Universiteit

w4 Leiden
The Netherlands

A functional genomics study of extracellular protease

production by Aspergillus niger
Braaksma, M.

Citation

Braaksma, M. (2010, December 15). A functional genomics study of
extracellular protease production by Aspergillus niger. Retrieved from
https://hdl.handle.net/1887/16246

Version: Corrected Publisher’s Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/16246

Note: To cite this publication please use the final published version (if
applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16246

A FUNCTIONAL GENOMICS STUDY OF EXTRACELLULAR
PROTEASE PRODUCTION BY ASPERGILLUS NIGER

Machtelt Braaksma






A functional genomics study of extracellular
protease production by Aspergillus niger

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus prof.mr. P.F. van der Heijden,
volgens besluit van het College voor Promoties
te verdedigen op woensdag 15 december 2010
klokke 15:00 uur

door

Machtelt Braaksma

geboren te Stadskanaal

in 1977



PROMOTION COMMITTEE
Promotoren: Prof. dr. P.J. Punt
Prof. dr. C.A.M.].]. van den Hondel
Co-promoter: Dr. ir. M.J. van der Werf (DSM)
Other members: Prof. dr. P.].]. Hooykaas
Prof. dr. ].H. de Winde (Technische Universiteit Delft)

Prof. dr. A.K. Smilde (Universiteit van Amsterdam)
Dr. M. Saloheimo (VTT Technical Research Centre of Finland)

The work described in this thesis was financially supported by the Kluyver Centre for
Genomics of Industrial Fermentation and carried out at TNO Quality of Life.

Printed by: GVO drukkers & vormgevers B.V. | Ponsen & Looijen



CONTENTS

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Outline

Aspergillus as a cell factory for protein production: controlling protease
activity in fungal production

The effect of environmental conditions on extracellular protease activity
in controlled fermentations of Aspergillus niger

An inventory of the Aspergillus niger secretome by combining in silico
predictions with shotgun proteomics data

Metabolomics as a tool for target identification in strain improvement:
the influence of phenotype definition

Identification of modules in Aspergillus niger by gene co-expression
network analysis

A top-down systems biology approach for the identification of targets for

fungal strain and process development

Summary

Samenvatting

References

List of publications

Curriculum vitae

27

47

67

89

115

131

135

141

157

159






Outline

OUTLINE

The filamentous fungus Aspergillus niger has a long track record as a highly efficient
producer of a wide variety of enzymes. Already soon after the development of fungal
transformation systems this species was acknowledged for its potential as a
production host for heterologous proteins. However, the production of homologous
and especially heterologous proteins is often limited by the high levels of proteases
produced by this fungus as well. Chapter 1 reviews the role that protease activity
plays in strain and process development of A. niger and other aspergilli. It discusses
several approaches and techniques that have been applied to generate strains with
reduced protease activity. Furthermore, it provides an outlook on how new research
approaches, such as the -omics techniques, may play a role in understanding the
proteolytic system of aspergilli.

The objective of the project described in this thesis is to study the complex induction
of extracellular proteases in A. niger using information gathered with functional
genomics technologies. A special emphasis is given to the requirements for
performing a successful systems biology study and addressing the challenges met in
analyzing the large, information-rich data sets generated with functional genomics
technologies.

Chapter 2 of this thesis describes a systematic study of the influence of several
environmental factors on the production of extracellular proteases of A. niger in
controlled batch cultivations. Using a change-one-factor-at-a-time approach, the effect
of pH and various medium components on protease production was investigated.
Subsequently, a full two-level factorial design was applied with four environmental
factors selected from the screening experiments that affected the protease production
the most. Six protease-related quantitative phenotypes were calculated from these
samples to study the individual and interaction effects of the tested environmental
factors on each of these phenotypes. Samples generated in this full factorial
experimental design were used for analysis with different functional genomics
technologies (Chapter 3 to 5).

Chapter 3 presents an improved list of potential signal peptide directed proteins
encoded by the A. niger genome. For the compilation of this list, the signal peptide
predictions from A. niger were compared to those of the best homologs of three
neighbouring Aspergillus species. In addition, a shotgun proteomics approach was
used to determine the A. niger secretome under different experimental conditions.



Outline

Based on this analysis the complexity of the repertoire of secreted proteases was
confirmed.

The effect of different quantitative phenotypes related to product formation on the
information content of a metabolomics data set is investigated in Chapter 4. For this
purpose, besides the production of secreted proteases the production of another
industrially relevant product by A. niger was evaluated, i.e. the enzyme glucoamylase.
For both products, different quantitative phenotypes associated with activity and
productivity were defined and for each phenotype the relation with metabolome data
was investigated. Results showed that, depending on the product studied, different
quantitative phenotypes had the highest information content in relation to the
metabolomics data set.

Chapter 5 describes the clustering of co-expressed genes using two DNA microarray
data sets; one of these data sets was derived from the experiments described in
Chapter 2. A set of conserved genes was used to construct gene co-expression
networks for both the individual and combined data sets. By comparative analysis the
existence of modules was revealed, some of which are present in all three networks.
Subsequently, all protein-coding A. niger genes, including hypothetical and poorly
conserved genes, were integrated into the co-expression analysis. We have used this
two-step approach to relate the genes encoding hypothetical proteins to the identified
functional modules.

In top-down systems biology the information gathered with functional genomics
technologies is analyzed with multivariate data analysis tools, and can be used as a
method to achieve unbiased selection and ranking of targets for both strain
improvement and bioprocess optimization. Chapter 6 discusses the key factors for a
successful top-down systems biology approach.



CHAPTER 1

ASPERGILLUS AS A CELL FACTORY FOR PROTEIN PRODUCTION:
CONTROLLING PROTEASE ACTIVITY IN FUNGAL PRODUCTION

Machtelt Braaksma and Peter J. Punt

This chapter has been published with minor modifications in:
The Aspergilli: Genomics, Medical Aspects, Biotechnology, and Research Methods (2008),
pp. 441-455. Edited by G. H. Goldman & S. A. Osmani. Boca Raton, FL: CRC Press



Chapter 1

INTRODUCTION

Since ancient times micro-organisms have been used in a variety of traditional food
processes (e.g., the production of alcoholic beverages, cheese, and bread). Fungi are
applied in cheese-making and in traditionally oriental food such as soy-sauce, tempeh,
and sake. However, the presence and role of these micro-organisms was for most
processes only identified in recent times. Fungi, like Aspergillus oryzae in the
production of sake, were discovered to play a key role in food production by the
excretion of enzymes. In 1894, the first microbial enzyme that was commercial
produced appeared on the market, called “takadiastase”; it was in fact fungal amylase
produced by A. oryzae (Gwynne & Devchand, 1992). Nowadays, a large number of
fungal enzymes are commercially available and their application extends well beyond
their traditional use in food processes. Glucoamylase, a-amylases, cellulase, lipase, and
protease are only a few examples of enzymes produced by filamentous fungi that are
commercially available. Aspergillus species, and particularly A. niger and A. oryzae,
play a dominant role in the production of many of these enzymes (for a list of
commercial enzymes see the Association of Manufacturers and Formulators of
Enzyme Products (AMFEP)1).

For the last two decades, filamentous fungi have also been explored as hosts for the
production of heterologous proteins. Because of their established use as production
host of homologous proteins aspergilli are the obvious expression system for
heterologous proteins. The Danish company Novozymes A/S was in 1988 the first on
the market with a non-native fungal lipase (Lipolase) produced from a genetically
modified A. oryzae strain (Nevalainen & Te'-o, 2003). Since then, several species of
Aspergillus have been used to express a wide variety of foreign genes (see also the list
of commercial enzymes of the AMFEP). However, the production of heterologous as
well as homologous proteins is often limited by the high levels of proteases also
produced by the fungal host organism. This review will focus on the role of protease
activity in strain and process development. Both classical mutagenesis and gene
disruption techniques have been applied to generate strains with reduced protease
activity. And indeed, production levels improved significantly when using protease
deficient strains (e.g., tissue plasminogen activator (t-PA) production with a protease
deficient A. niger strain [Wiebe et al, 2001]). Controlling the culture conditions can
result in a further improvement of the heterologous protein production (e.g., green
fluorescent protein (GFP) production with a protease deficient A. niger strain at
controlled pH [O'Donnell et al, 2001]). However, the production levels for

1
http://www.amfep.org/list.html; August 24, 2010
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Controlling protease activity in fungal production

heterologous proteins are in most cases one to two orders of magnitude lower than
for homologous proteins.

With the availability of the complete genome sequence of several Aspergillus strains
(e.g., A. flavus?; A. fumigatus® [Nierman et al, 2005]; A. niger*; A. oryzae> [Machida et
al, 2005]; A. nidulans® [Galagan et al, 2005] and A. terreus®), homology searches for
genes involved in the proteolytic systems of these organisms resulted in a much
higher number of genes encoding protease activity than previously known. For
example, for A. niger approximately 200 genes involved in proteolytic degradation
were found in the genome (Pel et al, 2007). In comparison, before the genome
sequence of A. niger was known, an extensive analysis of the proteolytic system of
A. niger led to the identification of only eight protease genes (van den Hombergh,
1996). Given this very large gene potential, actual protease production and its
regulation is expected to be very complicated.

The understanding of the regulation of the proteolytic system of Aspergillus strains is
still only in its infancy. The involvement of several wide-domain regulatory systems
(carbon catabolite repression, nitrogen metabolite repression, pH regulation [van den
Hombergh, 1996]) and probably sulfur metabolite repression (VanKuyk et al., 2000)
in the overall regulation of protease expression in Aspergillus is suggested. This
review gives state of the art in the protease research field and provides an outlook on
new research approaches.

STRAIN DEVELOPMENT

Classical methods to screen for protease mutants

Mutagenesis by means of X-ray or UV irradiation and chemicals mutagenesis were
discovered in the first half of the past century. Hara et al (1992) describe the
successful attempts of Iguchi (1955-1956) to isolate a mutant strain producing higher
levels of protease compared to the parent strain. After X-ray irradiation a large
number of isolates were screened in a laborious and time-consuming effort for a
hyperproducing mutant. The screening procedure was greatly improved by the

2 http://www.aspergillusflavus.org/genomics/; August 25, 2010

3 http://www.sanger.ac.uk/projects/A_fumigatus/; August 25, 2010

4 http://genome.jgi-psf.org/Aspni5/Aspni5.home.html; August 24, 2010

> http://www.bio.nite.go.jp/dogan/project/view/AO; August 25, 2010

6 http://www.broadinstitute.org/science/projects/fungal-genome-initiative; August 25, 2010
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Chapter 1

method developed by Sekine in 1969 which enabled the screening of a large number
of isolates (Hara et al., 1992). Around colonies grown on casein-containing medium a
halo (clear zone) was formed of which the diameter has a significant correlation with
the protease production (see Fig. 1).

Fig. 1. Protease-deficient mutants (pepA and prtT) of Aspergillus niger show reduced degradation of casein
compared to the wild type strain (WT).

These classical methods to generate and screen for mutants with altered levels of
excreted protease are still successfully applied. Nowadays, mutagenesis of spores is
most often conducted with ultraviolet light irradiation, which is the less-aggressive
than irradiation with X-rays. This approach has been applied to isolate several
protease-deficient mutants in different aspergilli, such as A. niger (Mattern et al,
1992; van den Hombergh et al, 1995) and A. nidulans (Katz et al, 1996). Also
mutagenesis with mutagens such as nitrosoguanidine has been described
(Kolattukudy et al, 1993; Moralejo et al., 2000). After mutagenesis the spores are
plated on milk or gelatin-casein medium. Mutants with low proteolytic activity are
screened for reduced degradation of casein which results in a reduced or no halo on
those plates. In this way, Mattern et al. (1992) isolated A. niger mutants with residual
extracellular proteolytic activities that vary from 2% to 80% of the protease activity of
the parental strain. Katz et al (1996) describe A. nidulans mutants with tenfold
reduced levels of extracellular protease compared to the parental strain.

12



Controlling protease activity in fungal production

Molecular genetic methods to construct protease mutants

Protease genes

Clearly, the random mutagenesis approach results in potent production hosts, but the
genetic basis of these mutants remains unknown and may have unwanted pleiotropic
effects on fungal fermentation performance (e.g, gene expression, growth rate).
Therefore, with the development of molecular genetic tools also a more targeted
approach to obtain protease-deficient mutants became available.

The general strategy for this approach is the so-called reverse genetics. By separating
proteins produced in culture medium by SDS-PAGE or chromatography and
subsequently testing for protease activity (as determined, e.g., by protease activity on
skim milk agarose) of the different bands or fractions several proteases can be
identified. By determining the (partial) amino acids sequence the protein
oligonucleotide probes corresponding to these sequences can be designed. These
oligonucleotides or PCR fragments generated by using similar oligonucleotides are
subsequently used to screen genomic libraries to clone the corresponding protease
genes. With the resulting clones a disruption vector for the protease gene can be
constructed for actual gene disruption. The more recent availability of genome
databases makes it also possible to use obtained amino acid sequences directly to
clone the corresponding genes by genome mining using sequence comparison
algorithms such as BLASTX. However, even with knowledge of the genome sequence,
an activity screen (most preferably based on proteolytic activity against the protein
one wants to produce) is still necessary to identify which of all the protease genes
present in the fungal genome is actually new and most active and thus the desired
target for gene disruption. Berka et al (1990) were the first to describe the
construction of gene replacement vectors for Aspergillus, which were used to
specifically delete the chromosomal DNA of the protease gene encoding the major
extracellular acid protease aspergillopepsin A (PEPA) in A. awamori. Disruption of this
pepA gene reduced extracellular proteolytic activity compared to the wild type.
Similar results were achieved by disruption of the aspergillopepsin A gene in A. niger
(Mattern et al,, 1992). Probes containing part of the coding region of this pepA gene
were also used to screen the genomic library of an A. nidulans strain (VanKuyk et al.,
2000). And although A. nidulans appears to lack detectable acid protease activity, a
clone which hybridized with the pepA gene was obtained. This aspartic protease gene,
which was designated prtB, was only expressed at a very low level. Furthermore,
homologues of the pepA gene have been cloned from other Aspergillus species, such as
A. fumigatus (Lee & Kolattukudy, 1995), A. oryzae (Berka et al, 1993) and A. satoi
(Shintani & Ichishima, 1994).

13



Chapter 1

In non-acid producing aspergilli, such as A. nidulans, neutral or alkaline proteases are
responsible for the major part of the extracellular protease activity. Disruption of the
gene coding for the dominant extracellular serine protease in A. nidulans strain
resulted, when cultured under various medium limitations, in reduced levels of
proteolytic activity under all culture conditions (VanKuyk et al, 2000). Controlled
batch fermentations of an A. sojae strain with a disruption of an alkaline protease gene
resulted in about 40% reduction of proteolytic activity in comparison to the wild type
(Heerikhuisen et al, 2005). Shake flasks cultures with A. oryzae expressing the
heterologous protein endoglucanase showed enhanced stability of this protein when
an alkaline protease gene of the host strain was disrupted (Lehmbeck, 2001).

Not in all cases disruption of a protease gene results in decreased protease activity.
Disruption of the serine protease gene (sep) in A. flavus led to a compensatory
increase in the expression and production of a metalloproteinase gene (mep20)
(Ramesh & Kolattukudy, 1996). Both wild type and mutant degraded elastin at the
same rate. The authors concluded that the expression of the genes encoding both
proteases is controlled by a common regulatory system and that the fungus has a
mechanism to sense the status of the extracellular proteolytic activities.

An alternative method for reduction of expression of a particular gene is the use of
antisense RNA. This approach was applied in an A. awamori strain used to express the
heterologous protein thaumatin (Moralejo et al, 2002). Even though an insertion in
the pepA gene had resulted in an inactive PEPA protein, thaumatin was still degraded.
Another protease, aspergillopepsin B (PEPB; previously believed to be a pepstatin-
insensitive aspartyl protease, but more recently established to be a member of the
newly discovered family of glutamic proteases [Fujinaga et al.,, 2004]), was identified
as the most likely protease responsible for this degradation. Expression of pepB
antisense RNA improved thaumatin production with 30%. Nevertheless, thaumatin
was still degraded, indicating the antisense mRNA had only a partial silencing effect
on pepB gene expression. Disruption of the pepB gene resulted in a significant further
increase of the thaumatin production. However, an advantage of gene silencing with
respect to gene disruption is that it can be used to suppress the expression of
complete gene families. Zheng et al. (1998) describe that the expression of antisense
RNA of the structural gene of carboxipeptidase in A. oryzae did not only decrease the
activity of that carboypeptidase, but also of two other carboypeptidases.

Yet another approach to obtain strains with low protease levels is disruption of

proteases that proteolytically activate other protease precursor proteins which
require processing for their activation. Disruption of such a protease gene will have a

14



Controlling protease activity in fungal production

direct effect on the protease activity of one or more other proteases, as was described
for A. niger. Disruption of the gene of an intracellular acid protease (PEPE) in A. niger
did not only reduce the intracellular pepstatin-inhibitable aspartyl protease activity,
but also intracellular serine protease and serine carboxypeptidase activities were
significantly reduced in the ApepE strain (van den Hombergh et al, 1997a). The
transcription of these non-disrupted genes was not affected by the disruption of the
single pepE gene. According to the authors this may indicate the presence of a cascade
activation mechanism for several vacuolar proteases, triggered by the PEPE protein. A
similar mechanism has been described for Saccharomyces cerevisiae (van den Hazel et
al, 1996).

In Table 1 described disruptions of protease genes in Aspergillus strains and the
resulting residual proteolytic activities are summarized. In this table the construction
of multiple disruptants can lead to further decrease of proteolytic activities. This was
shown for a ApepAApepBApepE triple disruptant in A. niger (van den Hombergh et al,
1997a) and disruption in A. fumigatus of both a gene encoding an extracellular serine
alkaline protease and a gene encoding an extracellular metalloprotease (Jaton-Ogay et
al, 1994).

Protease regulators

Finally, a very efficient approach to generate strains with low protease levels is
through disruption of genes that influence the expression of multiple protease genes.
Two groups of regulatory genes have been described so far. In the first place, genes
that encode specific regulators of protease genes; second, genes that encode wide-
domain regulators. Interestingly, in the first group, to date, only one single gene has
been identified both in fungi and yeast species. This gene is the prtT gene, as cloned
from an UV-induced A. niger mutant (Punt et al.,, 2008). This mutant was suggested to
be a regulatory mutant as at least two proteases, including PEPA, were missing from
the culture medium, while genetic data indicated the presence of a single semi-
dominant mutation, not linked to the pepA gene (Mattern et al., 1992). Recent analysis
has indeed shown that the prtT gene is actually a regulatory gene encoding a member
of the Zn-binuclear cluster family (Punt et al., 2008). Interestingly, this gene is unique
for Aspergillus species but actually absent in A. nidulans. With the disruption of the
prtT gene in A. niger total protease activity was reduced to 20% of the wild type
(Connelly & Brody, 2004).

15



Chapter 1

Table 1. Effects on secreted protease activity of protease gene disruption strains in aspergilli

X . Residual extracellular
Species Name disrupted gene . Reference
protease activity *

Extracellular serine protease (fam. S8)
A. flavus sep 100% Ramesh et al., 1996
Tang et al., 1992; Monod et al., 1993;

A. fumigatus alp 0-30%
Jaton-Ogay et al., 1994

A. nidulans prtA 10-50% VanKuyk et al., 2000

A. oryzae alp <WT Lehmbeck, 2001

A. sojae alpA 60% Heerikhuisen et al., 2005
Vacuolar serine protease (fam. S8)

A. oryzae pepC N/A Christensen & Lehmbeck, 2000
Extracellular aspartyl protease (fam. A1)

A. awamori pepA << WT Berka et al., 1990

A. fumigatus pep << WT Reichard et al., 1997

A, niger peph 15-20% Mattern et al., 1992; van den

Hombergh et al., 1997a
Vacuolar aspartyl protease (fam. A1)

A. niger pepE ~100% van den Hombergh et al., 1997a

A. oryzae pepE N/A Christensen et al., 2000
Extracellular glutamic protease (fam. G1)

A. awamori pepB < parent t Moralejo et al., 2002

A. niger pepB 95% van den Hombergh et al., 1997a
Extracellular metallo protease (fam. M35)

A. nidulans pepl N/A van den Hombergh & Visser, 1997b
pep) N/A van den Hombergh et al., 1997b

A. oryzae npll <WT Lehmbeck, 1999
Extracellular metallo protease (fam. M36)

A. fumigatus mep 70% Jaton-Ogay et al., 1994

A. niger pepH <WT van den Hombergh et al., 1997b

A. oryzae npl N/A Lehmbeck, 1999
Multiple disruptants

A. fumigatus alp, mep << WT Jaton-Ogay et al., 1994

A. niger pepA, pepB 10% van den Hombergh et al., 1997a
pepA, pepE ~ ApepA van den Hombergh et al., 1997a
pepB, pepE ~ ApepB van den Hombergh et al., 1997a
pepA, pepB, pepE <10% van den Hombergh et al., 1997a

* As determined with protease assays and expressed as percentage compared to the parent strain; N/A is data not available
+ Parent strain is not the WT strain, but a classical pepA-deficient mutant

Besides regulatory genes specific for protease expression, wide-domain regulatory
genes affect the expression of a broad spectrum of enzymes, including proteases, as a
response to ambient pH (pacC gene), nitrogen source (areA gene) or carbon source
(creA gene).
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Controlling protease activity in fungal production

The pacC gene is expressed at alkaline pH and encodes a protein, which is able to
activate the expression of other alkali-expressed genes and to prevent the expression
of acid-expressed genes (Pefialva & Arst, Jr., 2002). In A. nidulans the expression of the
major alkaline protease prtA gene is activated by PacC. However, disruption of the
pacC coding region results in very poor growth, making this approach not very
interesting to generate hosts for protein production (Tilburn et al., 1995).

The gene areA is expressed in the absence of preferred nitrogen sources such as
ammonium and encodes a protein that activates transcription of genes encoding
enzymes (like proteases) involved in the utilizing of other resources (Ward et al,
2005). Disruption of the areA gene in A. oryzae resulted in increased production of the
heterologous protein chymosin due to reduced protease activity (Christensen &
Hynes, 2000). Unfortunately, disruption of the areA gene in A. niger as well as
A. oryzae also affected growth, even in culture medium with (low levels of)
ammonium; this reduced growth was not noticed in A. nidulans (Christensen et al.,
1998; Lenouvel et al,, 2001).

The gene creA is expressed in the presence of preferred carbon sources such as
glucose. The CreA protein represses the synthesis of enzymes (like proteases)
involved in the catabolism of alternative carbon sources (Ruijter & Visser, 1997).
However, attempts to disrupt the complete creA gene from A. nidulans resulted in
lethal phenotypes (Dowzer & Kelly, 1991) or mutants with extremely severe effects on
morphology (namely reduced growth rate and reduced conidiation) (Shroff et al,
1997).

Altogether, the approach of using gene disruption of wide-domain regulatory genes
seems unsuitable to generate proteases-deficient fungal host strains for protein
production due to pleiotropic growth defects of this type of mutants. Specific mutation
of these regulatory genes, alleviating the severe phenotypic effects of the complete
knockout mutants could be used (Fraissinet-Tachet et al, 1996). However, this
approach relies on selection of specific spontaneous mutants making this approach
not generally applicable.

The wide-domain regulatory mechanisms will be discussed in more detail later on in
this chapter.
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Chapter 1

A novel and efficient method for isolation of protease-deficient
fungi

Although both the classical screening approach and the gene-based approach have
resulted in improved host strains, it is clear that both approaches have their
limitations. The classical approach is very labor-intensive, whereas the disruption
approach is limited by the availability of gene information. Therefore, we have
developed a (direct) mutant selection approach, similar to those available for a
number of other traits in filamentous fungi (pyrG [van Hartingsveldt et al.,, 1987], niaD
[Unkles et al., 1989], sC [Buxton et al., 1989]). This proprietary approach is based on a
suicide substrate (SUI) to which protease mutants of fungi and yeasts are more
resistant (SUIR) than the parent strains (Punt et al, unpublished results). The method
can be used to select spontaneous mutants or mutants generated by mutagenesis by
ultraviolet light irradiation. After a first round of selection the resulting mutants can
be screened in a conventional milk halo screening. As shown in Table 2 the number of
colonies resulting in a decreased halo formation is about 10% of the initial SUIR
strains even without UV-mutagenesis. In previous studies using milk halo screening
after UV-mutagenesis only 0.1% of the surviving spores resulted in a reduced milk
halo. With UV-mutagenesis prior to selection with the suicide substrate the efficiency
of isolating protease-deficient mutants can be even further increased to over 50%
(Punt et al., unpublished result).

In Table 3 the analysis of a number of available and newly selected protease mutant
strains is shown. Interestingly, also a mutant with a deficient intracellular protease
gene (pepE), which results in no significant decrease of extracellular protease activity
(van den Hombergh et al.,, 1997a), can be selected with this method. From Table 3 it is
also clear that, as is the case with virtually every method, not every type of protease
mutant can be selected in this way. For example, a mutant lacking the major protease
gene (pepA) in A. niger, which results in a residual extracellular protease activity of
less than 20% (Mattern et al, 1992; van den Hombergh et al, 1997a), had no higher
resistance against the suicide substrate than the wild type strain. Remarkably, with
this approach also mutants with enhanced protease activity were selected (Punt et al,,
unpublished results).
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Table 2. Efficiency of isolation of protease-deficient mutants by spontaneous resistance to suicide substrate (SUI)

compared to UV mutagenesis

Spontaneous resistance (SUI") of two Aspergillus species to suicide substrate *
. No. of initial . R R Reduced milk
Strain No. of colonies SUI Rescreen SUI
spores halo
Aspergillus sp. section s
o . 4 x 10 590 160/590 45/160
Nigri strain A
Aspergillus sp. section s
. ) 4 x 10 200 85/200 20/85
Nigri strain B
UV mutagenesis of A. niger ¥ and A. nidulans ¥
Strai No. of initial Survival rate after No. of spores screened Reduced milk
rain
spores UV mutagenesis for reduced milk halo halo
A. niger 5x10"1 x 10° 10-20% 1x10* 7/1x 10"
A. nidulans 2.5 x10%-2.5 x 10° 1-10% 2.5x 10" 29/2.5 x 10"
* Punt et al., unpublished results
+ Mattern et al., 1992
¥ Katz et al., 1996
Table 3. Protease mutants show higher resistance to the suicide substrate than WT strains *
X SUI (mg/1) Residual protease activity
Species
0 100 200 300 400 500 intracellular extracellular
A. niger WT + + - - - - 100% 100%
A. niger pepA + + - - - - 100% t 15-20% t#
A. niger pepE + + + +/- - - 30% t ~100% *
A. niger prtT + + + + +/- - N/A <5% %
A. niger prtT/phmA § + + + + + +/- N/A <5% *

* Punt et al., unpublished results

+van den Hombergh et al., 1997a

¥ Mattern et al., 1992

§ The A. niger prtT/phmA mutant is a derivative of A. niger prtT that does not acidify its medium

FERMENTATION CONDITIONS

Strain improvement has proven to be a very useful tool for reducing the proteolytic

degradation of especially heterologous proteins produced in the Aspergillus host

strain. However, the large number of (extracellular) proteases able to degrade these

heterologous proteins and the varying susceptibility of the produced heterologous

proteins for the different proteases (Archer et al, 1992; van den Hombergh et al,

1995) makes one single (permanent) solution of the problem impossible. Therefore,
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Chapter 1

an additional way to improve heterologous protein production can be the
development of fermentation conditions repressing protease production. Although
numerous empirical approaches have been followed to address the protease issue,
only very few systematic studies have been performed. From these studies three
environmental parameters have emerged which have been studied in somewhat more
detail, that is, ambient pH, carbon catabolite control and nitrogen metabolite control.

pH regulation

Ambient pH was shown to be an environmental parameter greatly influencing the
expression of proteases. Controlled fermentations with A. niger at pH 4 or pH 5
resulted in a significant decrease of protease activity at higher pH. When cultured at
pH 6, protease activity was even further decreased (Braaksma et al., 2009). Culture pH
was also suggested to be a key player during the production of recombinant GFP by
A. niger and A. sojae (Gordon et al, 2000; Heerikhuisen et al, 2005). GFP excreted by
the recombinant A. niger strain was rapidly degraded, whereas in A. sojae significant
amounts of extracellular GFP could be detected. Acidification of the culture medium of
A. niger was suggested to be the cause for proteolytic degradation of GFP, as under
identical conditions A. sojae did not significantly acidify. Maintaining the pH at 6
during the production of GFP with A. niger resulted in a tenfold increase of GFP levels
compared to a culture controlled at pH 3 (O'Donnell et al, 2001). This increase was
due to reduced degradation of GFP by proteases. Also, production of the human
cytokine interleukin-6 (Il-6) in a protease deficient strain and a derivative of that
strain, which did not acidify, resulted in improved yield and stability of 11-6 in the non-
acidifying host strain (Punt et al., 2002).

The genes encoding the two major extracellular proteases of A. niger, pepA and pepB,
were not expressed under alkaline conditions (Jarai & Buxton, 1994). On the other
hand, the transcript levels of the major alkaline protease gene prtA produced by
A. nidulans was elevated under alkaline conditions (Tilburn et al, 1995). This was,
however, not confirmed by similar experiments conducted by Katz et al (1996),
where nitrogen starvation appeared to override the repression of prtA by low culture
pH (VanKuyk et al, 2000). From these results we conclude that ambient pH is a
regulator of protease expression. In A. nidulans pH regulation is mediated mainly by
seven genes, pacC, palA, palB, palC, palF, palH, and pall, where pacC plays the key role
in the regulation of gene expression by ambient pH (Tilburn et al, 1995). The
products of the pal genes transduce a signal able to trigger the PacC into an active
form. This active PacC is able to activate the expression of alkali-expressed genes
(including prtA) and to inhibit the expression of acid-expressed genes (Pefialva et al,
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2002). Homologues of the pacC gene and the pal genes have been identified in other
aspergilli, such as A. niger (MacCabe et al, 1996), A. fumigatus (Bignell et al, 2005)
and A. oryzae, as well as all major groups of ascomycetes (Pefialva et al, 2002). The
involvement of pH control in extracellular protease production was further confirmed
by analysis of protease expression in PacC mutants of A. nidulans and A. niger (Tilburn
et al., 1995; Fraissinet-Tachet et al, 1996). However, the expression of three vacuolar
proteases in A. niger is not regulated by PacC, which may also be the case with
intracellular proteases of other aspergilli (Fraissinet-Tachet et al., 1996).

Carbon catabolite control

Growth on glucose or other favored carbon sources prevents the synthesis of enzymes
involved in the utilization of other substrates, such as polysaccharides (Ward et al,
2005). This seems to apply for fungal extracellular proteases as well. Unfortunately,
literature about the effect of carbon source on protease production by aspergilli is
scattered and in addition often rather outdated. However, a few examples of the
repressing effect of glucose and other carbon sources on the levels of excreted
proteases have been described. When mycelia from A. nidulans were transferred to a
medium without carbon source, extracellular proteases were abundantly produced.
When mycelia were transferred to medium with glucose, lactose, galactose, or
glycerol, protease production was severely repressed (Katz et al, 2000). Similarly,
transferring experiments with A. oryzae showed a strong decrease of protease
production when mycelia were transferred to medium with casein and glucose
compared to medium with casein only (Fukushima et al., 1989).

The expression of the two extracellular proteases pepA and pepB of A. niger was
studied in the presence of various carbon sources (Jarai & Buxton, 1994). When cells
were transferred to medium supplemented with glucose, expression of both protease
genes was repressed. In the presence of the less favorable carbon source glycerol the
pepA gene was derepressed and in medium without carbon source pepA and pepB
were both strongly derepressed. Thus, protease expression is clearly affected by
glucose (or carbon catabolite) repression. Repression may be caused by various other
carbon sources, but glucose is suspected to be the most repressive. The repressor
protein CreA plays a major role in carbon repression. CreA inhibits transcription of
many target genes by binding to specific sequences in the promoter of these genes
(Ruijter & Visser, 1997). The gene encoding this protein has been identified in several
Aspergillus species, such as A. nidulans (Dowzer & Kelly, 1989), A. oryzae (Kim et al.,
2001) and A. niger (Drysdale et al, 1993). With Northern blot analysis, protease
expression in creA mutants of A. niger gave clear evidence for the involvement of
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carbon catabolite control (Fraissinet-Tachet et al.,, 1996). Similarly, this was suggested
by the fact that two of the isolated A. nidulans mutants, xprF and xprG, which carry a
mutation in a hexokinase-like protein and an acid phosphatase, respectively, are
thought to be involved in carbon catabolite repression and maybe also in nitrogen,
sulfur, and phosphate regulation (Katz et al.,, 2000; Katz et al., 2006).

Nitrogen metabolite control

Similar as for the repression by glucose, the presence of preferred nitrogen sources
such as ammonium suppress the production of enzymes, such as extracellular
proteases, for utilizing other nitrogen sources (Ward et al., 2005). For example, high
concentrations of the preferred nitrogen source ammonium resulted in increased
concentrations of bioactive tissue t-PA produced by A. niger, which was suspected to
be due to less degradation of this heterologous protein (Wiebe et al, 2001; Wiebe,
2003). Extracellular protease levels of A. nidulans were significant lower in a growth
medium with ammonium compared to a nitrogen-free medium (VanKuyk et al., 2000).
The influence of nitrogen source on the expression of the pepA and pepB gene in
A. niger was investigated by transferring cells to medium with and without
ammonium. Cells grown with ammonia showed very low levels of both protease
transcripts, whereas the levels of mRNA were much higher when cells were grown
without ammonia (Jarai & Buxton, 1994).

The gene areA has been implicated in mediating the nitrogen metabolite control
regulatory mechanism and it has been extensively studied in A. nidulans (Kudla et al.,
1990). The areA gene encodes a protein that activates transcription of many target
genes by binding to specific sequences in the promoter of these genes. Homologues of
this gene have also been identified in other Aspergillus species, such as A. oryzae
(Christensen et al., 1998) and A. niger (MacCabe et al., 1998).

A study with an A. niger wild type strain and several different areA mutants (obtained
by UV-mutagenesis and selection on chlorate plates) demonstrated that three
intracellular protease genes were not controlled by AreA, because both wild type and
areA mutants showed unaltered expression of these three genes (Fraissinet-Tachet et
al, 1996). The same study showed that three extracellular proteases were apparently
regulated by AreA. However, the expression of the corresponding extracellular
protease genes was not modulated in the same way in the different areA mutants, but
depended on the combination of the protease gene and the particular areA mutation.
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Sulfur and phosphorus metabolite repression

Already several decades ago the first studies on the effect of phosphorus and sulfur
sources on protease expression in aspergilli were reported, but hardly any articles
have been published on this subject since (Tomonaga et al. 1964; Cohen, 1972; Cohen,
1973; Cohen, 1981). Today, still little is known about sulfur and phosphorus
metabolite repression in aspergilli and putative involvement in protease regulation.
However, more recently a strong effect of sulfur limitation on the increase of protease
activity for A. nidulans has been described (VanKuyk et al, 2000). In addition,
expression analyses of prtA, encoding the major extracellular protease in A. nidulans,
showed a high transcript level when mycelia was transferred to sulfur-free medium
(Katz et al, 1996; Katz et al,, 1994).

Although the regulatory factors involved in sulfur metabolite repression are known
(Natorff et al, 1993; Natorff et al, 2003), no information is available regarding
protease gene expression. The regulatory factors involved in phosphorus metabolite
repression are yet unknown. Identification of the role of these factors may help for a
better understanding of the overall protease regulation.

Induction of protease by protein

The fact that in the presence of protein the production of proteases is stimulated has
been applied for years in the production of extracellular proteases by the use of
complex nitrogen and/or carbon sources (Singh & Vyas, 1977; Fukushima et al., 1989;
Srinivasan & Dhar, 1990; Singh et al., 1994).

However, the opposite effect has also been described. Extracellular GFP could not be
detected when the A. niger host strain was cultured on defined medium (Gordon et al.,
2000). When modified soya milk medium was used, fluorescence could be detected in
the culture medium. The authors indicate that this was probably not due to a
repressive effect of the soya milk protein, but due to the natural protease inhibitors
that are present in the soya milk medium and the fact that the ambient pH can be
maintained for longer at a value which limits protease induction than with defined
medium. Another explanation is that the abundant availability of substrate for the
proteases delayed the degradation of GFP.

The A. niger pepA and pepB protease genes were induced when mycelia was

transferred to medium with elastin (Ruijter & Visser, 1997). Medium containing
glucose next to elastin repressed expression of both proteases. Comparable
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experiments by Jarai and Buxton (1994) showed a somewhat different picture, as
A. niger expressed pepA and pepB in the presence of glucose if BSA was also present.
When additional ammonia or urea was supplemented both protease genes were
repressed. These results suggest that induction by the presence of extracellular
protein plays only a secondary role in the regulation of extracellular proteases. As for
the sulfur and phosphorus regulation mechanisms little is known about the
mechanism of specific induction of protease gene expression by external addition of
proteins. It is also possible that protein itself is not an inducer, but that the added
protein or its peptide degradation products, being a complex carbon and nitrogen
source all in one, play a role in the wide-domain regulation mechanisms of nitrogen
metabolite and carbon catabolite control.

Bioprocess engineering

Affecting protease production by the means of bioprocess engineering has also proved
to be a successful means of controlling extracellular protease activity. However, again
very little has been published on the subject. Immobilization of the cells of A. niger to
materials like a metal-coated pad or Celite beads reduced secretion of extracellular
protease and increased the secretion of glucoamylase (Liu et al., 1998; Papagianni et
al, 2002). Manipulating the morphology of A. niger by means of inoculum levels
(concentration of spores) or inoculum type (vegetative or spores) was also shown to
affect protease levels (Xu et al., 2000; Papagianni & Moo-Young, 2002). Growth of the
mycelium in the form of (large) pellets resulted in lower specific protease activities
and increased protein production compared with a filamentous morphology.
Morphology clearly affects protease secretion as well as protein production, but the
exact mechanism needs further investigation (Grimm et al., 2005).

The effect of the bioprocess parameters agitation intensity, dissolved oxygen tension
as well as initial glucose and yeast extract concentration on protease and heterologous
protein production has been studied in A. niger (Wang et al, 2003). However,
altogether these studies should be considered as exploratory, as no systematic
analysis was performed.

SYSTEMS BIOLOGY APPROACH

Strain development and optimization of fermentation conditions have improved the
production of (heterologous) proteins by aspergilli to a considerable extend. However,
the problem of proteases has in most cases been approached by trial-and-error,
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without taking the interaction between strain development and improvement of
fermentation conditions in account (e.g., the best mutant may not be the best producer
on the medium previously optimized for a precursor strain). Furthermore, the
mechanism of induction and repression of protease production is far from completely
understood. A more integrated approach is, therefore, desirable to come to a better
understanding of the issue and from this to a solution that is also more generally
applicable.

Recently developed techniques like (comparative) genomics, transcriptomics,
proteomics, and metabolomics will very likely play a crucial role in understanding the
proteolytic system of aspergilli. In addition to these —omics approaches we would also
like to consider the role of the various physiological parameters involved in the
fermentation process. These “physiomics” parameters such as pH, oxygenation,
viscosity, agitation and so on add a further layer of data to be included in a full
systems biology approach to study the proteolytic system of aspergilli.

Several articles reporting application of genomics techniques for research of
Aspergillus strains have been published (e.g., Galagan et al, 2005; Andersen et al.,
2008; Coutinho et al, 2009). With the complete genome sequences of several
Aspergillus strains open to the public (e.g, Machida et al, 2005; Nierman et al.,, 2005;
Galagan et al,, 2005, Pel et al.,, 2007) and more to be expected in the near future (for a
recent overview, see Andersen & Nielsen, 2009), possibilities for studying these fungi
on a systematic level are open for further research.

Transcriptomics is the most established of the genomics techniques. Several reviews
discussing the results from these studies have already appeared (Breakspear &
Momany, 2007; Andersen & Nielsen, 2009), illustrating the possibilities of this type of
studies to elucidate complex biological processes in fungi.

The method for the identification of all proteins in complex mixtures is proteomic
analysis. Initial approaches involved studying the proteins to be separated by one-
dimensional (1D) SDS-PAGE. With the development of 2D gel electrophoresis, often
coupled to mass spectrometry in order to identify the proteins, proteomic analysis has
become a very powerful method for identification of proteins in complex mixtures. A
few reviews on proteomics in filamentous fungi have been recently published
(Carberry and Doyle, 2007; Kim et al.,, 2007, Kim et al., 2008).

One of the more recent functional genomics tools is metabolomics, the analysis of all
intracellular and extracellular metabolites. Already in the mid-1990s a method to
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extract intermediary metabolites from A. niger has been described by Ruijter and
Visser (1996), and glycolytic intermediates were analyzed using an automated
spectrophotometer. Since then, analytical platforms for metabolite detection have
gone through major developments (van der Werf et al, 2005; Koek et al, 2006;
Coulier et al., 2006; Oldiges et al., 2007). However, while based on these methods the
potential for large-scale quantitative studies in aspergilli is present, relatively little
has been published on metabolomics involving Aspergillus species (e.g., Frisvad et al.,
2008; KousKoumvekaki et al., 2008).

As is clear from the indicated studies, all functional genomics tools are still under
development, with identification of expressed genes or proteins as the major
challenge for transcriptomics and proteomics, respectively. However, for all genomics
tools extracting relevant biological information from the overwhelming amount of
data resulting from these tools is perhaps the biggest challenge. Focusing on the
biggest changes in gene expression or protein or metabolite concentration does not
automatically lead to the identification of the most important parameter in a
biological process (van der Werf, 2004). The choice for a data pretreatment method
and a data analysis method greatly affects the outcome (van den Berg et al, 2006).
The final goal will be to combine the results distilled from the high-throughput
functional genomics methods with information from small-scale studies focusing on
particular cellular functions and systems in order to construct a biological network of
all protein and genetic interactions. A comprehensive collection of experimentally
observed interactions has been put together for the best-studied eukaryote, the
budding yeast S. cerevisiae, but it is suggested that there are probably many more
interactions to be discovered (Reguly et al, 2006). For Aspergillus, the study of
complex biological networks, among which are also the proteolytic systems, is still in
its infancy and will provide the scientific community with a huge challenge on the
road to a more complete understanding of this type of organism.
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ABSTRACT

Proteolytic degradation by host proteases is one of the key issues in the application of
filamentous fungi for non-fungal protein production. In this study the influence of several
environmental factors on the production of extracellular proteases of Aspergillus niger
was investigated systematically in controlled batch cultivations. Of all factors investigated
in a series of initial screening experiments, culture pH and nitrogen concentration in
particular strongly affected extracellular protease activities. For instance, at culture pH 4,
protease activity was higher than at culture pH 5, and protease activity increased with
increasing concentrations of ammonium as nitrogen source. Interestingly, an
interdependence was observed for several of the factors studied. These possible
interaction effects were investigated further using a full factorial experimental design.
Amongst others, the results showed a clear interaction effect between nitrogen source
and nitrogen concentration. Based on the observed interactions, the selection of
environmental factors to reduce protease activity is not straightforward, as unexpected
antagonistic or synergistic effects occur. Furthermore, not only were the effects of the
process parameters on maximum protease activity investigated, but for five other
protease-related phenotypes were studied as well, such as maximum specific protease
activity and maximum protease productivity. There were significant differences in the
effect of the environmental parameters on the various protease-related phenotypes. For
instance, pH significantly affected final levels of protease activity, but not protease
productivity. The results obtained in this study are important for the optimization of
A. niger for protein production.
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INTRODUCTION

Aspergillus species such as A. niger and A. oryzae are known for their exceptional
ability to secrete large amounts of homologous enzymes. For decades they have been
commonly exploited as commercial production organisms for a variety of enzymes.
With the development of transformation systems for these industrially important
members of the genus (Buxton et al, 1985; Kelly & Hynes, 1985; van Hartingsveldt et
al, 1987; limura et al.,, 1987; Unkles et al., 1989), the expression of large quantities of
heterologous proteins seemed within reach as well. And indeed, nowadays Aspergillus
species dominate the list of host organisms for the commercial production of enzymes
from fungal origin (according to the Association of Manufacturers and Formulators of
Enzyme Products!). Also, proteins from non-fungal origin, such as chymosin,
lysozyme, lactoferrin, interleukin-6 and antibody fragments, have been successfully
expressed in several Aspergillus species (Yoder & Lembeck, 2004). However, thus far
most of these products have only been produced at a laboratory scale, as the
production levels, often not more than several tens of milligrams per litre, are too low
to be commercially interesting.

The reason for the relatively poor production levels of non-fungal proteins in
aspergilli is not completely understood. A combination of inefficient
(post)translational steps or proteolytic degradation by extracellular proteases
probably affects secreted heterologous protein levels (Yoder & Lembeck, 2004). To
date, this latter problem has mainly been approached by disruption or silencing of
protease-encoding genes (Berka et al, 1990; van den Hombergh et al., 1997a; Zheng et
al, 1998; Moralejo et al,, 2002; Braaksma & Punt, 2008) or protease regulator genes
(Punt et al, 2008). With this approach, significant reduction of proteolytic activity is
achieved with subsequent improvement of heterologous protein production levels
(Moralejo et al, 2000; Wang et al, 2008). The recent sequencing of the genomes of
several Aspergillus species, including A. niger (the complete genome sequences of two
A. niger strains are available, see Pel et al (2007) and the DOE Joint Genome
Institute?), has created the possibility of identification and disruption of new protease
genes (Wang et al., 2008). However, approximately 200 genes involved in proteolytic
degradation have been identified in A. niger (Pel et al., 2007). Due to this high number
of putative proteases, the construction of production hosts essentially free of
extracellular protease activities seems unrealistic. It is likely that in such strongly
altered strains, other cellular processes will be affected as well, making these multiple
protease-deficient mutants unsuitable for robust production conditions.

! http://www.amfep.org/list.html; August 24, 2010
* http://genome.jgi-psf.org/Aspni5/Aspni5.home.html; August 24, 2010
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The role of extracellular proteases in fungi is to degrade proteins into small peptides
or amino acids to supply the cell with nutrients when the preferred carbon or nitrogen
sources are not available to the cell. Several wide-domain regulatory systems involved
in the adaptation of the overall metabolism of nutrients in the cell are implicated in
the regulation of extracellular protease expression. Complementary to strain
improvement, manipulation of environmental conditions can help to reduce protease
secretion and thus improve heterologous protein production, but this has not been
investigated systematically (Braaksma & Punt, 2008). Examples of bioprocess
parameters which have been investigated for their influence on extracellular protease
activity include fungal morphology manipulation (Liu et al, 1998; Xu et al, 2000;
Papagianni et al.,, 2002; Papagianni & Moo-Young, 2002), pH control (O'Donnell et al.,
2001), oxygen enrichment and cultivation temperature (Li et al,, 2008). Studies on the
effect of medium components have mainly focused on the derepression of protease
genes when transferring mycelia to medium lacking either carbon or nitrogen source
(Cohen, 1981; Jarai & Buxton, 1994). In this study, the effect of pH and various
medium components on extracellular protease activity levels in controlled batch
cultures with A. niger N402 was investigated systematically.

METHODS

Strain and culture media

Aspergillus niger N402 used in this study is a cspA1 (conferring short conidiophores) derivative of ATCC
9029 (Bos et al, 1988). Stock cultures of this strain were maintained at -80 °C as conidial suspensions in
20% (v/v) glycerol.

Minimal medium (MM) (Bennett & Lasure, 1991) contained 7 mM KCl, 11 mM KH2PO4, 2 mM MgS04, 76 nM
ZnS04, 178 nM H3BOs, 25 nM MnClz, 18 nM FeS04, 7.1 nM CoClz, 6.4 nM CuS04, 6.2 nM NazMoO4 and 134 nM
EDTA. This medium was supplemented with the appropriate carbon source or nitrogen source as indicated
in Table 1. To prevent foaming, 1% (v/v) antifoam (Struktol ] 673) was added to the medium and, when
necessary, additional antifoam was added during the cultivation.

Pre-cultivations

For inoculation of the batch cultivations, baffled 500 ml Erlenmeyer flasks were inoculated with 10¢ spores
mlL. The flasks were incubated at 30 °C in a rotary shaker at 125 r.p.m. until approximately half the amount
of carbon source was consumed, which took 4-7 days. Each flask contained 100 ml MM (pH 6.5)
supplemented with carbon source and nitrogen source, identical to the medium in the batch cultivations.

Batch cultivations

For the screening of the environmental parameters involved in extracellular protease production, as listed
in Table 1, cultivation was carried out in 3.3 1 BioFlo 3000 bioreactors (New Brunswick Scientific) with a
working volume of 2 1. The cultivations of the full two-level factorial design (Table 2) were carried out in
6.6 1 BioFlo 3000 bioreactors with a working volume of 5 I. The bioreactors were equipped with two six-
blade Rushton turbines and one pitched blade impeller between both Rushton turbines rotating at 400
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r.p.m. at the start of the cultivation. When the dissolved oxygen tension dropped below 20%, the agitation
was automatically increased to a maximum of 1000 r.p.m., maintaining the dissolved oxygen tension at
20%. Air was used for sparging the bioreactor at a constant flow of 0.25 VVM [vol. gas (vol. liquid)-! min-1].
The pH was controlled at the set value (Table 1 and 2) by automatic addition of 8 M KOH and 1.5 M H3POj4,
and the temperature was maintained at 30 °C. The controlled batch cultures were inoculated with 4% (v/v)
pre-culture.

Cell dry weight determination
For the quantification of cell dry weight (DWT), a known volume of cell culture was filtered though a dried,
pre-weighted filter paper, followed by washing with distilled water twice and then drying at 110 °C for 24 h.

Analysis of carbon source concentration

Enzymatic kits were used to analyze glucose (ABX Pentra), sucrose and fructose (Sigma). Lactose
concentration was analyzed by incubating 4x-diluted culture samples with an equal volume of 10% (v/v)
B-galactosidase (Roche) in 0.1 M citrate buffer, pH 6.6, at 37 °C for 10 min, to convert lactose to free glucose
and galactose. Glucose concentration was determined as measure for lactose concentration; with correction
for free glucose present before incubation with f-galactosidase. All these assays were automated on a
COBAS MIRA Plus autoanalyzer (Roche Diagnostic Systems). Xylose concentration was measured with the
dinitrosalicylic method for quantification of reducing sugars (Sumner & Somers, 1949). The culture sample
was 10-50x-diluted and 1 ml of this sample was incubated with 1.5 ml DNS-reagent (1% 3,5-dinitrosalicylic
acid, 1.6% NaOH, 30% potassium sodium tartrate) at 100 °C for 5 min, cooled to room temperature and the
absorbance was measured at 540 nm.

Analysis of ammonium concentration
Ammonium was assayed by the phenol-hypochlorite colorimetric assay according to Weatherburn (1967).
This assay was automated on a COBAS MIRA Plus autoanalyzer.

Preparation of dimethyl BSA for protease assay

N,N-Dimethyl BSA was prepared by a modification of the procedure described by Lin et al. (1969). BSA
fraction V (20 g) was dissolved in 2 litre 0.1 M borate buffer, pH 9.0, and then cooled to 0 °C. The solution
was rapidly stirred, and 4 g of sodium borohydride was added. Formaldehyde (40 ml) was then added in 1.3
ml increments over a period of 30 min. A few minutes after the last addition of formaldehyde, the solution
was acidified to pH 6.0 by the addition of 50% acetic acid and dialyzed against deionized water. The
desalted protein was lyophilized and stored at -20 °C as a fluffy white powder.

Protease assay

Extracellular proteolytic activities were measured according to a modified procedure as described by Holm
(1980) using N,N-dimethylated BSA as substrate. The procedure was fully automated using a COBAS MIRA
Plus autoanalyzer. Proteolytic activity of cleared culture supernatants was determined by incubating 2 or 8
ul sample with 75 pl 0.5% (w/v) N,N-dimethylated BSA in 0.25 M sodium acetate buffer, pH 4.0, for 17.5
min at 37 °C. As a blank, samples were incubated with sodium acetate buffer without N,N-dimethylated BSA.
The reaction was stopped by the addition of 185 pl 0.1 M borate buffer, pH 9.3, with 0.5 g/l Na:SOs.
Simultaneously, 5 pl 1x-diluted 2,4,6,-trinitrobenzene sulfonic acid (TNBSA, Pierce) was added. TNBSA
reacts with the free amino acid groups, resulting in a yellow colour, which was measured at 405 nm after 3
min. Glycine was used as the standard. One unit of protease activity was defined as that amount of enzyme
which in 1 min under the given standard conditions produces a hydrolysate of which the absorption at 405
nm is equal to 1 umol glycine I-1. Proteolytic activities were determined at pH 6 (0.25 M MES buffer, pH 6.0)
and pH 8 (0.25 M MOPS buffer, pH 8.0) as well, but protease activities were very low (results not shown).
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Statistical analysis

Before statistical analysis, the curves for DWT and protease activity were corrected for noise and possible
outliers by using a smoothing algorithm based on penalized least-squares (Eilers, 2003). The degree of
smoothing depended on the value of the penalty (1) and the derivative that was used. Several combinations
of restrictions and derivatives (first- and second-order) were considered in order to find the most
appropriate smoothing. For the analysis of the full two-level factorial design experiments, six different
phenotypes were defined to express protease activity. With analysis of variance (ANOVA) the effect of an
environmental factor or a combination of factors on protease activity levels was evaluated for each of the
six protease-related phenotypes. Each ANOVA model contained all main effects (i.e., the effect of either pH,
carbon source, nitrogen source or nitrogen concentration on the protease-related phenotype) and the
interaction effects of two and three environmental factors. Interaction between all four environmental
factors was not included in the models, for this effect was not significant for any of the six individual
protease-related phenotypes. An effect was considered significant when the P-value was below 0.05. As a
measure for the relative contribution of each effect to variation in protease activity, n was calculated as the
sum of squares of each effect relative to the total sum of squares. Both smoothing and ANOVA were
performed using Matlab Version 7.5.0.342 R2007b (The Mathworks).

RESULTS

Screening of environmental parameters involved in extracellular
protease production by A. niger

The effect of various environmental factors (Table 1) on extracellular protease
production by A. niger N402 was investigated in controlled batch cultivations with a
change-one-factor-at-a-time approach. Tested variables included carbon source,
nitrogen source, nitrogen concentration and pH.

To investigate the effect of carbon sources on production of extracellular protease, six
different carbon sources were tested at a culture of pH 4 in a minimal medium
containing 70.6 mM sodium nitrate as the nitrogen source. Fig. 1 depicts the
concentration profiles of carbon source and biomass as well as protease activity as
assayed at pH 4 for a controlled batch cultivation with glucose as carbon source.
Protease activity was assayed at pH 6 and pH 8 as well. However, at these pH values
hardly any or no proteolytic activity was detected (results not shown), as was also
reported by van Noort et al. (1991). A. niger N402 grew exponentially until the carbon
source was completely consumed at approximately 96 h; after this, biomass
concentration started to decline. Before glucose depletion, extracellular protease
activity had already started to rise and increased rapidly until approximately 18 h
after the carbon source in the medium was completely utilized. Near the end of the
culture period, the rate of increase in extracellular protease activity decreased. This
cultivation with glucose as carbon source was carried out in quadruplicate and used
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as a reference culture in this study. Physiological parameters for growth and protease
activity of this cultivation condition and all other environmental conditions of this
screening design are summarized in Table 1.
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Fig. 1. Profile for extracellular protease production by A. niger during controlled batch cultivation with glucose,
sodium nitrate and at pH 4. [, Glucose; m, protease activity assayed at pH 4; A, biomass concentration. Protease
activity was measured in duplicate and the results are expressed as meansSD.

With xylose as carbon source, profiles for growth and protease secretion (data not
shown) showed similar trends as for glucose, although the maximum protease activity
and specific protease activity were significantly lower with xylose (Table 1). When
sucrose is used as a carbon source, it is first converted into glucose and fructose, after
which glucose is consumed prior to fructose. Growth did not stall during the switch
from glucose to fructose and was comparable to the cultivations with glucose or
xylose. Both maximum protease activity and specific protease activity were
considerably lower compared to growth on glucose (Table 1).
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Effect of environmental conditions on extracellular protease activity

With citric acid, lactose and proline the lag phase was long (4-5 days) and subsequent
growth was slow. Therefore, these cultivations were stopped before the stationary
phase was reached, suggesting that the carbon source was not yet completely
consumed. This was confirmed for lactose, where 40% of the carbon source was not
consumed at the time point when the cultivation was stopped. Protease activity
appeared much earlier in cultures with less preferred carbon sources (data not
shown), at a time point when excess carbon source was still present, whereas with
glucose, protease activity increased after glucose depletion.

We further investigated the effects of different nitrogen sources, i.e., proline,
ammonium chloride and sodium nitrate, on extracellular protease levels at pH 4 with
glucose as carbon source. In addition to cultivation with nitrate, cultivation with
ammonium was performed in quadruplicate and used as a reference culture as well.
Although DWTnax was in the same range for cultures grown with any of the three
nitrogen sources, maximum protease activity was especially lower with proline,
whereas with ammonium the specific protease activity was lower (Table 1).

Based on our analysis, ammonium was limiting for at least a period of time during the
cultivation in medium containing 70.6 mM ammonium chloride (result not shown). To
analyze the effect of the ammonium concentration, we tested a variety of initial
ammonium chloride concentrations. From this analysis it was clear that ammonium
was limiting only at an initial ammonium chloride concentration of 141.2 mM or
below (results not shown). Regarding the relation to protease activity, with an
increasing concentration of ammonium chloride maximum protease activity increased
as well (Table 1).

Based on the results obtained with ammonium chloride, the effect of an increase in the
nitrogen concentration by a factor of 4-8 was also studied for sodium nitrate. Nitrate
is not expected to be limiting in these cultures, although its concentration was not
actually determined. In comparison to the reference culture with sodium nitrate,
protease activities increased considerably at elevated nitrate concentrations (Table
1). However, the highest concentration tested did not result in further increase of
protease activity, as was the case with ammonium.

The last process parameter tested in the screening design was culture pH. Using a
minimal medium containing 277.5 mM glucose and 70.6 mM sodium nitrate, an
increase in the culture pH from 4 to 5 resulted in a fivefold decrease of maximum
protease activity to 49 U I}, and DWTnax decreased threefold to 4.2 g 1! (see Table 1).
The specific protease activity, however, was equal at both culture pH values. At pH 6,

35



Chapter 2

maximum protease activity and DWTnax were even more severely affected (13 U 11
and 1.1 g I, respectively) than at culture pH 5. Notwithstanding the concomitant
decrease of biomass formation, the specific protease activity at pH 6 was
approximately 50% lower compared to cultures controlled at pH 4. It was striking that
biomass formation was so severely affected by an increase in pH, although the rate of
carbon consumption was normal. This suggests increased production of carbon
dioxide or other carbon metabolites, such as organic acids, at elevated pH.

The effect of the increase in culture pH varied for different nitrogen sources. When pH
was increased from pH 4 to 5, maximum protease activity and DWTnax were
significantly lower when nitrate was used instead of ammonium (see Table 1). At pH 4
the differences between the two nitrogen sources were marginal. This discrepancy in
response to pH suggests that, for growth and protease activity, pH and nitrogen
source may be interdependent.

To regulate pH at the indicated values, KOH was added to the various cultures. The
final concentration of K* varied between 288 mM and 820 mM. However, no clear
correlation was found between [K*], pH and protease activity at the time of maximum
protease activity.

Analysis of the interaction effects between environmental factors
on protease production

In the screening experiments, large variations in both maximum protease activity and
specific protease activity were observed for the different culture conditions. There
were also indications that the effects of some of the environmental factors were
dependent on a combination of factors, e.g, nitrogen source and nitrogen
concentration, or nitrogen source and pH. However, the screening approach applied,
in which a single factor was changed while keeping all other factors constant, is
unsuitable for identifying interactions among environmental factors. A full factorial
design, on the other hand, is effective in assessing the contribution of a single
environmental factor on the response studied as well as possible interaction effects
between these factors (Lundstedt et al,, 1998; Kennedy & Krouse, 1999). In this type
of design, each factor is considered at two or more levels and the experiments are
carried out at each possible combination of these levels. A full two-level factorial
design was applied with four environmental factors from the screening experiments.
For each factor, two levels were selected (Table 2). The resulting 2+ full factorial
design was performed with eight replicates that were randomly selected.
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Table 2. Conditions of the full factorial design used in this study

Experiment name pH Carbon source * Nitrogen source Nitrogen level t
4 G 4NO; 4 Glucose NaNO; Low
4 G 8NO; 4 Glucose NaNO; High
4 G4NH, F 4 Glucose NH,CI Low
4 G 8NH, * 4 Glucose NH,CI High
4 X 4NO; 4 Xylose NaNO; Low
4 X 8NO; ¥ 4 Xylose NaNO; High
4 X4NH, 4 Xylose NH,CI Low
4 X 8NH, 4 Xylose NH,CI High
5G4NO; * 5 Glucose NaNO; Low
5G 8NO; 5 Glucose NaNO; High
5 G 4NH, 5 Glucose NH,CI Low
5 G 8NH, 5 Glucose NH,CI High
5X4NO0s 5 Xylose NaNO; Low
5X8NO; ¥ 5 Xylose NaNO; High
5X4NH, 5 Xylose NH,CI Low
5 X 8NH, 5 Xylose NH,CI High

* Glucose and xylose were used at 277.5 and 333.0 mM, respectively. The concentration of carbon was equal under both conditions.
+ NaNO; and NH,Cl were used at 282.4 mM (low) or 564.8 mM (high).
f These cultivations were performed in duplicate.

As in the screening experiments, the response to the various experimental factors was
sometimes different for protease activity and specific protease activity. Therefore, six
phenotypes to express protease activity (Table 3) were evaluated in the analysis of the
experiments of the full 24 factorial design. In addition to maximum protease activity
(see A in Fig. 2), the maximum rate of protease production, i.e., the maximum protease
productivity (see B in Fig. 2), was also considered. However, for secreted products, the
concentration (or activity) and rate of production also depend on the biomass
concentration. Therefore, maximum specific protease activity and maximum specific
protease productivity were included as well. These two phenotypes can be calculated
using the DWT at the time point of maximum protease activity (see Al in Fig. 2) or
maximum protease productivity (see B1 in Fig. 2), respectively. However, these
phenotypes were reached while biomass concentration was declining, thus making
maximum specific protease activity and maximum specific protease productivity
strongly dependent on the degree of lysis. Therefore, both phenotypes were also
calculated in relation to the maximal biomass concentration reached, DWT.« (see A2
and B2 in Fig. 2).
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Table 3. The six protease-related phenotypes evaluated in this study (see also Fig. 2)

Maximum specific protease activity — 2
(max. spec. act. —2)

Maximum protease productivity
(max. prod.) time

Maximum specific protease productivity — 2
(max. spec. prod. — 2)

Maximum activity divided by DWT .

Maximum productivity divided by DWT

Protease-related phenotype Description

Maximum protease activity Maximum extracellular protease activity measured during
(max. act.) cultivation

Maximum specific protease activity — 1 Maximum activity divided by the DWT at the time point that the
(max. spec. act. — 1) maximum activity was reached

Maximum increase of extracellular protease activity per unit of

Maximum specific protease productivity — 1 Maximum productivity divided by the DWT at the time point
(max. spec. prod. —1) that the maximum productivity was reached

protease activity (U I'")

Time (h)

DWT (g I")

Fig. 2. Schematic representation of extracellular protease production by A. niger during controlled batch culture
to explain the various protease-related phenotypes as described in Table 3. Solid line, protease activity; dashed
line, biomass concentration. A, Maximum protease activity; A1, maximum specific protease activity — 1; A2,

maximum specific protease activity — 2; B, maximum protease productivity; B1, maximum specific protease

productivity — 1; B2, maximum specific protease productivity — 2.
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For each of these six protease-related phenotypes, similar trends of protease activity
or protease productivity were observed under the different environmental conditions
(Table 4). In general, trends showed that protease activity and protease productivity
were high in cultures at pH 4 and low in cultures at pH 5. An exception to this were the
cultures performed at pH 5 in the presence of high ammonium concentrations, which
resulted in relative high values. A closer look at the six protease-related phenotypes
revealed subtle differences in reaction to the different process conditions, as
illustrated for maximum specific protease activity and maximum specific protease
productivity (Fig. 3). For both phenotypes, the experiments were displayed in the
same order, showing a clear difference in response. More specifically, in the
experiments with high ammonium concentrations, maximum specific protease
activities were lower at pH 5 compared to pH 4, while for the same experiments the
maximum specific protease productivities were clearly highest at pH 5.

To establish the contribution of the various environmental factors to protease activity
and possible interaction effects between these factors, analysis of variance (ANOVA)
was performed for each of the six individual protease-related phenotypes (Table 5; for
a complete overview of the results and the interaction plots, see the online
supplementary data). In the main, nitrogen source and nitrogen concentration had a
large relative contribution (172) to protease-related phenotypes (Table 5). The
contribution of pH is substantial as well, but only to maximum protease activity and
maximum specific protease activity.

However, caution is necessary in the interpretation of these main effects, for they
cannot be interpreted without taking interaction effects into account. For instance,
from Table 5 nitrogen concentration comes up as a significant main effect for all
protease-related phenotypes. When only looking at this main effect, comparing the
mean protease activities of experiments with either high or low nitrogen
concentrations, one might conclude that an increase in nitrogen concentration affects
protease activity in all cases. However, this was only true for ammonium, while
nitrogen concentration had little effect on the protease-related phenotypes with
nitrate as the nitrogen source. This difference in response to nitrogen concentration
for the two nitrogen sources tested points towards an interaction effect of nitrogen
source and nitrogen concentration. Similarly, for nitrogen source the main effect
cannot be viewed without taking into account that the effect is dependent on pH. With
the exception of maximum protease activity, protease-related phenotypes were more
affected by a change in culture pH when nitrate was used as a nitrogen source instead
of ammonium.
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Fig. 3. (a) Maximum specific protease activity and (b) maximum specific protease productivity under the
experimental conditions of the full factorial design. To illustrate the differences between the two protease-
related phenotypes under identical environmental conditions, the ordering of the experiments is identical in
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However, the contribution of the two-way interaction effect between nitrogen source
and nitrogen concentration was considerably higher than for pH in combination with
nitrogen source (see Table 5).

Additionally, significant three-way interaction effects were detected (Table 5). For
example, the combination of pH, nitrogen source and nitrogen concentration showed a
significant interaction effect for maximum protease productivity and maximum
specific protease productivity. For instance, in the case of ammonium as nitrogen
source, the effect of nitrogen concentration on the maximum protease productivity
was larger at pH 5 than at pH 4. On the other hand, the effect of nitrogen concentration
was negligible at both pH values with nitrate as nitrogen source. However, in general
the contribution of the interaction effects between three environmental factors to
variation in protease activity was small.

DISCUSSION

Degradation of secreted proteins by native extracellular proteases is one of the key
factors hindering the successful application of filamentous fungi in non-fungal protein
production. Approaches to overcome this problem have mainly focussed on strain
improvement (Berka et al, 1990; Mattern et al., 1992; van den Hombergh et al,, 1995;
van den Hombergh et al, 1997b; Zheng et al.,, 1998; Moralejo et al., 2000; Wiebe et al.,
2001; Moralejo et al, 2002). In addition, the use of fungal strains with growth
characteristics (e.g., optimal pH) more favorable to the stability of these non-fungal
proteins has been evaluated (e.g., Heerikhuisen et al, 2005). However, unlike A. niger,
these strains were shown to produce high levels of protease at pH values higher than
pH 4. Reduction of protease secretion by means of manipulation of the environmental
conditions has obtained relatively little attention. In this study the influence of several
environmental factors on the extracellular protease activity levels of A. niger N402
was systematically investigated in batch cultures. After an initial screening design to
select important environmental parameters that influence protease activity, a full
factorial design was applied to determine the contribution of each environmental
factor to the induction of protease activity. An important additional advantage of a full
factorial design is that it can be used to identify possible interaction effects between
the environmental factors tested (Lundstedt et al.,, 1998; Kennedy et al, 1999). In this
study, the existence of significant interaction effects between several of the
environmental factors was established. To our knowledge, interaction effects between
environmental factors in relation to protease secretion of A. niger have not been
reported before.
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One of the most prominent interaction effects identified was between nitrogen source
and nitrogen concentration, as the effect of concentration is dependent on the
nitrogen source. Both individual factors have been reported to affect extracellular
protease production in A. niger and other aspergilli. Several extracellular protease
encoding genes in A. nidulans (Katz et al., 1996; Katz et al., 2008) and A. niger (van den
Hombergh et al, 1994; Jarai & Buxton, 1994) are derepressed when nitrogen source
limitation occurs. In the presence of low-molecular-mass nitrogen sources, such as
ammonium and nitrate, the induction of extracellular proteases is repressed (Cohen,
1972). In our research we found that in the presence of ammonium, extracellular
protease activity only appeared as soon as the carbon source was depleted (results
not shown). However, with nitrate as nitrogen source, protease activity levels started
to increase before the carbon source depleted, as shown in Fig. 1. This is in agreement
with the findings of van den Hombergh et al. (1997b), who found nitrate to be less
repressive than ammonium and urea. Based on the above-mentioned findings,
ammonium seems to be the preferred nitrogen source to repress protease activity.
Excess ammonium has been suggested as a means to reduce proteolytic degradation
of heterologous proteins (Wiebe et al, 2001; Wiebe, 2003). However, the effect of
ammonium as the nitrogen source was less advantageous as soon as derepression of
extracellular proteases occurred, for instance due to carbon source depletion. We
found that final protease activity levels were higher with ammonium than with
nitrate. The existing interaction between nitrogen source and concentration was
demonstrated by the increase in maximum protease activity with increasing initial
ammonium concentrations, while proteases activities remained unchanged when
nitrate concentrations were further elevated.

Less prominent interaction effects were observed involving culture pH. Culture pH
itself often has been indicated as an important environmental parameter in
controlling extracellular protease activity. It affects both the activity of the secreted
proteases (O'Donnell et al, 2001) as well as the expression of protease (Jarai &
Buxton, 1994; van den Hombergh et al, 1997b). Also, in our experiments we observed
that extracellular protease activities were higher at a culture pH of 4 than at pH 5 or
pH 6 (Table 1). Most of the extracellular proteases previously purified from culture
filtrates of A. niger have acid pH optima (van den Hombergh et al., 1997b; van Noort et
al, 1991; de Vries et al., 2004), which is consistent with the acidifying properties of
this fungus. Also, the recent sequencing of the A. niger genome revealed the presence
of an abundance of genes encoding secreted proteases that are expected to be mostly
active at low pH (such as aspartic proteases and carboxypeptidases) (Pel et al., 2007).
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Due to the observed interactions, the selection of culture conditions to reduce
protease activity levels is not straightforward, as several factors are dependent on
each other and may have unexpected antagonistic or synergistic effects. Moreover, the
environmental parameters affect the biomass levels and protein secretion. For
instance, in general protease activity levels are higher at pH 4 and with ammonium as
nitrogen source, but so are biomass levels and, for example, glucoamylase levels (data
not shown). The selection of the most optimal protein production conditions will
therefore require a balance between reduction of protease activity on the one hand
and optimization of growth and the level of production of the desired protein on the
other. On top of this, a deliberate choice of the phenotype of interest is crucial before
the start of an optimization route. In this research, we have illustrated that the effect
of an environmental parameter on the six studied protease-related phenotypes is not
always the same. It is likely that this is also the case for other fermentation products,
both undesired - in this case protease - as well as desired products. When, for
instance, a short process time is important, productivity can be the phenotype to be
optimized, while in other cases time is less relevant and final product levels are
crucial. One might also consider the optimal yield in relation to an expensive substrate
or medium component.
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ABSTRACT

The ecological niche occupied by a fungal species, its pathogenicity and its usefulness as a
microbial cell factory to a large degree depend on its secretome. Protein secretion usually
requires the presence of a N-terminal signal peptide (SP) and by scanning for this feature
using available highly accurate SP prediction tools, the fraction of potentially secreted
proteins can be directly predicted. However, prediction of a SP does not guarantee that
the protein is actually secreted and current in silico prediction methods suffer from gene-
model errors introduced during genome annotation.

A majority rule-based classifier that also evaluates SP predictions from the best homologs
of three neighbouring Aspergillus species was developed to create an improved list of
potential SP containing proteins encoded by the Aspergillus niger genome. As a
complement to these in silico predictions, the secretome associated with growth and upon
carbon source depletion was determined using a shotgun proteomics approach. Overall,
some 200 proteins with a predicted SP were identified to be secreted proteins.
Concordant changes in the secretome state were observed as a response to changes in
growth/culture conditions. Additionally, two proteins secreted via a non-classical route
operating in A. niger were identified.

We were able to improve the in silico inventory of A. niger secretory proteins by
combining different gene-model predictions from neighbouring aspergilli and thereby
avoiding prediction conflicts associated with inaccurate gene-models. The expected
accuracy of SP prediction for proteins that lack homologous sequences in the proteomes
of related species is 85%. An experimental validation of the predicted proteome
confirmed in silico predictions.
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INTRODUCTION

Fungi are heterotrophic organisms that decompose and utilize a plethora of bio-
organic carbon sources through secretion of biomass degrading enzymes. The fungal
secretome is defined as the sub-proteome of soluble secreted proteins. A large part of
this secretome consists of the many extracellular hydrolytic enzymes necessary to
digest potential substrates. Other extracellular proteins play crucial roles in fungus-
host interactions and in fungal pathogenicity. Therefore, gene classes expressed in the
fungal secretome to a large degree define the ecological niche occupied by a fungal
species, its impact on human health and agriculture and its usefulness as a production
organism.

In the absence of direct experimental proof fungal secretomes are usually directly
predicted from the genome sequence by analysing the deduced proteome for proteins
with a putative N-terminal signal peptide (SP). Experimentally identified eukaryotic
signal peptides on average have a sequence length between 17 to 30 amino acids and
these SP are further characterized by a central hydrophobic core region of 6-15 amino
acids flanked by hydrophilic N- and C- terminal regions. These features have been
used to develop highly specific SP prediction tools, which all show very high
prediction accuracies of 93% or higher when applied to benchmark data sets (Zhang
et al, 2003; Bendtsen et al, 2004a; Kall et al., 2004). However, the accuracy of a SP
prediction for predicted proteins heavily relies on an accurate gene-model that
provides correct N-terminal end translation of the encoded protein. Since signal
peptides do not share an apparent sequence homology (Bendtsen et al, 2004a),
sequence variability between secreted homologous proteins of related species is
usually significantly higher at the N-terminal end. This N-terminal heterogeneity
proofs to be a serious problem for homology assisted gene-finding algorithms to
create a reliable gene-model useful for accurate SP prediction. Therefore, the real
problem in predicting an in silico proteome is not the accuracy of the present
prediction tools, but are the inaccurate gene-models used as input for these tools.
Furthermore, a number of proteins with a correctly predicted SP are in reality not
secreted, for instance because they are resident ER proteins (Scott et al., 2004). Thus,
in the absence of direct experimental proof of secretion, an in silico predicted
secretome does not correctly represent the actual secretome.

The genus Aspergillus represents an important group of filamentous fungi with
significant impact on many facets of human welfare. Recently, genome-sequencing
projects of at least 10 Aspergillus species have been completed or are nearing
completion. The corresponding proteomes are usually inferred from gene-models
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derived with automated gene prediction tools. Consequently, the large majority of the
predicted protein coding sequences are hypothetical and have a variable degree of
accuracy. An encouraging exception is the extensively manually annotated genome
sequence of A. niger (Pel et al., 2007). Genome sequences are publicly available from
two A. niger strains (Pel et al, 2007; Baker, 2006), which allows for a direct cross-
validation of genome data and for a direct comparison of most of the independently
derived gene-models. A. niger is an excellent producer of a suite of extracellular
enzymes and many of them have been granted a GRAS (Generally Recognized As Safe)
status by the U.S. Food and Drug Administration (FDA). These properties have made
this fungus a preferred production organism for a range of secreted commercial
enzymes. Among the most important of them are amylases, asparaginases,
B-galactosidases, glucose oxidase, glycosidases, lipases, phospholipases, proteases,
phytases and several hemicellulases (Schafer et al., 2007). Nevertheless, based on the
recently elucidated genomic sequence of A. niger, it can be estimated that currently
direct experimental proof of secretion of only a fraction of the potentially secreted
proteins exists.

In this study we combined comparative in silico SP predictions for classically secreted
proteins with an extensive set of experimental secretome data derived from mass
spectrometry analysis of A. niger secretome enriched fractions. Cross-species
validation of in silico SP predictions produced a more accurate list of potentially
secreted proteins and an improved annotation of the underlying gene-models. The
secretome of A. niger associated with growth on sorbitol and galacturonic acid and
upon depletion of the carbon source was analyzed using a shotgun proteomics
approach. This analysis provided insight into the dynamics of the A. niger secretome
and direct experimental proof of secretion for known and unknown signal peptide
directed proteins (SP proteins).

METHODS

Bioinformatics

Signal peptide predictions. SP predictions were done with a local implementation of the signalP3-NN (neural
network) and the signalP3-HMM (hidden Markov model) algorithms (Bendtsen et al.,, 2004a). Proteins were
considered to be SP proteins if the signalP3-NN D-score was higher than 0.43. Additional signal anchor
predictions were done with a local implementation of the signalP3-HMM algorithm.

Signal peptide cross-validation and construction of the classifier. The predicted proteomes of A. niger strains
CBS 513.88 and ATCC 1015, A. oryzae RIB40, A. fumigatus AF293 and A. nidulans FGSC A4 were used as
input. For each individual protein a SP prediction was done using the signalP algorithm. If the score was
above the set threshold D-value the tag SP was added to the ordered locus name. Next, a bidirectional Blastp
(Altschul et al, 1997) was done between the A. niger CBS 513.88 proteome and the proteome of A. niger
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ATCC 1015, and between the A. niger CBS 513.88 proteome and the proteome of the three other Aspergillus
species. Each set of pairwise tabular outputs was stringently parsed for bidirectional best hit pairs using the
following criteria (i) between the two sequences the percentage of identity must be above a set threshold
level of 40%, (ii) the two aligned protein sequences must be of similar size (a difference in size of less than
20% was accepted) and (iii) the aligned region must include more than 70% of the smallest protein
sequence. Next, these bidirectional best hits were used to form A. niger centred protein clusters. Protein
clusters with at least one SP-tag added to an ordered locus name were selected for the construction of the
classifier.

Implementation of the classifier. In comparison with single genome signalP3 predictions deviating classifier
SP predictions were considered to be of better-quality when the two following criteria were met (i) a
cluster-size of at least three species and (ii) between the non-A. niger classifier proteins a complete
agreement in SP prediction. Muscle (Edgar, 2004) was used for protein multiple sequence alignments. The
general Prosite consensus pattern was used to identify C-terminal ER retention motifs in predicted SP
proteins.

Mass spectrometry data analysis. The 98.150 MS/MS spectra resulting from MS analysis of the A. niger
secretome enriched samples (see below) were submitted to a local implementation of the OMSSA search
engine (Geer et al, 2004). MS/MS spectra were independently searched against peptide databases derived
from the predicted proteomes of A. niger strain CBS 513.88 and of strain ATCC 1015 and against a database
of randomized sequences constructed from the reverse of the CBS 513.88 proteome. All OMSSA searches
used the following parameters: a precursor ion tolerance of 0.03 Da, fragment ion tolerance of 0.5 Da, a miss
cleavage allowance of up to and including 2, all cysteines were considered to be carboxyamidomethylated,
oxidation of methionine and deamination of glutamine and aspargine were treated as variable
modifications.

The set E-value threshold was determined iteratively from the false discovery rate (FDR) and was set to
0.01. With this setting an FDR of <2% was obtained over all samples. FDR calculations were done as follows:
for each identified spectrum with a threshold E-value <0.01 accepted peptide-spectrum matches (PSM) with
each individual peptide database were ranked by their E-value and the top hit identified peptide sequence
was selected. The FDR was calculated from top hit spectral matches to peptides in the reversed database as
described by Elias & Gygi (2007).

The data is available in the PRIDE database! (Vizcaino et al., 2010) under accession numbers 13662, 13663,
13664 and 13665.

Culture conditions
The fungal strain used in this study was A. niger wild type N402, a cspA1 (conferring short conidiophores)
derivative of ATCC 9029 (alternative names NRRL 3, CBS 120.49, N400).

Conditions for growth on sorbitol and galacturonic acid. For pre-culture, 1.0 x 10¢ spores per millilitre were
inoculated into 2.5-L fermentors (Applikon) containing 2.2 L of minimal medium (Pontecorvo et al, 1953)
with 0.01% yeast extract and either 50 mM D-sorbitol or 50 mM D-galacturonic acid as carbon source, at
30 °C and pH 3.5. Spore germination in bioreactors was as described previously (van der Veen et al, 2009),
with headspace aeration and a stirring speed of 300 r.p.m., and when dissolved oxygen levels were below
60%, stirring speed was changed to 750 r.p.m. and aeration was through sparger inlet. The amount of

! http://www.ebi.ac.uk/pride/; October 14, 2010
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monomeric sugars remaining in the culture fluid was assessed by standard HPLC techniques. Culture
supernatants were taken 24 h and 48 h after inoculation.

Conditions used for carbon source exhaustion. Cultures were grown in batch fermentations in a BioFlo 3000
(New Brunswick Scientific) bioreactor with a 5-L working volume. Cultivations were performed with
varying carbon source (glucose or xylose), nitrogen source (ammonium chloride or sodium nitrate),
nitrogen concentration (low (282.4 mM) or high (564.8 mM)), and pH (4 or 5) (see Table 1). The medium
composition, cultivation conditions and operating procedure of the bioreactor have been described in detail
previously (Braaksma et al.,, 2009). Samples for analysis of the carbon source concentration were collected
every six hours and analyzed as described previously (Braaksma et al, 2009). From each growth condition
culture supernatants were taken after carbon source exhaustion.

Analysis of total protein. The concentration of protein in cleared culture supernatants was measured by the

Bio-Rad Protein Assay, using BSA as a standard. The procedure was fully automated using a COBAS MIRA
Plus autoanalyzer.

Table 1. Overview of initial growth conditions used for carbon source exhaustion and time point of sampling

Experiment name  Carbon source pH Nitrogen source Nitrogen source S?mpling
level (mM) time (h)

Nitrate, pH 4

4 G 4NO; glucose 4 NaNO; 282.4 96

4 X 4ANO; xylose 4 NaNO; 282.4 95

Ammonium, pH 4

4G 8NH, glucose 4 NH,Cl 564.8 91

4 X 4NH, xylose 4 NH,Cl 282.4 85

Nitrate, pH 5

5G 8NO; glucose 5 NaNO; 564.8 96

5X 8NO; xylose 5 NaNO; 564.8 156

Ammonium, pH 5

5G 8NH, glucose 5 NH,Cl 564.8 84

5 X 4NH, xylose 5 NH,Cl 282.4 90

5 X 8NH, xylose 5 NH,Cl 564.8 96

Liquid chromatography tandem mass spectrometric analysis

For secretome enriched fractions obtained from growth on sorbitol and galacturonic acid equal amounts of
protein sample (250 pg) were separated on 12% SDS polyacrylamide gels, and stained with Colloidal Blue
Staining (Invitrogen, Carlsbad, CA, USA). Gel lanes were cut into five slices, and each slice was treated with
50 mM dithiothreitol (DTT) in 50 mM NH4HCOs (pH 8.0) for 1 h at 60 °C. Next, slices were alkylated with
100 mM iodoacetamide in NHsHCOs (pH 8.0) for 1 h at room temperature, washed with NH:sHCOs (pH 8.0).
Slices were rehydrated in 10 ng/pl trypsin (Sequencing grade modified trypsin, Promega, Madison, WI,
USA) and digested overnight at 37 °C.

52



An inventory of the A. niger secretome

LC-MS/MS conditions: samples were loaded on a preconcentration column and peptides were eluted to an
analytical column with an acetonitrile gradient and a fixed concentration of formic acid. The resulting eluent
was subjected to an electrospray potential via a coupled platinum electrode. MS spectra were measured on
an LTQ-Orbitrap (Thermo Electron, San Jose, CA, USA) and MS scans of four most abundant peaks were
recorded in data-dependent mode. To simplify the comparison between the two growth conditions the two
galacturonic acid and the two sorbitol samples were pooled.

Secretome enriched samples obtained from carbon source exhaustion were analysed with LC-ESI-MS-MS
performed by Eurogentec (Seraing, Belgium). From each sample a volume corresponding to 10-15 pg of
total protein was digested with trypsin, without prior separation of the proteins. To simplify the
comparison with growth, all samples were pooled.

RESULTS AND DISCUSSION

In silico prediction and validation of the secretome of A. niger

To estimate the prediction accuracy of the secretome of A. niger, we compared the SP
predictions of both sequenced A. niger strains (A. niger CBS 513.88 and A. niger ATCC
1015), and further compared them with SP predictions of orthologous proteins from
three closely related functionally annotated Aspergillus species (A. oryzae strain RIB40
[Machida et al, 2005], A. fumigatus strain Af293 [Nierman et al.,, 2005] and A. nidulans
strain FGSC A4 [Galagan et al., 2005]).

Cross-validation of SP predictions between A. niger CBS 513.88 and
A. niger ATCC 1015

The genome of the industrial production strain A. niger CBS 513.88 was recently
sequenced (Pel et al, 2007). A total of 14,086 protein coding genes (CDS) were
identified in its genome. Of these protein CDS 191 are known to be N-terminally
truncated, because the corresponding loci are located at a contig border. When the
signalP3 signal peptide prediction suite (Bendtsen et al., 2004a) is used, a classical
signal sequence for secretion is detected in at least 1831 predicted proteins (Table 2).
For reasons argued above, this in silico prediction will not be very accurate, because it
depends heavily on the correctness of the underlying gene-models.

The genome of A. niger strain ATCC 1015 was annotated independently and is
predicted to encode approximately 11,200 genes (Baker, 2006). The signalP3-NN
algorithm predicts that 1540 A. niger ATCC 1015 gene-models encode proteins with a
SP (Table 1). In total 1257 of those gene-models orthologous to a single CBS 513.88
gene-model and undoubtedly derived from the equivalent locus. This subset was used
to compare SP prediction results in the two strains. In as much as 30% of these
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predicted proteins conflicting signalP3-NN prediction results were obtained due to
alternative start codon selection (Supplementary data file 1).

Cross-validation of SP predictions using other aspergilli as classifier
species

To improve the precision of the A. niger whole proteome SP prediction, signalP3-NN
prediction results of the A. niger CBS 513.88 proteome were also compared to those of
the best homologous proteins of three closely related fully annotated Aspergillus
species, i.e. A. oryzae strain RIB40 (Machida et al, 2005), A. fumigatus strain Af293
(Nierman et al, 2005) and A. nidulans strain FGSC A4 (Galagan et al, 2005). A
summary of the single genome signalP3 predictions of these aspergilli is presented in
Table 2.

Table 2. Proteome size and single signalP3 signal peptide and signal anchor predictions of four selected
Aspergillus species.

From left to right species are ranked by their phylogenetic distance to A. niger CBS513.88.

Species A. niger A. niger A. oryzae A. fumigatus A. nidulans
CBS 513.88 ATCC 1015 RIB40 Af293 FGSC A4
protein CDS 14086 * 11197 % 10406 98871 10665 %
signalP3-NN * 1831 1540 1751 1258 1469
signalP3-HMM SP * 2016 1687 1802 1067 1612
signalP3-HMM SA * 627 529 582 391 488

* NN, neural network method; proteins were considered to be SP proteins if the signalP3 D-score >0.43. HMM, hidden markov model; SP, signal
peptide; SA, signal anchor.

T Number obtained from the Refseq section of GenBank.

$ Numbers obtained from www.broad.mit.edu/annotation/genome/aspergillus_group/MultiHome.html.

At such a close phylogenetic distance, clusters of orthologous proteins not only are
predicted to have the same molecular function in the different species, but also are
expected to exert this molecular function at the equivalent location. If this is true, SP
prediction results derived from individual signalP3 predictions for Aspergillus sp.
proteins orthologous to an A. niger protein of interest can be used as an independent
majority rule-based classifier. The classifier was constructed in the following way. For
each genome the complete list of predicted SP proteins and their reciprocal top BlastP
hits with A. niger CBS 513.88 proteins were sorted into A. niger centred orthologous
protein clusters as is detailed in Methods. Subsequently, each cluster member was
also screened for a possible signal anchor (SA). In this way 1527 A. niger centred
orthologous clusters with at least one putative SP protein could be formed. Of these
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1527 protein clusters, 1274 are spanning three to five genomes and 253 are formed
by bidirectional “best hit” protein pairs (Supplementary data file 1). In total 669 thus
formed protein pairs and clusters showed a pan-genomic cross validation of SP
prediction.

It should be noted that not all of the cross-validated protein in these clusters are
actually secreted. Proteins with a function in the secretion pathway or related
compartments such as the vacuole may with this in silico approach be classified as
(potentially) secreted proteins in. For instance, we have observed clustering of at least
12 resident ER proteins, which can be recognized by the presence of a C-terminal ER-
retention motif (Scott et al, 2004) (Supplementary data file 1). However, as for most
of the classified proteins a molecular functional characterization is lacking, we have
not taken this into account in our analysis. A further inspection of Supplementary data
file 1 suggests that for all five analysed aspergilli the accuracy of a single genome in
silico SP prediction is approximately 85%.

Improved annotation of A. niger gene models

In 33 protein clusters of the classifier an A. niger CBS 513.88 protein predicted to be a
non-SP protein was clustered exclusively with classifier SP proteins being orthologous
proteins from the other Aspergillus species. Four of those likely false negative signalP3
predictions were re-evaluated by aligning their N-terminal ends (Supplementary data
file 2). In all cases selection of an alternative start codon in the most likely reading
frame would (i) bring the predicted protein sequence length in better agreement with
the predicted protein sequence length of the close by orthologs and (ii) add a
predicted SP feature to the alternative N-terminal end of the predicted CBS 513.88
protein.

Vice versa, in 55 cases a SP prediction for an A. niger CBS 513.88 protein was not
supported by predictions for the orthologous classifier proteins in the protein
clusters. While the molecular function prediction of most of them clearly suggests an
intracellular molecular function, in some cases the classifier also showed an
ambiguous behaviour in separating SP and SA predictions. For instance, the protein
sequences of An15g01200 (A. niger 513.88) and the equivalent protein 137591
(A. niger ATCC 1015) differ both in length and in their SP/SA prediction. However,
compared to the best homologs of the other Aspergillus sp. both proteins appear to be
N-terminally truncated and therefore both should be N-terminally extended. A screen
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of A. niger ATCC 1015 EST sequence data available at the Broad Institute?
demonstrated the presence of an alternative start codon revealing a putative SA with a
probability of 0.993 for the newly inferred protein (see Supplementary data file 2 for
details).

Proteogenome analysis of secretome enriched fractions

Secretome enriched fractions of A. niger N402 cultured under controlled conditions in
defined synthetic media were analyzed by high-throughput mass spectrometry (see
Methods). The culture supernatants of three conditions were sampled. In the first two
conditions, samples of secretome enriched fractions grown on sorbitol were
compared with samples from secretome enriched fractions grown on galacturonic
acid (GalA). For the induction of the pectinolytic system sorbitol is considered to be a
neutral carbon source, while the carbon source GalA is the major constituent of pectin
and a specific inducer (Martens-Uzunova & Schaap, 2008; Martens-Uzunova & Schaap,
2009). In the third condition, prolonged carbon source exhaustion was exploited. The
Open Mass Spectrometry Search Algorithm (OMSSA) search engine (Geer et al.,, 2004)
was used for the analysis of these tandem mass spectra. One of the major causes for
errors in protein identification is incompleteness of the peptide sequence database
due to missed protein encoding genes and gene-models errors. Therefore, tandem
mass spectra obtained by shotgun proteomics of the enriched secretome fractions
were independently matched with two peptide databases derived from the predicted
proteome sequences of both A. niger strains. To quantify false positive rates of peptide
identification, all spectra were also independently searched against a reverse peptide
database constructed from the reverse A. niger CBS 513.88 proteome (see Methods).
At the selected E-value threshold <0.01 for acceptance of a PSM, the spectrum level
FDR was limited to 2% or less under all conditions. The bioinformatics analysis
workflow is presented in Fig. 1. The full list and functional annotation of thus
identified proteins and the conditions under which they were detected are shown in
Supplementary data file 3.

The genome of A. niger CBS 513.88 has been a subject of an extensive molecular
function prediction, followed by thorough manual verification. As a result, the genome
sequence of this strain encompasses a higher number of protein-coding genes
compared to A. niger ATCC 1015. Therefore, the CBS 513.88 proteome was chosen as
the primary database for further analysis. Overall, 7523 accepted PSMs identified 285
predicted A. niger CBS 513.88 proteins. Additionally, we detected 7 more A. niger

2
http://www.broadinstitute.org/; September 5, 2010
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ATCC 1015 proteins with no apparent matching locus in the genome of the other
strain (Supplementary data file 3). Conversely, 25 identified A. niger CBS 513.88
proteins lacked an A. niger ATCC 1015 gene-model, even though in most cases the
corresponding locus was present in the ATCC 1015 genome.

ATCC1015 CBS513.88
Protein model || Protein model

¥

ATCC CBS Rev-CBS
Pep-db Pep-db || Pep-db
|\ J
~—
Best PSM Selection
1 ATCC_56782
specific
ATTC CBS FDR PSM: MVFVGSSSR
Protein Protein calc. l,
XVFVGSSSR
MxFVGSSSR
| - | MVX:GSSSR ‘ MVFAGSSSR
SAP DeteCtlon m;&:::i equivalent
MVFVGxSSR CBS Pep-db
MVFVGSxSR peptide
MVFVGSSxR An18g03570
| Merged List of Spectral Counts MVEVeSSSx

Fig. 1. Schematic of the Spectrum to Peptide matching pipeline. Forward and reversed (REV-CBS) databases were
searched with local implementation of the OMSSA MS/MS search engine. Threshold Expect values for matching
peptides were estimated from the false discovery rate (FDR). Best Accepted peptide-spectrum matches (PSM)
selection was done by ranking for each MS/MS spectrum the output of each individual peptide database by
E-value and selection of the top hit identified peptide sequence.

Insert: Detection of a single amino acid polymorphism (SAP). A wildcard character (x) is introduced at each
position of a single proteome matching peptide, followed by a pattern search in the complementary proteome.
In the given example using the ATCC single proteome matching peptide as a template, a single equivalent
peptide, derived from An18g03570 is retrieved from the complementary proteome. An18g03570 is 99% identical
to ATCC 56782.

Wright et al. (2009) and Tsang et al. (2009) used a similar shot-gun proteomics
procedure to exploit the A. niger proteome. Very recently, also an A. niger proteome
study based on 2D-gel electrophoresis was carried out by Lu et al. (2010). In the study
of Wright et al. (2009), where frozen mycelium was used as study material, 214
different loci were identified. As expected by the differences in source material, the
overlap with the present study is limited to only eight proteins. In the study by Lu et
al. (2010) about 70 proteins were detected in the secretome of which the majority
was also found in our data set. Frome these, only three SP directed proteins we did not
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identify in our data set. Similar to our results, the shotgun proteomics approach from
Tsang et al. (2009) identified about 200 secretome-associated proteins, from which
the large majority corresponds to in silico classified SP proteins, confirming the
validity of our approach. About 40 of the proteins identified by Tsang et al. were not
identified in our data set, whereas our experimental data set identified more than 80
SP proteins not identified by Tsang et al. (2009).

Peptide spectrum matching requires a high quality proteome. While by and large
correct, gene-model predictions may suffer from exon-identification and exon-border
errors, leading to a mismatch with identified peptide spectra. Another reason for not
obtaining completely matching peptide spectra may be due to the presence of genetic
variation, small strain differences leading to single amino acid polymorphisms
between the investigated strain A. niger N402 and the two annotated A. niger genomes
used for mass analysis. In a systematic analysis of matching peptides that are only
present the peptide databases of the annotated genomes, 31 single proteome peptides
were found to match with a single amino acid polymorphism in the equivalent protein
of the other strain. The large majority of amino acid polymorphisms (29 out of 31)
was observed between strain CBS 513.88 and strain N402, suggesting that strain
N402 is more closely related to ATCC 1015.

Functional analysis of secretome enriched fractions

Fungal secretome enriched samples are expected to contain a complex mixture of
possibly hundreds of SP proteins with a minimal contribution of proteins acquired
through cell lysis.

A simple differential measure of relative protein abundance known as ‘spectral
counting’ can be used to quantify the relative contribution of each protein to this
mixture. It has been shown that the total number of spectra that identify peptides
originating from a given protein shows good linear correlation with the abundance of
that protein (Liu et al,, 2004; Zybailov et al., 2005) and a good sensitivity for detecting
changes in protein abundance (Old et al.,, 2005, Fu et al., 2008). The major analytical
caveats to using this approach is that spectral count ratios can be biased by
undersampling, the fact that different peptides have different physiochemical
properties that affect MS detection, and that in complex mixtures for proteins with a
low number of spectral counts this correlation is not very strong (Old et al., 2005).

To overcome such limitations in interpreting relative presentation of proteins,
functional annotation clustering was wused to identify biological processes
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overrepresented among the proteins detected in the enriched secretome fractions. For
this, detected proteins were clustered in nine groups. Seven groups were based on
molecular function prediction by using the FunCat annotation scheme (Ruepp et al,
2004) and the predicted molecular function as guidance. Functionally unclassified
proteins with an SP prediction and a functionally diverse group of “non-SP proteins”
formed two additional groups (Fig. 2). The group “C compound and carbohydrate
metabolism” (CH) together with the enzymes of the pectinolytic system formed the
largest functional annotation cluster. From Fig. 2 it is obvious that compared to
growth on sorbitol the pectinolytic system is induced upon growth on GalA. Therefore
“pectin-modifying proteins” were put in a cluster separate from the CH cluster. FunCat
category “extracellular protein degradation” was used as a basis for the cluster
“protein and peptide degradation”. Furthermore, we distinguished “cell wall

»n o«

components”, “oxidases”, “lipase-esterases” and “acid phosphatases”.

Overall, 98% of the 2722 accepted PSMs obtained from the sorbitol samples could be
traced back to a SP protein in one of the seven functional annotation clusters or the
hypothetical SP protein cluster. Almost identical results were obtained for the GalA
samples. For the carbon source starvation conditions this amounted to 88% of the
accepted PSMs (Fig. 2 and Supplementary data file 3). These results suggest that the
quantitative contribution of cell lysis to the secretome enriched fractions
demonstrated by the detection of an array of functionally diverse non-SP proteins is
indeed limited. The contribution of non-SP proteins is significantly higher in
secretome samples derived from starvation conditions, but this difference is primarily
caused by the specific expression of a single non-SP protein An01g09980, with a
strong similarity to Asp-hemolysin from A. fumigatus. Asp-hemolysin has been
purified from the culture filtrate of A. fumigatus, while no SP is detected (Kudo et al,
2002). The fact that the A. niger homologous protein is detected in significant amounts
in the culture filtrate as well, suggests that this is a non-classically secreted protein. If
the Asp-hemolysin is indeed intentionally secreted, the relative contribution of cell
lysis in secretome enriched fractions under starvation conditions is much more
comparable to what is observed for sorbitol and GalA.

More than 98% of the here-identified secreted proteins are supported by signalP3 and
majority-rule predictions. However, the list also includes the protein ATCC 1015
protein (128537), which is supported by the rule-based classifier prediction only.
Others, such as An02g11390, are ambiguous in their signalP3 and classifier-based SP
predictions, but are clearly present in secretome fractions. If we consider these
proteins to be genuinely secreted proteins, the contribution of cell lysis in our data set
is even lower than discussed above.
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A Growth on sorbitol B Growth on GalA

A A

@ A: non-SP proteins

@ A1: Asp-hemolysin

B A2: aspergillopepsin apnS

m B: carbohydrate modifying enzymes
@ C: pectinolytic enzymes

m D: cell wall proteins

m E: proteases/peptidases

O F: lipases/esterases

0O G: oxidases

W H: acid phosphatases

B I: hypothetical SP proteins

Fig. 2. Categorization of the A. niger secretome. Detected secretome when grown on sorbitol (A), on galacturonic
acid (B), or under carbon starvation conditions (C). For each condition, the contribution of a protein to a category
was normalized based on the total number of spectra.
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Carbohydrate modifying enzymes

Three controlled fermentation conditions were chosen to study the relative
contribution of various classes of carbohydrate modifying enzymes and proteases to
the secretome. To minimize the effect of undersampling, sorbitol, GalA, and
starvation-specific samples were pooled. Between the three conditions significant
changes were observed for all functional annotation clusters, except for the cluster of
acid phosphatases. Upon growth on GalA “pectinolytic enzymes” are overrepresented.
In contrast, proteins present in the CH cluster are overrepresented upon growth on
sorbitol.

Although some pectinolytic enzymes are found in all sampled secretome fractions,
pinpointing to constitutive expression (Martens-Uzunova & Schaap, 2009), the
pectinolytic system is strongly induced under GalA growth conditions. Compared to
growth on sorbitol, not only the number of spectral counts related to the pectinolytic
functions increase upon growth on GalA, but also the diversity of enzymatic functions.
To identify A. niger genes potentially involved in galacturonic acid catabolism, we have
previously compared N402 microarray data obtained upon growth of the fungus on
various carbon sources. Fifteen highly correlating genes were found that were
specifically induced on galacturonic acid (Martens-Uzunova & Schaap, 2008). GalA
specifically activates the transcription rate of six extracellular enzymes. In the GalA
derived secretome five of those, pectin lyase A, three exoPGs (PGAX, PGXB and PGXC)
and An02g02540, a putative pectin acetylesterase, are detected, but only under this
condition. An08g01710, a putative arabinofuranosidase with no apparent SP and part
of this transcriptional cluster, is not found in any of the secretome fractions (Table 3).

Table 3. Pectinolytic enzymes with a correlating transcriptional profile in galacturonic acid transfer cultures in
secretome enriched fractions

Gene Signal Spectral counts
Locus tag r* Molecular Function A
hame Peptide  gorbitol GalA t Starvation
An14g04370 0.999 pelA Pectin lyase A Yes 0 8 0
An12g07500 0.979 pgaX Exopolygalacturonase X Yes 0 18 0
An11g04040 0.978 pgaA Exopolygalacturonase A Yes Not detected
An03g06740 0.971 pgxB Exopolygalacturonase B Yes 0 40 0

Exopolygalacturonase/
An02g12450  0.964  pgxC Yes 0 19 0
exoxylogalacturonan hydrolase

An08g01710 0.953 Putative arabino-furanosidase No Not detected
An02g02540 0.963 Putative pectin acetylesterase Yes 0 19 1

* r, correlation coefficient (data from Martens-Uzunova & Schaap, 2008).
+ GalA, galacturonic acid.

61



Chapter 3

Glucan is one of the major chemical components of the Aspergillus cell wall and
1,3-beta-glucanosyltransferases therefore play an active role in fungal cell wall
biosynthesis (Mouyna et al, 2000). Overall, eight 1,3-beta-glucanosyltransferase
genes from the GH72 family are present in the A. niger genomes. All eight encoded
proteins are predicted to have a Glycosylphosphatidylinositol (GPI) anchor, that
becomes linked to the C-terminal residue after a proteolytic cleavage occurring at the
so-called w-site (Pierleoni et al., 2008). A multiple alignment of the eight encoding
protein sequences suggest that they can be assigned to three subgroups (Table 4).
Four of those 1,3-beta glucanosyltransferases representing each of these subgroups
are detected in the three main secretomes.

Table 4. Expression of 1,3-beta-glucanosyltransferase genes present in the A. niger genome

Signal peptide prediction

Group Ordered locus name * GPl-anchor Prediction #
signalP3 T classifier

1 ATCC 53033 Yes Yes Highly probable
An02g03070 Yes Ambiguous Highly probable

2 An02g09050 Yes Yes Probable
An08g07350 Yes Yes Highly probable
An10g00400 Yes Yes Highly probable

3 An09g00670 Yes Yes Highly probable
An03g06220 No Yes Probable
An16g06120 Yes N.A. § Highly probable

* Bold: proteins are detected by mass spectrometry in the secretome enriched fractions

+ SignalP3 algorithm (Bendtsen et al., 2004a)

4 Using the PredGPI algorithm (Pierleoni et al., 2008)

§ N.A.: Not available, classifier predictions are not valid, because the cluster-size is too small

Proteases

Carbon source starvation conditions were chosen to induce extracellular proteases.
Indeed, where the fraction of spectral counts assigned to “extracellular protein
degradation” is 7% and 12% for growth conditions GalA and sorbitol, respectively,
under starvation conditions this is 24%. The extracellular aspartic proteinase
aspergillopepsin I (PepA) is by far most abundant under starvation conditions. Other
high abundant proteases are An08g04490 (Edens et al, 2005), and the putative serine
proteases An14g02470, An06g00190, and An03g05200, which together with PepA
account for over 75% of the PSMs assigned to proteases under starvation conditions
(Table 5). In addition, under all conditions tested, a protease (53364) was detected
specific to A. niger ATCC 1015 locus only. This aspartic-type endopeptidase has a
predicted SP and homologs are widespread in the genomes of other aspergilli.
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Table 5. Proteases detected in secretome enriched fractions of A. niger N402 cultured under a set of controlled

conditions.
MEROPS family Locus tag spectral counts
sorbitol GalA * starvation
Peptidase family A1 An01g00370 * 0 0 27
(pepsin family) An02g07210 0 0 2
An04g01440 0 0 2
An12g03300 0 1 0
An13g02130 1 1 0
An14g04710 87 33 226
An15g06280 4 0 0
An18g01320 9 8 17
ATCC 53364 2 3 4
Peptidase family M28 An03g01660 0 8 3
Peptidase family $10 An02g04690 9 5 3
(carboxypeptidase Y family) An03g05200 38 21 49
An14g02150 0 1 4
Peptidase family 528 An08g04490 58 25 53
(lysosomal Pro-Xaa carboxypeptidase ) An12g05960 42 20 29
Peptidase family S53 An01g01750 14 5 24
(sedolisin family) An03g01010 9 10 2
An06g00190 7 16 68
An08g04640 17 4 24
An14g02470 18 18 67

* GalA, galacturonic acid.
+ For An01g00370 no signal peptide could be predicted

Overall, 20 proteases were identified in this study (Table 5), of which all but
An01g00370 have a SP prediction. An01g00370 is an aspartic protease with strong
similarity to aspergillopepsin ApnS of A. phoenicis, and is only detected under
starvation conditions. An01g00370 is not a protein directed by a classical signal
peptide for secretion nor can such signal peptides be detected in orthologous
(predicted) proteins from other aspergilli. Nevertheless, the number of spectra
derived from this protein is relatively high (Table 5), making it unlikely that this
protein was detected in these fractions due to lysis. Therefore, in addition to the
highly expressed putative hemolysin homolog, this protease is the second likely
candidate for non-classical secretion and indeed, when subjected to the Secretome
P2.0 algorithm (Bendtsen et al, 2004b), both protein sequences score above the set
threshold value for non-classical secretion. Furthermore, disruption of this protease,
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results in a significant increase of the secreted level of heterologous laccase activity
(Wang et al.,, 2008), suggesting it is in fact a functional extracellular protease secreted
by non-classical routing.

CONCLUSIONS

In this work we present an improved list of SP proteins encoded by the A. niger
genome. The list of SP proteins as predicted by signalP3 was improved by the
additional implementation of a rule-based classifier constructed from single genome
signalP predictions of the best homologs combined with a simple decision rule.
Conflicting predictions are mostly due to inaccurate gene-models. Re-evaluation of the
CDS by N-terminal alignment showed that selection of an alternative start codon in
the same reading frame is in most cases sufficient to obtain an agreement. For
putative SP proteins that do not have clear homologs in the proteomes of the related
species and thus depend on signalP predictions only, an accuracy of 85% can be
expected. Proteogenome analysis of secretome enriched fractions subsequently
provided evidence for secretion of at least 209 of these predicted SP proteins in our
data set, whereas about 40 additional predicted SP proteins were identified in the
data sets from Tsang et al. (2009) and Lu et al. (2010).

The A. niger secretome responds dynamically to changes of the carbon source. The
majority of the detected carbohydrate modifying enzymes are present under both
sorbitol and GalA growth conditions. However, the relative contribution of the
individual enzymes significantly changed with the carbon source. As was already
evident from transcriptome data (Martens-Uzunova & Schaap, 2008; Martens-
Uzunova & Schaap, 2009), the pectinolytic system is most strongly induced under the
GalA growth conditions, where 22 of 30 proteins are either solely present or
significantly more abundant in samples from GalA cultures. The most prominent
difference between the growth and starvation conditions is the relative contribution
of a number of abundant proteases, which levels increase even further under
starvation conditions. However, a few other proteases are exclusively detected upon
growth on sorbitol or GalA.

Although a broad spectrum of non-SP proteins was identified in the secretome
enriched fractions, the relative contribution of lysis was very limited, even under
starvation conditions. Still, relative high concentrations of two non-SP proteins with a
putative extracellular function, An01g09980 and An01g00370, were detected. Most
probable, these proteins are exported outside the cell by active transport mechanisms,
indicating that a non-classical secretion pathway operates in A. niger. Further
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experimental validation of this pathway will be required by more detailed analysis of
trafficking of these proteins.
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ABSTRACT

For the optimization of microbial production processes, the choice of the quantitative
phenotype to be optimized is crucial. For instance, for the optimization of product
formation either product concentration or productivity can be pursued, potentially
resulting in different targets for strain improvement. The choice of a quantitative
phenotype is not only highly relevant for classical improvement approaches, but even
more so for modern systems biology approaches.

In this study, the information content of a metabolomics data set was determined with
respect to different quantitative phenotypes related to the formation of specific products.
To this end, the production of two industrially relevant products by Aspergillus niger was
evaluated; (i) the enzyme glucoamylase and (ii) the more complex product group of
secreted proteases, consisting of multiple enzymes. For both products six quantitative
phenotypes associated with activity and productivity were defined, taking also into
account different time points of sampling during the fermentation. Both linear and non-
linear relations between the metabolome data and the different quantitative phenotypes
were considered.

The multivariate data analysis tool partial least squares (PLS) was used to evaluate the
information content of the data sets for all the different quantitative phenotypes defined.
Depending on the product studied, different quantitative phenotypes were found to have
the highest information content in specific metabolomics data sets. A detailed analysis of
the metabolites showing strong correlation with these quantitative phenotypes revealed
that for glucoamylase activity various sugar-derivatives were found to be correlating. For
the reduction of protease activity mainly as yet unidentified compounds were found to be
correlating.
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INTRODUCTION

The optimization of microbial production processes is an ongoing cycle of strain
and/or process improvement. Traditionally, prior knowledge is the basis for
identifying putative bottlenecks in the process. However, with the use of functional
genomics technologies a more unbiased approach towards target selection for
metabolic engineering or process optimization can be applied (van der Werf, 2005).

For optimization of the production process of a biological compound or enzymatic
activity, a broad range of definitions of phenotypes can be selected for improvement.
For instance, in studies reporting the production of glucoamylase by the filamentous
fungus Aspergillus niger many different quantitative phenotypes for glucoamylase
production were used. These included glucoamylase concentration (in g I'1) (Withers
et al, 1998), activity (in U 1) (Wang et al, 2008), yield (in mol product mol!
substrate) (Melzer et al., 2007), specific concentration or activity (in g g DWT or U g1
DWT, respectively) (Swift et al,, 2000, Pedersen et al., 2000; Schrickx et al., 1993), and
specific productivity (in mol, gram or units g’ DWT h'1) (Melzer et al,, 2007; Withers
etal, 1998; Schrickx et al., 1993).

The motivation for choosing a certain quantitative phenotype in bioprocess
optimization is not always clear, and seems largely ad libitum. The choice of the
quantitative phenotype to be pursued may have a major influence on the outcome of
an optimization strategy. As stated by Kennedy & Krouse (1999) in their review on
strategies for improving fermentation medium performance, some medium design
studies flounder because the target variable to be improved is not clearly defined.
Phenotype definition is not only important for classical optimization approaches, but
perhaps even more so for modern, top-down systems biology approaches. In
particular, as the enormous quantity of data that arise from these systems biology
studies may easily result in a data overload (Braaksma et al, 2010a). However, as far
as we know, no systematic studies have been performed to study which quantitative
phenotype is the most relevant in bioprocess optimization.

In bioprocess optimization a high quantity, e.g. concentration, of a product is not
automatically the most desired result. In the case the substrate is an expensive part of
the total fermentation costs, a high yield may be more relevant. However,
improvement of the product yield is not always achieved by focussing on the yield
itself during the strain improvement process. Focussing on the productivity may
require fewer strain improvement steps during a particular bioprocess optimization
process, thus resulting in an improved yield more quickly. Reduction of the
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fermentation time is another parameter to reduce production costs and can be
realized by increasing the productivity. It is very likely that selection of either of these
phenotypes for optimization will result in different targets to obtain the desired
increase.

In this study, a metabolomics approach was used for target selection for process
optimization and/or metabolic engineering of the host. Culture samples from A. niger
fermentations were analyzed for the production of glucoamylase and protease. For
both products different quantitative phenotypes associated with activity and
productivity were defined. In a first step, we determined the information content of
our metabolomics data set with respect to different quantitative phenotypes
associated with the formation of either of the two different products. Subsequently,
metabolites were identified showing the strongest correlation with the phenotype
studied.

METHODS

Strain and cultivation conditions
Aspergillus niger N402, a cspA1 (conferring short conidiophores) derivative of ATCC 9029 (Bos et al., 1988),
was used in this study.

Cultures were grown in batch fermentations in BioFlo 3000 (New Brunswick Scientific) bioreactors with a 5
litre working volume. Minimal medium (Bennett & Lasure, 1991) contained 7 mM KCI, 11 mM KH2POg, 2
mM MgSO04, 76 nM ZnS0s, 178 nM H3BOs, 25 nM MnClz, 18 nM FeS0s4, 7.1 nM CoClz, 6.4 nM CuSOs, 6.2 nM
Na;MoOs and 134 nM EDTA. This medium was supplemented with the appropriate carbon source or
nitrogen source in concentrations as indicated below. To prevent foaming, 1 % (v/v) antifoam (Struktol ]
673) was added to the medium and, when necessary, additional antifoam was added during the cultivation.
The medium composition, cultivation conditions and operating procedure of the bioreactor have been
described in detail previously (Braaksma et al, 2009). Cultivations were performed according to a full
factorial design (total 16 conditions, and 9 biological duplicates), varying the carbon source (277.5 mM
glucose or 333.0 mM xylose), the nitrogen source (ammonium chloride or sodium nitrate), the nitrogen
concentration (low (282.4 mM) or high (564.8 mM)), and the pH (4 or 5) (Braaksma et al, 2009).

Enzyme assays
Protease activity. Extracellular proteolytic activities were measured at an assay pH of 4 as described
previously (Braaksma et al, 2009).

Glucoamylase activity. Glucoamylase activity was measured using PNPG (p-nitrophenyl o-D-gluco-
pyranoside) (Sigma-Aldrich) as a substrate (Withers et al.,, 1998). The procedure was fully automated using
a COBAS MIRA Plus autoanalyser. 30 pl of cleared culture supernatant was incubated with 90 ul 0.1% (w/v)
PNPG in 0.1 M sodium acetate buffer, pH 4.3, for 20 min. at 37 °C. The reaction was terminated by the
addition of 135 pl 0.1 M borate buffer, pH 9.3, and the absorbance was read at 405 nm. One unit of
glucoamylase activity was defined as the amount of enzyme that produces an absorbance at 405 nm
equivalent to 1 pmol/1 of p-nitrophenol in 1 minute under the given assay conditions.
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Collection of samples, extraction and sample clean-up

Samples for metabolome analysis (25-100 ml, depending on the dry weight concentration) were taken
rapidly from the bioreactor by closing the gas outlet and opening the sampling port. Cells were immediately
quenched at -45 °C in methanol and collected as described previously (Pieterse et al, 2006). Cell pellets
were stored at -45 °C until use. To allow correlation of the metabolite concentrations to cell dry weight, the
internal standards phenylalanine-ds, leucine-ds (Spectral Stable Isotopes, Columbia, USA) and labelled
13C10,'°Ns-GTP  (Sigma-Aldrich, Zwijndrecht, the Netherlands) were added prior to extraction. The
intracellular metabolites were extracted from the cell suspensions by chloroform extraction at -45 °C as
described by Ruijter and Visser (Ruijter & Visser, 1996). The water/methanol phase was subsequently
divided in two portions, one for GC- and one for LC-MS analysis. The LC-MS sample was deproteinized by
filtration using a Microcon YM-10 (Millipore) filter centrifuged at 18000 g and -20 °C for 16 hours.
Subsequently, all samples were lyophilized. To allow correction for the recovery of amino acids, the group
of metabolites most susceptible to matrix effects (i.e. the effect that in complex samples the detection of
some compounds is disturbed in the presence of other compounds), prior to lyophilizing the samples for
GC-MS an internal standard mixture of 2D,!5N-labeled amino acids (Spectra Stable Isotopes) was added.

Biomass determination
Cell culture samples. For the quantification of cell dry weight (DWT), a known volume of cell culture was
filtered though a dried, pre-weighted filter paper, followed by washing with distilled water twice and then
drying at 110 °C for 24 h.

Metabolome samples. The extracted mycelium was collected and dried at 110 °C for 24 h to determine the
dry weight of the sample (Ruiter & Visser, 1996). The metabolite concentrations in the extracts were
correlated to dry weight by the use of the above mentioned internal standards added prior to the extraction
of the cell pellets.

Analytical procedures

IP-LC-MS method. Lyophilized metabolome samples were dissolved in 100 ul methanol/water (1:3 v/v) and
analyzed as described by Coulier et al. (Coulier et al, 2006). Samples (10 or 20 pl) were separated on a
reversed phase column (Chrompack Inertsil 5 mm ODS-3 100 x 3 mm, Middelburg, The Netherlands) using
a 40 min linear gradient from 100% 5 mM hexylamine (pH 6.3) to 100% of 90% methanol-10 mM
ammonium acetate (pH 8.5) at a flow rate of 0.4 ml min!. Compounds were detected by electrospray
ionization (negative ion mode) in the range m/z 150/1000 using a Thermo Finnigan LTQ linear ion-trap
system (Thermo Electron Corp. San Jose, USA). During data acquisition, the mass spectrometer probe
voltage was maintained at 3-4 kV, the heated capillary was kept at 250 °C.

RP-LC-MS method. After analysis with the IP-LC-MS method, the redissolved metabolome samples were
used for analysis with the RP-LC-MS method. Samples (10 or 20 pl) were separated on a reversed phase
column (Waters Sunfire C18, 150 x 3 mm, 3.5 pm) using a linear gradient from 100% water + 0.1% formic
acid to 75% MeCN/water (80%/20%) + 0.1% formic acid in 18 minutes followed by a linear gradient to
100% MeCN/water (80%/20%) + 0.1% formic acid in 10 minutes at a flow rate of 0.3 ml min-'. Compounds
were detected by electrospray ionization (ESI; positive ion mode) in the range m/z 150-2000.

0S-GC-MS method. Lyophilized metabolome samples were derivatized using a solution of ethoxyamine
hydrochloride in pyridine as the oximation reagent followed by silylation with N-methyl-N-
(trimethylsilyl)trifluoroacetamide (MSTFA) as described by Koek et al. (Koek et al.,, 2006). Before silylation,
dicyclohexylphthalate (Sigma-Aldrich) was added as an internal standard for injection. GC-MS-analysis of
the derivatized samples was performed using a temperature gradient from 70 °C to 320 °C at a rate of 10 °C
min? on an Agilent 6890 N GC and an Agilent 5973 mass selective detector (Agilent, Palo Alto, USA). 1 pl
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aliquots of the derivatized samples were injected splitless on a HP5-MS capillary column (30 m x 0.25 mm,
0.25 pm film thickness, Agilent). Detection was performed using MS detection in electron impact mode (70
eV).

Data preprocessing

The LC-MS data were converted to .cdf-files and imported in Matlab (version 7.7.0.471 (R2008b), The
Mathworks, Inc., Natick, MA). The homemade software packages Impress V1.2, Winlin V2.4 and Equest
V2.3XP (Vogels et al, 1996; van der Greef et al, 2004) were used to align and peak-pick the LC-MS data.
Following preprocessing, all peaks in the obtained target tables (in the form of peak identifiers
[mass.retention time] and peak areas) were normalized with respect to the amount of extracted biomass
per sample.

Also the data from the GC-MS analyses were converted into target tables, i.e. spreadsheets containing
relative peak areas for all significant metabolite peaks in all samples. Peak areas were obtained by
automated peak integration, followed by manual inspection. To several of the peaks a (partial) chemical
identity could be assigned by comparing retention time and mass spectrum with an in-house database,
otherwise a unique peak identifier [AN codes] was assigned. All peak areas were corrected for the recovery
of the internal standard for injection. Subsequently, the amino acids were corrected for the recovery of the
labeled amino acids. Finally, peaks were normalized with respect to the amount of extracted biomass per
sample.

Both preprocessed LC-MS and GC-MS data files were combined in one data matrix. As the presence of values
equal to zero can disturb the statistical analysis, prior to this, a so-called 25%-rule was applied: only those
variables were retained which were present in at least 25% of the samples (Rubingh et al., 2009; Bijlsma et
al., 2006). Next, all remaining zero values in the separate GC-MS, IP-LC-MS and RP-LC-MS data sets were
replaced by a threshold value of half the lowest value in the data set unequal to zero (Rubingh et al., 2009).
In total 489 individual peaks, i.e. 131 GC-MS, 176 IP-LC-MS and 182 RP-LC-MS peaks, were retained in the
final data sets to be used as input for multivariate data analysis MVDA.

Multivariate data analysis

Before data analysis, the curves with glucoamylase and protease activity were corrected for noise and
possible outliers using a smoothing algorithm as described previously (Braaksma et al, 2009). The
phenotype data, e.g. protease or glucoamylase activity or productivity, were mean-centred [(x - X )] prior to
MVDA in order to remove the overall offset from the data (van den Berg et al,, 2006). The metabolome data
set was mean-centred and, in order to compare the metabolites relative to the biological response range, it
was subsequently range scaled [(xi =X )/(Xmaxr = Xmin)] prior to MVDA (van den Berg et al, 2006). PLS
analysis were performed in the Matlab environment using the PLS Toolbox (version 5.0.3, 2008;
Eigenvector Research, Manson, WA). The PLS results were cross-validated by using a tenfold single cross
validation procedure. In addition to PLS analysis on the original metabolome and phenotype data, PLS
analysis was also performed after either natural logarithm transformation of the phenotype data in
combination with the original metabolome data or after natural logarithm transformation of the
metabolome data in combination with the original phenotype data. An automatic procedure was written in
Matlab code in order to run the many PLS models in a short time. Every generated PLS model was inspected
manually to judge if the number of latent variables (LV’s) chosen by the algorithm seemed appropriate with
respect to the Root Mean Square Error of Cross Validation (RMSECV) curve. In general, if more LV’s are
included in the PLS model, the given model will contain more noise. In the case too many LV’s were chosen
by the algorithm, a new PLS model was generated by choosing a smaller number of LV’s.
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Compound identification

The identity of relevant peaks was established by verifying peak retention time and mass spectrum against
in-house and public databases. If a peak could not be identified in this way, in several cases it was
subsequently reanalyzed using high resolution and/or tandem mass spectrometry (MS/MS) analytical
instruments (van der Werf et al.,, 2007).

RESULTS

Experimental setup

In order to evaluate whether the definition of the phenotype used influences the
outcome of a metabolomics study, or for that matter any optimization approach, the
production of two industrially relevant products, i.e. glucoamylase and proteases, by
A. niger was studied. To this end, A niger was grown at sixteen different
environmental conditions, with nine randomly selected biological duplicates (see also
Braaksma et al, 2009). Samples for metabolome analyses were taken at three
different time points of the growth curve based on cell dry weight concentrations. One
sample was collected at the middle of the logarithmic growth phase (mid log), one at
the end of the logarithmic growth phase (late log) and one during the stationary
growth phase. Samples were immediately quenched in a methanol solution to prevent
alterations in the metabolite composition of the samples. Subsequently, the
metabolites were extracted from the cells under quenched conditions, and the
metabolites present were analyzed using three analytical methods (see Methods
section).

The production of glucoamylase and protease was monitored during the course of the
fermentation by analyzing culture samples every six hours. The variation in maximum
protease and glucoamylase activities under the different experimental conditions is
shown in Fig. 1. For protease activity the variation is evenly distributed over the
different experimental conditions (Braaksma et al, 2009). For glucoamylase the
experiments can be clearly separated in two groups. One group with very low
activities of conditions where the fungus was grown under non-induced conditions
(on xylose) and another group with high activities of growth under induced conditions
(on glucose).
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Fig. 1. (A) Maximum protease activity and (B) maximum glucoamylase activity in the different fermentations.
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Quantitative phenotypes

Six different quantitative phenotype values for the three different products were
determined. Glucoamylase and protease were expressed as activity (see A in Fig. 2),
and for both products the rate of production, i.e. the productivity (see B in Fig. 2), was
calculated. However, the amount of product formed also depends on the biomass
concentration (DWT). Therefore, specific activity and specific productivity were also
determined. These two specific phenotypes were calculated using the DWT at the time
point of sampling (see Al and B1, respectively, in Fig. 2). However, when a sample was
collected during the stationary phase of the fermentation, the biomass concentration
may already be declining due to autolysis of the fungal cells (White et al., 2002), thus
making specific activity and specific productivity dependent on the degree of lysis.
Therefore, both phenotypes were also calculated in relation to the maximum biomass
concentration (DWTmax) (see A2 and B2, respectively, in Fig. 2). By using DWTnax, the
phenotypic value is not artificially increased when in certain fermentations severe cell
lysis had occurred. In addition to the phenotypes described above, similar quantitative
phenotypes values were also calculated using the maximum activity or productivity
for these products (see also Braaksma et al, 2009). Thus, in this latter case, for all
three metabolome time samples the phenotypic value was identical. For a detailed
description of how each phenotype was defined and a complete overview of the
phenotypic values corresponding to each metabolome sample, see Supplementary
data file 1.

Analysis of the information content of the data set

The multivariate data analysis (MVDA) tool partial least squares (PLS) was used to
determine the information content of the metabolome data sets for all the different
quantitative phenotypes defined. PLS is a regression tool that results in a model that
describes a quantifiable phenotype of interest, such as protease activity or
productivity, based on the concentrations of each of the metabolites determined. In
MVDA analysis of metabolomics data it is important to realize that due to the
relatively large number of variables and few number of samples, chance correlations
are a serious issue. Therefore, the cross-validated correlation coefficient, R2cy,
obtained from a PLS model after cross validation, is a better measure for the
information content of a PLS model than the initial correlation coefficient R2g, because
R2cy also reflects the robustness of the model. A high R2¢y indicates a high information
content of the metabolome data in relation to the quantitative phenotype. In this
study, cross validated PLS models with a RZcy of 0.6 or higher were considered good
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statistical models. For both products, cross validated PLS models were made for all
different quantitative phenotypes (Table 1).

To investigate whether the information content of the metabolomics data set was
growth phase specific,c PLS models of these six quantitative phenotypes were
calculated by including the metabolome data of different time samples in the PLS
model. PLS models were determined using metabolome data of all three samples
generated from the different fermentations as well as with the metabolome data of
only the samples collected at one of the growth phases during the fermentation. In
addition, also PLS models were generated evaluating non-linear relations between the
quantitative phenotype and the metabolome data, in order to identify metabolites
with a non-linear relation to the studied phenotype. An overview of the PLS models
generated from the metabolome data of this study, including the R%cy of each model, is
shown in Table 1.

Product

DWT (g I

Time (h)

Fig. 2. A schematic representation of production in time to illustrate the various product-related phenotypes that
can be defined. Solid line, product; dashed line, biomass concentration DWT. (A) activity at time point of
sampling; (A1) specific activity — 1, based on the biomass at the time point of sampling; (A2) specific activity — 2,
based on the maximal biomass concentration during the fermentation; (B) productivity at time point of sampling;
(B1) specific productivity — 1, based on the biomass at the time point of sampling; (B2) specific productivity — 2,
based on the maximal biomass concentration during the fermentation. (Adapted from Braaksma et al. (2009),
Microbiology 155, 3430-3439.)
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Table 1. Overview of the cross validation values (R’wy) of the PLS models made for glucoamylase (A) and protease
(B).

Models with a chvof 0.6 or higher are considered good statistical models and are indicated in bold.

Glucoamylase

Table 1A Phenotype * [ Rl LN(P) R’ LN(M) R’
Max.Act. G1 0.59 G49 0.66 G97 0.75
Max.Spec.Act.-1 G2 0.47 G50 0.64 G98 0.64
Maximum phenotype, Max.Spec.Act.-2 G3 0.59 G51 0.64 G99 0.77
metabolome data of all samples Max.Prod. G4 0.59 G52 0.67 G100 0.73
Max.Spec.Prod.-1 G5 0.60 G53 0.63 G101 0.78
Max.Spec.Prod.-2 G6 0.59 G54 0.65 G102 0.74
Max.Act. G7 0.71 G55 0.76 G103 0.77
Max.Spec.Act.-1 G8 0.47 G56 0.72 G104 0.67
Maximum phenotype, Max.Spec.Act.-2 G9 0.62 G57 0.74 G105 0.71
metabolome data of mid log samples Max.Prod. G10 0.79 G58 0.75 G106 0.82
Max.Spec.Prod.-1 G11 0.71 G59 0.74 G107 0.82
Max.Spec.Prod.-2 G12 0.73 G60 0.74 G108 0.82
Max.Act. G13 0.43 G61 0.63 G109 0.50
Max.Spec.Act.-1 G14 0.42 G62 0.62 G110 0.48
Maximum phenotype, Max.Spec.Act.-2 G15 0.43 G63 0.61 G111 0.49
metabolome data of late log samples Max.Prod. G16 0.60 G64 0.72 G112 0.57
Max.Spec.Prod.-1 G17 0.67 G65 0.71 G113 0.66
Max.Spec.Prod.-2 G18 0.61 G66 0.70 G114 0.58
Max.Act. G19 0.00 G67 0.01 G115 0.41
Max.Spec.Act.-1 G20 0.01 G68 0.03 G116 0.45
Maximum phenotype, Max.Spec.Act.-2 G21 0.03 G69 0.04 G117 0.44
metabolome data of stationary samples Max.Prod. G22 0.02 G70 0.01 G118 0.40
Max.Spec.Prod.-1 G23 0.00 G71 0.03 G119 0.44
Max.Spec.Prod.-2 G24 0.00 G72 0.02 G120 0.39
Act. G25 0.40 G73 0.68 G121 0.51
Spec.Act.-1 G26 0.38 G74 0.67 G122 0.48
Phenotype at time point of sampling, Spec.Act.-2 G27 0.41 G75 0.66 G123 0.53
metabolome data of all samples Prod. G28 0.55 G76 0.59 G124 0.69
Spec.Prod.-1 G29 0.56 G77 0.57 G125 0.66
Spec.Prod.-2 G30 0.59 G78 0.57 G126 0.68
Act. G31 0.67 G79 0.69 G127 0.67
Spec.Act.-1 G32 0.63 G80 0.69 G128 0.67
Phenotype at time point of sampling, Spec.Act.-2 T G33 0.63 G81 0.69 G129 0.67
metabolome data of mid log samples Prod. G34 0.78 G82 0.69 G130 0.78
Spec.Prod.-1 G35 0.77 G83 0.70 G131 0.81
Spec.Prod.-2 T G36 0.77 G84 0.70 G132 0-81
Act. G37 0.22 G85 0.49 G133 0.30
Spec.Act.-1 G38 0.23 G86 0.48 G134 0.33
Phenotype at time point of sampling, Spec.Act.-2 T G39 0.23 G87 0.48 G135 0.33
metabolome data of late log samples Prod. G40 0.33 G88 0.28 G136 0.42
Spec.Prod.-1 G41 0.29 G89 0.25 G137 0.38
Spec.Prod.-2 T G42 0.29 G90 0.25 G138 0.38
Act. G43 0.04 G91 0.00 G139 0.34
Spec.Act.-1 Ga4 0.01 G92 0.01 G140 0.34
Phenotype at time point of sampling, Spec.Act.-2 G45 0.02 G93 0.01 G141 0.37
metabolome data of stationary samples Prod. G46 0.05 G94 0.02 G142 0.40
Spec.Prod.-1 G47 0.01 G95 0.02 G143 0.38
Spec.Prod.-2 G48 0.01 G96 0.02 G144 0.40
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Table 1. Continued.

Protease
Table 1B Phenotype * [ Rl LN(P) R’ LN(M) R’
Max.Act. P1 0.70 P49 0.75 P97 0.78
Max.Spec.Act.-1 P2 0.66 P50 0.66 P98 0.72
Maximum phenotype, Max.Spec.Act.-2 P3 0.57 P51 0.60 P99 0.66
metabolome data of all samples Max.Prod. P4 0.71 P52 0.69 P100 0.80
Max.Spec.Prod.-1 P5 0.58 P53 0.50 P101 0.63
Max.Spec.Prod.-2 P6 0.58 P54 0.48 P102 0.65
Max.Act. P7 0.46 P55 0.72 P103 0.47
Max.Spec.Act.-1 P8 0.38 P56 0.58 P104 0.32
Maximum phenotype, Max.Spec.Act.-2 P9 0.28 P57 0.55 P105 0.28
metabolome data of mid log samples Max.Prod. P10 0.51 P58 0.69 P106 0.43
Max.Spec.Prod.-1 P11 0.28 P59 0.44 P107 0.16
Max.Spec.Prod.-2 P12 0.29 P60 0.45 P108 0.18
Max.Act. P13 0.52 P61 0.65 P109 0.62
Max.Spec.Act.-1 P14 0.37 P62 0.48 P110 0.47
Maximum phenotype, Max.Spec.Act.-2 P15 0.42 P63 0.49 P111 0.47
metabolome data of late log samples Max.Prod. P16 0.48 P64 0.59 P112 0.44
Max.Spec.Prod.-1 P17 0.28 P65 0.30 P113 0.17
Max.Spec.Prod.-2 P18 0.29 P66 0.34 P114 0.18
Max.Act. P19 0.11 P67 0.19 P115 0.68
Max.Spec.Act.-1 P20 0.11 P68 0.25 P116 0.58
Maximum phenotype, Max.Spec.Act.-2 P21 0.11 P69 0.14 P117 0.59
metabolome data of stationary samples Max.Prod. P22 0.17 P70 0.14 P118 0.60
Max.Spec.Prod.-1 P23 0.14 P71 0.19 P119 0.44
Max.Spec.Prod.-2 P24 0.18 P72 0.18 P120 0.47
Act. P25 0.70 P73 0.57 P121 0.80
Spec.Act.-1 P26 0.66 P74 0.46 P122 0.75
Phenotype at time point of sampling, Spec.Act.-2 P27 0.67 P75 0.44 P123 0.77
metabolome data of all samples Prod. P28 0.45 P76 0.65 P124 0.61
Spec.Prod.-1 P29 0.32 P77 0.49 P125 0.45
Spec.Prod.-2 P30 0.36 P78 0.48 P126 0.45
Act. P31 0.09 P79 0.01 P127 0.17
Spec.Act.-1 P32 0.03 P80 0.01 P128 0.05
Phenotype at time point of sampling, Spec.Act.-2 T P33 0.03 P81 0.01 P129 0.05
metabolome data of mid log samples Prod. P34 0.21 P82 0.42 P130 0.18
Spec.Prod.-1 P35 0.16 P83 0.24 P131 0.12
Spec.Prod.-2 T P36 0.16 P84 0.24 P132 0.12
Act. P37 0.23 P85 0.29 P133 0.41
Spec.Act.-1 P38 0.25 P86 0.09 P134 0.29
Phenotype at time point of sampling, Spec.Act.-2 T P39 0.25 P87 0.09 P135 0.29
metabolome data of late log samples Prod. P40 0.49 P88 0.51 P136 0.51
Spec.Prod.-1 P41 0.32 P89 0.23 P137 0.26
Spec.Prod.-2 T P42 0.32 P90 0.23 P138 0.26
Act. P43 0.18 P91 0.18 P139 0.69
Spec.Act.-1 P44 0.20 P92 0.14 P140 0.57
Phenotype at time point of sampling, Spec.Act.-2 P45 0.19 P93 0.15 P141 0.59
metabolome data of stationary samples Prod. P46 0.18 P94 0.39 P142 0.55
Spec.Prod.-1 P47 0.05 P95 0.45 P143 0.38
Spec.Prod.-2 P48 0.03 P96 0.45 P144 0.42

* For a detailed description of how each phenotype (P) was defined, see Supplementary data file 1. P is used to indicate models generated without LN
transformation; LN(P) is used to indicate models generated after LN transformation of the phenotype; LN(M) is used to indicate models generated
after LN transformation of the metabolome data.

T For these PLS models, the results for Spec.Act.-2 and Spec.Prod.-2 are identical to Spec.Act.-1 and Spec.Prod.-1, respectively. To calculate Spec.Act.-2
and Spec.Prod.-2 in principal DWT,, is used, except for samples collected before DWT,,,, Was reached (as is the case for the mid log and late log
samples). For these samples DWT at the time point of sampling was used, similar as for calculating Spec.Act.-1 and Spec.Prod.-1 (see also

Supplementary data file 1).
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Information content of the metabolomics data set with respect to
the different quantitative phenotypes

About 44% of the PLS models generated for glucoamylase were considered good
models (R?%cy 2 0.6); for protease, this was 19% (see Table 1). When comparing Tables
1A (glucoamylase) and 1B (protease) with each other, one thing is obvious: the
highest information content of the metabolomics data set was obtained with different
quantitative phenotypes for the different products. For glucoamylase good models
were especially obtained when based on metabolome data of the samples from the
mid log growth phase, while most good PLS models for protease were based on
inclusion of metabolome data from all three time samples. Furthermore, LN
transformation of either the metabolome data or the phenotype data resulted in
general in an increased number of PLS models with R2cy = 0.6. In addition, more good
PLS models were generated with the quantitative phenotype based on the maximum
activity or productivity instead of the phenotype based at the activity or productivity
at the time point of sampling. Moreover, for glucoamylase productivity resulted in
more models with a RZcy above the cut-off of 0.6, while for protease on average the
selection of activity (i.e., amount of product formed) as phenotype resulted in a
somewhat higher number of good models.

Identification of metabolites that correlate with the phenotype
studied

Metabolites contributing the most to, for instance, protease activity or productivity
can be identified by ordering the (relative) statistical importance of the metabolites by
virtue of the weight factors (regression factors) as determined in the PLS models for
all metabolites. In other words, by applying PLS, metabolites important for a specific
phenotype can be identified and ranked based on the strength of their correlation
with the phenotype of interest. For both products, one good PLS model was chosen as
starting point for analysing the strongest correlating metabolites in more detail. Based
on this analysis subsequently lists of correlating metabolites from other good PLS
models were compared.

Glucoamylase

For glucoamylase, most PLS models were above the threshold of RZcy = 0.6 when using
metabolome data of the samples collected during the mid log growth phase. From this
group of models, the PLS model in relation to maximum activity (PLS model G7), was
selected as starting point for target identification and comparison to other good PLS
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models for glucoamylase. From this G7 PLS model, the 20 highest ranking metabolites
are shown in Table 2. This top 20 included a relative high number of disaccharides
and other sugar-derived compounds that were only present under glucoamylase
inducing conditions (i.e. with glucose as carbon source). For all these dissacharides as
well as some of the other compounds, such as DL-aminoadipic acid, 2,3-butanediol
and xylitol the correlation is based on the absence of the compounds in all xylose
samples and the presence in all glucose samples (Table 2). However, there is no clear
correlation between their intracellular concentrations and maximum glucoamyase
activity based on only the glucose samples (e.g. Fig. 3A). On the other hand, for
putrescine, ornithine, glucose-6-phosphate, and fructose-6-phosphate there is a
correlation between increasing intracellular levels of these compounds and maximum
glucoamyase activity (e.g, see Fig. 3B).

When comparing the top 20's of other models with a R%,y = 0.6 with each other,
especially the use of metabolome samples from particular sampling times was of
influence on the resulting top 20 (see Supplementary data file 2A). When either the
metabolome data of all time samples was used (e.g. model G49), or only the
metabolome data of the mid log or late log samples (models G55 and G61,
respectively), only four metabolites are present in all three resulting top 20’s. These
four metabolites were the compound tentatively identified as volemitol or perseitol,
the compound tentatively identified as ribonic acid or xylonic acid, an unidentified
disaccharide with a retention time of 42.02 min and another unidentified compound
with ID AN 320-218 22.96 min (Supplementary data file 2A).
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Fig. 3. Plot of the correlation between the metabolite tentatively identified as nigerose and maximum
glucoamylase activity (A) and a similar plot for putrescine (B). O, Metabolome samples from xylose fermentations
(n=11); m, metabolome samples from glucose fermentations (n=11).
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Table 2. Twenty metabolites with the strongest correlation to glucoamylase as determined by PLS based on all
mid log metabolome samples in relation to maximum activity (PLS model G7).

rank metabolite ID * tentative identity regression visual correlation
factor to phenotype *

1 dissacharide 39.13 min nigerose + + %
2 C5 sugar alcohol xylitol + +
3 DL-aminoadipic acid + +
4 putrescine + +

5 disaccharide 319-361 kojibiose + + %
6 ornithine + +

7 disaccharide 40.41 min isomaltose + + %
8 disaccharide 40.89 min isomaltose § + +
9 xylose - -1
10 histidine + 0

11 glucose-6-phosphate + +

12 glucose + + %
13 fructose-6-phosphate + +

14 AN 292-333 24.26 min ribonic acid or xylonic acid - -]
15 AN 201 26.51 min unknown + + ¥
16 spermidine + 0

17 tryptophan + 0

18 glutamine + +

19 2,3-butanediol + + 1
20 uric acid + + ¥

* All metabolites in this list were detected with the 0S-GC-MS method.

+Visual correlation is indicated by + (positive correlation), — (negative correlation), or 0 (no apparent correlation); see also Supplementary data file 3A.
F Only or mainly high abundant on glucose, no apparent visual correlation within the glucose samples.

§ These are different mass fragments of the same compound.

| | Only high abundant on xylose.

The effect of LN transformation on the ranking of the potential targets was somewhat
ambiguous. The effect of LN transformation of the phenotype or the metabolome data
on the resulting top 20's was in several cases limited. For instance, for PLS models G7,
G55 and G103 50% of the compounds were present in all three lists (for details, see
Supplementary data file 2A). However, in other cases, i.e. PLS models G34, G82 and
G130, this was only the case for 25% of the compounds (for details, see
Supplementary data file 2A). The exact effect of LN transformation on the correlations
of the metabolites with the phenotype was unclear; plotting of the peak areas of
metabolites exclusively present in the top 20’s after LN transformation against the
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phenotype showed in some cases an improvement of the linear correlation, while in
other cases the linear correlation deteriorated (data not shown).

Protease

For protease, most PLS models were above the threshold of RZcy = 0.6 when using the
metabolome data of all three samples collected during the fermentation. The PLS
model in relation to maximum activity, model P1, was selected from this group of
models as starting point for target identification and comparison to other good PLS
models for protease. From this PLS model, the 20 highest ranking metabolites are
shown in Table 3. This top 20 mainly consisted of unidentified compounds detected by
LC-MS, making interpretation of the results difficult. Two of the metabolites were
tentatively identified as 2,3-dihydroxy-3-methylpentanoic acid and 2,3-dihydroxy-3-
methylbutanoic acid, both known intermediates of the isoleucine and valine
biosynthesis, respectively. A number of the compounds in the top 20 contained a
phosphate-group; however, very little is known of a possible involvement of
phosphorus sources on protease expression in aspergilli. In comparison to the
glucoamylase results, the relative high contribution of compounds analyzed with the
RP-LC-MS method was remarkable. Among others, RP-LC-MS is suitable for the
detection of aromatic peptides and peptides larger than 4-5 amino acids, suggesting
that at least some of the high ranked compounds could be peptide-derived.
Unfortunately, for none of these compounds appropriate reference compounds are
currently available to establish their exact identity.

When comparing the top 20’s from good PLS models for protease with each other, the
overall observations are in line with those for glucoamylase. Also for protease the
largest differences between the top 20’s were observed when comparing models
which were based on different selections of the metabolome data, e.g. metabolome
data of all time samples or only the metabolome data of mid log or late log samples
(see Supplementary data file 2B for details). Furthermore, the influence on the
resulting top 20’s was very limited when using either activity or specific activity as
phenotype. This is to be expected, given the strong correlation between activity and
specific activity, or productivity and specific productivity. On the other hand, the effect
of LN transformation of either the phenotype or the metabolome data was
considerable, as the resulting top 20’s showed 50% or less overlap with the top 20
without LN transformation (Supplementary data file 2B).
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Table 3. Twenty metabolites with the strongest correlation to protease as determined by PLS based on all

metabolome samples in relation to maximum activity (PLS model P1).

rank metabolite ID * tentative identity regression visual correlation
factor to phenotype t
1 428.0417 (RP) unknown + +
2 AN 110-336 13.53 min (GC) unknown + +
3 phosphorylethanolamine unknown + 0
related (GC)
4 712.1019 (RP) unknown + +
5 AN 312 15.42 min (GC) unknown + +
6 2,3-dihydroxy-3- + +
methylpentanoic acid (GC)
7 223.0937 (IP) monomethylphosphate + 0
8 2,3-dihydroxy-3- + +
methylbutanoic acid (GC)
9 AN 298-342 (GC) unknown + +
10 AN 342-299 31.30 min (GC) unknown - -
11 AN 211-283 20.80 min (GC) unknown + 0
12 446.0929 (IP) monomethylphosphate + 0
13 monomethylphosphate (GC) + 0
14 230.1734 (RP) unknown + 0
15 171.0420 (RP) unknown + +
16 207.0929 (IP) monomethylphosphate # + 0
17 799.1182 (IP) unknown + 0
18 688.1035 (RP) unknown + 0
19 428.0743 (RP) unknown - 0
20 Adenosine (GC) + 0

* The analytical method used to detect each metabolite is indicated in between brackets: GC, 0S-GC-MS; IP, IP-LC-MS; and RP, RP-LC-MS.
+ Visual correlation is indicated by + (positive correlation), — (negative correlation), or O (no apparent correlation); see also Supplementary data file 3B.
¥ These are different mass fragments of the same compound.

DISCUSSION

The choice for a certain quantitative phenotype in bioprocess optimization often
seems rather random, but may have a major influence on the outcome of an
optimization strategy. In this study, the information content of a metabolomics data
set was determined with respect to different quantitative phenotypes related to the
formation of two simple products, i.e. glucoamylase, and a more complex product, i.e.
protease. When comparing the results of the two enzyme products glucoamylase and
protease, it could be concluded that the information content of the metabolomics data
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set is higher for the simpler of these two products, i.e. glucoamylase. This is on the one
hand remarkable, because the fermentation conditions from which the metabolome
samples were collected in this study, were originally selected to result in large and
evenly distributed variation in protease activity (Braaksma et al., 2009).

Another important aspect influencing the information content of the metabolomics
data set is the time point at which metabolome samples were collected. For instance,
in this study the information content of the metabolome data from the mid log time
samples was high in respect to glucoamylase (Table 1A), while it was low for protease
(Table 1B). Based on this result, we conclude that data sets based on fewer
experimental conditions but more metabolome samples in time may be more
informative than a data set based on many experimental conditions and only one or a
few time samples per condition. In addition, data sets based on more samples in time
will allow the analysis of longitudinal effects in the data, i.e. metabolites whose
correlation with product formation show a shift in time (Rubingh et al, 2009).

Our results show that the effect of different ways to calculate the quantitative
phenotype on the information content and resulting targets is much smaller than the
effect of the time point of sampling. In general, the number of PLS models with a R%cy
above the threshold value was higher when quantitative phenotypes were used that
were based on the maximum activity or productivity instead of the activity or
productivity at the time point of sampling (Table 1). A possible explanation for this is
the more distinct variation in phenotypic values for the maximum phenotype. This
may correlate better to the variation in the metabolome data present at a time point
when phenotypic differences are perhaps not yet that clearly visible. Nevertheless, the
effect of either maximum phenotype or phenotype at time point of sampling on the
resulting top 20’s is limited (Supplementary data file 2). This holds for the different
description of the phenotype (e.g. activity versus productivity, or activity versus
specific activity) as well. Conversely, the effect of LN transformation was considerable.
Not only did the number of PLS models with a R%cy above the threshold value increase
with LN transformation of the phenotype or the metabolome data, the resulting top
20’s were often considerably different from the top 20 based on the data without LN
transformation. However, it should be noted that it is difficult to interpret the effect of
LN transformation, especially as it is not clear how LN transformation and data
pretreatment methods (e.g. scaling methods such as range scaling) influence each
other with regard to complex metabolome data (van den Berg et al., 2006).

With the MVDA tool PLS the quantifiable phenotype of interest can be related to the
metabolome data set as a whole and at the same time take into account the
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relationship between the metabolites (van der Werf et al, 2007). Without this, it
would be necessary to plot the metabolite concentrations of each metabolite against
the phenotype in order to investigating the relation between individual metabolites
and the quantifiable phenotype of interest. However, in case of a large number of
metabolites, and as in our case a large number of phenotypes as well, this approach
will result in an extremely large number of plots to analyze. Moreover, in such plots
the intrinsic interdependency of the metabolites is neglected. However, despite these
advantages of MVDA over a univariate approach, interpretation of the relation of the
metabolites ranked by PLS to the quantifiable phenotype of interest is not
straightforward. Several aspects, as listed below, have to be taken into account when
interpreting the results of a PLS model.

(1) The positive or negative regression factors that are a measure for the contribution
of a metabolite to the phenotype cannot be directly translated into how a metabolite
actually correlates to the phenotype. These regression factors are not only a measure
for the correlation of a single metabolite to the phenotype, but also for the correlation
of this metabolite to other metabolites. Therefore, for a more detailed biological
interpretation it is recommended to plot the concentrations of highly correlated
metabolites against the quantifiable phenotype.

(2) Not all metabolites found to be correlating to the phenotype of interest are
involved in the production of this product, either as inducer/inhibitor or
precursor/side-product. With MVDA no distinction can be made between metabolites
that correlate to the phenotype due to either a cause or an effect relation. For instance,
one may conclude that the disaccharides found to be correlating to high glucoamylase
activity (Table 2) induce glucoamylase secretion and thus cause the high activities.
However, it is also possible that the identified disaccharides were formed from
glucose by transglucosylation activity from glucoamylase (Nikolov et al, 1989), and
thus are an effect of glucoamylase activity (‘effect correlation’). For strain
improvement in particular cause relations are of importance.

(3) Related to the previous subject is the occurrence of confounding effects, i.e. the
situation that an extraneous factor correlates with both the phenotype and a
metabolite. This can result in the false conclusion that there is a causal relationship
between the phenotype and that specific metabolite. For example, there is only
significant glucoamylase activity when A. niger is cultured on glucose instead of on
xylose. Also several metabolites, such as uric acid and xylitol, are mainly present when
A. niger is cultured on glucose. Therefore, one may conclude that there is a direct
correlation between these metabolites and glucoamylase production. However, these
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compounds may not be directly linked to glucoamylase production per se, but perhaps
both glucoamylase and these metabolites independently correlate to growth on a
specific carbon source.

(4) With the comprehensive analytical methods used in this study not only known
compounds are analyzed, but also all peaks of unknown identity are included in the
data set. One last aspect hampering the interpretation of the results of the data
analysis is the correlation of these unidentified metabolites with the phenotype.

Taking into account the various aspects that influence the interpretation of the PLS
results, as discussed above, specific metabolites identified as important to the
question under study can be distilled from the initial list of potential targets that
result from PLS. For optimization of glucoamylase production glucose-6-phosphate
and fructose-6-phosphate are among the most likely targets. The enzyme glucose-6-
phosphate isomerase catalyzes the conversion of glucose-6-phosphate into fructose-6-
phosphate. The ratio between the concentrations of glucose-6-phosphate and
fructose-6-phosphate is approximately a factor seven higher than expected based on
the equilibrium constant for glucose-6-phosphate isomerase (data not shown). The
relative accumulation of glucose-6-phosphate may on the one hand suggest that the
activity of this enzyme is a bottleneck in the flux through the glycolysis. On the other
hand, this aberration of the equilibrium may be required to obtain a sufficient flux in
the direction of the pentose phosphate pathway (PPP), in order to generate sufficient
NADPH. Melzer et al. (2007) also observed that under glucoamylase-producing
conditions the flux of glucose through the PPP was higher than for non-producing
conditions. However, in our study even under non-producing conditions the ratio
between glucose-6-phosphate and fructose-6-phosphate  concentrations is
approximately a factor seven higher than expected. This weakens the hypothesis that
the flux through the PPP may only be insufficient under glucoamylase-producing
conditions, although when glucose was used as carbon source the absolute
concentrations of both metabolites are higher. Alternatively, also absolute metabolite
concentrations could be involved in regulation of metabolite fluxes (e.g. allosteric
effects). All in all, in view of the crucial position of glucose-6-phosphate isomerase at
the branch point between the glycolysis and the PPP, the regulation of the activity of
this enzyme may be a means to regulate the fluxes through these two pathways and
thus optimize glucoamylase production. Putrescine and ornithine are the two other
most likely targets for optimization of glucoamylase production. Ornithine is the
starting point for the synthesis of polyamines such as putrescine. Little is known
about the actual function of putrescine and other polyamides in A. niger. In A. nidulans,
there is an absolute requirement of polyamides in growth and development (Tabor &
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Tabor, 1985; Jin et al, 2002). The positive correlation between glucoamylase
production and putrescine suggests that glucoamylase production may be stimulated
by either addition of this polyamine to the medium or overexpression of the gene
encoding ornithine decarboxylase, the enzyme responsible for the conversion of
ornithine into putrescine.

No obvious targets were found in relation to protease production. Moreover, the
majority of the compounds correlating to protease activity are unidentified
compounds (Table 3). The presence of several compounds analyzed with the
RP-LC-MS method in Table 3 suggests the possible involvement of small peptides in
protease induction. Unfortunately, identification of peptides with the RP-LC-MS
method has proved to be quite difficult, also because of the lack of appropriate
reference compounds. Therefore, in order to further investigate the possible role of
peptides in protease induction, additional methods will have to be deployed that offer
more detailed information on the (partial) identity of peptides.

It was anticipated that the relation between intracellular metabolite concentrations
and extracellular protease activity would not be straightforward, because
extracellular protease activity is a complex phenotype, consisting of multiple enzyme
activities. Recent analysis of the secretome of A. niger has indicated the presence of up
to 20 different secreted proteases in the medium (Tsang et al.,, 2009; Braaksma et al.,
2010b). Possibly, an approach with metabolomics alone is not sufficient for
identifying targets for such a complex phenotype and an integrated systems biology
approach is required.

Besides glucoamylase and protease production, also citric acid production was
analysed as a phenotype. Although the experimental design of our data set was not
optimally suited for this product, resulting in very few reliable PLS models
(Supplementary data file 4), several TCA cycle intermediates (isocitrate,
a-ketoglutarate) were identified as correlating with citric acid production (results not
shown). Altogether, this study illustrates that with a combined metabolomics/MVDA
approach relevant targets for strain and process improvement can be identified, as the
relevance of several of the identified leads seem confirmed by what already is known
in literature (e.g. the role of glucose-6-phosphate isomerase in glucoamylase
production). Moreover, this study demonstrates the importance of experimental
design in top-down systems biology studies, not only with regard to the fermentation
conditions, but also with respect to the time point of sampling and the selection and
calculation of the quantitative phenotype to be pursued.
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ABSTRACT

The fungus Aspergillus niger has been studied in considerable detail with respect to
various industrial applications. Although its central metabolic pathways are established
relatively well, the mechanisms that control the adaptation of its metabolism are
understood rather poorly. In this study, clustering of co-expressed genes has been
performed on the basis of DNA microarray data sets from two experimental approaches.
In one approach, low amounts of inducer caused a relatively mild perturbation, while in
the other approach the imposed environmental conditions including carbon source
starvation caused severe perturbed stress. A set of conserved genes was used to construct
gene co-expression networks for both the individual and combined data sets. Comparative
analysis revealed the existence of modules, some of which are present in all three
networks. In addition, experimental condition-specific modules were identified. Module-
derived consensus expression profiles enabled the integration of all protein-coding
A. niger genes to the co-expression analysis, including hypothetical and poorly conserved
genes. Conserved sequence motifs were detected in the upstream region of genes that
cluster in some modules, e.g., the binding site for the amino acid metabolism-related
transcription factor CpcA as well as for the fatty acid metabolism-related transcription
factors, FarA and FarB. Moreover, not previously described putative transcription factor
binding sites were discovered for two modules: the motif 5'-CGACAA is overrepresented in
the module containing genes encoding cytosolic ribosomal proteins, while the motif
5'-GGCCGCG is overrepresented in genes related to 'gene expression', such as RNA
helicases and translation initiation factors.
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INTRODUCTION

Genome-wide gene expression levels as generated by DNA microarray technology give
insight into the behavior of individual genes at the cellular level. Such expression
levels can be considered as a reflection of the physiological state of an organism and
can be used to reveal details of metabolic regulation. The first fungal microarray
studies were reported for the model organism Saccharomyces cerevisiae (DeRisi et al.,
1997; Lashkari et al., 1997), followed by application of this technology for over 20
filamentous fungi including Aspergillus niger (Breakspear & Momany, 2007). A. niger is
of industrial importance as it is the major production organism for citric acid world-
wide (Magnuson & Lasure, 2004) and an efficient producer of both homologous and
heterologous proteins (Pel et al, 2007; Punt et al., 2002). So far, A. niger transcriptome
studies have been used to characterize polysaccharide-degrading enzyme systems
(Andersen et al.,, 2008; Jgrgensen et al., 2009; Martens-Uzunova & Schaap, 2008; van
der Veen et al, 2009; Yuan et al, 2008a,b), to describe spatial colony development
(Levin et al, 2007), and to study the A. niger response towards reductive stress
(Guillemette et al., 2007) or cell wall damage (Meyer et al., 2007).

Most DNA microarray studies, including all above-mentioned A. niger studies, focus on
differential gene expression between few experimental conditions. However, solely an
observation of fold changes of expression of individual genes does not explain how
biological processes work together to achieve the cell's objectives. Additional
information regarding the activation and co-operation of biological processes can be
obtained by comparing gene expression profiles over a range of conditions. For
example, genes that encode subunits of a protein complex may have a consistently
similar change of expression levels over many conditions. The similar expression of
two or more genes over a range of conditions is referred to hereafter as gene co-
expression.

Featherstone and Broadie deduced from a S. cerevisiae gene co-expression study
(Featherstone and Broadie, 2002) that specific sets of genes interact extensively at the
level of gene expression, and thus can be described in terms of an interconnected
network. Such gene co-expression networks can provide a large-scale, global view of
the transcriptional response of an organism.

A comparison of gene co-expression networks constructed from DNA microarray data
of the evolutionary distinct organisms S. cerevisiae, Homo sapiens, Escherichia coli,
Arabidopsis thaliana, Caenorhabditis elegans, and Drosophila melanogaster indicated
that these networks share common structural, or topological, properties (Bergmann et
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al, 2004). For example, the observed gene co-expression networks consist of co-
expressed groups of genes, termed clusters or modules, which are associated with the
same cellular function. However, while modules of genes involved in similar cellular
functions were identified in all species analyzed (e.g., "glycolysis", "proteasome"), this
study also indicated that the higher-order relations between modules differ
significantly between the organisms (Bergmann et al., 2004). For example, the average
gene expression profiles for genes in the "secreted protein" and "proteasome"
modules correlate positively in yeast and A. thaliana, negatively in D. melanogaster,

and do not appear to correlate significantly in H. sapiens.

Before gene co-expression networks can be generated and analyzed, two problems
need to be solved. First, genomes often encode thousands of proteins. Construction of
a co-expression network of this amount of genes will in most cases results in a
network that is difficult to interpret due the number of genes and their many
connections. Second, the physiological role of a large proportion of proteins is
unknown, or at best poorly understood (Hughes et al, 2004). This lack of
understanding further hampers the interpretation of any network generated.
Different strategies to circumvent these problems can be employed in gene co-
expression network analyses. The first strategy is to limit the analysis of co-
expression networks to descriptive parameters only, such as the number of
connections that a gene has with other genes (connectivity), e.g., see Jordan et al,
2008; van Noort et al,, 2004. While this approach provides an understanding of the
network at a higher abstraction level, such knowledge cannot be converted easily into
understanding the actual underlying biological processes. The second strategy is to
investigate only a subset of genes that is relevant for a certain research interest, e.g.,
see Bergmann et al., 2004; Lee et al., 2004; Neretti et al., 2007. For example, Bergmann
and co-workers selected genes participating in eight well-defined S. cerevisiae
biological processes, and examined co-expression of their orthologous genes in five
other organisms (Bergmann et al., 2004). In a variation of this strategy, co-expression
between all genes is calculated but the analysis is focused on a part of the network
that is of particular biological interest, e.g., a certain oncogene (Basso et al.,, 2005).
These approaches, however, are biased towards already known biological processes.
In addition, the selected biological processes might operate distinctly in organisms
other than S. cerevisiae. To reduce bias of using only known biological processes, yet
another approach limits the analysis to genes conserved in different species, for
instance, in S. cerevisiae, D. melanogaster and C. elegans (Daub & Sonnhammer, 2008).

In this study, we extend the latter approach to the analysis of gene co-expression
networks. For the construction of a gene co-expression network of A. niger, a subset of
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genes is selected that is based on evolutionary conservation of the proteins they
encode among 19 different fungal species. Even when no defined function can be
assigned to such proteins, their evolutionary conservation suggests a biological role.
From expression data of these conserved protein-encoding genes, a gene co-
expression network is generated. Subsequently, the topology of this network is used
to extend the analysis to less conserved genes excluded from the initial analysis. This
approach is followed for the analysis of two A. niger DNA microarray data sets
cultivated under distinct experimental conditions.

MATERIALS AND METHODS

Culturing

Mildly perturbed conditions: A. niger 872.11 (dargB pyrA6 prtF28 goxC17 cspA1) is derived from CBS 120.49.
All media were based on Pontecorvo's minimal medium (pMM) (Pontecorvo et al, 1953), contained 100
mM sorbitol as carbon source and were supplemented with uridine and arginine. Glass 2.5-1 fermentors
(Applikon) with 2.2 1 of pMM were kept at a constant temperature of 30 = 0.5 °C while fermentor headplates
were kept at 8 °C. A total of 1.0 x 106 of spores per ml were added to a fermentor. During germination, each
fermentor was aerated through the headspace (50 | h'!) and stirred at 300 r.p.m.. When dissolved oxygen
tension levels dropped below 60% for over 5 min, the stirrer speed was set to 750 r.p.m. and aeration was
switched to sparger inlet. In one experiment, fermentors were induced with either 0.1 mM sorbitol or
D-xylose at T = 14 h as previously described (van der Veen et al,, 2009). In a second experiment, fermentors
were induced with 1 mM of various oils at T = 14 hours and samples were taken before induction and up to
2 h after induction (Table 1).

Strongly perturbed conditions: A. niger N402 (cspA1) (van Hartingsveldt et al, 1987) is derived from CBS
120.49. All media were based on Bennett's minimal medium (bMM) (Bennett & Lasure, 1991). Both shake
flask and fermentor cultures were grown in bMM medium at a constant temperature of 30 + 0.5 °C and with
differing combinations of carbon source, nitrogen source and concentration, and pH of the medium (Table
1) (Braaksma et al, 2009). Fermentor inoculum was pre-cultured in baffled 500 ml Erlenmeyer flasks
containing 100 ml bMM (pH 6.5) supplemented with the carbon source and nitrogen source concentrations
corresponding to fermentor conditions. These flasks were inoculated with 106 spores per liter and
incubated in a rotary shaker at 125 r.p.m. until approximately half of the available carbon source was
consumed. Cultivations were carried out in 6.6-1 fermentors (New Brunswick Scientific) with 5.0 I of bMM.
The fermentors were inoculated with 4% (w/v) pre-culture. To prevent foaming, 1% (v/vl) Struktol J-673
antifoam was added to the medium and additional antifoam was added during cultivation when necessary.
Each fermentor was sparged with 751 h'! of air with the stirrer speed set at 400 r.p.m. at the start of the
cultivation. When dissolved oxygen tension levels dropped below 20%, the stirrer speed was automatically
increased to maintain oxygen tension at 20% or until the maximum of 1000 r.p.m. was reached. The pH was
controlled by automatic addition of 8 M KOH or 1.5 M H3POa.

RNA isolation

Culture samples from mildly perturbed conditions were filtrated and biomass was snap-frozen into liquid
nitrogen and stored at -80 °C. Culture samples from strongly perturbed conditions were quenched
immediately in methanol at -45 °C as described previously (Pieterse et al., 2006) and centrifuged at -20 °C
to remove supernatant. Biomass was frozen into liquid nitrogen and stored at -80 °C. A Trizol-chloroform
extraction preceded total RNA extraction with RNeasy mini columns (Qiagen) according to the
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manufacturer's protocol for yeast. Concentration of total RNA was determined by spectrophotometry. RNA
integrity was assessed on an Experion system (Biorad) for samples from mildly perturbed conditions by
visual inspection of the electropherograms. Graphs depicting RNA integrity categories were used as visual
aids (Schroeder et al, 2006). Electropherograms approximating an RNA integrity number of 8 or lower or
with a 28S/18S ratio below 1.8 were discarded. For samples from strongly perturbed conditions, RNA

integrity was assessed on agarose gel, by its A260/A280 ratio, and on an Agilent 2100 Bioanalyzer.

Table 1. Fermentation conditions for DNA microarray samples used in this study

Initial nitrogen

Sample oH Carbon Nitrogen source level Inducer S'ampling Growth
name source source (mM) compound * time (hr) Phase t
Mildly perturbed conditions
29 % 3.5 sorbitol NaNO; 70.5 D-xylose 14 E
44 F 3.5 sorbitol NaNO; 70.5 D-xylose 14 E
52% 3.5 sorbitol NaNO; 70.5 sorbitol 14 E
76 3.5 sorbitol NaNO; 70.5 D-xylose 14 E
86-1% 3.5 sorbitol NaNO; 70.5 D-xylose 14 E
96 f 3.5 sorbitol NaNO; 70.5 sorbitol 14 E
Triton-0 3.5 sorbitol NaNO; 70.5 - 14 E
Triton-0.5 3.5 sorbitol NaNO; 70.5 Triton-X-100 14.5 E
Triton-1 3.5 sorbitol NaNO; 70.5 Triton-X-100 15 E
Triton-2 3.5 sorbitol NaNO; 70.5 Triton-X-100 16 E
Olive-0 3.5 sorbitol NaNO; 70.5 - 14 E
Olive-0.5 3.5 sorbitol NaNO; 70.5 olive oil 14.5 E
Olive-1 3.5 sorbitol NaNO; 70.5 olive oil 15 E
Olive-2 3.5 sorbitol NaNO; 70.5 olive oil 16 E
DGDG-0 3.5 sorbitol NaNO; 70.5 - 14 E
DGDG-0.5 35 sorbitol NaNO; 70.5 DGDG oil 14.5 E
DGDG-1 3.5 sorbitol NaNOs 70.5 DGDG oil 15 E
DGDG-2 3.5 sorbitol NaNO; 70.5 DGDG oil 16 E
Wheat-0 ¥ 3.5 sorbitol NaNO; 70.5 - 14 E
Wheat-0.5 3.5 sorbitol NaNO; 70.5 wheat oil 14.5 E
Wheat-1 3.5 sorbitol NaNO; 70.5 wheat oil 15 E
Wheat-2 3.5 sorbitol NaNO; 70.5 wheat oil 16 E
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Table 1. Continued

) Initial nitrogen )
Sample Carbon Nitrogen Inducer Sampling Growth
pH source level )
name source source (mM) compound time (hr) Phase t
m

Strongly perturbed conditions

4 G 4NOs-1 4 glucose NaNO; 282.4 - 66 LS
4 G 4NO3-2 4 glucose NaNO; 282.4 - 96 LS
4 G 8NO; 4 glucose NaNO; 564.8 --- 53 LE
4 G 4NH, 4 glucose NH,CI 282.4 - 57 LS
4 G 8NH;-1a & 4 glucose NH,CI 564.8 36 LE
4 G 8NH;-2a & 4 glucose NH,CI 564.8 36 LE
4 G 8NH,-1b § 4 glucose NH,CI 564.8 - 60 LS
4 G 8NH,;-2b § 4 glucose NH,CI 564.8 - 60 LS
4 X 4NOs 4 xylose NaNO; 282.4 - 66 LS
4 X 8NO; 4 xylose NaNO, 564.8 91 LS
4 X 4NH, 4 xylose NH,CI 282.4 60 LS
4 X 8NH,4 4 xylose NH,CI 564.8 66 LS
5G 4NO;3 5 glucose NaNO; 282.4 - 48 S
5 G 8NO; 5 glucose NaNO; 564.8 --- 49 LE
5G4NH, 5 glucose NH,CI 282.4 - 35.25 LE
5G 8NH, 5 glucose NH,CI 564.8 35 LE
5 X 4NO0; 5 xylose NaNO; 282.4 93.5 S
5 X 8NO; 5 xylose NaNO; 564.8 112 S
5 X 4NH, 5 xylose NH,4CI 282.4 - 41 LE
5 X 8NH, 5 xylose NH,CI 564.8 - 47.5 LE

* The concentration of inducer compound added was 0.1 mM for D-xylose and sorbitol; 0.002% for Triton-X-100; and 1 mM for olive oil, digalactoside-
diglyceride (DGDG) and wheat oil.

+ E, exponential growth phase; LE, late exponential growth phase; S, stationary phase, carbon source will become depleted within 1 hour; LS, late
stationary growth, over 10 hours of carbon depletion.

¥ These DNA microarray samples are independent biological replicates, i.e., all thus labeled samples are grown in different fermentor vessels but with
identical media composition and are sampled at identical time point, even though they are part of different experiments and grown at different dates.
§ These DNA microarray samples are technical replicates. The thus labeled microarray samples are derived from one fermentor sample from which the
extracted RNA was processed further in duplicate.

Microarray processing

cDNA and cRNA synthesis and labeling, and array hybridization were performed following the Affymetrix
users’ manual (Affymetrix, 2004) using the One-cycle Target Labeling and Control Reagents Kit to
synthesize 15 pg of cRNA from 5 pg of total RNA as template material for mildly perturbed conditions
samples. For strongly perturbed conditions samples, the Bioarray High Yield RNA Transcript Labeling Kit
(Enzo) was used to synthesize at least 30 pg of cRNA from 10 pg of total RNA as template material. Fifteen
microgram of fragmented and labeled cRNA was hybridized to custom-made A. niger arrays at 45 °C for 16h.
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Washing and staining was done using the Hybridization, Wash and Stain Kit (Affymetrix) using a GeneChip
FS-450 Fluidics station and an Agilent G2500A Gene Array scanner. Scanned images were converted into
.CEL files using MicroArray Suite software (Affymetrix).

Microarray data accession number

Raw and RMA-normalized array data were deposited at the NCBI Gene Expression Omnibus database
(Edgar et al., 2002) under series entries GSE11405 and GSE14285 for the mildly perturbed conditions and
under series entry GSE17329 for the strongly perturbed conditions.

Data preprocessing

DNA microarrays were normalized using Affymetrix' MicroArray Suite Software version 5 (MAS5) with the
target value set at 100 (Affymetrix, 2001). MAS5 was preferred over another often-used normalization
strategy, Robust Multichip Average, or RMA (Irizarry et al, 2003), as MAS5 normalization is calculated over
each individual array alone, thus excluding a potential influence of normalization to the correlation
structure of the whole data set. Some probe sets have a signal above background in only few of the
experimental conditions examined. Since their limited number of observations hampers the calculation of
reliable correlations, for each of the three data sets, probe sets flagged "absent” in more than 80% of the
microarrays per data set were discarded from that specific data set. Under mildly perturbed conditions,
7,955 probe sets (55%) were discarded while under strongly perturbed conditions 5,084 probe sets (35%)
were discarded. Probe set values were normalized per microarray by dividing each probe set value by the
mean signal over the whole microarray. Signals that are close to the detection limit are more influenced by
random noise signal and thus yield varying values on different arrays. This variation hampers the
calculation of reliable correlations as well and therefore the mean "absent” call value divided by two was
taken as uniform "lowest in the data set” value. The remaining signals flagged as "absent” (those not
included in the removed probe sets) as well as all other probe set signals with a value below this lowest
uniform value were replaced by this uniform value. Probe sets were not filtered for a certain fold change
threshold as the magnitude of fold change is not necessarily a measure for biological relevance (van den
Berg et al., 2006). In addition, the correlation analysis of the data has its own selection criterion, namely the
p threshold value. No artifacts or outliers in the signals distribution for the microarrays within the data sets
were observed, and the per-array signal distributions were similar.

Correlation analysis

The correlations between genes were determined by the Spearman correlation coefficient p. The correlation
coefficient ranges from 0 (no correlation) till either 1 (full positive correlation between expression levels)
or -1 (full negative correlation between expression levels, i.e. perfect antagonists). The Spearman p is a non-
parametric correlation measure based on the rank of the expression values instead of the detected values,
and is robust against outliers and mild non-linear behavior (Zar, 1996). The Spearman correlation measure
was recently shown to be slightly more robust in the analysis of gene co-expression compared to other
correlation methods including the Pearson correlation, Euclidian distance, and the mutual information
measures (Daub & Sonnhammer, 2008). The p-value for the Spearman correlation for the mildly perturbed
conditions data set, which is the smallest data set, was 4.12 x 10 for the lowest cut-off value for p (p =
0.85).

Correlation networks were drawn in Cytoscape (Shannon et al, 2003). Initial networks were constructed
using the "spring embedded" layout function, and individual genes within the resulting networks were
manually re-positioned for improved interpretation (Fig. 1). Manual arrangement was based on the p values
associated with each gene pair, by the sign of p, and by the number of connections per gene that were
visible at a certain p threshold value. In this iterative process, while switching back and forth between p
threshold values, only genes visible at a certain p threshold value were relocated. The length of the
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connecting lines does not represent the degree of correlation between the two connected genes. The term
"module” is used for a group of genes that has a core of interconnected genes at high p threshold values, and
to which group genes appear to attach preferentially upon lowering of the p threshold. A coloring scheme
was deduced from the combined data network, where at p 0.95, eight modules can be identified. These
modules were labeled A-H, and genes within each module were assigned a color to assist localization of
these genes within the networks.

Visualize data in Cytoscape
using “spring embedded” layout

T
"/

Y

Visualize highest correlations

v

Manually rearrange initial gene
positions (if desired)

—

Lower correlation threshold

N )

—

Iterate until +

satisfied Group genes based on the
number of positive

correlations and signs of p

Y

Raise p threshold, check
preferential attachment

( Final network )

Fig. 1. Procedure for construction of gene co-expression networks. Schematic representation of the process to

—

construct gene co-expression networks.

Validation

The influence of individual microarrays on the correlation analysis was evaluated by a “leave N samples
out” validation. This validation procedure tests whether the strongest co-expressed gene pairs also remain
the strongest co-expressed gene pairs in case DNA microarray samples are removed from the complete set
of DNA microarrays. The following procedure was used: (i) random selection of two (for each single data
set) or five (for the combined data sets) microarrays and removal from the data set; (ii) calculation of new
correlation coefficients; (iii) continuation until all microarrays were excluded whilst ensuring that
previously removed arrays were not removed again; (iv) repetition of this procedure for 20 times; (v)
calculation of the mean correlation coefficient per gene pair; (vi) selection of gene pairs matching the 2.5
and 97.5 percentiles of the mean correlation coefficient; (vii) comparison of the selected genes with the
genes present in the correlation networks. For the mildly perturbed data set, 80% of its strongest
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correlating gene pairs fell within the 2.5th and 97.5th percentiles in this validation procedure. All of the
actually observed strongest correlating gene pairs for both the strongly perturbed data set and the
combined data set belonged to the 5% strongest correlating gene pairs of the validation.

Consensus expression profile analysis

The "combined data set" network was used for consensus expression profile analysis. Genes with three or
more connections with other genes within a module were selected. Their expression profiles were
converted in a rank order analogous to the rank order used for the Spearman correlation. Following
(Horvath & Dong, 2008), the consensus expression profile was defined as the profile obtained from the first
principal component score vector of a principal component analysis (PCA) (Jackson, 1991; Joliffe, 2002) of
the converted expression profiles. Subsequently, the correlation between the obtained consensus
expression profile and the expression profile of all measured genes was calculated. All calculations were
performed on a Pentium 4 personal computer with 1 GB internal memory using Matlab (The Mathworks),
the Statistics Toolbox (The Mathworks), and homemade scripts.

Promoter analysis

Promoter analysis was done in GeneSpring, version 7.2 (Agilent), using the "find potential regulatory
sequences” tool. The promoter region from 10 to 800 bases upstream of a gene was searched for
oligonucleotides ranging from 5 to 10 bases, with at maximum one single point discrepancy allowed, and
correcting for local nucleotide density. The likelihood of random occurrence of identified sequences was
compared relative to the upstream region of all 14,165 genes in the A. niger genome.

KEGG pathway analysis

For the combined data set network, all genes present within each module A-H at p 0.90 were exported to a
tab-delimited file and imported into the KegArray program (Wheelock et al., 2009). The “PathwayMap” tool
was applied to extract A. niger genes linked to a KEGG pathway from the KEGG database (Kanehisa & Goto,
2000) by using the “Ang” organism abbreviation.

Gene ontology

The genomes of the fungi Aspergillus niger, Aspergillus fumigatus, Aspergillus nidulans, Penicillium
chrysogenum, Neurospora crassa, Magnaporthe grisea, Stagonospora nodorum, Ustilago maydis, and
Trichoderma reesei, and the yeasts Ashbya gossypii, Candida albicans, Candida neoformans, Debaromyces
hansenii, Giberella zeae, Kluyveromyces lactis, Phanerochaete chrysosporium, Saccharomyces cerevisiae,
Schizosaccharomyces pombe, and Yarrowia lipolytica were used to construct an in-house built database of
orthologous protein sequences (S. Basmagi & P. Schaap, unpublished data). Protein sequences were placed
into an orthology cluster based on bi-directional first-hit BLAST alignment of protein sequences of other
species. Conserved proteins were defined as having an ortholog in at minimum 15 of 19 species; the
absence of a gene in a species while present in over 15 other genomes is due mostly to mis-annotation or
incorrect intron-predictions in our experience. A total of 2,749 genes fulfilled this criterion. All 455 genes
that have a S. cerevisiae ortholog but did not meet the criterion were added because of the extensive body of
knowledge that is available for genes of this model organism. On average, these latter 455 genes have an
ortholog in 11 species. Gene ontology terms, available from S. cerevisiae orthologous genes per module,
were browsed at the Saccharomyces Genome Database website (Hong et al., 2008).
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RESULTS

Gene co-expression networks based on a subset of genes have been generated and
some of their generic properties will be described. Two series of A. niger DNA
microarray data sets were used, that were analyzed as separate data sets as well as in
combination. Groups of co-expressed genes, termed modules, were observed within
the visualized networks. Next, the biological properties of these modules were
analyzed using the combined data set network as our reference network.
Subsequently, the module structure found for the combined data set was compared
with the co-expression networks based on the two individual data sets. We conclude
our results by extending our network analysis from a subset of genes to all genes for
which a probe set is available on the A. niger DNA microarray.

Construction of gene co-expression networks

It is expected that gene co-expression networks will be influenced by the experimental
setups of the microarray data sets used to generate these networks. Therefore, a total
of 42 microarrays that originated from A. niger strains grown in batch fermentation
under two different experimental setups were used (Table 1). The microarrays used
in this study were obtained from different experimental perspectives (e.g., investigate
D-xylose metabolism [van der Veen et al, 2009] or lipid metabolism [van der Veen,
2009], or extracellular protease activity [Braaksma et al., 2009]), but were selected on
the basis of covering diversity, especially in relation to cell culture perturbations. We
expect that these perturbations will have a larger impact on the physiology than the
differences between the closely related strains used. It was decided to not include
further A. niger microarray data that are available in public repositories, as at the time
of this study only shake flask-cultivated experiments were deposited. Shake flask
cultivation generally introduces more culture heterogeneity as pH and the transfer of
oxygen, nutrients, and heat are not controlled (van der Veen et al., 2009).

Twenty microarrays were obtained from fungal cells growing exponentially with 100
mM sorbitol as primary carbon source, to which either 0.1 mM sorbitol or D-xylose or
1 mM vegetable oils were applied. Under these growth conditions, the cells do not
experience any nutrient limitation and grow at maximum growth rate. We reasoned
that the applied pulses would provoke only a minor disturbance in global gene
expression levels, and hence labeled these cultivation conditions "mildly perturbed".
In contrast, the other 22 microarrays were obtained from fungal cells growing in
much more perturbed conditions at the time of sampling (e.g, carbon source
deprivation). These cells were expected to yield more drastic changes in gene
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expression levels, and therefore these conditions were labeled "strongly perturbed".
From a biological point of view, the differing experimental conditions are expected to
yield both condition-specific gene expression (e.g., induction with D-xylose leads to
increased expression of the xylan-metabolic system) as well as expression of genes
involved in general metabolic processes required for both conditions (e.g., growth in
Minimal Medium broth requires de novo amino acid biosynthesis under both
conditions).

Construction of a co-expression network using the data of the over 14 thousand
predicted A. niger genes will result in a network that is difficult to interpret due to the
many resulting gene-gene interactions. Therefore, a subset of genes was selected
according to their evolutionary conservation among fungal species, and their signal
value. The evolutionary conserved subset consisted of only those protein-encoding
genes for which an ortholog is present in 15 or more of the 19 fungal species analyzed,
or for which a S. cerevisiae ortholog is identified (see Materials and Methods). Even in
case no clear biological function has been assigned to such protein, its evolutionary
conservation suggested a functional role. In addition, a present signal for a gene in at
least 20% of the arrays ensures that enough relevant data points are available to
calculate an expression profile for that gene. The selected gene list comprised 2,773
genes.

The similarity in expression of two genes was expressed in the correlation coefficient
p and was calculated for all pair-wise combinations of the 2,773 genes for each of the
three data sets. The p distribution detailed the strength of pair-wise correlations and
gave an impression on the nature of the three gene co-expression networks (Fig. 2).
For the mildly perturbed conditions data set, the p values were centered around zero
(Fig. 2, left), which suggests that most gene pairs in this data set were weakly co-
expressed with only relatively few genes being strongly co-expressed. In contrast, the
histogram for the strongly perturbed conditions data showed a much broader base.
This broader base translated into a tendency of gene pairs to be more strongly
correlated or anti-correlated (i.e, two genes that have antagonistic expression
patterns) (Fig. 2, middle). The histogram of the combined data set resembled the
histogram of the strongly perturbed conditions in shape, although less strongly
correlating p values were observed for this network (Fig. 2, right). The different p
value distributions suggested that co-expression was different between the data sets.
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Mildly perturbed data set Strongly perturbed data set Combined data set

Occurrences

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
P p P

Fig. 2. Correlation coefficient distribution per data set. Histogram of the values of p as calculated for all possible
gene pair combinations in each data set. The distribution of p for all gene pairs possible is visualized for the
subset of 2,773 genes by dividing the range of p values in equally spaced bins (e.g., one bin would range from 0-
0.1, the next from 0.1-0.2, and so on), followed by counting the number of occurrences for a range of p values

per bin.

Three gene co-expression networks were constructed using the calculated p values. In
these networks, a connecting line was drawn between each pair of genes for which
their expression profile correlated stronger than by the set p threshold. The networks
were visualized at different p threshold values. When the p threshold value was
lowered, more connecting gene pairs appeared in the network. The network based on
the combined data set at different p threshold values is visualized in Fig. 3 (panels A-
D), while for the mildly and strongly perturbed conditions-derived networks only the
lowest p threshold value with a meaningful clustering was visualized in panels E and F
of Fig. 3 (full networks are accessible in Supplementary material file 1). Upon lowering
the p threshold, additional connecting gene pairs preferred attachment to genes
already present, instead of being randomly placed within the network (Fig. 3, panels
A-D). This preferential attachment of new genes to genes already in the network is a
common observation for biological networks (Almaas, 2007; Barabasi & Albert, 1999;
Barabasi & Oltvai, 2004). A result of preferential attachment was the presence of a
small number of genes that correlated strongly with many other genes within a
network, while many genes only correlated strongly with few other genes. The
distribution of the number of correlations per gene, or the gene connectivity, is given
in Fig. 4. For the three networks described here, the gene connectivity distribution
could be described by a power-law distribution with a connectivity exponent y around
1.2 (Fig. 3). Similar values were found for other gene co-expression networks: a 4077-
genes network of S. cerevisiae had y around 1.0 (van Noort et al.,, 2004), whereas this
value ranged between 1.1 and 1.8 for gene co-expression networks for six distinct
organisms (Bergmann et al,, 2004).
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A. Combined data network, p > 0.96 | B. Combined data network, p >|0.94 |

C. Combined data network, p >10.92 | D. Combined data network, p>|0.90 |

E. Mildly perturbed network, p >| 0.85 | F. Strongly perturbed network, p >{0.90 |

Fig. 3. Gene co-expression networks. Panels A-D: the gene co-expression network constructed from all 42
microarrays for 4 threshold settings of p as indicated in each lower left corner. Circles represent genes, while
lines represent a p value above the set threshold. Positive p values are shown as solid gray lines while negative p
values are represented as green lines. The networks constructed from mildly perturbed conditions data set
(panel E) and strongly perturbed conditions data set (panel F) are given at their lowest p threshold value only.
Colouring is based on the modules identified in the combined data sets network (panel D), with module labels
indicated in solid coloured circles. This colouring is superimposed on the networks, and groups of genes with
identical colour are indicated by open coloured circles (panels E and F). Boxed letters indicate modules that are
not present in the combined data sets network.
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Mildly perturbed data set Strongly perturbed data set Combined data set

Genes
=

1 10 60 1 10 100 1 10 60
Gene connectivity Gene connectivity Gene connectivity

Fig. 4. Gene connectivity distribution per data set. For each gene within the networks at a p threshold of 0.90,
the number of genes it partners with (horizontal axis) is plotted against the number of genes with identical
number of gene pairs (vertical axis). The fitted line is for a power-law distribution, P(k) ~ k”, which describes the
probability that a gene has k gene pairs. For all networks, y is around 1.2.

Modules relate to biological functions

As the combined data network was derived from expression data obtained from both
mildly and strongly perturbed conditions, we expected that co-expressed genes within
this network are less prone to condition-specific peculiarities. Therefore, the
combined data network was analyzed with respect to biological processes. Eight
modules were observed in the combined data set network. These were coloured and
labelled A-H (Fig. 3, panel D). As genes with similar expression level profiles often
encode proteins that are involved in a similar biological process (Walker et al., 1999;
Wolfe et al, 2005), we searched for indications for biological processes that were
overrepresented in the modules using the S. cerevisiae Gene Ontology vocabulary for
genes in these modules that had a S. cerevisiae ortholog and the annotation of these
genes. In addition, we examined whether genes within each module were assigned to
metabolic pathways using the KEGG database. Lastly, we examined the upstream
regions of genes within these modules for conserved upstream elements that hint to
co-regulation by a common transcription factor. Indeed, when using the Gene
Ontology annotations, an overrepresentation of similar ontology terms was found for
genes that were present in some modules (Fig. 5; Supplementary material file 2). Also,
conserved sequences were identified for genes of some modules.

Module A contains an overrepresentation of genes predicted to encode proteins
involved in amino acid metabolic processes, including amino acid biosynthetic
enzymes and tRNA-ligases. For 62 of 137 genes (45%), the conserved sequence
5'-TGA-(C/G)-TCA was identified (p-value 4.6 x 101> and 6.7 x 1014, respectively),
which is a known binding site of the DNA-binding protein CpcA (Wanke et al, 1997).
This transcription factor is a global regulator in A. niger. Upon amino acid starvation,
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CpcA co-ordinates a transcriptional response by derepressing transcription of many
genes encoding enzymes involved in amino acid biosynthetic pathways, as well as
enzymes involved in nucleotide biosynthesis.

Module B consists of genes encoding proteins involved in fatty acid metabolism or
peroxisome organization. Genes encoding the peroxins Pex6, Pex10, and Pex11, as
well as the FoxA bifunctional enzyme that catalyzes the second and third step of fatty
acid B-oxidation are in this module. We identified the conserved sequence 5'-CCTCGG
or its reverse complement sequence within the upstream region of 16 of 20 genes of
this module (p-value 2.6 x 10-5). This sequence has been shown to be present
upstream of a large number of genes predicted to encode proteins involved in fatty
acid metabolism and peroxisome proliferation in filamentous fungi (Hynes et al,
2006). Hynes and co-workers showed experimentally that two transcription factors
involved in fatty acid utilization, FarA and FarB, bind to this sequence in A. nidulans
(Hynes et al,, 2006).

Module D, 152 genes

Module H, 9 genes Module A, 137 genes

- GO 22613 (337146, 2¢8 )
il in complex bit

- GO 10467 (67:146, 7e-0)

gene expression
- GO 51649 (35/146, 1e75) Xp
establishment of localization in cell =

Module E, 17 genes

-GO 6555, (419, 60 )
methionine metabolic process

- GO 6520 (64/132, 4e0%)
amino acid metabolic process

- GO 43039 (18132, 4e20)
tRNA aminoacylation

- GO 55086 (167132, 1e76)
nucleobase, nucleoside, nucleotide

/ melabolic process
Module G, 45 genes

- GO 7005 (10/43, 6¢ Y4
mitochondrial organization

- GO 22904, (5 15, 1e”7)
respiratory electron

transport chain \
Module C, 88 genes

- GO 6412 (54/72, 2¢73%) -ﬁ‘
translation 3

- GO 42254 (21:72, 2¢ %)

Module B, 17 genes
ribosome biogenesis

Module F, 141 genes

-GO 32787 (6:15, 9¢76)
monocarboxylic acid metabolic process

-GO 6631 (415, 1e™)
fatty acid metabolic process

- GO 6464 (29/133,2¢75)

protein modification process

- GO 6508 (18/133, 1e™S)

proteolysis

-GO 7031 (3/15, 5¢3)
peroxisome organization

- GO 43687 (22/133, 6e74)
posttranslational protein modification

Fig. 5. Assignment of biological functions to modules. For the combined data sets network at a p threshold of
0.90 (as shown in Fig. 3, panel D), enriched biological processes are indicated within modules using the Gene
Ontology terms of genes with a S. cerevisiae ortholog. The number of A. niger genes per module is indicated after
the module code. The GO-number points to the observed Gene Ontology process. Between brackets, the number
of genes with that annotated Gene Ontology process relative to the total number of genes queried is given,
followed by a p-value that gives the likelihood that the identified GO process is found by chance alone. Genes
that encode conserved proteins but have no S. cerevisiae ortholog make up the difference in the total number of
A. niger genes per module and the number of genes queried for Gene Ontology enrichment.
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Module C contains mostly cytosolic ribosomal protein-encoding genes. In the
upstream region of 47% of the 88 genes within this module, the conserved sequence
5'-CGACAA was identified, while the core sequence 5'-CGAC was found upstream 80%
of the genes. The probability of observing these upstream sequences for these genes
by chance alone is very low (p-value 4 x 10-¢ and 2 x 104, respectively). This sequence
does not resemble any of the known binding sites associated with ribosomal proteins
in S. cerevisiae or S. pombe (Tanay et al, 2005). The presence of such conserved
sequence hints to the existence of a yet unidentified DNA-binding transcription factor
that is involved in the regulation of genes encoding cytosolic ribosomal proteins in a
fungal system.

In the D-labelled module, genes categorized by the generic Gene Ontology term "gene
expression” are overrepresented. For example, this module contains genes that
encode putative RNA helicases, spliceosome assembly proteins, and 16 putative
translation initiation factors. We identified the sequence 5'-GGCCGCG for 111 of 152
genes (p-value 8 x 10-4). This upstream element is located 400 base pairs or more
away from the gene's start site for 60% of these 111 genes. Also for this module, the
presence of a specific conserved upstream sequence suggested regulation by a yet
unidentified DNA-binding transcription factor involved in the regulation of genes
whose products appear involved in "gene expression" processes. Next to the above-
mentioned sequence motif, we identified an overrepresentation of pyrimidine-rich
sequences upstream for 80% of the genes of module D. However, it should be noted
that CT-rich regions are relatively common in upstream regions of filamentous fungi
and that they are mostly related to the position of the transcription start site (Punt &
van den Hondel, 1992).

Overrepresented Gene Ontology processes were also found for modules E-H (Fig. 5;
Supplementary material file 2). However, no conserved upstream sequences were
found. Module E pertains to energy metabolism related processes like “electron
transport chain”, “oxidative phosphorylation”, and “ATP synthesis coupled electron
transport”. Module F contains the following overrepresented processes: “cellular
catabolic process”, “proteolysis”, and “protein modification process”. Module G is
related to “organelle organization” and “mitochondrion organization”. Module H

pertains to processes related to different amino acid metabolic processes.

For each module, we assessed whether their genes could be related to metabolic
pathways (Supplementary material file 2). We observed a good agreement between
A. niger genes within a module that can be linked to biological pathways, and the
observed overrepresentation of Gene Ontology processes. For example, module A,
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which contains an overrepresentation of genes encoding proteins involved in amino
acid metabolic processes, contains 71 genes that encode proteins of amino acid
related biochemical pathways (Supplementary material file 2). For the 16-gene
containing module E, which has overrepresenting Gene Ontology terms related to
energy metabolism, the four genes that encode proteins that relate to KEGG
biochemical pathways are within the “oxidative phosphorylation” pathway.

Modular structure is retained in the two other networks

Seventy-five percent of the genes that were present in the combined data sets
network were found in at least one other network (Fig. 6). The localization of these
genes within each network was examined by colouring of each module identified in
the combined data sets network (Fig. 3, panel D), and superimposition of these
colours to both other networks (Fig. 3, panels E and F).

Mildly perturbed Strongly perturbed
conditions data set conditions data set
p>10.85| p>10.90 |

Combined data sets
p>10.90 |

Fig. 6. Overlap of genes between networks. Venn-diagram showing the overlap of genes present in any of the
three networks analyzed.

Both the mildly perturbed and strongly perturbed conditions networks appeared less
structured compared to the combined data sets network, but modules can be
recognized nevertheless.
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The modules labelled C, D, and G, were relatively well separated in the combined data
sets network while these modules overlapped or were closely connected in the two
other networks. In the combined data sets network, these modules were enriched for
genes encoding proteins involved in “ribosome biogenesis” and “translation”, “gene
expression” and “ribonucleoprotein complex biogenesis”, and “mitochondrial
organization” respectively. In the mildly perturbed conditions network, 323 genes are
in the module that contains many of the C, D, and G-coloured genes; 138 of these genes
(43%) were present as well in the combined data sets network. A Gene Ontology
terms search on all 323 genes yielded similar GO terms for this C-D-G module
(Supplementary material file 3). Likewise, in the strongly perturbed conditions
network, the 284 genes that included many of the genes of the C, D, and G modules in
the combined data sets network yielded the same GO terms (Supplementary material
file 3).

Modules A and B found in the network based on the combined data set are present in
the mildly and strongly perturbed networks as well. Other genes are also associated to
these modules, and these genes have the same GO terms associated to them as in the
combined data set network (Supplementary material file 3), namely “cellular amino
acid biosynthetic process” and related GO terms for module A and “fatty acid (-
oxidation” and “carboxylic acid metabolic process” for module B.

In addition, network-specific modules appeared that were not visible in the combined
data sets network. The mildly perturbed conditions network gave one such module,
labelled N (Fig. 3, panel E). The N module consisted of 24 genes, of which half are
related to the respiratory electron transport chain. Indeed, this module contains
subunits of the ubiquinol-cytochrome C oxidase complex. The expression of these
genes could be a specific adaptation to the exponential growth phase these cells were
in at the time of sampling.

For the strongly perturbed network, two specific modules were observed and were
labelled O and P in Fig. 3, panel F. The 84 genes present in module O were enriched for
“metabolic processes”, to which term 62 of 84 genes are assigned. Twenty-four
percent of the 84 genes were involved in the generation of precursor metabolites and
energy.

The second module P (Fig. 3, panel F) was large and contained half of the genes
present in the strongly perturbed data set. No biological processes were
overrepresented for this module although the consensus expression profile (see
below) seemed to correlate strongly to the presence or absence of a carbon source in
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the medium. No overrepresented motifs were detected in the upstream region of
genes in this module. Ten percent of the genes located in this module were also
located in module F in the combined data sets network. These observations supported
our choice to use the combined data set as a basis as indeed the individual data sets
seemed to contain condition-specific modules.

Extending the subset of genes by means of a consensus expression
profile

The thus far constructed gene co-expression networks were based on a subset of
2,773 genes that encode evolutionary conserved proteins. However, these genes made
up only 43% of the total of 6,416 A. niger protein-encoding genes that were evaluated
as present in more than 20% of the arrays on the combined data set microarrays.
Genes that did not take part in our initial selection were examined using the modules
identified in the network. Genes within a module have similar gene expression
profiles, and this similarity was used to calculate a consensus expression profile
(Horvath & Dong., 2008) for each module in the combined data set. The correlation
between each module's consensus expression profile and all 6416 genes’ expression
profile was calculated and expressed as an associated consensus expression profile
correlation coefficient pcons. Associated pcons values for all modules are given in
Supplementary material file 4. Here, the results of this approach are exemplified by
description of module B. This module contained 19 genes at p of 0.90, with most genes
being related to peroxisome proliferation and fatty acid metabolism. As genes in this
module are relatively well characterized, interpretation of the resulting data and
analysis of this proof-of-concept is made easier.

Table 2 presents the genes with a pcons to the module B consensus expression profile of
0.90 or higher. Half of the 20 genes that correlate most strongly with the module B
consensus expression profile did fall outside our initial selection criteria (Table 2).
Most of these genes could be associated with fatty acid metabolic activity or
peroxisome functioning based on inspection of their gene annotation. Interestingly,
the ortholog of the A. nidulans FarA fatty acid-related transcription factor, encoded by
gene An14g00920, also correlated strongly with the module B consensus expression
profile. A motif sequence for the FarA and FarB transcription factors could be
identified in the upstream region of all but three genes listed in Table 2, including the
FarA-encoding gene itself.
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Similar results were obtained when the consensus expression profiles derived from
the other modules were analyzed (Supplementary material file 4). For example,
module F in the combined data sets network had an overrepresentation of “protein
modification process” and related Gene Ontology terms. These Gene Ontology terms
are also overrepresented when the genes with a S. cerevisiae ortholog that have an
expression profile pens of 0.80 or more were analyzed. For instance, the Gene
Ontology term “protein modification process” is found for 22% of these genes (p-value
4.4 x 10-11). In addition, of the 86 genes with an expression profile similar to the
consensus expression profile by over pcns 0.90, 40 genes are annotated as
“hypothetical protein” (Supplementary material file 4).

DISCUSSION

Variations in the timing and levels of gene transcription, mRNA translation, and
protein maturation have considerable consequences for a cell. For understanding the
dynamics of the physiological processes in A. niger, insight into the interactions and
combined activity of these processes or events is required, in addition to knowledge of
individual components of the cellular system. This study queried transcriptomes
obtained from cultures grown under different experimental conditions, with the aim
to gain insight into the relations between genes, and, at a higher hierarchical level,
into relations between modules. For this, initial analysis of gene co-expression was
performed on an evolutionary highly conserved subset of the A. niger genes, and the
analysis was subsequently extended to the whole genome.

Our approach reveals that the gene co-expression networks consist of modules of co-
expressed genes (Fig. 3). Subsequent analysis of the discovered modules provides
evidence for their biological relevance: (i) modules are enriched for Gene Ontology
terms, (ii) genes within the modules relate to biochemical pathways, and (iii)
conserved motifs are present in the upstream region of many genes in several of the
modules. Experimentally confirmed upstream sequences corresponding to the DNA-
binding sites of the transcription factors CpcA (involved in amino acid related
processes) (Wanke et al, 1997) and FarA/FarB (involved in [-oxidation and
perosixome biosynthesis) (Hynes et al, 2006) are found in modules A and B,
respectively, that have an overrepresentation of related Gene Ontology terms. These
findings indicate that our approach is able to infer “true” biological processes.
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In addition to observations that can be related to experimentally verified data, our
approach yielded novel targets for experimental validation, such as the upstream
sequences observed in genes of modules C and D. The sequence 5'-CGACAA in the
upstream region of many ribosomal protein-encoding genes in module C appears of
special interest, as this sequence does not resemble the conserved upstream
sequences found genes encoding ribosomal proteins in the yeasts S. cerevisiae and
S. pombe (Tanay et al., 2005).

Previous gene co-expression network studies used a subset of genes already known
(Bergmann et al., 2004; Herrgard et al.,, 2003) or suspected (Neretti et al., 2007) to be
involved in specific biological processes, or discussed network characteristics without
zooming into biological details (Jordan et al, 2008; van Noort et al, 2004). In this
study, however, an approach similar to the approach of Daub and Sonnhammer
(2008) was followed. A subset of genes was selected based on their highly conserved
nature among fungal species, without taking into account their role in biological
processes. An advantage of this approach is that also protein-encoding genes for
which no function is assigned are analyzed, while a potential pitfall of this selection
criterion is that evolutionary less well conserved co-expressed genes (e.g., species-
specific genes that encode biopolymer-degrading enzymes) will not be examined in
this initial selection. Genes within the observed modules are related to essential
cellular processes; for instance, ribosomes are required for protein synthesis (Fig. 5,
module C), genes must be transcribed (Fig. 5, module D), and amino acids must be
synthesized de novo when not supplied in the medium (Fig. 5, Module A).

The advantage of selecting evolutionary conserved genes likely extends to the
consensus expression profile analyses. As the modules identified are based on
evolutionary conserved sequences, it is likely that the consensus expression profiles of
these modules are more robust than consensus expression profiles based on subsets
of known genes. The evolutionary conservation suggests that a large time span has
past in which the regulation of such a module was tuned, while for organism-specific
modules the regulation could be more variable. Thus, using consensus expression
profiles based on an evolutionary conserved subset will probably result in more
accurate lists of genes with similar expression profiles to the consensus expression
profile.

Research towards a better understanding of the higher-order structures that play a
role in A. niger cellular functioning did only start recently, after high throughput
technologies such as DNA microarray platforms became available for this organism.
The usefulness of studying these higher-order structures is illustrated in this paper;
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the networks of evolutionary conserved genes of A. niger resulted in the identification
of biologically relevant gene co-expression modules. In addition, the use of consensus-
profiles extended the analysis to include the full gamut of genes of A. niger.
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Chapter 6

INTRODUCTION

For many years, filamentous fungi have been used for the industrial production of a
large variety of metabolites and proteins. A well-known example of a fungal
bioprocess is the production of the secondary metabolite penicillin by Penicillium
chrysogenum, developed about 60 years ago (Ligon, 2004). Fungal production
processes of other (-lactam antibiotics as well as drugs such as hypolipidemic agents
(e.g., lovastatin by Aspergillus terreus) (Tobert, 2003), have been developed since.
Furthermore, many of the commercial biological production processes for organic
acids are fungal bioprocesses, including the production of citric, gluconic, and itaconic
acid by Aspergillus species or lactic acid by Rhizopus oryzae (Magnuson & Lasure,
2004). Filamentous fungi also play an important role in the industrial production of
proteins and enzymes. In particular, Trichoderma and Aspergillus species, but also
Penicillium and Rhizopus species, are used to produce a large number of different
enzymes, e.g., (hemi)cellulases, xylanases, chitinases, amylases, proteases, and many
more (see the list of commercial enzymes from the Association of Manufacturers and
Formulators of Enzyme Products?). The first industrial fungal bioprocess for proteins
dates back even further than that for penicillin. For instance, the product takadiastase
appeared on the market in 1894 and is in fact fungal amylase produced by Aspergillus
oryzae (Gwynne & Devchand, 1992).

Some of the above-mentioned production processes have been developed and
optimized over a period of decades, like penicillin, citric acid and amylase; others have
been developed more recently and are still being optimized to reach commercial
viable production levels. This is particularly true for production of non-native proteins
by use of genetically engineered fungal strains. This chapter discusses approaches to
select targets for improvement of production processes, with special focus on the
application of functional genomics technologies as an unbiased approach towards
target selection.

OPTIMIZATION OF FUNGAL PRODUCTION PROCESS

The development of a fungal production process starts with the selection of a strain
that produces the compound of interest or with the construction of such a strain. Once
this strain is available, production levels need to be increased in order for the process
to become economically viable. Optimization of the fungal production process, or any
bioprocess for that matter, can be achieved by an iterative cycle of strain

! http://www.amfep.org/list.html; August 24, 2010
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improvement and/or process optimization (Fig. 1). Process optimization includes
improving medium performance as well as identifying optimal environmental process
parameters, such as pH, temperature, and aeration. Many techniques are available for
process optimization: straightforward methods like the change-one-factor-at-the-time
approach or more advanced methods using the experimental design approach, for
which various design and optimization techniques are available (Kennedy & Krouse,
1999; Weuster-Botz, 2000). Many of these techniques rely on prior knowledge of
components and environmental parameters likely to affect product yields. This
obviously means that many more components and parameters are overlooked that
could be beneficial to bioprocess performance, but about which no prior knowledge is
available. Similarly, strain optimizations until now mainly include alleviating
bottlenecks identified in case-by-case studies. Often only the obvious targets for
metabolic engineering are addressed (van der Werf, 2005). In the case of protein
production, targeting known putative bottlenecks at the post-transcriptional stage is a
commonly applied approach of optimizing production levels, for instance by
alleviating blockages along the secretion pathway (Conesa et al, 2001) or by
eliminating extracellular proteases (Braaksma & Punt, 2008). From the almost infinite
number of genetic changes that can be introduced by overexpression or knocking out
of genes, only those that are known from the current and generally limited knowledge
of the metabolic pathway are selected to optimize product formation. Biological
processes or interactions that are not currently known to be important for bioproduct
formation or that are not yet known to exist are not taken into account.

Target
selection

Product yield or
productivity

Hypothesis

Medium and process
optimization

Strain
improvement

Fig 1. Iterative cycle of strain improvement and/or process optimization.
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In our research we have aimed at using a strain and process development approach
which is not a priori hypothesis driven but relies on first acquiring data sets rich in
information with regard to the bioprocess under study from functional genomics
technologies and using these for target selection from the broadest possible ranges of
expressed genes (transcriptomics), proteins (proteomics), or metabolites
(metabolomics). In this chapter such a systems biology approach, based on the
information gathered with functional genomics technologies and in combination with
multivariate data analysis tools, is discussed as a method to achieve unbiased
selection and ranking of targets for both strain improvement and bioprocess
optimization.

TOP-DOWN SYSTEMS BIOLOGY

In systems biology the organism is studied as an integrated and interacting network of
genes, proteins, and biochemical reactions. Principally, at its extreme, two approaches
are recognized within systems biology: top-down and bottom-up systems biology
(Bruggeman & Westerhoff, 2007). In bottom-up systems biology, biological knowledge
is used as the starting point and a comprehensive mathematical model of the
biological system under study is built. In fungal research metabolic stoichiometric or
kinetic models and metabolic network topology models have been used for a systems-
level investigation of mainly P.chrysogenum and Aspergillus species (David et al.,
2006; Andersen et al., 2008a; Melzer et al, 2007; Gheshlaghi et al.,, 2007; Nasution et
al., 2008). Similar to the more classical approaches for target selection, these methods
require prior knowledge about the studied system. The models are built from known
components only and demand an extensive knowledge of the individual parts of the
model, and they exclude all components and reactions whose functions are not yet
(fully) known.

In contrast, in top-down systems biology, data are used as the starting point and
statistical data mining approaches are applied to come to a comprehensive
understanding of the biological system. The principal behind top-down systems
biology is that molecular components that respond similarly to changes in the
experimental conditions are somehow functionally related. No other prior
assumptions regarding the interactions of the studied molecular components are
required. This allows the study of complex and relatively poorly characterized
processes and strains, as extensive knowledge of the studied organism or process is
not necessary. In this top-down systems biology approach there is also no a priori
focus on specific biomolecules expected to relate to the biological question. Therefore,
this approach also enables the discovery of previously unknown or unexpected
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relations between specific biomolecules and the biological process studied. Despite
the potential of top-down systems biology, the great majority of scientists applying
systems biology use a bottom-up systems biology approach. The reluctances towards
top-down systems biology might relate to the risk of being overwhelmed by the
enormous quantity of data that arise from functional genomics technologies such as
metabolomics and transcriptomics. The challenge is to be able to extract relevant
information from these data sets. Principally, the success of this approach depends on
balancing three interlinked key factors: (i) definition of the biological question, (ii)
experimental design, and (iii) the data analysis tool (Fig. 2). These three factors are
discussed in more detail below.

7
Biological question
Define the exact
biological question
to be studied

- Experimental conditions Biological

- Sampling protocol interpretation
- Selection —omics tool P

Experimental design Data analysis
Induce variation Extract information about
relevant to the the biological question
biological question from the data sets

< T

-Data pretreatment
- Select MVDA methods
- Statistical validation

Fig. 2. Key conditions and their relation to a successful systems biology study. In top-down systems biology, three
interlinked factors are crucial for success: (i) the biological question, (ii) the experimental design, and (iii) data

analysis.

THE BIOLOGICAL QUESTION

A clear definition of the biological question to be answered is the crucial starting point
in any top-down systems biology research project, because only then can a suitable
experimental setup and data analysis strategy be selected (van der Werf et al., 2005;
Trygg et al., 2007). To explain this in more practical terms, two examples are given of
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ways to define the biological question in a study to gain more insight in the regulation
of the proteolytic system of Aspergillus niger. First, when this problem is approached
on a metabolic level, the biological question could be, “Which metabolites induce
protease activity in A. niger?” On the other hand, when this problem is approached on
a genetic level the biological question could be stated as, “Which transcriptional
regulators are associated with protease activity in A. niger?” In the first case
metabolite levels are the relevant biomolecules to be measured, in the second case
transcript levels are to be determined, and in both cases protease activities will have
to be determined. What is important is that the biological question be translated into a
quantifiable biomolecule level, which can be measured at different biochemical levels
(i.e., at the transcriptome, metabolome, proteome level). In addition, it is often
possible to specify a quantifiable phenotype that is relevant for the biological
question, such as protease activity in this case. It is also very important to clearly
define this phenotype. For instance, in the production of a biological compound or
activity, among others, the following definitions of phenotypes could be chosen for
improvement: concentration (in grams per litre) or activity (in units per litre); specific
concentration or activity (in grams per gram dry cell weight or in units per gram dry
cell weight); productivity (in grams per litre per hour or in units per litre per hour);
specific productivity (in grams per gram dry cell weight per hour or in units per gram
dry cell weight per hour). When reducing costs of nutrients is the key goal, one could
also think of defining the phenotype as cost of nutrients per unit product (in U.S.
dollars per gram of product) or cost of nutrients per unit productivity (in U.S. dollars
per gram of product formed per litre per hour) (Kennedy & Krouse, 1999). The
biological question and its translation into a practical format strongly influence the
other key factors of a top-down systems biology study, i.e., experimental design and
data analysis. The experimental setup should ensure that experimental conditions that
induce variation relevant for the biological question are selected and that data
analysis is able to extract the information relevant to the biological question from
functional genomics data set.

EXPERIMENTAL DESIGN

Based on the biological question, the experimental design of the top-down systems
biology study should be aimed at generating large information-rich data sets in order
for data analysis to extract relevant biological information from the data set. Not only
experimental conditions for the experimental design should be considered, but also
sampling, sample work-up, and the functional genomics tool to be used to analyze the
samples.

120



Top-down systems biology for target identification

Experimental conditions

The first step in establishing how to plan and conduct the experiments is to identify
those parameters affecting the response of the phenotype. These parameters can be
process type (batch, fed-batch, or continuous), environmental conditions such as pH
and nutrients, or selected strains. In the case of using various mutant strains to induce
variation in the data set (for an example, see Askenazi et al., 2003), one should keep in
mind that each strain may have its own bottleneck, making identification of specific
targets for a general improvement more complex. When a phenotype relevant to the
biological question is available, the experimental conditions should be targeted to
induce variation in this phenotype. When it is unclear what experimental factors are
involved in the induction of biological variation relevant to the biological problem,
screening experiments need to be conducted to obtain more information regarding
these experimental factors.

Traditionally, one of the most frequently used approaches to study which parameters
affect biological responses is the change-one-factor-at-a-time approach, in which one
independent variable is studied while all others are fixed at a specific level. An
advantage of this simple and easy method is that any change in response can be
attributed to a specific change. On the other hand, this change-one-factor-at-a-time
approach has some serious drawbacks, perhaps the most important being that
possible interactions between components are ignored. As a result, this approach
frequently fails to find optimal conditions for experiments. Another disadvantage is
the unnecessarily large number of experiments that are required when testing more
than a few variables. Therefore, the change-one-factor-at-a-time method is
acknowledged to have severe shortcomings and is more and more being replaced by
statistics-based experimental designs, also called “Design of Experiments”. For an
initial screening of factors possibly related to the biological question, different types of
experimental designs, so-called screening designs, are available, including the full
factorial design (Lundstedt et al., 1998). In a full factorial design, every level of a factor
is investigated at all levels of all other factors. Often the factors are investigated at two
levels, requiring a number of runs equal to 2k for k factors, which results in a large
number of experiments when many factors are investigated (Fig. 3). When the factors
are investigated at three or more levels, requiring 3% runs in the case of three levels
and n* runs for n levels, the number of experiments rapidly becomes impracticable. To
reduce the number of experiments without the loss of too much information, several
experimental designs derived from the full factorial design are available. The most
commonly used one is the fractional factorial design (Lundstedt et al., 1998; Trygg et
al, 2006), which requires only n¥? number of runs, with k as the number of
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investigated factors at n different levels, and p describing the size of the fraction of the
full factorial used. With this type of design, three-way and higher interactions are
ignored. Another useful screening tool is the Plackett-Burman design (Plackett &
Burman, 1946; Weuster-Botz, 2000). This experimental design is a variation on the
fractional factorial design, but instead of ignoring only higher interactions it considers
all interactions between factors negligible. The downside of these two last designs is
that when interactions between factors are not negligible, they are confounded with
the estimated effects. This means that the estimated effects and those interaction
effects cannot be distinguished from one another.

++ +
-+ ++ - +-
k2 k2 +- o+
/e
- - + - - - -
—_—
k1
A. 22 full factorial design B. 23 full factorial design

Fig. 3. Full factorial designs, with two factors (A) or three factors (B) investigated at two different levels.

Based on this first phase, the main factors relevant to the biological question under
study are selected for the final setup of experiments for the top-down systems biology
study. In principal, statistical experimental designs for this phase can be any of the
methods as described above. While in the screening phase the goal was to find out a
little about many factors, in this phase the goals is to extract the maximum amount of
information from the experiments, preferably in the fewest number of runs. Types of
statistical experimental designs suitable for this phase of the study include central
composite designs and Box-Behnken designs, which are both based on (fractional)
factorial designs, or D-optimal designs, a computer-aided design method (Kennedy &
Krouse, 1999; Trygg et al, 2006; Lundstedt et al, 1998). On top of that, response
surface methodology can be applied to generate a data set with an evenly distributed
variation. Response surface methodology is commonly used in industry for process
optimization (Dobrev et al, 2007; Li et al, 2007). Based on a set of designed
experiments, e.g., from a factorial design, a model that predicts the biological response
to different levels of the various factors included in the study is built. In contrast, from
such a model, conditions that will result in various levels of the relevant biological
response for the top-down systems biology study can be selected.
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Selection of a functional genomics tool

Selection of the functional genomics tool to be used in a top-down systems biology
study depends on the level at which the biological phenomena relevant for the
biological question occur. With transcriptomics the expression levels of mRNA under a
given condition are examined. The transcriptome reacts very fast, within in a few
minutes, to environmental changes. This makes transcriptomics a very suitable tool to
study the cell exposed to changing environmental conditions, such as the addition of
toxic or chemical compounds (Arvas et al, 2006; Guillemette et al., 2007) or transfer
from one medium to another (Yuan et al, 2006). However, mRNA levels do not
directly correlate to the levels of the encoded protein, due to post-transcriptional
regulation steps at the level of mRNA stability, processing, and translation. Therefore,
transcriptomics is only an indirect approach to study the function of a cell. On the
other hand, the proteome and the metabolome together determine the actual function
of the cell (the phenotype) (Oliver, 2000).

The proteome, meaning all proteins present at a given moment under defined
environmental conditions, gives an indication of which metabolic pathways occur
under those conditions (Kim et al, 2007a), as for many proteins are enzymes that
catalyze biochemical reactions. In contrast to transcriptomics, quantitative proteomics
is still far from being a comprehensive analysis tool, mainly due to the limited
dynamic detection range and poor reproducibility of proteomic analysis. Because of
this there is a very strong bias towards identifying only the more abundant proteins in
a complex proteome sample. Nonetheless, to study post-translational modifications of
proteins, such as phosporylation and glycosylation, proteomics is the most obvious
tool of choice (Fryksdale et al., 2002; Kim et al., 2007b).

The metabolome of the cell, i.e,, all metabolites present in a cell at a certain moment,
provides valuable information about the regulatory or catalytic properties of either
mRNA or enzyme, as metabolites are downstream of all genome and proteome
regulatory structures (Oldiges et al, 2007). As the metabolome is closest to the
phenotype of a cell, it will be most relevant in order to understand biological
functioning. Similar to what was noted above for proteomics, full coverage of the
complete metabolome is not (yet) accomplished by the available analytical platforms,
although some metabolomics platform are approaching the ultimate goal of providing
a universal platform for the comprehensive and quantitative analysis of microbial
metabolomes (van der Werf et al., 2007).
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Sampling strategy

The sampling strategy is part of the experimental setup and describes when and how
samples for the functional genomics analysis are collected. It embraces two main
issues, namely, collecting the sample at a time point where the biological response
relevant to the biological question is present and ensuring that levels of biomolecules
remain unchanged from the moment of sampling. Concerning this first issue, if it is
unknown beforehand which phases during the cultivation contain information related
to the biological question, the sampling protocol should cover all possibly relevant
growth phases and phase transitions (Trygg et al, 2007). At the same time, practical
matters have to be considered as well. For instance, the sampling volumes can limit
the number of obtainable samples, or the costs of sample analysis can influence the
sampling strategy. In the case of continuous cultures, time issues are of no importance,
but due to technical difficulties this fermentation technique is not as commonly
applied in fungal research as it is in research involving other microorganisms. Besides,
with the application of continuous cultures the approach is quite different, as time is
no longer a factor, excluding longitudinal effects (e.g., induction or other perturbations
during the fermentation process). In addition, it should be noted that although the
process conditions are fixed during continuous cultures, changes in the production
organism are frequently observed (Swift et al, 1998; Withers et al, 1995), making
continuous cultures prone to transitions, albeit of a different kind.

The second issue relates to the high turnover of mRNA and metabolites (for proteins
this is not so much of an issue), risking the introduction of unwanted changes in RNA
or metabolite levels during sample harvesting or work-up. In order to obtain samples
that reflect the state of the cell under the environmental conditions at the time of
harvesting, rapid sampling (Nasution et al, 2006) and immediate inactivation
(quenching) of the cellular metabolism are a necessity. In the literature, the quenching
methods used for filamentous fungi mainly include rapid filtration followed by
immediate freezing of the cells (mostly used for transcriptomics samples) (David et
al., 2006) or dilution of the cells in a methanol solution of -45 °C (more often used for
metabolomics samples) (Ruijter & Visser, 1996; Nasution et al, 2006;
Kouskoumvekaki et al., 2008).

After quenching the cells, conditions should be maintained during sample work-up in
order to prevent changes in the metabolite composition of RNA levels due to residual
enzymatic activity present in the samples. Extraction of RNA from mycelium is often
accomplished by disruption of the cells by either grinding under liquid nitrogen using
a mortar and pestle (Kimura et al, 2008; Foreman et al,, 2003) or bead-milling at
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temperatures of approximately 4 °C (Andersen et al., 2008b), followed by a standard
RNA isolation protocol. Extraction of proteins is done in a similar way, without the
stringent control of temperature (Carberry et al, 2006). For fungal metabolomics
samples, two methods in particular have been described for extracting metabolites
from the cells. The first is boiling the cells in an ethanol-buffer solution and
subsequent reduction of the volume by evaporation in a rotavapor (Nasution et al.,
2006). The second is chloroform extraction at -45 °C (Ruijter & Visser, 1996).

A final issue to consider as part of the sampling strategy is replicates. As the total
variation in data set is the sum of technical, uninduced biological, and induced
biological variation, repeated measurements may be necessary to estimate the
individual contributions of these various parts. However, in general the biological
variation is much larger than variation induced by sample work-up or variation in the
analytical method (van den Berg et al.,, 2006). This makes repeating the experimental
procedure with identical samples not very worthwhile in most cases. Some biological
replicates will have to be included in the experimental design to estimate the overall
uninduced biological variation due to small differences between biological conditions
or biological variability. In this way, the induced biological variation can be
established, as calculated on the basis of the differences between the experimental
conditions.

Based on the various aspects of the experimental setup discussed above, it becomes
clear that it is necessary to balance the demands from the biological question and the
data analysis on one side with practical considerations on the other.

DATA ANALYSIS

After having generated data sets under several different conditions with hundreds or
thousands of proteins, mRNAs, or metabolites, the remaining challenge is to extract
information about the biological question from these enormous data sets. Multivariate
data analysis (MVDA) tools are preferably used, as those tools take into consideration
the intrinsic interdependency of the biomolecules. But before the data sets can be
analyzed by MVDA tools, the data output from the various functional genomics
methods often requires data pretreatment.
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Data pretreatment methods

In addition to the specific preprocessing steps of the data output from the various
genomic methods, such as deconvolution of data files generated by gas
chromatography-mass spectrometry for metabolomics (van der Werf et al., 2005) or
normalization of cDNA microarrays (Leung & Cavalieri, 2003), another critical step
before applying MVDA tools is data pretreatment of the data sets. Data pretreatment
procedures correct for the influence of factors such as the abundance of a biomolecule
or the magnitude of the change, which are generally not a reflection for the
importance of a biomolecule (van den Berg et al, 2006). Appropriate data
pretreatment methods will articulate the biological information content and will
consequently allow more relevant biological interpretation of the data set. Three
classes of data pretreatment methods can be distinguished: centring, scaling, and
transformation. The last two methods are always applied in combination with
centring. In MVDA, mean-centring and autoscaling are the two most commonly used
data pretreatment methods. With mean centring, the average level of a biomolecule is
subtracted from each individual experiment, thereby adjusting for differences in the
offset between high-abundance and low-abundance biomolecules. With autoscaling,
the values are subsequently divided by the standard deviation of each biomolecule,
adjusting for disparities in increase/decrease differences between the various
biomolecules. In addition to these two methods, range scaling holds great promise, as
the mean centred values are not divided by a statistical measure for data spread, as is
the case with autoscaling, but by a biological measure, namely, the biological range.
The biological range is the difference between the minimal and maximal levels
reached by a certain biomolecule in a set of experiments. In Fig. 4 the effect of data
pretreatment on principal component analysis (PCA) results of a metabolomics data
set of Trichoderma reesei is shown (van der Werf et al, unpublished data). With data
pretreatment the biological information content in the data set is accentuated. In this
particular case, it is range scaling that especially emphasizes the biological variation
among the different biological groups. This data pretreatment method allows a clear
separation of these different groups, whereas no grouping or a less obvious grouping
is observed in the data sets when the other two methods are used.

MVDA tools

Choices in data analysis strategy are influenced by the biological question, the
characteristics of the experimental design, the behaviour of the relevant biomolecules,
and the dimensions of the data set. There are various MVDA methods that address
different biological questions. In general, these methods can be divided in two main
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groups, namely, unsupervised methods and supervised methods. Unsupervised
methods include PCA (Jackson, 1991; Jolliffe, 2002) or hierarchical clustering analysis
(Eisen et al, 1998) that visualize relations/patterns in data sets without prior

knowledge.
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Fig. 4. The effect of mean scaling, autoscaling, or range scaling of metabolomics data sets on PCA data results.
The data sets are derived from research related to induction of cellulase activity in T. reesei (van der Werf et al.,
unpublished data). The metabolomes of three groups of samples (no enzyme production, increasing productivity,
and decreasing productivity) were analyzed and pretreated with these three different approaches and

subsequently analyzed by PCA.
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Supervised methods, which include regression methods such as partial least squares
(Geladi & Kowalski, 1986) and principal component regression (Mardia et al.,, 1979)
or classification methods such as partial least squares-discriminant analysis (Barker
& Rayens, 2003) and principal component discriminant analysis (Hoogerbrugge et al.,
1983), do the same as unsupervised methods while at the same time prior knowledge
about one or more biological properties of the data set are taken into consideration.
Discriminant methods are particularly suitable for samples with no quantifiable
phenotype other than the presence or absence of a certain biological characteristic,
e.g., morphological traits such as colour or hyperbranching or certain environmental
conditions or perturbations. For discriminant methods, this means that the samples
are divided in (biological) groups, e.g., a group of samples from the wild-type strain
and a group of samples from a mutant. Although each sample within such a biological
group is designated as equal, there will always be biomolecules correlating to specific
groups that are irrelevant to the biological question under study (so-called chance
correlations). Therefore, when it is possible to express the phenotype as a numerical
figure, this is preferred as the risk of chance correlations is reduced when analyzing
such data with regression methods. Regression methods find correlations between a
numerical phenotype response and the biomolecule composition for the different
samples in the data set. Regression methods are preferably applied to a set of
experiments with large and evenly distributed variation in the biological response of
interest.

In addition, validation of the data analysis results is of crucial importance, as it will
provide an indication for the risk that correlations were found by chance due to the
relatively low number of samples in relation to the large number of measured
biomolecules. As multivariate statistical methods were developed for data sets
containing many samples and few variables, this is a serious risk. Frequently applied
data analysis validation strategies in top-down systems biology are cross validation,
permutation, jackknifing, and bootstrapping (Rubingh et al, 2006; Westerhuis et al.,
2008; Efron & Tibshirani, 1993). Based on the results of these validation steps, the
reliability of the obtained models is established. Finally, a list of biomolecules can be
obtained with the largest contribution to the model, i.e., those with the highest
absolute regression factor. The biomolecules with the highest ranking are considered
to be most relevant to the studied biological phenomenon.

Biological interpretation

Based on the list of biomolecules identified by the MVDA tools as being important in
relation to the question under study, targets for improvement of the production
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process have to be selected. There is a possibility with MVDA tools that biomolecules
that do not show an unambiguous interaction with the specific biological question will
be identified. Therefore, one of the first steps is to go back to the original data sets and
examine fluctuation of the concentration of the biomolecule in relation to the studied
phenotype. Moreover, not all biomolecules that exhibit an apparently strong
interaction with the studied phenotype are biologically related to it. For that reason,
as much information as possible should be acquired about the biological function of
these biomolecules in the context of the biological question under study. From this
knowledge, biological hypotheses will have to be formulated and new experiments
will have to be setup to test them. For targets from transcriptomics studies, this can be
quite straightforward, by either overexpression or deletion of the designated relevant
genes, depending on a positive or negative correlation to the phenotype. On the other
hand, several options for the ultimate improvement of the process are possible for
targets identified in metabolomics studies. An easy way to increase product levels
might be the addition or omission to the growth medium of a relevant metabolite
identified by data analysis. This approach bears the risk that the transport of the
compound into the cell will limit its suitability. More complex is the segue from a
relevant metabolite identified by using metabolomics relevant to a gene target for
metabolic engineering. This requires knowledge about the metabolic pathway(s)
involving the metabolite and its putative (allosteric) regulatory effects. Even then, it is
not straightforward to translate this knowledge into a gene target. For instance, when
a positive correlation between the product of interest and an intermediate in the
biosynthesis route for the product is observed (increase in the concentration of this
intermediate correlates with elevated product levels), the enzyme converting the
intermediate is not active enough and the corresponding gene should therefore be
overexpressed. In another example elevated product levels correlate with increased
levels of an intermediate via a side reaction. Elimination of this competitive pathway
by deletion of the corresponding gene should result in an increased flux through the
biosynthetic pathway of interest and thus elevated levels of the desired product.

CONCLUSIONS

The available selection methods for relevant targets for fungal strain and process
development, or for that matter any microbial production process, have been very
successful in numerous cases. However, the exclusion of all biological processes or
interactions that are not currently known to exist has been shown to hamper further
improvement while using these approaches. Recently introduced functional genomics
technologies in combination with MVDA tools enable an open and comprehensive top-
down systems biology approach towards target selection. Nevertheless, the success of
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such an approach depends heavily on a systematic study covering all aspects, from a
clear description of the biological question up to statistical data analysis. As this
involves knowledge beyond the biologist expertise (e.g., biostatistics), the assistance
of experts in those fields will be indispensable. Due to its unbiased nature, a successful
top-down system biology approach will provide a new boost in the ongoing cycle of
bioprocess optimization.
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SUMMARY

The filamentous fungus Aspergillus niger is widely used in industrial biotechnology for
the production of many substances, including citric acid and a broad range of
enzymes. Because of its natural ability to secrete large amounts of proteins, it also has
been explored as a host organism for the commercial production of enzymes from
fungal as well as non-fungal origin. However, although heterologous fungal proteins
are efficiently expressed, so far the levels of most non-fungal proteins produced are
too low to be commercially interesting. Extracellular degradation of non-fungal
proteins by the fungus’ native protein-degrading enzymes, so-called proteases, has
long been recognized as one of the bottlenecks that reduce yield.

Currently, approaches for the development and use of A. niger as a production host are
rapidly changing by recent advances in fungal genomics and related functional
genomics tools such as microarrays, proteomics and metabolomics. The aim of the
work presented in this thesis was to use functional genomics tools to study the
production of extracellular proteases in A. niger.

Chapter 1 reviews the role of proteases in strain and process development of A. niger
and other aspergilli and provides an outlook on how functional genomics techniques
may play a role in further understanding the proteolytic system of aspergilli. To this
day, classical mutagenesis and molecular genetic methods both are successfully
applied to generate strains with reduced protease activity. With the resulting mutants
and disruptants a significant improvement of heterologous protein production levels
can be reached. Disruption strategies have not only focused on individual protease-
encoding genes, but also on specific regulators of protease genes as well as wide-
domain regulators. However, the latter approach seems unsuitable to generate
protease-deficient fungal host strains for protein production due to pleiotropic
growth defects of wide-domain regulatory mutants. In addition to strain development,
the selection and development of fermentation conditions that repress protease
production can improve heterologous protein production, but this has never been
investigated systematically. The few available studies on this subject have mainly
focused on the environmental parameters pH, carbon and nitrogen source.

A systematic study of the influence of several environmental factors on the production
of extracellular proteases of A. niger in controlled batch cultivations is described in
Chapter 2. In the first part of the study, a change-one-factor-at-a-time approach was
used to establish the factors and their levels that affect protease activity.
Subsequently, four selected factors, i.e. carbon source, nitrogen source, nitrogen
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concentration and pH, were investigated further using a full two-level factorial
experimental design. Amongst others, the results showed a clear interaction effect
between nitrogen source and nitrogen concentration. Interaction effects between
environmental factors in relation to protease secretion of A. niger have not been
reported before. Due to the occurrence of interaction effects, the selection of
environmental factors to reduce protease activity is not straightforward, as
unexpected antagonistic or synergistic effects may occur. Furthermore, in addition to
maximum protease activity the effects of the process parameters on five other
protease-related phenotypes, such as maximum specific protease activity and
maximum protease productivity, were investigated. The results indicated significant
differences in the effect of the environmental parameters on the various protease-
related phenotypes. For instance, pH significantly affected final levels of protease
activity, but not protease productivity. The experiments of the full factorial design
showed large and evenly distributed variation of protease activity, and were therefore
a suitable starting point for a full-scale systems biology approach (Chapters 3-5).

The availability of the sequenced genome of A. niger has allowed the prediction of the
fraction of potentially secreted proteins by scanning for the presence of a N-terminal
signal peptide (SP). Due to gene-model errors, the in silico predicted secretome is not
an accurate description of the real secretome. Moreover, not all proteins with a SP are
actually secreted; some are resident endoplasmic reticulum proteins. In Chapter 3 an
improved list of potential SP directed proteins encoded by the A. niger genome is
presented. When compiling this list, in addition to SP predictions of A. niger CBS
513.88, SP predictions of the best homologs of A. niger ATCC 1015 and three
neighbouring Aspergillus species were taken into account as well. We propose that the
SP prediction of an A. niger non-SP protein was likely to be incorrect, when a SP
prediction was present for the majority of the homologous proteins and vice versa.
Four of those likely false negative SP predictions and one likely false positive SP
prediction were re-evaluated by aligning N-terminal ends. In all cases of the false
negative SP predictions, selection of an alternative start codon in the most likely
reading frame would add a predicted SP feature to the alternative N-terminal end of
the predicted CBS protein.

As a complement to the in silico data, shotgun proteomics approach was used to
determine the secretome associated with A. niger growth and upon carbon source
depletion. In our study, more than 200 proteins with a predicted SP were identified.
Additionally, at least two secreted proteins, including an aspartic protease
(An01g00370) with a strong similarity to aspergillopepsin apnS of A. phoenicis, were
identified that apparently use a non-classical route for secretion. Of the other 19
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proteases identified in this study and that did have a predicted SP, one aspartic
protease (ATCC 53364) lacked a CBS gene-model.

The secretome state was observed to change with the growth condition. Growth on
sorbitol lead to the secretion of a range of carbohydrate active enzymes, but a
pectinolytic subset was specifically induced during growth on galacturonic acid.
Carbon source exhaustion induced the expression of proteases, as was already
observed in Chapter 2. However, it was not the number of different proteases, but the
relative contribution of specific proteases that increased upon carbon source
starvation. These included the most prominent protease in A. niger, the aspartic
protease aspergillopepsin A, for which the number of spectral counts was almost upto
seven times higher under carbon source exhaustion compared to the growth
conditions. Also data sets from other studies confirmed the relevance of the SP-
classifier approach.

One of the application fields of functional genomics tools is the optimization of
microbial production processes. In Chapter 4 we investigated the influence of the
choice of the quantitative phenotype to be optimized on the outcome of a optimization
strategy using metabolomics. To this end, we evaluated the production by A. niger of
the industrially relevant products glucoamylase and protease. For both products
different quantitative phenotypes associated with production were defined, taking the
different time points of sampling into account as well. The information content of the
metabolomics data set in relation to all these different quantitative phenotypes
defined was evaluated using the multivariate data analysis tool partial least squares
(PLS). The results showed that the effect of different ways to define the quantitative
phenotype on the information content and resulting targets for production process
optimization is much smaller than the effect of the time point of sampling.

A detailed analysis of specific metabolites identified by PLS as important to the two
products under study revealed that for glucoamylase activity various sugar-
derivatives were correlating. However, the identified disaccharides can be either
inducers of glucoamylase secretion or formed from glucose by transglucosylation
activity from glucoamylase. Especially in the first case, the disaccharides are relevant
in relation to strain improvement strategies. Glucose-6-phosphate isomerase was
another potential target identified by PLS for optimization of glucoamlyase in A. niger.
For the reduction of protease activity no obvious targets were found. It was
anticipated that the relation between intracellular metabolite concentrations and
extracellular protease activity would not be straightforward, because multiple enzyme
activities are involved in proteolytic degradation, as was also found in Chapter 3.
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Chapter 5 provides a large-scale, global view of the transcriptional response of
A. niger by the clustering of co-expressed genes. Gene co-expression networks were
constructed on the basis of DNA microarray data sets from two experimental
approaches. In one approach A. niger cultures were relatively mild perturbated by the
addition of low amounts of inducer. In the other approach A. niger cultures were
severely pertubated by the imposed environmental conditions, which included carbon
source starvation.

Initially, gene co-expression networks for both the individual and combined data sets
were constructed using only a set of conserved genes. Comparative analysis revealed
the existence of modules, some of which were present in all three networks, while
others were condition-specific. Next, all protein-coding A. niger genes, including
hypothetical and poorly conserved genes, were integrated to the co-expression
analysis by the application of module-derived consensus expression profiles. Evidence
for the biological relevance of the discovered modules was provided by the
overrepresentation of specific Gene Ontology terms within the modules, the
overrepresentation of genes which related to specific biochemical pathways, and the
presence of conserved motifs in the upstream region of many genes in several of the
modules. Some of the conserved sequence motifs detected represented known binding
sites for transcription factors. These included the amino acid metabolism-related
transcription factor CpcA and the fatty acid metabolism-related transcription factors,
FarA and FarB. In addition, not previously described putative transcription factor
binding sites were discovered for the module containing genes encoding cytosolic
ribosomal proteins and the module with genes related to 'gene expression'.

Finally, in Chapter 6 a top-down systems biology approach, based on the information
gathered with functional genomics technologies and in combination with multivariate
data analysis tools, is discussed as a method to achieve unbiased selection and ranking
of targets for both strain improvement and bioprocess optimization.
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SAMENVATTING

De schimmel Aspergillus niger wordt veel gebruikt in de industriéle biotechnologie
voor de productie van verschillende metabolieten, waaronder citroenzuur, en een
grote verscheidenheid aan enzymen. Van nature is A. niger in staat grote
hoeveelheden eiwit uit te scheiden. Door deze eigenschap is bij de opkomst van
genetische modificatietechnieken ook onderzocht of deze schimmel kon worden
gebruikt als productieorganisme voor de commerciéle productie van enzymen die van
nature in andere schimmels of andere organismen voorkomen. Deze soortvreemde
(heterologe) eiwitten worden vaak efficiént tot expressie gebracht als het eiwitten van
andere schimmels betreft. Wanneer het echter om heterologe eiwitten met een andere
oorsprong dan schimmels gaat, is de productie tot op heden meestal onvoldoende om
rendabel te zijn. Afbraak van deze heterologe eiwitten door eiwitafbrekende enzymen,
zogenaamde proteases die de schimmel van nature uitscheidt, wordt als één van de
oorzaken gezien van deze tegenvallende opbrengsten.

De recente opmars van systeembiologie, waaronder ook de onderzoeksgebieden
genomics, transcriptomics, proteomics en metabolomics vallen, heeft een nieuwe
impuls gegeven aan de ontwikkeling en toepassing van A. niger als een
productieorganisme. Het werk dat in dit proefschrift beschreven is, had tot doel de
productie van extracellulaire proteases in A. niger te onderzoeken, waarbij gebruik is
gemaakt van een systeembiologie aanpak.

In Hoofdstuk 1 wordt de rol van proteases in stam- en procesverbetering van
A. niger en andere aspergilli beschreven. Ook wordt vooruitgeblikt op de rol die
systeembiologie zou kunnen spelen om het begrip van het proteolytische systeem van
aspergilli te vergroten. Zowel Kklassieke mutagenese als moleculair genetische
methoden worden tot op de dag van vandaag succesvol toegepast om stammen te
genereren met een verlaagde protease activiteit. Het gebruik van de resulterende
stammen voor de productie van heterologe eiwitten kan tot een significante toename
van de geproduceerde hoeveelheden eiwit leiden. Strategieén waarbij een gen wordt
uitgeschakeld hebben zich niet alleen gericht op individuele protease genen. Ook is
gekeken naar het effect van het uitschakelen van specifieke regulatoren van protease
genen. Een andere mogelijkheid is het uitschakelen van regulatiegenen die de
expressie sturen van een breder scala aan genen, waaronder bepaalde protease genen,
als reactie op externe factoren zoals pH of koolstofbron. Deze laatste aanpak lijkt
echter ongeschikt voor het genereren van protease-deficiénte gastheerschimmels
voor eiwitproductie. Het uitschakelen van zulke regulatoren resulteert namelijk ook in
pleiotrope groeidefecten.
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Ook de selectie en ontwikkeling van fermentatiecondities waarbij de productie van
proteases wordt onderdrukt kan, naast stamontwikkeling, helpen de productie van
heterologe eiwitten te verbeteren. Hier is echter nooit systematisch onderzoek naar
verricht. De enkele studies die over dit onderwerp zijn verschenen hebben zich met
name gericht op de kweekparameters pH, koolstof- en stikstofbron.

Hoofdstuk 2 beschrijft een systematische studie naar de invloed van verschillende
omgevingsfactoren op de productie van extracellulaire proteases door A. niger. Hierbij
is gebruik gemaakt van gecontroleerde batch fermentaties. In het eerste deel van de
studie is door steeds één parameter per experiment te veranderen geprobeerd vast te
stellen welke factoren met name protease activiteit beinvloeden. Vervolgens zijn vier
geselecteerde factoren, namelijk pH, koolstofbron, stikstofbron en concentratie van de
stikstofbron, verder onderzocht. Hiervoor werd een aanpak gebruikt waarbij elke
factor op twee niveaus werd getest en in alle mogelijke combinaties met de andere
factoren. De resultaten toonden onder andere een duidelijk interactie-effect aan
tussen stikstofbron en concentratie van de stikstofbron. Dergelijke interactie-effecten
tussen omgevingsfactoren in relatie tot extracellulaire protease productie door
A. niger zijn nog niet eerder beschreven. Het selecteren van omgevingsfactoren om
protease activiteit te reduceren is door deze interactie-effecten niet eenvoudig, omdat
onverwachte antagonistische of synergetische effecten kunnen optreden.

Hiernaast is in deze studie niet alleen gekeken naar het effect van procesparameters
op de maximale protease activiteit, maar ook op nog vijf andere fenotypen gerelateerd
aan protease. De resultaten duidden op significante verschillen in het effect van de
omgevingsfactoren op de verschillende protease-gerelateerde fenotypen. De pH
beinvloedde bijvoorbeeld duidelijk de eindwaarden van protease activiteit, maar niet
die van protease productiviteit. De uitgevoerde experimenten resulteerden in een
grote en evenredig verdeelde variatie van protease activiteit. Dit maakt de resultaten
van deze experimenten een geschikt startpunt voor een systeembiologie aanpak
(Hoofdstukken 3-5).

Met de beschikbaarheid van de genoomsequentie van A. niger is het mogelijk
geworden in silico het secretoom, oftewel de subset van het proteoom dat alle
uitgescheiden eiwitten omvat, te voorspellen. Door alle voorspelde eiwitten te
analyseren op de aanwezigheid van een signaalpeptide (SP) aan de N-terminus kan
een lijst worden opgesteld met potentieel uitgescheiden eiwitten. Echter, de
genmodellen die voor deze voorspellingen worden gebruikt bevatten soms fouten,
waardoor het in silico voorspelde secretoom niet een accurate weergave is van het
daadwerkelijke secretoom. In Hoofdstuk 3 wordt een verbeterde lijst gepresenteerd
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met potentiéle SP eiwitten gecodeerd door het A. niger genoom. Bij het opstellen van
deze lijst zijn, naast de SP voorspellingen van A.niger CBS 513.88, ook de SP
voorspellingen van de beste homologen van A. niger ATCC 1015 en drie naburige
Aspergillus soorten meegenomen. Ons uitgangspunt was dat de SP voorspelling van
een A. niger non-SP eiwit zeer waarschijnlijk onjuist is, wanneer voor de meerderheid
van de homologe eiwitten wel een SP voorspelt is en vice versa.

Als aanvulling op de in silico data is een shotgun proteomics aanpak gebruikt om het
secretoom van A. niger te onderzoeken bij zowel groei- als koolstoflimiterende
condities. In onze studie hebben we in het kweekmedium meer dan 200 eiwitten met
een SP voorspelling gevonden. Daarnaast zijn ook tenminste twee uitgescheiden
eiwitten gevonden waarvoor geen SP voorspeld was. Eén van deze twee eiwitten is
een aspartylprotease (An01g00370) dat sterk overeenkomt met aspergillopepsin
apnS van A. phoenicis. Blijkbaar wordt de export van dit eiwit niet door een SP
gedirigeerd. Behalve dit aspartylprotease werden negentien andere proteases in deze
studie gevonden die allen wel een SP hadden.

Het secretoom verandert met de groeicondities. Bij groei op sorbitol werd een breed
scala aan koolhydraatacterende enzymen gevonden, terwijl bij groei op
galacturonzuur vooral een specifieke subset van pectinolytische enzymen werd
geinduceerd. Koolstoflimitatie induceerde de expressie van proteases, zoals ook al
was waargenomen in Hoofdstuk 2. Echter, niet zozeer het aantal verschillende
proteases veranderde bij koolstoflimitatie, maar de relatieve bijdrage van specifieke
proteases nam toe. Hieronder ook het belangrijkste protease in A. niger, het
aspartylprotease aspergillopepsin.

Eén van de toepassingsgebieden van systeembiologie is het optimaliseren van
microbiéle productieprocessen. In Hoofdstuk 4 hebben we onderzocht hoe de keus
van een kwantitatief fenotype voor optimalisatie de uitkomst beinvloedt van een
optimalisatiestrategie gebaseerd op een metabolomics aanpak. Hiervoor hebben we
de productie van de industrieel belangrijke A. niger producten glucoamylase en
protease bestudeerd. Voor beide producten zijn verschillende kwantitatieve
fenotypen verwant aan productie gedefinieerd. Daarbij is ook rekening gehouden met
de verschillende tijdstippen waarop monsters genomen zijn. Met behulp van de
multivariate data-analyse techniek partial least squares (PLS) is het informatiegehalte
van de metabolomics dataset in relatie tot al deze verschillende kwantitatieve
fenotypen geévalueerd. De resultaten lieten zien dat het tijdstip van bemonstering een
veel grotere invloed heeft op het informatiegehalte van de data dan de manier waarop
een kwantitatief fenotype is gedefinieerd.
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Uit analyse van de metabolieten die door de PLS analyse als belangrijk zijn
aangemerkt voor de twee bestudeerde producten bleken verschillende suikers met
glucoamylase activiteit te correleren. Echter, de geidentificeerde disaccharides
kunnen zowel mogelijk glucoamylase productie induceren, of producten zijn die door
glycosyltransferase activiteit van glucoamylase uit glucose worden gevormd. Vooral in
het eerste geval zijn de disaccharides van belang voor stamoptimalisatie. Voor
optimalisatie van glucoamylase productie in A. niger werd ook glucose-6-fosfaat
isomerase als één van de andere interessante aanknopingspunten voor verder
onderzoek geidentificeerd.

Om protease activiteit in A. niger te reduceren werden geen direct voor de hand
liggende aanknopingspunten voor verder onderzoek gevonden. Er was van te voren al
rekening gehouden met het feit dat de relatie tussen intracellulaire metabolieten en
extracellulaire protease activiteit gecompliceerd zou zijn, omdat bij proteolytische
afbraak verschillende enzymactiviteiten betrokken zijn, zoals ook al in Hoofdstuk 3
was gevonden.

Hoofdstuk 5 geeft een genoom-brede blik op de transcriptierespons van A. niger door
genen op basis van co-expressie te groeperen. Co-expressie netwerken van genen
werden gemaakt op basis van twee verschillende DNA microarray datasets. De ene
dataset is gebaseerd op experimenten waarbij A. niger relatief mild verstoord werd
door kleine hoeveelheden van een inducerende component toe te voegen. Voor de
andere dataset werd A. niger veel heviger verstoord door verschillende groeicondities
op te leggen, waaronder koolstoflimitatie.

In eerste instantie werden voor zowel de individuele als de gecombineerde datasets
gen co-expressie netwerken gemaakt op basis van een selectie van geconserveerde
genen. Bij het vergelijken van de verschillende netwerken bleken sommige clusters
van genen, zogenaamde modules, aanwezig in alle drie netwerken, terwijl andere
conditiespecifiek waren. Vervolgens zijn alle A. niger genen, waaronder ook
hypothetische en slecht geconserveerde genen, geintegreerd in de co-expressie
analyse. Dit werd gedaan door voor elk oorspronkelijke module een representatief
expressieprofiel op te stellen en daarmee de expressieprofielen van alle overige genen
te vergelijken. De biologische relevantie van de ontdekte modules blijkt uit de
oververtegenwoordiging binnen deze modules van genen die gerelateerd zijn aan
specifieke biochemische routes. Voor een aantal modules wordt dit tevens
ondersteund door de aanwezigheid van geconserveerde motieven in de
promotorregio van veel van de genen binnen zo'n module. Enkele van de gevonden
geconserveerde sequentiemotieven zijn bekende bindingsites van DNA-bindende
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transcriptiefactoren. Voorbeelden hiervan zijn de bindingsites van de transcriptie-
factor CpcA, die gerelateerd is aan het aminozuurmetabolisme, en die van de
transcriptiefactoren FarA and FarB, die gerelateerd zijn aan het verzuurmetabolisme.
Daarnaast zijn enkele nog niet eerder beschreven mogelijke transcriptiefactor
bindingsites ontdekt voor de module met genen die coderende voor ribosomale
eiwitten en de module met genen gerelateerd aan algemene gen expressie processen.

Tenslotte wordt in Hoofdstuk 6 een ‘top-down’ systeembiologie aanpak, gebaseerd
op de informatie verkregen middels functionele genomics technologieén en in
combinatie met multivariate data analyse, bediscussieerd als een methode om
onbevooroordeeld aanknopingspunten voor stam- en procesverbetering te selecteren
en op hun belangrijkheid te rangschikken.
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