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LIST OF ABBREVIATIONS

List of abbreviations

aCGH array-based comparative genomic hybridization

ACP2 acid phosphatase 2, lysosomal

ARHB synonym RHOB

ARPC4 actin related protein 2/3 complex, subunit 4, 20kDa

ATP5J2  ATP synthase, H+ transporting, mitochondrial Fo complex,  

subunit F2

BAC bacterial artificial chromosome

BCL2 B cell lymphoma 2

BCL7a B-cell CLL/lymphoma 7A

BCL11a B-cell CLL/lymphoma 11A (zinc finger protein)

C-ALCL primary cutaneous anaplastic large cell lymphoma

CCL5 chemokine (C-C motif) ligand 5
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CCR10 chemokine (C-C motif) receptor 10

CD30 synonym TNFRSF8

CDCA7 cell division cycle associated 7

CDKN2A cyclin-dependent kinase inhibitor 2A

cDNA complementary DNA

CGH comparative genomic hybridization

CHN1 chimerin (chimaerin) 1

CLL chronic lymphocytic leukemia

CNA copy number alteration

C-PTCL-NOS  primary cutaneous peripheral T-cell lymphoma not otherwise 

specified

CRIP1 cysteine-rich protein 1 (intestinal)

CTCL cutaneous T-cell lymphoma

DE differentially expressed

DIABLO diablo, IAP-binding mitochondrial protein

DUSP1  dual specificity phosphatase 1

EPHA4 EPH receptor A4

FAS Fas (TNF receptor superfamily, member 6)

FASTK Fas-activated serine/threonine kinase

FrAGL Frequency of Amplicon, Gain, and Loss

GATA-3 synonym PRDM2

HDAC histone deacetylase

IL32 interleukin 32
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LIST OF ABBREVIATIONS

IRF4 interferon regulatory factor 4

ITGB1  integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 

includes MDF2, MSK12)

JUNB jun B proto-oncogene

KIR3DL2  killer cell immunoglobulin-like receptor, three domains, long cytoplasmic 

tail, 2

LyP Lymphomatoid papulosis

MCR minimal common region

MET met proto-oncogene (hepatocyte growth factor receptor)

MF Mycosis fungoides

miRNA microRNA

MYC v-myc myelocytomatosis viral oncogene homolog (avian)

MXI1 MAX interactor 1

NF-κB nuclear factor kappa B

NFKBIZ  nuclear factor of kappa light polypeptide gene enhancer in B-cells 

inhibitor, zeta

NKG7 natural killer cell group 7 sequence

PRDM2 PR domain containing 2, with ZNF domain 

PRKCQ protein kinase C, theta

PTPRG protein tyrosine phosphatase, receptor type, G

PTPRN2 protein tyrosine phosphatase, receptor type, N polypeptide 2

PUVA psoralen UVA

RANKL synonym TNFSF11

RANTES synonym CCL5

RHOF ras homolog family member F (in filopodia)

RB1 retinoblastoma 1

SCYA5 synonym CCL5 

SMAC synonym DIABLO

STAT4 signal transducer and activator of transcription 4

Sz Sézary syndrome

TBX21 T-Box 21

TGFBR2 transforming growth factor, beta receptor II (70/80kDa)

TIA-1 TIA1 cytotoxic granule-associated RNA binding protein

T-MF tumor-stage mycosis fungoides 

TNFRSF8 tumor necrosis factor receptor superfamily, member 8

TNFSF11 tumor necrosis factor (ligand) superfamily, member 11

TRAF1 TNF receptor-associated factor 1

TWIST1 twist homolog 1 (Drosophila)

WHO-EORTC   World Health Organization-European Organization of Research and 

Treatment of Cancer classification
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Primary cutaneous T-cell lymphoma

Primary cutaneous lymphomas represent a group of lymphoproliferative disorders of 

neoplastic lymphocytes presenting in the skin with no evidence of extracutaneous disease 

at the time of diagnosis. Whereas most lymphomas arise in lymph nodes, a considerable 

proportion primarily involves extranodal sites. After the gastrointestinal tract, the skin is 

the second most common site of extranodal non-Hodgkin lymphoma, with an estimated 

annual incidence of 1:100,000.1 Primary cutaneous lymphomas are for 75% of T-cell origin 

and for the remaining 25% of B-cell origin.2 Primary cutaneous T-cell lymphoma (CTCL) 

is a heterogeneous group of diseases. Several different classifications were used for 

CTCL before consensus was reached in the World Health Organization-European 

Organization of Research and Treatment of Cancer classification (WHO-EORTC) 

classification.3 Classification is an essential prerequisite for defining groups for molecular 

studies, as well as for determining prognosis and treatment. The WHO-EORTC 

classification is depicted in Table 1; CTCL that are studied in this thesis are described in 

more detail below. 

Mycosis fungoides
Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma. MF 

generally has an indolent course with slow progression from patches to more infiltrated 

plaques and eventually development to tumors over a period of years or even decades.3 

Preferred locations of the initial skin lesions are the buttocks and other sun protected 

areas. Patients with tumor-stage MF characteristically show a combination of patches, 

plaques, and tumors, which often show ulceration. MF typically affects older adults 

(median age at diagnosis is 55-60 years) and males more frequently than females (1.6-

2.0:1).4,5 Early patch/plaque-stage MF is characterized by the presence of atypical T cells 

with hyperchromatic, cerebriform nuclei, which preferentially infiltrate the epidermis 

(epidermotropism). With progression to tumor stage, epidermotropism may be lost and 

dermal infiltrates become more diffuse with increasing number of blast cells. 

Transformation to large cell lymphoma may occur.6 The neoplastic T cells have a CD3+, 

CD4+, CD8-, CD45RO+ memory T-cell phenotype. The prognosis is dependent on the 

stage of disease: patients with limited plaque-stage disease have a 10-year disease 

specific survival of 98%, but in patients with tumor-stage disease the 10-year survival 

decreases to 42%.4,5 The first choice of treatment for disease limited to the skin are 

skin-directed therapies including topical steroids, PUVA photochemotherapy, UV-B 

phototherapy, topical nitrogen mustard and radiotherapy.7-9 Patients with limited patch-
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1stage disease can be treated with topical steroids.  Skin tumors are commonly targeted 

by radiotherapy, and for wide-spread tumor stage refractory to skin-targeted therapies 

and extracutaneous disease multi-agent chemotherapy is indicated.10

Table 1  WHO-EORTC classification. Disease-specific survival of primary cutaneous lymphoma classi-
fied according to WHO-EORTC classification3

WHO-EORTC classification3 Frequency
%

Disease-specific 
5-year survival

%

Cutaneous T-cell lymphoma     

Mycosis fungoides    44  88

Variants of mycosis fungoides  

Folliculotropic MF    4  80

Pagetoid reticulosis   < 1  100

Granulomatous slack skin   < 1  100

Sézary syndrome    3  24

Primary cutaneous CD30+ lymphoproliferative disorders

Primary cutaneous anaplastic large cell lymphoma   8  95

Lymphomatoid papulosis    12  100

Subcutaneous panniculitis-like T-cell lymphoma   1  82

Primary cutaneous NK/T-cell lymphoma, nasal-type   < 1  NR

Primary cutaneous peripheral T-cell lymphoma, unspecified   2  16

Primary cutaneous peripheral T-cell lymphoma, rare sub-
types 

Primary cutaneous gamma/delta-T-cell lymphoma  < 1  NR

Primary cutaneous aggressive CD8+ T-cell lymphoma   < 1  18

Primary cutaneous CD4+ small/medium pleomorphic 
T-cell lymphoma  

 2  75

Cutaneous B-cell lymphoma   

Primary cutaneous marginal zone B-cell lymphoma   7  99

Primary cutaneous follicle center lymphoma   11  95

Primary cutaneous diffuse large B-cell lymphoma, leg type   4  55

NR indicates not reached.   
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Sézary syndrome
Sézary syndrome (Sz) is a malignancy of skin-homing CD4+ T cells characterized by a triad 

of erythroderma, generalized lymphadenopathy and the presence of neoplastic T cells in 

the skin, lymph nodes and peripheral blood.2,3,11 Diagnostic criteria are a Sézary cell count 

> 1000 cells/mm3, a CD4/CD8 ratio of > 10 caused by an expanding population of CD4+ 

T cells, aberrant expression of T-cell antigens (loss of CD2, CD3, CD4, CD5 and/or CD7), 

and a T cell clone in the peripheral blood determined by molecular or cytogenetic tests.12 

Sézary patients have a poor prognosis with a disease specific 5-year survival of 24%.3 

Historically, MF and Sz were regarded as part of the same spectrum of disease.13,14 

Although different in clinical presentation and disease behavior, Sz is generally considered 

to be a leukemic phase or variant of MF. Therefore, these two CTCLs still share the same 

classification and staging system and are often included in the same clinical trials. Despite 

being considered earlier as a leukemic phase of MF, in the recent WHO-EORTC 

classification and WHO classification 2008, MF and Sz are included as separate disease 

entities based on their distinctive clinical features and disease behavior (see Table 1). 

However, controversy still remains whether Sz is a leukemic phase of MF, or whether 

these CTCLs should be regarded separately.15

In contrast to patients diagnosed with MF, who are most often treated with skin-directed 

therapies, patients diagnosed with Sézary syndrome require systemic therapy. First line 

treatment options are extracorporeal photophoresis (ECP), interferon alpha, bexarotene, 

low-dose methotrexate or denileukin diftitox. Most recent treatment guidelines recommend 

adding skin-directed therapy PUVA, topical nitrogen mustard or total skin electron beam 

radiation depending on the relative burden of disease, impact on quality of life, and rapidity 

with which disease progresses. Second line systemic treatment options are alemtuzumab, 

a combination of low-dose chlorambucil and prednisone, liposomal doxorubicin, HDAC 

inhibitors(vorinostat, romidepsin), gemcitabine, deoxycoformycin and high-dose 

methotrexate.16

Primary cutaneous anaplastic large cell lymphoma 
Primary cutaneous anaplastic large cell lymphoma (C-ALCL), formerly designated as primary 

cutaneous CD30-positive large T-cell lymphoma, is a T-cell lymphoma composed of large cells 

with an anaplastic, pleomorphic or immunoblastic cytomorphology, that shows expression 

of the CD30 receptor in more than 75% of the neoplastic cells.3 Patients generally present 

with solitary or localized skin tumors that have a tendency to regress spontaneously. C-ALCL 

has an indolent clinical behavior and rarely shows extracutaneous dissemination. C-ALCL 

tumor cells have a characteristic morphology of anaplastic cells, with round, oval, or irregularly 

shaped nuclei, prominent eosinophilic nucleoli, and an abundant cytoplasm. 
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1Reactive lymphocytes are often present at the periphery of the lesions. The neoplastic 

cells have an activated CD4+ T-cell phenotype with variable loss of CD2, CD5 and CD3, 

and frequent expression of the cytotoxic proteins granzyme B, TIA-1 and perforin.17-20 

Primary cutaneous ALCL lacks t(2,5) translocations seen in systemic ALCL.21 Patients 

have a relatively good prognosis with a 5-year survival exceeding 90%.20,22,23  C-ALCL 

treatment of choice is radiotherapy or surgical excision for solitary or lesions few in 

number; C-ALCL with multifocal skin lesions can be treated with low-dose methotrexate.20,24 

C-ALCL together with lymphomatoid papulosis (LyP) constitutes a spectrum of primary 

cutaneous CD30+ lymphoproliferative disorders.25 Lymphomatoid papulosis is a chronic, 

recurrent, self-healing papulonecrotic or papulonodular skin disease with histological 

features suggestive of C-ALCL.3

Primary cutaneous peripheral T-cell lymphoma not otherwise specified 
Primary cutaneous peripheral T-cell lymphoma not otherwise specified (C-PTCL-NOS), 

formerly classified as primary cutaneous CD30-negative large T-cell lymphoma, is a 

heterogeneous group and diagnosis is made by exclusion of other (sub)types (including 

aggressive epidermotropic CD8+ CTCL; cutaneous gamma-delta T-cell lymphoma; CD4+ 

small/medium pleomorphic CTCL). Patients present with solitary or more often generalized 

skin tumors. C-PTCL-NOS displays aggressive clinical behavior and frequently disseminates 

to extracutaneous sites.3 Histologically, these  tumors are nodular or diffuse infiltrates 

with variable numbers of medium-sized to large pleomorphic or immunoblast-like T cells. 

Large neoplastic cells represent at least 30% of the tumor cell infiltrate.26 Epidermotropism 

is generally mild or absent. Most cases show an aberrant CD4+ T-cell phenotype with 

variable loss of pan-T-cell antigens. CD30 staining is negative or restricted to a few 

scattered tumor cells.27 C-PTCL-NOS should be treated with multi-agent chemotherapy. 

However, results are often disappointing and the prognosis is generally poor with an 

estimated 5-year survival of less than 15%.26,28,29

Oncogenesis

In normal homeostasis, biological processes in the cell such as differentiation, proliferation 

and cell death are tightly regulated. Dysregulation of these physiological processes can 

lead to malignant transformation of the cell. Malignant transformation is generally 

considered a multistep process in which several genetic changes need to be acquired.30 

Six acquired alterations in genes involved in cell physiology were proposed to be essential 

for tumor development: self-sufficiently in growth signals, insensitivity to anti-growth 
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signals, evading apoptosis, limitless replicative potential, sustained angiogenesis, and 

tissue invasion and metastasis.31,32 Genes involved in these cellular processes affected 

by genetic changes can broadly be categorized in 2 groups: oncogenes and tumor 

suppressor genes (Figure 1a). 

Oncogenes are mutant, overactive forms of proto-oncogenes. Oncogenes undergo “gain-

of-function” by amplification, activating point mutation, translocations creating chimeric 

genes or translocations to regions of transcriptionally active chromatin, leading to increased 

protein abundance or activity.33 Oncogenes encode proteins classified into one the 

following functional classes: transcription factors, chromatin remodelers, growth factors, 

growth factor receptors, signal transducers or apoptosis regulators.33 

Figure 1  Interactions of DNA, mRNA and miRNA
Figure 1a during DNA transcription mRNA or pri-miRNA is synthesized of DNA Pri-miRNA is a precur-
sor for miRNA. Following DNA transcription, protein is synthesized in the process of mRNA translation. 
Among other proteins, proto-oncogenes and tumor suppressor genes are synthesized by this means. 
miRNA can regulate protein expression by translational inhibition or induction of mRNA degradation lead-
ing to less available mRNA.
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1Tumor suppressor genes are gatekeepers of the cell, controlling crucial processes such 

as cell cycle and apoptosis. Both functional copies of a tumor suppressor gene have to 

be lost, as described by Knudson’s two-hit hypothesis,34,35 to play a role in tumorigenesis. 

Tumor suppressor genes can be inactivated by inactivating mutations, deletions36 or 

promoter hypermethylation.37 In the typical tumor cell hundreds of mutations and 

chromosomal alterations are present, but only a part of these genetic defects are 

pathogenic and contribute to the malignant phenotype. 

Figure 1b  miRNAs can play a role in tumorigenesis by targeting proteins with a tu-
mor suppressing function. Increased miRNA expression can lead to increased mRNA 
degradation and increased translational repression both leading to decreased protein 
synthesis

Figure 1c Likewise miRNAs can play a role by targeting oncogenes. Decreased miR-
NA expression can lead to decreased mRNA degradation and decreased translational 
repression both leading to increased protein synthesis
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To acquire the necessary alterations in gene expression critical for tumor development, 

most tumors exhibit genomic instability.38,39 Two major types of genomic instability are 

chromosomal instability and microsatellite instability.40,41 The former stems from defects 

in DNA mismatch repair resulting in an increased mutation rate.40,42 Tumors show either 

microsatellite instability or chromosomal instability, but not both.40 Most often tumors 

possess chromosomal instability, resulting in chromosomal alterations ultimately leading 

to translocations, gain of function amplifications of oncogenes and deletion of tumor 

suppressor genes. 

Epigenetics is defined as heritable changes in gene expression that are not due to any 

alteration in the DNA sequence.43 The field of epigenetics within oncogenesis covers 

DNA methylation, DNA hypomethylation and histone modification.44 DNA hypermethylation 

of CpG islands in promoter regions of tumor-suppressor genes leads to inactivation of 

the tumor suppressor gene. The extent of DNA hypomethylation increases during the 

development of a tumor.45 Three mechanisms have been proposed to explain the 

contribution of DNA hypomethylation to the evolvement of a tumor cell: development of 

Box 1  
Array-based techniques used to decipher molecular alterations genome-wide in studies 
included in this thesis

Array-based Comparative Genomic Hybridization (aCGH) is a technique to detect genome-wide DNA 

copy number alterations (gains and losses) at a higher resolution than conventional chromosome-

based CGH. The microarrays used have a 1 Mb resolution (1 probe per 106 base pairs) containing 

3500 probes (probe length: 105 base pairs) of mainly BAC clones and a set of subtelomeric sequences.  

Fluorescently labeled genomic DNA isolated from a tumor sample and reference DNA are hybridized 

to the probes on the array slides. Subsequently the fluorescent intensity ratio of tumor/reference is 

calculated and annotated to genomic location, hereby identifying gains and losses at specific 

chromosomal locations. 

Gene expression microarray is a technology to determine the expression levels of tens of thousands 

of genes simultaneously. RNA isolated from fresh frozen tumor biopsies is reverse transcribed to 

synthesize cDNA. Biotin-labeled antisense RNA is synthesized from cDNA. Antisense RNA is 

hybridized to the array slides after fragmentation. After hybridization array slides are scanned to 

measure intensity values, while specialized software can calculate the expression values from the 

intensity values.

miRNA microarray is used to study miRNA expression levels genome-wide. Total RNA isolated from 

tumor samples and reference RNA is reverse transcribed, and tagged antisense cDNA of both sample 

and reference is hybridized to the sense array, containing probes with the sequences of interest 

spotted in quadruple. Following hybridization, tagged cDNA is fluorescently labeled and the array 

slides are scanned. Expression values can be calculated from the intensity values by specific 

software. 
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1chromosomal instability, reactivation of transposable elements, and loss of imprinting.44 

Histone modification can regulate gene transcription, play a role in DNA repair and 

replication, and manage the organization of chromosomes.44

MicroRNAs (miRNAs) are a recently discovered class of small RNA molecules regulating 

gene expression by translational inhibition or mRNA degradation of target genes (Figure 

1a).46 MicroRNAs targeting a tumor suppressor gene act as oncomirs and miRNAs 

targeting oncogenes have a tumor suppressing function (Figure 1b,c).47,48 MicroRNAs are 

more often encoded in fragile sites of the genome.49 DNA copy number alterations can 

influence miRNA expression levels, implying that DNA copy number alterations can 

indirectly regulate gene expression through miRNAs.50,51 An example is the recurrent 

deletion of 13q14.3 in chronic lymphocytic leukemia (CLL). Pinpointing the minimal 

common region of overlap between tumors reveals deletion of the miR-15-16 cluster52 

targeting BCL2.53 BCL2 is often found to be up-regulated in CLL by previously unexplained 

mechanisms. Hence, decreased expression of miR-15-16 causes up-regulation of BCL2.52,53 

Recently it was shown that increased expression of a single miRNA can act as a driver 

of cancer and initiate tumor formation.54 There are several techniques to study DNA copy 

number alterations, gene expression and miRNA expression genome-wide, the techniques 

used in this thesis are described in Box 1. 

Molecular pathogenesis of cutaneous T-cell lymphoma

In the previous section, the interactions between chromosomal alterations, oncogenes 

and tumor suppressor genes, epigenetics and miRNAs are explained, as well as the 

contribution of these different mechanisms to malignant transformation. In the following 

section results of studies investigating chromosomal alterations, gene expression, DNA 

methylation and miRNA expression contributing to lymphomagenesis in different types 

of CTCL will be reviewed. 

 

Chromosomal aberrations
Sézary syndrome

Numerous cytogenetic studies investigating peripheral bloods samples of Sz patients for 

numerical and structural chromosomal alterations showed a heterogeneous pattern of 

alterations.55-58 Many studies describe only a single or a limited number of cases, in which 

MF and Sz cases are not well defined and often not studied as separate groups. Although 

use of comparative genomic hybridization (CGH) shows repeatedly losses on 10q and 

gains on 17q, no highly recurrent aberrations were found.55,59-61 The first study using aCGH 
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demonstrated highly recurrent alterations in Sz. Multiple regions of gains on 8q and 17q 

and losses on 10q were identified in which several oncogenes and tumor suppressor 

genes reside.62

Mycosis fungoides

A limited number of cytogenetic studies describe chromosomal aberrations in karyograms 

of MF skin tumors.56,63-65 For karyotyping dividing cells are required. The proportion of 

dividing cells can be increased by stimulating cells with mitogens such as 

phytohematoglutinin during culturing, a technique that is easier to perform on blood 

samples. More often karyograms were made of peripheral blood samples of MF 

patients.57,58,66,67 However, it remains unclear whether the studied cells are representative 

of MF malignant cells. The use of comparative genome hybridization (CGH), not requiring 

dividing cells, provided a new opportunity to study chromosomal aberrations in skin 

lesions.  Mao and colleagues were the first to use conventional CGH on skin lesions of 

MF. They described chromosomal aberrations in nine of the 16 skin lesions. However, no 

recurrent alterations were identified. The most recurrent alteration was loss of 1p36 in 

four of the 16 skin lesions.61 Subsequently, 19 cases representing various stages of MF 

and 11 cases of transformed MF were studied with CGH.59,68 Aberrations were mainly 

found in more advanced stages of disease.59,68 By studying DNA copy number alterations 

at a higher resolution with aCGH in early-stage MF, Carbone and colleagues identified 

recurrent loss of chromosome 19 (56% of the cases) and 12q24.31(44% of the cases) 

containing the genes BCL7a, SMAC/DIABLO and RHOF.69 Hypermethylated CpG islands 

of the promotor regions of BCL7a, PTPRG and thrombospondin-4 were 

demonstrated.70

CTCL, non MF/Sz

Studies describing chromosomal aberrations in C-ALCL and C-PTCL-NOS are few. CGH 

studies showed gains on 1p, 6p, 7q, 8p, 9 and 19, and losses on 6q and 18 in C-ALCL.71-74 

Mao and coworkers further studied chromosomal imbalances with aCGH in a subset of 

cases (n=5). Gains on 8p11 (3 cases), 1p13.2, 2p24.1, 3p25, 8p22, 15q26.1, and 21q22.3 

(2 cases) were demonstrated.72

Gene expression
Numerous studies describe the altered expression of one or more genes in CTCL. Gene 

expressions arrays provided the opportunity to study the expression of large sets of 

genes simultaneously (Box 1). Kari and colleagues compared 18 samples of 17 Sz 

patients with nine Th2-skewed controls identifying 385 differentially expressed genes, 



21

GENERAL INTRODUCTION 

1including over expression of Th2 cell-specific transcription factors Gata-3/PRDM2 and 

JUNB, as well as ITGB1 (integrin β1), ARHB/RHOB and DUSP1, and reduced expression 

of CD26, STAT4 and IL-1 receptors.75 Ten cases of Sz were compared with CD4+ T cells 

of healthy controls and benign erythroderma patients by van Doorn and colleagues. 

Using the Affymetrix U95Av2 arrays, they identified 176 differentially expressed genes.76 

High expression of TWIST1, EPHA4 and RANKL/TNFSF11 was demonstrated, while 

tumor suppressor genes TGFBR2, MXI1, PRDM2, BCL11a and STAT4 were down-

regulated.76 In the line of over expression of Th2-specific genes,75 Hahtola and colleagues 

found down-regulation of Th1-specific genes (TBX21, NKG7, and SCYA5 (RANTES/

CCL5)).77 Although similarities exist between the studies, the array results are quite 

heterogeneous. This could be due to differences in experimental design using different 

array platforms and selection criteria of cases and controls. Tracey and colleagues 

studied genes associated with oncogenesis with CNIO Oncochips by comparing 29 

cases of MF in various stages of disease with 11 cases of inflammatory dermatoses.78 

They identified 27 genes involved in tumorigenesis pathways. Studies investigating a 

comprehensive gene expression profile of C-ALCL and C-PTCL-NOS have not been 

performed yet. 

miRNAs
MicroRNAs have thus far not been studied in cutaneous lymphoma, although studies in 

other types of lymphoma show altered expression of miRNAs and demonstrate a role in 

gene expression regulation of oncogenes and tumor suppressor genes.79-81  

In particular, miR-155 and miR-17-92 are frequently over expressed in various types of 

lymphoma and contribute to malignancy.82,83

Aims and outline of this thesis

Although many molecular studies have been performed, much is still unknown regarding 

the tumor genetics underlying the differences in clinical presentation and prognosis of 

different types of CTCL. Within the scope of this thesis we performed several genome-

wide inventory studies of copy number alterations, gene and miRNA expression with 

state-of-the-art techniques on well-defined CTCL cases to fill in gaps of knowledge and 

further elucidate the significance of specific molecular alterations in clinical behavior. 

In search for differences in chromosomal alterations underlying the different clinical 

behavior and prognosis of patients with MF and Sz, in Chapter 2 the DNA copy number 
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alterations of MF were investigated and compared with the previously published profile 

of Sz.62 We used the same aCGH platform to fine-map numerical chromosomal alterations 

at high resolution in the malignant T cells of tumor-stage MF, defined recurrent 

chromosomal alterations characteristic for tumor-stage MF and evaluated whether this 

pattern corresponds to the highly recurrent gains and losses observed in Sz. The second 

aim was to identify candidate oncogenes and tumor suppressor genes residing in 

chromosomal regions with recurrent copy number alteration (CNA) in tumor-stage MF 

contributing to tumorigenesis. To this end, chromosomal alteration and gene-expression 

patterns of MF tumor samples were integrated to determine which genes located in 

minimal common regions (MCRs) with CNA demonstrated dysregulated expression 

associated with chromosomal alteration. A third line of enquiry was aimed at finding 

chromosomal alterations with prognostic significance.

To identify altered gene expression contributing to lymphomagenesis not due to copy 

number effect we re-analyzed in Chapter 3 the gene expression profiles of 22 cases of 

tumor-stage MF previously performed on commercial available arrays comprehending 

the entire human genome. A bioinformatic approach was used to identify a gene 

expression profile characteristic for tumor-stage MF comparing MF tumors simultaneously 

with normal T cells, normal skin and inflamed skin to circumvent the issue of admixing 

cells in the tumor biopsies. This profile could provide more insight in the pathogenesis 

of this type of lymphoma, describing altered expression of genes involved in oncogenesis, 

the (immuno)phenotype and the discovery of novel putative diagnostic markers and 

therapeutic targets. 

The contribution to malignancy of miRNAs regulating gene expression is studied in 

Chapter 4 and 5. In Chapter 4, the first study of miRNA expression in cutaneous 

lymphoma, investigating the miRNA profile of Sézary syndrome, is described. To explore 

the effects of DNA copy number alteration on gene expression, altered miRNA expression 

was correlated to chromosomal alterations. To study the contribution of altered miRNA 

expression to lymphomagenesis the effect of altered miRNA expression on proliferation 

and apoptosis was investigated by functional assays.   

In Chapter 5, miRNA expression was investigated in tumor-stage MF. Firstly, to identify 

aberrantly expressed miRNAs specific for tumor-stage MF, the miRNA profiles of tumor-

stage MF were compared with benign inflammatory dermatoses. Secondly, to correlate 

miRNA expression with chromosomal aberrations locations of up- and down-regulated 

miRNAs were inspected for previously described DNA copy number alterations 
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1characteristic for tumor-stage MF. Thirdly, the correlation between miRNA expression and 

gene expression was studied to elucidate the role of miRNAs as gene regulators in tumor-

stage MF. 

C-ALCL and C-PTCL-NOS are two types of primary cutaneous lymphomas with a very 

different clinical behavior and prognosis. Chapter 6 discusses the results of aCGH analysis 

and gene expression profiling performed on C-ALCL and C-PTCL-NOS tumor samples. 

For both these types of lymphoma, the chromosomal aberrations were determined and 

compared in an effort to elucidate differences and similarities, and the minimal common 

regions were examined for oncogenes and tumor suppressor genes. Furthermore to 

better understand the molecular mechanisms underlying these two clinically different 

types of CTCL the gene expression profiles were compared.  

Chapter 7 summarizes the main findings of the previous chapters 
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Abstract

Mycosis fungoides (MF), the most common cutaneous T-cell lymphoma (CTCL), is a 

malignancy of mature, skin-homing T cells. Sézary syndrome (Sz) is often considered to 

represent a leukemic phase of MF. In this study, the pattern of numerical chromosomal 

alterations in MF tumor samples was defined using array-based CGH; simultaneously, 

gene expression was analyzed using microarrays. Highly recurrent chromosomal alterations 

in MF include gain of 7q36, 7q21-7q22 and loss of 5q13 and 9p21. This pattern characteristic 

of MF differs markedly from chromosomal alterations observed in Sz. Integration of data 

from array-based CGH and gene expression analysis yielded several candidate genes with 

potential relevance in the pathogenesis of MF. We confirmed that the FASTK and SKAP1 

genes, residing in loci with recurrent gain, demonstrated increased expression. The RB1 

and DLEU1 tumor suppressor genes showed diminished expression associated with loss. 

In addition, it was found that presence of chromosomal alterations on 9p21, 8q24 and 

1q21-1q22 was associated with poor prognosis in patients with MF. This study provides 

novel insight into genetic alterations underlying MF. Furthermore, our analysis uncovered 

genomic differences between MF and Sz, which suggest that the molecular pathogenesis 

and therefore therapeutic requirements of these CTCLs may be distinct.  
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Introduction

Mycosis fungoides (MF), the most common type of primary cutaneous T-cell lymphoma 

(CTCL), is a malignancy of mature, skin-homing T cells. MF commonly presents with 

erythematous patches and plaques and generally behaves as a low-grade lymphoma with 

an indolent disease course.1,2 A subset of patients with MF experiences disease progression, 

which is characterized by the formation of skin tumors, the appearance of blast-like cells 

in the tumoral infiltrate and extracutaneous dissemination of malignant T cells. Progressive 

MF is often refractory to treatment and has an unfavorable prognosis.3 In recent years 

progress has been made in defining cytogenetic alterations in MF using conventional 

comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH) 

methods.4,5 In addition, mutations affecting the CDKN2A, FAS and JUNB genes and 

alterations of JAK/STAT and death receptor signalling have been identified in subgroups 

of patients with MF.6-11 However, the molecular genetic alterations underlying this T-cell 

lymphoma remain poorly understood.12-13 

A CTCL that is closely related to MF is Sézary syndrome (Sz). Sz is characterized by the 

triad of erythroderma, generalized lymphadenopathy and presence of malignant T cells 

in peripheral blood. Patients with Sz have a considerable leukemic T-cell burden and a 

dismal prognosis with an estimated 5-year survival rate of 24%.14 Recently, we identified 

several highly recurrent copy number alterations (CNAs) in Sz, including gain of loci on 

chromosome 17q24 and 8q24 and loss of regions on 17p13 and 10q25, occurring in up 

to 85% of patients.15 Additional evaluation of candidate oncogenes and tumor suppressor 

genes residing in loci with chromosomal alteration pointed to dysregulation of the MYC 

oncogene, several of its regulators and IL-2 receptor signalling pathway components in 

Sz.

MF and Sz are both clonal proliferations of T cells with cerebriform nuclei and a CD4+, 

CD45RO+, CLA+ immunophenotype.13 Despite differences in clinical presentation and 

disease behavior of these two disease entities, Sz is often designated as a leukemic 

phase or variant of MF and it has been suggested that differences between both conditions 

are a matter of stage of disease.16-18 Therefore these two CTCLs, sometimes collectively 

termed MF/Sz, share the same classification and staging system and are managed using 

similar treatment regimens.19,20 Although previously classified as a variant of MF, the 

current World Health Organization-European Organization of Research and Treatment of 

Cancer classification (WHO-EORTC) classification lists Sz as a separate disease entity 

based on its distinctive clinical features and disease behavior.16 Because of the existence 

of both shared and dissimilar immunophenotypical and genetic properties, controversy 

has remained as to whether MF and Sz should be regarded as distinct disorders with a 
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different pathogenesis and therapeutic requirements or whether differences reflect 

distinct stages of a similar disease process.

In this study, numerical chromosomal alterations in malignant T cells from tumor-stage 

MF samples were mapped using array-based CGH. The first purpose was to define the 

pattern of recurrent chromosomal alterations characteristic of MF. We then evaluated 

whether this pattern corresponds to the highly recurrent gains and losses observed in 

Sz. The second purpose was to identify candidate oncogenes and tumor suppressor 

genes residing in chromosomal regions with recurrent copy number alteration in MF. To 

this end, chromosomal alteration and gene expression patterns of MF tumor samples 

were integrated to determine which genes located in minimal common regions (MCRs) 

with CNA demonstrated dysregulated expression associated with chromosomal alteration. 

A third line of enquiry we pursued was aimed at finding chromosomal alterations with 

prognostic significance.

Material and Methods

Selection of Patients
Lesional skin tumor biopsy samples containing at least 70% malignant T cells from 22 

patients with tumor-stage MF (TNM stage T3N0M0B0 in 21 patients and T3N3M0B0 in 1 

patient) were included in this study. They included 18 male and 4 female patients with a 

mean age at time of biopsy of 66 years. All biopsy samples were obtained before 

treatment, except in patients diagnosed with plaque-stage disease (T1N0M0B0 or T2 N0M0B0) 

previously who had been treated with local corticosteroids or phototherapy. The malignant 

phenotype of T cells in tumoral infiltrates was assessed on the basis of cytonuclear atypia 

and immunophenotypical characteristics by an expert panel of pathologists. Lymphoid 

cells were CD4+ and CD8- in all cases. Histopathologically, all included tumor samples 

showed large cell transformation, indicated by the presence of at least 25% large cells 

in the tumoral infiltrate. After a mean follow-up period of 23 months, 12 patients had died 

because of MF, 3 had died of other causes and 7 patients were alive. Results of array-

based CGH analysis were compared to those previously obtained from peripheral blood 

mononuclear cells of 20 patients with Sz using identical methods.15 In that study Sz was 

defined according to criteria of the WHO-EORTC classification. Clinical characteristics of 

MF and Sz patients are summarized in Supplementary Table S1. Approval was obtained 

from the Leiden University Medical Center institutional review board for these studies. 

Informed consent was provided according to the Declaration of Helsinki.
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Extraction of DNA and RNA
DNA and RNA were isolated from the same tumor biopsy for array-based CGH and gene 

expression analysis, using oligonucleotide arrays and quantitative real-time PCR (qPCR), 

respectively of all 22 included patients. DNA was isolated from 25 x 20 μM frozen sections 

using the Genomic-tips 20/G kit (Qiagen, Hilden, Germany), yielding 10-60 μg genomic 

DNA. RNA was extracted from 25 x 50 μM frozen sections using the RNeasy kit (Qiagen), 

yielding 25 to 60 μg total RNA. RNA used for gene expression analysis and for confirmatory 

qPCR analysis was isolated from the same tumor biopsy sample. 

Array-based CGH analysis
Genome-wide analysis of CNAs was performed using array-based CGH containing 

approximately 3500 bacterial artificial chromosomes (BACs) produced at the Leiden 

University Medical Center. The particular BAC set used to produce the arrays was 

distributed by the Wellcome Trust Sanger Institute (Hinxton, United Kingdom) and contains 

large insert clones spaced at approximately 1 Mb density over the full genome, a set of 

subtelomeric sequences for each chromosome arm, and a few hundred probes selected 

for their involvement in oncogenesis. Fabrication and validation of the array, hybridization 

methods and analytical procedures have been described in detail elsewhere, whereas 

the clone content is available in the Cytoview window of the Sanger Center mapping 

database site Ensembl (http://www.ensembl.org).21 Data were analyzed using CAPWeb 

and visualized using VAMP.22 Log2 ratios were classified as copy number gain (> 0.25) or 

genomic loss (< –0.25). Identified CNA of regions with copy number variations described 

in the Database of Genomic Variants (http://projects.tcag.ca/variation) were excluded from 

analysis.  

Gene expression profiling
Samples and microarrays (Human Genome U133plus2.0 array, Affymetrix Santa Clara, 

CA, USA), interrogating over 47000 human transcripts and variants, were processed 

according to the manufacturer’s protocol as described previously.23 The array images were 

quantified utilizing the Genechip operating system (GCOS) v1.2 software (Affymetrix). 

The average fluorescence intensity was determined for each microarray, and then the 

output of each experiment was globally scaled to a target value of 200. Further 

normalization and variance stabilization was performed using variance-stabilizing 

normalization in the R statistical software package.24 All microarray data have been 

deposited with Gene Expression Omnibus under accession number GSE12902.25 
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Data analysis
BAC clone and oligonucleotide probe positions were established based on Ensembl 

release 44 (April 2007). Recurrent MCRs with CNA affecting at least 35% of analyzed 

samples were computed in CAPWeb using the algorithm proposed by Rouveirol et al.26 

Only CNAs characterized by gain or loss of at least 2 clones were taken into consideration. 

The nearby borders of adjacent clones were chosen to delineate MCRs. Copy number 

was divided into the categories gain, normal, and loss. To determine whether MCRs 

with recurrent CNA contained a statistically significantly higher number of genes showing 

increased expression in case of gain, or diminished expression in case of loss the sign 

test was performed. The normalized expression levels of genes residing in these MCRs 

as measured by oligonucleotide microarray analysis were then compared between 

tumor samples with and without the particular CNA. Independent-samples t-tests were 

performed (equality of variances not assumed) using the SPSS 14.0 statistical software 

package. Genes demonstrating a statistically significant increased expression in MF 

samples with gain or decreased expression in case of loss were considered of primary 

interest (p<0.05). From this collection of genes with CNA-associated expression, 

candidate genes with pathobiological relevance were selected by focusing on genes 

listed as oncogene or tumor suppressor gene in the European Bioinformatics Institute 

cancer gene prediction database (http://cgg.ebi.ac.uk/services/cgp) with a probability 

exceeding 30%. Disease-specific actuarial survival rates of patients were calculated 

from the date of tumor biopsy for array-based CGH analysis and compared using the 

log-rank test.

Quantitative real-time PCR 
cDNA synthesis was performed on 1 μg of total RNA, after treatment with RQ1 DNase 

I (Promega, Madison, WI, USA), using IScript reverse transcriptase (Bio-Rad, Veenendaal, 

the Netherlands), oligo(dT)12-18 and  random hexamer priming (Bio-Rad) in a final volume 

of 20 μl. Real-time PCR was performed with the MyIQ instrument and the SYBR Green 

Supermix (Bio-Rad). The cycle parameters for transcripts of interest and for the reference 

genes U1A and RPS11 used for normalization were as follows: denaturing for 15 s at 97 

°C; annealing and extension for 20 s at 60 °C, for 40 cycles. Primer sequences (Invitrogen, 

Breda, The Netherlands) for selected transcripts are given in Supplementary Table S2. 

Data were evaluated using MyIQ software (Bio-Rad) and the second derivative maximum 

algorithm, whereas confirmation of the specificity of the PCR product and standard curves 

were performed as previously described.27
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Immunohistochemistry 
Immunostaining on formalin-fixed, paraffin-embedded skin sections with antibodies 

against RB1 (dilution 1:400; phosphorylation-nonspecific, 14001A, BD PharMingen, San 

Diego, CA USA) and SKAP1 (dilution 1:400; HPA002969, Sigma-Aldrich, St Louis, MO 

USA) was performed using a standard 3-step streptavidin-biotin-peroxidase–based 

technique after antigen retrieval with microwave heating as described previously.28 

Results

Pattern of copy number alterations of mycosis fungoides
Clinical characteristics and follow-up data of the 22 patients with tumor-stage MF included 

in the study are presented in Supplementary Table S1. Array-based CGH methodology 

was used to catalog CNAs in the genomes of malignant T cells present in skin tumor 

biopsy samples. All MF tumor samples showed extensive losses and gains of both large 

and smaller chromosomal regions. Copy number gains were more frequent than losses. 

The frequency and cumulative pattern of gains and losses in the tumor samples is depicted 

in Figure 1a. As a first step towards determining biologically significant patterns of genomic 

alterations in MF, we computed MCRs with CNA. MCRs represent the smallest recurrent 

chromosomal region with altered probes common to the set of aCGH profiles and are 

considered to harbor genes with biological relevance in tumor progression.26,29 We 

identified 24 MCRs present in at least 35 % of the 22 MF patients, ranging in size from 

1.2 to 41 Mb. These MCRs are presented in Table 1 and are indicated by vertical lines in 

a visual representation of averaged CGH data in Figure 1b. Fifteen of these recurrent 

MCRs with CNA represent gains of chromosomal regions and 9 correspond to losses. 

Among the most frequently observed alterations were gain of regions on the long arm 

of chromosome 7 with a MCR on 7q36, observed in 59% of samples, and gains of several 

other regions on 7q32-7q35, 7q21-7q22 and 7q11.2. The chromosomal regions second 

most frequently affected with gain were 7p13-7p14, 7p21-7p22, 1q31-1q32 and 1p36.2, 

occurring in 45% of the patients. Losses were most frequently observed on 5q13, 9p21 

and 13q14-13q31. 

Comparison of genomic profiles of mycosis fungoides and Sézary syndrome
We then evaluated the similarity of chromosomal alterations observed in MF with those 

present in Sz. Recently, we have studied chromosomal alterations in malignant T cells 

from peripheral blood of 20 Sz patients using an identical array-based CGH platform and 

bioinformatic analysis.15 Malignant T cells from patients with Sz are characterized by 
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Figure 1  Visualization of the array-based CGH results by VAMP
(A) Overall frequency of CNAs in MF patient tumor biopsies, calculated using the FrAGL (Frequency of 
Amplifications, Gains and Losses) option of VAMP. Losses are represented on the negative scale as 
green bars; gains are presented on the positive scale as red bars. (B) Averaged CGH pattern of all 22 MF 
tumor samples. MCRs with loss occurring in at least 35% of patients are indicated as green vertical lines 
and MCRs with gain as red vertical lines. All data are presented ordered by chromosomal map position of 
the clones, excluding sex chromosomes.
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several highly recurrent alterations, including gain of 17q23-25 (in 80% of patients), gain 

of 8q24 (in 75%, harboring the MYC oncogene) and loss of 17p13 (in 75%, harboring the 

TP53 tumor suppressor gene). These specific chromosomal alterations are present much 

less frequently in MF tumor samples, with frequencies of 32%, 23% and 9% respectively. 

Conversely many highly recurrent alterations in MF, including gain on 7q36, only rarely 

occur in Sz. Whereas the overall pattern of chromosomal alterations of MF is characterized 

by gains on chromosome 1 and 7 and losses on chromosome 9, Sz demonstrates gains 

of regions on chromosome 8 and 17 and loss on chromosome 10. 

Table 1  Minimal common regions with copy number alteration in mycosis fungoides

Cytogenetic 
band

Copy 
number Adjacent clones Clone position (Mb) Affected 

 alteration start stop start stop patients (%)

1p36.2 gain RP4-539L13 RP11-196P5 11098993 12351219 45

1q21-1q22 gain RP4-790G17 RP11-172I6 146342686 156056126 41

1q31-1q32 gain RP11-572A16 RP11-534L20 198714422 205087972 45

5q13 loss RP11-551B22 RP11-497H16 67677068 70179512 45

7p22-7p21 gain RP11-510K8 RP4-733B9 1081263 7947777 45

7p15-7p14 gain RP11-99O17 RP11-302L6 24659178 37825117 41

7p14-7p13 gain RP11-36H20 RP11-52M17 43272694 45048103 45

7q11.2 gain RP11-313P13 RP11-107L23 71274704 76190020 50

7q21-7q22 gain RP4-550A13 RP11-333G13 97314794 102514284 55

7q32-7q35 gain RP11-329I5 RP11-298A10 130270796 143852574 55

7q36 gain RP11-24N19 RP4-548D19 148089302 151558264 59

8q24.2 gain RP11-71N3 RP11-343P9 132799581 137773461 32

8q24.3 gain RP5-1118A7 RP5-1056B24 142790550 telomere 36

9p21 loss RP11-113D19 RP11-149I2 20351121 22479496 41

9p21 loss RP11-495L19 RP11-33K8 22579721 24877888 32

9p13-9p11.1 loss RP11-211N8 RP11-475I24 39990599 42614658 32

9q21 loss RP11-490H9 RP11-336N8 78213759 80495074 32

9q21 loss RP11-174K23 RP11-432M2 79930787 84622895 32

9q21 loss RP11-439A18 RP1-292F10 84783002 86180561 32

9q22-9q31 loss RP11-463M14 RP11-75J9 101410218 105214273 32

13q14-13q31 loss RP11-168P13 RP11-464I4 42301191 83766576 36

17q21 gain RP5-905N1 RP11-361M10 39091531 44639847 41

17q22-17q23 gain RP11-312B18 RP11-156L14 48664511 59626448 32

17q25 gain RP11-478P5 GS-362-K4 69639765 telomere 36
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More detailed comparison of MCRs with recurrent CNAs in MF and Sz revealed clear 

differences, including many gains and losses that were present at a high frequency in MF 

but not in Sz. In Table 2 the 10 most frequent MCRs with CNA in MF and Sz are highlighted 

and frequencies in both entities are indicated. These findings argue against the notion 

that differences between these CTCLs are a matter of stage and strongly suggest that 

the molecular pathogenesis of MF and Sz follows distinct pathways.

Table 2 Comparison of most highly recurrent CNAs in MF and Sz

MyCOSIS FuNGOIDES

Cytogenetic band CNA Affected MF patients 
(%)

Affected Sz patients 
(%)

7q36 gain 59% 15%

7q21-7q22 gain 55% 20%

7q32-7q35 gain 55% 10%

7q11.2 gain 50% 15%

1p36.2 gain 45% 15%

1q31-1q32 gain 45% 0%

5q13 loss 45% 40%

7p22-7p21 gain 45% 20%

7p14-7p13 gain 45% 15%

1q21-1q22 gain 41% 5%

SézARy SyNDROME

Cytogenetic band CNA Affected Sz patients 
(%)

Affected MF patients 
(%)

17q23 gain 85% 32%

17q22-17q23 gain 80% 32%

17q24-17q25 gain 80% 27%

8q24.1-8q24.2 gain 75% 23%

8q24.2-8q24.3 gain 75% 27%

8q22-8q23 gain 70% 18%

17p13 loss 70% 9%

17q25 gain 70% 32%

8q12-8q21.1 gain 65% 18%

8q11.2-8q12 gain 60% 18%
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Identification of genes relevant in the pathobiology of MF through integrated 
genomic analysis
Chromosomal gains and losses can contribute to the development and progression of 

lymphoma by altering the expression levels of genes residing in loci with CNA. We 

sought to identify such biologically relevant genes in MF by evaluating the expression 

levels of genes located in MCRs with recurrent CNA. A schematic representation of 

the strategy used for identifying these genes is depicted in Figure 2. First we asked 

which genes, residing in any of the 24 MCRs affecting at least 35% of patients, showed 

increased expression associated with gain or decreased expression associated with 

loss. A total of 1504 annotated genes interrogated by the Affymetrix oligonucleotide 

arrays are located in the 24 MCRs. In tumor samples affected by gain of any of the 15 

identified highly recurrent MCRs, significantly more genes residing in these 

chromosomal regions showed increased expression. 

Figure 2  Integration of array-based CGH and gene expression data
(A) Stepwise approach to identification of genes potentially relevant in the development or progression 
of MF residing in loci with frequent CNA. Transcripts corresponding to genes localized in MCRs (see 
Figure 1b) were identified and extracted using the Ensembl genome browser and cross-referenced with 
microarray probes. Gene doses effects on expression levels were then statistically evaluated. Genes 
demonstrating significantly higher expression associated with gain or lower expression associated with 
loss are summarized in Table 3. (B) Visual illustration of the integration method applied for aCGH and gene 
expression data. For 2 exemplary MCRs, with gain on 7q36 and loss on 9p21, heatmaps of resident gene 
expression patterns were generated. Genes with a CNA-associated expression pattern are indicated with 
arrows.  

39



CHAPTER 2

40

In addition, in 8 of the 9 MCRs with loss there was a significant excess of genes displaying 

decreased expression in the tumor samples affected by loss of these MCRs according 

to the sign test (Supplementary Table S3). To examine the effect of gene dosage on mRNA 

abundance we tested whether gene expression correlated with CNA for each individual 

gene residing within these MCRs by comparing the gene expression levels in samples 

harboring chromosomal gain or loss to the samples not affected by CNA using Student’s 

t-test. A total of 223 annotated genes showed increased expression associated with gain 

and 30 genes decreased expression associated with loss (p<0.05). Genes demonstrating 

such  CNA-associated expression pattern, i.e. significantly increased expression in samples 

with gain or decreased expression in samples with loss of a certain chromosomal region, 

are listed for each of the 24 MCRs in order of frequency of occurrence in Table 3. For 

each chromosomal region we then prioritized these genes for potential biological relevance 

by triangulating with genes listed as cancer-related in the EBI cancer gene database, 

indicated in bold in Table 3. The resulting list of candidate oncogenes and tumor suppressor 

genes includes MDMX, MCL1 and RB1. In addition, the CDKN2A gene with an established 

role in MF progression is among this refined list of candidate genes.6 The 2 CDKN2A 

probesets emerging from integrated genomic analysis indicated in Figure 2b both target 

a region common to the p16 and p14 transcripts. The chromosomal region most frequently 

affected by gain is 7q36, amplified in 59% of MF patients. Only 3 of the 56 genes residing 

at the 7q36 locus demonstrate increased expression in the tumor samples with gain 

(FASTK, NUB1 and LOC791120). The FASTK gene encodes FAS-activated serine/threonine 

kinase, an anti-apoptotic protein expressed in T cells.30,31

Confirmation of gene expression data by quantitative real-time PCR and im-
munohistochemistry
To validate the results of microarray analysis, we selected several candidate oncogenes 

and tumor suppressor genes, located in MCRs affecting at least 35% of patients and 

predicted to show CNA-associated dysregulation (Table 3). Expression levels of these genes 

were analyzed using qPCR and compared between MF samples with and without CNA of 

the chromosomal region harboring these genes (Figure 3). Expression levels of the FASTK, 

SKAP1 and MCL1 genes, located in MCRs with gain on 7q36, 17q21 and 1q21-22 

respectively, were analyzed. In addition, expression of the tumor suppressor genes RB1 

and DLEU1, located in a MCR on 13q14-13q31 lost in 36% of patients, was investigated. 

The FASTK gene and SKAP1 gene, also known as SKAP55, were selected because of their 

essential role in T-cell apoptosis and T-cell activation, respectively.30,32 MCL1, RB1 are 

reported to be cancer-related according to the EBI cancer gene database. The putative 

tumor suppressor gene Deleted in Lymphocytic Leukemia 1 (DLEU1) was selected for 
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confirmatory PCR analysis because it has also been found to be affected by promoter 

hypermethylation in MF.33  The mean expression intensity of FASTK was significantly higher 

for patients with a corresponding gain of DNA content than for those without gain (fold 

difference 1.7, t-test P=0.03). Similarly, the SKAP1 gene was thus confirmed to demonstrate 

a CNA-associated expression pattern (fold difference 2.6, P=0.01). Expression of the MCL1 

gene was higher in samples with gain, but the difference did not reach statistical 

significance. Expression of RB1 and DLEU1 was significantly diminished in patients 

demonstrating loss of the chromosomal region on 13q14 (fold difference -1.8 and -2.4; 

P=0.02 and 0.01 respectively). These results indicate that gene dosage influences 

transcript abundance of these tumor-related genes. The relatively large standard error 

apparent in the data in Figure 3 on the one hand reflects heterogeneity in expression 

levels within the group of samples, but may also suggest that gene expression levels are 

influenced by other factors such as multiple copy gain and promoter hypermethylation. 

In addition, protein expression of RB1 and SKAP1 was evaluated by immunohistochemical 

staining of tissue sections of 10 MF tumor samples. We found that RB1 was expressed 

by tumor cells of samples without loss of the locus harboring this gene. However, expres-

sion of RB1 was absent in the majority of tumor cells in 2 of the 5 tumor samples dem-

onstrating loss of the locus harboring this gene, indicative of loss or epigenetic silencing 

of the other allele. Loss of RB1 protein expression in CTCL has been reported previous-

ly.34,35 SKAP1 showed strong cytoplasmic staining in lymphoid cells in all MF samples. 

Although tumor samples in which gain of the SKAP1 locus had been detected appeared 

to display slightly more intense staining, no significant difference in staining intensity 

between samples with and without gain of the locus harboring the gene could be dis-

cerned. Results of exemplary stainings are shown in Supplementary Figure S4. 

 

Chromosomal alterations with prognostic significance
Next, we determined possible relationships between the occurrence of specific 

chromosomal alterations and the clinical behavior of these MF patients. For each of the 

24 MCRs with CNA affecting at least 35% of patients, we compared the disease-specific 

survival rate in the group of patients harboring this CNA to survival in the group of 

patients not affected by the particular CNA. Patients whose tumor cells showed loss 

of 9p21 (Mb position 20351121-22479496), gain of 8q24.3 or gain of 1q21-1q22 had a 

statistically significantly lower survival rate (log-rank test, P=0.011, 0.013 and 0.031 

respectively). Figure 4 shows survival curves of patients with and without these 3 CNAs 

with prognostic significance. These loci may contain genes that modify the biological 

behavior or treatment response of MF. Loss of the 9p21 locus, harboring the CDKN2A 

tumor suppressor gene, has been reported to predict more aggressive disease behavior 

in cutaneous B-cell lymphoma and nodal lymphomas previously.36,37
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Table 3 Results from integration of expression and aCGH results: candidate oncogenes and tumor 
suppressor in MF
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7q36 gain 148089302 151558264 59 FASTK, NUB1, LOC791120

7q21-7q22 gain 97314794 102514284 55 AP1S1, SMURF1, ZKSCAN1, C7orf38, 
CLDN15, ZNF789, RASA4, ZNF498, 
ZNF789, ARMC10, POLR2J2, ZNHIT1, 
ZCWPW1, MGC40499

7q32-7q35 gain 130270796 143852574 55 TRIM24, CNOT4, PTN, C7orf49, 
KIAA0738, LUC7L2

7q11.2 gain 71274704 76190020 50 GTF2IRD1, ABHD11, NSUN5, NSUN5B, 
NSUN5C, ELN, WBSCR22, TRIM73

1p36.2 gain 11098993 12351219 45 MFN2

1q31-1q32 gain 198714422 205087972 45 MDM4, NAV1, RBBP5, IPO9, CSRP1, 
KIF21B, PPP1R15B, NUCKS1, TIMM17A, 
SNRPE, KIF14

5q13 loss 67677068 70179512 45 TAF9, SERF1A, SERF1B, SMN1, TAF9, 
GUSBP1

7p14-7p13 gain 43272694 45048103 45 CAMK2B, POLR2J4

7p22-7p21 gain 1081263 7947777 45 WIPI2, LOC222967, FTSJ2, MICALL2

1q21-1q22 gain 146342686 156056126 41 MCL1, CLK2, PRCC, ARHGEF11, HDGF, 
GPATCH4, JTB, MSTO1, FLAD1, CRTC2, 
SMG5, ADAR, MRPL24, KRTCAP2, 
SETDB1, C1orf2, SF3B4, PRPF3, 
SEMA4A, MTX1, ISG20L2, SNAPAP, 
ENSA, PLEKHO1, ISG20L2, DAP3, 
GON4L, C1orf85, APOA1BP, C1orf43, 
RUSC1, UBAP2L, CDC42SE1, MAPBPIP, 
SCAMP3, C1orf77, PYGO2, PSMD4, 
GATAD2B, PEAR1, FDPS, VPS72, 
MRPL9, IQGAP3, DENND4B, TNFAIP8L2, 
UBQLN4, SLC39A1, TPM3, PRUNE

7p15-7p14 gain 24659178 37825117 41 TAX1BP1, HOXA10, CREB5, HERPUD2, 
JAZF1, LOC441212, HNRPA2B1 ,C7orf41, 
LOC401320, KBTBD2

9p21 loss 20351121 22479496 41 CDKN2A, MTAP, LOC554202

17q21 gain 39091531 44639847 41 FMNL1, NMT1, NPEPPS, SKAP1, DBF4B, 
LOC641522, KPNB1, NFE2L1, ARL17P1, 
GPATCH8, LRRC37A2, TMUB2, ARL17, 
CCDC43, MAPT, EFTUD2, OSBPL7, 
ACBD4
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8q24.3 gain 142790550 telomere 36 HSF1, RECQL4, PLEC1, PPP1R16A, NFK-
BIL2, LRRC14, SCRIB, CPSF1, SIAHBP1, 
CPSF1, RPL8, GPAA1, MGC70857, 
GPR172A, ZNF7, GPR172A, C8orf33, 
FBXL6, BOP1, GPAA1, PYCRL, EXOSC4, 
C8orf30A, CYHR1, SHARPIN, ZNF707, 
JRK, CYC1, EEF1D, KIFC2, MAF1, 
COMMD5

13q14-13q31 loss 42301191 83766576 36 RB1, KLF12, TPT1, LMO7, HUWE1, 
RBM26, UTP14C, FNDC3A, DNAJC15, 
RNASEH2B, NDFIP2, INTS6, RPL13A, 
PTMA, COG3, DLEU1

17q25 gain 69639765 telomere 36 CBX4, RECQL5, HGS, SPHK1, MIF4GD, 
B3GNTL1, UBE2O, NT5C, LOC124512, 
FLJ21865, SAP30BP, NUP85, C17orf56, 
NPLOC4, ACTG1, RAB40B, TRIM65, 
C17orf70, H3F3B, MIF4GD, FLJ30594, 
KIAA0195, PRPSAP1, MXRA7, FLJ35220, 
EXOC7, MFSD11, WDR45L, RHBDF2, 
TSEN54, TIMP2, TNRC6C

8q24.2 gain 132799581 137773461 32 ST3GAL1, PHF20L1, KIAA0143

9p13-9p11.1 loss 39990599 42614658 32 (no genes with CNA-associated expres-
sion)

9p21 loss 22579721 24877888 32 (no genes with CNA-associated expres-
sion)

9q21 loss 78213759 80495074 32 CEP78, VPS13A

9q21 loss 79930787 84622895 32 (no genes with CNA-associated expres-
sion)

9q21 loss 84783002 86180561 32 uBQLN1, C9orf103, GKAP1, LOC389765

9q22-9q31 loss 101410218 105214273 32 TEX10, MRPL50, TXNDC4, RNF20, 
ZNF189

17q22-17q23 gain 48664511 59626448 32 SuPT4H1, DHX40, PTRH2, AKAP1, 
FLJ44342, TLK2, RPS6KB1, TUBD1, 
HEATR6, C17orf71, INTS2, MRPS23, 
COIL, GDPD1, METTL2A, DDX42, FTSJ3, 
LOC51136, ICAM2, MKS1, MSI2

Genes reported as cancer-related according to the EBI cancer gene database are shown in bold; the 
remaining genes are ordered according to statistical significance of differential expression. mRNA 
expression levels of genes underlined are determined by qPCR
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Figure 4  Chromosomal alterations associated with lower disease-specific survival rates in MF
Patients were divided based on the loss of a MCR on 9p21, or gain of MCRs on 8q24.3 or gain of 1q21-
22. Actuarial survival rates were calculated from the date of biopsy using the Kaplan-Meier technique. 
The log-rank test was used to analyze differences between survival rates. 

Figure 3  Relative mRNA expression in MF tumor samples as measured by qPCR
Data (mean +/- S.E.M) of 3 independent qPCR experiments are depicted relative to the ref-
erence genes RPS11 and U1A. Grey bars: qPCR results using cDNA synthesized from RNA 
isolated from samples with no CNAs. Black bars: qPCR results from samples with copy 
number gains. White bars: qPCR results from samples with copy number loss. Asterisks 
indicate statistically significant differential expression (P<0.05).
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Discussion

Our study provides a genome-wide analysis of recurrent chromosomal alterations in a 

panel of 22 well-defined tumor-stage MF cases. A primary goal of this investigation was 

to compare the patterns of chromosomal alterations observed in MF with those recently 

identified in Sz. Both conditions are malignancies originating from activated, skin-homing, 

memory T cells with cerebriform nuclei. In 1975, based on the morphological and 

immunophenotypical similarities between MF and Sz and related lymphoid malignancies, 

Lutzner and colleagues proposed the encompassing term CTCL for this group of diseases.38 

In many subsequent studies on CTCL no distinction has been made between MF and Sz. 

In reviews and textbooks, Sz is often designated as a leukemic phase or variant of MF, 

suggesting that differences between both conditions are mainly a matter of stage of 

disease.13,16-20 However, Sz presents with erythroderma, lymph node and blood involvement 

and has a poor prognosis, whereas MF generally behaves as a low-grade lymphoma with 

limited, skin-confined disease for years or decades.1,2 There are also histopathological 

differences between both conditions. Whereas infiltration of the epidermal basal layers is 

the hallmark of early MF, in Sz the atypical cells are predominantly found around the dermal 

blood vessels, although a variable degree of epidermotropism may be present as well.39 

Consistent with its leukemic nature, involved lymph nodes in Sz are typically overrun by 

a monotonous infiltrate of Sézary cells, whereas dermatopathic lymphadenopathy as seen 

in early involvement by MF tumor cells is often absent.40 MF and Sz have been reported 

to share several chromosomal alterations, analyzed using conventional CGH, such as loss 

of chromosomal regions on 1p, 10q and 17p.4,5 However, in line with our findings also 

differences in CNA patterns of MF and Sz, including a higher frequency of gain of 17q in 

Sz have been recognized.18 More recently, expression of CDO1 and DNM3, genes 

specifically expressed in Sz, could not be demonstrated in MF.41 

The mapping resolution of the array-based CGH method applied in this study allows a 

more detailed definition of chromosomal alterations than obtained by FISH and 

conventional CGH, used in previous studies of CTCL. The detailed genomic profiles of 

chromosomal imbalances of MF tumor cells displayed marked differences with those 

previously identified in Sz cells using identical methods. Numerical chromosomal 

alterations most frequently observed in MF include gain of 7q21-36, 1p36.2 and loss of 

5q13 and 9p21, whereas Sz is characterized by gain of 17q22-25, 8q22-24 and loss of 

17p13 and 10q25. Amplification of the locus containing the MYC gene on 8q24, observed 

in 75% of patients with Sz and associated with increased expression of this oncogenic 

transcription factor, was detected in only a minority of patients with MF.15 Notably, several 

aberrations commonly observed in MF are not or infrequently seen in Sz, arguing against 
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the notion that Sz represents an advanced stage of MF. Gain or loss of chromosomal 

regions may be associated with altered expression of resident oncogenes or tumor 

suppressor genes and thereby have a causative role in the development and progression 

of lymphoma. The pattern of chromosomal alterations, in particular highly recurrent focal 

gains and losses, is therefore often characteristic of a certain type of malignancy and can 

be informative of its pathogenesis. Although the chromosomal alterations in MF and Sz 

show heterogeneity within the group, the overall patterns clearly differ. This strongly 

suggests that the molecular pathogenesis of these CTCLs follows distinct pathways. By 

implication, patients with these two CTCL subtypes may respond differently to treatment 

regimens. In current clinical trials patients with MF and Sz are often included collectively 

as CTCL or MF/Sz.42 It is conceivable that the efficacy of experimental therapeutics, such 

as inhibitors of STAT or MYC transcription factors, would differ considerably between MF 

and Sz. Therefore patients with MF and Sz should be entered in clinical trials separately 

or results of such trials should at least be stratified according to CTCL type.

The molecular genetic alterations underlying the development and progression of MF are 

largely unresolved. The second goal of this study was to identify pathobiologically relevant 

genes in MF by evaluating the expression of genes residing in smallest overlapping 

chromosomal regions (MCRs) with highly recurrent CNA. A subset of the 253 genes that 

demonstrated CNA-associated dysregulated expression is known to be cancer-related, 

and several other genes have been reported to have essential roles in T-cell activation 

and proliferation. By integrating array-based genetic maps with gene expression signatures 

derived from the same MF tumor biopsy samples, we thus identified several oncogenes 

and tumor suppressor genes, including RB1, CDKN2A, MCL1 and MDMX as targets of 

gain and loss in MF. Interestingly, the most frequently observed CNA, gain of a MCR on 

chromosome 7q36 affecting 59% of MF patients, was associated with increased 

expression of the FASTK gene. The protein encoded by this gene is a member of the 

serine/threonine protein kinase family and is normally expressed in human T cells.31 

Although some earlier reports suggested that FASTK may be involved in the induction of 

Fas-induced apoptosis, most evidence indicates that this protein has anti-apoptotic 

properties.30 FASTK attenuates apoptosis induced by UV-radiation and FAS ligation, in part 

by increasing expression of XIAP and cIAP1. Short interfering RNA(siRNA)-mediated 

interference with FASTK expression increases apoptosis in human cells.30 Moreover, 

FASTK regulates splicing of several genes, including FGFR2 and FAS.43 Previously, our 

group has noted aberrant splicing of the FAS gene in MF.8 It is conceivable that FASTK 

dysregulation may be related to FAS splicing alterations in MF tumor cells, and this 

possible relationship may be a subject of further study. Consistent with previous reports, 

we found recurrent loss of 9p21 and 13q14 and diminished expression of the CDKN2A 
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and RB1 tumor suppressor genes residing in these loci.6,34,35 In a subset of MF patients 

with loss of the RB1 locus protein, expression of this essential cell cycle regulator was 

diminished. In a study by Zhang and colleagues, the RB1 protein was found to be 

functionally inactivated in a subset of patients with advanced MF through 

hyperphosphorylation.35 In addition, the DLEU1 gene is located on 13q14.3 and shows 

reduced expression. The promoter of DLEU1 displays frequent hypermethylation in MF, 

suggesting that genetic and epigenetic mechanisms collectively act to silence this gene.33 

In addition to RB1 and DLEU1, the 13q14 region lost in 36% of MF patients, also contains 

the miR-15a and miR-16-1 gene cluster. These microRNA genes have tumor suppressive 

properties as their expression inhibits translation of the anti-apoptotic protein BCL2. Loss 

of 13q14.3 and concomitant reduced expression of these tumor suppressive microRNA 

genes, resulting in elevated protein levels of BCL2, is a frequent event in chronic 

lymphocytic leukemia.44 Consistently, malignant T cells in MF skin lesions have been 

reported to demonstrate high expression of BCL2.45 

Finally, we attempted to evaluate the prognostic relevance of registered recurrent CNAs. 

Patients with MF who demonstrated loss of the MCR on 9p21, gain 8q24.3 or gain of 

1q21-1q22 appeared to have significantly lower survival rates than patients whose tumor 

cells were not affected by these CNAs. The chromosomal region on 9p21 harbors the 

CDKN2A tumor suppressor gene, which showed reduced expression in patients with 

loss of this region. Loss of 9p21 and reduced expression of p16 encoded by CDKN2A 

have been found to predict an unfavorable prognosis in various haematopoietic 

malignancies.36,37 Consistent with clinical observations, inactivating mutation in CDKN2A 

promote tumorigenesis and resistance to chemotherapy in experimental lymphoma in 

murine model systems. As in experimental lymphoma, treatment resistance in MF patients 

whose tumor cells are affected by loss of CDKN2A may be explained by defects in the 

induction of apoptosis and senescence in response to therapy. The locus with prognostic 

significance on 8q24.3 contains 28 genes with gain-associated increased expression, 

including the HSF1 gene. This heat shock response regulator has been found to be a 

determinant of chemotherapeutic efficacy in malignancy.46 Gain of chromosome 8q was 

previously identified as a hallmark of progressive MF associated with shorter survival.47,48 

Gain of the chromosomal region on 1q21-22 is associated with significantly higher 

expression of a number of genes including the MCL1 gene. This anti-apoptotic gene was 

recently observed to be part of a gene cluster up-regulated in patients with advanced 

CTCL.49 Protein levels of MCL1 have been demonstrated to be elevated in advanced skin 

lesions of patients with CTCL.50 It is tempting to speculate that dysregulated expression 

of this gene influences the disease course of patients with MF, since MCL1 has been 

shown to modulate glucocorticoid resistance in lymphoid malignant cells.51
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Interestingly, it was reported in that study that the mTOR-inhibitor rapamycin can modulate 

MCL1 activity and thereby restore glucocorticoid sensitivity, suggesting that addition of 

rapamycin to chemotherapy of patients with treatment-refractory MF, especially in case 

of 1q21-22 gain, could potentially enhance therapeutic efficacy. Whereas our study and 

those of others5,47,48 have focused on genomic alterations associated with an adverse 

prognosis, Shin and colleagues aimed to identify gene expression patterns marking 

patients with aggressive disease.49 Apart from MCL1, no other candidate genes detected 

in their study as being associated with aggressive CTCL, were found to reside in the 3 

loci with prognostic significance we identified. The observed associations of specific 

chromosomal alterations and gene expression patterns with prognosis require further 

investigation in independent prospective studies.

In conclusion, we have attempted to provide a comprehensive characterization of recurrent 

chromosomal alterations of MF, a thus far poorly understood malignancy. The application 

of array-based CGH has revealed important molecular distinctions between MF and Sz 

not previously appreciated. These findings may have consequences not only for our 

understanding of the pathogenesis of these CTCLs, but also clinically for the design of 

trials to evaluate the efficacy of novel treatments. The integration of high-resolution copy 

number and gene expression data has afforded relevant novel insights into molecular 

genetic alterations underlying MF. Over expression of FASTK, MCL1, SKAP1 associated 

with chromosomal gain and reduced expression of CDKN2A, RB1 and DLEU1 related to 

loss are important candidate oncogenic events in MF. Elucidation of the biological role of 

the identified candidate oncogenes and tumor suppressor genes in the development and 

progression of MF should be the focus of further studies. 
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Abstract 

Mycosis fungoides (MF) is the most common type of primary cutaneous T-cell lymphoma 

(CTCL). To identify a molecular signature characteristic of MF tumor stage, we used a 

bioinformatic approach involving meta-analysis of publically available gene expression 

datasets combined with previously generated gene expression data. Results for a selection 

of genes were further refined and validated by quantitative PCR and inclusion of additional 

controls. With this approach, we identified a profile specific for MF tumor stage consisting 

of 989 aberrantly expressed genes, the majority (718 genes) statistically significantly more 

expressed in MF compared to normal skin, inflamed skin and normal T cells. As expected, 

the signature contains genes reflecting the highly proliferative character of this T-cell 

malignancy, including altered expression of cell cycle and kinetochore regulators. We 

uncovered details of the immunophenotype suggesting that MF originates from IL-32 

producing cells and identified previously unreported therapeutic targets and/or diagnostic 

markers, for example, GTSF1 and TRIP13. Loss of expression of the NF-κB inhibitor, 

NFKBIZ, may in part explain the enhanced activity of NF-κB, which is a hallmark of MF 

and other CTCLs. 
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Introduction

Mycosis fungoides (MF) is the most common type of primary cutaneous T-cell lymphoma 

(CTCL), consisting of skin-homing CD45RO+ effector memory T cells. MF patients present 

with an evolution of patches, plaques and tumors. Stages are related to life expectancy; 

tumor-stage MF has an unfavorable prognosis with a 10-year survival of approximately 

40%.1,2 Although for MF numerous genetic and genomic studies are described, ranging 

from investigating individual gene(mutation)s3,4 to genome-wide (array-based) analyses,5-8 

the molecular (patho)biology of the disease is still poorly understood. 

Reconstruction of (aberrant) gene expression patterns by comparing gene expression 

profiles from MF tumor biopsies with normal counterparts offers the possibility to identify 

pathobiologically relevant genes in MF tumor cells. However a genuine comparison of 

MF tumor cells with normal (skin-homing) T cells is difficult to achieve, because skin 

biopsies of MF contain tumor T cells, but also an admixed infiltrate of immune cells and 

resident cells (keratinocytes, fibroblasts, endothelial cells, etc). Previous gene expression 

studies on MF and other cutaneous lymphoma tried to circumvent this drawback by either 

comparing different types of lymphoma,9,10 different stages of the disease,11 or analyzing 

copy number effect on mRNA expression.8 One previous study that directly compared 

MF with benign counterparts identified 27 genes implicated in tumorigenesis, but in this 

study the expression of only a limited number of genes was analyzed.12 

In this study, we performed a meta-analysis on raw gene expression data available in 

public repositories selecting high quality datasets from normal T-cell subsets, skin, inflamed 

skin, and tumor-stage MF (T-MF), generated with commercially available Genechips. 

Subsequently these datasets were corrected for inaccurate Gene annotations.13 We took 

advantage of recent developments in bioinformatics and subjected the data sets to a 

robust statistical analysis comparing expression data of MF tumor samples with normal 

T-cell subsets and normal skin, as well as inflamed skin from experimentally induced 

allergic contact dermatitis simultaneously. Finally, we confirmed altered expression of 

selected genes by reverse transcriptase-coupled quantitative (RT-q)PCR in a series of 

controls including benign T-cell dermatoses and early-stage MF. Using this approach, we 

identified a gene expression pattern characteristic for MF tumor stage providing more 

insight in the pathogenesis of this lymphoma, a description of its (immuno)phenotype 

and the discovery of previously unreported putative diagnostic markers and therapeutic 

targets. 
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Material & Methods

In silico analysis
We designed a strategy to identify the molecular signature of MF tumor stage (the 

workflow is shown in Figure 1). All data analyses were performed in R using packages 

present in Bioconductor (www.bioconductor.org). The Gene expression omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress (http://www.ebi.ac.uk/microarray-

as/ae/) databases were screened for datasets, generated with Affymetrix U133 version 

2 Gene chips (GPL570) in combination with keywords skin and/or (activated) T cells 

or T-cell lymphoma, allowing comparison with gene expression profiles of T-MF 

previously generated.8 In addition, gene expression data of two additional MF tumor 

biopsies from our lab (both processed in parallel with previous MF samples) and the 

CTCL cell lines Seax, HuT-78 and MyLa (all cultured under standard conditions) were 

included in the analysis. 

The quality of all datasets were checked using a series of QC metrics recommended 

by Affymetrix (using the R-script described by Heber and Sick14) in order to confirm that 

arrays were hybridized correctly, that sample quality was acceptable and batches of 

datasets could reliable be compared in a meta analysis. Data sets in which more than 

30% of the individual samples required exclusion solely based on RNA quality, were 

discarded entirely. Next, raw gene expression data from Affymetrix CEL files passing 

all QC controls were reannotated according to the Entrez genome annotation using 

CDF-files13 followed by GC-RMA (robust multiarray averaging) normalization. Samples 

passing QC which were included in the final normalization are summarized in 

Supplementary Table S1. For subsequent analysis, all T-cell expression data from healthy 

volunteers were grouped to create a reference of normal T cells. Gene expression 

profiles of skin biopsies were clustered and labeled according to the supplementary 

information given in GEO or ArrayExpress or accompanying papers15,16 (Table 1), resulting 

in groups labeled as normal skin or inflamed skin (Pedersen data) or normal skin, 

uninvolved skin psoriasis and lesional skin psoriasis (Yao data). Differentially expressed 

(DE) genes between groups and MF tumor stage were identified with LIMMA17 using 

a log 2 fold change ≥ 1 as threshold and were considered statistically significant at an 

adjusted P-value of < 0.01 (using Benjamini-Hochberg multiple testing correction). 

Subsequently, the “AND” operator18 was used to perform a comparison between the 

lists of DE genes from the individual comparisons to identify consistently up- or down-

regulated transcripts in MF. This comparison resulting in a list of genes enriched or 

depleted in MF. Gene enrichment analyses of DE genes were performed with PPI spider, 

DAVID, Panther and Webgestalt.19-23
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Reverse transcription-coupled quantitative PCR (RT-qPCR)
Array results were validated by RT-qPCR on RNA isolated from fresh-frozen skin biopsies 

of 21 MF tumors, 6 chronic discoid lupus erythematosus (CDLE) lesions, 8 early-stage 

MF (IA/B) patients, 4 patients with chronic eczematous dermatitis (CED), normal skin 

(n=6), freshly isolated CD4+ T cells of 6 healthy donors as described previously24 and MyLa 

cells. cDNA was synthesized of 1 μg total RNA, after treatment with RQ1 DNase I 

(Promega, Madison, WI), using IScript reverse transcriptase (Bio-Rad, Veenendaal, the 

Netherlands), oligo(dT)12-18, and random hexamer priming (Bio-Rad) in a final volume of 20 

μl. RT-qPCR was performed with the MyIQ Detection System and the SYBR Green 

Supermix (Bio-Rad).

Figure 1a Workflow of the strategy used to identify the 
molecular signature of MF tumor stage
1) Data sets were obtained by searching for Affymetrix 
U133 vs 2 Gene chip (GPL570). 2) The quality of the data-
sets was checked using a series of QC metrics. 3) Gene 
expression data were reannotated according to the Entrez 
genome annotation using CDF-files. 4) GC-RMA normali-
zation was applied. 5) Differentially expressed (DE) genes 
were identified with LIMMA using a log 2 fold change ≥ 
1 as a threshold, an adjusted P-value of < 0.01 and the 
“AND” operator to identify consistently up- or down-regu-
lated genes. 6) Analysis of DE genes. 7) RT-qPCR was used 
to validate differential expression in additional samples. 
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Primers were intron-spanning designed with Primer3 (http://frodo.wi.mit.edu/primer3/), 

and tested in silico with Beacon Designer (Premier Biosoft, Palo Alto, CA). Before use all 

primers were tested experimentally, assessing the slope, Efficiency and R2 value of 

dilution series using cDNA synthesized from human reference RNA (Stratagene Europe, 

Amsterdam, The Netherlands) as a template. Primer sequences are listed in Supplementary 

Table S5. The reference gene set was identified by testing several optimized primers on 

all samples included in the validation experiment and using GeNorm as earlier described.25 

The set of ARF5, EIF2C4, TMEM87a and ERCC3 was identified as the best option and 

further used as the reference gene set. The cycle parameters for transcripts of interest 

and for the reference genes used for normalization were as followed: denaturing for 15 

s at 97 ˚C; annealing and extension for 20 s at 60 ˚C, for 40 cycles. The nonparametric 

Mann-Whitney U-test (one tailed; Graphpad Prism 5, GraphPad Software Inc., La Jolla, 

CA) was used for statistical evaluation of the RT-qPCR results.

Methylation-specific Melting-Curve Analysis (MS-MCA) PCR
For the bisulfite conversion by the EZ DNA methylation kit (Zymo Research, Orange, CA, 

USA), 1 μg genomic DNA (isolated from T-MF skin biopsies8) was used. Primers 

(Supplementary Table S5) were designed to anneal to the bisulfite-sensitive, unmethylated 

strand and the bisulfite-resistant, methylated strand. Under these conditions, both 

Table 1  Samples included in the comparative analyses

group subtype reference #samples 
(passing QC)

MF MF tumor skin biopsy van Doorn et al. 20

Normal T cells CD3+ T cells Mosig et al. 12

CD4+ T cells Piccaluga et al. 2

CD8+ T cells Piccaluga et al. 4

Resting CD3+ T cells Piccaluga et al. 5

Activated CD3+ T cells Piccaluga et al. 5

CD4+ T cells Ledieu et al. 7

CD8+ T cells Ledieu et al. 7

Skin control skin biopsies + ACD with no clinical signs Pedersen et al. 16

Inflamed skin ACD skin biopsy (clinical signs) Pedersen et al. 9

Skin normal skin biopsy Yao et al. 17

Psoriasis uninvolved  skin psoriasis  biopsy Yao et al. 27

Psoriasis lesional skin psoriasis biopsy Yao et al. 31

Abbreviations: ACD, allergic contact dermatitis; MF, mycosis fungoides; QC, quality control.
Database numbers for these (and other) studies are provided in Supplementary Tabel S1 online.
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methylated and non-methylated DNA will be amplified. MS-MCA PCR reactions were 

performed as described earlier26 with the MyIQ Detection System and the SYBR Green 

Supermix (Bio-Rad) in a 25 μl reaction volume. Cycle parameters for all analyzed CpG 

islands were as followed: denaturing at 96 ˚C for 30 s, annealing at temperatures varying 

from 65 ˚C to 58 ˚C depending on the primer set used for 40 s and extension at 72 ˚C for 

40 s for eight cycles; followed by denaturing for 30 s, annealing at 60 ˚C for 40 s and 

extension at 72 ˚C for 40 s for 35 cycles. DNA melting curves were acquired directly after 

amplification by measuring the fluorescence of SYBR Green Supermix (Bio-Rad) during 

a linear temperature transition from 65 ˚C to 94.8 ˚C at 0.2 ˚C /s. 

Sensitivity and specificity of the MS-MCA was validated for all primer sets using (mixtures 

of) methylated human DNA (Chemicon, Hampshire, UK) or unmethylated human semen 

DNA as input. Approval for these studies was obtained from the institutional review board 

of the Leiden University Medical Center. Informed consent was provided according to 

the Declaration of Helsinki Principles.

Results 

In silico analysis: identification of differentially expressed genes

Screening and filtering strategy for the identification of MF tumor-specific genes

To identify MF tumor genes we designed a strategy (the workflow is shown in Figure 1a) 

eventually generating a list of DE genes characteristic for MF tumor stage. First, gene 

expression data sets were obtained by searching for Affymetrix U133 plus 2.0 Gene chip 

(designated as GPL570 in the Gene Expression Omnibus, GEO) in combination with the 

keywords skin and/or (activated) T cells and/or T-cell lymphoma, revealing approximately 

15 suitable hits. Downloaded CEL files and previously generated expression profiles 

(amongst which 22 T-MF8) were subjected to the Affymetrix QC metrics and individual 

samples passing the control (Table 1 and Supplementary Table S1) were included for 

further analyses. Next, we compared gene expression profiles of T-MF one-to-one with 

skin or (reference) T cells. Not surprisingly, comparing MF tumor samples with skin (or 

inflamed skin only) revealed a large number of typical T-cell (related) genes, while 

comparison between MF tumor samples and T cells produced a long list of DE genes 

indicative for skin (results not shown). To identify genes that are specifically enriched or 

depleted in T-MF (“unique genes”) we decided to perform a comparison between the 

lists of DE genes, identified by the pairwise comparisons, using an “AND” operator18 and 

to look for genes that were consistently up- or down-regulated. To that end the T-MF 
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samples (n=20) were compared with the Pedersen data of skin (clinically normal skin, 

n=16) AND inflamed skin (n=9) AND all reference T cells (n=42). Because of the limited 

group sizes, we restricted the number of false positives by applying multiple testing 

correction (Benjamini-Hochberg) at stringent settings (false discovery rate < 0.01). 

This overlap analysis resulted in a list of 989 genes, of which 271 were down-regulated 

and 718 were over expressed in T-MF (The top lists are given in Table 2a and b, while a 

full searchable table is available in the supplementary information Table S2). This list was 

used for detailed analysis described below. To further validate our approach we also carried 

out a similar comparison for T-MF, T cells and the data set from Yao et al.,16 containing 

normal skin, uninvolved and lesional skin from psoriasis patients. This analysis showed 

that the majority of genes (but not all) found to be characteristic for T-MF are also 

consistently and differentially expressed compared to these datasets (596 up and 195 

down; results are provided as supplementary information Table S3).

Systematic and integrative analysis of differentially expressed genes

Gene-annotation enrichment analysis

Next, Internet-based gene-annotation category enrichment analysis programs (PPI spider, 

DAVID, Panther, Webgestalt)19-23 were applied to gain further insight into the (clinical) 

relevance of the MF DE genes and gave all similar results. E.g. using PPI spider 

classification (Supplementary Table S4a-c), we observed that genes associated with 

“mitosis”, “cell division”, “cell cycle”, “spindle” and “spindle organization” are 

Figure 1b Venn diagram illustrating the number of genes that show altered expression in MF tu-
mor stage compared to normal skin, (NS) inflamed skin (IS) and T cells. Values indicate the number 
of genes significantly up-regulated (left) or down-regulated (right). The intersecting regions represent 
number of genes that are common to the specific comparisons.
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overrepresented in the list of DE MF genes, which is in line with the malignant (proliferative) 

phenotype of tumor-stage MF. The enrichment for genes involved in “immune response” 

is consistent with the T-cell origin of MF. Closer inspection of the “immunity genes” in 

Supplementary Table S4 revealed over expression of several interferon-responsive genes 

(IFI27, IFI6, IFI30, IFI35) interleukin/chemokines genes (IL10, IL15, IL26, IL32, CCL18, 

CXCL9, -10, -11 and -13) and receptors (IL13RA2, IL15RA, CCR1, -8 and -10), and down-

regulation of IL11RA. Functional annotation analysis for down-regulated genes identified 

a single category: RNA processing (Supplementary Table S4c). 

Comparison of molecular signatures

Comparison of the “T-MF signature” with the most recent Cancer Gene census list 

(updated Nov 15 2011; first described by Futreal et al.27) identified 32 bona fide cancer 

genes (see Supplementary Table S5). We also determined whether  differential expression 

of genes could be related to known genomic alterations. However, none of the “top 30” 

differentially expressed genes (Table 2a and b) resides within previously described minimal 

common regions of genetic imbalances.8 

Promoter hypermethylation
We investigated the promoter sites of down-regulated genes for CpG islands using the 

UCSC genome browser (http://genome.ucsc.edu/) and found CpG islands present in the 

promoter start sites in more than 70% of the down-regulated genes, suggesting a possible 

role of promoter hypermethylation. Subsequently, bisulfite conversion followed by PCR and 

melt curve analysis was used to test CpG islands for methylation.26,28 Bisulfite-treated DNA 

isolated from tumor biopsies of MF patients (n=22) and CD4+ T-cell controls (n=6) were 

used as input and CpG islands in the promoter regions of NFKBIZ, ATXN7 and MXI1 were 

amplified. Primers were developed in such a way that both methylated and unmethylated 

sequences are amplified using the same bisulfite-treated DNA as PCR template. In none 

of the resulting melting curves analyses of PCR products (see Supplementary Figure S1) 

could methylation be demonstrated, although all contained PCR products representing 

unmethylated DNA. We therefore concluded that promoter hypermethylation does not play 

a role in down-regulation of these genes in MF tumor stage. 

Verification of MF DE genes using qPCR
Differential expression for a selection of genes since material is limited) was verified using 

RT-qPCR (results summarized in Figure 2; P-values from statistical evaluation (Mann-

Whitney) can be found in Supplementary Table S6). We included mRNA isolated from 

skin biopsies of patients with chronic discoid lupus erythematosus (CDLE), early-stage 
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MF (IA/B), chronic eczematous dermatitis, normal skin and freshly isolated CD4+ T cells 

of healthy donors as additional samples. Instead of solely confirming the highest 

differences, we focused on genes that represent different classes, which might give 

further insights into the disease and/or previously unreported putative targets for diagnosis/

therapy. We noticed that the array comparison indicated dysregulation of multiple genes 

involved in the miRNA biogenesis/machinery and aberrant expression of proteins involved 

in miRNA processing has been observed in T-cell lymphoma including Sézary syndrome.29 

We therefore included also RNASEN, DICER, EIF2C1, EIF2C2, EIF2C3 and EIF2C4 in the 

RT-qPCR validation. GeNorm analysis 25 revealed that EIF2C4 was stably expressed in all 

samples and therefore in addition to ARF5, TMEM87a and ERCC3 (See Materials and 

Methods) used as a reference gene. Initial experiments could not detect any significant 

differences in DICER and EIF2C3 expression between samples and controls; therefore, 

these genes were excluded from subsequent analysis. With RT-qPCR down-regulation 

of ATXN7, ZBTB20, NFKBIZ, in T-MF in comparison to CD4+ T cells and normal skin could 

be affirmed. ZBTB20 was also significantly less expressed in T-MF compared to CLE and 

early-stage MF, whereas NFKBIZ is lower in T-MF compared to all controls. Expression 

of ATXN7, however, was higher in T-MF versus CED and early-stage MF. 

We observed that the expression of RNASEN and EIF2C1 in T-MF is not different from 

control CD4+ T cells, but RNASEN is higher in T-MF compared to early-stage MF and CED, 

whereas that of EIF2C1 is lower in T-MF compared to CLE. EIF2C2 expression in T-MF 

was lower in CD4+ T cells and CED, but not different from early-stage MF, CED and normal 

skin. With RT-qPCR the over expression of CXCL13, TRIP13, GSTF1 and IL32, in T-MF 

compared to freshly isolated CD4+ T cells and normal skin was confirmed (Figure 2). 

CXCL13, a marker for follicular helper T cells, showed variable expression among all 

biopsies but is over expressed in T-MF versus early-stage MF. TRIP13, a gene encoding 

a key protein for chromosome development, is highly up-regulated in T-MF versus control 

biopsies, whereas IL32, a gene belonging to the immune cluster, and the gene encoding 

the gametocyte specific protein, GTSF1 (gametocyte specific factor 1), are nearly 

exclusively expressed in T-MF patients. 

Figure 2 Relative mRNA expression levels for a selection of genes in normal skin (NS), CD4+ T cells,  
cutaneous discoid lupus erythematosus (CDLE), chronic eczematous dermatitis (CED), early-stage 
MF (MF, IA/B) MF tumor (MF, T) samples and the cell line MyLa. The mRNA expression levels were 
measured by RT-qPCR and calculated relative to ARF5, EIF2C4, TMEM87a and ERCC3, used as a refer-
ence gene set and depicted for individual samples as dots. The median and Interquartile range for each 
sample and gene under study are given. Summary of statistical evaluation (Mann Whitney U-test) de-
notes relative expression of gene in MF tumor versus sample group. P-values: * = <0.05, **= < 0.01, *** 
= <0.001, full data are provided as a Supplementary Table (S6). NC = No change, NA = Mann-Whitney not 
applicable since gene is not expressed in this group resulting in ex aequo values.
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Table 2  Top lists (30) of genes differentially expressed in MF versus NS and IS and T cells: ranked 
on (a) log fold change MF versus IS (in bold) and (b) log fold change MF versus T cells (in bold)
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TAOK1 57551 -5,30 -5,20 -4,26 ADAMDEC1 27299 6,93 7,20 6,72

PSAPL1 768239 -4,56 -4,77 -1,00 IL32 9235 7,97 7,12 3,20

NR1D2 9975 -5,31 -4,55 -5,46 GTSF1 121355 6,64 6,65 4,98

ZBTB20 26137 -4,72 -4,25 -3,66 CXCL13 10563 6,44 6,50 4,58

ATXN7 6314 -3,24 -4,13 -5,45 RRM2 6241 6,92 6,21 4,95

UGCG 7357 -3,70 -3,82 -3,28 PTPRCAP 5790 6,86 6,04 1,09

EPHA4 2043 -3,68 -3,68 -2,66 CXCL9 4283 5,83 5,81 8,22

KIAA0754 643314 -2,99 -3,65 -3,02 SPP1 6696 5,81 5,69 6,22

SLC16A7 9194 -3,26 -3,61 -3,07 PTPN7 5778 6,61 5,43 1,15

MAST4 375449 -2,98 -3,59 -1,83 DLGAP5 9787 4,72 5,30 4,95

ABCA5 23461 -4,05 -3,50 -3,06 UBD 10537 5,77 5,22 7,99

ZBTB16 7704 -3,64 -3,47 -1,95 CKS2 1164 4,08 5,15 3,33

NKTR 4820 -3,26 -3,46 -3,86 CCL18 6362 7,36 5,04 8,57

NFKBIZ 64332 -2,75 -3,42 -4,07 MMP1 4312 5,79 4,81 5,74

RPS27P19 100129905 -2,62 -3,39 -5,51 CEP55 55165 4,73 4,77 4,52

DICER1 23405 -3,42 -3,36 -3,25 TMEM163 81615 4,68 4,68 4,17

ZBTB43 23099 -2,77 -3,26 -2,70 UBE2C 11065 4,96 4,66 5,79

MALAT1 378938 -2,48 -3,26 -2,75 IDO1 3620 4,17 4,57 3,99

IL6ST 3572 -3,18 -3,22 -2,64 HMMR 3161 4,17 4,55 4,27

ATP7A 538 -3,81 -3,17 -2,63 MAD2L1 4085 4,21 4,54 2,53

EIF2C2 27161 -2,83 -3,16 -3,82 PLA2G2D 26279 4,54 4,54 4,50

NSUN6 221078 -2,83 -3,12 -3,53 IQCG 84223 4,74 4,45 4,44

PLEKHA1 59338 -3,37 -3,11 -2,10 AURKB 9212 4,49 4,41 4,36

EIF2C3 192669 -2,78 -3,03 -2,74 TRIP13 9319 4,84 4,39 4,75

TCF7L2 6934 -3,93 -2,94 -1,35 ASF1B 55723 4,58 4,38 4,16

GSK3B 2932 -2,36 -2,92 -1,61 CDC20 991 4,56 4,38 5,20

DKFZP586I1420 222161 -2,57 -2,92 -2,71 CCNA2 890 4,50 4,37 4,34

PIK3R1 5295 -3,27 -2,91 -3,46 CXCL10 3627 4,95 4,31 6,79

C2orf40 84417 -3,79 -2,91 -1,34 CENPA 1058 3,97 4,30 4,22

LOC654340 654340 -2,70 -2,89 -2,89 APOBEC3B 9582 3,87 4,27 3,59

Abbreviations: HGNC, HUGO Gene Nomenclature Committee; IS, inflamed skin; MF, mycosis fungoides; NS, normal 
skin. Left, downregulated genes; right, upregulated genes.
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Table 2  Top lists (30) of genes differentially expressed in MF versus NS and IS and T cells: ranked on (a) 
log fold change MF versus IS (in bold) and (b) log fold change MF versus T cells (in bold)

B

Down in MF Log2 Fold change up in MF Log2 Fold change
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FGFBP2 83888 -3,62 -2,45 -5,93 CCL18 6362 7,36 5,04 8,57

RPS27P19 100129905 -2,62 -3,39 -5,51 KRT6C 286887 3,92 4,19 8,46

NR1D2 9975 -5,31 -4,55 -5,46 IFI27 3429 1,66 1,19 8,28

ATXN7 6314 -3,24 -4,13 -5,45 CXCL9 4283 5,83 5,81 8,22

TAOK1 57551 -5,30 -5,20 -4,26 UBD 10537 5,77 5,22 7,99

NFKBIZ 64332 -2,75 -3,42 -4,07 C1QC 714 2,70 2,61 7,59

GPRASP1 9737 -2,87 -1,76 -4,06 C1QA 712 2,54 2,91 7,54

LOC100132279 100132279 -1,61 -1,50 -4,00 C1QB 713 3,15 3,41 7,17

NKTR 4820 -3,26 -3,46 -3,86 CXCL10 3627 4,95 4,31 6,79

EIF2C2 27161 -2,83 -3,16 -3,82 ADAMDEC1 27299 6,93 7,20 6,72

ZNF331 55422 -1,38 -1,36 -3,82 APOE 348 1,01 1,00 6,64

UHMK1 127933 -2,32 -2,42 -3,76 VCAM1 7412 2,88 2,40 6,23

ZBTB20 26137 -4,72 -4,25 -3,66 SPP1 6696 5,81 5,69 6,22

RASA2 5922 -1,28 -1,50 -3,61 UBE2C 11065 4,96 4,66 5,79

BEX2 84707 -1,70 -1,07 -3,57 TMEM176B 28959 2,62 2,94 5,77

NSUN6 221078 -2,83 -3,12 -3,53 MMP1 4312 5,79 4,81 5,74

ZNF44 51710 -1,78 -1,99 -3,52 CTSZ 1522 4,59 4,18 5,22

PIK3R1 5295 -3,27 -2,91 -3,46 CDC20 991 4,56 4,38 5,20

NLRP1 22861 -1,19 -1,53 -3,45 MMP9 4318 5,29 3,74 5,11

C2orf82 389084 -1,82 -1,32 -3,44 GTSF1 121355 6,64 6,65 4,98

ADRB2 154 -2,84 -2,50 -3,36 CDC2 983 3,88 4,08 4,95

NR3C2 4306 -3,65 -2,61 -3,35 DLGAP5 9787 4,72 5,30 4,95

UGCG 7357 -3,70 -3,82 -3,28 RRM2 6241 6,92 6,21 4,95

FLJ10213 55096 -1,80 -2,37 -3,27 TOP2A 7153 3,61 3,94 4,84

DICER1 23405 -3,42 -3,36 -3,25 TYMP 1890 4,84 3,01 4,79

C5orf41 153222 -2,24 -1,37 -3,22 TRIP13 9319 4,84 4,39 4,75

LOC731484 731484 -1,44 -1,21 -3,20 MS4A4A 51338 1,60 2,37 4,67

ZCCHC2 54877 -1,96 -2,23 -3,13 BUB1B 701 3,68 3,96 4,61

LCOR 84458 -1,97 -1,91 -3,11 TYMS 7298 4,48 3,98 4,61

SLC16A7 9194 -3,26 -3,61 -3,07 SLAMF8 56833 3,78 3,12 4,60
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 Discussion 

The purpose of this study was to distill the gene expression profile of tumor-stage mycosis 

fungoides, aiming to gain more insight in the pathogenesis and the molecular basis of 

this disease. We performed a meta-analysis using high quality datasets generated with 

commercially available Genechips, a robust statistical analysis, and compared/studied 

expression data of T-MF with normal T-cell (subset)s, normal skin and inflamed skin (from 

experimentally induced allergic contact dermatitis or psoriasis). With this approach, we 

identified 989 genes significantly differentially expressed in T-MF, the majority of which 

(718) are higher expressed and 271 genes are lower expressed in T-MF. After submitting 

the extracted gene lists to Internet-based gene set enrichment tools, various classes of 

genes could be distinguished. The most apparent classes contained genes which can be 

considered as “usual suspects”, being hallmarks of proliferating cells such as genes 

involved in mitosis, cell division, cell cycle, including kinetochore formation, and DNA 

replication. From these clusters several genes and corresponding proteins were previously 

described in MF e.g. the over expression of MCM7 protein, a member of the 

minichromosome maintenance complex, in T-MF.30 Our results, however, suggest that 

not only MCM7, but also MCM2-6, ORCL1, CDC6 and CDC7 belonging to the MCM7 

complex are up-regulated. These results are in line with the notion that (collective) up-

regulation of kinetochore and proliferation genes can lead to aberrant chromosome 

separation, hence contribute to genomic instability in tumors including lymphoma.31 On 

the basis of our results, in particular the high expression of UBE2C, one of the key 

regulators of cell cycle completion and marker of grade of malignancy in lymphoma,32 

might play a central role in chromosomal instability as observed in MF.7,8 In analogy, the 

over expression of TRIP13 in T-MF (confirmed by RT-qPCR) is of interest. TRIP13 has a 

prominent role in chromosome recombination and chromosome structure development 

and mRNA over expression was recently correlated with prostate cancer progression.33

We noticed that a large proportion of down-regulated genes in T-MF contained CpG 

islands in their promoter region. As DNA methylation of tumor suppressor genes has 

been found in MF,34 we screened several of these genes for DNA promoter 

hypermethylation. For none of the genes tested however, promoter DNA hypermethylation 

could be confirmed, indicating that other mechanisms are responsible for down-regulation 

of these genes (e.g. aberrant expressed transcription factors or miRNA induced mRNA 

degradation).35 Among the down-regulated genes, in comparison with healthy CD4+ T 

cells and benign dermatoses, we also detected (and confirmed by RT-qPCR) decreased 

expression of Argonaute 2 (EIF2C2), a protein belonging to the RISC complex and an 

essential component of the miRNA machinery.36 As aberrant expression of other proteins 
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involved in miRNA processing has been observed in T-cell lymphoma including Sézary 

syndrome,29 we also determined expression of Argonaute 1, 3 and 4 (encoded by EIF2C1, 

EIF2C3 and EIF2C4), DICER and Drosha (RNASEN) using RT-qPCR. We could only 

demonstrate up-regulation of RNASEN in MF tumor stage compared to early-stage MF 

and down-regulation of EIF2C1 in T-MF in comparison with CDLE. When comparing the 

T-MF “signature” with signatures for CTCL11,37 we identified 9 genes in the so-called 

“cluster 1” that are shared with our study: IL26, PTPN7, TNFSF14, TNFSF4, CCR8, FUT7, 

CXCL13, LILRB4 and ST8SIA4 (all up-regulated in cluster 1). Comparison of the T-MF DE 

genes with the Cancer Gene census database27 revealed differential expression of 32 

bona fide cancer genes in T-MF. 

Immunophenotype

Our results show up-regulation of both interferon responsive genes (e.g. STAT138) and 

several interleukin/chemokines genes previously demonstrated to be up-regulated in MF 

tumor cells (IL1039, IL1540) or surrounding cells (CXCL9, 10 in keratinocytes41; CCL18 in 

macrophages42). Our analysis could not confirm elevated expression of CCL17.43 With 

regard to the cytokine receptors, high expression of IL15RA is in line with the reported 

sensitivity of MF cells for IL15,44 whereas expression of IL13RA2 is not yet described for 

(cutaneous) lymphoma. We noticed increased expression of the chemokine receptors 

CCR1, CCR8 and the skin-homing receptor CCR10. A role for CCR8 in localization of 

cutaneous memory T cells to the skin was proposed earlier45 though no data on CCR8 

(protein) expression in MF are not available yet. In contrast to FACS-based data of Campbell 

et al.,46 and Clark et al.,47 our gene expression data do not show up-regulation of CCR4 in 

T-MF. This might be explained by a high variable expression in either group (T-MF or 

controls) and consequently do not reach statistical significance. The gene expression data 

provide some evidence for the suggestion that MF is derived from Th17 cells48: increased 

IL-26 mRNA levels though increased expression of IL-17 is not detected, whereas genesis 

from Th22 (no increase in IL-22), Treg (no FoxP3 over expression) or T follicular helper 

cells (no up-regulation of ICOS, or PD1) is unlikely. Instead, we observed a large degree 

of heterogeneity in expression of another putative T-follicular helper marker, CXCL13, as 

well as increased expression of programmed cell death 1 ligand 2 (PD1L2). 

We did find high and consistent expression of IL-32 mRNA in all patients which was 

confirmed by RT-qPCR data showing expression of IL-32 in T-MF and MyLa, but not in 

early-stage MF, benign controls and normal skin. Although these findings suggest that 

MF might originate from “Th32” cells, it remains to be proven that the tumor T cell is the 

source of IL-32 in particular since recent studies described IL-32 production by fibroblasts 

(in rheumatoid synovium,49 keratinocytes50 and mast cells.51
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Therapeutic targets and diagnostic markers

Our data are in full agreement with the previously described aberrant expression of 

B-Lymphoid kinase (BLK) in MF, which enhances proliferation induced by constitutive 

activation of NF-κB52 and the described over expression of Pololike kinase 1 (PLK1).53 

Here we also demonstrate that NFKBIZ, a gene encoding a NF-κB signaling inhibitor, is 

down-regulated in MF (supported by RT-qPCR data) which might be an explanation for 

enhanced NF-κB activity, a hallmark of MF.54 In this respect, targeting of RMM2 (among 

the DE genes up-regulated in T-MF), which induces NF-κB -dependent MMP9 activation 

(up-regulated in T-MF and in agreement with published protein data55) and thereby 

enhances cellular invasiveness56 warrants further studies; several potent inhibitors for 

RRM2 protein were recently described which leads to growth suppression of tumors.57 

CD74 over expression, could be targeted by milatuzumab, a humanized antibody currently 

tested on lymphoma and multiple myeloma patients in phase I trials.58 Neither CD52 nor 

NOTCH-1 or-3 over expression could be reproduced in our analysis. CD52 is a target of 

alemtuzumab (also known as Campath), and although previously described as being up-

regulated on the mRNA level in CTCL59 its use in the treatment of mycosis fungoides and 

Sézary syndrome is with varying results.60 NOTCH-1 is over expressed on the protein 

level in advanced MF,61 but data on mRNA expression are solely obtained from CTCL cell 

lines. Over expression of TOP2A, also identified in nodal peripheral T-cell lymphoma,62 

might serve as a target of anthracyclines, such as doxorubicin and etoposide. We observed 

that indoleamine 2,3-dioxygenase 2, IDO2, playing a role in immunomodulation and tumor 

escape is over expressed in T- MF. A recent study demonstrated that the small molecule 

inhibitor INCB024360 is able to inhibit IDO2 protein and can act as an effective 

immunotherapeutic agent.63 

Finally, we identified a limited number of genes for which expression appears to be 

restricted to MF tumor stage and which might also serve as diagnostic (bio)markers. 

Amongst these is GTSF1 (gametocyte specific factor 1). Expression thus far is only 

described for gametocytes64 and according to our mRNA expression analysis (RT-qPCR) 

is limited to MF tumor samples. As male GTSF1 knockout mice are sterile owing to 

massive apoptotic death of their germ cells, aberrant (over)expression of GTSF1 might 

play a role in apoptosis resistance in MF. 

In summary, we determined a molecular signature characteristic for mycosis fungoides 

tumor stage offering more insight in the pathogenesis of this disease. Moreover we 

uncovered more details of its immunophenotype: over expression of interferon-responsive 

genes (IFI27, IFI6, IFI30, IFI35) interleukin/chemokine  genes (IL10, IL15, IL26, IL32, 

CCL18, CXCL9, 10, 11 and 13) and receptors (IL13RA2, IL15RA, CCR1, 8 and 10) and 

down-regulation of IL11RA. Finally, our data suggests previously unreported therapeutic 
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targets and/or diagnostic markers: IDO2, RRM2, CD74, TOP2A, GTSF1, TRIP13, and 

NFKBIZ, which warrant further research. 
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Abstract

MicroRNAs are commonly aberrantly expressed in many cancers. Very little is known of 

their role in T-cell lymphoma, however. We therefore elucidated the complete miRNome 

of purified T cells from 21 patients diagnosed with Sézary syndrome (SzS), a rare 

aggressive primary cutaneous T-cell (CD4+) lymphoma. Unsupervised cluster analysis of 

microarray data revealed that the miRNA expression profile was distinct from CD4+ T-cell 

controls and B-cell lymphomas. The majority (104 of 114) of SzS-associated miRNAs (P 

< 0.05) were down-regulated and their expression pattern was largely consistent with 

previously reported genomic copy number abnormalities and were found to be highly 

enriched (P < 0.001) for aberrantly expressed target genes. Levels of miR-223 distinguished 

SzS samples (n = 32) from healthy controls (n = 19) and patients with mycosis fungoides 

(n = 11) in >90% of samples. Furthermore, we demonstrate that the down-regulation of 

intronically encoded miR-342 plays a role in the pathogenesis of SzS by inhibiting apoptosis 

and describe a novel mechanism of regulation for this miRNA via binding of miR-199a* 

to its host gene. We also provide the first in vivo evidence for the down-regulation of 

members of the miR-17-92 cluster in malignancy and demonstrate that ectopic miR-17-5p 

expression increases apoptosis and decreases cell proliferation in SzS cells.  
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Introduction

Sézary syndrome (SzS) is a rare aggressive form of primary cutaneous T-cell lymphoma 

(CTCL) characterized by erythroderma, generalized lymphadenopathy, and the presence 

of neoplastic cerebriform nucleated CD4+ T cells (Sézary cells) in peripheral blood.1 Patients 

with SzS typically have a high leukemic burden and a poor prognostic outcome with an 

estimated 5-year survival of only 24%.1 The molecular pathogenesis of this devastating 

disease, however, remains poorly understood. 

There is emerging evidence that miRNAs are involved in the pathogenesis of many 

cancers including B-cell lymphomas.2 There is, however, very little published data to date 

on the involvement of miRNAs in human T-cell lymphomas. Therefore, we undertook a 

comprehensive study to elucidate the miRNome of tumor cells from 21 SzS patients and 

normal CD4+ T cells using microarrays containing probes against 655 human miRNAs 

(miRBase 10.1). 

 

Materials and Methods

Patients samples
Peripheral blood were obtained from 21 patients attending either the Skin Tumour Unit, 

St John’s Institute of Dermatology, St Thomas’ Hospital, London, UK (patients SzS1-

SzS17) or the Department of Dermatology, Leiden University Medical Center, Leiden, The 

Netherlands (patients SzS18-SzS21). All patients had a T-cell clone detected in the 

peripheral blood as determined by T-cell receptor (TCR) gene rearrangement studies and 

fulfilled the World Health Organization-European Organization for the Research and 

Treatment of Cancer (WHO-EORTC) diagnostic criteria for Sézary Syndrome.3 Individual 

patient characteristics are shown in Supplementary Table S1. With the exception of 

patients SzS18, SzS19 and SzS21 which were Ficoll-purified PMBCs, CD4+ cells were 

purified from SzS patient peripheral blood using the RosetteSep™ CD4+ T-cell enrichment 

kit (Stem Cell Technologies, London, UK). Immunomagnetic separation (Miltenyi Biotec, 

Bisley, UK) was used to purify CD4+ T cells/ CD3+ T cells or CD19+ B cells from peripheral 

blood of healthy control donors as indicated in Figures 1 through 3. 

A further cohort of SzS patient samples (n = 15), samples of patients with mycosis 

fungoides (MF) with no peripheral blood involvement (n = 11), and healthy donor controls 

(n = 12) were used as a validation set for testing the diagnostic ability of miRNA levels 

by qRT-PCR. CD4+ T cells from these additional patients were also purified by RosetteSep™ 

CD4+ T-cell enrichment kit; patient characteristics are given in Supplementary Table S2.
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All patients gave informed consent to be included in this study in accordance with the 

Declaration of Helsinki 1975 as revised in 2005. The samples from patients SzS1 to SzS17, 

SzS22 to SzS36 and MF1 to MF11 were obtained from an ethically approved research 

tissue bank (St Mary National Research Ethics Committee: 07/H10712/106).  

 

RNA purification and microarray analysis
MicroRNA (and total RNA) was isolated from samples SzS1 to SzS17 using Trizol 

(Invitrogen, Paisley, UK) and RNeasy columns as described by the manufacturer (Qiagen, 

Crawley, UK), whereas only miRNA was purified from samples SzS18 to SzS21 using the 

mirVana kit (Ambion, Warrington, UK). MicroRNA (approximately 500 ng) were labeled 

and hybridized to μRNA microarrays as previously described4 using tonsillar material 

(pooled from 12 healthy individuals) as a common reference in a dye-balanced design. 

The arrays contained 655 human probes (miRBase v.10.1). Probe details can be found at 

MicroRNA world.5 

Image analysis was carried out with BlueFuse v3 software (BlueGnome, Cambridge, UK). 

Raw image data were global median-normalized within arrays and normalized between 

arrays using the LIMMA package.6 The normalized log ratios (average of 4 replicates per 

probe) were used for subsequent analysis in Genespring 7.2 (Agilent Technologies, CA, 

US). MicroRNAs were filtered prior to ANOVA analysis to remove those that had a median 

intensity  less than 1.5x background (200 fluorescence units). ANOVA P-values were 

adjusted using the Benjamini-Hochberg correction method. Differentially expressed genes 

were tested for their ability to predict sample class using the leave-one-out cross-validation 

support vector machine (SVM) function in Genespring. All microarray data are available 

in the GEO public database under accession number GSE21697.7 

Quantitative RT-PCR (qRT-PCR)
Due to insufficient material, only patient samples which had been CD4+ purified (i.e. 

patients SzS1 to SzS17) were used for qRT-PCR and subsequent analysis. CD4+ (n = 7) 

and CD3+ (n = 6) T cells purified from a total of 13 healthy individuals were used as 

controls. MicroRNA and gene-expression qRT-PCR was carried out using Taqman probes 

as described by the manufacturer (Applied Biosystems, Warrington, UK) using 20 ng of 

miRNA or total RNA per reaction in a Roche LightCycler 480 machine. Triplicate samples 

were used throughout. Levels of β-2-microglobulin (B2M) and U6 were used as control 

genes for gene expression and miRNA expression assays respectively. The mean Ct value 

of each triplicate was used for analysis, by the ΔCt method (ΔCt = mean Ct of control – 

mean Ct of gene of interest). Expression levels were compared using Mann-Whitney 

independent t-test (Graphpad Prism v.4.0, La Jolla, CA). 
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To assess the ability of miRNA expression levels to discriminate between SzS and control 

samples we used the k-fold cross-validation algorithm based on logistic regression to 

calculate receiver operator curve (ROC) statistics for these data. Analysis was carried out 

by 2-class logistic regression modeling with a ridge estimator using the Logistic function 

in WEKA version 3.6.1 in the 10-fold cross validation test mode.8

Methylation specific-PCR (MS-PCR)
Genomic DNA was bi-sulphite treated using the EpiTect kit from Qiagen. EVL methylation 

status was measured using a CpG Wiz kit from Millipore (Watford, UK) and EVL-specific 

primers as previously described.9 Supplied universally methylated and unmethylated 

control DNA were used as positive and negative controls. Colorectal cancer cell lines RKO 

and VACO400 which were previously demonstrated to be methylated and unmethylated, 

respectively, at the EVL gene were used as additional controls.9 

Luciferase assay
The complete 3’UTR sequence of the EVL gene was amplified from IMAGE clone no. 

5222624 by PCR to include XhoI and NotI restriction sites. This was cloned immediately 

downstream of Renilla luciferase (RL) in the psiCHECK2 vector (Promega, Southampton, 

UK) that also encodes for firefly luciferase (FL) which acts as an internal transfection 

control for experiments. The resulting plasmid (psiCHECK-EVL-3’UTR) was sequence 

verified. HeLa cells were cotransfected with 2.5 μg of psiCHECK-EVL-3’UTR and 20nM 

of synthetic RNA oligo (MWG Biotech, Ebersberg, Germany) encoding either miR-199a* 

(ACAGUAGUCUGCACAUUGGUUA) or a scrambled version of this sequence (Scramble-

miR-199a* (ACAGUAGUCUGCACAUUGGUUA)) with no known homology against any 

known human miRNA or gene sequence. FL and RL activity was measured 48 hours  

after transfection in triplicate using a Glomax luminomter (Promega) according to the 

manufacturer’s recommendations. The RL/FL ratio of cells transfected with miR-199a* 

or Scramble-miR-199a* were compared with cells transfected only with psiCHECK-EVL-

3’UTR. Experiments were carried out in triplicate. 

Cell transfection, cell-proliferation and apoptosis assays
Jurkat cells were transfected with miR-199a*, Scramble-miR-199a* or mock transfected 

(no sequence). SeAx cells were transfected with miRIDIAN® miR-342, miR-17-5p or anti-

miR-199a* from Dharmacon (Lafayette, CO), Scramble-miR-199a* or were mock transfected. 

All cells were transfected by electroporation using the Amaxa nucleofector machine as 

described by the manufacturer (Lonza, Cologne, Germany) and transfection efficiency was 

measured using a green fluorescent protein (GFP)-containing plasmid and by qRT-PCR. 
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Apoptosis was quantified in triplicate 72hrs post-transfection in SeAx cells using the Cell 

Death Detection ELISA Kit (Roche Applied Science), while cell proliferation was measured 

using CellTiter 96® Aqueous One Solution Cell Proliferation Assay (Promega), according to 

the manufacturer’s instructions. Experiments were carried out in triplicate.

 

Results 

Most aberrantly expressed miRNAs in Sézary syndrome are down-regulated 
We elucidated the complete (miRBase v.10.1) miRNA profile of CD4+ T cells from 21 SzS 

patients and 6 healthy controls. In order to see how the miRNA profiles of SzS samples 

related to other hematological malignancies, we carried out meta-analysis on data 

generated previously.4,10 Unsupervised cluster analysis of these data revealed that all the 

clinical lymphoma samples clustered distinctly from cell lines and normal lymphocyte 

subsets, and that T-cell lymphoma (SzS) samples were distinct from B-cell lymphoma 

samples (Figure 1A). Using an extended human probe set (miRBase v.10.1; n = 655), 

unsupervised cluster analysis again placed the SzS samples distinctly from control CD4+ 

T cells (Figure 1B).

To identify miRNAs that are aberrantly expressed in SzS we compared expression levels 

with controls by ANOVA. This resulted in the identification of 114 miRNAs (adjusted P < 

0.05), only 10 of which were up-regulated in SzS samples (Table 1-2). To validate the 

microarray data, 9 of the most up- and down-regulated miRNAs and 6 miRNAs previously 

associated with malignancy (ie, miR-15, miR-16, miR-24, miR-17-5p, miR-106a, miR-19a) 

were measured by qRT-PCR in SzS patient samples (n = 17), 7 CD4+ and 6 CD3+ T-cell 

control samples. These data were consistent with the microarray results (Figure 1-3). 

Many miRNAs are encoded in clusters, and members of these clusters often exhibit the 

same pattern of expression.11 A higher proportion of SzS-associated miRNAs (70 of 114 

[61%]) were encoded in clusters than generally observed (215 of 474 [45%]; source:MiRGen 

Clusters database12). In 23 (74%) of the 31 clusters encoded by SzS-associated miRNAs, 

all members of the cluster were significantly differentially expressed (Table 1-2, 

Supplementary Table S3). 

MicroRNA expression levels have diagnostic potential for Sézary syndrome 
Using the 10 most discriminatory (based on P-value) up- and down-regulated miRNAs 

(Table 1) for cluster analysis distinguished SzS and control samples (Supplementary Figure 

S1) and correctly predicted diagnosis in 26 of 27 of samples (96%) by leave-one-out 

cross-validation SVM analysis. 
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Figure 1  MicroRNAs are aberrantly expressed in SzS
(A) Unsupervised cluster analysis of miRNA expression data (miRBase v. 9.0) for purified lymphocyte sub-
sets (n = 18), B-cell lymphoma samples (n = 98), hematological cell lines (n = 42) and Sézary syndrome 
(SzS) samples (n = 21). (B) Unsupervised cluster analysis of control CD4+ T cells (n = 6) and SzS samples 
(n = 21) using extended human probe set (miRBase v. 10.1; n = 655). Expression levels of (C) miR-150, 
(D) miR-223, (E) miR-181a, (F) miR-191, (G) miR-15a, (H) miR-16, (I) miR-24, (J) miR-145 and (K) miR-518a-
3p in SzS samples (n = 17), CD4+ T cells (n = 7) and CD3+ T cells (n = 6) controls measured by qRT-PCR. 
P-values relate to SzS versus control CD4+ T cells (Mann-Whitney independent t-test). 
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To see if miRNA levels measured by qRT-PCR yielded similar results we analyzed training 

set data (i.e. 17 SzS and 7 CD4+ samples; Figure 1-3) using k-fold cross-validation based 

on logistic regression analysis. A similar statistical approach was previously used to identify 

genes with diagnostic potential in SzS.13 The individual expression levels of 4 miRNAs 

(miR-150, miR-191, miR-15a and miR-16) correctly predicted diagnosis with 100% accuracy, 

whereas miR-223 and miR-17-5p were 96% accurate (Supplementary Table S4). 

To extend these analyses, we measured levels of the 6 miRNAs in an independent 

validation set consisting of an additional 15 SzS samples, a further 12 healthy controls 

and 11 cases of non-erythrodermic MF patients (patient characteristics are given in 

Supplementary Table S2). Taking the validation set data in isolation, levels of miR-223 

correctly discriminated between SzS and control (i.e. MF and healthy controls) samples 

in 34 of 38 of cases (90%)  with a specificity of 87% and sensitivity of 92% corresponding 

Table 1  Ten most discriminatory up- and down-regulated microRNAs differentially expressed  
(P < .05) between SzS (n = 21) and CD4+ controls (n = 6)

Order microRNA P Fold 
change

Chromosome Cluster

1 miR-145 5.68 × 10−4 24.38 5q33.1 143-145

2 miR-574–5p 2.65 × 10−2 12.82 4p14 -

3 miR-200c 9.67 × 10−3 11.12 12p13.31 141-200c

4 miR-199a* 2.60 × 10−2 8.58 19p13.2/1q24.3 199a-214

5 miR-143 3.84 × 10−3 7.38 5q33.1 143-145

6 miR-214 3.43 × 10−3 4.94 1q24.3 199a-214

7 miR-98 2.48 × 10−3 4.91 Xp11.22 98-let-7f

8 miR-518a-3p 5.08 × 10−3 3.18 19q13.41 -

9 miR-7 5.23 × 10−3 2.46 9q21.32/15q26.1/19p13.3 -

10 miR-152 2.66 × 10−2 2.05 17q21.32 -

−1 miR-342 2.31 × 10−9 −9.94 14q32.2 -

−2 miR-223 2.41 × 10−9 −13.99 Xq12 -

−3 miR-150 3.63 × 10−9 −6.72 19q13.33 -

−4 miR-189(24*) 2.82 × 10−8 −3.97 9q22.32/19p13.12 24-23a/23b-24

−5 miR-186 5.04 × 10−8 −6.4 1p31.1 -

−6 miR-423-3p 5.04 × 10−8 −2.24 17q11.2 -

−7 miR-92 5.22 × 10−8 −5.6 13q31.3/Xq26.2 17-92/106a-363

−8 miR-181a 5.22 × 10−8 −4.4 1q32.1/9q33.3 181a-181b

−9 miR-191 6.72 × 10−8 −4.59 3p21.31 425-191

−10 miR-376a 6.72 × 10−8 −3.91 14q32.31 -

Positive fold changes are up-regulated in SzS samples and negative values down-regulated compared to 
controls. MicroRNAs also associated (P < .05) with B-cell lymphoma10 are indicated in bold.
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to an area under the curve (AUC) value of 0.977. Values of the other 5 miRNAs however 

did not discriminate well (Supplementary Table S5). Taking all data into account (i.e. training 

and validation set equals 32 SzS samples plus 30 controls), miR-223 levels were 90% 

accurate with a specificity of 91% and sensitivity of 90% corresponding to an AUC value 

of 0.938 (Supplementary Table S6). Combining data from multiple miRNAs did not improve 

the performance with this data.

miR-342 expression in Sézary syndrome is negatively regulated by miR-199a* 
expression
Because the intronically encoded miR-342 is epigenetically silenced in colorectal cancer 

due to CpG-island methylation in the promoter region of host EVL gene,9 we wanted to 

see whether the same mechanism could explain the down-regulation observed in SzS. 

Both miR-342 and EVL were down-regulated (P < 0.001 and 0.04, respectively) in SzS 

(Figure 2A-B). Using the same EVL-specific primers and colorectal cancer cell line controls 

as previously described,9 we did not find any evidence for EVL CpG-island promoter 

hypermethylation in SzS patient samples or control CD4+ T cells (Figure 2C). In addition, 

we sequenced areas of approximately 1kbp in SzS patients representing the promoter 

regions of both EVL-201/2 and EVL-203 transcripts that included the CpG-island and other 

identified regulatory sequences14 but found no mutations (data not shown). In case the 

intron encoding miR-342 had been deleted or mutated, we also sequenced this region in 

the SzS samples, but found no mutations or deletions (data not shown).

We next investigated whether any of the SzS-associated miRNAs potentially targeted the 

EVL gene. Using the miRGen suite of predictive algorithms,12 we identified miR-199a* 

(miR-199a-3p), which is up-regulated in SzS (Figure 2D; P = 0.01), as potentially targeting 

EVL (Figure 2E). To test this hypothesis we cloned the 3’UTR sequence of EVL into a 

luciferase-reporter vector. As can be seen from Figure 2F transfection with miR-199a* 

reduced luciferase activity significantly (P = 0.004), compared to either vector alone or 

transfection with a scrambled sequence. 

In order to see whether miR-199a* could also directly regulate miR-342 expression in 

SzS we transfected the SeAx cell line with a miR-199a* inhibitor. This resulted in greater 

than 26-fold decrease in the levels of miR-199a* by 72 hours after transfection (data not 

shown) and an approximately 5-fold increase in endogenous levels of miR-342 (Figure 

2G). In contrast transfection of the SeAx cell line with miR-342 did not significantly affect 

miR-199a* levels (data not shown). The converse experiment was also carried out by 

transfecting the Jurkat T-cell line that has high endogenous levels of miR-3424 with miR-

199a* which resulted in an approximately 4-fold decrease in miR-342 levels by 48 hours 

after transfection (Figure 2H).



CHAPTER 4

84

Table 2  Down-regulated microRNAs differentially expressed (P < .05) between SzS (n = 21) and 
CD4+ controls (n = 6) showing chromosomal location, inclusion in microRNA clusters, and number 
of predicted target genes up-regulated in SzS 
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1 miR-342 2.31 × 10−9 −9.94 14q32.2 - 2

2 miR-223 2.41 × 10−9 −13.99 Xq12 - 8

3 miR-150 3.63 × 10−9 −6.72 19q13.33 - 2

4 miR-189 2.82 × 10−8 −3.97 9q22.32/19p13.12 24-23a/23b-24 6

5 miR-186 5.04 × 10−8 −6.40 1p31.1 - 6

6 miR-423–3p 5.04 × 10−8 −2.24 17q11.2 - 0

7 miR-92 5.22 × 10−8 −5.60 13q31.3/Xq26.2 17-92/106a-363 6

8 miR-181a 5.22 × 10−8 −4.40 1q32.1/9q33.3 181a-181b 10

9 miR-191 6.72 × 10−8 −4.59 3p21.31 425-191 5

10 miR-376a 6.72 × 10−8 −3.91 14q32.31 - 9

11 miR-425-5p 1.01 × 10−7 −4.31 3p21.31 425-191 5

12 miR-15b 1.11 × 10−7 −4.16 3q26.1 15b-16 11

13 miR-181c 1.11 × 10−7 −3.87 19p13.12 181c-181d 10

14 miR-93 1.15 × 10−7 −4.07 7q22.1 106b-25 6

15 miR-423 1.33 × 10−7 −1.47 17q11.2 - 0

16 miR-582 1.55 × 10−7 −5.13 5q12.1 - 0

17 miR-363 1.90 × 10−7 −3.89 Xq26.2 106a-363 6

18 miR-128b 2.07 × 10−7 −3.83 2q21.3/3p22.3 - 4

19 miR-30c 2.24 × 10−7 −8.79 1p34.2 30e-30c 6

20 miR-25 2.24 × 10−7 −5.05 7q22.1 106b-25 4

21 miR-181b 2.24 × 10−7 −3.42 1q32.1/9q33.3 181a-181b 9

22 miR-194 2.87 × 10−7 −4.28 1q41/11q13.1 215-194/192-194 3

23 miR-652 5.02 × 10−7 −3.14 Xq22.3 - 3

24 miR-505 5.05 × 10−7 −3.12 Xq27.1 - 4

25 miR-30b 6.54 × 10−7 −8.76 8q24.22 30b-30d 4

26 miR-128a 7.84 × 10−7 −3.09 2q21.3/3p22.3 - 4

27 miR-142-3p 7.93 × 10−7 −12.33 17q22 - 4

28 miR-532 9.93 × 10−7 −5.65 19q13.41 - 1

29 miR-140-5p 1.27 × 10−6 −3.99 16q22.1 - 3

30 miR-361 1.43 × 10−6 −5.91 Xq21.2 - 6

31 let-7e 1.54 × 10−6 −3.17 19q13.33 99b-125a 5

32 miR-140-3p 1.65 × 10−6 −4.43 16q22.1 - 3

33 miR-532-3p 2.32 × 10−6 −3.49 Xp11.23 532-502 0

MicroRNAs also associated (P < .05) with B-cell lymphoma10 are indicated in bold
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follow up table 2
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34 miR-345 2.32 × 10−6 −3.06 14q32.2 - 0

35 let-7a 2.61 × 10−6 −3.02 11q24.1/9q22.32/22q13.31 100-let7a/let-7a-
7d/let-7a-7b

5

36 miR-500 2.96 × 10−6 −3.39 Xp11.23 532-502 2

37 miR-16 3.45 × 10−6 −3.56 13q14.3/3q26.1 15a-16/15b-16 12

38 miR-29a 3.52 × 10−6 −10.79 7q32.3 29a-29b 5

39 miR-18b 5.47 × 10−6 −3.64 Xq26.2 106a-363 3

40 miR-142-5p 5.52 × 10−6 −6.01 17q22 - 5

41 miR-31 8.73 × 10−6 −5.57 9p21.3 - 6

42 miR-27a 9.50 × 10−6 −6.37 19p13.12 24-23a 9

43 miR-146b 1.01 × 10−5 −5.45 10q24.32 - 5

44 miR-30a-3p 1.21 × 10−5 −5.47 6q13 - 6

45 miR-30e-5p 1.43 × 10−5 −9.81 1p34.2 30e-30c 11

46 miR-107 1.50 × 10−5 −7.52 10q23.31 - 9

47 miR-17-5p 2.00 × 10−5 −6.66 13q31.3 17-92 11

48 miR-338 3.33 × 10−5 −3.99 17q25.3 338-657 4

49 miR-422b (378) 5.21 × 10−5 −3.10 5q33.1 - 4

50 miR-106a 5.37 × 10−5 −6.22 Xq26.2 106a-363 3

51 miR-484 5.96 × 10−5 −5.40 16p13.11 - 2

52 miR-30a-5p 1.09 × 10−4 −7.11 6q13 - 9

53 miR-30d 1.14 × 10−4 −4.31 8q24.22 30b-30d 5

54 miR-455 1.14 × 10−4 −3.14 9q32 - 1

55 miR-20b 1.17 × 10−4 −6.34 13q31.3 17-92 2

56 miR-28-3p 1.40 × 10−4 −4.20 3q28 - 1

57 miR-103 1.44 × 10−4 −6.51 5q35.1/20p13 - 10

58 miR-590 1.53 × 10−4 −5.04 7q11.23 - 2

59 miR-338-3p 1.60 × 10−4 −4.73 17q25.3 338-657 4

60 miR-378 1.82 × 10−4 −3.13 5q33.1 - 4

61 miR-18a 2.15 × 10−4 −3.85 13q31.3 17-92 6

62 miR-30e 2.29 × 10−4 −10.19 1p34.2 30e-30c 11

63 miR-365 2.92 × 10−4 −5.90 16p13.12/17q11.2 193b-365 2

MicroRNAs also associated (P < .05) with B-cell lymphoma10 are indicated in bold
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64 miR-95 3.25 × 10−4 −4.58 4p16.1 - 6

65 miR-374b 3.25 × 10−4 −4.13 Xq13.2 545-374 4

66 miR-215 3.46 × 10−4 −3.12 1q41 215-194 4

67 miR-23a 3.49 × 10−4 −7.30 19p13.12 24-23a 5

68 miR-362-3p 3.60 × 10−4 −2.94 Xp11.23 532-502 4

69 miR-20a 3.62 × 10−4 −7.85 13q31.3 17-92 2

70 miR-22 4.04 × 10−4 −4.81 17p13.3 - 8

71 miR-660 4.27 × 10−4 −4.95 Xp11.23 532-502 0

72 miR-26a 4.48 × 10−4 −11.13 3p22.2/12q14 - 8

73 miR-29c 4.62 × 10−4 −14.25 1q32.2 29b-29c 7

74 miR-23b 5.65 × 10−4 −7.35 9q22.32 23b-24 7

75 miR-19a 6.17 × 10−4 −9.72 13q31.3 17-92 7

76 miR-125a-5p 9.14 × 10−4 −7.00 19q13.33 99b-125a 7

77 miR-24 1.17 × 10−3 −8.02 9q22.32/19p13.12 24-23a/23b-24 3

78 miR-27b 1.40 × 10−3 −6.29 9q22.32 23b-24 8

79 miR-19b 1.83 × 10−3 −11.82 13q31.3/Xq26.2 17-92/106a-363 9

80 miR-340 1.93 × 10−3 −4.61 5q35.3 - 0

81 miR-374 2.78 × 10−3 −12.45 Xq13.2 545-374 4

82 miR-15a 2.92 × 10−3 −8.09 13q14.3 15a-16 9

83 miR-28 3.78 × 10−3 −3.88 3q28 - 1

84 miR-148b 4.04 × 10−3 −3.71 12q13.13 - 5

85 miR-106b 4.10 × 10−3 −4.31 7q22.1 106b-25 6

86 miR-192 4.59 × 10−3 −2.29 11q13.1 192-194 3

87 miR-29b 4.74 × 10−3 −15.39 1q32.2 29b-29c/29a-29b 6

88 miR-32 4.78 × 10−3 −1.63 9q31.3 - 6

89 miR-185 9.45 × 10−3 −4.75 22q11.2 - 7

90 miR-146a 1.05 × 10−2 −2.19 5q33.3 - 5

91 miR-133b 1.17 × 10−2 −3.34 6p12.2 133b-206 3

92 miR-320 1.38 × 10−2 −3.32 8p21.3 - 9

93 miR-151-5p 1.42 × 10−2 −4.96 8q24.3 - 5

94 miR-26b 1.60 × 10−2 −13.43 2q35 - 9

95 miR-590-3p 1.60 × 10−2 −2.69 7q11.23 - 2

MicroRNAs also associated (P < .05) with B-cell lymphoma10 are indicated in bold
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Reconstitution of down-regulated miRNAs miR-342 or miR-17-5p in Sézary 
cells inhibits apoptosis
Transfection with either miR-342 or miR-199a* inhibitor resulted in a significant increase 

in levels of apoptosis (Figure 2I; P ≤ 0.01) but had no effect on cell proliferation levels 

(data not shown). In contrast, transfection of SeAx cells with miR-17-5p caused both an 

increase in apoptosis levels (Figure 3F; P = 0.01) and also a decrease in levels of cell 

proliferation (Figure 3G; P = 0.01). 
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96 miR-429 1.69 × 10−2 −2.39 1p36.33 200a-429 5

97 miR-141 2.21 × 10−2 −3.38 12p13.31 141-200c 4

98 miR-99b 2.47 × 10−2 −4.84 19q13.33 99b-125a 2

99 miR-335 2.49 × 10−2 −4.11 7q32.2 - 3

100 miR-100 2.75 × 10−2 −4.79 11q24.1 100-let7a 2

101 miR-361-3p 2.84 × 10−2 −13.00 Xq21.2 - 6

102 miR-10a 2.84 × 10−2 −6.85 17q21.32 - 6

103 miR-148a 3.40 × 10−2 −13.52 7p15.2 - 4

104 miR-125b 3.51 × 10−2 −6.85 11q24.1/21q21 - 5

MicroRNAs also associated (P < .05) with B-cell lymphoma10 are indicated in bold



CHAPTER 4

88

Figure 2  Down-regulation of pro-apoptotic 
miR-342 is mediated by miR-199a* which 
targets the miR-342-encoding gene EVL
Levels of (A) miR-342 and (B) EVL in SzS sam-
ples (n = 17), CD4+ T cells (n = 7) and CD3+ T 
cells (n = 6) controls measured by qRT-PCR. 
Data shown as box-whisker plots. (C) CpG-
island methylation status of EVL in SzS sam-
ples (n = 17) and CD4+ T cell controls (n = 6) 
measured by MS-PCR. Universally methylated 
and unmethylated DNA were used as controls. 
Colorectal cell lines RKO and VACO400 were 
methylated and unmethylated respectively as 
previously reported.7 (D) Levels of miR-199a* 
in SzS samples (n = 17), CD4+ T cells (n = 7) 
and CD3+ T cells (n = 6) controls measured by 
qRT-PCR. (E) Predicted binding site for miR-
199a* within the 3’UTR sequence of EVL 
gene. (F) Transfection of miR-199a* in HeLa 
cell line suppressed EVL 3’-UTR luciferase re-
porter activity compared with vector only con-
trol or Scramble-miR-199a* sequence. (G) In-
hibition of miR-199a* in SeAx cells resulted in 
increased levels of miR-342 measured by qRT-
PCR. Fold change levels shown are relative to 
Scramble-miR-199a* transfected control (i.e. 
ΔΔCt). (H) Transfection of Jurkat cell line with 
miR-199a* resulted in decreased levels of miR-
342 measured by qRT-PCR. Fold change levels 
shown are relative to Scramble-miR-199a* 
transfected control (i.e. ΔΔCt). (I) Expression of 
miR-342 or inhibition of miR-199a* in SeAx cell 
line resulted in an increase in apoptosis levels 
compared to mock-transfected control. Values 
shown are mean values from 3 experiments. 
(J) Schematic diagram of proposed pathway of 
miR-342 regulation in SzS.
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Figure 3  Members of the 
miR-17-92 (and homologous) 
clusters are down-regulated 
and increase apoptosis and 
decrease cell proliferation 
in SzS
(A) Heat map depicting lev-
els of members of miR-17-92 
and homologous clusters as 
measured by microarray and 
levels of (B) miR-92, (C) miR-
106a, (D) miR-17-5p and (E) 
miR-19a in SzS samples (n = 
17), and controls (CD4+ T cells 
(n = 7), CD3+ T cells (n = 6) 
and B cells (n = 6)) measured 
by qRT-PCR. P-values relate to 
SzS versus CD4+ (Mann-Whit-
ney independent t-test). Data 
shown as box-whisker plots. 
Expression of miR-17-5p in 
SeAx cell line resulted in an 
increase in levels of (F) apop-
tosis and decrease in levels of 
(G) cell proliferation compared 
to mock transfected control. 
Values shown are mean val-
ues from 3 experiments.
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Discussion

A total of 114 miRNAs were identified as being SzS-associated (adjusted P < 0.05), of 

which only 10 were up-regulated in SzS samples. A general decrease in miRNA expression 

in tumors compared to counterpart normal tissue is consistent with previous findings,15,16 

although we10 and others17 found the opposite to be the case for B-cell lymphomas. 

Using the same array as in this study we previously identified 60 miRNAs (40 up-regulated 

and 20 down-regulated) associated (P < 0.05) with B-cell lymphoma (either DLBCL or FL).10 

Surprisingly, a comparison of these miRNAs with SzS-associated miRNAs reveal a great 

deal of similarity that suggests the presence of a common lymphoma miRNA signature 

(Table 1-2). A total of 7 of the 10 miRNAs that were up-regulated in SzS were also 

significantly up-regulated in B-cell lymphoma, while 18 of the 20 miRNAs that were down-

regulated in B-cell lymphoma were also significantly down-regulated in SzS (Table 1-2).

The cause of aberrant miRNA expression in SzS, in common with most other cancers, is 

not readily apparent. Recently we detailed a number of recurrent chromosomal aberrations 

associated with SzS, albeit in a different cohort of patients.18 These abnormalities were 

generally consistent with miRNA expression in this cohort of SzS patients (Table 1-2). For 

example miR-152, which is up-regulated, is encoded by region of gain (17q21.32) in 70% 

of SzS cases, whereas the 13q14 locus, frequently deleted in SzS, encodes for miR-15a 

and miR-16, both of which were down-regulated (P < 0.001; Figure 1G-H). Similarly, miR-

107, miR-146b and miR-22 which were down-regulated, are encoded by common regions 

of loss or deletion in SzS (10q23.31, 10q24.32 and 17p13.3, respectively). However, similar 

to other studies,19 this correlation did not always hold true as some regions of recurrent  

gain (i.e. 4p16.1, 8q24.1 and 17q25) encode for miRNAs that were down-regulated (miR-

95, miR-30 and miR-338, respectively).  This suggests that these miRNAs, at least, are 

regulated by another mechanism. It was recently demonstrated that MYC, which is 

aberrantly active in SzS,18 down-regulates a number of miRNAs including miR-30.20 Indeed 

all of the miRNAs shown to be repressed by MYC (i.e. miR-22, miR-26a, miR-29c, miR-30, 

miR-146a and miR-150) were also down-regulated in SzS samples (Table 2). 

To investigate whether SzS-associated miRNAs correlated with gene expression patterns, 

we interrogated the miRGen database12 for miRNAs predicted to target the 69 genes that 

we had previously identified as being up-regulated in a separate cohort of patients with 

SzS.21 Nearly all (97 of 104 [93%]) of down-regulated SzS-associated miRNAs were 

predicted to target one or more of these genes (median number of targets = 5; Table 2). 

Furthermore, a comparison between this set of miRNAs with 10,000 randomly generated 

sets of 104 miRNAs showed a highly significant enrichment for SzS-associated target 

genes (P-value < 0.001). This suggests that miRNAs play an important role in the regulation 
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of gene expression in SzS, although it remains possible that the distinct cohorts of patients 

with SzS used for this analysis are not directly comparable and further analysis should be 

carried out. 

Early detection and treatment are directly correlated with favorable outcome for SzS, but 

diagnosis is frequently difficult as cutaneous histology is often not diagnostic in 

erythrodermic skin disease and atypical T cells can be detected in the peripheral blood of 

erythrodermic patients with inflammatory conditions.22 In order to test the diagnostic 

ability of the SzS-associated miRNAs, we used the top 10 most discriminatory up- and 

down-regulated miRNAs in a SVM class-prediction model. This resulted in the correct 

assignment of samples as either SzS or control for 26 of 27 (96%) of cases and expression 

levels of just three of these miRNAs (miR-17-5p, miR-150, and miR-15a or miR-16) were 

sufficient to correctly predict all samples. Although microarray data is informative it is not 

readily available in a clinical setting. Therefore, we analyzed miRNA levels measured by 

qRT-PCR, a technique available to the majority of clinical diagnostic laboratories, using 

the k-fold cross-validation predictive model. Consistent with the microarray data, individual 

expression levels of miR-150, miR-15a, miR-16 or miR-191, correctly predicted samples 

all samples in this cohort. To validate these findings and include a more clinically relevant 

control group (i.e. non-erythrodermic MF) we expanded these analyses to an independent 

validation set. This time, only miR-223 levels were found to have useful predictive capacity 

(90% accuracy, 87% specificity, and 96% sensitivity) that was consistent (90% accuracy, 

91% specificity, and 90% sensitivity) when both training and validation sets were 

combined (i.e. 32 SzS and 30 control samples). Very similar results were obtained using 

a SVM predictive algorithm instead (SMO function in Weka; data not shown). The 

discrepancy between the 2 cohorts is largely a result of the inclusion of MF samples, 

which gave similar miRNA expression values to the SzS samples (Supplementary Figure 

S2), possibly due to disruption of the peripheral T-cell repertoire that is often associated 

with non-erythodermic MF.23  

Recently, expression levels of both DNM3 and CDO1 were found to be 100% specific 

(91 and 82% sensitive, respectively) although this study lacked controls with confounding 

diagnoses and small numbers were used (11 SzS, 12 healthy controls and 10 patients 

with inflammatory disorders).13 Previously a 5-gene signature was identified that could 

discriminate between SzS and control samples with 90% accuracy.24 However, this model 

was not reproducible in the hands of Booken et al,13 and the higher costs and time 

associated with measuring 5 genes suggest that a single miRNA assay may prove a more 

useful classifier for SzS diagnosis. 

The most discriminatory miRNA identified by ANOVA analysis of the microarray data was 

miR-342 (adjusted P < 0.001). This miRNA is intronically encoded within the EVL gene. 



CHAPTER 4

92

Both miR-342 and EVL were found to be down-regulated in SzS. It had been shown that 

the miR-342/EVL locus is epigenetically silenced via CpG-island methylation in colorectal 

cancer.9 In contrast, we found no evidence of similar methylation in SzS patient samples. 

A possible explanation for this discrepancy is that unlike colorectal cancer, which express 

the EVL-203 transcript containing the CpG island in proximity (~30bp) to its start codon,9 

patients with SzS express a much shorter transcript (EVL-201/2; data not shown) which 

initiates approximately 100kbp downstream from this regulatory element. 

One intriguing possibility to explain down-regulation of miR-342 in SzS was that the host 

gene, EVL, is itself a target for miRNA regulation. Of particular interest amongst the 

miRNAs predicted to target EVL was miR-199a* which is up-regulated in SzS. We tested 

this hypothesis by luciferase assay and demonstrated an inverse relationship between 

levels of miR-199a* and miR-342 in SzS as inhibition of the former resulted in an increase 

in endogenous levels of miR-342 whilst expression of miR-199a* in Jurkat cells that 

naturally express high levels of miR-342 reduced levels of miR-342. 

Approximately 40% of miRNAs are encoded in intronic regions of encoding genes.25 

Although generally believed to be passively co-expressed with their host mRNA recent 

data suggests the regulation of intronic miRNAs is more complex that previously 

thought.26 Our data suggests a novel and elegantly simple model for the regulation of 

intronically encoded miRNAs via modulation of expression levels of miRNAs that target 

the host mRNA. It should be noted, however, that as miR-342 is spliced out of the EVL 

transcript before being exported to the cytoplasm, miR-199a* must function in the 

nucleus. There is now compelling evidence that many mature miRNAs, are reimported 

into the nucleus and once there can regulate transcription.27-30 It has recently been 

demonstrated that miR-199a* is present at higher levels in the nucleus (and nucleolus) 

than in the cytoplasm of cells.31 This is the first evidence for such a regulatory mechanism 

operating in biological systems and provides a new level of complexity to the poorly 

understood area of miRNA regulation.

Interestingly, miR-199a* is also intronically encoded within the DNM3 gene which is itself 

specifically expressed in SzS.13 Furthermore, miR-199a* is directly up-regulated by TWIST1 

binding,32,33 which is up-regulated in SzS21 due to frequent gain of the encoding region.18 

These data suggest a model for de-regulation of miR-342 depicted in Figure 2J.  

To investigate the biological relevance of reduced miR-342 levels in SzS we reconstituted 

this miRNA in the SeAx cell line. This resulted in a significant increase in apoptosis levels 

(P = 0.001), but did not significantly affect cell proliferation levels as had been reported 

in colorectal cancer cell lines.9 Significantly, the same effect was observed when miR-

199a* expression was suppressed in this model. The presence of distinct yet analogous 

mechanisms to suppress miR-342 coupled with a common anti-apoptotic phenotype 
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suggests that miR-342 could play a tumor-suppressor role in these 2 cancers. 

To investigate how miR-342 down-regulation might inhibit apoptosis in SzS, we used the 

miRGen database to identify putative apoptosis-associated target genes (Supplemental 

Table 7). Of particular interest was TNFSF11 (also known as RANKL or TRANCE; 

supplemental Figure 3A), an anti-apoptotic molecule that was previously identified as 

being up-regulated in SzS,13,21 that was also up-regulated in our cohort of patients with 

SzS (P < .001; supplemental Figure 3B). We found that levels of TNFSF11 decreased in 

SzS cells transfected with either miR-342 or anti–miR-199a* compared with nontransfected 

controls (supplemental Figure 3C). TNFSF11 is highly expressed in peripheral activated 

and memory but not resting peripheral T cells.34 This pattern is consistent with our 

previous observation that miR-342 is more highly expressed in resting than memory T 

cells.4 It has been suggested that TNFSF11 expression can promote T-cell survival by 

interacting with dendritic cells, leading to induction of IL-15.34 Interestingly, IL-15 has 

been shown to protect SzS cells from apoptotic agents.35 Although these data are 

preliminary, it suggests that miR-342 down-regulation in SzS mediates its anti-apoptotic 

affect via up-regulation of TNFSF11.

The miR-17-92 cluster has been proposed to act as both tumor-suppressor or oncogene 

depending upon the cellular context, although until now there was a lack of in vivo 

evidence to support its tumor-suppressor role.36-38 Members of this cluster are widely 

up-regulated in B-cell lymphomas and solid tumors.4,10,39 However, we found that all 13 

miRNAs encoded by this cluster and homologous clusters (miR-106a-363 and miR-

106b-25) were down-regulated in SzS samples by microarray analysis (average fold-change 

= 6.1; range 3.64-11.82). These data were validated by qRT-PCR for miR-106a, miR-19a, 

miR-17-5p and miR-92 (Figure 3; P ≤ 0.001). Although the 13q31 locus is deleted in some 

solid tumors,19 and it has been reported that miR-17-5p is down-regulated in some breast 

cancer cell lines,38 as far as we are aware this is the first report to describe in vivo down-

regulation of these miRNAs in malignancy. This finding is particularly intriguing as the 

miR-17-92 cluster, in B-cell lymphomas at least, is up-regulated by MYC-binding,40 which 

in turn is aberrantly active in SzS.18 To explore the possibility that MYC-binding sites40 

were mutated in SzS patients, we sequenced this and surrounding regions but found no 

mutations (data not shown). Therefore the causal mechanism for down-regulation of these 

miRNAs in SzS remains to be determined and is an area we are actively pursuing. Similar 

to previous reports in breast cancer cell lines,38 ectopic expression of miR-17-5p in SzS 

cells resulted in a decrease in cell proliferation levels coupled with an increase in levels 

of apoptosis.  Whether or not this finding can be extended to other T-cell lymphomas, or 

is an anomaly of SzS, remains to be discovered; however it is clearly an area of research 

that warrants further investigation
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Cumulatively the above data strongly suggests that miRNAs are important in the 

pathogenesis of SzS and provides exciting new possibilities for the diagnosis and treatment 

of this disease.  
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Abstract

MicroRNAs (miRNAs) are small RNA species that regulate gene expression post-

transcriptionally and are aberrantly expressed in many malignancies including lymphoma. 

However, the role of miRNAs in the pathogenesis of T-cell lymphoid malignancies is poorly 

understood. Previously we examined the miRNA profile of Sézary syndrome (Sz), a 

leukemia of skin-homing memory T cells. In this study we determined the complete 

miRNome of mycosis fungoides (MF), the most common type of cutaneous T-cell 

lymphoma. The miRNA profile of skin biopsies from 19 patients with tumor-stage MF and 

12 patients with benign inflammatory dermatoses (eczema and lichen planus) were 

compared by microarray analysis. We identified 49 miRNAs that are differentially expressed 

in tumor-stage MF compared to benign inflammatory dermatoses using ANOVA analysis 

(P<0.05, Benjamini-Hochberg corrected).  The majority of the differentially expressed 

miRNAs (30/49) were up-regulated in tumor-stage MF.  The most significant differentially 

expressed were miR-155 and miR-92a (both up-regulated in tumor-stage MF), while miR-

93 showed the highest up-regulation in tumor-stage MF with a fold difference of 5.8.  

Differential expression of a selection of these miRNAs was validated by miRNA-Q-PCR 

on additional test groups (tumors and controls). None of the miRNAs up-regulated in 

tumor-stage MF was previously shown to be up-regulated in Sz, and only 2 of the 19 

miRNAs down-regulated in tumor-stage MF were also down-regulated in Sz. Taken 

together this report is the first describing the miRNA signature of tumor-stage MF. 
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Introduction

Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma (CTCL) 

and is characterized clinically by an evolution of patches, plaques to tumors containing 

malignant skin-homing T cells. Patients with limited plaque-stage disease have a 10-year 

survival of 97%-98% but in patients with tumor-stage disease the 10-year survival 

decreases to 42%.1 In previous studies tumor-stage MF samples were investigated for 

genomic alterations, gene expression profiles, and promoter hypermethylation to unravel 

the molecular basis of this disease.2-5 

MicroRNAs (miRNAs) are short non-coding RNA molecules involved in crucial biological 

processes, including development, immune function, proliferation, apoptosis, and the 

stress response through negative regulation of the stability and translation of target 

messenger RNAs (mRNAs).6-8 It is becoming increasingly clear that specific miRNAs 

contribute to cancer initiation and progression, and that miRNAs may have oncogenic 

or tumor suppressing properties depending on their target genes.9 Also, there is 

increasing evidence for a role for miRNAs in the pathogenesis of lymphoid malignancies 

such as lymphoma.10 

Little is known about the role of miRNAs in cutaneous lymphoma. So far our study on 

the miRNome of Sézary syndrome (Sz), a leukemia of skin-homing T cells, is the only 

one describing miRNA expression in cutaneous lymphoma.11 In the current study we 

performed miRNA analysis on tumor-stage MF to gain further insight in the molecular 

pathogenesis of this disease. Firstly, by identifying aberrantly expressed miRNAs specific 

for tumor-stage MF by comparing the miRNA profiles of tumor-stage MF with benign 

inflammatory dermatoses. Secondly, by correlating miRNA expression with previously 

described copy number alterations characteristic for tumor-stage MF.2,4,5 Finally by 

comparing aberrantly expressed miRNAs of tumor-stage MF with aberrant expression 

in Sz to identify differences. 

Materials and Methods

Patient selection
Tumor-stage MF patients were selected from the database of the Dutch Cutaneous 

Lymphoma Group (DCLG), reviewed by an expert panel of dermatologists and 

hematopathologists before entry into this database and classified using the criteria of the 

WHO-EORTC classification for primary cutaneous lymphomas.1 Nineteen formalin-fixed, 

paraffin-embedded (FFPE) MF tumor biopsies containing more than 75% tumor cells were 
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selected for array analysis and 10 additional cases for miRNA-Q-PCR validation experiments. 

Clinical characteristics are shown in Table 1. For control material FFPE biopsies of benign 

inflammatory dermatosis) containing T-cell rich infiltrates were selected for array analysis 

(eczema (n=5) and lichen planus (n=7) and miRNA-Q-PCR validation experiments (additional 

eczema (n=5) and lichen planus (n=6) cases). This study was performed in accordance 

with the Dutch code and Leiden University Medical Center guidelines on leftover 

material.

miRNA extraction
Total RNA was isolated from 6 x 20 μm sections of tumor biopsies and 8 x 20 μm sections 

of benign control biopsies using the Ambion total nucleic acid extraction kit according to 

manufacturers’ protocol (Ambion, Warrington UK). To assess the (tumor) infiltrate of slides 

sectioned for miRNA extraction, HE and CD3 stainings were performed on slides sectioned 

directly before and after sections used for RNA extraction.

miRNA array analysis
Total RNA (± 3 μg), were labeled and hybridized to miRNA microarrays as previously 

described11 along with a synthetic human miRNA universal reference pool containing 454 

miRNAs as a common reference. The arrays contain 655 human probes (miRBase v.10.1). 

Probe details can be found at www.microRNAworld.com. Image analysis was carried out 

by Bluefuse software (BlueGnome, Cambridge, UK). Raw fold ratio data were global 

loess-normalized within arrays and quantile normalized between arrays using the LIMMA 

package.12 The normalized log ratios (average of four replicates per probe) were used for 

subsequent analysis in Genespring 7.2 (Agilent Technologies, CA, US). MicroRNAs were 

filtered prior to ANOVA analysis to remove those that had a median intensity >300 

fluorescence units background in more than 50% of the arrays. ANOVA analysis was used 

to identify miRNAs differentially expressed between sample types and P-values were 

adjusted using the Benjamini-Hochberg multiple testing correction method.

miRNA-Q-PCR
For miRNA cDNA synthesis, 300 ng RNA was reverse transcribed using the miRNA 

reverse transcription kit (Applied Biosystems) in combination with the stem-loop 

Megaplex primer pool A v2.1 (Applied Biosystems), allowing simultaneous reverse 

transcription of 377 miRNAs and endogenous controls. MicroRNA-Q-PCR was performed 

using Taqman miRNA assays and 2x Universal PCR mastermix (Applied Biosystems). All 

reactions were run on the LightCycler480 (Roche, Almere, the Netherlands), according 

to manufacturer’s protocol (Applied Biosystems).The cycle parameters were as follows: 
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Table 1  Clinical characteristics of MF patients

Patient Gender Age Stage at diagnosis / 
biopsy

Current 
status

Follow-up after diagnosis / 
biopsy (months)

Array group

1 M 66 T2N0M0/T3N0M0 AWD 173 / 81

2 M 80 T3N0M0/T3N0M0 DOOC 100 / 100

3 M 57 T2N0M0/T3N0M0 DOD 24 / 16

4 M 54 T3N0M0/T3N0M0 DOD 45 / 45

5 F 65 T3N0M0/T3N0M0 DOD 56 / 19

6 M 67 T2N0M0/T3N0M0 DOD 58 / 7

7 M 57 T2N0M0/T2N0M0 DOD 28 / 28

8 F 49 T2N0M0/T3N1M0 DOD 12 / 4

9 F 66 T1N0M0/T3N0M0 ACR 139 / 10

10 F 84 T3N0M0/T3N0M0 DOD 13 / 9

11 M 65 T3N0M0/T3N0M0 DOD 54 / 7

12 F 61 T2N0M0/T3N0M0 DOD 83 / 39

13 F 44 T3N0M0/T3N0M0 ACR 11 / 9

14 M 63 T2N0M0/T3N0M0 AWD 306 / 16

15 M 75 T3N0M0/T3N0M0 AWD 49 / 49

16 F 87 T2N0M0/T2N0M0 AWD 9 / 9

17 M 62 T3N3M0/T3N3M0 DOD 22 / 22

18 M 60 T2N3M0/T3N0M0 AWD 34 / 18

19 F 50 T3N1M0/T3N1M0 DOD 20 / 20

Validation Group

1 M 33 T2N0M0/T3N3M0 DOD 55 / 4

2 M 72 T2N0M0/T3N0M0 DOD 41 / 13

3 F 50 T2N0M0/T3N0M0 ACR 147 / 90

4 M 61 T3N0M0/T3N0M0 DOOC 45 / 44

5 M 69 T2N0M0/T3N0M0 DOD 21 / 14

6 M 74 T2N0M0/T3N0M0 DOD 136 / 11

7 M 68 T3N0M0/T3N0M0 DOOC 24 / 17

8 M 76 T3N0M0/T3N0M0 DOD 39 / 39

9 M 80 T2N0M0/T3N0M0 DOOC 87 / 33

10 F 77 T3N0M0/T3N0M0 AWD 74 / 74

DOD denotes died of disease, DOOC died of other causes, ACR alive in complete remission, AWD alive 
with disease.
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10 min at 95 °C, 45 cycles denaturing for 15 s at 95°C and annealing and extension for 

60 s at 60 °C. MicroRNA expression was analyzed using the ΔCt method expressed 

relative to U6. Statistical analyses were performed using the Mann-Whitney independent 

t-test in SPSS (version 17). 

 

Results 

Aberrantly expressed miRNAs in tumor-stage mycosis fungoides are predomi-
nantly up-regulated in comparison to benign controls
We determined the miRNA profiles from FFPE biopsies of 19 tumor-stage MF patients 

and 12 inflammatory dermatoses (lichen planus n=7, eczema n=5) using miRNA microarrays 

(miRBase v.10.1). Using unsupervised clustering (Figure 1) the majority of tumor and benign 

tissue samples clustered in different clusters. However, 3 samples from benign 

inflammatory dermatoses clustered with tumor samples. Clinical data including the extent 

Figure 1  unsupervised cluster analysis tumor-stage MF and benign inflammatory dermatoses
Heatmap representing miRNA array expression data of MF tumor samples (n=19, depicted in blue) and 
benign inflammatory dermatosis samples (n=12, depicted in yellow). 
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of the lymphoid infiltrate did not correlate with the misclassification of these samples. 

Comparison of the miRNA expression levels in MF tumors with benign inflammatory 

dermatoses identified 49 differentially expressed miRNAs with an adjusted P-value<0.05 

(Table 2). The majority (30 miRNAs) were up-regulated in tumor-stage MF, and of these 30 

up-regulated miRNAs 16 have a fold change (FC) >2. Of the 19 miRNAs that are down-

regulated in tumor-stage MF, 7 have a FC<-2. To validate the array results miRNA-Q-PCR 

was performed for 6 miRNAs up-regulated in tumor-stage MF (miR-93, miR-155, miR-30b, 

miR-16 miR-30c and miR-92a) and 1 miRNA down-regulated in tumor-stage MF (miR-383) 

in an additional group of tumor-stage MF (n=10 and benign inflammatory dermatoses 

(eczema n=5 and lichen planus n=6) cases. In these experiments miRNA-Q-PCR results 

are consistent with microarray data and shown in Figure 2. All miRNAs show significant 

differential expression measured by Mann-Whitney independent t-test (P<0.05). 

Discussion 

In this study we elaborated the miRNA expression profile of tumor-stage MF using miRNA 

microarrays. We found 49 miRNAs aberrantly expressed in MF tumors compared to 

benign inflammatory dermatoses. Remarkably, the majority (30) of the miRNAs is up-

regulated, while in most tumors miRNAs are predominantly expressed at lower levels 

compared to their benign counterparts, though higher expression in the majority of 

differentially expressed miRNAs has also been described for B-cell malignancies.13 We 

validated differentially  expression of 7 miRNAs in additional test groups supporting the 

robustness of the results. 

The miRNA with the highest fold  difference is miR-93, which is part of the miR-106b-25 

cluster and has been previously described as an oncomir preventing apoptosis and 

promoting tumor growth,14,15 targeting tumor suppressors integrin-β8,14 FUS1,16 and 

E2F1.17 MiR-93 over expression is reported in a subtype of nodal lymphoma (ALK+ ALCL 

when compared to ALK- ALCL)18 and in gastric and hepatocellularcarcinoma.17,19 MiR-93 

is hosted by the gene encoding MCM7 (minichromosome maintenance protein 7) which 

has been reported to be over expressed in MF on the protein level.20 Another up-regulated 

miRNA is miR-155, which targets SHIP1, PU.1, AID, SOCS1, BACH1, CEBPB, CSFR, 

TAB2, MAF and JARID2, all known to play a role in immune responses and required for 

T-cell function.8,21 MiR-155 up-regulation is described for several types of lymphoma and 

leukemia, the first reports were on B-cell lymphoma.8,22-24 Several members of the miR-

17-92 cluster are up-regulated in MF tumor stage (miR-17-5p, miR-20a, miR-92a and 

miR-92). MiRNAs from the miR-17-92 cluster, targeting BIM and PTEN, regulate T-cell 
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survival and selection8 and are involved in many malignancies including lymphoma.25 

Remarkably, we demonstrate miR-16 up-regulation, while the tumor suppressing function 

of miR-16 and the corresponding down-regulation is frequently described in tumors and 

lymphoma.24 Possibly miR-16 plays a different yet unexplored role in MF tumors. 

Recently the effect of DNA copy number alteration on miRNA expression was shown 

and has been linked to the initiation, progression and development of malignancies.26,27 

To investigate the possible effect of copy number alterations on miRNA expression in 

tumor-stage MF we determined the genomic location (miRBase release September 

2010) of differentially expressed miRNAs and correlated those to previously described 

Table 2  Differentially expressed miRNAs with chromosomal location

miRNA Fold change Adj. P-value Chromosomal location

hsa-miR-620 -3,07 0,0481 12: 116586365-116586459 [-]

hsa-miR-302d -2,23 0,0422 4: 113569160-113569227 [-]

hsa-miR-483 -2,19 0,0030 11: 2155364-2155439 [-]

hsa-miR-204 -2,08 0,0010 9: 73424891-73425000 [-]

hsa-miR-323b-5p -2,07 0,0407 14: 101522556-101522637 [+]

hsa-miR-380-5p -2,06 0,0303 14: 101491354-101491414 [+]

hsa-miR-383 -2,02 0,0459 8: 14710947-14711019 [-]

hsa-miR-211 -1,96 0,0459 15: 31357235-31357344 [-]

hsa-miR-363* -1,94 0,0015 X: 133303408-133303482 [-]

hsa-miR-133b -1,92 0,0033 6: 52013721-52013839 [+]

hsa-miR-485-3p -1,80 0,0075 14: 101521756-101521828 [+]

hsa-miR-517c -1,70 0,0377 19: 54244567-54244661 [+]

hsa-miR-199b -1,64 0,0165 9: 131007000-131007109 [-]

hsa-miR-199a -1,63 0,0304 19: 10928102-10928172 [-] 

1: 172113675-172113784 [-] 

hsa-miR-133a -1,53 0,0475 18: 19405659-19405746 [-]

20: 61162119-61162220 [+] 

hsa-miR-99a -1,48 0,0407 21: 17911409-17911489 [+]

hsa-miR-197 -1,44 0,0155 1: 110141515-110141589 [+]

hsa-miR-218 -1,41 0,0481 4: 20529898-20530007 [+] 

5: 168195151-168195260 [-] 

hsa-miR-100 -1,40 0,0248 11: 122022937-122023016 [-]

hsa-miR-25 1,28 0,0483 7: 99691183-99691266 [-]

hsa-miR-15b 1,34 0,0407 3: 160122376-160122473 [+]

hsa-miR-195 1,34 0,0325 17: 6920934-6921020 [-]
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follow up table 2

miRNA Fold change Adj. P-value Chromosomal location

hsa-miR-221 1,40 0,0066 X: 45605585-45605694 [-]

hsa-miR-103 1,46 0,0389 20: 3898141-3898218 [+]

5: 167987901-167987978 [-] 

hsa-miR-107 1,48 0,0176 10: 91352504-91352584 [-]

hsa-miR-181a 1,49 0,0407 9: 127454721-127454830 [+]

1: 198828173-198828282 [-] 

hsa-miR-342 1,67 0,0025 14: 100575992-100576090 [+]

hsa-miR-20a 1,69 0,0165 13: 92003319-92003389 [+]

hsa-miR-222 1,70 0,0025 X: 45606421-45606530 [-]

hsa-let-7i 1,78 0,0022 12: 62997466-62997549 [+]

hsa-miR-30c 1,91 0,0075 6: 72086663-72086734 [-]
 1: 41222956-41223044 [+] 

hsa-miR-191 1,92 0,0040 3: 49058051-49058142 [-]

hsa-miR-24 1,99 0,0038 9: 97848303-97848370 [+]

19: 13947101-13947173 [-] 

hsa-miR-17-5p 2,06 0,0021 13: 92002859-92002942 [+]

hsa-miR-342-3p 2,08 0,0004 14: 100575992-100576090 [+]

hsa-miR-146b 2,13 0,0007 10: 104196269-104196341 [+]

hsa-miR-29a 2,26 0,0407 7: 130561506-130561569 [-]

hsa-miR-92b 2,26 0,0007 1: 155164968-155165063 [+]

hsa-miR-320a 2,41 0,0295 8: 22102475-22102556 [-]

hsa-miR-16 2,46 0,0021 13: 50623109-50623197 [-] 

3: 160122533-160122613 [+] 

hsa-miR-30b 2,51 0,0155 8: 135812763-135812850 [-]

hsa-miR-146a 2,70 0,0005 5: 159912359-159912457 [+]

hsa-miR-92 2,80 <0,0001 13: 92003568-92003645 [+] 

 X: 133303568-133303642 [-] 

hsa-miR-142-3p 3,05 0,0077 17: 56408593-56408679 [-]

hsa-miR-92a 3,20 <0,0001 13: 92003568-92003645 [+] 

X: 133303568-133303642 [-] 

hsa-miR-21 3,86 0,0123 17: 57918627-57918698 [+]

hsa-miR-155 4,41 <0,0001 21: 26946292-26946356 [+]

hsa-miR-425-5p 5,54 0,0165 3: 49057581-49057667 [-]

hsa-miR-93 5,83 0,0093 7: 99691391-99691470 [-]

Positive fold changes are up-regulated in MF samples and negative values down-regulated compared to 
controls. Adj. P-value is adjusted P-value after Benjamini-Hochberg multiple testing correction.
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copy number alterations seemingly characteristic for tumor-stage MF,2,4,5 which revealed  

that 8 up-regulated miRNAs (miR-93, miR-21, miR-142-3p, miR-30b, miR-92b, miR-29a, 

miR-181a and miR-25) are encoded in genomic regions of gain (Table 3). We could not 

find any correlation between down-regulated miRNAs and regions of loss identified in 

tumor-stage MF. Not all miRNAs of a miRNA cluster located in a region of gain are up-

regulated suggesting that other mechanisms than copy number effect, such as 

transcriptional regulation primarily regulate miRNA expression in MF. 

Figure 2  Expression levels of selected miRNAs as meas-
ured by miRNA-Q-PCR in an additional test group.
Expression levels of miR-93, miR-155, miR-92a, miR-30b, miR-
16, miR-30c and miR-383 in tumor-stage MF (n=10) and benign 
inflammatory dermatoses (lichen planus n=6, eczema n=5) 
calculated by Delta Ct method.  Horizontal bars represent the 
mean. All miRNAs are significant differentially expressed be-
tween tumor-stage MF and benign inflammatory dermatoses, 
P-values were measured by Mann-Whitney independent t-test. 
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Recent data from our group and others demonstrated many differences in gene 

expression profiles and DNA copy number alterations between MF and Sz, a leukemia 

of skin-homing T cells, in addition Campbell and colleagues recently suggested that MF 

and Sz arise from different T-cell subsets, indicating that the molecular pathogenesis of 

these CTCL may be distinct.2,28-30 We compared our MF tumor-stage miRNA profile with 

the previously generated miRNA profile of Sz.11 Although a similar array platform was 

used, a direct comparison of MF and Sz miRNA array results was not possible, since 

different reference miRNAs were used for competitive hybridization in both experiments 

(synthetic miRNAs in current experiments, and miRNAs isolated from tonsils in previous 

experiments ).11 We therefore compared the list of differentially expressed miRNAs 

identified in MF tumors (MF vs benign inflammatory dermatoses) with the list of 

differentially expressed miRNAs in Sz (CD4+ T cells of Sz vs CD4+ T cells from healthy 

donors).11 This comparison, showing minimal overlap between MF and Sz, support the 

notion that Sz and tumor-stage MF are molecular distinct.  In contrast to tumor-stage 

MF the majority of the miRNAs (104 miRNAs) in Sz is down-regulated compared to its 

benign counterpart (CD4+ T cells). Of the 19 miRNAs down-regulated in tumor-stage MF, 

only miR-100 and miR-133 are also down-regulated in Sz. The 30 miRNAs up-regulated 

in MF tumor-stage and the 10 miRNAs up-regulated in Sz show no overlap. Several of 

the miRNAs up-regulated in tumor-stage MF are down-regulated in Sz, among these are 

miR-93, miR-155, miR-16 and members of the miR-17-92 cluster. 

Table 3  Differentially expressed miRNAs located in a previously decribed region of DNA copy 
number alteration in MF

Gain in MF

miRNA Cluster Cytoband Chromosomal location va
n
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hsa-miR-92b 1q22 1: 155164968-155165063 [+] x

hsa-miR-181a 181a-181b

181a-181b

1q32.1

9q33.3

1: 198828173-198828282 [-] 

9: 127454721-127454830 [+]

x

hsa-miR-25 106b-93-25 7q22.1 7: 99691183-99691266 [-] x

hsa-miR-93 106b-93-25 7q22.1 7: 99691391-99691470 [-] x

hsa-miR-29a 29a-29b 7q32.3 7: 130561506-130561569 [-] x x

hsa-miR-30b 30b-30d 8q24.22 8: 135812763-135812850 [-] x

hsa-miR-142-3p 17q22 17: 56408593-56408679 [-] x

hsa-miR-21 17q23.1 17: 57918627-57918698 [+] x
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In summary this is the first report describing the characterization of the miRNA profile in 

tumor-stage MF, thereby identifying 49 aberrantly expressed miRNAs. For 8 miRNA 

encoding genes, DNA copy number alteration could possibly contribute to aberrant 

expression. This analysis provides a framework for further (functional) studies which will 

reveal the role of these miRNAs on gene and protein expression and thereby their specific 

contribution to the pathogenesis of this disease. 
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Abstract

Primary cutaneous anaplastic large cell lymphoma (C-ALCL) has an indolent clinical course 

and favorable prognosis. On the contrary, primary cutaneous peripheral T-cell lymphoma 

not otherwise specified (PTL-NOS) displays aggressive clinical behavior. To identify 

genomic events relevant in the pathogenesis of these cutaneous T-cell lymphomas 

(CTCLs), we carried out array-based CGH analysis. Simultaneously, gene expression 

profiling was conducted to gain insight into gene expression programs associated with 

the different clinical behavior of these CTCLs. 

C-ALCL was characterized by gains on chromosome 7q and 17q and losses on 6q and 

13q. PTL-NOS similarly demonstrated gains on 7q and 17q, but was distinguished by 

gains on chromosome 8 and loss of a focal overlapping region on 9p21. We identified 

minimal common regions harboring candidate oncogenes and tumor suppressor genes 

in C-ALCL and PTL-NOS. Genes with a role in lymphocyte chemotaxis, apoptosis and 

proliferation were overrepresented among genes differentially expressed between these 

lymphomas. C-ALCL demonstrated higher expression of the skin-homing chemokine 

receptor genes CCR10 and CCR8 which may explain the lower tendency to disseminate 

to extracutaneous sites. Furthermore, C-ALCL and PTL-NOS showed aberrant expression 

of distinct genes implicated in apoptosis and proliferation, such as IRF4/MUM1 and 

PRKCQ, which may account for differences in clinical aggressiveness.
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Introduction

Primary cutaneous anaplastic large cell lymphoma (C-ALCL), formerly designated as 

primary cutaneous CD30-positive large T-cell lymphoma, is a T-cell lymphoma composed 

of large cells with an anaplastic, pleomorphic or immunoblastic cytomorphology, that 

show expression of the CD30 receptor.1 Most patients present with solitary or localized 

skin tumors that have a tendency to regress spontaneously. C-ALCL has an indolent 

clinical behavior and rarely shows extracutaneous dissemination. This cutaneous T-cell 

lymphoma (CTCL) is commonly treated with radiotherapy and has an excellent prognosis 

with an estimated 5-year survival exceeding 90%.2-4 In contrast, primary cutaneous 

peripheral T-cell lymphoma not otherwise specified (PTL-NOS), presents with more 

generalized skin tumors and displays aggressive clinical behavior.1 PTL-NOS, formerly 

termed CD30-negative large T-cell lymphoma, frequently disseminates to extracutaneous 

sites and is often refractory to chemotherapeutic treatment. Patients with PTL-NOS have 

an estimated 5-year survival of less than 15%.5-7

The genetic events involved in the pathogenesis of these cutaneous lymphomas are 

largely unknown. Cytogenetic analyses of C-ALCL have revealed recurrent copy number 

alterations (CNAs) of several chromosomal regions, including gains on 6p, 7q, and 19, 

and losses on  6q, 9 and 18.8-12 The t(2;5)(p23;q35) translocation inducing the NPM-ALK 

chimeric protein, a characteristic feature of nodal ALCL, is not or only rarely found in 

C-ALCL.13 To date no studies of chromosomal alterations in primary cutaneous PTL-NOS 

have been published.

Genetic factors responsible for the differences in clinical behavior of C-ALCL and PTL-

NOS, both derived from skin-homing T cells, have not yet been resolved. Our group has 

previously shown that the FAS receptor is expressed by C-ALCL tumor cells, whereas 

expression is lost in the majority of PTL-NOS cases, suggesting differences in sensitivity 

to extrinsic pro-apoptotic signals.14 In addition, studies have indicated that signaling 

through the CD30 receptor is implicated in proliferation and apoptosis of lymphoid cells 

in C-ALCL.15,16

In this study, array-based CGH analysis and gene expression profiling was performed on 

C-ALCL and primary cutaneous PTL-NOS tumor samples to identify chromosomal 

aberrations and gene expression patterns, which may contribute to a better understanding 

of the molecular mechanisms involved in the development and in the differential clinical 

behavior of these 2 types of CTCL.
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Material and Methods

Selection of Patients
Pre-treatment biopsies of 11 patients with C-ALCL and 10 patients with primary cutaneous 

PTL-NOS were selected for this study (Table 1). In all 21 cases, the biopsies contained 

more than 75% malignant T cells. The immunophenotypical characteristics of the 21 

cases are presented in Supplementary Table S1. All patients had been retrieved from the 

database of the Dutch Cutaneous Lymphoma Group (DCLG), reviewed by an expert panel 

of dermatologists and hematopathologists before entry in this database and classified 

using criteria of the WHO-EORTC classification for the primary cutaneous lymphomas.1 

In all patients routine staging procedures including physical examination, complete and 

differential blood cell counts and serum biochemistry, CT scan of neck, chest and abdomen 

and a bone marrow biopsy had been negative. With respect to the group of primary 

cutaneous PTL-NOS, these cases did not meet the criteria of one of the rare subtypes of 

primary cutaneous PTL-NOS (aggressive epidermotropic CD8+ CTCL; cutaneous gamma-

delta T-cell lymphoma; CD4+ small/medium pleomorphic CTCL), and none of them had a 

history of or concurrent patches and plaques suggesting a diagnosis of mycosis fungoides. 

Of 10 patients with PTL-NOS, 9 presented with generalized ulcerating tumors. CD30 

staining was either completely negative (eight cases) or showed expression by a minor 

proportion (< 25%) of neoplastic T cells (cases 20 en 21). Approval for these studies was 

obtained from the institutional review board of the LUMC. Informed consent was provided 

according to the Declaration of Helsinki.

Extraction of RNA and DNA
In all cases, DNA and RNA were isolated from the same frozen tumor biopsy sample for 

array-based CGH and microarray-based gene expression analysis, quantitative real-time 

PCR (qPCR), and mutation analysis. RNA was extracted from 25 x 50 μM frozen sections 

using the RNeasy kit (Qiagen, Hilden, Germany), yielding 25-60 μg total RNA. DNA was 

isolated from 25 frozen sections (20 μM) using the Genomic-tip 20/G kit (Qiagen), yielding 

10-60 μg genomic DNA. 

Array-based CGH analysis
Genome-wide analysis of CNAs was performed using array-based CGH containing 

approximately 3500 BACs produced at the Leiden University Medical Center. The particular 

BAC set used to produce the arrays was distributed by the Wellcome Trust Sanger 

Institute (Hinxton, United Kingdom) and contains large insert clones spaced at 

approximately 1 Mb density over the full genome, a set of subtelomeric sequences for 
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each chromosome arm, and a few hundred probes selected for their involvement in 

oncogenesis.17 Fabrication and validation of the array, hybridization methods and analytical 

procedures have been described elsewhere in detail.18 Data were analyzed using CAPweb 

and visualized using VAMP.19 Copy number was classified as normal, copy number gain 

(log2 ratio > 0.25) or genomic loss (log2 ratio < –0.25). Identified CNA of regions with copy 

number variations described in the Database of Genomic Variants (http://projects.tcag.

ca/variation) were excluded from analysis. 

Table 1  Clinical characteristics

No Sex Age Extent Thera-
py

Result Site of  
Relapse

Current 
status

Follow-up 
(months)

C-ALCL

1 M 48 LOC RT CR S; LN;LUNG DOD 231

2 F 62 GEN chemo PR S; LN DOD 36

3 F 74 SOL RT CR S ACR 258

4 F 45 GEN Chemo PR S; LN DOD 308

5 M 69 LOC RT CR ACR 120

6 M 51 GEN S ACR 105

7 M 63 GEN RT PR S AWD 139

8 M 86 LOC RT CR ACR 29

9 M 70 SOL RT CR S ACR 12

10 F 79 SOL RT CR ACR 13

11 F 44 LOC EXC CR S AWD 62

PTL-NOS

12 M 33 GEN chemo PR S;LN;CNS DOD 13

13 M 65 SOL chemo PR S;CNS DOD 8

14 F 80 GEN chemo PR S;LN DOD 27

15 M 70 GEN chemo PR S DOD 13 

16 M 75 GEN chemo PD BLOOD DOD 1

17 M 73 GEN chemo PR S;LN DOD 14

18 M 58 GEN chemo PD DOD 3 #

19 F 65 GEN chemo PD S;LN; BM DOD 12

20 M 33 GEN chemo PD S;CNS DOD 19

21 M 59 GEN chemo PR DOD 6 #

Abbreviations used: SOL, solitary lesion; LOC, localized disease; GEN, generalized (multifocal) skin 
disease; RT, radiotherapy; EXC, excision; CR, complete remission; PR, partial remission; PD, progres-
sive disease; S, skin; LN: lymph node; CNS, central nervous system; BM: bone marrow; ACR, alive in 
complete remission; AWD, Alive with clinical symptoms of disease; DOD, death by disease; #: died of 
therapy-related side effects



CHAPTER 6

120

Gene expression profiling
Samples and microarrays (Human Genome U133plus2.0 array, Affymetrix Santa Clara, 

CA), interrogating over 47000 human transcripts and variants, were processed according 

to the manufacturer’s protocol as described previously.20 The microarray images were 

quantified utilizing the Genechip operating system (GCOS) v1.2 software (Affymetrix). 

The 260/280 ratios of isolated RNA were >1.8 for all samples, as measured using a 

NanoDrop ND-1000 spectrophotometer (Thermo Scientific, Wilmington, DE), confirming 

RNA purity. RNA integrity was determined by gel electrophoresis, which showed two 

ribosomal RNA bands with the 28S rRNA band having a higher intensity than the 18S 

rRNA band in all cases. In addition, we used the internal controls present on the Affymetrix 

arrays allowing monitoring of RNA quality after hybridization. The 3’/5’ GAPDH and 3’/5’ 

beta-actin values were within the limits recommended by Affymetrix (maximally 1.25 and 

3 respectively) for all samples.

The average fluorescence intensity was determined for each microarray and then the 

output of each experiment was globally scaled to a target value of 200. The profiles of 

normal CD4+ T cells were obtained from the GEO database (accession numbers 

GSM146182-GSM146186) previously published by Piccaluga.21 They obtained the CD4+ 

T cells by positive selection using magnetic beads (Miltenyi Biotec). Normalization and 

variance stabilization was performed using VSN in the R statistical software package.22

Data analysis
BAC clone and oligonucleotide probe positions were established based on Ensembl 

(Ensembl is a joint project between European Bioinformatics Institute (EBI), an outstanding 

of the Europan Molecular Biology Laboratory (EMBL), and the Welllcome Trust Sanger 

Institute (WTSI), Hinxton, UK) release 44 (April 2007). Recurrent minimal common regions 

(MCRs) with CNA affecting at least 35% of analyzed samples were computed in CAPweb 

using the algorithm proposed by Rouveirol et al.23 MCRs consisting of only subtelomeric 

clones were not taken into consideration. The nearby borders of adjacent clones were 

chosen to delineate MCRs. Candidate genes with pathobiological relevance were selected 

by focusing on genes listed as oncogene or tumor suppressor gene in the Cancer Gene 

Census list (November 2008).24 Comparative analysis of the gene expression patterns of 

C-ALCL and PTL-NOS was performed utilizing BRB-arraytools v3.5.0 (http://linus.nci.nih.

gov/BRB-ArrayTools.html) using the Significance Analysis of Microarray algoritm, with a 

false discovery rate of 0.1, performing 100 permutations. The DAVID bioinformatics 

database was used for Gene Ontology (GO) enrichment analysis.25 Genes most significantly 

differentially expressed with a ratio of geometric means (RGM) higher than 2.5 or lower 

than 0.4 were analyzed with highest stringency for enriched Gene Ontology clusters. By 
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means of the gene location, the associated BAC clone was determined, for genes not 

located in the region of a BAC clone the most proximate clone spotted on the array was 

taken. For these BAC clones the percentage of CNAs was calculated.  

Quantitative real-time PCR
cDNA synthesis was performed on 1 μg total RNA, after treatment with RQ1 DNase I 

(Promega, Madison, WI), using IScript reverse transcriptase (Bio-Rad, Veenendaal, the 

Netherlands), oligo(dT)12-18 and  random hexamer priming (Bio-Rad) in a final volume of 20 

μl. qPCR was performed with the MyIQ Detection System and the SYBR Green Supermix 

(Bio-Rad). The cycle parameters for transcripts of interest and for the reference genes 

U1A and RPS11 used for normalization were as follows: denaturing for 15 s at 97 °C; 

annealing and extension for 20 s at 60 °C, for 40 cycles. Primer sequences (Invitrogen, 

Breda, The Netherlands) are given in Supplementary Materials online (Table S2). Data 

were evaluated using MyIQ software (Bio-Rad) and the second derivative maximum 

algorithm, while confirmation of the specificity of the PCR product and standard curves 

were performed as previously described.20 Freshly isolated CD4+ T cells of 4 healthy 

donors were used as controls for qPCR experiments.

Mutation analysis
Mutation analysis of the coding region of the PRKCQ gene was performed on cDNA from 

8 biopsy samples of patients with PTL-NOS. Primer sequences are listed in Supplementary 

Data (Table S2). The PCR fragments were purified and directly subjected to sequence 

reactions. The software Mutation Explorer (SoftGenetics, LLC, State College, PA) was 

applied for analyzing sequences and comparing with reference sequences from the NCBI 

database (National Center for Biotechnology Information, Bethesda, MD). 

Immunohistochemistry 
Immunohistochemical analysis of the protein expression of TNFRSF8/CD30, TRAF1 and 

IRF4/MUM1 was performed on the 21 C-ALCL and PTL-NOS samples selected for genomic 

analyses. In addition, paraffin-embedded sections of an independent set consisting of 20 

C-ALCL and 5 PTL-NOS samples were subjected to immunohistochemical staining. 

Immunostaining was performed with antibodies against TNFRSF8/CD30 (DAKO, Glostrup, 

Denmark), TRAF1 and IRF4/MUM1 using a standard three-step streptavidin-biotin-

peroxidase–based technique after antigen retrieval with microwave heating as described 

previously.26 The antibodies against IRF4/MUM1 and TRAF1 were kindly provided by prof. 

dr. G. Cattoretti, Institute of Cancer Genetics, Columbia University, New York, USA and 

prof.dr. H. Dürkop, Institute of Pathology, Charité, Berlin, Germany, respectively. 
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Results

Recurrent chromosomal alterations in C-ALCL and PTL-NOS with potential 
biological significance
Tumor biopsy samples of 11 patients diagnosed with C-ALCL and 10 patients with PTL-

NOS were analyzed for numerical chromosomal alterations using array-based CGH. 

Clinical characteristics of the patients are shown in Table 1 and immunophenotypical 

characteristics of the tumor cells are provided in the supplementary data (Table S1). In 

DNA isolated from all C-ALCL and PTL-NOS tumor samples numerous chromosomal 

alterations were present. An overview of the cumulative array-based CGH results in a 

Frequency of Amplicon, Gain and Loss (FrAGL) plot is shown in for C-ALCL in Figure 1a 

and for PTL-NOS in Figure 1c. 

The overall pattern of chromosomal alterations of C-ALCL is characterized by gains of 

large regions on chromosome 7q and 17 and losses of regions on chromosome 6q and 

13. To delineate chromosomal regions harboring genes with pathobiological relevance 

we determined the minimal common regions (MCRs), the smallest recurrent 

chromosomal region with altered probes common to the set of array-based CGH 

profiles.23 A total of 30 MCRs present in at least 35% of the patients were identified. 

MCRs are visualized in the averaged chromosomal pattern of C-ALCL as vertical bands 

in Figure 1b and are listed in Table 2. Of these recurrent MCRs with CNA, 20 represent 

gains of chromosomal regions and 10 correspond to losses. The most highly recurrent 

chromosomal alterations are gain of 7q31 and loss of 13q34 and 6q16-6q21, all affecting 

45% of patients. Next, we cross-referenced the genes residing in these 30 MCRs with 

the Cancer Gene Census, a list of genes for which mutations have been causally 

implicated in cancer.24 As presented in Table 2a, the MCRs harbored 26 known 

oncogenes and tumor suppressor genes. The most highly recurrent MCR with gain in 

C-ALCL at 7q31 harbors a single oncogene, the MET gene that encodes the hepatocyte 

growth factor receptor. Three putative tumor suppressor genes, CDC16, CUL4A and 

PRDM1 reside in the loci with loss on 13q34 and 6q16-6q21. 

The pattern of CNAs of PTL-NOS is predominated by gains of large regions on chromosome 

7, 8 and 17 (Figure 1c). Thirty-four MCRs affecting at least 35% of patients were identified, 

including 30 gains and only 4 losses (Fig 1d, Table 2). The most highly recurrent MCRs 

with CNA are 7q36 affected by gain in 60% of patients and 7q21-7q22, 8p12-8q12, 8p21.1-

8q21.3, and 8q22-8q24.2, each showing gain in 50% of patients. Forty-three known 

cancer-associated genes, listed in Table 2b, are located in MCRs with recurrent CNA. 

Although no confirmed oncogenes are located on 7q36, it harbors the FASTK gene 

encoding an anti-apoptotic kinase expressed by T cells.27 The MYC oncogene, previously 
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shown to be amplified and over expressed in Sézary syndrome and also in aggressive 

B-cell lymphomas, is located in the MCR with gain on 8q22-8q24.2.28,29

Similarities and differences between chromosomal alterations in C-ALCL and 
PTL-NOS
The cumulative patterns of chromosomal alterations of C-ALCL and PTL-NOS show many 

overlapping features. C-ALCL and PTL-NOS are concordant with respect to gain of large 

chromosomal regions on 7q and 17. These chromosomes contain several MCRS with 

CNA that affect both of these lymphomas, such as gains on 7q21-7q22 and 17q21-17q25.  

Other MCRs that C-ALCL and PTL-NOS have in common are gain of 6p21.3 and losses 

on 8p21-22 (Table 2). 

However, clear differences exist between the CNA patterns of C-ALCL and PTL-NOS. 

Most strikingly, gains on chromosome 8 affect the majority of patients with PTL-NOS, 

but are almost absent in C-ALCL. On the other hand, C-ALCL tumor samples were 

distinguished by frequent losses on chromosome 6 and 13. A distinction of potential 

relevance concerns the 9p21 locus, which is not affected by loss in any of the C-ALCL 

patients, but is deleted in 50% of PTL-NOS patients (Fig 1c). The deleted region is quite 

large in most patients and contains a MCR located on 9p21.3 harboring the CDKN2A 

tumor suppressor gene. 

Gene expression patterns of C-ALCL and PTL-NOS show marked differences 
To gain more insight into the gene expression programs of the tumor cells that underlie 

the difference in clinical behavior of these entities, gene expression profiling was 

performed. Supervised gene expression analysis revealed that 547 probe sets targeting 

358 genes were significantly differentially expressed. Of these genes 325 were relatively 

higher expressed in C-ALCL and 33 showed higher expression in PTL-NOS. A heatmap, 

indicating gene expression intensities across the samples, showing the 91 most 

differentially expressed genes with a ratio of geometric means (RGM) exceeding 2.5 is 

depicted Figure 2a and 2b. To illustrate the expression of these 91 genes in benign 

CD4+ T cells, we made use of published transcriptome data acquired using the same 

microarray platform.21 A heatmap illustrating transcript abundance can be found as 

supplementary data (Supplementary Figure S1). Expression of the majority of genes 

differentially expressed between C-ALCL and PTL-NOS is low in benign CD4+ T cells. 

A complete list of the differentially expressed genes can be found in Supplementary 

Table S3. Genes with the relatively highest expression in C-ALCL are CCR10 and 

TNFRSF8/CD30. PTL-NOS demonstrated higher expression of several genes including 

Protein Kinase C theta (PRKCQ), Fyn binding protein and several GIMAP genes.
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As copy number alterations contribute to oncogenesis by alterating the expression of 

resident genes, we assessed the possible relationship between altered expression and 

the presence of gains and losses of specific chromosomal regions in these lymphomas. 

For the most significantly differentially expressed, the frequency of gain or loss of the 

Figure 1  Visualisation of the array-based CGH data using VAMP
Chromosomes are indicated on the horizontal axis; excluded are the X and Y chromosomes. Gains are 
depicted in red and losses in green. (A) Frequency of Amplicon, Gain and Loss (FrAGL) plot for C-ALCL 
tumor samples. (B) Averaged CGH pattern of C-ALCL tumor samples. MCRs with loss occurring in at 
least 35% of patients are indicated as green vertical lines and MCRs with gain as red vertical lines. (C) 
FrAGL plot for PTL-NOS tumor samples. (D) MCRs with loss occurring in at least 35% of patients indicated 
as green vertical lines and MCRs with gain indicated as red vertical lines in the averaged CGH pattern of 
PTL-NOS tumor samples.  
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corresponding chromosomal region in the two lymphomas was evaluated. As apparent in 

Figure 2, many genes relatively over expressed in C-ALCL were located in a chromosomal 

region that was frequently affected by gain in C-ALCL (TNFRSF8/CD30, CCR7, and CCR10), 

or less often in a region with loss in PTL-NOS (TMOD1). 
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Conversely, the GIMAP 1, 4 and 6 genes, relatively over expressed in PTL-NOS, reside in 

chromosomal regions commonly showing gain in this malignancy. The number of samples 

per diagnostic group was insufficient to perform a comprehensive integrative analysis by 

correlating expression of each individual gene to the presence of CNA of the corresponding 

chromosomal region. 

Pathway analysis reveals that C-ALCL and PTL-NOS differ in particular with re-
spect to expression of genes involved in chemotaxis, apoptosis, and lymphocyte 
proliferation 
Next, to interpret the comparative gene expression data and extract information regarding 

biological processes and signaling pathways that may distinguish these lymphomas, we 

performed knowledge-based pathway analysis. Gene Ontology analysis of the most 

differentially expressed genes revealed significant enrichment of 6 GO clusters, these are 

depicted in Figure 2c with their respective P-values. Genes belonging to these enriched 

clusters are marked in Figure 2a and b. The lymphoma types C-ALCL and PTL-NOS in 

particular differed in expression of gene clusters with a role in chemokine receptor activity 

(CCR10, CCR7, CNTNAP1, CCR8), apoptosis (TNFRSF8/CD30, JMY, RFFL, TMEM23/

SGMS1, TRAF1, HIP1, PMAIP1, CDKN2C/p18) and lymphocyte proliferation (PRKCQ). This 

result is consistent with the observed difference in extracutaneous dissemination and 

treatment resistance of these CTCLs.

Quantitative real-time PCR and immunohistochemistry confirm gene expres-
sion results 
To validate the results of gene expression analysis, transcript abundance of selected 

genes was measured using qPCR in the C-ALCL and PTL-NOS tumor samples as well as 

in CD4+ T cells from healthy individuals used as benign reference (Figure 3). Genes with 

a role in chemotaxis (CCR10, CCR7), apoptosis (TNFRSF8/CD30, TRAF1), T-cell activation 

and proliferation (IRF4/MUM1, PRKCQ) were analyzed. 

In addition, expression levels of the cytokine receptor gene IL23R and of the oncogenic 

Polycomb gene EZH2 were quantified. qPCR analysis confirmed significant differential 

expression found in microarray-based gene expression analysis of all tested genes. 

Expression levels differed between C-ALCL and PTL-NOS with fold changes ranging from 

3.8 (TRAF1) to 131.5 (CCR7). The genes encoding the chemokine receptors CCR10 and 

CCR7 appeared to be selectively expressed in tumors of C-ALCL patients. Moreover, the 

expression of IRF4/MUM1, a transcription factor that regulates T-cell apoptosis, was 

markedly higher in C-ALCL than in PTL-NOS or CD4+ T cells. Expression of TRAF1, encoding 

a protein that relays signals from TNFRSF8/CD30, was significantly higher in C-ALCL than 
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in PTL-NOS. Conversely, transcript levels of PRKCQ were higher in PTL-NOS than in C-ALCL 

and CD4+ T cells (fold change 10.9 and 4.6 respectively). The PRKCQ gene is exclusively 

expressed by T cells and functions as a downstream target of the T-cell receptor, relaying 

signals required for activation and survival following stimulation by antigen.30-32 Abundant 

expression of PRKCQ has been noted previously in T-cell leukemias and lymphomas.33 For 

these reasons we considered it a prime candidate oncogene in PTL-NOS. As oncogenes, 

in particular kinases, can be activated through aberrant over expression as well as through 

activating mutations, we performed analysis of the coding region of PRKCQ for mutations 

potentially resulting in constitutive activity of its kinase domain. This failed to reveal any 

mutations in the included PTL-NOS tumor samples (data not shown). 

In addition, the expression of IRF4/MUM1 and TRAF1 was investigated on the protein 

level using immunohistochemistry. Stainings were carried out on samples included in this 

study for genomic profiling as well as on additional C-ALCL cases not included in this 

study. Staining of more than 50% of the neoplastic T cells for IRF4/MUM1 and TRAF1 

was observed in 31 of 31 (100%) and 26 of 31 (84%) cases of C-ALCL, but not in any of 

the 15 PTL-NOS cases. Results of exemplary stainings are shown in Figure 4. In a report 

on TRAF1 expression, Assaf and colleagues 34 described strong TRAF1 expression in only 

1 of 28 (4%) C-ALCL cases. Kempf and colleagues have described IRF4/MUM1 expression 

in only 2 out of 10 cases of C-ALCL.35 Consistent with our results, more recent 

immunohistochemical studies have demonstrated IRF4/MUM1 and TRAF1 expression in 

80-100% of C-ALCL cases.36-38 
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Discussion

C-ALCL and primary cutaneous PTL-NOS are two distinct types of CTCL that are both 

derived from skin-homing T cells, but show marked differences in clinical behavior and 

prognosis. Array-based CGH analysis allowed identification of recurrent chromosomal 

alterations harboring candidate oncogenes and tumor suppressor genes in these lymphoma 

types. Although C-ALCL and PTL-NOS both demonstrated gains of large regions on 

chromosome 7 and 17, C-ALCL was distinguished by additional losses on chromosome 6 

and 13 and PTL-NOS by gains on chromosome 8 and losses on chromosome 9. Detailed 

analysis of CNAs in C-ALCL showed that the most highly recurrent MCR with gain was 

located on 7q31 and loss on 6q16-6q21 and 13q34, each affecting 45% of the patients. 

The focal MCR with gain on 7q31 harbors the MET oncogene. MET amplification has 

previously been shown to result in its increased expression in nodal ALCL39 and deregulated 

expression has been noted in acute T-cell leukemia.40,41 The MCR with loss on 6q16-6q21 

contains the PRDM1/BLIMP-1 gene encoding a transcription factor that is implicated in 

T-cell homeostasis and differentiation. In mice lacking PRDM1/Blimp-1 activity accumulation 

of CD4+ T cells is observed.42,43 Other cancer-associated genes located in regions with 

recurrent CNA with potential relevance in the pathogenesis of C-ALCL include FOXO1A 

and BRCA2 on 13q12-13q14 (loss in 36%), PRDM16/MEL1 on 1p36 (gain in 27%) and 

TP53 on 17p13 (loss in 27% of patients). We have identified previously unreported recurrent 

chromosomal alterations in C-ALCL and confirmed several gains and losses found in the 

few studies in which conventional CGH was applied. Consistent with our results, Zettl et 

al. observed gain of regions on 7q and 6p in 2 of 11 C-ALCL samples.11 Mao described 

gains of 1p, 5, 6, 7, 8p and 19, showing partial overlap with our findings.9 In a group of 7 

patients with relapsing C-ALCL Prochazkova and colleagues observed recurrent gain of 

regions on chromosome 9 and losses on chromosome 6 and 18.10 Furthermore in nodal 

ALCL recurrent CNAs affecting 7q and 13q have been described.11,44

Figure 2  Comparative analysis of gene expression profiles of 11 C-ALCL and 10 PTL-NOS tumor 
samples
Heatmap depicting gene expression intensities of significantly differentially expressed genes (SAM al-
gorithm, false discovery rate 0.1). Values are visualized according to the scale bar that represents the 
difference in expression relative to the mean expression. Red represents high, black represents interme-
diate and blue represent low expression. (A) Genes showing higher expression in C-ALCL compared to 
PTL-NOS with a Ratio of Geometric Means (RGM) higher than 2.5. (B) Genes expressed at lower levels in 
C-ALCL than in PTL-NOS with a RGM less than 0.4. The last two columns show the percentage of C-ALCL 
and PTL-NOS cases affected by chromosomal alterations at the locus where each differentially expressed 
gene resides. (C) Results of Gene Ontology analysis, revealing gene clusters involved in the biological 
processes for which significant enrichment was discovered. Genes belonging to these clusters are indi-
cated in a separate column “cluster” in (A) and (B); the numbers refer to the clusters designated in (C). 
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In PTL-NOS the most frequently affected MCR with gain was 7q36. This focal region 

contains the anti-apoptotic FASTK gene that is over expressed in association with 

chromosomal gain in mycosis fungoides.27,45 Similar to primary cutaneous PTL-NOS 

studied herein, tumor cells of PTL-NOS presenting in lymph nodes have been reported 

to be affected by recurrent gains on chromosome 7q22-qter,11 17q11–q25 and 8q.46 A 

major difference between the chromosomal alterations observed in PTL-NOS and C-ALCL 

concerns the occurrence of gains on chromosome 8. These were highly recurrent in PTL-

Figure 3 Expression levels of selected genes as measured by qPCR
Cumulative mRNA expression data of C-ALCL (n=11) and PTL-NOS (n=10) (mean +/- S.E.M.). The mRNA 
expression was measured relative to RPS11 and U1A used as reference genes. Fold change for tran-
script levels of genes with increased expression in C-ALCL compared to PTL-NOS: TNFRSF8 12.9, IL23R 
9.7, EZH2 6.5, IRF4 13.0, CCR10 25.0, CCR7 131.5 and TRAF1 3.8. The fold change for the level of 
PRKCQ expression, over expressed in PTL-NOS compared to C-ALCL, was 10.9.
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NOS, but did not or scarcely affect patients with C-ALCL. A MCR with gain on 8q22-8q24.2 

affecting 50% of PTL-NOS patients contains the MYC oncogene that is amplified in 

patients with Sézary syndrome and aggressive B-cell lymphomas.28,29 Gain of chromosome 

8q was previously recognized in aggressive CTCLs with shorter survival.12,47 Furthermore, 

we found that the 9p21 locus was affected by loss in 50% of the patients with PTL-NOS, 

whereas it was not deleted in any of the included C-ALCL patients. The 9p21 region 

contains the CDKN2A tumor suppressor gene, loss of which is associated with an 

unfavorable prognosis in patients with nodal and cutaneous lymphomas.48 Our results 

contrast with those of Boni and colleagues, who detected loss of 9p21 in a subset of 

patients with C-ALCL.8

Secondly, gene expression analysis revealed marked differences in expression patterns of 

gene sets in C-ALCL and PTL-NOS. In an effort to unravel these patterns of differentially 

expressed genes and search for biological functions and signaling pathways distinct in these 

lymphomas, we applied unbiased Gene Ontology analysis. This demonstrated significant 

enrichment for gene clusters implicated in chemokine receptor activity, apoptosis, 

lymphocyte proliferation and several other biological processes. These observed differences 

may be associated with the differential clinical behavior of C-ALCL and PTL-NOS.  

Chemokine receptors determine homing patterns of T cells and serve to mark specific 

T-cell subsets. C-ALCL tumor biopsies showed higher expression of the chemokine 

receptor genes CCR10, CCR8 and CCR7 relative to PTL-NOS. Interestingly, the genes 

encoding CCR10 and CCR7 are located in chromosomal regions that are frequently affected 

by copy number gain in C-ALCL. CCR10 marks a subset of memory T cells with skin-

homing capacity.49 Binding of its ligand CCL27, which is selectively produced in the skin, 

recruits T cells to the cutaneous microenvironment.50 CCR10 expression has been described 

previously in mycosis fungoides and Sézary syndrome, but not specifically in C-ALCL or 

PTL-NOS.51-53 Moreover, CCR8 is preferentially expressed by T cells resident in the skin.54 

The higher tendency of PTL-NOS lymphoid cells to display extracutaneous dissemination 

may result from lower affinity of these cells for the cutaneous microenvironment due to 

low expression of the skin-homing receptors CCR10 and CCR8. 

Unbiased comparative analysis of the gene expression programs of C-ALCL and PTL-NOS 

tumors revealed differential expression of a gene cluster involved in apoptosis. Defective 

apoptosis signaling is presumed to have an important role in the pathogenesis of C-ALCL 

and PTL-NOS, as the homeostasis of mature T cells from which these lymphomas are 

derived is predominantly governed by selective induction of cell death.55 Both C-ALCL 

and PTL-NOS lymphoid cells are both assumed to show apoptosis impairment compared 

to benign CD4+ T cells from which these lymphomas are derived. The occurrence of 

spontaneous tumor regression in a subset of patients with C-ALCL and the higher 
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sensitivity of C-ALCL to therapy suggest that apoptosis impairment in this lymphoma type 

is less pronounced than in PTL-NOS. Accordingly, C-ALCL and PTL-NOS showed altered 

expression of different sets of apoptosis-regulatory genes. C-ALCL showed relative high 

expression of IRF4/MUM1, TNFRSF8/CD30 and TRAF1 and diminished expression of 

CDKN2C/p18. qPCR analysis and immunohistochemistry confirmed increased expression 

of IRF4/MUM1 and TRAF1 by C-ALCL lymphoid cells, also relative to normal CD4+ T cells. 

IRF4/MUM1 protects CD4+ T cells against pro-apoptotic stimuli and activation-induced 

cell death.56 Moreover, TRAF1, involved in the intracellular signal transduction of CD30 

and other TNF receptors, is thought to protect T cells from apoptosis induced by various 

stimuli.57 Therefore, aberrant expression of IRF4/MUM1 and TRAF1 may result in increased 

resistance to apoptosis in C-ALCL lymphoid cells. On the contrary, PTL-NOS was 

characterized by high expression of PRKCQ and diminished expression of FAS and 

Caspase 10. The PRKCQ gene relays signals required for T-cell activation and survival 

following stimulation by antigen.30-32 It has been suggested that PRKCQ may have 

oncogenic activity in T-cell malignancies and may serve as a therapeutic target using PKC 

inhibitors.32,33,58 The PRKCQ gene was over expressed relative to C-ALCL as well as to 

normal CD4+ T cells. Additional mutational analysis failed to detect activating mutations 

in these PTL-NOS tumor samples. Loss of expression of the FAS receptor is another 

mechanism through which PTL-NOS tumor cells can acquire resistance to pro-apoptotic 

stimuli. The FAS mRNA expression data from this study are consistent with our previous 

results showing that protein expression of the FAS receptor is lost in the majority of PTL-

NOS tumor cells, whereas it is expressed in C-ALCL.14

Taken together, C-ALCL and PTL-NOS have distinct patterns of chromosomal 

abnormalities, which may in part explain their different clinical behavior. We were able 

to identify several candidate oncogenes and tumor suppressor genes residing in MCRs 

with highly recurrent gains and losses in these T-cell lymphomas. The more aggressive 

clinical behavior of PTL-NOS may in part be related to chromosomal gains of regions on 

chromosome 8 and losses affecting 9p21, as decreased p16 and p14ARF expression 

resulting from such loss has been found to predict poor prognosis in various lymphomas.59 

Importantly, the distinct clinical behavior of these CTCLs is paralleled by differences in 

their gene expression programs linked to T-cell homing, apoptosis and proliferation. 

Figure 4 Immunohistochemical staining of TNFRSF8/CD30, IRF4/MuM1 and TRAF1 in C-ALCL and 
PTL-NOS
HE stainings demonstrating the morphology of C-ALCL (A1) and PTL-NOS (B1) tumor cells. The tumor 
cells of C-ALCL strongly express TNFRSF8/CD30 (A2), TRAF1 (A3) and IRF4/MUM1 (A4). PTL-NOS tumor 
cells do not or only scarcely show positive staining for TNFRSF8/CD30 (B2), TRAF1 (B3) and IRF4/MUM1 
(B4). Bar = 100μm.
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Lymphoid cells of patients with C-ALCL demonstrate higher expression of skin-homing 

receptors, which may explain their higher affinity for the skin and lower tendency to 

disseminate to extracutaneous sites than PTL-NOS tumor cells. Furthermore, C-ALCL 

and PTL-NOS are characterized by dysregulated expression of different sets of apoptosis-

regulating genes, which may account for differences in treatment resistance and tendency 

to progress.
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Studies in this thesis have been aimed to characterize the molecular mechanisms involved 

in the development and progression of different types of cutaneous T-cell lymphomas 

(CTCL), namely mycosis fungoides (MF), Sézary syndrome (Sz), primary cutaneous 

anaplastic large cell lymphoma (C-ALCL) and primary cutaneous peripheral T-cell lymphoma 

not otherwise specified (C-PTCL-NOS). In this final chapter, the results of these studies, 

together with those from recent literature, will be summarized and discussed. We will 

first discuss the results of array-based comparative genomic hybridization (aCGH) and 

gene expression profiling in tumor-stage MF (T-MF) and Sz. Since the relationship between 

both conditions is a matter of ongoing debate, we will focus on the similarities and 

differences between the two disease entities. In the second part, we will discuss the 

results of our studies on miRNAs in T-MF and Sz and the possible implication of miRNAs 

in the pathogenesis of these lymphomas. The third part of this chapter addresses two 

other types of CTCL, C-ALCL and C-PTCL-NOS. We performed aCGH and gene expression 

profiling to gain insight into the possible mechanisms underlying the different clinical 

behavior of these types of CTCL. The discussion will conclude with future 

perspectives. 

Mycosis fungoides & Sézary syndrome 

MF is the most common type of CTCL and generally has an indolent course with slow 

progression from patches to more infiltrated plaques and eventually tumors.1 Sz is a 

malignant disease characterized by a triad of erythroderma, generalized lymphadenopathy 

and the presence of neoplastic T cells in the skin, lymph nodes and peripheral blood.1 Sz 

has often been considered to represent a leukemic phase or variant of MF, with both 

malignancies originating from activated, skin-homing, memory T cells with cerebriform 

nuclei. For this reason, MF and Sz share the same classification and staging system and 

patients with these conditions are often included in the same clinical trials. However, in 

the recent WHO-EORTC classification and in the WHO classification of 2008 MF and Sz 

are included as separate disease entities based on their distinct clinical features and 

disease behavior (see Table 1, Chapter 1).1,2 There are also differences in the histopathologic 

findings of involved skin and lymph nodes in the two conditions. However, whether Sz 

syndrome should indeed be regarded as a separate type of CTCL or represents a leukemic 

phase of MF is still a matter of debate. We approached this issue by performing a detailed 

analysis of numerical chromosomal alterations present in the genomes of MF and Sz. 

The genomic architecture, especially the occurrence of highly recurrent pathogenic genetic 

alterations, can be characteristic of a tumor type. To further examine the notion that Sz 
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and MF might be distinct disease entities, we carried out a series of genomic analyses 

described in Chapter 2. We started with the delineation of recurrent numerical 

chromosomal alterations in malignant T cells from tumor-stage MF (T-MF) samples using 

aCGH. We subsequently evaluated whether this pattern corresponded to the highly 

recurrent gains and losses previously observed in Sz.3 An additional goal was to identify 

chromosomal regions that may have prognostic value. Finally, we sought to identify 

candidate oncogenes and tumor suppressor genes residing in chromosomal regions with 

recurrent copy number alteration by integration with gene expression data. 

The detailed genomic profiles of chromosomal imbalances of MF tumor cells displayed 

marked differences with those previously identified in Sz cells using identical methods 

(See Table 2, Chapter 2). Numerical chromosomal alterations most frequently observed 

in T-MF include gain of 7q21-36 and 1p36.2 as well as loss of 5q13 and 9p21, whereas 

Sz is characterized by gain of 17q22-25 and 8q22-24, and loss of 17p13 and 10q25. 

Notably, several aberrations commonly observed in T-MF, such as 7q11.2, 7q21-7q22, 

7q32-7q35 and 7q36 are not or infrequently seen in Sz, arguing against the notion that 

Sz represents an advanced stage of MF. Conversely gains involving 17q23, 17q22-17q23, 

17q24-17q25 and 8q24.1-8q24.2 (harboring MYC) are most common in Sz and less 

frequent in T-MF (see Table 2, Chapter 2). Subsequently, we investigated the possible 

relationship between chromosomal alterations and clinical behavior in T-MF. We identified 

three chromosomal regions with a prognostic value, namely: loss of 9p21 harboring the 

CDKN2A tumor suppressor gene, gain of 8q24.3 and gain of 1q21-1q22. 

Consecutive studies by others largely confirmed our results on gross chromosomal 

alterations in T-MF in independent patient cohorts4,5 supporting the validity of our findings 

(see Table 1). In addition, Salgado et al. confirmed the correlation of 9p21 loss and 8q24.3 

gain with a poor prognosis in a larger group of T-MF patients.5 Laharanne and colleagues 

also described prognostic value for 9p21 loss and 8q gain. However, this was only 

significant for a large group of CTCL patients studied (including T-MF, Sz and C-ALCL), 

while similar correlations could not be made for separate entities, possibly due to subgroup 

size.4 Additional studies may reveal whether it will be possible to identify patients prone 

to disease progression by determining 9p21 loss and/or 8q24.3 gain in early-stage MF. 

Integration of DNA copy number alterations with gene expression data of 22 T-MF cases 

by investigating regions of DNA copy number gain for up-regulated genes and regions of 

loss for down-regulated genes revealed 253 transcripts up- or down-regulated in respective 

regions of gain or loss. Of these 253 transcripts, 23 are established cancer-associated 

genes reported in the literature. The most frequently altered minimal common region 

(MCR) of DNA copy number alteration (CNA), gain of 7q36 (Table 1), contains the 

anti-apoptotic gene FASTK,6 which is associated with increased expression.  
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Figure 1  Comparison of   Frequency of Amplicon, Gain, and Loss plots of Sz, T-MF, C-ALCL and 
C-PTCL-NOS



147

GENERAL DISCUSSION

7



CHAPTER 7

148

The tumor suppressor gene CDKN2A, located in a CNA with prognostic value (9p21), 

showed decreased expression consistent with previous and subsequent studies.7-9 Also 

consistent with previous reports, we found recurrent loss of 13q14 and diminished 

expression of the tumor suppressor gene RB1,10 which is located in this region. 

In Chapter 3 we generated a molecular signature of T-MF based on gene expression 

data. We employed a bioinformatic approach involving meta-analysis of publicly available 

gene expression data sets combined with gene expression data described in Chapter 

2. Results for a selection of genes were further refined and validated by quantitative 

PCR and inclusion of additional controls. With this approach we identified a profile 

specific for T-MF consisting of 989 aberrantly expressed genes, the majority of which 

(718 genes) were higher expressed in T-MF compared to normal skin, inflamed skin, 

and normal T cells. As expected, the signature contains genes reflecting the proliferative 

character of this T-cell malignancy including altered expression of cell cycle and 

kinetochore regulators. Moreover, we found reduced expression of NFKBIZ, an inhibitor 

of the NF-κB signaling pathway, possibly explaining enhanced activity of NF-κB 

characteristic for CTCL,11 and up-regulation of NF-κB target genes. Furthermore, the 

MF tumor profile provided novel insights in the immunophenotype and skin-homing 

properties of this lymphoma, and revealed expression of possible therapeutic targets. 

Comparing these data with the Sz expression profile as determined by van Doorn and 

colleagues12 shows that only 4 overlapping genes (ACP2, ARPC4, ATP5J2, PTPRN2) 

are up-regulated in T-MF and Sz. Likewise, a minimal overlap (6 out of 53) was observed 

between T-MF and the list of differentially expressed genes in Sz versus normal CD4+ 

T cells determined by Booken and colleagues (CRIP1, KIR3DL2, CHN1, IL32, TNFSF11 

and CDCA7)13 or Sz versus skewed Th2 cells (an overlap of only 12 genes out of 135 

identified as being differentially expressed).14 Although these differences would support 

the notion that Sz and MF are different disease entities, these results should be 

considered to represent not more than an indication, as a similar lack in overlap was 

found when comparing our results with earlier gene expression studies in MF.15-17 This 

lack of consistency between results of MF gene expression studies is most likely due 

to the different platforms used to measure gene expression levels, dissimilar statistical 

methods employed as well as choice of controls for comparisons in the different studies. 

Recently, Campbell and colleagues proposed that Sz and MF are distinct diseases 

because they arise from different T-cell subsets.18 Whereas MF derives from the effector 

memory T cells, Sz arises from the central memory subset of CD4+ T cells. 

To conclude, the results of studies identifying DNA copy number alterations in Sz and 

T-MF support the notion that they are separate disease entities. Gene expression studies 
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also indicate differences between Sz and T-MF, however due to differences in experimental 

design solid conclusions regarding this matter cannot be drawn. 

miRNA expression in Sz and T-MF

In Chapter 4 we studied the miRNA expression profile of Sz by miRNA microarrays, 

identifying 114 differentially expressed miRNAs compared to normal CD4+ T cells. The 

majority (104 out of 114) of Sz-associated miRNAs were down-regulated and their 

expression pattern was generally consistent with previously reported genomic copy 

number abnormalities. However, similar to other studies,19 this correlation does not always 

hold true, implying the existence mechanisms of miRNA expression regulation other than 

copy number effect. To examine the gene regulatory function of dysregulated miRNAs, 

the previously identified list of up-regulated genes12 was correlated with the down-

regulated miRNAs by assessing which up-regulated genes were predicted targets of 

down-regulated miRNAs. Almost all (97 out of 104) of the down-regulated miRNAs were 

predicted to target one or more of these genes. Down-regulation of miR-342 for example 

coincides with over expression of its putative target TNFSF11, a gene encoding an anti-

apoptotic protein.12,13 Transfection with miR-342 decreased the levels of TNFSF11 and 

induced apoptosis in Seax cells, suggesting that down-regulation of miRNA-342 prevents 

apoptosis by up-regulation of TNFSF11. Reintroduction of miR-17-5p, part of the miR-17-

92 cluster often described for its oncomir function,20-22 in Seax cells resulted in increased 

apoptosis, and decreased proliferation implying a tumor suppressive role for miR-17-5p. 

Taken together these results suggest that altered miRNA expression plays a role in the 

pathogenesis of Sz. 

To investigate the role of miRNAs in tumor-stage MF we initially determined the miRNA 

expression pattern of MF tumors by comparison with benign inflammatory dermatoses.  

Accordingly, we extracted a miRNA signature characteristic for T-MF, presented in Chapter 

5. In contrast to Sz, we found that for T-MF that the majority (30 out of 49) of the 

differentially expressed miRNAs are up-regulated compared to the chosen benign controls. 

For most of the identified dysregulated miRNAs a role in cancer is described and several 

up-regulated miRNAs (miR-93, miR-155 and miR-17-92) have been validated functionally 

as oncomirs.20,22-25 In order to gain more insight into the correlation between gene 

expression and miRNA expression in T-MF, we subsequently searched for enrichment 

for miRNAs regulating genes that belong to the T-MF expression signature and identified 

13 up-regulated miRNAs such as miR-93, miR-21 and miR-92a. 

Although the same arrays were used to investigate miRNA profiles in Sz (Chapter 4) and 
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T-MF (Chapter 5), a direct comparison between miRNA expression patterns in these two 

diseases was not possible because different reference RNAs (activated tonsils versus 

synthetic RNA) and different miRNA sources (CD4+ T cells versus skin biopsies) were 

used. A preliminary screening comparing the lists of differentially expressed genes for 

both diseases showed minimal overlap, which favors the hypothesis that the two are 

different disease entities. However, due to the differences in control groups solid 

conclusions cannot be drawn. 

In a recent study of our group using deep sequence technology, we not only confirmed 

increased expression of miR-214 and miR-199a* in Sézary cells compared to CD4+ T 

cells from healthy controls, but also compared to CD4+ T cells isolated from patients 

with erythroderma secondary to atopic dermatitis,26 further suggesting a potential role 

for these miRNAs as diagnostic classifiers. Narducci et al. also identified miR-214 and 

miR-199a* up-regulation using a commercial assay-based miRNA expression detection 

platform. In this study, they also confirmed up-regulation of miR-7 and decreased 

expression of miR-342, miR-223, miR-92, miR-181a, and miR-191 in Sz.27 Ralfkiaer et 

al. studied a heterogeneous group of CTCL in search of a classifier between CTCL and 

benign control samples. Due to the use of such a combined group, an overall comparison 

of these results with our data is not possible. Nevertheless, they did demonstrate high 

miR-155 expression in MF samples by miRNA-Q-PCR.28 MiR-155 over expression in MF 

compared to normal skin samples was recently confirmed by Maj et al. also using 

miRNA-Q-PCR.29

C-ALCL and C-PTCL-NOS

Few molecular genetic studies have been performed on CTCL types other than MF and 

Sz. In Chapter 6 we describe the results of aCGH and gene expression profiling of C-ALCL 

and C-PTCL-NOS. Although both CTCLs present with skin tumors, the two lymphomas 

display a markedly different clinical course. C-ALCL shows a tendency towards 

spontaneous regression, uncommonly disseminate to extracutaneous sites and have an 

excellent prognosis with a 5-year survival exceeding 90%.30-32 In contrast, C-PTCL-NOS 

quickly disseminates to extracutaneous sites, and has a poor prognosis with a 5-year 

survival of less than 15%.33-35 The aim of these studies was to find possible explanations 

for the different clinical behavior of these two entities. 

C-ALCL and C-PTCL-NOS showed distinct patterns of DNA copy number alterations. 

C-ALCL was characterized by gains on chromosome 7q and 17q and losses on 6q and 

13q. C-PTCL-NOS similarly demonstrated gains on 7q and 17q, but was distinguished by 
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gains on chromosome 8 and loss of minimal region on 9p21 (harboring the CDKN2A tumor 

suppressor gene). Detailed analysis of CNAs in C-ALCL showed that the most highly 

recurrent MCR with gain was located on 7q31 (harboring the MET oncogene) and loss 

on 6q16-6q21 (harboring transcription factor PRDM1/BLIMP-1 implicated in T-cell 

homeostasis and differentiation) and 13q34, each affecting 45% of the patients. In C-PTCL-

NOS the most frequently affected MCR with gain was 7q36 (harboring the anti-apoptotic 

gene FASTK); other frequent MCRs were 7q21-7q22, 8p12-8q12, 8p21.1-8q21.3 and 

8q22-8q24.2. When comparing all CTCLs, one finds there was overlap between T-MF and 

C-PTCL-NOS tumors as both shared gains on 7q36, 7q21-7q22, 17q21, 17q22-17q23 and 

loss of 9p21 and in similar frequencies; however large discrepancies were shown on 

chromosome 8 and 13 (see Figure 1 and Table 1). Losses on chromosome 13 were 

frequently found in T-MF but rarely in C-PTCL-NOS. Gains on chromosome 8 were 

demonstrated at high frequencies in C-PTCL-NOS and Sézary syndrome, but at low 

frequencies in T-MF. Interestingly, although both C-PTCL-NOS and T-MF showed frequent 

loss of 9p21 with an established correlation with poor prognosis in T-MF (Chapter 2), 

C-ALCL lacked this loss, which might provide an explanation for the relatively good 

prognosis of C-ALCL. 

Subsequent studies investigating C-ALCL with aCGH describe similar aberrations,4,36 but 

discrepancies were also found including gains on 7q and losses on 16q36(see Table 1). 

When comparing the minimal common regions of C-ALCL with those identified in systemic 

ALK- ALCL by conventional CGH, overlap is found at 6q16-q21 and 17q12-q21, but 

differences are found at locations such as 1q41-qter, 6q21-6q22, 13q21-13q22, 

13q32-q33.37,38 Systemic ALK+ ALCL shows characteristic losses of chromosome 4 and 

1137,38 not identified in C-ALCL and in low frequencies in ALK- ALCL.  In summary, different 

types of ALCL show different DNA copy number alterations. 

C-PTCL-NOS
To date no other studies investigated the genomic profile of C-PTCL-NOS. Nodal PTCL-

NOS show a heterogeneous pattern of alterations possibly reflecting the heterogeneous 

character of the group.39 ACGH shows recurrent gains in chromosome 7q, 8q, 17q and 

losses in chromosome 5q, 6q, 9p, 10q, 12q and 13q.38,40-42 Similar to C-PTCL-NOS, gains 

on chromosome 8q, including 8q24 containing the MYC locus, were also described for 

nodal PTCL-NOS.38,42 Gain of chromosome 8q was described previously to indicate a 

shorter survival in CTCL.43,44  Besides loss of 9p21, gain of 8q could explain the more 

aggressive character of C-PTCL-NOS. However, the implication of other DNA copy number 

alterations on the pathogenesis requires further investigation.

Subsequently we studied the gene expression profile of C-ALCL and C-PTCL-NOS.  
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The lymphoma types C-ALCL and C-PTCL-NOS in particular differed in expression of 

gene clusters with regards to a role in chemokine receptor activity, apoptosis and 

lymphocyte proliferation. C-ALCL showed increased expression of the T-cell-homing 

receptors CCR10 and CCR8, which might explain their higher affinity for the skin and 

lower tendency to disseminate to extracutaneous sites. C-ALCL and C-PTCL-NOS 

lymphoid cells are both assumed to demonstrate apoptosis impairment compared to 

benign CD4+ T cells from which these lymphomas are derived. The occurrence of 

spontaneous tumor regression in a subset of patients with C-ALCL and the higher 

sensitivity of C-ALCL to therapy suggest that apoptosis impairment in this lymphoma 

type is less pronounced than in C-PTCL-NOS. C-PTCL-NOS is characterized by diminished 

expression of pro-apoptotic genes FAS and Caspase 10, which may contribute to the 

more clinically aggressive behavior of C-PTCL-NOS. Another class of genes dysregulated 

in C-PTCL-NOS possibly contributing to aggressiveness are those involved in proliferation. 

An example of this class is PRKCQ, exclusively expressed by T cells and a down-stream 

target of the T-cell receptor, transducing signals required for activation and survival.45-47 

Moreover PRKCQ could be a therapeutic target using protein kinase inhibitors.48 With 

gene expression analysis we confirmed high CD30 expression and showed high 

expression of IRF4 and TRAF1 mRNA in C-ALCL, which is in agreement with increased 

protein expression.49  Wozniak and Piris noted that CD30/IRF4/TRAF1 all act through 

the NF-κB axis,50 which is impaired in other types of CTCL. We also compared the gene 

expression profile of C-PTCL-NOS with that of MF tumors, and noticed that they were 

highly similar. 

Conclusion and future perspectives 

Our studies of DNA copy number alterations and gene expression in CTCL support the 

notion that MF and Sz should be considered as separate diseases. Therefore MF and Sz 

cases should be stratified accordingly in clinical trials. Our studies provide clues regarding 

the molecular pathogenesis of the different types of CTCL underlying the clinical behavior 

and prognosis.  Interestingly, we found that T-MF and C-PTCL-NOS tumors share several 

chromosomal alterations and show highly similar gene expression profiles. Our miRNA 

array analysis identified many aberrantly expressed miRNAs in Sz and T-MF. Though our 

genome-wide studies provided many new insights, exact mechanisms explaining aberrant 

expression and the functional consequences of altered gene and miRNA expression in 

CTCL remain to be revealed. Therefore the following lines of inquiry for future research 

are proposed. 
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In addition to more detailed identification of genetic alterations (e.g. using exome, whole 

genome or RNA deep sequence analysis), confirmation of identified dysregulated genes 

and miRNAs has proven to be essential and further studies confirming abnormal expression 

of single genes and miRNAs are recommended to be followed by functional studies. 

Functional studies, either the down-regulation of specific genes or miRNAs with inhibitors, 

or transfection of cells with the gene or miRNA of interest, followed by investigation of 

the effects on target gene expression, apoptosis and proliferation could elucidate the 

specific role genetic alterations play in the molecular pathogenesis of CTCL. It is 

recommended to study the effects of NFKBIZ transfection in Myla cells on other members 

NF-κB pathway and on proliferation and apoptosis. Likewise, it would be interesting to 

study the effect of inhibition of FASTK in MF and PRKCQ in C-PTCL-NOS. Primary miRNA 

candidates would be miR-17, being up-regulated in MF and down-regulated in Sz, whether 

inhibition induces apoptosis and diminishes proliferation in Myla cells. Other primary 

candidates for inhibition would be miR-214 in Sz and miR-155 in MF. These in vitro studies 

could show the validity of the therapeutic targets and be the subsequent step to in vivo 

studies. Further research assessing the miRNA expression levels, for example miR-16, 

miR-17 and miR-93, between Sz and T-MF directly by investigating isolated tumor cells, 

as well as identification and examination of (the expression levels of) target genes could 

provide clues regarding the different mechanisms of action in Sz and T-MF. Furthermore, 

studying dysregulated genes and miRNAs in patch and plaque-stage MF could potentially 

teach us more about disease progression. In Chapter 3 a start was made for some genes, 

but a more thorough validation is recommended, such as an independent patient group, 

with additional controls, and immunohistochemistry permitting evaluation of protein 

expression in tumor cells within a background of tumor infiltration lymphocytes.
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De studies in dit proefschrift zijn gericht op het in kaart brengen van de moleculaire 

mechanismen betrokken bij de ontwikkeling en progressie van verschillende cutane T-cel 

lymfomen (CTCL), te weten Sézary syndroom (Sz), mycosis fungoides (MF), primair cutaan 

anaplastisch grootcellig lymfoom (C-ALCL) en primair cutaan perifeer T-cellymfoom, niet 

anders gespecificeerd (C-PTCL-NOS).

Mycosis fungoides is het meest voorkomende type CTCL en heeft doorgaans een gunstig 

ziektebeloop met langzame progressie van patches en plaques tot uiteindelijk huidtumoren. 

Sézary syndroom is een maligne ziekte gekarakteriseerd door een trias van erythrodermie, 

gegeneraliseerde lymfadenopathie en de aanwezigheid van neoplastische T-cellen in de 

huid, de lymfklieren en het perifere bloed. Sézary syndroom wordt vaak beschouwd als 

een leukemische fase of variant van MF, omdat beide maligniteiten voortkomen uit 

geactiveerde, huid-homende CD4+ T-cellen. Om die reden delen MF en Sz dezelfde 

classificatie en stadiëring, en worden patiënten met deze aandoeningen  vaak geïncludeerd 

in dezelfde klinische trials. Echter in de meest recente WHO-EORTC classificatie en in 

de WHO classificatie uit 2008 worden MF en Sz als aparte ziektebeelden onderkend 

gebaseerd op hun verschillende klinisch beeld en gedrag. Echter de discussie of Sz zou 

moeten worden beschouwd als een apart type CTCL of de leukemische fase van MF, is 

nog niet gesloten. 

In hoofdstuk 2 worden numerieke chromosomale afwijkingen in tumor stadium MF 

geïdentificeerd met array-CGH en vergeleken met die gevonden bij Sz. Een aantal 

chromosomale afwijkingen die zeer frequent voorkomen in tumor stadium MF, werden 

niet of in slechts lage frequentie gevonden in Sz. Deze bevinding pleit tegen de hypothese 

dat Sz een vervolgstadium is van MF. Daarnaast worden drie afwijkingen geïdentificeerd 

met prognostische significantie in tumor stadium MF. Deletie van 9p21 en toename van 

8q24.3 en 1q21-1q22 zijn geassocieerd met een slechte prognose. Voor MF zijn numerieke 

chromosomale afwijkingen geïntegreerd met genexpressie resultaten om genen te 

identificeren, die bijdragen aan tumorigenese en mogelijk in de toekomst kunnen dienen 

als therapeutische targets. Voorbeelden zijn FASTK en SKAP1, gelokaliseerd in regio’s 

van toename en de tumor suppressor genen RB1 en DLEU1 gelegen in regio’s van 

verlies. 

Met datzelfde doel zijn daaropvolgend in hoofdstuk 3 de MF genexpressie profielen 

vergeleken met normale huid, ontstoken huid en normale T-cellen teneinde afwijkende 

expressie van genen, anders dan ten gevolge van chromosomale afwijking, vast te stellen. 
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Met deze aanpak werden 989 genen met afwijkende expressie geïdentificeerd, waarvan 

het overgrote deel (718 genen) verhoogd tot expressie komt in vergelijking tot normale 

huid, ontstoken huid en normale T-cellen. Zoals verwacht, weerspiegelt het genexpressie 

profiel, met afwijkende expressie van celcyclus en kinetochoor regulatoren, het 

proliferatieve karakter van deze T-celmaligniteit. Daarnaast biedt het genexpressie profiel 

inzicht in het immunophenotype en de huid-homende eigenschappen van dit lymfoom. 

Tevens worden potentiële therapeutische targets en diagnostische markers geïdentificeerd. 

Daarbij verklaart verlies van NF-κB remmer, NFKBIZ, mogelijk de toegenomen activiteit 

van NF-κB karakteristiek voor CTCL en de toegenomen expressie van NF-κB 

targetgenen. 

In hoofdstuk 4 wordt het microRNA (miRNA) profiel van Sz bestudeerd. Daarbij worden 

104 miRNAs met verhoogde expressie en 10 miRNAs met verlaagde expressie ten 

opzichte van normale T-cellen geïdentificeerd.  De expressie van miRNAs is grotendeels 

consistent met eerder beschreven numerieke chromosomale afwijkingen. Om de 

genregulerende functie van miRNAs, die afwijkend tot expressie komen, te onderzoeken 

is de lijst van miRNAs, die verlaagd tot expressie komen gecorreleerd aan de lijst van 

verhoogd tot expressie komende genen. De volgende wijze is gevolgd, van  verhoogd 

tot expressie komende genen is onderzocht welke voorspelde targetgenen van verlaagd 

tot expressie komende miRNAs zijn. Van bijna alle verlaagd tot expressie komende 

miRNAs wordt voorspeld dat zij aangrijpen op een of meer genen verhoogd tot expressie 

in Sz.  Een voorbeeld is miR-342; expressie van miR-342 is verlaagd in Sz cellen. Een van 

de transcripten waarvan de expressie door miR-342 wordt onderdrukt is TNFSF11, dat 

een anti-apoptotische functie heeft. De verlaagde expressie van het miR-342 zou dan ook 

tot hogere expressie van het anti-apoptotische eiwit TNFSF11 en verminderde apoptose 

in Sézary cellen leiden. Consistent hiermee is de bevinding dat ectopische expressie van 

miR-342 in een Sz cellijn leidt tot inductie van apoptose gepaard gaande met lagere 

expressie van TNFSF11. Herintroductie van miR-17-5p, onderdeel van het miR-17-92 

cluster, in Sz cellijn resulteert in toegenomen apoptose en afgenomen proliferatie van de 

cellen, hetgeen een tumor onderdrukkende rol van miR-17-5p impliceert. 

In hoofdstuk 5 wordt de rol van miRNAs in tumor stadium MF onderzocht. In vergelijking 

tot inflammatoire dermatosen komen 49 miRNAs afwijkend tot expressie in tumor stadium 

MF. In tegenstelling tot Sz komt het overgrote deel van de afwijkend tot expressie 

komende miRNAs verhoogd tot expressie (30 van de 49 miRNAs). Voor de meeste 

afwijkende miRNAs is een rol in tumorigenese beschreven en van een aantal verhoogd 

tot expressie komende miRNAs (miR-93, miR-155 en miR-17-92) is functionele validatie 
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als oncomir gepubliceerd. Geen van de miRNAs verhoogd tot expressie in tumor stadium 

MF komt verhoogd tot expressie in Sz. Slechts twee miRNAs komen verlaagd tot 

expressie in zowel tumor stadium MF als Sz. Acht miRNAs komen verhoogd tot expressie 

en zijn gelegen in regio’s van chromosomale toename,  de chromosomale afwijkingen 

dragen wellicht bij aan de toegenomen expressie van deze 8 miRNAs.  

In hoofdstuk 6 worden de resultaten beschreven van array-CGH en genexpressie analyses 

van C-ALCL en C-PTCL-NOS. Hoewel beide CTCL zich presenteren met huidtumoren 

hebben deze lymfomen duidelijk een verschillend beloop. C-ALCL laat een neiging tot 

spontane regressie zien, zaait zelden uit naar extracutane lokalisaties en heeft een gunstige 

prognose met een 5-jaarsoverleving van meer dan 90%. C-PTCL-NOS daarentegen zaait 

snel uit naar extracutane lokalisaties en heeft een slechte prognose met een 

5-jaarsoverleving van minder dan 15%. Voor zowel C-ALCL als C-PTCL-NOS zijn de 

numerieke chromosomale afwijkingen en genexpressie profielen bepaald om de 

respectievelijk goede en slechte prognose te kunnen verklaren. C-ALCL is gekarakteriseerd 

door toename op chromosoom 7q en 17q en verlies van 6q en 13q. C-PTCL-NOS laat ook 

toename zien van 7q en 17q, maar verschilt door toename op chromosoom 8 en verlies 

van 9p21. Genen betrokken bij lymfocyt chemotaxie, apoptose en proliferatie zijn 

oververtegenwoordigd in de lijst van differentieel tot expressie komende genen tussen 

C-ALCL en C-PTCL-NOS. C-ALCL laat hogere expressie zien van chemokine receptoren 

CCR10 en CCR8, wat mogelijk een verklaring biedt voor de verminderde neiging tot 

disseminatie naar lymfklieren en interne organen. Tevens laten C-ALCL en C-PTCL-NOS 

aberrante expressie zien van verschillende genen betrokken bij apoptose en proliferatie, 

zoals IRF4 en PRKCQ, wat mogelijk het verschil in klinische agressiviteit verklaart. 

Hoofdstuk 7 geeft een samenvatting van de resultaten beschreven in voorgaande 

hoofdstukken en de bevindingen worden bediscussieerd. Tevens worden er aanbevelingen 

voor verder onderzoek gedaan. 
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