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ABSTRACT 

For the optimization of microbial production processes, the choice of the quantitative 

phenotype to be optimized is crucial. For instance, for the optimization of product 

formation either product concentration or productivity can be pursued, potentially 

resulting in different targets for strain improvement. The choice of a quantitative 

phenotype is not only highly relevant for classical improvement approaches, but even 

more so for modern systems biology approaches.  

 

In this study, the information content of a metabolomics data set was determined with 

respect to different quantitative phenotypes related to the formation of specific products. 

To this end, the production of two industrially relevant products by Aspergillus niger was 

evaluated; (i) the enzyme glucoamylase and (ii) the more complex product group of 

secreted proteases, consisting of multiple enzymes. For both products six quantitative 

phenotypes associated with activity and productivity were defined, taking also into 

account different time points of sampling during the fermentation. Both linear and non-

linear relations between the metabolome data and the different quantitative phenotypes 

were considered.  

 

The multivariate data analysis tool partial least squares (PLS) was used to evaluate the 

information content of the data sets for all the different quantitative phenotypes defined. 

Depending on the product studied, different quantitative phenotypes were found to have 

the highest information content in specific metabolomics data sets. A detailed analysis of 

the metabolites showing strong correlation with these quantitative phenotypes revealed 

that for glucoamylase activity various sugar-derivatives were found to be correlating. For 

the reduction of protease activity mainly as yet unidentified compounds were found to be 

correlating.  
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INTRODUCTION 

The optimization of microbial production processes is an ongoing cycle of strain 

and/or process improvement. Traditionally, prior knowledge is the basis for 

identifying putative bottlenecks in the process. However, with the use of functional 

genomics technologies a more unbiased approach towards target selection for 

metabolic engineering or process optimization can be applied (van der Werf, 2005). 

  

For optimization of the production process of a biological compound or enzymatic 

activity, a broad range of definitions of phenotypes can be selected for improvement. 

For instance, in studies reporting the production of glucoamylase by the filamentous 

fungus Aspergillus niger many different quantitative phenotypes for glucoamylase 

production were used. These included glucoamylase concentration (in g l-1) (Withers 

et al., 1998), activity (in U l-1) (Wang et al., 2008), yield (in mol product mol-1 

substrate) (Melzer et al., 2007), specific concentration or activity (in g g-1 DWT or U g-1 

DWT, respectively) (Swift et al., 2000, Pedersen et al., 2000; Schrickx et al., 1993), and 

specific productivity (in mol, gram or units g-1 DWT h-1) (Melzer et al., 2007; Withers 

et al., 1998; Schrickx et al., 1993).  

 

The motivation for choosing a certain quantitative phenotype in bioprocess 

optimization is not always clear, and seems largely ad libitum. The choice of the 

quantitative phenotype to be pursued may have a major influence on the outcome of 

an optimization strategy. As stated by Kennedy & Krouse (1999) in their review on 

strategies for improving fermentation medium performance, some medium design 

studies flounder because the target variable to be improved is not clearly defined. 

Phenotype definition is not only important for classical optimization approaches, but 

perhaps even more so for modern, top-down systems biology approaches. In 

particular, as the enormous quantity of data that arise from these systems biology 

studies may easily result in a data overload (Braaksma et al., 2010a). However, as far 

as we know, no systematic studies have been performed to study which quantitative 

phenotype is the most relevant in bioprocess optimization.  

 

In bioprocess optimization a high quantity, e.g. concentration, of a product is not 

automatically the most desired result. In the case the substrate is an expensive part of 

the total fermentation costs, a high yield may be more relevant. However, 

improvement of the product yield is not always achieved by focussing on the yield 

itself during the strain improvement process. Focussing on the productivity may 

require fewer strain improvement steps during a particular bioprocess optimization 

process, thus resulting in an improved yield more quickly. Reduction of the 
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fermentation time is another parameter to reduce production costs and can be 

realized by increasing the productivity. It is very likely that selection of either of these 

phenotypes for optimization will result in different targets to obtain the desired 

increase.  

 

In this study, a metabolomics approach was used for target selection for process 

optimization and/or metabolic engineering of the host. Culture samples from A. niger 

fermentations were analyzed for the production of glucoamylase and protease. For 

both products different quantitative phenotypes associated with activity and 

productivity were defined. In a first step, we determined the information content of 

our metabolomics data set with respect to different quantitative phenotypes 

associated with the formation of either of the two different products. Subsequently, 

metabolites were identified showing the strongest correlation with the phenotype 

studied. 

METHODS 

Strain and cultivation conditions 

Aspergillus niger N402, a cspA1 (conferring short conidiophores) derivative of ATCC 9029 (Bos et al., 1988), 

was used in this study.  

 

Cultures were grown in batch fermentations in BioFlo 3000 (New Brunswick Scientific) bioreactors with a 5 

litre working volume. Minimal medium (Bennett & Lasure, 1991) contained 7 mM KCl, 11 mM KH2PO4, 2 

mM MgSO4, 76 nM ZnSO4, 178 nM H3BO3, 25 nM MnCl2, 18 nM FeSO4, 7.1 nM CoCl2, 6.4 nM CuSO4, 6.2 nM 

Na2MoO4 and 134 nM EDTA. This medium was supplemented with the appropriate carbon source or 

nitrogen source in concentrations as indicated below. To prevent foaming, 1 % (v/v) antifoam (Struktol J 

673) was added to the medium and, when necessary, additional antifoam was added during the cultivation. 

The medium composition, cultivation conditions and operating procedure of the bioreactor have been 

described in detail previously (Braaksma et al., 2009). Cultivations were performed according to a full 

factorial design (total 16 conditions, and 9 biological duplicates), varying the carbon source (277.5 mM 

glucose or 333.0 mM xylose), the nitrogen source (ammonium chloride or sodium nitrate), the nitrogen 

concentration (low (282.4 mM) or high (564.8 mM)), and the pH (4 or 5) (Braaksma et al., 2009). 

  

Enzyme assays 

Protease activity. Extracellular proteolytic activities were measured at an assay pH of 4 as described 

previously (Braaksma et al., 2009).  

 

Glucoamylase activity. Glucoamylase activity was measured using PNPG (p-nitrophenyl α-D-gluco-

pyranoside) (Sigma-Aldrich) as a substrate (Withers et al., 1998). The procedure was fully automated using 

a COBAS MIRA Plus autoanalyser. 30 μl of cleared culture supernatant was incubated with 90 μl 0.1% (w/v) 

PNPG in 0.1 M sodium acetate buffer, pH 4.3, for 20 min. at 37 °C. The reaction was terminated by the 

addition of 135 μl 0.1 M borate buffer, pH 9.3, and the absorbance was read at 405 nm. One unit of 

glucoamylase activity was defined as the amount of enzyme that produces an absorbance at 405 nm 

equivalent to 1 μmol/l of p-nitrophenol in 1 minute under the given assay conditions. 
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Collection of samples, extraction and sample clean-up 

Samples for metabolome analysis (25-100 ml, depending on the dry weight concentration) were taken 

rapidly from the bioreactor by closing the gas outlet and opening the sampling port. Cells were immediately 

quenched at -45 °C in methanol and collected as described previously (Pieterse et al., 2006). Cell pellets 

were stored at -45 °C until use. To allow correlation of the metabolite concentrations to cell dry weight, the 

internal standards phenylalanine-d5, leucine-d3 (Spectral Stable Isotopes, Columbia, USA) and labelled 
13C10,15N5-GTP (Sigma-Aldrich, Zwijndrecht, the Netherlands) were added prior to extraction. The 

intracellular metabolites were extracted from the cell suspensions by chloroform extraction at -45 °C as 

described by Ruijter and Visser (Ruijter & Visser, 1996). The water/methanol phase was subsequently 

divided in two portions, one for GC- and one for LC-MS analysis. The LC-MS sample was deproteinized by 

filtration using a Microcon YM-10 (Millipore) filter centrifuged at 18000 g and -20 °C for 16 hours. 

Subsequently, all samples were lyophilized. To allow correction for the recovery of amino acids, the group 

of metabolites most susceptible to matrix effects (i.e. the effect that in complex samples the detection of 

some compounds is disturbed in the presence of other compounds), prior to lyophilizing the samples for 

GC-MS an internal standard mixture of 2D,15N-labeled amino acids (Spectra Stable Isotopes) was added. 

 

Biomass determination 

Cell culture samples. For the quantification of cell dry weight (DWT), a known volume of cell culture was 

filtered though a dried, pre-weighted filter paper, followed by washing with distilled water twice and then 

drying at 110 ºC for 24 h. 

 

Metabolome samples. The extracted mycelium was collected and dried at 110 °C for 24 h to determine the 

dry weight of the sample (Ruiter & Visser, 1996). The metabolite concentrations in the extracts were 

correlated to dry weight by the use of the above mentioned internal standards added prior to the extraction 

of the cell pellets. 

 

Analytical procedures 

IP-LC-MS method. Lyophilized metabolome samples were dissolved  in 100 μl methanol/water (1:3 v/v) and 

analyzed as described by Coulier et al. (Coulier et al., 2006).  Samples (10 or 20 μl) were separated on a 

reversed phase column (Chrompack Inertsil 5 mm ODS-3 100 x 3 mm, Middelburg, The Netherlands) using 

a 40 min linear gradient from 100% 5 mM hexylamine (pH 6.3) to 100% of 90% methanol-10 mM 

ammonium acetate (pH 8.5) at a flow rate of 0.4 ml min-1. Compounds were detected by electrospray 

ionization (negative ion mode) in the range m/z 150/1000 using a Thermo Finnigan LTQ linear ion-trap 

system (Thermo Electron Corp. San Jose, USA). During data acquisition, the mass spectrometer probe 

voltage was maintained at 3–4 kV, the heated capillary was kept at 250 °C.  

 

RP-LC-MS method. After analysis with the IP-LC-MS method, the redissolved metabolome samples were 

used for analysis with the RP-LC-MS method. Samples (10 or 20 μl) were separated on a reversed phase 

column (Waters Sunfire C18, 150 x 3 mm, 3.5 μm) using a linear gradient from 100% water + 0.1% formic 

acid to 75% MeCN/water (80%/20%) + 0.1% formic acid in 18 minutes followed by a linear gradient to 

100% MeCN/water (80%/20%) + 0.1% formic acid in 10 minutes at a flow rate of 0.3 ml min-1. Compounds 

were detected by electrospray ionization (ESI; positive ion mode) in the range m/z 150-2000. 

 

OS-GC-MS method. Lyophilized metabolome samples were derivatized using a solution of ethoxyamine 

hydrochloride in pyridine as the oximation reagent followed by silylation with N-methyl-N-

(trimethylsilyl)trifluoroacetamide (MSTFA) as described by Koek et al. (Koek et al., 2006). Before silylation, 

dicyclohexylphthalate (Sigma-Aldrich) was added as an internal standard for injection. GC-MS-analysis of 

the derivatized samples was performed using a temperature gradient from 70 °C to 320 °C at a rate of 10 °C 

min-1 on an Agilent 6890 N GC and an Agilent 5973 mass selective detector (Agilent, Palo Alto, USA). 1 μl 
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aliquots of the derivatized samples were injected splitless on a HP5-MS capillary column (30 m x 0.25 mm, 

0.25 μm film thickness, Agilent). Detection was performed using MS detection in electron impact mode (70 

eV). 

 

Data preprocessing 

The LC-MS data were converted to .cdf-files and imported in Matlab (version 7.7.0.471 (R2008b), The 

Mathworks, Inc., Natick, MA). The homemade software packages Impress V1.2, Winlin V2.4 and Equest 

V2.3XP (Vogels et al., 1996; van der Greef et al., 2004) were used to align and peak-pick the LC-MS data. 

Following preprocessing, all peaks in the obtained target tables (in the form of peak identifiers 

[mass.retention time] and peak areas) were normalized with respect to the amount of extracted biomass 

per sample.  

 

Also the data from the GC-MS analyses were converted into target tables, i.e. spreadsheets containing 

relative peak areas for all significant metabolite peaks in all samples. Peak areas were obtained by 

automated peak integration, followed by manual inspection. To several of the peaks a (partial) chemical 

identity could be assigned by comparing retention time and mass spectrum with an in-house database, 

otherwise a unique peak identifier [AN codes] was assigned. All peak areas were corrected for the recovery 

of the internal standard for injection. Subsequently, the amino acids were corrected for the recovery of the 

labeled amino acids. Finally, peaks were normalized with respect to the amount of extracted biomass per 

sample.  

 

Both preprocessed LC-MS and GC-MS data files were combined in one data matrix. As the presence of values 

equal to zero can disturb the statistical analysis, prior to this, a so-called 25%-rule was applied: only those 

variables were retained which were present in at least 25% of the samples (Rubingh et al., 2009; Bijlsma et 

al., 2006). Next, all remaining  zero values in the separate GC-MS, IP-LC-MS and RP-LC-MS data sets were 

replaced by a threshold value of half the lowest value in the data set unequal to zero (Rubingh et al., 2009). 

In total 489 individual peaks, i.e. 131 GC-MS, 176 IP-LC-MS and 182 RP-LC-MS peaks, were retained in the 

final data sets to be used as input for multivariate data analysis MVDA.  

 

Multivariate data analysis 

Before data analysis, the curves with glucoamylase and protease activity were corrected for noise and 

possible outliers using a smoothing algorithm as described previously (Braaksma et al., 2009). The 

phenotype data, e.g. protease or glucoamylase activity or productivity, were mean-centred [(x – x )] prior to 

MVDA in order to remove the overall offset from the data (van den Berg et al., 2006). The metabolome data 

set was mean-centred and, in order to compare the metabolites relative to the biological response range,  it 

was subsequently range scaled [(xi – x  )/(xmax – xmin)] prior to MVDA (van den Berg et al., 2006). PLS 

analysis were performed in the Matlab environment using the PLS Toolbox (version 5.0.3, 2008; 

Eigenvector Research, Manson, WA). The PLS results were cross-validated by using a tenfold single cross 

validation procedure. In addition to PLS analysis on the original metabolome and phenotype data, PLS 

analysis was also performed after either natural logarithm transformation of the phenotype data in 

combination with the original metabolome data or after natural logarithm transformation of the 

metabolome data in combination with the original phenotype data. An automatic procedure was written in 

Matlab code in order to run the many PLS models in a short time. Every generated PLS model was inspected 

manually to judge if the number of latent variables (LV’s) chosen by the algorithm seemed appropriate with 

respect to the Root Mean Square Error of Cross Validation (RMSECV) curve. In general, if more LV’s are 

included in the PLS model, the given model will contain more noise. In the case too many LV’s were chosen 

by the algorithm, a new PLS model was generated by choosing a smaller number of LV’s.  

 

  



Metabolomics for target identification: influence of phenotype definition 

 

73 

Compound identification 

The identity of relevant peaks was established by verifying peak retention time and mass spectrum against 

in-house and public databases. If a peak could not be identified in this way, in several cases it was 

subsequently reanalyzed using high resolution and/or tandem mass spectrometry (MS/MS) analytical 

instruments (van der Werf et al., 2007). 

RESULTS    

Experimental setup 

In order to evaluate whether the definition of the phenotype used influences the 

outcome of a metabolomics study, or for that matter any optimization approach, the 

production of two industrially relevant products, i.e. glucoamylase and proteases, by 

A. niger was studied. To this end, A. niger was grown at sixteen different 

environmental conditions, with nine randomly selected biological duplicates (see also 

Braaksma et al., 2009). Samples for metabolome analyses were taken at three 

different time points of the growth curve based on cell dry weight concentrations. One 

sample was collected at the middle of the logarithmic growth phase (mid log), one at 

the end of the logarithmic growth phase (late log) and one during the stationary 

growth phase. Samples were immediately quenched in a methanol solution to prevent 

alterations in the metabolite composition of the samples. Subsequently, the 

metabolites were extracted from the cells under quenched conditions, and the 

metabolites present were analyzed using three analytical methods (see Methods 

section).  

 

The production of glucoamylase and protease was monitored during the course of the 

fermentation by analyzing culture samples every six hours. The variation in maximum 

protease and glucoamylase activities under the different experimental conditions is 

shown in Fig. 1. For protease activity the variation is evenly distributed over the 

different experimental conditions (Braaksma et al., 2009). For glucoamylase the 

experiments can be clearly separated in two groups. One group with very low 

activities of conditions where the fungus was grown under non-induced conditions 

(on xylose) and another group with high activities of growth under induced conditions 

(on glucose).  
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Fig. 1. (A) Maximum protease activity and (B) maximum glucoamylase activity in the different fermentations. 
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Quantitative phenotypes  

Six different quantitative phenotype values for the three different products were 

determined. Glucoamylase and protease were expressed as activity (see A in Fig. 2), 

and for both products the rate of production, i.e. the productivity (see B in Fig. 2), was 

calculated. However, the amount of product formed also depends on the biomass 

concentration (DWT). Therefore, specific activity and specific productivity were also 

determined. These two specific phenotypes were calculated using the DWT at the time 

point of sampling (see A1 and B1, respectively, in Fig. 2). However, when a sample was 

collected during the stationary phase of the fermentation, the biomass concentration 

may already be declining due to autolysis of the fungal cells (White et al., 2002), thus 

making specific activity and specific productivity dependent on the degree of lysis. 

Therefore, both phenotypes were also calculated in relation to the maximum biomass 

concentration (DWTmax) (see A2 and B2, respectively, in Fig. 2). By using DWTmax, the 

phenotypic value is not artificially increased when in certain fermentations severe cell 

lysis had occurred. In addition to the phenotypes described above, similar quantitative 

phenotypes values were also calculated using the maximum activity or productivity 

for these products (see also Braaksma et al., 2009). Thus, in this latter case, for all 

three metabolome time samples the phenotypic value was identical. For a detailed 

description of how each phenotype was defined and a complete overview of the 

phenotypic values corresponding to each metabolome sample, see Supplementary 

data file 1.  

 

Analysis of the information content of the data set 

The multivariate data analysis (MVDA) tool partial least squares (PLS) was used to 

determine the information content of the metabolome data sets for all the different 

quantitative phenotypes defined. PLS is a regression tool that results in a model that 

describes a quantifiable phenotype of interest, such as protease activity or 

productivity, based on the concentrations of each of the metabolites determined. In 

MVDA analysis of metabolomics data it is important to realize that due to the 

relatively large number of variables and few number of samples, chance correlations 

are a serious issue. Therefore, the cross-validated correlation coefficient, R2
CV, 

obtained from a PLS model after cross validation, is a better measure for the 

information content of a PLS model than the initial correlation coefficient R2
fit, because 

R2
CV also reflects the robustness of the model. A high R2

CV indicates a high information 

content of the metabolome data in relation to the quantitative phenotype. In this 

study, cross validated PLS models with a R2
CV of 0.6 or higher were considered good 
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statistical models. For both products, cross validated PLS models were made for all 

different quantitative phenotypes (Table 1).  

 

To investigate whether the information content of the metabolomics data set was 

growth phase specific, PLS models of these six quantitative phenotypes were 

calculated by including the metabolome data of different time samples in the PLS 

model. PLS models were determined using metabolome data of all three samples 

generated from the different fermentations as well as with the metabolome data of 

only the samples collected at one of the growth phases during the fermentation. In 

addition, also PLS models were generated evaluating non-linear relations between the 

quantitative phenotype and the metabolome data, in order to identify metabolites 

with a non-linear relation to the studied phenotype. An overview of the PLS models 

generated from the metabolome data of this study, including the R2
CV of each model, is 

shown in Table 1. 

 

 
Fig. 2. A schematic representation of production in time to illustrate the various product-related phenotypes that 

can be defined. Solid line, product; dashed line, biomass concentration DWT.  (A) activity at time point of 

sampling; (A1) specific activity – 1, based on the biomass at the time point of sampling; (A2) specific activity – 2, 

based on the maximal biomass concentration during the fermentation; (B) productivity at time point of sampling; 

(B1) specific productivity – 1, based on the biomass at the time point of sampling; (B2) specific productivity – 2, 

based on the maximal biomass concentration during the fermentation. (Adapted from Braaksma et al. (2009), 

Microbiology 155, 3430-3439.) 
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Table 1. Overview of the cross validation values (R2
CV) of the PLS models made for glucoamylase (A) and protease 

(B).  

Models with a R2
CV of 0.6 or higher are considered good statistical models and are indicated in bold. 

 

Glucoamylase 

Table 1A Phenotype * P R2
CV LN(P) R2

CV LN(M) R2
CV 

Maximum phenotype,  

metabolome data of all samples 

Max.Act. G1 0.59 G49 0.66 G97 0.75 

Max.Spec.Act.-1 G2 0.47 G50 0.64 G98 0.64 

Max.Spec.Act.-2 G3 0.59 G51 0.64 G99 0.77 

Max.Prod. G4 0.59 G52 0.67 G100 0.73 

Max.Spec.Prod.-1 G5 0.60 G53 0.63 G101 0.78 

Max.Spec.Prod.-2 G6 0.59 G54 0.65 G102 0.74 

Maximum phenotype,  

metabolome data of mid log samples 

Max.Act. G7 0.71 G55 0.76 G103 0.77 

Max.Spec.Act.-1 G8 0.47 G56 0.72 G104 0.67 

Max.Spec.Act.-2 G9 0.62 G57 0.74 G105 0.71 

Max.Prod. G10 0.79 G58 0.75 G106 0.82 

Max.Spec.Prod.-1 G11 0.71 G59 0.74 G107 0.82 

Max.Spec.Prod.-2 G12 0.73 G60 0.74 G108 0.82 

Maximum phenotype,  

metabolome data of late log samples 

Max.Act. G13 0.43 G61 0.63 G109 0.50 

Max.Spec.Act.-1 G14 0.42 G62 0.62 G110 0.48 

Max.Spec.Act.-2 G15 0.43 G63 0.61 G111 0.49 

Max.Prod. G16 0.60 G64 0.72 G112 0.57 

Max.Spec.Prod.-1 G17 0.67 G65 0.71 G113 0.66 

Max.Spec.Prod.-2 G18 0.61 G66 0.70 G114 0.58 

Maximum phenotype,  

metabolome data of stationary samples 

Max.Act. G19 0.00 G67 0.01 G115 0.41 

Max.Spec.Act.-1 G20 0.01 G68 0.03 G116 0.45 

Max.Spec.Act.-2 G21 0.03 G69 0.04 G117 0.44 

Max.Prod. G22 0.02 G70 0.01 G118 0.40 

Max.Spec.Prod.-1 G23 0.00 G71 0.03 G119 0.44 

Max.Spec.Prod.-2 G24 0.00 G72 0.02 G120 0.39 

Phenotype at time point of sampling, 

metabolome data of all samples 

Act. G25 0.40 G73 0.68 G121 0.51 

Spec.Act.-1 G26 0.38 G74 0.67 G122 0.48 

Spec.Act.-2 G27 0.41 G75 0.66 G123 0.53 

Prod. G28 0.55 G76 0.59 G124 0.69 

Spec.Prod.-1 G29 0.56 G77 0.57 G125 0.66 

Spec.Prod.-2 G30 0.59 G78 0.57 G126 0.68 

Phenotype at time point of sampling, 

metabolome data of  mid log samples 

Act. G31 0.67 G79 0.69 G127 0.67 

Spec.Act.-1 G32 0.63 G80 0.69 G128 0.67 

Spec.Act.-2 † G33 0.63 G81 0.69 G129 0.67 

Prod. G34 0.78 G82 0.69 G130 0.78 

Spec.Prod.-1 G35 0.77 G83 0.70 G131 0.81 

Spec.Prod.-2 † G36 0.77 G84 0.70 G132 0·81 

Phenotype at time point of sampling, 

metabolome data of late log samples 

Act. G37 0.22 G85 0.49 G133 0.30 

Spec.Act.-1 G38 0.23 G86 0.48 G134 0.33 

Spec.Act.-2 † G39 0.23 G87 0.48 G135 0.33 

Prod. G40 0.33 G88 0.28 G136 0.42 

Spec.Prod.-1 G41 0.29 G89 0.25 G137 0.38 

Spec.Prod.-2 † G42 0.29 G90 0.25 G138 0.38 

Phenotype at time point of sampling, 

metabolome data of stationary  samples  

Act. G43 0.04 G91 0.00 G139 0.34 

Spec.Act.-1 G44 0.01 G92 0.01 G140 0.34 

Spec.Act.-2 G45 0.02 G93 0.01 G141 0.37 

Prod. G46 0.05 G94 0.02 G142 0.40 

Spec.Prod.-1 G47 0.01 G95 0.02 G143 0.38 

Spec.Prod.-2 G48 0.01 G96 0.02 G144 0.40 
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Table 1. Continued.  

Protease 

Table 1B Phenotype * P R2
CV LN(P) R2

CV LN(M) R2
CV 

Maximum phenotype,  

metabolome data of all samples 

Max.Act. P1 0.70 P49 0.75 P97 0.78 

Max.Spec.Act.-1 P2 0.66 P50 0.66 P98 0.72 

Max.Spec.Act.-2 P3 0.57 P51 0.60 P99 0.66 

Max.Prod. P4 0.71 P52 0.69 P100 0.80 

Max.Spec.Prod.-1 P5 0.58 P53 0.50 P101 0.63 

Max.Spec.Prod.-2 P6 0.58 P54 0.48 P102 0.65 

Maximum phenotype,  

metabolome data of mid log samples 

Max.Act. P7 0.46 P55 0.72 P103 0.47 

Max.Spec.Act.-1 P8 0.38 P56 0.58 P104 0.32 

Max.Spec.Act.-2 P9 0.28 P57 0.55 P105 0.28 

Max.Prod. P10 0.51 P58 0.69 P106 0.43 

Max.Spec.Prod.-1 P11 0.28 P59 0.44 P107 0.16 

Max.Spec.Prod.-2 P12 0.29 P60 0.45 P108 0.18 

Maximum phenotype,  

metabolome data of late log samples 

Max.Act. P13 0.52 P61 0.65 P109 0.62 

Max.Spec.Act.-1 P14 0.37 P62 0.48 P110 0.47 

Max.Spec.Act.-2 P15 0.42 P63 0.49 P111 0.47 

Max.Prod. P16 0.48 P64 0.59 P112 0.44 

Max.Spec.Prod.-1 P17 0.28 P65 0.30 P113 0.17 

Max.Spec.Prod.-2 P18 0.29 P66 0.34 P114 0.18 

Maximum phenotype,  

metabolome data of stationary samples 

Max.Act. P19 0.11 P67 0.19 P115 0.68 

Max.Spec.Act.-1 P20 0.11 P68 0.25 P116 0.58 

Max.Spec.Act.-2 P21 0.11 P69 0.14 P117 0.59 

Max.Prod. P22 0.17 P70 0.14 P118 0.60 

Max.Spec.Prod.-1 P23 0.14 P71 0.19 P119 0.44 

Max.Spec.Prod.-2 P24 0.18 P72 0.18 P120 0.47 

Phenotype at time point of sampling, 

metabolome data of all samples 

Act. P25 0.70 P73 0.57 P121 0.80 

Spec.Act.-1 P26 0.66 P74 0.46 P122 0.75 

Spec.Act.-2 P27 0.67 P75 0.44 P123 0.77 

Prod. P28 0.45 P76 0.65 P124 0.61 

Spec.Prod.-1 P29 0.32 P77 0.49 P125 0.45 

Spec.Prod.-2 P30 0.36 P78 0.48 P126 0.45 

Phenotype at time point of sampling, 

metabolome data of  mid log samples 

Act. P31 0.09 P79 0.01 P127 0.17 

Spec.Act.-1 P32 0.03 P80 0.01 P128 0.05 

Spec.Act.-2 † P33 0.03 P81 0.01 P129 0.05 

Prod. P34 0.21 P82 0.42 P130 0.18 

Spec.Prod.-1 P35 0.16 P83 0.24 P131 0.12 

Spec.Prod.-2 † P36 0.16 P84 0.24 P132 0.12 

Phenotype at time point of sampling, 

metabolome data of late log samples 

Act. P37 0.23 P85 0.29 P133 0.41 

Spec.Act.-1 P38 0.25 P86 0.09 P134 0.29 

Spec.Act.-2 † P39 0.25 P87 0.09 P135 0.29 

Prod. P40 0.49 P88 0.51 P136 0.51 

Spec.Prod.-1 P41 0.32 P89 0.23 P137 0.26 

Spec.Prod.-2 † P42 0.32 P90 0.23 P138 0.26 

Phenotype at time point of sampling, 

metabolome data of stationary  samples  

Act. P43 0.18 P91 0.18 P139 0.69 

Spec.Act.-1 P44 0.20 P92 0.14 P140 0.57 

Spec.Act.-2 P45 0.19 P93 0.15 P141 0.59 

Prod. P46 0.18 P94 0.39 P142 0.55 

Spec.Prod.-1 P47 0.05 P95 0.45 P143 0.38 

Spec.Prod.-2 P48 0.03 P96 0.45 P144 0.42 

* For a detailed description of how each phenotype (P) was defined, see Supplementary data file 1. P is used to indicate models generated without LN 

transformation; LN(P) is used to indicate models generated after LN transformation of the phenotype; LN(M) is used to indicate models generated 

after LN transformation of the metabolome data.  

† For these PLS models, the results for Spec.Act.-2 and Spec.Prod.-2 are identical to Spec.Act.-1 and Spec.Prod.-1, respectively. To calculate Spec.Act.-2 

and Spec.Prod.-2 in principal DWTmax is used, except for samples collected before DWTmax was reached (as is the case for the mid log and late log 

samples). For these samples DWT at the time point of sampling was used, similar as for calculating Spec.Act.-1 and Spec.Prod.-1 (see also 

Supplementary data file 1). 
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Information content of the metabolomics data set with respect to 

the different quantitative phenotypes  

About 44% of the PLS models generated for glucoamylase were considered good 

models (R2
CV ≥ 0.6); for protease, this was 19% (see Table 1). When comparing Tables 

1A (glucoamylase) and 1B (protease) with each other, one thing is obvious: the 

highest information content of the metabolomics data set was obtained with different 

quantitative phenotypes for the different products. For glucoamylase good models 

were especially obtained when based on metabolome data of the samples from the 

mid log growth phase, while most good PLS models for protease were based on 

inclusion of metabolome data from all three time samples. Furthermore, LN 

transformation of either the metabolome data or the phenotype data resulted in 

general in an increased number of PLS models with R2
CV ≥ 0.6. In addition, more good 

PLS models were generated with the quantitative phenotype based on the maximum 

activity or productivity instead of the phenotype based at the activity or productivity 

at the time point of sampling. Moreover, for glucoamylase productivity resulted in 

more models with a R2
CV above the cut-off of 0.6, while for protease on average the 

selection of activity (i.e., amount of product formed) as phenotype resulted in a 

somewhat higher number of good models.  

 

Identification of metabolites that correlate with the phenotype 

studied 

Metabolites contributing the most to, for instance, protease activity or productivity 

can be identified by ordering the (relative) statistical importance of the metabolites by 

virtue of the weight factors (regression factors) as determined in the PLS models for 

all metabolites. In other words, by applying PLS, metabolites important for a specific 

phenotype can be identified and ranked based on the strength of their correlation 

with the phenotype of interest. For both products, one good PLS model was chosen as 

starting point for analysing the strongest correlating metabolites in more detail. Based 

on this analysis subsequently lists of correlating metabolites from other good PLS 

models were compared.  
 

Glucoamylase 

For glucoamylase, most PLS models were above the threshold of R2
CV = 0.6 when using 

metabolome data of the samples collected during the mid log growth phase. From this 

group of models, the PLS model in relation to maximum activity (PLS model G7), was 

selected as starting point for target identification and comparison to other good PLS 
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models for glucoamylase. From this G7 PLS model, the 20 highest ranking metabolites 

are shown in Table 2. This top 20 included a relative high number of disaccharides 

and other sugar-derived compounds that were only present under glucoamylase 

inducing conditions (i.e. with glucose as carbon source). For all these dissacharides as 

well as some of the other compounds, such as DL-aminoadipic acid, 2,3-butanediol 

and xylitol the correlation is based on the absence of the compounds in all xylose 

samples and the presence in all glucose samples (Table 2). However, there is no clear 

correlation between their intracellular concentrations and maximum glucoamyase 

activity based on only the glucose samples (e.g. Fig. 3A). On the other hand, for 

putrescine, ornithine, glucose-6-phosphate, and fructose-6-phosphate there is a 

correlation between increasing intracellular levels of these compounds and maximum 

glucoamyase activity (e.g, see Fig. 3B).  

 

When comparing the top 20's of other models with a R2
CV ≥ 0.6 with each other, 

especially the use of metabolome samples from particular sampling times was of 

influence on the resulting top 20 (see Supplementary data file 2A). When either the 

metabolome data of all time samples was used (e.g. model G49), or only the 

metabolome data of the mid log or late log samples (models G55 and G61, 

respectively), only four metabolites are present in all three resulting top 20’s. These 

four metabolites were the compound tentatively identified as volemitol or perseitol, 

the compound tentatively identified as ribonic acid or xylonic acid, an unidentified 

disaccharide with a retention time of 42.02 min and another unidentified compound 

with ID AN 320-218 22.96 min (Supplementary data file 2A). 

 

 

 Fig. 3. Plot of the correlation between the metabolite tentatively identified as nigerose and maximum 

glucoamylase activity (A) and a similar plot for putrescine (B). O, Metabolome samples from xylose fermentations 

(n=11); ■, metabolome samples from glucose fermentations (n=11). 
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Table 2. Twenty metabolites with the strongest correlation to glucoamylase as determined by PLS based on all 

mid log metabolome samples in relation to maximum activity (PLS model G7). 

rank metabolite ID * tentative identity 
regression  

factor 

visual correlation  

to phenotype † 

1 dissacharide 39.13 min nigerose + +  ‡ 

2 C5 sugar alcohol  xylitol + +  ‡ 

3 DL-aminoadipic acid  + +  ‡ 

4 putrescine  + +  

5 disaccharide 319-361 kojibiose + +  ‡ 

6 ornithine  + +  

7 disaccharide 40.41 min isomaltose + +  ‡ 

8 disaccharide 40.89 min isomaltose § + +  ‡ 

9 xylose  - -   | | 

10 histidine  + 0  

11 glucose-6-phosphate  + +  

12 glucose  + +  ‡ 

13 fructose-6-phosphate  + +  

14 AN 292-333 24.26 min ribonic acid or xylonic acid - -  | | 

15 AN 201 26.51 min unknown + +  ‡ 

16 spermidine  + 0  

17 tryptophan  + 0  

18 glutamine  + +  

19 2,3-butanediol  + +  ‡ 

20 uric acid  + +  ‡ 

* All metabolites in this list were detected with the OS-GC-MS method. 

†Visual correlation is indicated by + (positive correlation), – (negative correlation), or 0 (no apparent correlation); see also Supplementary data file 3A. 

‡ Only or mainly high abundant on glucose, no apparent visual correlation within the glucose samples. 

§ These are different mass fragments of the same compound. 

| | Only high abundant on xylose. 

 

The effect of LN transformation on the ranking of the potential targets was somewhat 

ambiguous. The effect of LN transformation of the phenotype or the metabolome data 

on the resulting top 20's was in several cases limited. For instance, for PLS models G7, 

G55 and G103 50% of the compounds were present in all three lists (for details, see 

Supplementary data file 2A). However, in other cases, i.e. PLS models G34, G82 and 

G130, this was only the case for 25% of the compounds (for details, see 

Supplementary data file 2A). The exact effect of LN transformation on the correlations 

of the metabolites with the phenotype was unclear; plotting of the peak areas of 

metabolites exclusively present in the top 20’s after LN transformation against the 
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phenotype showed in some cases an improvement of the linear correlation, while in 

other cases the linear correlation deteriorated (data not shown).  

 

Protease 

For protease, most PLS models were above the threshold of R2
CV = 0.6 when using the 

metabolome data of all three samples collected during the fermentation. The PLS 

model in relation to maximum activity, model P1, was selected from this group of 

models as starting point for target identification and comparison to other good PLS 

models for protease. From this PLS model, the 20 highest ranking metabolites are 

shown in Table 3. This top 20 mainly consisted of unidentified compounds detected by 

LC-MS, making interpretation of the results difficult. Two of the metabolites were 

tentatively identified as 2,3-dihydroxy-3-methylpentanoic acid and 2,3-dihydroxy-3-

methylbutanoic acid, both known intermediates of the isoleucine and valine 

biosynthesis, respectively. A number of the compounds in the top 20 contained a 

phosphate-group; however, very little is known of a possible involvement of 

phosphorus sources on protease expression in aspergilli. In comparison to the 

glucoamylase results, the relative high contribution of compounds analyzed with the 

RP-LC-MS method was remarkable. Among others, RP-LC-MS is suitable for the 

detection of aromatic peptides and peptides larger than 4-5 amino acids, suggesting 

that at least some of the high ranked compounds could be peptide-derived. 

Unfortunately, for none of these compounds appropriate reference compounds are 

currently available to establish their exact identity.  

 

When comparing the top 20’s from good PLS models for protease with each other, the 

overall observations are in line with those for glucoamylase. Also for protease the 

largest differences between the top 20’s were observed when comparing models 

which were based on different selections of the metabolome data, e.g. metabolome 

data of all time samples or only the metabolome data of mid log or late log samples 

(see Supplementary data file 2B for details). Furthermore, the influence on the 

resulting top 20’s was very limited when using either activity or specific activity as 

phenotype. This is to be expected, given the strong correlation between activity and 

specific activity, or productivity and specific productivity. On the other hand, the effect 

of LN transformation of either the phenotype or the metabolome data was 

considerable, as the resulting top 20’s showed 50% or less overlap with the top 20 

without LN transformation (Supplementary data file 2B). 
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Table 3. Twenty metabolites with the strongest correlation to protease as determined by PLS based on all 

metabolome samples in relation to maximum activity (PLS model P1). 

rank metabolite ID * tentative identity 
regression  

factor 
visual correlation  
to phenotype † 

1 428.0417 (RP) unknown + + 

2 AN 110-336 13.53 min (GC) unknown + + 

3 phosphorylethanolamine 

related (GC) 

unknown + 0 

4 712.1019 (RP) unknown + + 

5 AN 312 15.42 min (GC) unknown + + 

6 2,3-dihydroxy-3-

methylpentanoic acid (GC) 

 + + 

7 223.0937 (IP) monomethylphosphate + 0 

8 2,3-dihydroxy-3-

methylbutanoic acid (GC) 

 + + 

9 AN 298-342 (GC) unknown + + 

10 AN 342-299 31.30 min (GC) unknown - - 

11 AN 211-283 20.80 min (GC) unknown + 0 

12 446.0929 (IP)  monomethylphosphate ‡ + 0 

13 monomethylphosphate (GC)  + 0 

14 230.1734 (RP) unknown + 0 

15 171.0420 (RP) unknown + + 

16 207.0929 (IP) monomethylphosphate  ‡ + 0 

17 799.1182 (IP) unknown + 0 

18 688.1035 (RP) unknown + 0 

19 428.0743 (RP) unknown - 0 

20 Adenosine (GC)  + 0 

* The analytical method used to detect each metabolite is indicated in between brackets: GC, OS-GC-MS; IP, IP-LC-MS; and RP, RP-LC-MS. 

† Visual correlation is indicated by + (positive correlation), – (negative correlation), or 0 (no apparent correlation); see also Supplementary data file 3B.  

‡ These are different mass fragments of the same compound.  

DISCUSSION 

The choice for a certain quantitative phenotype in bioprocess optimization often 

seems rather random, but may have a major influence on the outcome of an 

optimization strategy. In this study, the information content of a metabolomics data 

set was determined with respect to different quantitative phenotypes related to the 

formation of two simple products, i.e. glucoamylase, and a more complex product, i.e. 

protease. When comparing the results of the two enzyme products glucoamylase and 

protease, it could be concluded that the information content of the metabolomics data 
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set is higher for the simpler of these two products, i.e. glucoamylase. This is on the one 

hand remarkable, because the fermentation conditions from which the metabolome 

samples were collected in this study, were originally selected to result in large and 

evenly distributed variation in protease activity (Braaksma et al., 2009).  

 

Another important aspect influencing the information content of the metabolomics 

data set is the time point at which metabolome samples were collected. For instance, 

in this study the information content of the metabolome data from the mid log time 

samples was high in respect to glucoamylase (Table 1A), while it was low for protease 

(Table 1B). Based on this result, we conclude that data sets based on fewer 

experimental conditions but more metabolome samples in time may be more 

informative than a data set based on many experimental conditions and only one or a 

few time samples per condition. In addition, data sets based on more samples in time 

will allow the analysis of longitudinal effects in the data, i.e. metabolites whose 

correlation with product formation show a shift in time (Rubingh et al., 2009). 

 

Our results show that the effect of different ways to calculate the quantitative 

phenotype on the information content and resulting targets is much smaller than the 

effect of the time point of sampling. In general, the number of PLS models with a R2
CV 

above the threshold value was higher when quantitative phenotypes were used that 

were based on the maximum activity or productivity instead of the activity or 

productivity at the time point of sampling (Table 1). A possible explanation for this is 

the more distinct variation in phenotypic values for the maximum phenotype. This 

may correlate better to the variation in the metabolome data present at a time point 

when phenotypic differences are perhaps not yet that clearly visible. Nevertheless, the 

effect of either maximum phenotype or phenotype at time point of sampling on the 

resulting top 20’s is limited (Supplementary data file 2). This holds for the different 

description of the phenotype (e.g. activity versus productivity, or activity versus 

specific activity) as well. Conversely, the effect of LN transformation was considerable. 

Not only did the number of PLS models with a R2
CV above the threshold value increase 

with LN transformation of the phenotype or the metabolome data, the resulting top 

20’s were often considerably different from the top 20 based on the data without LN 

transformation. However, it should be noted that it is difficult to interpret the effect of 

LN transformation, especially as it is not clear how LN transformation and data 

pretreatment methods (e.g. scaling methods such as range scaling) influence each 

other with regard to complex metabolome data (van den Berg et al., 2006). 

 

With the MVDA tool PLS the quantifiable phenotype of interest can be related to the 

metabolome data set as a whole and at the same time take into account the 
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relationship between the metabolites (van der Werf et al., 2007). Without this, it 

would be necessary to plot the metabolite concentrations of each metabolite against 

the phenotype in order to investigating the relation between individual metabolites 

and the quantifiable phenotype of interest. However, in case of a large number of 

metabolites, and as in our case a large number of phenotypes as well, this approach 

will result in an extremely large number of plots to analyze. Moreover, in such plots 

the intrinsic interdependency of the metabolites is neglected. However, despite these 

advantages of MVDA over a univariate approach, interpretation of the relation of the 

metabolites ranked by PLS to the quantifiable phenotype of interest is not 

straightforward. Several aspects, as listed below, have to be taken into account when 

interpreting the results of a PLS model. 

 

(1) The positive or negative regression factors that are a measure for the contribution 

of a metabolite to the phenotype cannot be directly translated into how a metabolite 

actually correlates to the phenotype. These regression factors are not only a measure 

for the correlation of a single metabolite to the phenotype, but also for the correlation 

of this metabolite to other metabolites. Therefore, for a more detailed biological 

interpretation it is recommended to plot the concentrations of highly correlated 

metabolites against the quantifiable phenotype.  

 

(2) Not all metabolites found to be correlating to the phenotype of interest are 

involved in the production of this product, either as inducer/inhibitor or 

precursor/side-product. With MVDA no distinction can be made between metabolites 

that correlate to the phenotype due to either a cause or an effect relation. For instance, 

one may conclude that the disaccharides found to be correlating to high glucoamylase 

activity (Table 2) induce glucoamylase secretion and thus cause the high activities. 

However, it is also possible that the identified disaccharides were formed from 

glucose by transglucosylation activity from glucoamylase (Nikolov et al., 1989), and 

thus are an effect of glucoamylase activity (‘effect correlation’). For strain 

improvement in particular cause relations are of importance. 

 

(3) Related to the previous subject is the occurrence of confounding effects, i.e. the 

situation that an extraneous factor correlates with both the phenotype and a 

metabolite. This can result in the false conclusion that there is a causal relationship 

between the phenotype and that specific metabolite. For example, there is only 

significant glucoamylase activity when A. niger is cultured on glucose instead of on 

xylose. Also several metabolites, such as uric acid and xylitol, are mainly present when 

A. niger is cultured on glucose. Therefore, one may conclude that there is a direct 

correlation between these metabolites and glucoamylase production. However, these 
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compounds may not be directly linked to glucoamylase production per se, but perhaps 

both glucoamylase and these metabolites independently correlate to growth on a 

specific carbon source.  

 

(4) With the comprehensive analytical methods used in this study not only known 

compounds are analyzed, but also all peaks of unknown identity are included in the 

data set. One last aspect hampering the interpretation of the results of the data 

analysis is the correlation of these unidentified metabolites with the phenotype.  

 

Taking into account the various aspects that influence the interpretation of the PLS 

results, as discussed above, specific metabolites identified as important to the 

question under study can be distilled from the initial list of potential targets that 

result from PLS. For optimization of glucoamylase production glucose-6-phosphate 

and fructose-6-phosphate are among the most likely targets. The enzyme glucose-6-

phosphate isomerase catalyzes the conversion of glucose-6-phosphate into fructose-6-

phosphate. The ratio between the concentrations of glucose-6-phosphate and 

fructose-6-phosphate is approximately a factor seven higher than expected based on 

the equilibrium constant for glucose-6-phosphate isomerase (data not shown). The 

relative accumulation of glucose-6-phosphate may on the one hand suggest that the 

activity of this enzyme is a bottleneck in the flux through the glycolysis. On the other 

hand, this aberration of the equilibrium may be required to obtain a sufficient flux in 

the direction of the pentose phosphate pathway (PPP), in order to generate sufficient 

NADPH. Melzer et al. (2007) also observed that under glucoamylase-producing 

conditions the flux of glucose through the PPP was higher than for non-producing 

conditions. However, in our study even under non-producing conditions the ratio 

between glucose-6-phosphate and fructose-6-phosphate concentrations is 

approximately a factor seven higher than expected. This weakens the hypothesis that 

the flux through the PPP may only be insufficient under glucoamylase-producing 

conditions, although when glucose was used as carbon source the absolute 

concentrations of both metabolites are higher. Alternatively, also absolute metabolite 

concentrations could be involved in regulation of metabolite fluxes (e.g. allosteric 

effects). All in all, in view of the crucial position of glucose-6-phosphate isomerase at 

the branch point between the glycolysis and the PPP, the regulation of the activity of 

this enzyme may be a means to regulate the fluxes through these two pathways and 

thus optimize glucoamylase production. Putrescine and ornithine are the two other 

most likely targets for optimization of glucoamylase production. Ornithine is the 

starting point for the synthesis of polyamines such as putrescine. Little is known 

about the actual function of putrescine and other polyamides in A. niger. In A. nidulans, 

there is an absolute requirement of polyamides in growth and development (Tabor & 
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Tabor, 1985; Jin et al., 2002). The positive correlation between glucoamylase 

production and putrescine suggests that glucoamylase production may be stimulated 

by either addition of this polyamine to the medium or overexpression of the gene 

encoding ornithine decarboxylase, the enzyme responsible for the conversion of 

ornithine into putrescine.  

 

No obvious targets were found in relation to protease production. Moreover, the 

majority of the compounds correlating to protease activity are unidentified 

compounds (Table 3). The presence of several compounds analyzed with the 

RP-LC-MS method in Table 3 suggests the possible involvement of small peptides in 

protease induction. Unfortunately, identification of peptides with the RP-LC-MS 

method has proved to be quite difficult, also because of the lack of appropriate 

reference compounds. Therefore, in order to further investigate the possible role of 

peptides in protease induction, additional methods will have to be deployed that offer 

more detailed information on the (partial) identity of peptides. 

 

It was anticipated that the relation between intracellular metabolite concentrations 

and extracellular protease activity would not be straightforward, because 

extracellular protease activity is a complex phenotype, consisting of multiple enzyme 

activities. Recent analysis of the secretome of A. niger has indicated the presence of up 

to 20 different secreted proteases in the medium (Tsang et al., 2009; Braaksma et al., 

2010b). Possibly, an approach with metabolomics alone is not sufficient for 

identifying targets for such a complex phenotype and an integrated systems biology 

approach is required.  

 

Besides glucoamylase and protease production, also citric acid production was 

analysed as a phenotype. Although the experimental design of our data set was not 

optimally suited for this product, resulting in very few reliable PLS models 

(Supplementary data file 4), several TCA cycle intermediates (isocitrate, 

α-ketoglutarate) were identified as correlating with citric acid production (results not 

shown). Altogether, this study illustrates that with a combined metabolomics/MVDA 

approach relevant targets for strain and process improvement can be identified, as the 

relevance of several of the identified leads seem confirmed by what already is known 

in literature (e.g. the role of glucose-6-phosphate isomerase in glucoamylase 

production). Moreover, this study demonstrates the importance of experimental 

design in top-down systems biology studies, not only with regard to the fermentation 

conditions, but also with respect to the time point of sampling and the selection and 

calculation of the quantitative phenotype to be pursued. 
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