the winding sector of the Ceperley
path integral can be responsible for this transition. The argument is simple and
general. With regard to ordering dynamics the real space Ceperley path integral
is governed by Boltzmannian principle and let us find out what ‘substance’ is
available to form an order parameter. The nodal surface in isolation cannot be
responsible, since it is an immaterial object that just governs the behavior of the
‘Ceperley particles’ . Henceforth, whatever its (singular) properties, these have
to be reflected in the behavior of the matter. In principle one can imagine subtle
topological changes occurring in the nodal surface but in the previous subsec-
tion we found this not to be the case in the Fermi-gas. Henceforth, searching
for the thermodynamic singularity we should keep our eyes on the worldlines
and these should be subjected to the generalities associated with bosonic matter.
One source of thermodynamic singularity is that the system of bosons breaks the
translational- and/or rotational symmetry of space, forming a crystal or some
liquid crystal. Although the one dimensional Fermi-gas is such a crystal in dis-
guise, it is impossible to hide a (partial) crystallization in higher dimensions:
the higher dimensional Fermi-liquid is undoubtedly a true liquid. The worldlines
have to be delocalized, but dealing with indistinguishable particles, being bosons
or the ‘even permuting’ Ceperley particles, one has to account for an extra set of
degrees of freedom: the reconnections at the temporal boundary. From a statis-
tical physics perspective, Bose condensation appears as an order out of disorder
phenomenon. Lowering temperature has the net effect of increasing the ‘configu-
rational entropy’ associated with all possible ways of reconnecting worldlines, or
either the appearances of cycles characterized by different windings. Worldlines
get longer and thereby the length over which they can meander increases, and
this in turn increases effectively the fugacity of long cycles. The more cycles
can contribute, the larger the ‘configurational entropy’ associated with the cycles
and this gain in space time ‘configurational entropy’ (physically the decrease of
quantum zero point energy) causes eventually a flat distribution of the winding
configurations, and in the Bose system this sets in at a sudden phase transition.
Since all particles ‘are part of the same wordline’ the Bose condensate is macro-
scopically coherent. We learned that the reach allows the Ceperley particles to
form infinite windings. We learn from the Bose condensate that at zero temper-
ature only crystallization can prohibit the ‘reconnection entropy’ to take over,
because the thermal de Broglie wavelength diverges. Henceforth, there does not
seem to be any feature of the reach that can prohibit this to happen as well to
the Ceperley worldlines at zero temperature.

There is a quite direct argument to support this view which was put forward
by Ceperley some time ago [73,74]. As we already emphasized a number of times,
on the canonical side the Fermi-liquid order manifests itself through the jump
in the momentum distribution. Let us now turn to the zero temperature single
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particle density matrix,

n(r) =

∫
dRρ(r1, r2, · · · rN ; r1 + r, r2, · · · rN ;∞)

=

∫
dkeik·rnk. (3.18)

In the boson condensate nB(r) → constant revealing the off-diagonal long-
range order which is equivalent to the domination of infinite cycles. In the Femi-
liquid on the other hand,

nF (r) ' 1

(kF r)d/2
Jd/2(kF r). (3.19)

The oscillations governed by the Bessel function Jd/2(kF r) can be easily traced
back to the size of the nodal pocket as discussed in a moment. However, the en-
velope function (kF r)

−d/2 just behaves like the one particle density matrix of
a Bose condensate showing off-diagonal long range order, like in the interacting
Bose system in 1+1D at zero temperature. Relating this to the real space Ceper-
ley path integral, this signals the presence of infinite cycles formed from Ceperley
world lines.
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Cha p t e r 4

Stability of Quantum Critical
Points: the Bosonic Story

4.1 Introduction

In this chapter, we start our exploration of the idea of quantum criticality. Much
of the attention on quantum criticality has been focused on the finite tempera-
ture scaling properties [40, 80, 81]. Temperature is the only relevant scale in the
quantum critical region above the QCP, bounded by the crossover line T ∗ ∼ |r|νz.
The parameter r measures the distance to the QCP, ν is the correlation-length
exponent in ξ ∼ rν and z is the dynamical exponent in ξτ ∼ ξz. With the corre-
lation length ξ and correlation time ξτ much larger than any other scale of the
system, power law behavior is expected for many physical observables, e. g. the
specific heat, magnetic susceptibility, and most notably resistivity. Clear devi-
ations from the Fermi liquid predictions are experimentally detected, and these
phases are commonly termed non-Fermi liquids. In many systems, the anomalous
finite temperature scaling properties are asserted to result from the underlying
zero temperature QCPs.

In this chapter, we would like to emphasize another aspect of quantum crit-
icality, namely that it serves as a driving force for new exotic phenomena at
extremely low temperatures and in extremely clean systems. One possibility is
the appearance of new phases around the QCPs. It has been found in numerous
experiments as one lowers temperature, seemingly inevitably in all the systems
available, new phases appear near the QCP. Most commonly observed to date is
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the superconducting phase. The phenomenon of a superconducting dome enclos-
ing the region near the QCP is quite general (see Fig. 1). It has been identified in
many heavy fermion systems [23,25,82], plausibly also in cuprates [83], even pos-
sibly in pnictides [84–89], and probably in organic charge-transfer salts [90–92].
Other examples include the nematic phase around the metamagnetic QCP in the
bilayer ruthenate Sr3Ru2O7 [93–96], the origin of which is still under intense de-
bate [97–101]. The emerging quantum paraelectric - ferroelectric phase diagram
is also very reminiscent [102, 103], as is the disproportionation-superconducting
phase in doped bismuth oxide superconductors [104–109].
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Figure 4.1: Illustration of the competing phases and superconducting dome. Here
for concreteness, we consider the ordered phase to be an antiferromagnetic phase.
x is the tuning parameter. It can be pressure, magnetic field or doping. The
superconducting temperature usually has the highest value right above the QCP.

It has also been discovered recently that, as samples are becoming cleaner, on
the approach to QCP we encounter first order transitions, and the new phases
near the QCP are usually inhomogeneous and exhibit finite wavevector order-
ings (see [26, 110, 111] and references therein). For example, the heavy fermion
compound CeRhIn5 orders antiferromagnetically at low temperature and ambi-
ent pressure. As pressure increases, the Neel temperature decreases and at some
pressure the antiferromagnetic phase is replaced by a superconducting phase
through a first-order phase transition. There are also evidences for a compet-
itive coexistence of the two phases within the antiferromagnetic phase, as in
some organic charge-transfer superconductor precursor antiferromagnetic phases.
Such coexistence was also observed in Rh-doped CeIrIn5. The heavy fermion su-
perconductor CeCoIn5 has the unusual property that when a magnetic field is
applied to suppress superconductivity, the superconducting phase transition be-
comes first-order below T0 ' 0.7K. For the superconducting ferromagnet UGe2,
where superconductivity exists within the ferromagnetic state, the two magnetic
transitions (ferromagnetic to paramagnetic and large-moment ferromagnetic to



4.1 Introduction 69

small-moment ferromagnetic) are both first order [112–114]. Other examples
of continuous phase transitions turning first-order at low temperatures include
CeRh2Si2 [115,116], CeIn3 [117], URhGe [118], ZrZn2 [119] and MnSi [120]. The
prevailing point of view seems to be that this happens only in a few cases and
these are considered exceptions. Yet we are facing a rapidly growing list of these
”exceptions”, and we take the view here that they rather represent a general
property of QCPs.

The point is that, on approach to the QCP, an interaction that was deemed
irrelevant initially, takes over and dominates. For example it has been proposed
recently that the superconducting instability, which is marginal in the usual Fermi
liquids, becomes relevant near the QCP and leads to a high transition temper-
ature [121]. Actually these instabilities are numerous and can vary, depending
on the system at hand. However there seems to be a unifying theme of those
instabilities. We suggest that QCPs are unstable precisely for the reasons we
are interested in these points: extreme softness and extreme susceptibility of the
system in the vicinity of QCPs. We regard the recently discovered first order
transitions as indicators of a more fundamental and thus powerful phsyics. We
are often prevented from reaching quantum criticality, and often the destruction
is relatively trivial and certainly not as appealing and elegant as quantum crit-
icality. We can draw an analogy from gravitational physics, where the naked
singularities are believed to be prevented from happening due to many kinds of
relevant instabilities. This is generally known as the ”cosmic censorship conjec-
ture” [122]. The recently proposed AdS/CFT correspondence [123–125], which
maps a non-gravitational field theory to a higher dimensional gravitational the-
ory, adds more to this story. Here researchers have begun to realize that the
Reissner-Nordstrom black holes in AdS space, which should have a macroscopic
entropy at zero temperature, are unstable to the spontaneous creation of particle-
antiparticle pairs, and tend to collapse to a state with lower entropy [126,127].

There have appeared in the literature scattered examples of first-order quan-
tum phase transitions at the supposed-to-be continuous QCPs [80,128–134], how-
ever it appears that the universality of this phenomenon is not widely appreciated.
This universality is the main motivation for our work. We will systematically
study the different possibilities for converting a continuous QPT to first order.

The first striking example how fluctuations of one of the order parameters
can qualitatively change the nature of the transition comes from the Coleman-
Weinberg model [135], where they showed how gauge fluctuations of the charged
field introduce a first order transition. In this work it was shown that in dimen-
sion d = 3, for any weak coupling strength, one develops a logarithmic singularity,
and therefore the effective field theory has a first-order phase transition. Subse-
quently, this result was extended to include classical gauge field fluctuations by
Halperin, Lubensky and Ma [136], where a cubic correction to the free energy
was found. Nontrivial gradient terms can also induce an inhomogeneous phase
and/or glassy behavior [137].

A prototypical example for the competing phases and superconducting dome
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is shown schematically in Fig.1. Below, we apply the renormalization group (RG)
and scaling analysis to infer the stability if the QCP as a result of competition.
We find in our analysis that the QCP is indeed unstable towards a first order
transition as a result of competition. Obviously details of the collapse of a QCP
and the resulting phase diagram depend on details of the nature of the fluctuating
field and details of the interactions. We find that the most relevant parameters
that enter into criterion for stability of a QCP are the strength of interactions be-
tween competing phases: we take this interaction to be repulsive between squares
of the competing order parameters. When the two order parameters break dif-
ferent symmetries, the coupling will be between the squares of them. Another
important factor that controls the phase diagram is the dynamical exponents z of
the fields. The nature of the competition also depends on the classical or quan-
tum character of the fields. Here by classical we do not necessarily mean a finite
temperature phase transition, but rather that the typical energy scale is above
the ultraviolet cutoff, and the finite frequency modes of the order parameters
can be ignored, so that a simple description in terms of free energy is enough to
capture the physics. We analyzed three possibilities for the competing orders:

i) classical + classical. Here we found that interactions generally reduce the
region of coexistence, and when interaction strength exceeds some critical value,
the second-order phase transitions become first order.

ii) classical + quantum. Here the quantum field is integrated out, giving rise
to a correction to the effective potential of the classical order parameter. For a
massive fluctuating field with d + z 6 6, or a massless one with d + z 6 4, the
second-order quantum phase transition becomes first order.

iii) quantum + quantum. Here RG analysis was employed, and we found
that in the high dimensional parameter space, there are generally regions with
runaway flow, indicating a first-order quantum phase transition.

It has been proposed recently that alternative route to the breakdown of
quantum criticality is through the basic collapse of Landau-Wilson paradigm of
conventional order parameters and formation of the deconfined quantum critical
phases ( [138, 139]). This is a possibility that has been discussed for specific
models and requires a different approach than the one taken here. We are not
addressing this possibility.

The plan of this chapter is as follows. In section 4.2, we consider coupling
two classical order parameter fields together. Both fields are characterized by
their free energies and Landau mean field theory will be used. In section 4.3,
we consider coupling a classical order parameter to a quantum mechanical one,
which can have different dynamical exponents. The classical field is described
by its free energy and the quantum field by its action; the latter is integrated
out to produce a correction to the effective potential for the former. In section
4.4, we consider coupling two quantum mechanical fields together. With both
fields described by their actions, we use RG equations to examine the stability
conditions. In particular, we study in detail the case where the two coupled
order parameters have different dynamical exponents, which, to our knowledge,
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has not been considered previously. In the conclusion section, we summarize
our findings. Details of the RG calculation for two quantum fields with different
dynamical exponents are included in the Appendix 4.6.

4.2 Two competing classical fields

We consider in this section two competing classical fields. Examples are the
superconducting order and antiferromagnetic order in CeRhIn5 and Rh-doped
CeIrIn5, and the superconducting order and ferromagnetic order near the large-
moment to small-moment transition in UGe2. We will follow the standard text-
book approach, and this case is presented as a template for the more complex
problems studied later on.

We first study the problem at zero temperature. For simplicity, both of them
are assumed to be real scalars. The free energy of the system consists of three
parts, the two free parts Fψ, FM and the interacting part Fint:

F =Fψ + FM + Fint;

Fψ =
ρ

2
(∇ψ)2 − αψ2 +

β

2
ψ4;

FM =
ρM
2

(∇M)2 − αMM2 +
βM
2
M4;

Fint =γψ2M2.

(4.1)

Here, by changing α, αM , the system is tuned through the phase transition points.
When the two fields are decoupled, with γ = 0, there will be two separated
second-order phase transitions. Assume the corresponding values of the tuning
parameter x at these two transition points are x1 and x2, we can parameterize
α, αM as α = a(x− x1) and αM = aM (x2 − x), where a, aM are constants.

We would like to know the ground state of the system. Following the
standard procedure, we first find the homogeneous field configurations satis-
fying ∂F

∂ψ = ∂F
∂M = 0, and then compare the corresponding free energy. It

is easy to see that the above equations have four solutions, with (|ψ|, |M |) =
(0, 0), (0,

√
αM/βM ), (

√
α/β, 0), (ψ∗,M∗), where

αψ2
∗ =

γ′ − β′M
γ′2 − β′β′M

,

αMM
2
∗ =

γ′ − β′

γ′2 − β′β′M
,

(4.2)

and the rescaled parameters are γ′ = γ/ααM , β
′ = β/α2, β′M = βM/α

2
M . When

γ = 0, the fourth solution reduces to (ψ∗,M∗) = (
√
α/β,

√
αM/βM ), with the

two orders coexisting but decoupled. We are interested in the case where the two
orders are competing, thus a relatively large positive γ.
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Figure 4.2: Illustration of the mean field phase diagram for two competing orders.
Here for concreteness we consider antiferromagnetic and superconducting orders.
The two orders coexist in the yellow region, whose area shrinks as the coupling
increases from left to right. The left figure has γ = 0, the central one has
0 < γ <

√
ββM , and the right one has γ >

√
ββM . When γ exceeds the critical

value
√
ββM , the two second-order phase transition lines merge and become first

order (the thick vertical line).

For x1 < x < x2, we have α > 0, αM > 0. The necessary condition for the
existence of the fourth solution is γ′ > β′, β′M ,

√
β′β′M or γ′ < β′, β′M ,

√
β′β′M .

In this case, the configuration (0, 0) has the highest free energy F [0, 0] = 0. For
the configuration (ψ∗,M∗) with coexisting orders to have lower free energy than
the two configurations with single order, one needs to have γ′ <

√
β′β′M , which

reflects the simple fact that when the competition between the two orders is too
large, their coexistence is not favored. Thus the condition for the configuration
(ψ∗,M∗) to be the ground state of the system is γ′ < β′ and γ′ < β′M . If
γ′ > min{β′, β′M}, one of the fields has to vanish.

Next we observe that, for x near x1, β′M remains finite, α ∼ (x− x1), and γ′

diverges as 1/(x − x1), while β′ diverges as 1/(x − x1)2. So the lowest energy
configuration is ψ = 0, |M | =

√
αM/βM . Similarly, near x2, the ground state is

(
√
α/β, 0). The region with coexisting orders shrinks to

γaMx2 + βMax1

γaM + βMa
< x <

γax1 + βaMx2

γa+ βaM
. (4.3)

For γ <
√
ββM , this region has finite width. In this region, (0, 0) is the global
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maximum of the free energy, (0,
√
αM/βM ), (

√
α/β, 0) are saddle points, and

(ψ∗,M∗) is the global minimum. The phase with coexisting order is sandwiched
between the two singly ordered phases, and the two phase transitions are both
second-order. The shift in spin-density wave ordering and Ising-nematic ordering
due to a nearby competing superconducting order has been studied recently by
Moon and Sachdev [140, 141], where they found that the fermionic degrees of
freedom can play important roles. The competition of magnetism and supercon-
ductivity in the iron arsenides was also investigated by Fernandes and Schmalian
in [142]. They found that the phase diagram is sensitive to the symmetry of
the pairing wavefunctions. It would be interesting to generalize our formalism to
include all these effects.

For γ >
√
ββM , this intermediate region with coexisting orders vanishes,

and the two singly ordered phases are separated by a first-order quantum phase
transition. The location of the phase transition point is determined by equating
the two free energies at this point,

F

[√
α(xc)

β
, 0

]
= F

[
0,

√
αM (xc)

βM

]
, (4.4)

which gives xc = (x2 + Ax1)/(1 + A), with A = (a/aM )
√
βM/β. The slope of

the free energy changes discontinuously across the phase transition point, with a
jump

δF (1) ≡

∣∣∣∣∣
(
dF

dx

)
x+
c

−
(
dF

dx

)
x−c

∣∣∣∣∣ =
aaM√
ββM

(x2 − x1). (4.5)

The size of a first-order thermal phase transition can be characterized by
the ratio of latent heat to the jump in specific heat in a reference second-order
phase transition [136]. A similar quantity can be defined for a quantum phase
transition, where the role of temperature is now played by the tuning parameter
x. We choose as our reference point γ = 0, where the two order parameters
are decoupled. For x < x1, one has d2F/dx2 = −a2

M/βM ; for x > x2, one has
d2F/dx2 = −a2/β; and d2F/dx2 = −a2

M/βM − a2/β for x1 < x < x2. We take
the average of the absolute value of the two jumps to obtain

δF (2) =
1

2
(a2
M/βM + a2/β). (4.6)

So the size of this first-order quantum phase transition is

δx =
δF (1)

δF (2)
=

2

√
β̃β̃M

β̃ + β̃M
(x2 − x1), (4.7)

with β̃ = β/a2 and β̃M = βM/a
2
M . It is of order x2−x1, when β̃ and β̃M are not

hugely different.
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The above consideration can be generalized to finite temperature, by including
the temperature dependence of all the parameters. Specially, there exists some
temperature T ∗, where x1(T ∗) = x2(T ∗). In this way we obtain phase diagrams
similar to those observed in experiments (see Fig. 4.2).

4.3 Effects of quantum fluctuations

In this section, we consider coupling an order parameter ψ to another field φ,
which is fluctuating quantum mechanically. The original field ψ is still treated
classically, meaning any finite frequency modes are ignored. For the quantum
fields, in the spirit of Hertz-Millis-Moriya [143–145], we assume that the fermionic
degrees of freedom can be integrated out, and we will only deal with the bosonic
order parameters. This model may, for example, explain the first-order ferromag-
netic to paramagnetic transition in UGe2, where the quantum fluctuations of the
superconducting order parameter are coupled with the ferromagnetic order pa-
rameter, which can be regarded as classical near the superconducting transition
point.

We will integrate out the quantum field to obtain the effective free energy of
a classical field. The partition function has the form

Z[ψ(r)] =

∫
Dφ(r, τ) exp

(
−Fψ
T
− Sφ − Sψφ

)
. (4.8)

The free energy is of the same form as in the previous section with Fψ =
∫
ddrFψ.

Thus, in the absence of coupling to other fields, the system goes through a second-
order quantum phase transition as one tunes the control parameter x across its
critical value. We consider a simple coupling

Sψφ = g

∫
ddrdτψ2φ2. (4.9)

The action of the φ field depends on its dynamical exponent z. We notice that
such classical + quantum formalism has been used to investigate the competing
orders in cuprates in [146].

The saddle point equation for ψ reads

δ lnZ[ψ(r)]

δψ(r)
= 0, (4.10)

which gives [
−α+ βψ2(r)− ρ

2
∇2 + g〈φ2(r)〉

]
ψ(r) = 0. (4.11)

Here we have defined the expectation value,

〈φ2(r)〉 =
1

β

∫
Dφ(r′, τ ′)

∫ β

0

dτφ2(r, τ) exp (−Sφ − Sψφ) . (4.12)
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It can also be written in terms of the different frequency modes,

〈φ2(r)〉 =T
∑
ωn

〈φ(r, ωn)φ(r,−ωn)〉

=T
∑
ωn

∫
Dφ(r′, νs)φ(r, ωn)φ(r,−ωn) exp (−Sφ − Sψφ) .

(4.13)

The quadratic term in Sφ is of the form

S
(2)
φ =

∑
νs

∫
ddr′

∫
ddr′′φ(r′, νs)χ

−1
0 (r′, r′′, νs)φ(r′′,−νs), (4.14)

or more conveniently, in terms of momentum and frequency,

S
(2)
φ =

∑
νs

∫
ddk

(2π)d
φ(k, νs)χ

−1
0 (k, νs)φ(−k,−νs). (4.15)

So in the presence of translational symmetry, we find

〈φ2〉 = T
∑
ωn

∫
ddk

(2π)d
1

χ−1
0 (k, ωn) + gψ2

. (4.16)

This leads to the 1-loop correction to the effective potential for ψ, determined by

δV
(1)
eff [ψ]

δψ
= 2g〈φ2〉ψ. (4.17)

So far we have been general in this analysis. Further analysis requires us to
make more specific assumptions about the dimensionality and dynamical expo-
nents.

When the φ field has dynamical exponent z = 1, its propagator is of the form

χ0(k, ωn) =
1

ω2
n + k2 + ξ−2

. (4.18)

A special case is a gauge boson, which has zero bare mass, and thus ξ → ∞.
This problem has been studied in detail by Halperin, Lubensky and Ma [136] for
a classical phase transition (see also [147]), and by Coleman and Weinberg [135]
for relativistic quantum field theory. Other examples are critical fluctuations
associated with spin-density wave transitions and superconducting transitions
in clean systems. We also note that Continentino and collaborators have used
the method of effective potential to investigate some special examples of the
fluctuation-induced first order quantum phase transition [80,129–132].

Let us consider T = 0, for which the summation T
∑
ωn

can be replaced by

the integral
∫
dω/(2π). We then get for the one-loop correction to the effective

potential

δV
(1)
eff [ψ]

δψ
= 2gψ

∫
dω

2π

∫
ddk

(2π)d
1

ω2 + k2 + ξ−2 + gψ2
. (4.19)
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Figure 4.3: Schematic illustration of the fluctuation-induced first-order phase
transition. Here, for concreteness, we consider ferromagnetic and superconduct-
ing orders. The ferromagnetic order is regarded as classical, while the super-
conducting one as quantum mechanical. At low temperatures, the second-order
ferromagnetic to paramagnetic phase transition becomes first order (the thick
vertical line), due to fluctuations of the superconducting order parameter.

Carrying out the frequency integral, we obtain for d = 3,

δV
(1)
eff [ψ]

δψ
=

gψ

2π2

∫ Λ

0

dk
k2√

k2 + ξ−2 + gψ2
, (4.20)

where an ultraviolet cutoff is imposed. Integrating out momentum gives

δV
(1)
eff [ψ]

δψ
=

gψ

4π2

[
Λ
√

Λ2 + ξ−2 + gψ2 − (ξ−2 + gψ2) ln

(
Λ +

√
Λ2 + ξ−2 + gψ2√
ξ−2 + gψ2

)]
,

(4.21)
which can be simplified as

δV
(1)
eff [ψ]

δψ
=

gψ

4π2

[
Λ2 +

1

2
(ξ−2 + gψ2)− (ξ−2 + gψ2) ln

(
2Λ√

ξ−2 + gψ2

)]
.

(4.22)
Combined with the bare part,

V
(0)
eff (ψ) = −αψ2 +

1

2
βψ4, (4.23)

we get the effective potential to one-loop order,

Veff(ψ) = −α̂ψ2 +
1

2
β̂ψ4 − 1

16π2
(ξ−2 + gψ2)2 ln

(
2Λ√

ξ−2 + gψ2

)
, (4.24)
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with the quadratic and quartic terms renormalized by α̂ = α − g(4Λ2 +

ξ−2)/(32π2) and β̂ = β + 3g/(32π2). When φ field is critical with ξ → ∞,

the third term is of the well-known Coleman-Weinberg form ψ4 ln(2Λ/
√
gψ2),

which drives the second-order quantum phase transition to first order.
For ξ large but finite, we can expand the third term as a power series in

ξ−2/(gψ2), and the effective potential is of the form

Veff(ψ) = −ᾱψ2 +
1

2
β̄ψ4 − 1

16π2
(2ξ−2gψ2 + g2ψ4) ln

2Λ√
gψ2

. (4.25)

In addition to the Coleman-Weinberg term, there is another term of the form
ψ2 lnψ, and again we have also a first-order phase transition.

To study the generic case where the φ field is massive, we rescale the ψ field
and cutoff, defining

u2 ≡ gψ2

ξ−2
, Λ̃ ≡ 2Λ

ξ−1
. (4.26)

The rescaled effective potential takes the form

Ṽeff(u) = −Ãu2 +
1

2
B̃u4 − (1 + u2)2 ln

(
Λ̃√

1 + u2

)
, (4.27)

which can be further simplified as

V̂eff(u) = −Au2 +
1

2
Bu4 + (1 + u2)2 ln(1 + u2). (4.28)

The above potential is plotted in Fig. 4.3. We notice that with large enough
cutoff Λ, one generally has B = B̃ − ln Λ̃ large and negative. For A < 1, u = 0
is a local minimum. There are also another two local minima with u2 ≡ y a
positive solution of equation

2(1 + y) ln(1 + y) + (1 +B)y + 1−A = 0. (4.29)

So we generally have a first-order quantum phase transition in this case (see Fig.
3 for a schematic picture).

With dynamical exponent z = 2, the propagator of φ field is

χ0(k, ωn) =
1

|ωn|τ0 + k2 + ξ−2
. (4.30)

Examples are charge-density-wave and antiferromagnetic fluctuations. In the
presence of dissipation, superconducting transitions also have dynamical expo-
nent z = 2.

So the one-loop correction to the effective potential at zero temperature be-
comes

δV
(1)
eff [ψ]

δψ
= 2gψ

∫
dω

2π

∫
ddk

(2π)d
1

|ω|τ0 + k2 + ξ−2 + gψ2
. (4.31)
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Figure 4.4: The effective potential as a function of the rescaled field u for various
parameters in the case d = 3, z = 1. Here Veff(u) = −Au2 + 1

2Bu
4 + (1 +

u2)2 ln(1 + u2), with B = −5, and A = −0.25,−0.116, 0 from top to bottom.
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Figure 4.5: The effective potential as a function of the rescaled field u for (a)
d = 3, z = 2, where we have plotted Veff(u) = −Au2 + 1

2Bu
4 + (1 + u2)5/2 − 1,

with B = −8, and A = −3,−2.597,−2.2 from top to bottom; (b) d = 3, z =
3, where Veff(u) = −Au2 + 1

2Bu
4 + (1 + u2)3 ln(1 + u2), with B = −10, and

A = 0.1, 0.208, 0.3 from top to bottom; (c) d = 1, z = 2, where we have plotted
Veff(u) = −Au2+ 1

2Bu
4−(1+u2)3/2+1, with B = 0.1, and A = −5.3,−5.1413,−5

from top to bottom; (d) d = 1, z = 1, where we have plotted Veff(u) = −Au2 +
1
2Bu

4 − (1 + u2) ln(1 + u2), with B = 0.3, and A = −1.45,−1.412,−1.39 from
top to bottom. All these plots are of similar shape. However, we notice that the
scales are quite different.
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The momentum integral is cutoff at |k| = Λ, and correspondingly the frequency
integral is cutoff at |ω|τ0 = Λ2. First, we integrate out frequency to obtain

δV
(1)
eff [ψ]

δψ
=

gψ

π3τ0

∫ Λ

0

dkk2 ln

(
1 +

Λ2

k2 + ξ−2 + gψ2

)
, (4.32)

and then integrate out momentum, with the final result

δV
(1)
eff [ψ]

δψ
=

gψ

3π3τ0

[
Λ3 ln

(
ξ−2 + gψ2 + 2Λ2

ξ−2 + gψ2 + Λ2

)
+ 2Λ3

+2(ξ−2 + gψ2)3/2 arctan
Λ√

ξ−2 + gψ2

−2(ξ−2 + gψ2 + Λ2)3/2 arctan
Λ√

ξ−2 + gψ2 + Λ2

]
.

(4.33)

Up to order Λ0, this is

δV
(1)
eff [ψ]

δψ
=

gψ

3π3τ0

[
Λ3
(

2 + ln 2− π

2

)
+

3π

4
Λ(ξ−2 + gψ2) + π(ξ−2 + gψ2)3/2

]
.

(4.34)
The first two terms just renormalize the bare α and β. When the φ field is critical,
ξ → ∞, the third term becomes of order ψ5, and is thus irrelevant. When ξ is
large but not infinite, we get the effective potential

Veff(ψ) = −ᾱψ2 +
1

2
β̄ψ4 +

g3/2ξ−2

15π2τ0
|ψ|3 +

g5/2

15π2τ0
|ψ|5. (4.35)

In addition to the ψ5 term there is another term of order ψ3, which may drive
the second-order quantum phase transition to first order.

Let us consider a massive φ field. Carrying out the same rescaling as we made
for z = 1, we get the rescaled effective potential of the form

V̂eff(u) = −Au2 +
1

2
Bu4 + (1 + u2)5/2. (4.36)

For large negative B, we obtain a first-order quantum phase transition (see Fig.
4.5(a)).

When the φ field has dynamical exponent z = 3, e.g. for ferromagnetic
fluctuations, its propagator is

χ0(k, ωn) =
1

γ |ωn|k + k2 + ξ−2
. (4.37)

Thus the one-loop correction to the effective potential at T = 0 is determined
from

δV
(1)
eff [ψ]

δψ
= 2gψ

∫
dω

2π

∫
ddk

(2π)d
1

γ |ω|k + k2 + ξ−2 + gψ2
, (4.38)



80 Stability of Quantum Critical Points: the Bosonic Story

with a momentum cutoff at |k| = Λ, and a frequency cutoff at γ|ω| = Λ3. The
frequency integral gives

δV
(1)
eff [ψ]

δψ
=

gψ

4π4γ

∫ Λ

0

dkk3 ln

[
1 +

Λ3

k3 + k(ξ−2 + gψ2)

]
, (4.39)

and the momentum integral further leads to the result

Veff(ψ) = −ᾱψ2 +
1

2
β̄ψ4 +

1

96π4γ
(ξ−2 + gψ2)3 ln(ξ−2 + gψ2). (4.40)

When φ is critical, ξ → ∞, the third term is of the form ψ6 lnψ, which is
irrelevant. For finite ξ, there is also a term of the form ψ4 lnψ, which will drive
the second-order quantum phase transition to first order.

For general ξ, the rescaled effective potential reads

V̂eff(u) = −Au2 +
1

2
Bu4 + (1 + u2)3 ln(1 + u2). (4.41)

We define x ≡ u2. To produce the energy barrier in a first-order transition,
dV̂eff/dx = 0 needs to have two distinct positive solutions. For A a freely tunable
parameter, the condition for −Bx + A = f(x) ≡ (1 + x)2(1 + 3 log(1 + x)) to
have two distinct positive solutions is that −B > min [f ′(x)] = f ′(0) = 5. So
when the renormalized parameter satisfies the condition B < −5, we obtain a
first-order quantum phase transition (see fig. 4.5(b)).

For a dirty metallic ferromagnet, the dynamical exponent is z = 4. In this
case, with the propagator

χ0(k, ωn) =
1

γ′ |ωn|k2 + k2 + ξ−2
, (4.42)

the rescaled effective potential reads

V̂eff(u) = −Au2 +
1

2
Bu4 − (1 + u2)7/2. (4.43)

Higher order terms need to be included at large u to maintain stability. When
the φ field is critical, the third term is of order φ7, which is irrelevant. When the
φ field is massive but light, there will also be a term of order φ5 which is again
irrelevant. For general φ, in order for u = 0 to be a local minimum, we need to
have A < −7/2. In this case, V̂ ′eff(u) = 0 has only one positive solution. Thus we
have a second-order quantum phase transition.

We can calculate the fluctuation-induced effective potential in other dimen-
sions in the same way as above. For d = 2, z = 1, and also for d = 1, z = 2, with

the rescaled field defined by u2 ≡ gψ2

ξ−2 , the rescaled effective potential is of the
form

V̂eff(u) = −Au2 +
1

2
Bu4 − (1 + u2)3/2. (4.44)
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When the φ field is critical, the third term becomes of order −|ψ|3, of the
Halperin-Lubensky-Ma type, thus the quantum phase transition is first-order.
Generally when A < −1.5, AB > −0.5, B(A+B) > −0.25, u = 0 will be a local
minimum of the rescaled effective potential V̂eff , and there are two other local
minima at nonzero u. Hence there is again a first-order quantum phase transition
(see Fig. 4.5(c)). Otherwise there will be a second-order phase transition.

The effective potential in the case with d = 2, z = 2, and d = 1, z = 3 turns
out be of the same form as that of d = 3, z = 1, as expected from the fact that
both cases have the same effective dimension d+ z = 4. The case d = 2, z = 3 is
the same as d = 3, z = 2.

For d = 1, z = 1, the effective potential takes the form

V̂eff(u) = −Au2 +
1

2
Bu4 − (1 + u2) ln(1 + u2), (4.45)

which leads to a first-order phase transition for B < 1 (see Fig. 4.5(d)). The
third term reduces to ψ2 lnψ when φ is critical. In this case the quantum phase
transition is always first order for any positive value of B.

In the table below, we list the most dangerous terms generated from integrat-
ing out the fluctuating fields. The second row in the table corresponds to the
case where φ is critical or massless, and the third row has φ massive.

d+ z 2 3 4 5 6 7
massless ψ2 lnψ ψ3 ψ4 lnψ ψ5 ψ6 lnψ ψ7

massive (ψ2 + 1) lnψ ψ3 + ψ ψ2 lnψ ψ3 ψ4 lnψ ψ5

One can clearly see that in the massless case, the fluctuations are irrelevant
when d + z > 5, while in the massive case, they are irrelevant for d + z > 7.
Otherwise the second-order quantum phase transition can be driven to first order.
The order of the correction is readily understood from the general structure
of the integrals. With effective dimension d + z, in the massless case one has
δV/δψ ∼ ψ

∫
dd+zk(1/k2). Since k2 ∼ ψ2, this gives the correct power δV ∼

ψd+z. Replacing gψ2 by gψ2 + ξ−2 and then carrying out the expansion in
ξ−2/gψ2, one gets for the massive case a reduction by 2 in the power. We
also notice the even/odd effect in the effective potential: for d + z even, there
are logarithmic corrections. The case d + z = 4 can be easily understood, as
the system is in the upper critical dimension, and logarithmic corrections are
expected. We still do not have a simple intuitive understanding of the logarithm
for d+ z = 2, 6.

4.4 Two fluctuating fields

We consider in this section the case where the two coupled quantum fields are
both fluctuating substantially. The partition function now becomes

Z =

∫
Dψ(r, τ)

∫
Dφ(r, τ) exp (−Sψ − Sφ − Sψφ) . (4.46)
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We will use RG equations to determine the phase diagram of this system. When
there is no stable fixed point, or the initial parameters lie outside the basin
of attraction of the stable fixed points, the flow trajectories will show runaway
behavior, which implies a first-order phase transition [147–151]. The spin-density-
wave transitions in some cuprates and pnictides fall in this category [152–165].
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Figure 4.6: Illustration of the fluctuation-induced first-order phase transition in
the case of two quantum fields. Here for concreteness we consider the antifer-
romagnetic order and superconducting order. At low temperatures, the phase
transitions may become first order (the thick vertical lines), due to fluctuations.

We have considered in the previous sections coupling two single component
fields, having in mind that this simplified model captures the main physics of
competing orders. However, we will see below that when the quantum fluctu-
ations of both fields are taken into account, the number of components of the
order parameters do play important roles. So from now on we consider explic-
itly a n1-component vector field ψ and a n2-component vector field φ coupled
together. When both fields have dynamical exponent z = 1, the action reads

Sψ =

∫
ddrdτ

[
−α1|ψ|2 +

1

2
β1|ψ|4 +

1

2
|∂µψ|2

]
,

Sφ =

∫
ddrdτ

[
−α2|φ|2 +

1

2
β2|φ|4 +

1

2
|∂µφ|2

]
,

Sψφ =g

∫
ddrdτ |ψ|2|φ|2,

(4.47)

where µ = 0, 1, · · · , d. This quantum mechanical problem is equivalent to a
classical problem in one higher dimension. Then one can follow the standard
procedure of RG: first decompose the action into the fast-moving part, the slow-
moving part and the coupling between them. The Green’s functions are Gψ =
1/(−2α1 + k2 + ω2) and Gφ = 1/(−2α2 + k2 + ω2). The relevant vertices are
β1ψ

2
sψ

2
f , β2φ

2
sφ

2
f , gψ

2
sφ

2
f , gψ

2
fφ

2
s, gψsψfφsφf . To simplify the notation we rescale

the momentum and frequency according to k→ k/Λ, ω → ω/Λ, so that they lie
in the interval [0, 1]. The control parameters and couplings are rescaled according
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to α1,2 → α1,2Λ2, β1,2 → β1,2Λ3−d, g → gΛ3−d. Afterwards we integrate out the
fast modes with the rescaled momentum and frequency in the range [b−1, 1].
Finally, we rescale the momentum and frequency back to the interval [0, 1], thus
k→ bk, ω → bω, and the fields are rescaled accordingly with ψ → b(d−1)/2ψ, φ→
b(d−1)/2φ. Using an ε-expansion, where ε = 3 − d, one obtains the set of RG
equations to one-loop order,

dαi
dl

=2αi −
1

8π2
[(ni + 2)βi(1 + 2αi) + njg(1 + 2αj)],

dβi
dl

=εβi −
1

4π2
[(ni + 8)β2

i + njg
2],

dg

dl
=g

(
ε− 1

4π2
[(n1 + 2)β1 + (n2 + 2)β2 + 4g]

)
,

(4.48)

with index i, j = 1, 2, and i 6= j. These equations are actually more general than
considered above. They also apply to generic models where two fields with the
same dynamical exponent z are coupled together. Generally one has ε = 4−d−z,
thus a quantum mechanical model with dynamical exponent z is equivalent to a
classical model in dimension d+ z.
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Figure 4.7: Plot of the RG trajectories in the β1 − β2 plane for two quantum
fields with the same dynamical exponent below the upper critical dimension.
Here we have chosen ε = 4 − d − z = 0.1. The RG trajectories have been pro-
jected onto a constant g plane with g = g∗, and g∗ the value of the coupling
strength at the stable fixed point. (a) corresponds to the case n1 = n2 = 1,
where the fixed point is at β∗1 = β∗2 = g∗ = 4π2ε/(n1 + n2 + 8) ' 0.3948.
(b) corresponds to the case n1 = 2, n2 = 3, where the fixed point is at
(β∗1 , β

∗
2 , g
∗) = 4π2ε(0.0905, 0.0847, 0.0536) ' (0.3573, 0.3344, 0.2116). In both

cases we found that, above some curve (the dashed lines), the RG trajectories
flow to the corresponding stable fixed point, while below this curve, the RG
trajectories show runaway behavior.

It is known that the above equations have six fixed points [166], four of which
have the two fields decoupled, i.e., g∗ = 0. They are the Gaussian-Gaussian point
at (β∗1 , β

∗
2) = (0, 0), the Heisenberg-Gaussian point at (β∗1 , β

∗
2) = (4π2ε/(n1 +

8), 0), the Gaussian-Heisenberg point at (β∗1 , β
∗
2) = (0, 4π2ε/(n2 + 8)), and the
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decoupled Heisenberg-Heisenberg point at (β∗1 , β
∗
2) = (4π2ε/(n1 + 8), 4π2ε/(n2 +

8)). The isotropic Heisenberg fixed point is at β∗1 = β∗2 = g∗ = 4π2ε/(n1 +
n2 + 8), α∗1 = α∗2 = ε(n1 + n2 + 2)/4(n1 + n2 + 8). Finally there is the biconical
fixed point with generally unequal values of β∗1 , β∗2 , and g∗. In the case, with
n1 = n2 = 1, this is at (β∗1 , β

∗
2 , g
∗) = 2π2ε/9(1, 1, 3). For n1 = 2, n2 = 3, one has

(β∗1 , β
∗
2 , g
∗) = 4π2ε(0.0905, 0.0847, 0.0536).

We find that there is always just one stable fixed point for d + z < 4, below
the upper critical dimension [166]. The isotropic Heisenberg fixed point is stable
when n1 + n2 < nc = 4 − 2ε + O(ε2), the biconical fixed point is stable when
nc < n1 + n2 < 16 − n1n2/2 + O(ε), and when n1n2 + 2(n1 + n2) > 32 + O(ε),
the decoupled Heisenberg-Heisenberg point is the stable one. When the initial
parameters are not in the basin of attraction of the stable fixed point, one obtains
runaway flow, strongly suggestive of a first-order phase transition. Consider for
example n1 = 2, n2 = 3, where the biconical fixed point is stable. For two critical
points not too separated, that is, |α1 − α2| not too large, when g >

√
β1β2

the RG flow shows runaway behavior, and one gets a first-order quantum phase
transition. The corresponding classical problem has been discussed in [167]. We
notice the difference from the case with two competing classical fields, where
one also obtains the same condition for the couplings γ >

√
β1β2 in order to

have a first-order phase transition. There, the two ordered phases are required
to overlap in the absence of the coupling, in other words, one needs to have
x1 < x2. However, in the quantum mechanical case we are considering here,
this is not necessary. We plot in Fig. 4.7 the RG trajectories for two cases (a)
n1 = n2 = 1 and (b) n1 = 2, n3 = 3, where in both cases, below some curve,
runaway behavior in the RG trajectories is found.

When d+ z = 4, all the other fixed points coalesce with the Gaussian point,
forming an unstable fixed point, thus leading to a first-order phase transition
(see Fig. 4.8(a) ). A similar model with an extra coupling and n1 = n2 = 3 has
been discussed by Qi And Xu [133], where runaway flows were also identified.
Another similar problem with d = 2, z = 2 was studied by Millis recently [134],
where a fluctuation-induced first-order quantum phase transition was shown to
occur. We also notice that in some situations, including fluctuations of the order
parameter itself may drive the supposed-to-be first-order transitions to second
order for both classical and quantum phase transitions [168–171].

For d + z > 4, the stabilities are interchanged. The Gaussian fixed point
becomes the most stable one. So the basin of attraction of the stable fixed
point changes. We found numerically that for a given coupling strength g, in
the β1 − β2 plane, the RG trajectories show runaway behavior when the initial
points lie below some curve (see Fig. 4.8(b)). That is, when the coupling between
the two fields is strong enough, the QPTs become first order. Just above these
curves, we found that the RG trajectories will enter the domain with negative β1

or negative β2, and then converge to the Gaussian fixed point. For β1, β2 large
enough, the RG trajectories just converge to the Gaussian fixed point without
entering the negative domain.
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Figure 4.8: Plot of the RG trajectories in the β1−β2 plane for two quantum fields
with the same dynamical exponent in and above the upper critical dimension.
The RG trajectories have been projected to a constant g plane. And we have
chosen n1 = n2 = 3. (a) corresponds to the case exactly at the critical dimension
with ε = 4− d− z = 0. In this case there is only one fixed point with β∗1 = β∗2 =
g∗ = 0, the Gaussian fixed point, which is unstable. We found runaway flows
everywhere. (b) corresponds to the case above the critical dimension, where the
Gaussian fixed point is the stable one. Here we have chosen ε = 4−d−z = −0.1.
We found, below some curve (the dashed line), that the RG trajectories show
runaway behavior.

4.4.1 Competing orders with different dynamical expo-
nents

We consider next coupling a z = 1 field to another field with dynamical exponent
z = z1 > 2. To our knowledge, such models of two competing order parameters
with different dynamical exponents have not been studied previously. The action
now takes the form

Sψ =

∫
ddkdω

(
−α1 +

k2

2
+
γ1

2

|ω|
kz1−2

)
|ψ|2 +

∫
ddrdτ

1

2
β1|ψ|4,

Sφ =

∫
ddrdτ

[
−α2|φ|2 +

1

2
β2|φ|4 +

1

2
|∂µφ|2

]
,

Sψφ =g

∫
ddrdτ |ψ|2|φ|2.

(4.49)

The RG analysis of such models is not an easy task. The conventional pic-
ture is that in d spatial dimensions, the quantum field theory of a bosonic field
with dynamical exponent z is equivalent to a classical field theory in d + z di-
mensions. This picture still holds when there are more than one field, but all
the fields have the same dynamical exponent. However, when the coupled fields
have different dynamical exponents, this picture is no longer valid: the fields are
frustrated in choosing their effective dimensions. Technically, this problem arises
in the RG analysis for example when one calculates the loop diagrams containing
internal lines corresponding to fields with different dynamical exponents. If we
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think more carefully about how one arrives at the conventional way of counting
effective dimensions, we will find that one has to rescale the parameters to ab-
sorb the generally dimensionfull γ parameters, the presence of which ensures the
frequency dependent terms in the action to have the right dimensions. We will
show explicitly such rescaling below. With distinct dynamical exponents, one
can no longer rescale out these γ parameters. They actually lead to dramatically
different scaling behavior in the RG structure: there is now a line of fixed points.

The new parameter γ1 has dimension [γ1] = L1−z, and its one-loop RG equa-
tion is simply

dγ1

dl
= (z − 1)γ1. (4.50)

The Green’s function for the ψ field becomes Gψ = 1/(−2α1 +k2 +γ1|ω|/kz1−2).
The RG equations for the other parameters are modified accordingly,

dα1

dl
=2α1 −

Ωd
πγ1

(n1 + 2)β1(ln 2 + 2α1)− Ωd+1n2g(2 + 2α2),

dα2

dl
=2α2 − Ωd+1(n2 + 2)β2(2 + 2α2)− Ωd

πγ1
n1g(ln 2 + 2α1),

dβ1

dl
=εβ1 −

2Ωd
πγ1

(n1 + 8)β2
1 − 2Ωd+1n2g

2,

dβ2

dl
=εβ2 − 2Ωd+1(n2 + 8)β2

2 −
2Ωd
πγ1

n1g
2,

dg

dl
=g

(
ε− 2Ωd

πγ1
(n1 + 2)β1 − 2Ωd+1(n2 + 2)β2 − 8

Ωd
2π

2γ1 ln γ1 + π

1 + γ2
1

g

)
,

(4.51)

where ε = 3− d and Ωd = 2πd/2/(2π)dΓ[d/2] is the volume of the d-dimensional
unit sphere. The derivation of the above RG equations is included in the ap-
pendix. We notice from the above procedure that when the two fields have the
same dynamical exponent z > 1, one can rescale the couplings to β̃1 = β1/γ, β̃2 =
β2/γ, g̃ = g/γ, and these new parameters satisfy the RG equations (4.48) with
ε̃ = 4− d− z.

The presence of two different dynamical exponents obviously complicates the
problem. It is generally expected that the modes with a larger dynamical ex-
ponent dominates the specific heat of the system, since they have a large phase
space, while the modes with a smaller dynamical exponent may produce infrared
singularities, since they have a smaller upper critical dimension [172]. In the
absence of the coupling between the two fields, we have the RG equations

dβ̃1

dl
=(4− d− z)β̃1 −

2Ωd
π

(n1 + 8)β̃2
1 ,

dβ2

dl
=(3− d)β2 − 2Ωd+1(n2 + 8)β2

2 .

(4.52)
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For d = 3, β2 is marginal with an unstable fixed point, while β̃1 is irrelevant and
its Gaussian fixed point is stable.
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Figure 4.9: Plot of the RG trajectories in the β1 − β2 plane for two coupled
quantum fields with different dynamical exponents. The RG trajectories have
been projected to a constant g plane with g = 1. We have chosen the spatial
dimension to be d = 3, the dynamical exponents z1 = 2, z2 = 1 and the number
of field components n1 = n2 = 3. (a) shows the RG trajectories originating from
the region below the dashed line, which flow to negative β1 or negative β2 regions.
(b) shows the RG trajectories originating from the region above the dashed line,
and those flow to the stable points on the positive axes of β1, the location of
which is sensitive to the initial value of the parameters.

Generally, for z > 1, if the initial value of γ1 is nonzero, the absolute value of
γ1 will increase exponentially. The RG equation for β2 becomes independent of
other parameters,

dβ2

dl
= εβ2 − 2Ωd+1(n2 + 8)β2

2 . (4.53)

We are interested in the case ε = 0, for which β2 is readily solved to be

β2(l) =
1

β̄−1
2 + 2Ω4(n2 + 8)(l − lcr)

, (4.54)

with β̄2 taken at the crossover scale lcr at which the β2
2 term begins to dominate

the g2 term. Only the sign of β̄2 matters. If β̄2 > 0, as l increases, β2 will decay
to zero, flowing to its Gaussian fixed point. From the simplified RG equations
for g,

dg

dl
= −2Ω4(n2 + 2)gβ2, (4.55)

one can see that with a lower power in β2, g drops to zero even more quickly than
β2. Taking β2 as quasi-static when considering the evolution of g, one notices
that g decays exponentially as g(l) ∼ exp(−2Ω4(n2 + 2)β2l). So dβ1/dl also
decays exponentially, and before β2 goes to zero, β1 already stabilizes to a finite
value β∗1 , which depends on the initial value of β1. Actually from the simplified
RG equations for β1, β2, g with 1/γ1 set to zero, one can see directly that the
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fixed points are at β∗2 = g∗ = 0, with β∗1 any real number: we have a line of
fixed points. When β∗1 > 0, there will be a second-order phase transition. When
β∗1 < 0, the transition becomes first order (see Fig. 4.9).

If β̄2 < 0, the absolute value of β2 will increase without bound. Subsequently
g and β1 also diverge, leading to runaway flows.

4.5 Conclusions

Quantum criticality in the presence of competing interactions is an important
guiding concept that allows us to organize a framework for emergent states near
QCPs. Here we investigated the stability of a quantum critical point in the
presence of competing orders. We focused on a simple quadratic-quadratic inter-
action, where coupling between two competing phases is assumed to be of gψ2φ2

form. We find that QCPs are often unstable and transform into first order lines
of transitions. The detailed scenario on how the instability develops depends
on the precise nature of the competing interactions, dynamical exponents and
strength of the coupling. The general trend we observe is that competing in-
teractions, be they classical or quantum, often lead to the instability of QCPs.
This instability in fact always occurs, in the cases we have investigated, if the
coupling g is strong enough. We thus conclude that breakdown of QCPs is a
ubiquitous phenomenon. The magnitude of the specific heat jump in some first
order transitions (the classical + classical case) is of the same order as the spe-
cific heat released in a second order transition and these first order transitions
are strong, and not weakly first order as found in Halperin-Lubensky-Ma. An
immediate consequence of this breakdown is that we can expect spatially mod-
ulated inhomogeneous phases to be present near QCPs, given their propensity
to turn into first order transitions. The wide likelihood identified here of first
order transitions preempting a QCP leads us to anticipate the nucleation and
metastability phenomena associated with such transitions [173]. Additionally,
proximity to first-order transitions makes auxiliary fields (e. g. magnetic field,
strain) and disorder very important over substantial parameter regions [174].

The broad similarities we pointed out between QCPs and AdS/CFT models
offers an interesting possibility that in fact AdS models are also spatially inho-
mogeneous. More detailed analysis that allows breakdown of scaling, specific for
AdS/CFT is suggested.

We derived the renormalization group equations for two coupled order pa-
rameters with different dynamical exponents. We found that there are a line of
fixed points, which is quite different from the case where two order parameters
have the same dynamical exponent. Very recently, there have appeared some
interesting reports [172,175] investigating the effects of the presence of two order
parameters with different dynamical exponents near the Pomeranchuk instabil-
ity [176], as examples of multiscale quantum criticality. It would be interesting
to see how the presence of two different dynamical exponents, and the coupling
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between the corresponding order parameters, affect the scaling of resistivity, es-
pecially whether a linear-resistivity is possible, overcoming the ”no-go” theorem
for single parameter scaling [177].

In this chapter, we have confined ourselves to the framework of Hertz-Millis-
Moriya [143–145], considering only the interplay of bosonic order parameters.
It would also be interesting to study the electronic instabilities, to see whether
the superconducting instabilities and Pomeranchuk instabilities are enhanced in
fermionic quantum critical states. Fermi liquids, even with repulsive interac-
tions, are unstable towards forming a superconducting state, due to the Kohn-
Luttinger effect [178] resulting from the presence of a sharp Fermi surface. For the
fermionic quantum critical states, the momentum distribution function may have
only higher order singularities [179]. It would be interesting to check whether
the Kohn-Luttinger effect is still active in this case.

4.6 Appendix: RG equations for two fields with
different dynamical exponents

In this appendix, we will derive the RG equations of two competing orders with
different dynamical exponents. We follow the notation of [180]. Our starting
point is the action ((4.49)). First we count the dimensions of the field operators
and all the parameters:

[r] = [τ ] =L,

[k] = [ω] =L−1,

[ψ] = [φ] =L(1−d)/2,

[α1] = [α2] =L−2,

[β1] = [β2] =Ld−3,

[g] =Ld−3,

[γ1] =L1−z.

(4.56)
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Then we decompose the action into slow and fast modes. The action for the slow
modes reads

S(s) =S
(s)
ψ + S

(s)
φ + S

(s)
ψφ,

S
(s)
ψ =

∫
ddkdω

(
−α1 +

k2

2
+
γ1

2

|ω|
kz1−2

)
|ψs|2 +

∫
ddrdτ

1

2
β1|ψs|4,

S
(s)
φ =

∫
ddrdτ

[
−α2|φs|2 +

1

2
β2|φs|4 +

1

2
|∂µφs|2

]
,

S
(s)
ψφ =g

∫
ddrdτ |ψs|2|φs|2.

(4.57)

Since we will only consider RG to one-loop order, the interaction terms in the fast
modes, the contraction of which leads to second-order diagrams, can be ignored.
Thus we obtain the action for the fast modes,

S(f) =S
(f)
ψ + S

(f)
φ ,

S
(f)
ψ =

∫
ddkdω

(
−α1 +

k2

2
+
γ1

2

|ω|
kz1−2

)
|ψf |2,

S
(f)
φ =

∫
ddrdτ

[
−α2|φf |2 +

1

2
|∂µφf |2

]
,

(4.58)

from which one can easily identify the Green’s functions as

Gfij [ψ] =
δij

−2α1 + k2 + γ1
|ω|

kz1−2

,

Gfij [φ] =
δij

−2α2 + k2 + ω2
.

(4.59)

The coupling between the slow modes and fast modes takes the form

Sc =

∫
ddrdτ

∑
ijkl

Fijkl

(
3β1ψ

i
fψ

j
fψ

k
sψ

l
s + 3β2φ

i
fφ

j
fφ

k
sφ

l
s

)
+g|ψs|2|φf |2 + g|ψf |2|φs|2 + 4g(ψs ·ψf )(φs · φf )

]
,

(4.60)

with the tensor Fijkl = 1
3 (δijδkl + δikδjl + δilδjk).

Now we can integrate out the fast modes and see how the different parameters
change accordingly. The effective action of the slow modes is determined by

exp
[
−S(s)

eff

]
= exp

[
−S(s)

]
exp

[
−〈Sc〉f +

1

2
〈S2
c 〉con
f

]
. (4.61)
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In the S2
c term we take a connected average, thus the superscript ”con”. The

coefficients in the RG equations will depend on the different renormalization
schemes. Here we will use the procedure that is most convenient for the problem
at hand, similar in spirit to what was outlined in [181]. We integrate over the
momentum interval Λ/b < k < Λ, which after rescaling k → k/Λ, gives b−1 <
k < 1. The frequency part is more complicated. We will introduce a cutoff when
it is necessary, otherwise just integrate over the whole range −∞ < ω < ∞.
The main reason for us to choose this RG scheme is that in calculating the third
correction to the coupling g, the two internal lines come from order parameters
with different dynamical exponents, thus the two frequencies scale differently with
momentum, and this RG scheme offers a simple and self-consistent treatment of
the cutoffs.

γ1 does not receive corrections up to first-order.

Figure 4.10: One-loop diagrams contributing to the first order correction of α1.
The solid lines represent the ψ fields, and the dashed lines represent the φ fields.
The external lines are slow modes, and the internal lines are fast modes.

Two terms in the action (4.60) contribute to the first-order corrections of α1.
The coupling ψ2

sψ
2
f leads to the correction

δ(1)S[α1] = 3β1

∑
ijkl

Fijkl

∫
f

dd+1q′

(2π)d+1
〈ψif (q′)ψjf (−q′)〉

∫
s

dd+1q

(2π)d+1
ψks (q)ψls(−q).

(4.62)
Using the identity, ∑

i

Fiikl =
n1 + 2

3
δkl, (4.63)

one obtains

δ(1)S[α1] = (n1 + 2)β1
Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

−2α1 + k2 + γ1
|ω|

kz1−2∫
s

dd+1q

(2π)d+1
ψs(q) ·ψs(−q).

(4.64)

Assuming that the ψ field is near its critical point, thus α1 is a small parameter,
the Green’s function can be expanded in terms of −2α1. The correction term
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can be written as

δ(1)S[α1] = (n1 + 2)β1
Ωd
2π

(I1 + 2α1I2)

∫
s

dd+1q

(2π)d+1
ψs(q) ·ψs(−q), (4.65)

where we have defined the series of functions

In =

∫
dω

∫ 1

b−1

dkkd−1 1(
k2 + γ1

|ω|
kz1−2

)n . (4.66)

Let us first calculate I1. The frequency integral requires a cutoff. From dimen-
sional analysis, we choose to integrate over the region −1 < γ1ω < 1, and obtain
the result

I1 =
2

γ1

∫ 1

b−1

dkkd+z1−3 ln

(
1 + kz1

kz1

)
. (4.67)

To proceed further, we are required to specify the dimension and dynamical
exponent. Consider d = 3, z1 = 2, where one has

I1 =
2

3γ1

[
ln 2− b−3 ln

(
1 + b−2

b−2

)
+ 2(1− b−1)− 2 arctan 1 + 2 arctan b−1

]
.

(4.68)
Expanded to first order in (1− b−1), it is simply

I1 =
2 ln 2

γ1
(1− b−1). (4.69)

For d = 2, z1 = 2, we obtain

I1 =
1

γ1

[
2 ln 2− (1 + b−2) ln(1 + b−2) + b−2 ln b−2

]
, (4.70)

which leads to the same result (4.69) when expanded to first order in (1− b−1).
This result can also be obtained more crudely by setting k = 1 in the integrand
of (4.67). I2 can be calculated similarly, with the result

I2 =
2

γ1
(1− b−1). (4.71)

So the one-loop correction to α1 coming from the coupling ψ2
sψ

2
f is

δ(1)S[α1] = (n1 +2)β1
Ωd
πγ1

(1−b−1)(ln 2+2α1)

∫
s

dd+1q

(2π)d+1
ψs(q) ·ψs(−q), (4.72)

We next calculate contributions from the coupling ψ2
sφ

2
f , which takes the form

δ(2)S[α1] = g
∑
ijkl

F ′ijkl

∫
f

dd+1q′

(2π)d+1
〈φif (q′)φjf (−q′)〉

∫
s

dd+1q

(2π)d+1
ψks (q)ψls(−q),

(4.73)
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with F ′ijkl = δijδkl. So we have simply the identity∑
i

F ′iikl = n2δkl, (4.74)

which gives

δ(2)S[α1] = n2g
Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

−2α2 + k2 + ω2

∫
s

dd+1q

(2π)d+1
ψs(q) ·ψs(−q).

(4.75)
Defining the new set of functions

I ′n =

∫
dω

∫ 1

b−1

dkkd−1 1

(k2 + ω2)
n , (4.76)

one obtains

δ(2)S[α1] = n2g
Ωd
2π

(I ′1 + 2α2I
′
2)

∫
s

dd+1q

(2π)d+1
ψs(q) ·ψs(−q). (4.77)

Here we integrate over frequencies in the range −∞ < ω <∞, and get

I ′1 = π

∫ 1

b−1

dkkd−2, (4.78)

which is, to first order in (1− b−1),

I ′1 = π(1− b−1). (4.79)

Similarly for I ′2 we have

I ′2 =
π

2

∫ 1

b−1

dkkd−4, (4.80)

thus
I ′2 =

π

2
(1− b−1). (4.81)

Near d = 3, one has Ωd/4 ' Ωd+1. Grouping all these together, we obtain the
second term in the correction to α1 as

δ(2)S[α1] = n2gΩd+1(1− b−1)(2 + 2α2)

∫
s

dd+1q

(2π)d+1
ψs(q) ·ψs(−q). (4.82)

The calculation of the first order corrections to α2 is quite similar to that of
α1. There are again two terms contributing. The coupling ψ2

fφ
2
s gives rise to a

term of the form

δ(1)S[α2] = g
∑
ijkl

F ′ijkl

∫
f

dd+1q′

(2π)d+1
〈ψif (q′)ψjf (−q′)〉

∫
s

dd+1q

(2π)d+1
φks(q)φls(−q),

(4.83)
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Figure 4.11: One-loop diagrams contributing to the first order correction of α2.
The solid lines represent the ψ fields, and the dashed lines represent the φ fields.
The external lines are slow modes, and the internal lines are fast modes.

Summing over the field indices,∑
i

F ′iiklφ
k
sφ

l
s = n1|φs|2, (4.84)

we obtain

δ(1)S[α2] = n1g
Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

−2α1 + k2 + γ1
|ω|

kz1−2∫
s

dd+1q

(2π)d+1
φs(q) · φs(−q),

(4.85)

which can be expanded as

δ(1)S[α2] = n1g
Ωd
2π

(I1 + 2α1I2)

∫
s

dd+1q

(2π)d+1
φs(q) · φs(−q). (4.86)

The result is

δ(1)S[α2] = n1g
Ωd
πγ1

(1− b−1)(ln 2 + 2α1)

∫
s

dd+1q

(2π)d+1
φs(q) · φs(−q). (4.87)

The other term comes from the coupling φ2
fφ

2
s. It has the form

δ(2)S[α2] = 3β2

∑
ijkl

Fijkl

∫
f

dd+1q′

(2π)d+1
〈φif (q′)φjf (−q′)〉

∫
s

dd+1q

(2π)d+1
φks(q)φls(−q).

(4.88)
We first sum over the field indices,∑

i

Fiiklφ
k
sφ

l
s =

n2 + 2

3
|φs|2, (4.89)
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resulting in

δ(2)S[α2] = (n2 + 2)β2
Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

−2α2 + k2 + ω2∫
s

dd+1q

(2π)d+1
φs(q) · φs(−q).

(4.90)

Expanding to first order in α2, one has

δ(2)S[α2] = (n2 + 2)β2
Ωd
2π

(I ′1 + 2α2I
′
2)

∫
s

dd+1q

(2π)d+1
φs(q) · φs(−q), (4.91)

and the final result is

δ(2)S[α2] = (n2 + 2)β2Ωd+1(1− b−1)(2 + 2α2)

∫
s

dd+1q

(2π)d+1
φs(q) ·φs(−q), (4.92)

Figure 4.12: One-loop diagrams contributing to the first order correction of β1.
The solid lines represent the ψ fields, and the dashed lines represent the φ fields.
The external lines are slow modes, and the internal lines are fast modes.

The first order correction to β1 comes from two one-loop diagrams, one with
two internal ψf lines, the other with two φf lines. The dependence of the internal
lines on the external momenta and frequencies can be ignored here, since they
are of higher order.

The first term with ψf internal lines is of the form

δ(1)S[β1] =− (3β1)2
∑

k1k2l1l2

∑
i1i2j1j2

Fi1j1k1l1Fi2j2k2l2

∫
f

dd+1q′

(2π)d+1
〈ψi1f (q′)ψi2f (−q′)〉

〈ψj1f (q′)ψj2f (−q′)〉
∫
ddrdτψk1

s ψ
k2
s ψ

l1
s ψ

l2
s + 2 permutations.

(4.93)

Using the identity,∑
ij

Fijk1l1Fijk2l2 =
1

9
[(n1 + 4)δk1l1δk2l2 + 2δk1k2

δl1l2 + 2δk1l2δk2l1 ] , (4.94)
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combined with the 2 other permutations of the external lines, the part containing
the field component indices can be simplified as∑
k1k2l1l2

∑
ij

Fijk1l1Fijk2l2ψ
k1
s ψ

k2
s ψ

l1
s ψ

l2
s + 2 permutations =

n1 + 8

9
|ψs|4. (4.95)

Thus the first correction to β1 reads

δ(1)S[β1] = −(n1+8)β2
1

Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

(−2α1 + k2 + γ1
|ω|

kz1−2 )2

∫
ddrdτ |ψs|4,

(4.96)
which is, to leading order of α1,

δ(1)S[β1] = −(n1 + 8)β2
1

Ωd
2π
I2

∫
ddrdτ |ψs|4. (4.97)

Substituting the explicit expression for I2, we get the result

δ(1)S[β1] = −(n1 + 8)β2
1

Ωd
πγ1

(1− b−1)

∫
ddrdτ |ψs|4. (4.98)

The second term has two φf internal lines, and takes the form

δ(2)S[β1] =− g2
∑

i1i2j1j2

∑
k1k2l1l2

F ′i1j1k1l1F
′
i2j2k2l2

∫
f

dd+1q′

(2π)d+1
〈φi1f (q′)φi2f (−q′)〉

〈φj1f (q′)φj2f (−q′)〉
∫
ddrdτψk1

s ψ
k2
s ψ

l1
s ψ

l2
s + 2 permutations.

(4.99)

The part with the field component indices gives∑
k1k2l1l2

∑
ij

F ′ijk1l1F
′
ijk2l2ψ

k1
s ψ

k2
s ψ

l1
s ψ

l2
s + 2 permutations = n2|ψs|4, (4.100)

which further leads to the result

δ(2)S[β1] = −n2g
2 Ωd

2π

∫
dω

∫ 1

b−1

dkkd−1 1

(−2α2 + k2 + ω2)2

∫
ddrdτ |ψs|4.

(4.101)
To leading order in α2, it is

δ(2)S[β1] = −n2g
2 Ωd

2π
I ′2

∫
ddrdτ |ψs|4, (4.102)

or more explicitly,

δ(2)S[β1] = −n2g
2Ωd+1(1− b−1)

∫
ddrdτ |ψs|4. (4.103)
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Figure 4.13: One-loop diagrams contributing to the first order correction of β2.
The solid lines represent the ψ fields, and the dashed lines represent the φ fields.
The external lines are slow modes, and the internal lines are fast modes.

The first order correction to the β2 term also comes from two diagrams. The
first one has two ψf internal lines, and is of the form

δ(1)S[β2] =− g2
∑

i1i2j1j2

∑
k1k2l1l2

F ′i1j1k1l1F
′
i2j2k2l2

∫
f

dd+1q′

(2π)d+1
〈ψi1f (q′)ψi2f (−q′)〉

〈ψj1f (q′)ψj2f (−q′)〉
∫
ddrdτφk1

s φ
k2
s φ

l1
s φ

l2
s + 2 permutations.

(4.104)

Summing over different field components, where one has

∑
k1k2l1l2

∑
ij

F ′ijk1l1F
′
ijk2l2φ

k1
s φ

k2
s φ

l1
s φ

l2
s + 2 permutations = n1|φs|4, (4.105)

the first correction to the β2 term is

δ(1)S[β2] = −n1g
2 Ωd

2π

∫
dω

∫ 1

b−1

dkkd−1 1

(−2α1 + k2 + γ1
|ω|

kz1−2 )2

∫
ddrdτ |φs|4.

(4.106)
To first order in α1, it is simply

δ(1)S[β2] = −n1g
2 Ωd

2π
I2

∫
ddrdτ |φs|4, (4.107)

which can be written as

δ(1)S[β2] = −n1g
2 Ωd
πγ1

(1− b−1)

∫
ddrdτ |φs|4. (4.108)
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The second diagram contains two φf internal lines, thus the correction reads

δ(2)S[β2] =− (3β2)2
∑

k1k2l1l2

∑
i1i2j1j2

Fi1j1k1l1Fi2j2k2l2

∫
f

dd+1q′

(2π)d+1
〈φi1f (q′)φi2f (−q′)〉

〈φj1f (q′)φj2f (−q′)〉
∫
ddrdτφk1

s φ
k2
s φ

l1
s φ

l2
s + 2 permutations.

(4.109)

The summation over the field indices gives∑
k1k2l1l2

∑
ij

Fijk1l1Fijk2l2φ
k1
s φ

k2
s φ

l1
s φ

l2
s + 2 permutations =

n2 + 8

9
|φs|4. (4.110)

Thus the second correction to β2 reads

δ(2)S[β2] = −(n2 + 8)β2
2

Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

(−2α2 + k2 + ω2)2

∫
ddrdτ |φs|4.

(4.111)
When the φ field is near its critical point, the above expression can be simplified
to be

δ(2)S[β2] = −(n2 + 8)β2
2

Ωd
2π
I ′2

∫
ddrdτ |φs|4, (4.112)

which is

δ(2)S[β2] = −(n2 + 8)β2
2Ωd+1(1− b−1)

∫
ddrdτ |φs|4. (4.113)

There are three diagrams contributing to the first order corrections of the
coupling g between the squares of the two fields. The first diagram has two ψf
fields as internal lines. This term takes the form

δ(1)S[g] =− 1

2
× 2× 2(3β1)g

∑
k1k2l1l2

∑
i1i2j1j2

Fi1j1k1l1F
′
i2j2k2l2

∫
f

dd+1q′

(2π)d+1

〈ψi1f (q′)ψi2f (−q′)〉〈ψj1f (q′)ψj2f (−q′)〉
∫
ddrdτψk1

s ψ
l1
s φ

k2
s φ

l2
s .

(4.114)

The 1/2 comes from (1/2)S2
c , and the two 2 factors come from the expansion in

S2
c and the number of contractions in 〈ψfψf (x)ψfψf (y)〉. We first sum over the

field indices,∑
k1k2l1l2

∑
ij

Fijk1l1F
′
ijk2l2ψ

k1
s ψ

l1
s φ

k2
s φ

l2
s =

n1 + 2

3
|ψs|2|φs|2, (4.115)
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Figure 4.14: One-loop diagrams contributing to the first order correction of g.
The solid lines represent the ψ fields, and the dashed lines represent the φ fields.
The external lines are slow modes, and the internal lines are fast modes.

and then substitute the Green’s functions,

δ(1)S[g] = −2β1g(n1 + 2)
Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

(−2α1 + k2 + γ1
|ω|

kz1−2 )2∫
ddrdτ |ψs|2|φs|2.

(4.116)

Keeping only the leading order term,

δ(1)S[g] = −2β1g(n1 + 2)
Ωd
2π
I2

∫
ddrdτ |ψs|2|φs|2, (4.117)

one arrives at the result,

δ(1)S[g] = −2β1g(n1 + 2)
Ωd
πγ1

(1− b−1)

∫
ddrdτ |ψs|2|φs|2. (4.118)

The internal lines of the second diagram are two φf fields. The corresponding
correction term is now

δ(2)S[g] =− 1

2
× 2× 2(3β2)g

∑
k1k2l1l2

∑
i1i2j1j2

Fi1j1k1l1F
′
i2j2k2l2

∫
f

dd+1q′

(2π)d+1

〈φi1f (q′)φi2f (−q′)〉〈φj1f (q′)φj2f (−q′)〉
∫
ddrdτφk1

s φ
l1
s ψ

k2
s ψ

l2
s .

(4.119)

The summation over field indices is similar to the first term,∑
k1k2l1l2

∑
ij

Fijk1l1F
′
ijk2l2φ

k1
s φ

l1
s ψ

k2
s ψ

l2
s =

n2 + 2

3
|ψs|2|φs|2. (4.120)
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Thus the correction to the action is also similar,

δ(2)S[g] = −2β2g(n2+2)
Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

(−2α2 + k2 + ω2)2

∫
ddrdτ |ψs|2|φs|2,

(4.121)
which is, to leading order in α2,

δ(2)S[g] = −2β2g(n2 + 2)
Ωd
2π
I ′2

∫
ddrdτ |ψs|2|φs|2, (4.122)

or

δ(2)S[g] = −2β2g(n2 + 2)Ωd+1(1− b−1)

∫
ddrdτ |ψs|2|φs|2. (4.123)

The third diagram has one φf internal line, and one ψf internal line. The
correction takes the form

δ(3)S[g] =− 1

2
(4g)2

∑
k1k2l1l2

∑
i1i2j1j2

F ′i1j1k1l1F
′
i2j2k2l2

∫
f

dd+1q′

(2π)d+1

〈ψi1f (q′)ψi2f (−q′)〉〈φj1f (q′)φj2f (−q′)〉
∫
ddrdτψk1

s φ
l1
s ψ

k2
s φ

l2
s .

(4.124)

With the summation∑
k1k2l1l2

∑
ij

F ′ik1jl1F
′
ik2jl2ψ

k1
s φ

l1
s ψ

k2
s φ

l2
s = |ψs|2|φs|2, (4.125)

we obtain

δ(3)S[g] = −8g2 Ωd
2π

∫
dω

∫ 1

b−1

dkkd−1 1

−2α2 + k2 + ω2

1

−2α1 + k2 + γ1
|ω|

kz1−2∫
ddrdτ |ψs|2|φs|2.

(4.126)

Assuming both fields are near their critical points, the above equation is approx-
imately

δ(3)S[g] = −8g2 Ωd
2π
I ′′
∫
ddrdτ |ψs|2|φs|2, (4.127)

with the new function I ′′ defined as

I ′′ =

∫ ∞
−∞

dω

∫ 1

b−1

dkkd−1 1

k2 + ω2

1

k2 + γ1
|ω|

kz1−2

. (4.128)

As mentioned before, here in our RG scheme, frequency is integrated over the
whole real axes. In the two propagators, frequency scales differently with mo-
mentum. For the ψ field, γ1ω ∼ kz1 ; for the φ field, ω ∼ k. And a finite cut-off
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in frequency would lead to inconsistencies for such cases with miscellaneous dy-
namical exponents. Here the frequency integral gives

I ′′ =

∫ 1

b−1

dkkd+z1−3 1

γ2
1k

2 + k2z1

(
−γ1 ln

k2z1−2

γ2
1

+ πkz1−1

)
. (4.129)

To leading order in (1− b−1), we have

I ′′ =
1

1 + γ2
1

(1− b−1) (2γ1 ln γ1 + π) . (4.130)

This leads to the third term in the correction to the g term

δ(3)S[g] = −8g2 Ωd
2π

2γ1 ln γ1 + π

1 + γ2
1

(1− b−1)

∫
ddrdτ |ψs|2|φs|2, (4.131)

Now combining all the above results for the corrections of the different pa-
rameters, and carrying out the rescaling

r→r/b,

τ →τ/b,
ψ →b(d−1)/2ψ,

φ→b(d−1)/2φ,

(4.132)

we obtain the RG equations

γ1 →bz−1γ1,

−α1 →b2
[
−α1 + (n1 + 2)β1

Ωd
πγ1

(1− b−1)(ln 2 + 2α1) + n2gΩd+1(1− b−1)(2 + 2α2)

]
,

−α2 →b2
[
−α2 + (n2 + 2)β2Ωd+1(1− b−1)(2 + 2α2) + n1g

Ωd
πγ1

(1− b−1)(ln 2 + 2α1)

]
,

β1

2
→bε

[
β1

2
− (n1 + 8)β2

1

Ωd
πγ1

(1− b−1)− n2g
2Ωd+1(1− b−1)

]
,

β2

2
→bε

[
β2

2
− n1g

2 Ωd
πγ1

(1− b−1)− (n2 + 8)β2
2Ωd+1(1− b−1)

]
,

g →bε
[
g − 2β1g(n1 + 2)

Ωd
πγ1

(1− b−1)− 2β2g(n2 + 2)Ωd+1(1− b−1)

−8g2 Ωd
2π

2γ1 ln γ1 + π

1 + γ2
1

(1− b−1)

]
,

(4.133)

the differential form of which has been presented in equations (4.50, 4.51).
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Cha p t e r 5

Superconducting Instability in
Quantum Critical Metals

5.1 Introduction

The ‘mystery superconductors’ of current interest share the property that their
normal states are poorly understood ‘non Fermi-liquids’. Experiments reveal that
these are governed by a scale invariance of their quantum dynamics. The best
documented examples are found in the heavy fermion (HF) systems [23, 25, 81,
82, 182–186]. As function of pressure or magnetic field one can drive a magnetic
phase transition to zero temperature. On both sides of this quantum critical point
(QCP) one finds Fermi-liquids characterized by quasiparticle masses that tend
to diverge at the QCP. At the QCP one finds a ‘strange metal’ revealing traits
of scale invariance, while at a ‘low’ temperature a transition follows most often
to a superconducting state with a maximum Tc right at the QCP. It is widely
believed that a similar ‘fermionic quantum criticality’ is governing the normal
state in optimally doped cuprate high Tc superconductors. The best evidence
is perhaps the ’Planckian’ relaxation time observed in transport experiments
τ~ ' ~/(kBT ) [187, 188] indicating that this normal state has no knowledge of
the scale EF since in a Fermi-liquid τ = (EF /kBT )τ~. Very recently indications
have been found that even the iron based superconductors might be governed by
quantum critical normal states associated with a magnetic and/or structural zero
temperature transition, giving rise to a novel scaling behavior of the electronic
specific heat [189,190].
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The idea that superconductivity can be caused by a quantum phase transi-
tion involving a bosonic order parameter has a long history, starting with the
marginal Fermi-liquid ideas of Varma [191] in the context of cuprates of the late
1980’s and the ideas of spin-fluctuation driven heavy fermion superconductivity
dating back to Lonzarich et al. [82]. The bulk of the large theoretical litera-
ture [192–227] dealing with this subject that evolved since then departs from an
assumption dating back to the seminal work of Hertz in the 1970’s [143]. This in-
volves the nature of the ultraviolet: at some relatively short time scale where the
electron system has closely approached a Fermi-liquid the influence of the criti-
cal order parameter fluctuations become noticable. The Fermi surface and Fermi
energy of this quasiparticle system can then be used as building blocks together
with the bosonic field theory describing the critical order parameter fluctuations
to construct a perturbative framework dealing with the coupling between these
fermionic- and bosonic sectors. The lowest order effect of this coupling is that
the fermi gas of quasiparticles acts as a heat bath damping the bosonic order pa-
rameter fluctuations, with the effect that the effective space-time dimensionality
of the bosonic field theory exceeds the upper critical dimension. These dressed
order parameter fluctuations than ’back react’ on the quasiparticle system caus-
ing ’singular’ interactions in the Cooper channel, yielding in turn a rational for
a generic ’high Tc’ superconductivity at QCP’s.

The crucial assumption in this ’Hertz philosophy’ is that the fermion physics
is eventually controlled by the Fermi gas. In the cases of empirical interest it is
generally agreed that in the UV the interaction energies are much larger than the
bare kinetic energies, while there is no obvious signature in the experiments for a
renormalization flow that brings the system close to a weakly interacting fermion
gas before entering the singular ’Hertz’ critical regime. From the theoretical side,
the introduction of this UV Fermi gas can be viewed as an intuitive leap. The
only truly fermionic state of matter that is understood mathematically is the
Fermi gas and its perturbative ’derivative’ (the Fermi liquid): the fermion sign
problem makes it impossible to address fermionic matter in general mathematical
terms [228]. However, very recently the ’grib of the Fermi-gas’ has started to
loosen specifically in the context of fermionic critical matter. A first step in this
direction is the demonstration of proof of principle that truly critical fermionic
states of matter can exist that have no knowledge whatever of the statistical Fermi
energy scale: the fermionic Feynman backflow wavefunction Ansatz [229]. The
substantive development is the recent work addressing fermion physics using the
string theoretical AdS/CFT correspondence. It appears that this duality between
quantum field theory and gravitational physics is capable of describing Fermi-
liquids that emerge from a manifestly strongly interacting, critical ultraviolet
[230]. In another implementation, one finds an IR physics describing ’near’ Fermi-
liquids characterized by ’critical’ Fermi surfaces [179] controlled by an emergent
conformal symmetry implying the absence of energy scales like the Fermi-energy
[231,232].

This lengthy consideration is required to motivate the subject of this pa-
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per: a phenomenological scaling theory for a Bardeen-Cooper-Schrieffer (BCS)
type superconductivity starting from the postulate that the normal state is not
a Fermi-liquid, but instead a truly conformal fermionic state of matter. With
’BCS type’ we mean the following: we assume as in BCS that besides the elec-
tron system a bosonic modes are present that cause attractive electron-electron
interactions. This ’glue’ is retarded in the sense that the characteristic energy
scale of this external bosonic system ωB is small as compared to the ultraviolet
cut-off scale of the quantum critical fermion system ωc . Having a small Migdal
parameter, the glue-electron vertex corrections can then be ignored and the the
effects of the glue are described in terms of the Migdal-Eliashberg time depen-
dent mean field theory, reducing to the static BCS mean field theory in the weak
coupling limit [233]. All information coming from the electron system that is
required for the pairing instability is encapsulated in the electronic pair suscep-
tibility. Instead of using the Fermi gas pair susceptibility (as in conventional
BCS), we rely on the fact that conformal invariance fixes the analytical form of
this response function in terms of two free parameters: an overall UV cut-off scale
(T0) and the anomalous scaling dimension of the pair susceptibility, expressed in
a dynamical critical exponent z and correlation function exponent ηp. The out-
come is a scaling theory for superconductivity that is in essence very simple;
much of the technical considerations that follow are dealing with details associ-
ated with modeling accurately the effects of the breaking of conformal invariance
by temperature and the superconducting instability. This theory is however sur-
prisingly economical in yielding phenomenological insights. Conventional BCS
appears as a special ’marginal’ case, and our main result is the generalized gap
equation, Eq. (5.10). The surprise it reveals is the role of retardation: when
the Migdal parameter ωB/ωc is small (where the mathematical control is best)
we find at small coupling constants λ̃ a completely different behavior compared
to conventional BCS: the gap magnitude ∆ becomes similar to the glue energy
ωB . To illustrate the case with numbers, a moderate coupling to phonons like
λ̃ = 0.3 with a frequency ωB = 50 meV will yield rather independently of scaling
dimensions a gap of 40 meV and a Tc of 100 Kelvin or so: these are numbers of
relevance to cuprate superconductors!

The theory has more in store. Incorporating the motive that on both sides of
the quantum critical point heavy Fermi liquids emerge from the quantum critical
metal as in the heavy fermion systems, we show that the superconducting ’dome’
surrounding the quantum critical point emerges naturally without changing the
coupling to the bosonic glue. The form of this dome is governed by the correlation
length, but we find via the pair susceptibility a direct relation with the effective
mass of the quasiparticles of the Fermi-liquids. Last but not least, we analyze the
orbital limiting upper critical magnetic field, finding out that pending the value of
the dynamical critical exponent it can diverge very rapidly upon approaching the
QCP, offering an explanation for the observations in the ferromagnetic URhGe
heavy fermion superconductor [234].

The scaling phenomenology we present here is simple and obvious, but it ap-
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pears to be overlooked so far. Earlier work by Balatsky [235], Sudbo [236] and
Yin and Chakravarty [237] is similar in spirit but yet quite different. These au-
thors depart from a Luttinger liquid type single particle propagators to compute
the pair susceptibility from the bare fermion particle-particle loop. Although this
leads to pair susceptibility similar (although not identical) to ours, it is concep-
tually misleading since in any non Fermi-liquid, there is no such simple relation
between two-point and four-point correlators. This is particularly well under-
stood for conformal field theories: for the higher dimensional cases the AdS/CFT
correspondence demonstrates that two point CFT correlators are determined by
kinematics in AdS while the four- and higher point correlators require a tree
level computation [238–245]. More serious for the phenomenology, this older
work ignores the role played by retardation; it is a-priori unclear whether one
can construct a mathematically controlled scaling theory for BCS without the
help of a small Migdal parameter.

The remainder of this chapter is organized as follows. In section 5.2 we review
a somewhat unfamiliar formulation of the classic BCS theory that makes very
explicit the role of the pair susceptibility. We then introduce the scaling forms for
the pair susceptibilities as follow from conformal invariance. By crudely treating
the modifications in the pair susceptibility at low energies associated with the
presence of the pair condensate we obtain the new gap equation Eq. ((5.10)).
This catches already the essence of the BCS superconductivity of quantum criti-
cal metals and we discuss its implications in detail. In section 5.3 we focus in on
intricacies associated with determining the transition temperature. Conformal
invariance is now broken and one needs to know the scaling functions in some
detail. We use the exact results of 1+1 dimensional conformal field theory as
a model to address these matters. In section 5.4 we turn to the harder prob-
lem of modeling the crossover from the large energy critical pair susceptibility
to the low energy, zero temperature infrared that is governed by conventional
Bogoliubov fermions, as needed to devise a more accurate zero temperature gap
equation. The casual reader might want to skip both sections. The moral is
that information on the cross-over behavior of the pair susceptibility is required
that is beyond simple scaling considerations to address what happens when the
conformal invariance is broken either by temperature (as of relevance to the value
of Tc) or by the presence of the BCS condensate (of relevance for the zero tem-
perature gap). The conclusion will be that although the gross behaviors are not
affected, it appears to be impossible to compute numbers like the gap to Tc ratio
accurately since these are sensitive to the details of the cross-over behaviors. In
section 5.5 we explore the theory away from the critical point, assuming that
cross-overs follow to heavy Fermi-liquids, where we address the origin of the su-
perconducting dome. Finally, in section 5.6 we address the scaling behavior of
the orbital limited upper critical field.
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5.2 BCS theory and the scaling of the pair sus-
ceptibility

Let us first revisit the backbone of Migdal-Eliashberg theory. We need a formu-
lation that is avoiding the explicit references to the Fermi gas of the text book
formulation, but it is of course well known how to accomplish this. Under the
condition of strong retardation and small couplings, the effects of the glue are
completely enumerated by the gap equation [246] ignoring angular momentum
channels (s,d waves, etcetera) for the time being,

1− gχ′ret(~q = 0, ω = 0,∆, T ) = 0, (5.1)

where g is the effective coupling strength of the glue, while χ′ret is the zero fre-
quency value of the real part of the retarded pair susceptibility at a temperature
T in the presence of the gap ∆. This effective χ′ret also incorporates the ef-
fects of retardation. The textbooks with their focus on non-interacting electrons
accomplish this in a rather indirect way, by putting constraints on momentum
integrations. Retardation is however about time scales and the general way to
incorporate retardation is by computing χ′ret by employing the Kramers-Kronig
relation starting from the imaginary part of the full electronic pair susceptibility
χ′′p . For a glue characterized by a single frequency ωB ,

χ′ret(ω = 0) = 2P
∫ 2ωB

0

dω′
χ′′p(ω′)

ω′
. (5.2)

with the full pair susceptibility given by the Kubo formula,

χp(~q, ω) = −i
∫ ∞

0

dtei(ω+iη)t
〈
[b†(~q, 0), b(~q, t)]

〉
, (5.3)

associated with the pair operator b†(~q, t) =
∑
~kc
†
~k+ ~q

2 ,↑
(t)c†
−~k+ ~q

2 ,↓
(t).

In the case of conventional superconductors the normal state is a Fermi-liquid,
formed from (nearly) non-interacting quasiparticles. One can get away with a
’bare fermion loop’ pair susceptibility. The specialty of this pair susceptibility is
that its imaginary part is frequency independent at zero temperature. It extends
up to the Fermi energy of the Fermi-liquid and from the unitary condition,∫ ∞

0

χ′′p(ω)dω = 1 (5.4)

it follows that at zero temperature χ′′(ω) = N0 = 1/(2EF ). In logarithmic
accuracy the gap enters as the low frequency cut-off in Eq. (5.2) such that,

χ′ret(ω = 0,∆, T = 0) =

∫ 2ωB

∆

dω′

EFω′
=

1

EF
log

2ωB
∆

, (5.5)



108 Superconducting Instability in Quantum Critical Metals

and from Eq. (5.1) the famous BCS gap equation follows: ∆ = 2ωBe
−1/λ, where

λ = g/EF .
This formulation of BCS has the benefit that it makes very explicit that all the

information on the electron system required for the understanding of the pairing
instability is encoded in the pair susceptibility. This is in turn a bosonic response
function of the electron system since it involves the response of two fermions,
much like the dynamical susceptibilities associated with charge- or spin densities.
In addition one needs the fact that the pair density is a non-conserved quantity,
in the same sense as a staggered magnetization. When the quantum system
is conformal (i.e. the zero temperature quantum critical metal) the analytical
form of the dynamical pair susceptibility is fixed at zero temperature by the
requirement of invariance under scale transformations [40],

χ(ω) = lim
δ→0

Z ′′(−(ω + iδ)2)−
2−ηp

2z , (5.6)

as determined by the a-priori unknown unknown exponents ηp and z, the anoma-
lous scaling dimension of the pair operator and the dynamical critical expo-
nent, respectively. The normalization constant Z ′′ is via the unitarity condition
Eq.(5.4) determined by the UV cut-off scale ωc. Because we invoke a small Migdal
parameter we are interested in the ’deep infrared’ of the theory that is not very
sensitive to the precise choice of this UV energy scale. A reasonable choice is the
energy where the thermal de Broglie wavelength becomes of order of the elec-
tron separation, i.e. the Fermi energy of an equivalent system of non-interacting
electrons. Defining αp =

2−ηp
z and using Eq. (5.4) with the cut-off scale ωc, we

find,

Z ′′ =
1− αp

sin(π2αp)

1

ω
1−αp
c

, (5.7)

observing that αp < 1 in order for this function to be normalizable: this is the
well known unitary bound on the operator dimensions. The real and imaginary
parts of the zero temperature critical pair susceptibility are related by a phase
angle π

2αp,

χ(ω) =
Z ′′

ωαp

(
cos(

π

2
αp) + i sin(

π

2
αp)
)
. (5.8)

According to general conformal wisdoms, the pair operator is called irrelevant
when αp < 0 such that χ” increases with frequency, relevant when 0 < αp < 1
when χ′′ decreases with frequency and marginal when αp = 0, such that χ′′p is
frequency independent, see Fig 1. From this scaling perspective, the Fermi liquid
pair operator is just the special marginal case, and the BCS superconductor with
its logarithmically running coupling constant falls quite literally in the same
category as the asymptotically free quantum chromo dynamics in 3+1D and
the Kondo effect. Another familiar case is the pair susceptibility derived from
the ’Dirac fermions’ of graphene [247, 248] and transition metal dichalcogenides
[249, 250] characterized by αp = −1: in this ’irrelevant case’ one needs a finite
glue interaction to satisfy the instability criterium.
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Figure 5.1: Illustration of the imaginary part of the pair susceptibility, comparing
the relevant (Ising class), marginal (BCS case) and irrelevant (graphene class).

The scaling exponent αp =
2−ηp
z is respectively 0 < αp < 1, αp = 0, αp < 0. For

the Ising class, the magnitude of the imaginary part of the pair susceptibility
becomes larger and larger as one lowers the frequency. For the BCS case, the
magnitude stays constant as the frequency is changed. For the graphene class,
the magnitude decreases to zero in the low frequency infrared region.

The scaling behavior of the free fermion case is special and the pair operator
in a general conformal fermionic state can be characterized by a scaling dimension
that is any real number smaller than one. Obviously, the interesting case is the
relevant one where αp > 0 (Fig.1). Let us here consider the zero temperature
gap equation. In Eq. (5.6) we have already fully specified χ′′p in the critical state.
However, due to the zero temperature condensate the scale invariance is broken
and the low frequency part of χ′′p will now be dominated by an emergent BCS
spectrum including a s− or d−wave gap, Bogoliubov fermions and so forth. This
will be discussed in detail in section V. Let us here introduce the gap in the BCS
style by just assuming that the imaginary part of the pair susceptibility vanishes
at energies less than ∆. Under this assumption the gap equation becomes,

1− 2g

∫ 2ωB

∆

dω

ω

Z ′′ sin((π/2)αp)

ω(2−ηp)/z
= 0, (5.9)

evaluating the integral this becomes our ’quantum critical gap equation’ ,

∆ = 2ωB

(
1 +

1

λ̃

(
2ωB
ωc

)αp)− 1
αp

, (5.10)

with

λ̃ = 2λ
1− αp
αp

, (5.11)

and λ ≡ g/ωc. The numerator (1 − αp) in λ̃ comes from the normalization
constant Z ′′, while the denominator αp from integrating over ω. Notice that λ has
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Figure 5.2: (a)The ratio of gap to retardation frequency ∆/(2ωB) as a function of
glue strength λ for various retardation ranges ωB/ωc with fixed scaling dimension
αp = 3/4. (b)The same plot, but with fixed retardation ωB/ωc = 0.1 and various
scaling dimensions αp. The dotted lines are the standard BCS result.

the same meaning of a conventional, say, dimensionless electron-phonon coupling
constant. The dimensionful coupling constant g parametrizes the interaction
strength between microscopic electrons and -lattice vibrations, and ωc has the
same status as the Fermi-energy in a conventional metal as the energy scale that
is required to balance g. We argued earlier that ωc is of order of the bare Fermi
energy and therefore it make sense to use here values for e.g. the electron-phonon
coupling constant as quoted in the LDA literature. Notice however that for a
given λ the effective coupling constant λ̃ that appears in Eq. (5.10) is decreasing
when αp is becoming more relevant, i.e. when αp → 1. From the frequency
integral

∫
dωω−(1+αp), one would anticipate that the gap would increase for a

more relevant pair susceptibility. The unitary condition imposes however an
extra condition on the pair susceptibility. These two compensating effects lead
to the important result that the gap is rather sensitive to the relevancy of the
pair susceptibility. All what really matters is whether the pair susceptibility is
relevant rather than marginal or irrelevant, and the degree of the relevancy is
remarkably unimportant.

Eq.(5.10) is a quite different gap equation than the BCS one with its exponen-
tial dependence on the coupling λ. The multiplicative structure associated with
the Fermi-liquid is scaling wise quite special, while Eq. (5.10) reflects directly
the algebraic structure rooted in scale invariance. The surprise is that retar-
dation acts quite differently when power laws are ruling. In Fig. (1) we show
the dependence of the ∆/ωB ratio on the coupling constant λ, both for different
Migdal parameters and fixed αp, as well as for various scaling dimensions and
the Migdal parameter fixed. The comparison with the BCS result shows that
drastic changes happen already for small scaling dimensions αp especially in the
small λ regime. Our equation actually predicts that the gap to glue frequency
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ratio becomes of order one alrady for couplings that are as small as λ = 0.1 when
the Migdal parameter is small. To place this in the context of high Tc supercon-
ductivity, let us assume that the pairing glue in the cuprates is entirely rooted
in the ’glue peak’ at ωB ∼ 50meV that is consistently detected photoemission,
tunneling spectroscopy and optical spectroscopy [251–253] . The electronic cut-
off in the cuprates is likely of order ωc = 0.5 eV such that the Migdal parameter
ωB/ωc ' 0.1. A typical gap value is 40 meV and we read off Fig. 1 that we
need λ = 0.45 or 0.43 for αp = 3/4, 1/4 while using the BCS equation λ = 1.1!
Taking this serious implies that in principle one needs no more than a standard
electron-phonon coupling to explain superconductivity at a high temperature in
cuprate superconductors. Of course this does not solve the problem: although
one gets a high Tc for free it still remains in the dark how to form a fermionic
quantum critical state with a high cut-off energy, characterized by a relevant pair
susceptibility.

Eq.(5.10) is also very different from the gap equations obtained in the pre-
vious attempts to apply scaling theory to superconducting transition by Bal-
atsky [235], Sudbo [236] and Yin and Chakravarty [237]. A crucial property of
their results is that even in the relevant case one needs to exceed a critical value
for λ to find a superconducting instability. The present scaling theory is in this
regard a more natural generalization of BCS theory, where the standard BCS
is just the ’marginal end’ of the relevant regime where the Cooper instability
cannot be avoided for attractive interactions. The previous approaches [235–237]
start by considering the single particle spectral function, generalizing its analytic
structure from simple poles to branch cuts. This way of thinking stems from the
Fermi-liquid type assumption that the single particle Green’s function is the only
primary operator of the system, and all the higher point functions are secondary
operators, to be determined by the single particle Green’s function. But for crit-
ical systems, such assumptions are generally not to satisfied. It is well known
for example from the AdS/CFT correspondence, that the four-point functions
of strongly interacting conformal fields are much more complex than the combi-
nation of two-point functions [238–245]. Our basic assumption is that the pair
susceptibility is by itself a primary operator subjected to conformal invariance
which is the most divergent operator at the critical point.

5.3 Determining the transition temperature

Let us now turn to finite temperatures. A complicating fact is that temperature
breaks conformal invariance, since in the euclidean formulation of the field theory
its effect is that the periodic imaginary time acquires a finite compactification
radius Rτ = ~/kBT . The pair susceptibility therefore acquires the finite size
scaling form [40]

χ(ω) ≡ χ(~q = 0, ω) = ZT−(2−ηp)/zΦ
(ω
T

)
, (5.12)
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where Φ is a universal scaling function and Z is a UV renormalization constant,
while ηp and z are the anomalous scaling dimension of the pair operator and the
dynamical critical exponent, respectively. At zero temperature this turns into
the banch cut as shown in Eq.(5.6), while in the opposite high temperature or
hydrodynamical regime (~ω << kBT ) it takes the form [40]

χ(ω) = Z ′T−(2−ηp)/z 1

1− iωτrel
, (5.13)

where τrel ≈ ~/kBT . The crossover from the hydrodynamical- (Eq. 5.6) to the
high frequency coherent regime(Eq. 5.13) occurs at an energy ∼ kBT . The
superconducting transition temperature is now determined by the gap equation
through 1 − gχ′ret(kBTc) = 0. The problem is that χ′ret is via the Kramers-
Kronig transformation largely set by the cross-over regime in χ′′p . One needs the
full solutions of the CFT’s to determine the detailed form of Φ in this crossover
regime and these are not available in higher dimensions.

In 1+1D these are however completely determined by conformal invariance,
and for our present purposes these results might well represent a reasonable
model since the gap equation is only sensitive to rather generic features of the
cross-over behavior. Given the exponents ηp and z, the exact result for the finite
temperature χ′′ in 1+1D is well known [40],

χ′′(k, ω) = Z
sinh( ω

2T )

T 2(1−2s)
B(s+i

ω + k

4πT
, s−iω + k

4πT
)B(s+i

ω − k
4πT

, s−iω − k
4πT

), (5.14)

with 1−2s =
2−ηp

2z . The temperature and frequency dependencies of this function
for k = 0 are illustrated in Fig.(3). Indeed χ′′(ω) → 0 in a linear fashion with
ω with a slope set by 1/T , while for ω >> T the temperature dependence drops
out, recovering the power law. The crossover occurs at ω ' 2kBT/~ where χ′′(ω)
has a maximum.

When temperature goes to zero the limiting form of the beta function be-
comes,

lim
u→∞

B(s+ iu, s− iu) =
2π

Γ(2s)
e−πuu2s−1, (5.15)

and the imaginary part of the pair susceptibility Eq. (5.14) acquires the power
law form

χ′′(ω) =
2π2(4π)αp

[Γ(2s)]2
Z

1

ωαp
. (5.16)

Comparing this with Eq.(5.7) yields the normalization factor in terms of the
cut-off scale

Z =
[Γ(2s)]2(1− αp)
2π2(4π)αpω

1−αp
c

. (5.17)
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Figure 5.3: (a)Illustration of the imaginary part of the pair susceptibility χ′′(k =
0, ω, T ) divided by the overall numerical factor Z, as a function of frequency ω
for various temperatures. Here we’ve chosen αp = 3/4, so s = 5/16. (b) The
same plot, but χ′′ is further divided by ω. At zero temperature one has the power
law scaling form. At finite temperature χ′′(ω) goes to zero, as ω goes to zero
(χ′′(ω)/ω → constant, as ω → 0), and approaches the same power law behavior
at large frequency. As one increases temperature, the maximum of χ′′(ω) goes
down, and the corresponding ωmax shifts to larger frequency.

Combining Eq.’s (5.1),(5.2),(5.14),(5.17), we obtain the equation determining
the critical temperature,

1− C′λ
(

2ωB
ωc

)−αp ( Tc
2ωB

)−αp
F
(

2ωB
Tc

)
= 0, (5.18)

where

F(y) =

∫ y

0

dx

x
sinh(

x

2
)
(

B(s+ i
x

4π
, s− i x

4π
)
)2

, (5.19)

and x = ω/T . The overall coefficient is

C′ =
[Γ(2s)]2(1− αp)

π2(4π)αp
. (5.20)

We plot in Fig.(4) the ratio of Tc to retardation frequency as function of glue
strength, retardation and the scaling dimensions. One infers that the behavior
of Tc is very similar to that of the zero temperature gap, plotted in Fig. (2).
We observe that they are of the same order of magnitude Tc ∼ ∆, and this
can be understood from the behavior of χ′′/ω plotted in Fig.(3b). Since the
large frequency behavior of χ′′(ω)/ω’s are the same for different temperatures,
all what matters is the low frequency part. The gap imposes a cut-off for the zero
temperature χ′′(ω)/ω, and its value is determined such that the area under this
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Figure 5.4: (a)The ratio of transition temperature to retardation frequency
Tc/(2ωB) as a function of glue strength λ for various retardation ranges ωB/ωc,
with scaling dimension fixed αp = 3/4. (b)The same plot, but fix the retarda-
tion ωB/ωc = 0.1 while varying the scaling dimensions αp. The dotted lines are
the standard BCS result. The magnitude and dependence on glue strength and
retardation are all similar to those of the gap.

curve including the low frequency cut-off, is the same as the area under the curve
corresponding to Tc without a cut-off: by inspecting Fig.(3b) one infers directly
that the gap and Tc will be of the same order. The same logic is actually at
work in the standard BCS case. The finite temperature Fermi gas susceptibility
is χ′′(ω) = 1

2EF
tanh( 1

4βω) [246], and the familiar Tc equation follows,

1− λ
∫ 2ωB

0

dω

ω
tanh(

1

4
βω) = 0, (5.21)

such that Tc ' 1.14ωBe
−1/λ, of the same order as the BCS gap ∆ = 2ωBe

−1/λ.
Now the effect of temperature is encoded in the tanh function. Although the
Fermi-gas is not truly conformal, It is easy to check that this ’fermionic’ tanh
factor adds a temperature dependence to the χ′′ that is nearly indistinguishable
from what one obtains from the truly conformal marginal case that one obtains
by setting s = 1/2 in Eq. (5.14).

We notice that conformal invariance imposes severe constraints on the finite
temperature behavior of the pair susceptibility, thereby simplifying the calcula-
tion of Tc. In the 1+1-dimensional ’model’ nearly everything is fixed by conformal
invariance. The only free parameters that enter the calculation are the scaling
dimension αp, the cut-off scale ωc and the glue quantities. As we will now argue
the situation is actually much less straightforward for the zero temperature gap
because this involves a detailed knowledge of the crossover to the physics of the
superconductor ruling the low energy realms.
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Figure 5.5: Illustration of the imaginary part of the pair susceptibility without a
gap and in the presence of an s- and d- wave gap, for (a) the BCS case, and (b)
the quantum critical case (here we’ve plotted using the parameter αp = 3/4). In
the absence of gap, χ′′ is a constant (for BCS) or has a simple power law behavior
(for critical fermions). In the presence of a s-wave gap, the states below the gap
are gapped out and there is a power law singularity right above the gap. When
there is a d-wave gap, the low frequency part (way below the gap) is governed by
a Dirac cone structure, thus a linear susceptibility, while near the gap a van Hove
singularity is at work, leading to logarithmic divergences on both sides. The high
frequency region for both s- and d-wave gap goes over to the case without a gap.

5.4 More about the gap equation

It is part of our postulate that when superconductivity sets in BCS ‘normalcy’
returns at low energies in the form of the sharp Bogoliubov fermions and so
forth. Regardless the critical nature of the normal state, the scale invariance gets
broken by the instability where the charge 2e Cooper pairs form, and this stable
fixed point also dictates the nature of the low lying excitations. However, we are
dealing with the same basic problem as in the previous section: in the absence
of a solution to the full, unknown theory it is impossible to address the precise
nature of the cross-over regime between the BCS scaling limit and the critical
state at high energy. This information is however required to further improve
the gap equation Eq. (5.10) of section II that was derived by crudely modeling
χ′′ in the presence of the superconducting condensate.

So much is clear that the crossover scale itself is set by the gap magnitude
∆. However, assuming that this affair has dealings with e.g. optimally doped
cuprate superconductors, we can rest on experimental information: in optimally
doped cuprates at low temperatures the coherent Bogoliubov fermions persist
as bound states all the way to the gap maximum. Up to these energies it is
therefore reasonable to assume that χ′′p is determined by the bare fermion loops,
and this regime has to be smoothly connected to the branch cut form of the χ′′p at
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Figure 5.6: The ratio of the gap to retardation ∆/(2ωB) as a function of the
glue strength λ, for various retardation ranges, with (a) a s-wave gap and (b) a
d-wave gap. Here we’ve chosen αp = 3/4. The dotted lines are the standard BCS
result. The dependence on glue strength and and retardation is similar but the
magnitude of the gap is much enhanced compared to the previous treatment of
gap as a simple IR cutoff. The d-wave case is enhanced even more.

higher energies. This implies that the standard BCS gap singularities have to be
incorporated in our zero temperature pair susceptibility. As a final requirement,
the pair susceptibility has to stay normalized according to Eq. (5.4), which
significantly limits the modelling freedom.

Let us first consider the case of an isotropic s-wave gap singularity. The high
frequency modes are still critical, and therefore the high frequency limit of the
imaginary part of the pair susceptibility is determined by,

lim
ω→∞

χ′′(ω,∆, T = 0) =
A
ωαp

. (5.22)

In the presence of the superconducting condensate, the low energy modes below
the gap have their energy raised above the gap, since we require χ′′(ω < ∆,∆, T =
0) = 0. The spectral weight is conserved according to Eq. (5.4), and since
we assumed that the Bogoliubov excitations of the BCS fixed point survive at
energies of order of the gap we need to incorporate a BCS s-wave type power law
divergence right above the gap in the imaginary part of the pair susceptibility.
The simplest function satisfying these conditions is,

χ′′(ω,∆) = A 1

ωαp

(
ω√

ω2 − (2∆2)

)1+αp

Θ(ω − 2∆), (5.23)

with A = (1−αp)ω
−(1−αp)
c (see Fig.5b). We notice in passing that the BCS gap
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corresponds to the case αp = 0,

χ′′BCS(ω,∆) =
1

2EF

ω√
ω2 − (2∆)2

Θ(ω − 2∆). (5.24)

The quantum critical gap equation for the s-wave superconductor now becomes,

1− 2(1− αp)λ
(

2ωB
ωc

)−αp ( ∆

ωB

)−αp ∫ ωB
∆

1

dx

(x2 − 1)(1+αp)/2
= 0. (5.25)

Turning to the d-wave case the gap equation becomes necessarily a bit more
complicated since we have to account for massless Bogolubiov fermions. At low
frequencies ω << 2∆ the pair susceptibility is now governed by free fermion
loops and the Dirac-cone structure in the spectrum leads to a linear frequency
dependence in the pair susceptibility, χ′′(ω) = A1ω. Near the gap, a logarithmic
divergence is expected due to the Van Hove singularity, and therefore χ′′(ω) =

A2 log
qc+
√

2∆−ω+q2
c

−qc+
√

2∆−ω+q2
c

for ω < 2∆, while χ′′(ω) = A3 log
qc+
√
ω−2∆+q2

c

−qc+
√
ω−2∆+q2

c

for ω >

2∆, with qc a cutoff. When the frequency is high compared to the gap scale,
the pair susceptibility has the scaling form χ′′(ω) = A4ω

−αp . Matching these
regimes at 2∆ − ω1 and 2∆ + ω2, with 0 < ω1 < 2∆ and 0 < ω2 < 2ωB − 2∆,
and assuming continuity of the pair susceptibility both below and above the gap
(see Fig. 5b), we arrive at the gap equation for the d-wave case,

1

2g
= A1(2∆− ω1) + A2

q2
c

2∆

∫ ω1/q
2
c

0

dx

1− xq2
c/(2∆)

log
1 +
√
x+ 1

−1 +
√
x+ 1

+ A3
q2
c

2∆

∫ ω2/q
2
c

0

dx

1 + xq2
c/(2∆)

log
1 +
√
x+ 1

−1 +
√
x+ 1

+
A4

αp

[
(2∆ + ω2)−αp − (2ωB)−αp

]
. (5.26)

This contains a number of free parameters that are partially constrained by the
spectral weight conservation. This however does not suffice to determine the
gap uniquely. In the following we will make further choice of the parameters,
to plot the gap. We choose the scaling dimension αp = 3/4, and the cut-off in

the logarithm to be of order the square root of the gap, say qc/
√

2∆ = 3, the
width of the logarithmic region to be 20 percent of the magnitude of the gap
on both sides of the gap, that is ω1/(2∆) = ω2/(2∆) = 0.2, the coefficient of

the high frequency part A4 = 1/(4ω
3/4
c ), and further define ω1/q

2
c = ω2/q

2
c ≡

a, b ≡
∫ a

0
dx log 1+

√
x+1

−1+
√
x+1

, c ≡ log 1+
√
a+1

−1+
√
a+1

, d ≡ 4×1.21/4−1.2−3/4×9b/c
0.32+7.2b/c , thus the
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corresponding d-wave gap equation reads,

1 − 1

2
λ

(
2ωB
ωc

)− 3
4
(

∆

ωB

)− 3
4

(0.8d + 7.2
d

c

∫ a

0

dx

1− 9x
log

1 +
√
x+ 1

−1 +
√
x+ 1

+ 9
1.2−

3
4

c

∫ a

0

dx

1 + 9x
log

1 +
√
x+ 1

−1 +
√
x+ 1

+
4

3
(1.2−

3
4 − (

∆

ωB
)

3
4 ) ) = 0,(5.27)

We plot in Fig.(6) the behavior of the gap function in the s- and d-wave cases,
to be compared with the outcomes Fig. (2) of the approach taken in section II
where the gap simply entered as an IR cut-off scale, Eq. (5.9). One can see
that in both cases the magnitude of the gap is enhanced by treating the singu-
larity more carefully, while in the d-wave case this enhancement is even more
pronounced than in the s-wave case. These effects can be understood in terms of
the redistribution of the spectral weight, since the low frequency part is enhanced
by the factor 1/ω in the Kramers-Kronig frequency integral. The dependence of
the gap on the glue strength and retardation does however not change signifi-
cantly compared to what we found in section II, which can be understood from
the fact that the gap depends on the combination λ(2ωB/ωc)

−αp . One also no-
tices in Fig.(6) that the magnitude of the gap saturates already at small λ for
modest retardation. This is an artifact of the modeling. In real system the power
law (s-wave) or logarithmic (d-wave) spectral singularities will be damped (see
e.g. [254–257]), and the endpoints at finite λ in Fig.(6) will turn into smooth
functions..

The gap to Tc ratio is expected to be a number order unity number. However,
it is quite sensitive to the details of the crossover regime between the high fre-
quency critical behavior and the low frequency superconducting behavior as of rel-
evance to the zero temperature gap. Numerically evaluating Eq.’s (5.18,5.25,5.27)
we obtain gap to Tc ratio’s as indicated in Fig. (7). Different from the Migdal-
Eliasbergh case we find that these ratio’s are rather strongly dependent on both
the Migdal- and the coupling parameter, while the ratio becomes large for small
coupling, in striking contrast with conventional strong coupling superconductiv-
ity. Invariably we find the ratio to be larger than the weak coupling BCS case,
reflecting the strongly dissipative nature of quantum critical states at finite tem-
perature that plays apparently a similar role as the ’pair-breaking’ phonon heat
bath in conventional superconductors.

5.5 Away from the critical points

Our scaling theory yields a simple and natural explanation for the superconduct-
ing domes surrounding the QCP’s. This is usually explained in the Moriya-Hertz-
Millis framework [143, 144, 258, 259] that asserts that the critical fluctuations of
the bosonic order parameter turn into glue with singular strength while the Fermi-
liquid is still in some sense surviving. We instead assert that the glue is some
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Figure 5.7: (a)The gap to Tc ratio 2∆/Tc as a function of glue strength λ for
various retardation ranges ωB/ωc with fixed scaling dimension αp = 3/4, for s-
wave pairing. The dotted line is the standard BCS result, where 2∆/Tc = 3.5. (b)
The same plot for d-wave pairing. The gap to Tc ratio decreases with increasing
glue strength and retardation for both s- and d-wave gap. The ratios for different
retardation ranges approach the same constant as λ→ 0.

-1 1 2 3 4 5 6Ω

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

Χ''

T
*D 2 ΩB

m
*

Figure 5.8: Illustration of the imaginary part of the pair susceptibility away from
the critical point. For ω > T ∗, it has the critical scaling behavior, while for
ω < T ∗, it retains the BCS form. T ∗ is the cross-over scale. The effective mass
m∗ is identified as the magnitude of the imaginary part of the pair susceptibility
in the BCS region. The gap ∆ acts as a low energy cut-off, and the retardation
2ωB as a high energy cut-off. When T ∗ lies between ∆ and 2ωB , as is the case
shown above, both the critical modes and Fermi liquid modes contribute. When
∆ > T ∗, only the critical modes contribute. When 2ωB < T ∗, only the Fermi
liquid modes contribute.
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Figure 5.9: The ratio of Tc to retardation as a function of the distance away from
criticality (a) for various scaling exponent αp’s with λ = 0.06, ωB/ωc = 0.1, νz =
3/2, (b) for various glue strength λ’s with ωB/ωc = 0.1, νz = 3/2, αp = 5/6. (c)
for various retardation over cut-off ωB/ωc’s with λ = 0.06, νz = 3/2, αp = 5/6.
(d) for various inverse Grüneisen exponent νz’s with λ = 0.06, ωB/ωc = 0.1, αp =
5/6.
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Figure 5.10: (a):The superconducting transition temperature Tc as a function
of the distance from the critical point, for given crossover temperature T ∗ and
retardation ωB . The parameters are chosen as z = 2, ν = 1/3, ηp = 1, λ =
0.05, ωB/ωc = 0.1. (b):The same plot for a different set of parameters z =
3, η = 0.5, ν = 1/2, λ = 0.05, ωB/ωc = 0.1. In-between the two points δc ± δ̃,
at which the transition temperature coincides with the cross-over temperature
Tc(δc±δ̃) = T ∗(δc±δ̃), the critical temperature remains constant. For T ∗ > 2ωB ,
Tc decays exponentially. The schematic behavior of the effective mass m∗ is also
included. It diverges when approaching the critical point.

external agent (e.g., the phonons but not necessarily so) that is blind to the
critical point, but the fermionic criticality boosts the SC instability at the QCP
according to Eq. (5.10). By studying in detail the variation of the SC properties
in the vicinity of the QCP it should be possible to test our hypothesis. The data
set that is required is not available in the literature and let us present here a
crude sketch of what can be done. In at least some heavy fermion systems [260]
a rather sudden cross-over is found between the high temperature critical state
and a low temperature heavy Fermi-liquid, at a temperature T ∗ ∼ |δ−δc|νz, with
ν behaving like a correlation length exponent ξ ∼ |δ − δc|−ν as function of the
zero temperature tuning parameter δ. Moving away from the QPT this means
for the SC instability that an increasingly larger part of the frequency interval
of χ′′ below ωB is governed by the Fermi-liquid ’flow’ with the effect that Tc
decreases. We can crudely model this by asserting that the imaginary part of the
pair susceptibility acquires the critical form for ω > T ∗ and the Fermi-liquid form
for ω < T ∗, while we impose that it is continuous at ω = T ∗. This model has the
implication that the magnitude of χ′′ in the Fermi-liquid regime is determined by
T ∗ and ηp and we find explicitly that N0 ∝ m∗ ∝ |δ−δc|−ν(2−ηp). We notice that
this should not be taken literally, since this cross-over behavior can be a priori
more complicated. In fact, from thermodynamic scaling it is known [261, 262]
that m∗ ∼ |δ − δc|ν(d−z). Fig. (8) would imply that αp = 1 − d/z. This is not
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implied by scaling.
Given these assumptions, the gap equation away from the quantum critical

point becomes,

1− 2g

(∫ T∗

∆

dω

ω
χ′′BCS(ω) +

∫ 2ωB

T∗

dω

ω
χ′′crit(ω)

)
= 0 (5.28)

We are interested in the superconducting transition temperature, which has been
shown in the previous section to be approximately the gap magnitude Tc '
∆. The imaginary part of the pair susceptibility in the critical region has still
the power law form χ′′crit(ω) = Z ′′ sin(αpπ/2)ω−αp , while in the BCS region it
is a constant determined by continuity at ω = T ∗ and therefore χ′′BCS(ω) =
Z ′′ sin(αpπ/2)(T ∗)−αp .

Consequently we find in the regime Tc < T ∗ < 2ωB the solution for the gap
equation,

Tc = 2ωBx
νz exp

[
1

αp

(
1− xν(2−ηp) − 1

λ̃
(
2ωB
ωc

)αpxν(2−ηp)

)]
, (5.29)

where xνz = T ∗/(2ωB). For T ∗ < Tc a plateau is found since only the critical
modes contribute to the pairing, while for T ∗ > 2ωB the BCS exponent takes
over since only the (heavy) Fermi-liquid quasiparticles contribute having as a
consequence,

Tc = 2ωB exp

(
−(

2ωB
ωc

)
2−ηp
z

xν(2−ηp)

αpλ̃

)
. (5.30)

The outcomes are illustrated in Fig. (9,10). One notices in all cases that
the dome shapes are concave with a tendency for a flat ’maximum’. This is
automatically implied by our starting assumptions. When Tc is larger than T ∗

only the critical regime is ’felt’ by the pairing instability and when this criterium
is satisfied Tc does not vary, explaining the flat maximum. When Tc starts
to drop below T ∗ the superconductivity gets gradually depressed because the
Fermi-liquid regime increasingly contributes. Eventually, far out in the ’wings’,
one would still have superconductivity but with transition temperatures that
become exponentially small. The domes reflect just the enhancement of the
pairing instability by the critical fermion liquid relative to the Fermi-liquid.

The trends seen in Fig. 9 are easily understood. When the scaling dimension
αp is increasing, i.e. the pair operator is becoming more relevant, the maximum
Tc increases while not much happens with the width of the dome (Fig. 9a),
for the simple reason that the critical metal becomes more and more unstable
towards the superconductor. When the coupling strength λ increases one finds
in addition that the dome gets broader (Fig. 9b) because the ’contrast’ between
Fermi-liquid and quantum critical BCS is becoming less, illustrating the surprise
that especially weakly coupled quantum critical superconductors are much better
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than their traditional cousins. The same moral is found back when the Migdal
parameter is varied (Fig. 9c), illustrating that at very strong retardation the
differences are the greatest. Finally, in Fig. (9d) the evolution of the domes are
illustrated when one changes the exponents relating T ∗ to the reduced coupling
constant. We find that the dome changes from a quite ’box like’ appearance to
a ’peak’ pending the value of νz. The mechanism can be deduced from Fig. 10,
comparing the situation that the quantum critical ’wedge’ is concave (fig. 10a,
νz < 1) with a convex wedge (fig. 10b, νz > 1). Because T ∗ is varying more
slowly in he latter case with the reduced coupling constant, the quantum critical
regime becomes effectively broader with the effect that the quantum critical BCS
keeps control over a wider coupling constant range. The trends in Fig.’s (9, 10)
are quite generic and it would be interesting to find out whether by systematical
experimental effort these behaviors can be falsified or confirmed.

5.6 The upper critical field

Another experimental observable that should be quite revealing with regard to
scaling behavior is the orbital limiting upper critical field. The orbital limit-
ing field is set by the condition that the magnetic length becomes of order of
the coherence length, and the latter relates to the ’time like’ Tc merely by the
dynamical critical exponent z. In more detail, assuming a gap of the form [263],

∆(~r) = ∆0 exp

(
− r2

2l2

)
, (5.31)

the linearized gap equation in the presence of an orbital limiting magnetic field
becomes [27],

1

Ωd−1g
=

∫ ∞
r0

K0(r, β) exp

(
− r2

2l2

)
rd−1dr, (5.32)

where Ωd−1 is the volume of the d− 1-dimensional unit sphere, l is the magnetic
length related to the field by H = φ0/(2πl

2) where φ0 = hc/e, while K0(r, β) is
the real space pair susceptibility, which is the Fourier transform of χ′ [264, 265].
For free fermions, the real space pair susceptibility is (see eg. [264]),

K0(r, β) =

(
kF
2πr

)d−1
1

v2
Fβ

1

sinh( 2πr
βvF

)
, (5.33)

with a power law behavior K0(r, β) ∼ r−d at short distances or low temperatures
where r < βvF , and an exponential decay at large distances or high tempera-
ture. Let us consider critical fermions at T = 0, such that the pair suscepti-
bility has the power law form χ(ω) ∼ ω−(2−η)/z. The momentum dependence
can be determined by replacing ω by kz, such that χ(k) ∼ k−(2−η). It follows
that the real space pair susceptibility has the power law form K0(r, T = 0) ∼
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∫
χ(k) exp(i~k · ~r)dd~k ∼ r−(d−2+ηp). Associate with the retardation a short dis-

tance cutoff r0, and assume a scaling 2ωB/ωc = (r0/ac)
−z, where ac is the lattice

constant. The magnetic length acts as a long distance cutoff and therefore,

1

Ωd−1g
=

∫ l

r0

Ch
rd−2+ηp

rd−1dr, (5.34)

with the normalization factor Ch ' 2z(1 − αp)Ω
−(d−1)ωc

−1a
−(2−η)
c , so that

(1/Ωd−1)
∫
ac
Kcrit(r)r

d−1dr ' 1
ωc

, to give the right scale. The zero tempera-
ture upper critical field has then the same form as the one for Tc except for the
occurrence of z,

2πHc2(0)

φ0r
−2
0

'
(

1 +
1

λ̃

(
2ωB
ωc

)αp)− 2
2−ηp

, (5.35)

and it follows,

2πHc2(0)

φ0a
−2
c

'
(
Tc
ωc

)2/z

. (5.36)

In the BCS case one has Hc2(0)/(Bφ0k
2
F ) = (Tc/EF )2, with B ' 3.26 for d = 3

[266]. The moral is obvious: in Lorentz-invariant (z = 1) systems the relation
between Hc2 and Tc is the same as for standard BCS, but when the normal
state is governed by a universality class characterized by z > 1, Hc2(0) will
be amplified for a given Tc relative to conventional superconductors because
Tc/ωc, Tc/EF � 1.

Modeling the variation of Hc2 in the vicinity of the QPT as in the previous
paragraph, where the critical modes govern the short distance and BCS type be-
havior is recovered at large distance, while converting the cross-over temperature
to a length scale r∗, by T ∗/ωc = (r∗/ac)

−z, we find that Hc2 is determined by
the equation,

1

Ωd−1g
=

∫ r∗

r0

Ch
rd−2+ηp

rd−1dr +

∫ l

r∗

C′h
rd
rd−1dr, (5.37)

with the matching condition Ch = (r∗)−2+ηpC′h. We find that one just has to
replace the first two dynamic exponent z’s in Eq. (5.29) by 2 while an extra
factor of 2 has to be added to the second term in the exponent,

Hc2 =
φ0a
−2
c

2π
x2ν

(
2ωB
ωc

)2/z

exp

[
2

2− ηp

(
1− xν(2−ηp) − (

2ωB
ωc

)αp
xν(2−ηp)

λ̃

)]
.

(5.38)
In the region where only the Fermi-liquid quasiparticles contribute, the upper
critical field has still an exponential form,

Hc2 =
φ0a
−2
c

2π

(
2ωB
ωc

)2/z

exp

[
−2(

2ωB
ωc

)
2−ηp
z

xν(2−ηp)

(2− η)λ̃

]
. (5.39)
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Figure 5.11: The upper critical field Hc2 over H0 ≡ φ0a
−2
c /(2π) as a function

of the distance away from criticality (a) for various scaling exponent αp’s with
λ = 0.06, ωB/ωc = 0.1, ν = 1/2, z = 3, (b) for various glue strength λ’s with
ωB/ωc = 0.1, ν = 1/2, z = 3, αp = 5/6, (c) for various ν’s with λ = 0.06, ωB/ωc =
0.1, αp = 5/6, z = 3, (d) for various retardation ranges with λ = 0.06, ν =
1/2, z = 3, αp = 5/6.
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Figure 5.12: (a)Illustration of the different behavior of Tc and upper critical field
Hc2 as the quantum critical point is approached. Hc2 increases much faster than
Tc. Thus for a small Tc one can still have a large upper critical field. Here we
plotted using the parameters λ = 0.05, ωB/ωc = 0.1, ν = 1/2, z = 3, η = −1.
(b) The difference Hc2/H0 − Tc/ωc as a function of the distance away from
the critical point for different dynamical exponent z’s. Here H0 ≡ φ0a

−2
c /(2π),

λ = 0.06, ωB/ωc = 0.1, νz = 0.5, αp = 0.4. For z = 2, the difference is 0. For
z = 3, 4, the difference is positive and increases rapidly when approaching the
critical point. For the case with z = 1, the difference is negative.
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The dependence of Hc2 on various parameters is shown in Fig. 11, and one
infers that Hc2 behaves in ways very similar Tc (Fig. 10). The interesting part
is illustrated in Fig.(12b) where we plot Hc2/H0 − Tc/ωc as a function of the
distance away from the critical point for different dynamical exponent z’s, keeping
all other quantities fixed, defining H0 ≡ φ0a

−2
c /(2π). One infers that when z > 2,

Hc2/H0 − Tc/ωc increases rapidly when approaching the critical point.

Using a ’ferromagnetic’ dynamical exponent z = 3 and a Grüneisen exponent
1/νz = 2/3 inspired on recent experiments [267,268] as well as theoretical consid-
erations [143,144,179,186,258,259] we obtain the results in Fig. (12a). Compared
to Tc, Hc2 peaks much more strongly towards the QCP. This is in remarkable
qualitative agreement with the recent results by Levy et al. on the behavior of
the orbital limiting field in URhGe exhibiting a ferromagnetic QCP [234], where
the highest Tc is about 0.5 K [118], while the upper critical field exceeds 28 T.
It has also been observed in noncentrosymmetric heavy fermion superconductors
CeRhSi3 [269, 270] and CeIrSi3 [271, 272], where the Pauli limiting effect is sup-
pressed due to lack of inversion center of the crystal structures and the orbital
limiting effect plays the main role of pair breaking. Near the quantum critical
points, Hc2 can be as high as about 30 K, although the zero field Tc is of order
1K [273, 274]. This class of experiments can be understood in our framework
as resulting from the change of the scaling relation between Hc2 and Tc. (See
also [275] for a tentative explanation from the customary Hertz-Millis-Moriya
perspective.)

5.7 Conclusions

Perhaps the real significance of the above arguments is no more than to supply
a cartoon, a metaphor to train the minds on thinking about pairing instabilities
in non Fermi-liquids. This scaling theory has the merit of being mathematically
controlled, given the starting assumptions of the ’retarded glue’ and conformal
invariance. The Migdal parameter plays an identical role as in conventional BCS
theory to yield a full control over the glue-fermion system dynamics, while we
trade in Fermi-liquid principle for the even greater powers of scale invariance. The
outcomes are gap and Tc equations where the standard BCS/Eliasberg equations
show up as quite special cases associated with the marginality of the pair oper-
ators of the Fermi gas. The difficulty is of course to demonstrate that these
starting assumptions have dealings with either nature itself and/or microscopic
theories of electron systems where they should show up as emergent phenom-
ena at low energy. However, the same objections apply to much of the current
thinking regarding superconducting instabilities at quantum critical points with
their implicit referral to a hidden Fermi gas. In such considerations there is
an automatism to assume that eventually the superconductivity has to be gov-
erned by Eliashberg type equations. At the least, the present analysis indicates
that such equations are not divine as long as the Fermi-liquid is not detected di-
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rectly. Stronger, in line with the present analysis one might wish to conclude that
superconducting instabilities will be generically more muscular in any non-Fermi-
liquid. The Fermi-liquid is singular in the regard that its degrees of freedom are
stored in the Fermi-sea, and this basic physics is responsible for the exponen-
tial smallness of the gap in terms of the coupling constant. This exponential
smallness should be alien to any non Fermi-liquid.

How about experiment? Scaling theories have a special status in physics be-
cause they guide the analysis of experimental data in terms of a minimal a-priori
knowledge other than scale invariance. The present theory has potentially the
capacity to produce high quality empirical tests in the form of scaling collapses.
However, there is a great inconvenience: one has to be able to vary the glue
coupling strength, retardation parameters and so forth, at will to test the scaling
structure of the equations. These are parameters associated with the materi-
als themselves, and one runs into the standard difficulty that it is impossible to
vary these in a controlled manner. What remain are the rather indirect strate-
gies discussed in the last two sections: find out whether hidden relations exist
between the detailed shape of the superconducting and the crossover lines; are
there scaling relations between Hc2 and Tc as discussed in the last section? We
look forward to experimental groups taking up this challenge.

There appears to be one way to interrogate our starting assumptions in a
very direct way by experiment. Inspired by theoretical work by Ferrell [276]
and Scalapino [277], Anderson and Goldman showed quite some time ago [278]
that the dynamical pair susceptibility can be measured directly using the AC
Josephon effect – see also [279, 280], for a recent review see ref. [281]. It would
be interesting to find out whether this technique can be improved to measure the
pair susceptibility over the large frequency range, ’high’ temperatures and high
resolution to find out whether it has the conformal shape. It appears to us that
the quantum critical heavy fermion superconductors offer in this regard better
opportunities than e.g. the cuprates given their intrinsically much smaller energy
scales. This will be the topic of next chapter.

In conclusion, exploiting the motives of retardation and conformal invariance
we have devised a phenomenological scaling theory for superconductivity that
generalizes the usual BCS theory to non Fermi-liquid quantum critical metals.
The most important message of this simple construction is that it demonstrates
the limitations of the usual Fermi-liquid BCS theory. The exponential smallness
of the gap in the coupling is just reflecting the ’asymptotic freedom’ of the Fermi-
liquid, and this is of course a very special case within the landscape of scaling
behaviors. Considering the case that the pair operator is relevant, we find instead
an ’algebraic’ gap equation revealing that at weak couplings and strong retarda-
tion the rules change drastically: as long as the electronic UV cut-off and the glue
energy are large, one can expect high Tc’s already for quite weak electron-phonon
like couplings. If our hypothesis turns out to be correct, this solves the problem
of superconductivity at a high temperature although it remains to be explained
why quantum critical normal states can form with the required properties. It
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is however not straightforward to device a critical test for our hypothesis. The
problem is the usual one that pair susceptibilities, λ’s or α2F ’s, and so forth can-
not be measured directly and one has to rely on imprecise modelling. However, it
appears to us that ’quantum critical BCS superconductivity’ works so differently
from the Fermi-liquid case that it eventually should be possible to nail it down
in the laboratory. We hope that the sketches in the above will form a source of
inspiration for future work.



Cha p t e r 6

Measuring the Pair
Susceptibility Directly

6.1 Introduction

Dynamical correlation functions provide crucial insights for the understanding
of strongly correlated electron systems. By measuring the wavevector- and
frequency-dependent magnetic susceptibility, inelastic neutron scattering has be-
come one of the most powerful tools in characterizing magnetism. In these exper-
iments, the beam of scattering external particles couple to the order parameter
of the system, in the case of magnetism the spin density of the sample, and the
resulting differential scattering cross-section is a direct measure of the autocor-
relation function of the order parameter.

For superconductivity, one would ideally also like to measure the susceptibility
associated with the order parameter. However, the superconducting pairing order
parameter ∆ is off-diagonal in particle number space, ∆ ∼ 〈c↓c↑〉, and nature
does not endow us with an external electromagnetic field that couples directly
to the order parameter, like it does for magnetism. A probe of the ‘pairing’
susceptibility thus always requires an indirect measurement.

Such an indirect probe has been known for 40 years. Based on the Josephson
effect, in which the order parameters of two superconductors are coupled to
each other, in 1970 Ferrell [276] and Scalapino [277] suggested a superconductor-
insulator-normal (SIN) tunneling setup in which a strong superconductor acts as
an effective external probe for a normal metallic state above its superconducting
transition temperature Tc; the fluctuating pair field of the metal is coupled to
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the rigid pair-field of the strong superconductor, and this leads to an additional
contribution to the total tunneling current, on top of the well-known SIN-junction
quasiparticle current. This additional tunneling current is proportional to the
imaginary part of the pair(ing) susceptibility of the pairing order parameter of
the metallic state (see also [282]).

This scheme has been used to study the pair fluctuations near the super-
conducting transition temperature. A divergence in the pair susceptibility is
universally expected as the phase transition is approached, and a ‘relaxational’
peak characteristic for Gaussian fluctuations was indeed confirmed experimen-
tally very early on in the work by Goldman and collaborators [278] in aluminum
and lead (i.e., conventional s-wave materials), and much more recent also in
junctions of d-wave cuprates [283].

Up to now, all the efforts on the pair tunneling experiments have been confined
to the region near Tc. The pair susceptibility at higher temperatures may have
been ignored because for conventional Fermi liquids it is expected to be boring.
The main purpose of this chapter is to make it clear to experimentalists that with
the recent advances in unconventional superconductivity, especially for systems
near the quantum critical points (QCPs), it has become worthwhile to measure
the dynamic pair susceptibility away from the transition temperature. The basic
point is that the frequency and temperature dependence of the pair susceptibility
further away from Tc actually contains important information about the normal
state properties of the non-Fermi liquid materials. Such information is vital for
the understanding of both the exotic pairing mechanism in such systems and the
underlying non-Fermi liquid parent state. Experimentalists have been able to
measure the single particle properties of these systems using ARPES and STM,
as well as the properties in the particle-hole channel, using for example INS, ESR.
However, a direct probe in the particle-particle channel is still lacking, though its
importance is obvious, since pairing itself happens in the particle-particle channel.
We would like to convince the reader that the pair tunneling experiment actually
provides such a highly desired Cooper channel probe .

We will calculate the pair susceptibility for different scenarios of the pairing
mechanism for quantum critical metals. Although there exists no proper micro-
scopic description for quantum critical materials, right at the quantum critical
point the rules of criticality nevertheless come to our aid, in the sense that we
can work with effective models without the need for a microscopic description.
We will consider several limiting cases of the whole manifold of possible effective
theories. One class of models assumes the separation of the electronic part and
the glue part, in which one scenario further assumes that the glue part becomes
critical in the quantum critical state; another assumes the electronic part to be
critical. The former is best represented by the quantum critical γ-model inves-
tigated by Chubukov and collaborators [284]. The latter is the quantum critical
BCS (QC-BCS) model that was explored by two of the present authors [121].
There also exist another class of models which do not distinguish between the
electronic part and the glue part, only dealing with the bosonic order parameters,
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while incorporating scale invariance at high temperature and high frequency. This
is the holographic superconductors proposed by Hartnoll, Herzog and Horowitz,
for which the superconductor is effectively described by a gravitational theory in
one dimension higher [126,285]. We will calculate the dynamic pair susceptibility
for these models, in addition to the conventional Fermi liquid BCS model, which
is used as a reference point. To our knowledge, this has not been done before.
The previous investigations have been focusing on the superconducting transi-
tion temperature, for which only the information at zero frequency is needed.
The equations we will be solving for the pair correlation functions can be viewed
as the finite frequency generalizations of the heavily investigated gap equations,
which lie at zero frequency.

In order to experimentally distinguish the various scenarios it is necessary
to measure the pair susceptibility away from Tc; to be more precise, a reduced
temperature τ = (T −Tc)/Tc > 1 is required. To access such a temperature win-
dow clearly demands that the strong superconductor has a significantly larger
transition temperature than the quantum critical material of interest. This sug-
gest to consider probing a heavy fermion material at its quantum critical point,
where both quantum critical behavior and relatively low Tc (' 1 K) are expected.
The strong side superconductor should have Tc > 10K to allow for a practical
temperature window.

The supposed d-wave symmetry of the order parameter in most materials of
interest presents both a challenge and an opportunity. The calculations in this
chapter presume s-wave symmetry, but hold equally well for d-wave after projec-
tion in the relevant channel. The only real requirement is a non-zero Josephson
coupling, in other words a non-zero dc Josephson current at T = 0. There is
also no hard requirement for the type of interface; a planar junction, point con-
tact, or scanning tunneling tip interface all qualify in essence (for the results
in this chapter we work in the tunneling regime). The relaxational peak has
been observed in d-wave to d-wave planar junction at very high temperatures
60–80K [283], providing both experimental proof of principle and great promise
for lower temperature experiments.

For all the models to be considered in this chapter, we assume a mean field
type superconducting phase transition. This is likely true for the quantum critical
materials we are interested: optimally doped cuprates and heavy fermions. For
underdoped cuprates phase fluctuations are expected to play an important role
as well; these are not captured by the current analysis.

The core of this chapter is devoted to numerically determine the pair suscepti-
bility for the three models, as function of frequency and temperature. We will use
Eliashberg-like equations throughout this chapter. Eliashberg theory is a fully
dynamical theory, where the momentum dependence is assumed to be relatively
smooth, and the crucial information is in the frequency dependent part. The
solution of these Eliashberg-like equations can only be determined numerically.
We extract from the particular parameter sets the general features of the differ-
ent models. Our main result is summarized graphically in Fig. (6.4) where we
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plot the pair susceptibility χp(ω, T ) for the three distinct models (using typical
parameters) at the same scale.

The remainder of this chapter is organized as follows. In section 6.2, we give a
brief introduction to the tunneling experiment proposed by Ferrell and Scalapino,
and realized by Goldman and more recently by Bergeal et al. . In section 6.3 and
section 6.4, we turn to theory. Three different models are reviewed in section 6.3,
all of which assume electron-glue dualism. These different models are presented
in a unified framework using Eliashberg-type integral equations. In section 6.4,
we first review the basic idea of the holographic superconductors and then we
outline how the pair susceptibility can be calculated by solving the equation of
motion for a scalar field. The main results are analyzed in section 6.5. Section 6.6
is devoted to proposing a realistic experiment, including the candidate materials
and experimental setup.

6.2 The pair tunneling experiment

The formal definition of the pair susceptibility is as follows,

χp(q, ω) = −i
∫ ∞

0

dteiωt−0+t〈
[
b†(q, 0), b(q, t)

]
〉, (6.1)

where b†(q, t) =
∑

k c
†
k+q/2,↑(t)c

†
−k+q/2,↓(t), and c

(†)
k,σ the usual annihilation (cre-

ation) operators for electrons with momentum k and spin σ. For a non-interacting
Fermi gas the pair susceptibility can be calculated directly in terms of single
particle Green’s functions, and gives χ′′p(ω) = π

2N(ω2 ) tanh ω
4T . For interacting

non-Fermi liquid materials the pair susceptibility is a true two-particle property
containing particle-particle pair channel information.

It was realized by Ferrell [276] and worked out further by Scalapino [277] that
the pair susceptibility is observable in the tunneling current of an SIN junction.
They considered the tunneling regime, i.e., large insulating barrier and conse-
quently small tunneling amplitude γ. In this regime the tunneling current can
be calculated perturbatively in the tunneling amplitude. The lowest non-zero
contribution to the tunneling current is the well-known linear response result
of single quasiparticles tunneling between normal metal and superconductor, of
order |γ|2 ∼ RN , where RN is the resistance of the entire junction in a normal
state (i.e, NIN junction). This famous, and by now textbook result was observed
in the pioneering experiments of Giaever and predicts that at zero temperature
(for s-wave superconductor) ItunRN =

√
V 2 −∆2 θ(V − ∆); at finite tempera-

tures there is an exponential suppression of the tunneling current at bias voltages
below the gap ∆.

To order |γ|2 only isolated quasiparticles can give a non-zero tunneling cur-
rent. However, at order |γ|4 it is possible for Cooper pairs to tunnel, and Cooper
pairs are not constraint by the quasiparticle gap ∆. This is what Ferrell and
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Scalapino predicted, that there is a contribution to the tunneling current from
tunneling Cooper pairs of order |γ|4, on top of the quasiparticle tunneling current
(contributing at order |γ|2 and |γ|4). On the normal metal side, this tunneling
process corresponds precisely to the imaginary part of the pair susceptibility
χ′′p(q = 0, ω) where ~ω = 2eVbias [277].

Up to order |γ|4, the tunneling current in a SIN is of the form,

Itun(V ) = Iqp(V ) + Iχ′′p (V ), (6.2)

Iχ′′p (V ) ∝ χ′′p(2eV/~). (6.3)

The proportionality factor obviously includes the factor |γ|4, but also local den-
sities of state of both S and N materials and effective junction area; since these
factors are highly sample-dependent, the overall magnitude of the pair suscep-
tibility contribution to the tunneling current will generally be an experimental
fitting parameter. Note that this higher order Cooper pair tunneling process is a
second order Josephson effect: if at low temperaturers the regular dc Josephson
effect can be observed (i.e., a finite supercurrent at zero bias in SIS configura-
tion), then the higher order tunneling Cooper pair process is likely to occur in
the SIN configuration at finite bias.

The pair susceptibility can also be probed at non-zero wave vector q, by
applying a magnetic field parallel to the interface surface, which creates the
necessary momentum offset of the tunneling pairs [277]. In this chapter we are
only concerned with zero momentum q = 0, and we restrict to this case from
now on.

The experimental challenge is thus to fabricate a junction that has a discern-
able second order Josephson tunneling effect. The imaginary part of the pair
susceptibility can then be determined up to an unknown overall proportionality
factor from the tunneling I-V -curve by subtracting the quasiparticle tunneling
current contribution. One may worry that the pair susceptibility signal, of order
|γ|4, will be so small that it will always drown in the quasiparticle tunneling
current signal of order |γ|2. There are two reasons why this will likely not be a
problem at all: (i) there exist exact expressions for the quasiparticle tunneling
current through the Blonders-Tinkham-Klapwijk ‘BTK’- formula [286] which has
been generalized to d-wave superconductors as well [287]; therefore the quasipar-
ticle tunneling current can be subtracted with rather high precision. And (ii),
the quasiparticle tunneling current is rather featureless and suppressed for bias
voltages below the gap; close to Tc the pair susceptibility signal is extremely
enhanced for V � ∆. The true experimental challenge lies in extending the tem-
perature range in which χ′′p(ω) can be detected from the total tunneling current
to temperatures (T − Tc)/Tc > 1.

Goldman and collaborators demonstrated that the proposal by Ferrell and
Scalapino is indeed observable in experiment [278]; they considered planar junc-
tions between conventional s-wave superconductors and normal metals, e.g., a
aluminum (Tc ≈ 2K) – aluminum-oxide – lead (Tc ≈ 7K) NIS interface; this
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setup sets an upper bound to the reduced temperature τ = (T − Tc)/Tc of
∼ (7 − 2)/2 = 2.5. They measured tunneling current I-V -curves similar to
the ones plotted in Fig. 6.1. They observed a discernable peak with a quasi-
Lorentzian line-shape up to T ≈ 3K (reduced temperature τ ≈ 0.5), and at
temperature close to Tc, namely at 0.01 < τ < 0.05 they found the peak to lie at
bias voltage ωmax ' 8kB(T − Tc)/~π.

Bergeal et al. recently managed to observe the pair susceptibility at a SIN
interface for d-wave materials [283]; they devised a planar junction of an un-
derdoped cuprate (Tc ≈ 60K) and optimally doped cuprate (Tc ≈ 90K). This
configuration naturally constraints reduced temperature τ to be smaller than
0.5. There are more differences compared with the experiments by Goldman.
Instead of directly measuring the tunneling current Bergeal et al. observed the
differential conductance. Also, they did not use a generalized BTK formula to
subtract the quasiparticle current (instead they noticed that microwave radiation
suppressed to peak, and they used this to set the background). The experiment
by Bergeal et al. was designed to verify a theoretical prediction by Janko et al.
for phase fluctuations in underdoped cuprates [288]; Janko et al. predicted a
resonance, instead Bergeal et al. found relaxational behavior. The temperature
at which Bergeal et al. performed their experiments are actually rather favorable
for our intended target: if the pair susceptibility can be detected at temperatures
T > 60K the signal should be substantially sharper for temperatures below 10 K,
while at the same time allowing reduced temperature to be large. Furthermore,
Bergeal et al. observed the relaxational peak that we expect for all different
models considered in this chapter. Whether to measure the tunneling current
directly or the differential conductance is an experimental trade-off, in principle
they carry the same information.

6.3 Pairing mechanisms with electron-glue dual-
ism

The pairing mechanism in quantum critical metals is still under intense debate.
Different scenarios have been proposed. It is vital to have an experimental tool to
test these scenarios directly. Since superconductivity, i.e., pairing, happens in the
Cooper channel, it is surely desirable to be able to measure the Cooper channel
directly. Such an experiment has been described in detail in the previous section.
The central object that will be measured in such tunneling experiments is the
imaginary part of the full dynamical pairing susceptibility. In this section, we
will introduce several different scenarios of superconductivity for quantum critical
metals. We intend to use these scenarios to represent the different limits of the
whole manifold of theories. We study in detail the frequency and temperature
evolution of the pair susceptibility in these scenarios. The whole formalism is
presented in this section, and the numerical results will be analyzed in the next
section.
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Figure 6.1: Sketch of typical tunneling current Itun(V ) (solid line) as measured
in experiments by Goldman. At a temperature T = ∆/4 the usual quasiparticle
current for a SIN tunneling junction is given by the dotted line. The difference
between the total tunneling current and the quasiparticle current is the pair
susceptibility χ′′p(ω = 2eV ): characterized by a small peak at a relatively low
voltage. For reference are plotted as well the zero temperature quasiparticle
current (dashed line) and the high temperature linear Ohmic behavior (dotdashed
line).

Let us look at the pair susceptibility. The full pair susceptibility contains
contributions from all forms of interactions. The general strategy is to separate
it into two parts: the electronic part and the glue part. The electronic part is
non-singular down to extremely low temperatures. The Coulomb interaction is
included in this part. The bosonic glue mediates an attractive electron-electron
interaction. It may arise from the coupling of the electrons to lattice distor-
tions. It can also be the collective excitations of the electrons themselves. In
some heavy fermion compounds in the vicinity of magnetic quantum phase tran-
sitions, magnetic fluctuations may act as glue for superconductivity. For some
superconductors, like cuprates, it is questionable whether the glue part is even
relevant, since it has a much lower energy scale than that of the electronic in-
teraction, say U and J [289]. We will see later on that in some scenarios the
peculiarity of the quantum critical states can lead to the surprising result that
even a weak glue can have tremendous effect on superconductivity.

The glue is generally retarded in the sense that its characteristic energy scale
ωb is small compared to the ultraviolet cut-off scale of the electronic part ωc.
With a small Migdal parameter ωb/ωc, the electron-glue vertex corrections can
then be ignored and the effects of the glue are described by the Migdal-Eliashberg
time-dependent mean field theory. And we have the Bethe-Salpeter equation (see
Fig. 6.2),

χ(k, k′; q) = χ0(k, k′; q) + u2
∑
k1,k2

χ0(k, k1; q)D(k2 − k1)χ(k2, k
′; q), (6.4)
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Figure 6.2: Feynman diagram of the Cooper channel Bethe-Salpeter equation.
The dark gray square represents the four-point correlation function in the Cooper
channel and the light gray rectangle is the corresponding electronic part. The
solid lines stand for the electron propagator and the dashed line is the glue
propagator.

where χ(k, k′; q) represents the full four-point correlation function with incoming
momenta/frequencies (−k, k+q) and outgoing momenta/frequencies (−k′, k′+q)
and χ0(k, k′; q) is the corresponding electronic part; D(p) is the glue propagator
and u the electron-glue coupling strength taken to be constant below the ultravi-
olet cut-off scale. The momentum and frequency are grouped in a single symbol
here, i.e., four-vector notation q = (q, ω). The pair susceptibility is obtained from
the four-point correlation function by performing a summation over the relative
momenta/frequencies, χp(q) =

∑
k,k′ χ(k, k′; q).

Further simplification can be made by assuming that the pairing problem in
quantum critical metals can still be treated within the Eliashberg-type theory,
with the electronic vertex operator χ0 and the glue propagator D strongly fre-
quency dependent, but no substantial momentum dependence. The glue part
will only appear in the form of a frequency-dependent pairing interaction λ(Ω) =∫
ddqD(q; Ω). A partial summation over the outgoing momenta/frequencies gives

the vertex operator Γ(k; q) =
∑
k′ χ(k, k′; q). Also performing the integration

over the relative momentum in Γ0, and taking the total momentum to be van-
ishing, i.e. Γ0(ν;ω) =

∫
dkΓ0(k, ν; q = 0, ω), we arrive at the final form of the

Bethe-Salpeter equation with only (imaginary) frequency arguments,

Γ(iν; iΩ) = Γ0(iν; iΩ) + AΓ0(iν; iΩ)
∑
ν′

λ(iν′ − iν)Γ(iν′; iΩ). (6.5)

A further frequency summation over ν yields the pair susceptibility χp(iΩ,q =
0) =

∑
ν Γ(iν; iΩ) at imaginary frequency iΩ; analytic continuation iΩ→ ω+ iη

will give the desired pair susceptibility at real frequency χp(ω).
The superconducting transition happens when the real part of the full pair

susceptibility at ω = 0 diverges. The gap equation is the ω = 0 limit of the
Bethe-Salpeter equation,

Γ(iν) = Γ0(iν) +AΓ0(iν)
∑
ν′

λ(iν′ − iν)Γ(iν′), (6.6)

with Γ(iν) = Γ(iν; iΩ = 0).
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The Bethe-Salpeter equation (6.5) can be solved either by iteration or by
direct matrix inversion. The transition temperature Tc is determined by setting
the determinant of the kernel equal to zero at zero Matsubara frequency. We will
compare three different approaches to pairing in the remainder of this section.

6.3.1 Fermi liquid BCS

We first present as point of reference the case of Fermi liquid BCS. We consider
a free Fermi gas, interacting via a normal glue, say an Einstein phonon. The
electronic part of the pair susceptibility is simply the convolution of single-particle
Green’s functions,

χ0(q, iΩ) =
T

N

∑
k,n

G (−k,−iνn)G (k + q, iνn + iΩ) . (6.7)

For this model, we ignore the self-energy correction, and use the free fermion
Green’s function G(k, iω) = 1/(iωn − εk). The imaginary part of the bare pair
susceptibility has the simple form χ′′0(ω) = 1

ωc
tanh

(
1
4βω

)
at q = 0. Here the

Fermi energy acts as the ultraviolet cut-off, with ωc = 2
πN(0) ' EF . The bare

vertex operator reads

Γ0(iνn, iΩ) =
2T

ωc(2νn + Ω)
[θ(νn + Ω)− θ(−νn)] , (6.8)

with θ(x) the Heaviside step function. Γ0(iνn, iΩ) vanishes in the interval −Ω <
νn < 0, and decays as 1/νn for νn large. It is symmetric under the transformation
νn → −Ω−νn. This symmetry can be made more explicit by writing Γ0(iνn, iΩ)
in terms of the relative frequencies ν̃n = Ω/2 + νn,

Γ0(iνn, iΩ) =
T

ωcν̃n

[
θ(

Ω

2
+ ν̃n)− θ(Ω

2
− ν̃n)

]
. (6.9)

For iΩ = 0, Γ0(iνn, iΩ) is simply T/(ωc|νn|). A BCS-type paring interaction

λ(ν′ − ν) =

{
g/A for |ν̃|, |ν̃′| < ωb,
0 otherwise,

(6.10)

leads to the gap equation

1− g
∑
|ν|<ωb

Γ0(iνn,Ω = 0) = 0, (6.11)

which gives immediately for the Fermi liquid BCS model an exponentially small
transition temperature Tc ' ωb exp (−1/λ), with λ = gN(0).
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We also note that the BCS-type paring interaction (6.10) leads to a simple
RPA form for the full pair susceptibility,

χ(ω) =
χ0(ω)

1− gχ0(ω)
, (6.12)

where retardation enters through the bare pair susceptibility, χ0(ω) =∑
|ν̃|<ωb Γ0(ν;ω).
However, for the subsequent numerical calculation of the full dynamical pair

susceptibility, we will instead use the pairing interaction from a single Einstein
phonon,

λ(iΩ) =
g

A
ω2
b

ω2
b + Ω2

, (6.13)

which has the nice property that it is smooth and nonsingular for all frequencies,
and does not give extra artificial features in the result.

6.3.2 The Critical Glue Model

Now we will start to consider the new models proposed for quantum critical met-
als that go beyond the conventional Fermi liquid BCS theory. In this subsection,
we will present one class of scenarios that attribute the novelty of unconventional
superconductivity in such systems to the peculiar behavior of the glue when ap-
proaching the QCP. The glue part is assumed to become critical near the QCP,
while the electronic part is still kept a conventional fermion bubble, though with
self-energy corrections. We will call such scenarios the critical glue model.

This class of scenarios are arguably best represented by the models introduced
by Chubukov and collaborators [284], where they assume that pairing is mediated
by a gapless boson, and the pairing interaction is of the power-law form

λ(iΩ) =

(
Ω0

|Ω|

)γ
. (6.14)

Here the exponent γ parameterizes the different models, and it is usually assumed
to take values between 0 and 1. For example, an antiferromagnetic QCP gives
rise to a pairing interaction with γ = 1/2, and a ferromagnetic QCP has γ = 1/3.
The pairing interaction has a singular frequency dependence, which makes the
pairing problem in such models qualitatively different from that of the Fermi
liquid BCS model. The coupling strength is absorbed in the single scale-full
parameter Ω0.

The electronic part of the pair susceptibility is assumed to be still just the con-
volution of the single particle Green’s functions, i.e., of the same form as Eq. (6.7).
But now the massless boson also contributes a nontrivial self-energy, Σ(iωn) =
iωn (Ω0/|ωn|)γ S(γ, n), where S(γ, n) = |n + 1/2|γ−1

[
ζ(γ)− ζ(γ, |n+ 1

2 |+
1
2 )
]
,

with ζ(γ) the Riemann zeta function and ζ(γ, n) the generalized Riemann zeta
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function. Let us define Z(ωn) = 1 + (Ω0/|ωn|)γ S(γ, n). The bare pair suscepti-
bility thus reads

χp,0(iΩ) =
T

N

∑
k,νn

1

−iνnZ(−νn)− ξk
1

i(νn + Ω)Z(νn + Ω)− ξk
. (6.15)

And the corresponding bare vertex operator becomes

Γ0(iνn, iΩ) =
2T

ωc[(νn + Ω)Z(νn + Ω) + νnZ(−νn)]
×

[θ((νn + Ω)Z(νn + Ω))− θ(−νnZ(−νn))] . (6.16)

With the glue becoming critical, the only scale in such models is Ω0. And
the superconducting transition temperature is proportional to Ω0, with a model-
dependent coefficient, Tc = A(γ)Ω0.

6.3.3 Quantum Critical BCS

In this subsection we will consider another scenario for superconductivity in quan-
tum critical metals, which is orthogonal to the critical glue mode presented in the
last subsection. In this approach, the novelty of unconventional superconductiv-
ity in such systems is attributed solely to the critical behavior of the electronic
part, with the glue part assumed featureless. Hereafter this approach will be
dubbed quantum critical BCS (QCBCS) scenario [121].

According to its behavior in the scaling limit, the electronic part of the pair
susceptibility χp,0 was classified into three different categories: marginal, relevant
and irrelevant. The prototype of the marginal case is the free Fermi gas, for which
the imaginary part of the bare pair susceptibility χ′′p,0 is essentially constant at low
temperatures. In the QCBCS scenario, the quantum critical metals were assumed
to fall into another category tagged as relevant, i.e., χ′′p,0 increases when going
to lower frequency or lower temperature. More spectral weight is accumulated
at lower energy scales, where pairing is more effective. Thus it is much easier to
get superconductivity in such models. The gap equation becomes algebraic, and
even a weak glue can give rise to a high temperature superconductor. The basic
logic behind such construction is the empirical fact the quantum critical metals
are more susceptible than Fermi liquid metals. When approaching the QCP,
an interaction that was deemed irrelevant initially, takes over and dominates,
replacing the QCP by a new stable phase.

A massless boson, as was considered in the critical glue model, modifies the
electronic part of the pair susceptibility through self-energy corrections, giving
a nice example of an irrelevant pair susceptibility, i.e., χ′′p,0 decreases when go-
ing to lower frequency or lower temperature. We emphasize that this does not
necessarily imply that the critical glue model is ineffective in producing pairing.
The massless boson is providing self-energy corrections to single particle Green’s
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functions and inducing an attractive interaction between electrons at the same
time. The two effects compensate, and it is actually possible to produce a high
transition temperature.

Coming back to the QCBCS scenario, at zero temperature, the imaginary
part of the bare pair susceptibility has the scaling form χ′′p,0(ω) ∼ ω−αp , with
the exponent αp parameterizing different models; αp = 0, i.e., χ′′p,0(ω) constant,
corresponds to the marginal case. When αp > 0, χ′′p,0 increases at lower frequency,
describing a relevant pair susceptibility; αp < 0 corresponds to the irrelevant case.

Aiming at the dynamical pairing susceptibility, let us now consider the
QCBCS scenario at finite temperature. Temperature breaks conformal invariance
and in the euclidean formulation of field theory the imaginary time direction is
compactified, leading to the finite size scaling form of the bare pair susceptibility,

χp,0(ω, T ) =
Z

Tαp
F
(ω
T

)
, (6.17)

with the exponent 0 < αp < 1, Z a UV renormalization constant and F a scaling
function. The upper bound on αp stems from unitarity requirements. At zero
temperature, this turns into the branch cut as shown above, χ0 ∼ ω−αp , while in
the opposite high temperature or hydrodynamical regime (~ω � kBT ) it takes
the form

χp,0(ω, T ) =
Z ′

Tαp
1

1− iωτrel
, (6.18)

where τrel ≈ ~/kBT .
One example of such a scaling function F(ω/T ) that possesses the above two

limiting forms at low and high temperatures is the following one, borrowed from
exact solutions in 1 + 1-dimensional conformal field theory,

F ′′(y) = sinh(
y

2
)B2(s+ i

y

4π
, s− i y

4π
), (6.19)

where B is the Euler beta function, and s = 1/2− αp/4. Another example that
results in such a scaling function is a simple generalization of the free fermion
vertex operator (6.9),

Γ0(iνn, iΩ) =
(1− α)T

ω1−α
c sgn(ν̃n)|ν̃n|α+1

[
θ(

Ω

2
+ ν̃n)− θ(Ω

2
− ν̃n)

]
. (6.20)

One can check that this vertex operator actually leads to a relevant pair suscep-
tibility with αp = α, a power-law tail at high frequency, and the linear hydro-
dynamic behavior at low frequency. There is a peak at frequencies of order the
temperature. We will use this latter one to calculate the full pair susceptibility.

Combining the BCS-type pairing interaction (6.10) and the above vertex oper-
ator (6.20) one arrives at an algebraic gap equation characteristic of the QCBCS
scenario,

1− 2g
1− αp
ω

1−αp
c

∫ ωb

Tc

dν

ναp+1
= 0, (6.21)
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As in the Fermi liquid BCS case, we will also use the smooth and nonsingu-
lar pairing ‘Einstein phonon’ interaction (6.13) to calculate the dynamical pair
susceptibility in the QCBCS scenario.

6.4 Holographic superconductors

The three different models we considered in the last section all assume the sep-
aration of the electronic part and the glue part. There also exist another class
of models for which superconductivity is ”glueless” and instead driven by the
extreme instability of the zero temperature critical state itself. This class of
models are based upon the AdS/CFT correspondence of string theory and are
called ”holographic superconductors” (HS). The simplest model to obtain a holo-
graphic superconductor with quite similar behavior to real superconductors was
first built in [285,290] through Einstein gravity which is minimally coupled to a
Maxwell field and a charged complex scalar with a potential term. The system
is described by the action

S =

∫
d4x
√
−g
[
R+

6

L2
− 1

4
FµνF

µν−m2Ψ∗Ψ−(∇µΨ−iqAµΨ)∗(∇µΨ−iqAµΨ)

]
.

(6.22)
Here we consider the superconductor to be 2+1 dimensional. A generalization to
3+1 dimension is straightforward.

Below some critical temperature Tc, the charged black hole solutions develop
a nonzero static scalar field outside the horizon, which is usually called a non-
trivial hair. There are two possible reasons for this instability on the gravity
side. One is that the effective mass for the scalar field is m2

eff = m2 + q2gttA2
t .

Since the last term is negative, there is a chance that m2
eff becomes sufficiently

negative near the horizon to destabilize the scalar field. Furthermore, as one
lowers the temperature of a charged black hole, it becomes closer to extremal
which means that gtt is closer to developing a double zero at the horizon. So at
low temperatures, |gtt| is large and instability becomes strong. Another reason
for the instability comes from the fact that at low temperatures the horizon
geometry of the near extremal RN black hole has an AdS2 near-horizon throat.
Then an asymptotically stable negative mass squared scalar field can become
unstable because the Breitenlohner-Freedman (BF) bound is different for the
near horizon AdS2 and the asymptotic AdS4. This gives the chance that we can
have the condensate even for uncharged scalar field with q = 0.

The combined effects of these two mechanisms lead the charged black holes to
develop scalar hair at low temperatures. According to the AdS/CFT dictionary,
on the dual field theory side there is a global U(1) symmetry which corresponds
to the U(1) gauge symmetry on the gravity side. From the point of view of the
dual field theory, this U(1) symmetry is broken below Tc at a finite charged den-
sity because of the condensation of the charged scalar. The complex scalar Ψ
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corresponds to the scalar operator of the order parameter O of the dual field the-
ory. In the following, we focus on the normal state of holographic superconductor
which is described by RN-AdS black hole

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dx2 + dy2), (6.23)

f(r) = r2 − 1

r

(
r3
+ +

ρ2

4r+

)
+

ρ2

4r2
, (6.24)

A = ρ

(
1

r+
− 1

r

)
dt, (6.25)

The black hole is characterized by two parameters, the location of the horizon r+

and the charge density ρ. They are related to the mass and charge of RN-AdS
black hole respectively. The Hawking temperature of the black hole, which is
identified as the temperature of the dual field theory in the AdS/CFT duality,
is T = (3r+/4π)[1 − ρ2/(12r4

+)]. When r → ∞, At → µ − ρ/r. Here µ and ρ
are identified as the chemical potential and the charge density of the dual field
theory respectively. In the following, we fix the charge density to be ρ0 = 1.

Since the dual operator of Ψ is the order parameter, the two-point retarded
Green’s function of the dual operator for the fluctuation of Ψ gives the pair
susceptibility,

χ(k, ω) = GRO†O(k, ω). (6.26)

We will calculate the two-point retarded Green’s function for the fluctuation of
Ψ in the normal phase above the transition temperature Tc, i.e. our calculation
is in the RN-AdS black hole background. We consider the zero momentum mode
of δΨ and expand it as δΨ(r, x, t) = ψ(r)e−iwt. The equation of motion for ψ(r)
is

ψ′′ +

(
f ′

f
+

2

r

)
ψ′ +

(
(w + qAt)

2

f2
− m2

f

)
ψ = 0. (6.27)

Since we are interested in the retarded Green’s function, we impose the infalling
boundary condition in the near horizon geometry [291], i.e.

ψ(r) ' (r − r+)−i
w

4πT as r → r+. (6.28)

Near the boundary, the scalar field goes as

ψ(r) ' ψ−
rM−

+
ψ+

rM+
as r →∞, (6.29)

where M±= 3
2 ± ν with ν =

√
9 + 4m2/2.

In 3+1 dimensional gravity theory in asymptotical AdS4 spacetime, the BF
bound for the scalar is m2 ≥ −9/4, so ν is always non-negative. For ν = 0,
the two terms ψ± will be degenerate and a new logarithmic term appears. We
will not consider this case for simplicity. For ν ∈ (0, 1], both modes ψ± are
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normalizable. We can choose either ψ+ or ψ− as the source and treat the other as
the corresponding response, and the dual operators are O− and O+ respectively.
We can calculate the retarded Green’s function for the two operators respectively
[291,292],

GRO†−O−
∼ ψ−
ψ+

, GRO†+O+
∼ ψ+

ψ−
. (6.30)

When w/T → ∞, the Green’s function approaches the form in pure AdS4

spactime, i.e. GR
O†−O−

∼ 1/w2ν and GR
O†+O+

∼ w2ν . For ν > 1, only ψ+ is

normalizable. We can only take ψ− as the source and treat ψ+ as the corre-
sponding response. The dual operator is O+ and we can calculate the retarded
Green’s function for it as above.

We notice from the equation of motion (6.27) and the infalling boundary
condition (6.28) for ψ, the holographic superconductor has the symmetry χq(ω) =
χ∗−q(−ω). For q 6= 0, one generally has χ′′q (ω) 6= −χ′′q (−ω), and only for very high
temperatures, the symmetry χ′′(ω) = −χ′′(−ω) is restored. For the three models
we considered in the last section, one always has χ′′(ω) = −χ′′(−ω). We regard
this as an artifact of the present minimal model of holographic superconductors.
It would be interesting to see how the particle-hole symmetry can emerge in such
holographic models.

6.5 Evolution of the full pair susceptibility

Using a SIN tunneling junction, experimentalists can measure the imaginary part
of the full dynamical pair susceptibility χ′′p in the normal state of the quantum
critical metals. In this section we investigate in detail theoretically the tem-
perature and frequency evolution of χ′′p(ω, T ) for the three different scenarios
introduced in the last section. We intend to use these models as templates that
can be compared with future experimental results. Let us imagine what the
experimentalists will do. They will take a sample, say some heavy fermion com-
pound, tune it to the critical state by applying pressure or doping, scan the
tunneling current for various bias voltages at different temperatures, and finally
subtract the quasiparticle contributions to get the pair tunneling part. The su-
perconducting transition temperature is fixed for this particular sample. So in
our calculation, we will choose some particular sets of parameters, i.e., retarda-
tion scale, glue strength, etc., so that the three different models produce the same
Tc. The overall magnitude of the measured χ′′p(ω, T ) depends on the details of
the tunneling junction and is therefore difficult to predict on an absolute scale.
The good news is that the difference of the various models also lies in the pattern
of the relative change of the amplitude with frequency and temperature. So in
the following study, we will normalize the amplitude with respect to its value at
some particular reference temperature and frequency, and consider the quantity
χ′′p(ω, T )/χ′′p(ω∗, T ∗).



144 Measuring the Pair Susceptibility Directly

For the three models with electron-glue dualism, we have formulated the equa-
tions in Matsubara frequency. Generically though, to obtain the real-frequency
dynamical pair susceptibility, a crucial step is the analytic continuation, i.e.,
the replacement iΩ → ω + iδ, which is generally a non-trivial procedure. We
choose the method of Padé approximants. Historically the Padé approximant
analytic continuation method is based on continued fractions but the method of
matrix inversion actually works much faster. Although the Padé approximant
method is uncontrolled it seems to work very well in our case, probably because
the pair susceptibility is a very smooth function with only a single characteris-
tic peak/feature. Furthermore, our calculation has no statistical noise (it is not
quantum Monte-Carlo), and in principle we can improve the precision arbitrarily
by (i) increasing matrix size, (ii) increasing numerical precision in all steps, and
(iii) increasing the number of Padé points iΩn, until computational resources run
out.

With the form of Γ0(iνn; iΩ) and λ(iΩ) specified as in Eqs. (6.8,6.16,6.20) and
(6.13,6.14), we proceed to solve the Bethe-Salpeter equation (6.5) for the three
different models, using matrix inversion to get Γ(iνn; iΩ). Then we sum over
νn and arrive at the imaginary frequency pair susceptibility χ(iΩ), the analytic
continuation of which, by the method of Padé approximants, gives the final result
for the dynamical pair susceptibility χp(ω).

For holographic superconductors, we solve the differential equation 6.27 with
the boundary condition 6.28 near the horizon, and then extract the two coeffi-
cients ψ± near the boundary. The ratio of the two gives the pair susceptibility.

Figure 6.4 displays the temperature and frequency evolution of the imagi-
nary part of the full dynamical pair susceptibility χ′′p(ω, T ) for the four different
models in a false-color plot. Here the UV cut-off scale is set to ωc ≡ 1. The
exponents, coupling strengths and retardation scales are tuned to give the same
Tc = 0.01 for all three models with electron-glue dualism. For Fermi liquid BCS,
the parameters are ωb = 0.2, g = 0.3667545. For the critical glue model, γ = 1/3,
Ω0 = 0.00267089 (matrix size is 1000, number of Padé points is 16). For quantum
critical BCS, α = 1/2, ωb = 0.2, g = 0.2131115. For holographic superconductor,
Tc = 0.1468. For all the four models, the horizontal axis is normalized with
respect to Tc. The labeling ω should be understood as ω/(100Tc).

There is stunning difference for the four different scenarios. For FLBCS, there
is a clear division of a core part and an external part. The core part corresponds
to the peak, which dies out quickly away from Tc. The external part comes from
the electronic pair susceptibility. Extrapolating the ‘external’ contours from high
temperatures to lower temperatures, one finds that they converge to a single
point. This convergence is readily read off from the bare pair susceptibility
χp,0 ∼ tanh(ω/4T ), the contours of which converge to T = 0, or τ = −1.

The contours of the full pair susceptibility in QCBCS, HS and CG are all
self-similar. However in CG, they are of elliptic shape, which is totally different
from the corresponding bare one. This is clear sign that the effects of the critical
glue persists even at high temperatures. In QCBCS and HS, the contours of the
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Figure 6.3: The imaginary part of the full pair susceptibility as function of
frequency and temperatures for the three different models. Here we plot
χ′′(ω, τ)/χ′′(ωmax, τ = 1). τ = (T − Tc)/Tc goes from 1 to 20. Frequency is
normalized in terms of Tc, and the horizontal axis represents ω/(200Tc).

full pair susceptibility have the shape of a mountain with cliff on the right and
they are quite similar to those of the bare ones, meaning that the electronic part
dominates away from Tc.

Next we will consider linecuts of χ′′p(ω, T ) at various fixed temperatures. The
gross feature is that for all the models considered, except the holographic su-
perconductors with very small charge q, above Tc, χ

′′
p(ω) always has just one

peak. As temperature increases, the peak becomes broader, with the peak loca-
tion moving to higher frequency, and the peak height decreasing. However the
different models show subtle differences in the way how the peak changes with
temperature. We will proceed to characterize the peak evolution, first near Tc
and then away from Tc.
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Figure 6.4: The imaginary part of the bare pair susceptibility as function of fre-
quency and temperatures for the three different models. For holographic super-
conductor, we plot the corresponding result in Schwarzschild-AdS background.

For holographic superconductors with q near zero, we find that on top of the
conformal peak, which has its origin from the asymptotic AdS geometry and thus
insensitive to temperature, another peak gradually builds up as one approaches
Tc. And in the temperature range Tc < T . 5Tc, we observe a peak-dip-hump
structure plus the conformal tail at high frequencies.

The behavior of the pair susceptibility near Tc characterizes the nature of the
superconducting transition. Here in the three models with electron-glue dualism,
aiming at optimally doped cuprates as well as heavy fermion systems, we assume
a mean field type transition, ignoring phase fluctuations altogether. The pairing
fluctuations near Tc are thus diffusive in nature, and the pair susceptibility has
a diffusive pole

χp(ω) ∝ −N(0)Tc
1

iω − τ−1
GL

. (6.31)
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Figure 6.5: Scaling collapse of the imaginary part of the full pair susceptibility
near Tc for the four different models: FLBCS, CG, QCBCS and Holographic
superconductor. In each figure, we have plotted 4 different temperatures T/Tc =
1.01, 1.03, 1.07, 1.1.

Here the characteristic relaxation rate τ−1
GL, stemming from pair breaking effects,

can be determined from a Ginzburg-Landau calculation [277, 282]. Assuming
preformed pairs above Tc would lead to a propagating nature for the pairing
fluctuations and thus a different form of χp(ω). But as already mentioned, we
will not consider this possibility here. The proportionality factor in Eq. (6.31) is
model dependent and for FLBCS is 8kB/λ

2π~.
The immediate consequence of the diffusive pole in Eq. (6.31) is that near Tc

the imaginary part of the pair susceptibility has a quasi-Lorentzian line-shape,
i.e., a typical relaxational peak,

χ′′p(ω) ∝ N(0)

τ

ω τGL

1 + (ω τGL)2
, (6.32)

independent of the particular pairing mechanism. Here we have defined the
reduced temperature τ = (T − Tc)/Tc.

The peak evolution thus shows universal quasi-Lorentzian peak behavior near
Tc for these three models. The peak location is at ωmax ' τ−1

GL ∝ (T −Tc), which
goes to 0 linearly as T → Tc. The peak height is χ′′p,max ∝ N(0)Tc/(T − Tc),
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Figure 6.6: Scaling collapse of the imaginary part of the full pair susceptibility
at high temperatures for the four different models: FLBCS, CG, QCBCS and
holographic superconductor (from top to bottom). In each figure, we have plotted
4 different temperatures: T/Tc = 11, 14, 17, 21.

which diverges as (T − Tc)−1 when T → Tc. The full width at half maximum of
the peak width is ωwid = 2

√
3ωmax, which also vanishes linearly as T → Tc. The

fact that peak width and the peak location move together is a robust property
of the peak and is used as self consistency check of our numerical calculations.

Above we wrote ωmax ' τ−1
GL, and this was meant literally: in our numerical

results we never find the exact relation ωmax = 8kB
π~ (T −Tc). Instead, we find de-

viations from this result up to 10 percent for the FLBCS and CG models, and up
to factor 3 difference for the QCBCS model. So, although the relaxational peak
itself is universal for these three models, the precise location of the peak ωmax

does have some model-dependent information. Furthermore, the peak location
ωmax can be measured experimentally without fitting , i.e., parameter free. Un-
fortunately, the precise value of ωmax depends also on non-universal parameters
such as the glue coupling strengthλ. The only conclusive outcome that may arise
is that if ωmax differs from τ−1

GL by a factor of 1.5 or more, then the FLBCS and
CG models are very improbable.

For holographic superconductor, as one approaches Tc, the pair susceptibility
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becomes of the form

χp(ω) =
χ(0)

1− iωτ1 − ωτ2
, (6.33)

where χ(0) is frequency independent and diverges when approaching Tc. τ1, τ2
are real numbers and both of them diverge as T → Tc, τ1 = A1/(T − Tc), τ2 =
A2/(T −Tc). The ratio A1/A2 is of order 1 even at Tc. In addition to the obvious
frequency asymmetry, one can see the difference of the holographic superconduc-
tor with the other three models from the shape of the peak at positive frequencies
near Tc (Fig. 6.5).
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Figure 6.7: Evolution of the ratio of the peak width and peak location for Fermi
liquid BCS (top left), Critical Glue (top right), QCBCS (bottom left) and holo-
graphic superconductor (bottom right).

Away from Tc, the pair susceptibility probes the normal state properties of the
system, revealing the particular underlying pairing mechanisms. Different models
give different predictions for the behavior of χ′′p(ω) and the pair tunneling mea-
surement can be used to further distinguish between the different models. The
results for the four models introduced in the last section are shown in Figs. 6.6,
6.7.

The basic picture is that for the quantum critical BCS and holographic su-
perconductors, the relaxational peak will cross over to the quantum critical peak
originated from the electronic part of the pair susceptibility, while for Fermi liq-
uid BCS and critical glue model, the peak simply dies out, and χ′′p(ω) becomes
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more and more flat at higher and higher temperatures. We plot in Fig. 6.6 the
scaling collapse of the pair susceptibility. Scale invariance is spoiled by pertur-
bative corrections in the critical glue model, and it does not have a good scaling
collapse. The best-fit exponent actually changes as one fits different frequency
ranges. All the other three models do have ω/T scaling. Another obvious feature
one can read off from Fig. 6.6 is that the pair susceptibility in QCBCS and HS
is more peaky than the other two models.

Such difference can be shown quantitatively by extracting the evolution of
the peak location, peak height and peak width. The most revealing quantity
is the ratio of the peak width and peak location (Figs. 6.7). For FLBCS and
CG, the width and also the ratio grows exponentially at higher temperatures.
For QCBCS and holographic superconductors, both the peak width and peak
location increases linearly with temperature, and they are locked together again
at high temperature, as they were in the region near Tc. We can see clearly in
the ratio of the two, the crossover from one region dominated by the relaxational
peak to a plateau dominated by the quantum critical peak. The behavior of the
peak height in QCBCS and holographic superconductor is also quite different
from the other two models. At high temperature, the peak height tends to a
constant in FLBCS and CG, while for QCBCS and holographic superconductor
it decays as power-law with exponent αp, χ

′′
p,max ∼ T−αp . These will be the

smoking gun evidences for QCBCS/HS.

6.6 Outlook: towards a realistic experiment

We have proposed to use the the second-order Josephson effect in SIN junctions
to measure the pair susceptibility of the quantum critical metals. There are
two possible experimental approaches using modern thin-film preparations and
STM/STS techniques with a superconducting tip. Recently there has been signif-
icant progress employing multi-target pulsed laser deposition (PLD) to grow epi-
taxial layers of complex (ternary, quarternary , etc.) compounds [283]. Here the
grand challenge would be to form a a tunnel junction between a high-temperature
superconductor (HTS) and a heavy-fermion superconductor(HFS). For exam-
ple, as proof of principal we suggest YBCO with Tc = 90K and CeIrIn5 with
Tc = 0.4K and the quantum critical region persisting to about 30K, both prob-
ably d-wave superconductors. With the enormous spread in transition tempera-
tures one could thereby reach τ -values of about 70 over a wide range of frequencies
ω at the lower temperatures. The advantage of HF-CeIrIn5 is that around am-
bient pressures the superconducting dome is surrounded by regime of quantum
critical behavior [293].

A second innovative method, now in development, is the scanning tunneling
(STM/STS) measurement which has just been demonstrated as striking effective
in probing the gap formations of URu2Si2 [294, 295]. We would suggest using a
superconducting tip formed from the HTS either by etching down a single crystal
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or gluing tiny crystallites of YBCO to a normal Ir or Pt tip. Such scanning
experiments have never been attempted between a HTS and the cleaved surface
of a HFS, e.g. CeIrIn5, another grand challenge for the heavy fermion community.
Stimulated by our pair-susceptibility calculations, we hope the experimentalists
will evaluate the above possibilities in their efforts toward novel thin film and
tunneling investigations.
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Cha p t e r 7

Conclusions

We have been battling with the signful fermions in this thesis. We have not
really gotten very far with the microscopic approach. The reformulation of the
Anderson-Higgs mechanism for bosonic systems and the understanding of its ab-
sence in fermionic systems from the worldline perspective are interesting stories
by themselves [Chapter 2]. The Mott-insulator picture of the free fermion nodal
structure deepens our understanding of fermionic statistics [Chapter 3]. How-
ever, we are still far from a satisfying general understanding of the fermion sign
problem. Probably we theorists should be more modest. It can be that there is
actually no way to solve the sign problem once and for all. The NP hardness
of this problem already tells us that a mathematically rigorous approach is im-
possible, which is not necessarily bad news: it hints strongly at surprising new
discoveries. The task of theorists is thus to find the prototype, be it in the form
of a wavefunction, an effective field theory, or even using the language of string
theory, to model emergent phenomena.

From this point of view, the natural question to ask is whether the different
worldline theories and different nodal structures can serve as prototypes of new
forms of matter. A scalar field theory on the worldline represents a bosonic parti-
cle. Inclusion of Grassmann fields changes the statistics to become fermionic. Dif-
ferent statistics are encodes in the different field content of the 0+1-dimensional
worldline field theory. Along this line of thinking, it would be interesting to see
whether it is possible to construct a more complex worldline field theory that
can represent fermions without double occupancy, as appears in the t-J model.
Such particles have essentially different statistics as compared to conventional
fermions. When the extra worldline fields are gapped, they can be integrate out,
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leaving us with a normal fermionic particle. In this way the second-order phase
transition in the worldline field theory may explain the continuous nature of the
transition from the usual fermions to the projected fermions in the t-J model.

In order to understand Mott physics from the worldline formalism, we also
need a better way of dealing with the effect of the lattice. The essence of the
existence of the lattice is that the number of available states is greatly reduced.
This is a necessary condition for the electrons to experience jamming and produce
a Mott insulating state. Pictorially the effect of the lattice can be modeled by
replacing the point particles by finite size hard core spheres. And the Mott
transition corresponds to the jamming transition of such spheres.

A generalization of the 0+1-dimensional worldline field theory to 1+1-
dimensional worldsheet would lead to string theory. Having in mind the equiva-
lence of the Anderson-Higgs mechanism and infinite winding, an obvious question
to ask is what happens when the strings have long windings. Here one considers
a finite density of strings. And to calculate the free energy of this system, one
needs to sum over all possible permutations of the initial or finial string config-
urations. Such a string condensation will backreact to the space-time geometry,
and will have important cosmological implications.

We do learn important lessons from wrestling with the fermion nodal struc-
ture. The traditional way to understand the different phases of matter is to use
symmetry properties of the wave functions. The nodal structure provides a more
topological perspective. Wen and collaborators have used the pattern of zeros
of the wave functions to characterize the topological order in fractional quantum
Hall states [296–298]. There the nodes are at discrete points where two particles
coincide. The pattern of zeros describes how fast the wavefunction approaches
to zero near the nodes.

The number of nodal cells is an adiabatic invariant for quantum-mechanical
systems [299]. We have seen in Chapter 3 that for the Fermi gas, there are
two nodal cells. The immediate consequence is that for the Fermi liquid, which
can be adiabatically continued to the Fermi gas, there should also be just two
nodal cells. This number can be used to characterize the different phases of
interacting fermions. In the Mott insulating state, the particles localize and
the number of nodal cells is expected to be N !, with N the total number of
particles. So as the repulsion between the particles increases, and the metallic
Fermi liquid ground state is driven to become a Mott insulator, there must be a
phase transition in-between to open up more nodal cells. One can imagine that
the initial nodal hypersurface becomes more and more wrinkled, as we approach
the critical point, and eventually topology changes and more nodal cells are
created. At the critical point, the nodal hypersurface has to be scale invariant,
thus a fractal structure [229]. This process can happen smoothly, and a second-
order phase transition is plausible. It’s still not clear to us what is the universality
class of this transition. The problem is how to make such intuitive pictures into
concrete mathematical equations, and calculate the normal state properties of
the system at finite temperatures.
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A less ambitious project is to simply do perturbation theory around the Fermi
gas. We already have some preliminary results on this problem. The Feynman
rules in such first-quantized formalism have been constructed and in principle
everything that can be done in the conventional second-quantized formalism can
also be done using the worldline language. The partition function and all the
correlation functions can be expressed in terms of the N-particle density matrix.
The question is what can we learn by doing this. What we can hope for is to
write down a sign-free perturbation theory for fermions. From the perturbation
corrected density matrix, we can read off the perturbed nodal surface. And then
we can carry out the constrained path integral using the new nodal constraints,
which will produce a new density matrix. Such a process can be repeated untill
the result converges to some fixed point. We can see clearly from this process the
difference of the fermionic RG from the usual bosonic RG. The geometric nodal
hypersurface provides new dimensions for the parameter space, arising from the
constraints on the paths. A natural question to ask at this point is what are the
possible fixed-point nodal surfaces. One possible geometry is the one correspond-
ing to free fermions, a dN − 1-dimensional hypersurface that divides the whole
dN -dimensional configuration space into 2 parts. Another possible geometry is
the one corresponding to Mott insulators with infinitely large Hubbard U. This
fixed-point geometry is simply the whole dN -dimensional space with several dis-
crete points deleted. A more interesting fixed-point geometry is the fractal nodal
surface [229]. With such a fractal boundary, one may expect to have ”multifrac-
tal” behavior in the physical observables, i.e. scaling behavior with a continuous
spectrum of exponents.

The macroscopic approach has been more rewarding up to now. The sim-
ple scaling theory of superconductivity we proposed for quantum critical met-
als [Chapter 5] turns out to have surprising connections with other pursuits of
strongly correlated electron systems. One such connection is with the numerical
work on the two dimensional Hubbard model. The Hubbard model is now ac-
cepted as the de facto model for cuprates. Numerical calculations of the Hubbard
model strongly support the idea of a finite-doping QCP separating the low-doping
region, found to be a non-Fermi liquid, from a higher doping Fermi liquid region.
In the vicinity of the QCP, calculations also show that for a wide range of temper-
atures, the doping and temperature dependence of the single-particle properties
are consistent with marginal Fermi liquid behavior. The critical doping seems to
be in close proximity to the optimal doping for superconductivity as found both
in the context of the Hubbard and t-J models. This proximity already indicates
that a QCP enhances pairing, though the detailed mechanism is largely unknown.

We have been working together with Jarrell’s group, using the dynamical
cluster approximation to understand the proximity of the superconducting dome
to the QCP in the Hubbard model [300]. The full pairing susceptibility is de-
composed into the bare susceptibility, which is constructed from the dressed
one-particle Green’s function, and the vertex function. The d-wave channel is
found to be the most divergent one. The bare pair susceptibility and the vertex
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function are then projected to the d-wave channel. At critical doping, as one
lowers the temperature, the magnetic susceptibility saturates, the charge suscep-
tibility is strongly enhanced, and the d-wave pairing susceptibility diverges at
a certain temperature. An interesting result is that the d-wave pairing vertex
falls monotonically with increasing doping. And it changes smoothly across the
critical doping. In contrast, the bare d-wave pairing susceptibility exhibits sig-
nificantly different features close to and away from the QCP. In the underdoped
region, it saturates at low temperatures. In the overdoped region, it displays
the normal Fermi liquid type log divergence. However at the critical doping, it
diverges more quickly with decreasing temperature, roughly following the power-
law behavior 1/

√
T . Decomposing the pairing vertex into different channels, it

is also found that as the QCP is approached, the pairing originates predomi-
nantly from the spin channel. The basic observation of the Hubbard model is
that pairing in the critical region is due to an algebraic temperature-dependence
of the bare pair susceptibility rather than an enhanced d-wave pairing vertex,
supporting our QCBCS picture of superconductivity in such systems.

Another interesting connection is with the newly developed string theoret-
ical approach to condensed matter systems. A class of superconductors have
been constructed theoretically, which have a mathematical description in terms
of charged black holes with nontrivial ‘hair’ [285]. This approach is based on the
idea of the AdS/CFT correspondence, which states that the strong coupling limit
of a gauge theory can be described by a weak coupling gravitational theory in
one dimension higher and with negative cosmological constant [123–125]. In the
gravitational description, black holes will play the role of temperature. Super-
conductivity follows from the spontaneous breaking of the U(1) symmetry, i.e.
the formation of a non-zero condensate. On the gravity side, such condensates
correspond to static non-zero fields outside the black holes, usually called black
holes ’hair’. In AdS space, the negative cosmological constant plays the role
of a confining box, and the charged particles pair-created from the vacuum via
the Schwinger effect will be confined to the region near the horizon, producing
the black hole ’hair’. A coupled system of gravity, Maxwell field and a charged
scalar is enough to produce a superfluid/superconducting condensate. Due to
the asymptotic AdS background, the pairing susceptibility in such models will
automatically have a power-law behavior at high frequency. Near zero frequency,
it also displays the usual hydrodynamic behavior. So this class of models can be
looked upon as a more sophisticated way of incorporating scaling in the presence
of superconductivity, along the same line as our QCBCS approach. In Chapter
5, we have used as a toy model the scaling function from 1+1 dimensional CFT.
The AdS/CFT approach will provide us with the truly high dimensional scaling
functions.

The big theme that emerges from this thesis is the instability of QCPs. It is
by now an empirical fact based on experiments that the quantum critical metals
are more susceptible than normal metals and superconductors. States of matter
that can not be constructed from stable states like normal metals or supercon-
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ductors can be built near the QCPs. We still do not have a good theoretical
understanding of this fact. The general reasoning is that since the QCP is a
highly degenerate state, a tiny perturbation may make it unstable. Chapter 5 of
this thesis is based on such logic, where we incorporate this idea in a scaling the-
ory of superconductivity. For the Fermi liquid, the superconducting instability is
driven by a marginally relevant four-point interaction between excitations about
the Fermi surface. The exponential form of the gap equation follows from the
marginal nature of the interaction. One may speculate that in quantum critical
metals, the superconducting instability becomes truly relevant, resulting in the
algebraic gap equation of Chapter 5.

A more difficult question is, for particular materials which perturbation will
finally dominate and determine the fate of the QCP. In many materials, su-
perconductivity seems to be a plausible end of QCPs. We have seen another
possibility in Chapter 4 that, in the presence of competing orders, the second-
order phase transitions may become first order at low temperatures, with the
immediate consequence that spatially modulated inhomogeneous phases are ex-
pected to be present near the QCPs. Other examples include the nematic phase
around the metamagnetic QCP in the bilayer ruthenate Sr3Ru2O7 [93–96]. A
better understanding of this problem will provide theoretical guidance for the
search for exotic materials in systems involving QCPs.
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[183] P. Coleman, C. Pépin, Q. Si, and R. Ramazashvili, J. Phys: Cond. Mat.
13, 723 (2001).

[184] P. Coleman and A. J. Schofield, Nature 433, 226 (2005).

[185] S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O. Trovarelli, C. Geibel,
F. Steglich, P. Coleman, and Q. Si, Nature 432, 881 (2004).

[186] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature 413, 804 (2001).

[187] D. van der Marel, H. J. A. Molegraaf, J. Zaanen, Z. Nussinov, F. Carbone,
A. Damascelli, H. Eisaki, M. Greven, P. H. Kes, and M. Li, Nature 425,
271 (2003).

[188] R. A. Cooper, Y. Wang, B. Vignolle, O. J. Lipscombe, S. M. Hayden, Y.
Tanabe, T. Adachi, Y. Koike, M. Nohara, H. Takagi, C. Proust, and N. E.
Hussey, Science 323, 603 (2009).

[189] S. L. Bud’ko, N. Ni, and P. C. Canfield, Phys. Rev. B 79, 220516 (2009).

[190] J. Zaanen, Phys. Rev. B 80, 212502 (2009).

[191] C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E.
Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).

[192] P. Monthoux, D. Pines, and G. G. Lonzarich, Nature 450, 1177 (2007).



BIBLIOGRAPHY 169

[193] A. V. Chubukov and S. Sachdev, Phys. Rev. Lett. 71, 169 (1993).

[194] C. M. Varma, Z. Nussinov, and W. van Saarloos, Phys. Rep. 361, 267
(2002).

[195] N. E. Bonesteel, I. A. McDonald, and C. Nayak, Phys. Rev. Lett. 77, 3009
(1996).

[196] V. Galitski and S. Sachdev, Phys. Rev. B 79, 134512 (2009).

[197] A. V. Chubukov and J. Schmalian, Phys. Rev. B 72, 174520 (2005).

[198] A. V. Chubukov and A. M. Tsvelik, Phys. Rev. B 76, 100509 (2007).

[199] A. Abanov, A. V. Chubukov, and A. M. Finkel’stein, Euro. Phys. Lett. 54,
488 (2001).

[200] A. Abanov, A. V. Chubukov, and J. Schmalian, Euro. Phys. Lett. 55, 369
(2001).

[201] A. V. Chubukov, A. M. Finkel’stein, R. Haslinger, and D. K. Morr, Phys.
Rev. Lett. 90, 077002 (2003).

[202] P. Krotkov and A. V. Chubukov, Phys. Rev. Lett. 96, 107002 (2006).

[203] P. Krotkov and A. V. Chubukov, Phys. Rev. B 74, 014509 (2006).

[204] A. Abanov, A. V. Chubukov, and M. R. Norman, Phys. Rev. B 78, 220507
(2008).

[205] D. V. Khveshchenko and W. F. Shively, Phys. Rev. B 73, 115104 (2006).

[206] E. G. Moon and S. Sachdev, Phys. Rev. B 80, 035117 (2009).

[207] Z. Fisk and D. Pines, Nature 394, 22 (1998).

[208] I. I. Mazin and D. J. Singh, Phys. Rev. Lett. 79, 733 (1997).

[209] P. Monthoux and G. G. Lonzarich, Phys. Rev. B 59, 14598 (1999).

[210] D. Fay and J. Appel, Phys. Rev. B 22, 3173 (1980).

[211] A. Millis, S. Sachdev, and C. M. Varma, Phys. Rev. B 37, 4975 (1988).

[212] M. Franz and A. J. Millis, Phys. Rev. B 58, 14572 (1998).

[213] R. Roussev and A. J. Millis, Phys. Rev. B 63, 140504 (2001).

[214] K. B. Blagoev, J. R. Engelbrecht, and K. S. Bedell, Phys. Rev. Lett. 82,
133 (1999).



170 BIBLIOGRAPHY

[215] Z. Wang, W. Mao, and K. Bedell, Phys. Rev. Lett. 87, 257001 (2001).

[216] P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).

[217] F. Marsiglio and J. P. Carbotte, Phys. Rev. B 33, 6141 (1986).

[218] J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).

[219] D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 34, 8190 (1986).

[220] L. N. Bulaevskii and M. V. Zyskin, Phys. Rev. B 42, 10230 (1990).

[221] T. R. Kirkpatrick, D. Belitz, T. Vojta, and R. Narayanan, Phys. Rev. Lett.
87, 127003 (2001).

[222] K. G. Sandeman, G. G. Lonzarich, and A. J. Schofield, Phys. Rev. Lett.
90, 167005 (2003).

[223] P. Strack, S. Takei, and W. Metzner, Phys. Rev. B 81, 125103 (2010).

[224] D. T. Son, Phys. Rev. D 59, 094019 (1999).

[225] O. V. Dolgov and E. G. Maksimov, Sov. Phys. Usp. 25, 688 (1982).

[226] O. Dolgov, I. Mazin, A. Golubov, S. Savrasov, and E. Maksimov, J. Phys:
Cond. Mat. 20, 434226 (2008).

[227] R. Combescot, Euro. Phys. Lett. 43, 701 (1997).

[228] M. Troyer and U. Wiese, Phys. Rev. Lett. 94, 17201 (2005).
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Samenvatting

De veel-deeltjessystemen om ons heen, gecreëerd door de natuur of door de mens,
bestaan uit elektronen. Elektronen zijn fermionen. De fermionische golffunctie
verandert van teken wanneer twee fermionen van plaats verwisseld worden. Dus
als we een kwantummechanische som over alle veel-deeltjestoestanden uitvoeren,
dan tellen we termen op met zowel positief als negatief teken, en het netto re-
sultaat zal hevig oscilleren. Dit leidt tot het beruchte fermionische mintekenpro-
bleem, dat zo complex is als zijn kan, genaamd niet-deterministisch polynomiaal
(NP) moeilijk in wiskundige termen. Het minteken-probleem verhindert in het
algemeen een wiskundig exacte oplossing van het veel-deeltjessysteem.

Verrassend genoeg zijn er verscheidene wisselwerkende fermionische systemen,
bijvoorbeeld normale metalen en 3He bij lage temperaturen, die op een bevredi-
gende manier beschreven kunnen worden met een fenomenologische theorie van
Landau, gebaseerd op de aanname van adiabatische verbondenheid met het vrije
Fermi gas. Echter, in de afgelopen decennia is er meer en meer experimenteel
bewijs verzameld waarbij het erop lijkt dat het Landau paradigma het begeven
heeft en de helse fermionische mintekens vrij spel hebben. Deze exotische ma-
terialen bevinden zich meestal nabij een nultemperatuur-faseovergang naar een
andere stabiele fase. Geassocieerd met dit singuliere punt worden abnormale
schalingseigenschappen voortdurend waargenomen in een eindig gebied van het
fasediagram. Dit is de motivatie van het idee van kwantumkritikaliteit, om te
proberen de vreemde eigenschappen van het systeem bij eindige temperatuur te
beschrijven in termen van lage-energie vrijheidsgraden van de grondtoestand.

In dit proefschrift verkennen we de minteken-volle fermionische wereld. In
hoofdstuk 2 en 3 bestuderen we het fermionische minteken-probleem in het we-
reldlijn padintegraal formalisme, waarin het minteken-probleem het meest trans-
parant is. In hoofdstukken 4 tot en met 6 analyseren we het idee van kwantum
kritikaliteit. We leggen de nadruk op de instabiliteiten van de kwantum-kritische
punten (KKPen) bij lage temperaturen, alwaar exotische nieuwe fases ontstaan.

In hoofdstuk 2 presenteren we een simpele oefening met minteken-volle
wereldlijn-padintegralen. We leggen met behulp van dit formalisme het me-
chanisme achter het Anderson-Higgs effect voor een gas van geladen bosonen
met een achtergrond magnetisch veld uit, and vervolgens gebruiken we deze me-
thode om de afwezigheid van dit effect voor een gas van fermionen te bewijzen.
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In dit formalisme wordt de fermionische statistiek gecodeerd door het gebruik
van aanvullende Grassmann coördinaten op een manier die leidt tot manifeste
wereldlijn-supersymmetrie. Deze extra symmetrie is de spil om de afwezigheid
van het effect voor geladen fermionen te demonstreren.

In hoofdstuk 3 beginnen we het fermionische minteken-probleem op te pak-
ken in het wereldlijn-formalisme. Het inzichtelijke werk van Ceperley om fer-
mionische padintegralen the construeren in termen van begrensde wereldlijnen
wordt herhaald. In deze representatie worden de mintekens geassocieerd met
de Fermi-Dirac statistiek op zelfconsistente wijze vertaald naar een geometrische
begrenzingstructuur, het nodale hyperoppervlak, die werkt op een effectieve bo-
sonische dynamica. Werkend met de padintegraal in impuls-ruimte laten we zien
het Fermi gas begrepen kan worden door analogie met een Mott isolator in een
harmonische val.

In hoofdstuk 4 verkennen we de instabiliteiten van KKPen die ontstaan door
competitie tussen de bosonische orde-parameters. De fases nabij KKPen worden
verondersteld om of klassiek of kwantummechanisch te zijn en worden aange-
nomen afstotend te wisselwerken via een kwadraat-kwadraat wisselwerking. We
ontdekken dat voor willekeurige dynamische exponent en voor willekeurige di-
mensionaliteit een voldoende sterke wisselwerking KKPen instabiel maakt, en
dat deze de overgangen naar eerste-orde dringt. We stellen voor dat deze insta-
biliteit en het begin van eerste-orde overgangen leidt tot ruimtelijk inhomogene
toestanden in praktische materialen nabij vermoedelijke KKPen.

In hoofdstuk 5 onderzoeken we de instabiliteit van fermionische vrijheidsgra-
den nabij KKPen. In het bijzonder bestuderen we de instabiliteit in het deeltje-
deeltje kanaal, en we presenteren een simpele fenomenologische schalingstheorie
voor supergeleiding in kwantumkritische metalen. Onder de aanname dat de
normale toestand een sterk-wisselwerkende kwantumkritische toestand van fer-
mionen is, stellen we voor dat de paringssusceptibiliteit relevant wordt, in plaats
van de marginale BCS-vorm, met het effect dat de paringsinstabiliteit veel ster-
ker wordt. Zelfs met een zwakke wisselwerking kunnen we een hoge overgangs-
temperatuur krijgen vergelijkbaar met wat in echte materialen wordt gevonden.
We bediscussiëren ook de gedraging van het orbitaal-gelimiteerde hogere kritisch
magnetisch veld als functie van de nultemperatuur koppelingsconstante. Vergele-
ken met de variatie in de overgangstemperatuur zou het kritisch veld een grotere
variatie kunnen laten zien afhankelijk van de waarde van de dynamische kritische
exponent.

In hoofdstuk 6 stellen we voor om een tweede-orde Josephson-effect te ge-
bruiken als directe detector van het Cooper-kanaal van kwantumkritische meta-
len, om het probleem van onconventionele supergeleiding in zulke systemen te
belichten. Om experimentatoren van sjablonen te voorzien, berekenen we de pa-
ringssusceptibiliteit voor verscheidene verschillende scenario’s. De evolutie van
de piekstructuur in het imaginaire deel van de susceptibiliteit wordt in detail
onderzocht. We ontdekken dat modellen die aannemen dat elektronen zich in
een kritische normale toestand bevinden substantieel verschillen van het Fermi
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vloeistof BCS-model en zijn moderne uitbreidingen.
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Summary

The many-body systems around us, created by nature or by humans, consist
of electrons. Electrons are fermions. The fermion wavefunction changes sign
when any two fermions are interchanged. So when we do a quantum-mechanical
summation over all the many-particle states, we are adding terms with both
positive and negative signs, and the result will be highly oscillatory. This leads
to the infamous fermion sign problem, which is as hard as it can be, called
non-deterministic polynomial-time (NP) hard in mathematical terms. The sign
problem generally impedes a mathematically exact solution of the many-body
systems.

Surprisingly, several strongly interacting fermionic systems, e.g. normal met-
als and 3He at low temperatures, can be satisfactorily described by a phenomeno-
logical theory of Landau based on the assumption of adiabatic connectivity to the
free Fermi gas. However more and more experimental evidences are accumulating
in the last few decades, pointing towards the breakdown of the Landau paradigm
and release of fermion signs from hell. These exotic materials usually lie on the
verge of a zero temperature phase transition to another stable phase. Associated
with such a singular point, anomalous scaling behaviors are constantly observed
in a finite region of the phase diagram. This motivates the idea of quantum
criticality, trying to describe the strange finite temperature properties of the sys-
tem in terms of the low energy degrees of freedom of the ground state at zero
temperature.

We explore the signful fermionic world in this thesis. In Chapter 2 and 3, we
study the fermion sign problem in the worldline path integral formalism, in which
the sign problem is most transparent. In Chapter 4 through 6, we explore the
idea of quantum criticality. We focus on the instabilities of the quantum critical
points (QCPs) at low temperatures, where exotic new phases appears.

In Chapter 2, we present a simple exercise of the signful worldline path inte-
grals. We explain in this formalism the mechanism behind the Anderson-Higgs
effect for a gas of charged bosons in a background magnetic field, and then use the
method to prove the absence of the effect for a gas of fermions. In this formalism,
the fermionic statistics are encoded via the inclusion of additional Grassmann co-
ordinates in a manner that leads to a manifest worldline supersymmetry. This
extra symmetry is key in demonstrating the absence of the effect for charged
fermions.
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In Chapter 3, we start to tackle the fermion sign problem in the worldline for-
malism. The insightful work of Ceperley in constructing fermionic path integrals
in terms of constrained worldlines is reviewed. In this representation, the minus
signs associated with Fermi-Dirac statistics are self consistently translated into
a geometrical constraint structure, the nodal hypersurface, acting on an effective
bosonic dynamics. Working with the path integral in momentum space, we then
show that the Fermi gas can be understood by analogy to a Mott insulator in a
harmonic trap.

In Chapter 4, we explore the instabilities of QCPs arising from the compe-
tition between the bosonic order parameters. The phases near QCPs are as-
sumed to be either classical or quantum and assumed to repulsively interact via
quadratic-quadratic interactions. We find that for any dynamical exponents and
for any dimensionality strong enough interaction renders QCPs unstable, and
drives transitions to become first order. We propose that this instability and the
onset of first-order transitions lead to spatially inhomogeneous states in practical
materials near putative QCPs.

In Chapter 5, we explore the instability of the fermionic degrees of freedom
near QCPs. In particular, we study the instability in the particle-particle channel,
and present a simple phenomenological scaling theory for superconductivity in the
quantum critical metals. Asserting that the normal state is a strongly interacting
quantum critical state of fermions, we propose that the pairing susceptibility
becomes relevant, instead of the BCS marginal form, which has the effect that
the pairing instability becomes much stronger. Even with a weak attractive
interaction, we can get a high transition temperature comparable to what is found
in real materials. We also discuss the behavior of the orbital-limited upper critical
magnetic field as a function of the zero-temperature coupling constant. Compared
to the variation in the transition temperature, the critical field might show a much
stronger variation pending the value of the dynamical critical exponent.

In Chapter 6, we propose to use the second order Josephson effect as a di-
rect probe of the Cooper channel of quantum critical metals, to shed light on
the problem of unconventional superconductivity in such systems. To provide
templates for experimentalists, we calculate the pair susceptibility for several
different scenarios. The evolution of the peak structure in the imaginary part
of the susceptibility is investigated in detail. We find that models assuming the
electrons are in a critical normal state differ substantially from the Fermi liquid
BCS model and its modern extensions.
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and friends (‘comrades’): Frank Krüger, Darius Sadri and Bas Overbosch. We
had been working together so enthusiastically on nodes and then on the pair
susceptibility problem. I am grateful to all the Stripe Club members: Aron
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Louk Rademaker, Kai Wu, Yan Liu and Ya-Wen Sun, for creating a productive
intellectual atmosphere around me. In particular I thank Daniel Abel for being
an active member of the nodal club, and thank Yan Liu and Ya-Wen Sun for
contributions to the last chapter of this thesis. Special thanks to Bas Overbosch
for translating the summary into Dutch, and Aron Beekman for checking the
grammar.

I thank Fran, Marianne and Trudy for the motherly help during the last four
years. I thank everybody in Institute Lorentz for making it like a family.

I am grateful to my friends: Xin Wang and Qing-Jing Yang, Jiong-Wei Wang
and Xiao-Xun Yang, Jian-Wei Wang and Simon Haller, Lin-Hua Jiang and Hua
Pan, Jun-Jun Shan and Hai-Yan Liu, Wei Xu and Ai-Ying He, Jun Wang and
Ying Zhao, Jun Wang and Jin-Feng Shen, Guo-Cai Dong and Nan Li, Peng Yang,
Keke Liu, Karine Bot, Xi Jin and especially Pang Gong and Xiao Shuaige.

I thank my parents and parents-in-law for their deep love and constant sup-
port during my study. I thank my wife Zhen and my daughter Ninyee, without
whom all these would have been meaningless.




	Introduction
	The prototype materials of this thesis
	Cuprates
	Heavy fermions

	Fermions: the main target of this thesis
	Feynmanian deconstruction of the order parameter
	Quantum criticality: a new organizing principle
	This thesis

	Fermions in the Worldline Path Integral
	Introduction
	Spinless Bosons in background Magnetic Field
	Inclusion of Spin and Fermionic Statistics
	Conclusions

	Fermions in the Constrained Path Integral
	Introduction
	Ceperley's constrained path integral
	Fermi gas as Mott-insulator
	The Fermi-liquid in real space: holographic duality
	The topology of the Fermi-liquid nodal surface
	There is only room for winding at the bottom


	Stability of Quantum Critical Points: the Bosonic Story
	Introduction
	Two competing classical fields
	Effects of quantum fluctuations
	Two fluctuating fields
	Competing orders with different dynamical exponents

	Conclusions
	Appendix

	Superconducting Instability in Quantum Critical Metals
	Introduction
	BCS theory and the scaling of the pair susceptibility
	Determining the transition temperature
	More about the gap equation
	Away from the critical points
	The upper critical field
	Conclusions

	Measuring the Pair Susceptibility Directly
	Introduction
	The pair tunneling experiment
	Pairing mechanisms with electron-glue dualism
	Fermi liquid BCS
	The Critical Glue Model
	Quantum Critical BCS

	Holographic superconductors
	Evolution of the full pair susceptibility
	Outlook: towards a realistic experiment

	Conclusions
	Bibliography
	Samenvatting
	Summary
	Publications
	Curriculum Vitae
	Acknowledgements

