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Introduction 

1. Allogeneic hematopoietic stem cell transplantation

In 1957 the first human bone marrow transplantation for the treatment of a 

hematological malignancy was performed1, 2. The results of the first series of bone 

marrow transplantation were very poor. This was improved by the introduction of 

matching of the patient and its donor for the Human Leukocyte Antigen (HLA)3-6, 

better pre-transplant conditioning and immunosuppression7-10. To date many patients 

are transplanted for various hematological malignancies11, some solid tumors12, 

hematological or immunological deficits13-15 and other non-malignant diseases, like 

metabolic disorders16, 17. The number of performed transplantations increases every 

year and transplantation indication and transplant source are changing.

Although the results of transplantation improved enormously over the years, severe 

complications after hematopoietic stem cell transplantation (HSCT) including Graft 

versus Host Disease (GvHD)18, 19, infections and transplant related toxicity still occur. 

Furthermore a significant number of patients experience relapse after transplantation 

for hematological malignancies20. The curative effect of HSCT in hematological 

malignancies and solid tumors, needing high dose chemotherapy and/or lethal 

irradiation, is partially due to graft versus leukemia or graft versus tumor responses21, 22. 

These responses can be enhanced by donor lymphocyte infusion (DLI)23-25, which will 

be further discussed in paragraph 2.1. 

1.1 Hematopoietic stem cell transplantation graft source

Depending of several factors like underlying disease, patient age, and transplant 

availability, patients receive either a bone marrow transplantation (BMT), peripheral 

blood stem cell transplantation (PBSCT) or umbilical cord blood transplantation 

(UCBT). The use of BMT has decreased over the years. In the most recent survey 

of the European Group for Blood and Marrow Transplantation (EBMT) 23% of 

hematopoietic transplants were BMT and 72% of patients received a PBSCT10, 26. 

BMT was merely performed in patients with non-malignant diseases, especially in 

HLA-identical sibling transplantations and pediatric transplantations. 

For BMT, cells are harvested from the donors iliac crest under local or general 

anesthesia, whereas for PBSCT hematopoietic stem cells are derived from peripheral 

blood in which the release of stem cells from the bone marrow has been increased 

by treatment of the donor with granulocyte colony stimulating factor (G-CSF)27. This 

makes the latter procedure much more donor friendly. Depending of the patient’s 

underlying disease, donor characteristics and local hospital protocols the either way 

obtained stem cell product is infused into the patient with or without T cell depletion28. 

In the last two decades umbilical cord blood (UCB) as stem cell source is used 

more frequently29-31. UCB is harvested from the placenta directly after birth, therewith 
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being the most donor friendly procedure. Cord blood in general is less antigen 

experienced than adult blood32, 33. Therefore HLA matching is not as stringent as 

for other transplant sources34, nevertheless still important35, 36. Since the number of 

nucleated cells derived from cord blood is limited, UCBT was initially performed in 

pediatric patients only37, 38. More recently double cord blood transplantation with 

good clinical results is performed in adults as well31, 39-41. Since the many benefits of 

umbilical cord blood compared to bone marrow or peripheral blood stem cells, like 

lower incidence of Graft versus Host disease, fast availability and less stringent HLA-

matching, it is believed that the use of UCBT will only increase in the coming years42.

2. Minor Histocompatibility antigens 
Minor Histocompatibility (H) antigens were discovered shortly after the unraveling of 

the human leukocyte antigen (HLA)43, 44. As mentioned above, matching for HLA, as 

observed in HLA-identical (sibling) and HLA-matched (unrelated) transplantations,  

increased survival and reduced morbidity enormously. Nevertheless even in HLA-

identical transplantation adverse effects like GvHD and graft rejection occur18, 19, 43-45. 

In GvHD, immune responses of the graft against host tissue result in severe damage 

of the skin, intestine and/or liver45. This leads to severe morbidity and mortality, in 

which minor H antigens play an important role. The first described and still one of 

the most studied antigen, HY, is derived from the Y-chromosome and is involved in 

gender mismatched transplantation43, 44, 46, 47. 

Since the molecular identification of minor H antigens it has become clear that these 

antigens are polymorphic self-proteins presented in the context of HLA class I or HLA 

class II molecules48-50. To date the identification of new minor H antigens is quickly 

increasing51-55. By now 24 autosomaly encoded and 12 Y chromosome encoded 

relevant minor H antigens have been described (table 1 and 2). Minor H antigens can 

be broadly expressed on different cell types or are restricted to the hematopoietic 

system. Some of the hematopoietic restricted minor H antigens are expressed at 

tumor cells as well56. These different expression patterns, broad versus restricted, 

can lead to both beneficial and adverse effects after HSCT43, 44, 57-59. Hematopoietic 

restricted minor H antigen mismatches between a HLA-identical patient and donor 

have important anti-tumor or anti-leukemia (GvT or GvL) effects60-63. Whereas 

mismatches in broadly expressed antigens can lead to GvT or GvL responses59, but 

can especially lead to severe GvHD57, 64, 65. 

2.1 Minor H antigens in hematopoietic stem cell transplantation

It is known that minor H antigens have both positive and negative effects after HSCT. 
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Minor H antigen Restriction molecule Tissue distribution Ref
HA-1/A2 HLA-A*0201 Restricted: hematopoietic/solid tumor cells 50

HA-1/B60 HLA-B60 Restricted: hematopoietic cells 66

HA-2 HLA-A2 Restricted: hematopoietic cells 49

HA-3 HLA-A1 Broad 67

HA-8 HLA-A2 Broad 68

HB-1 HLA-B44 Restricted: hematopoietic cells 69

ACC-1 HLA-A24 Restricted: hematopoietic/solid tumor cells 70

ACC-2 HLA-B44 Restricted: hematopoietic/solid tumor cells 70

UGT2B17/A29 HLA-A29 Restricted: hematopoietic cells 71

UGT2B17/B44 HLA-B44 Restricted: hematopoietic cells 71

LRH-1 HLA-B7 Restricted: hematopoietic/solid tumor cells 72

SP110/ HwA9 HLA-A3 Restricted: hematopoietic cells 73

PANE1/ HwA10 HLA-A3 Restricted: hematopoietic cells 74

C19Orf48/ HwA11 HLA-A2 Restricted: solid tumor cells 75

LB-ECGF-1 HLA-B7 Restricted: solid tumor cells 76

CTSH/A31 HLA-A31 Restricted: hematopoietic cells 77

CTSH/A33 HLA-A33 Restricted: hematopoietic cells 77

LB-ADIR HLA-A2 Restricted: hematopoietic/solid tumor cells 78

ACC-6 HLA-B44 Broad 79

CD19 HLA-DQA1*05/B1*02 Restricted: hematopoietic/solid tumor cells 80

UTA2-1 HLA-A2 Restricted: hematopoietic cells 81

ZAPHIR HLA-B7 Restricted: solid tumor cells 82

LB-SWAP70-1Q HLA-B*40:01 Restricted: hematopoietic cells 83

UTDP4-1 HLA-DP4 Restricted: hematopoietic cells 55 

Table 2. HY encoded minor H antigens
Minor H antigen Restriction 

molecule
Gene Tissue distribution Ref

A1/HY HLA-A*0101 DFFRY Broad 84, 85

A2/HY HLA-A*0201 SMCY Broad 86

A24/HY HLA-A*2402 UTY Broad 87

A33/HY HLA-A*3303 TMSB4Y Broad 88

B7/HY HLA-B7 SMCY Broad 46

B8/HY HLA-B8 UTY Restricted: hematopoietic cells 89

B52/HY HLA-B*5201 RPS4Y Restricted: hematopoietic/
solid tumor cells

90

B60/HY HLA-B60 SMCY Broad 91

DQ5/HY HLA-DQ5 DBY Broad 92

DRB1*1501/HY HLA-DRB1*1501 DBY Broad 93

DRB3*0301/HY HLA-DRB3*0301 RPS4Y Broad 94

DRB1*07:01HY HLA-DR7 RPS4Y Broad 95

Table 1. Autosomaly encoded minor H antigens

Introduction 
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The positive effects are leading in adoptive immunotherapy protocols. The mutual 

aim of these studies is to enhance GvL responses without the induction of GvHD. 

Before it was possible to specifically target minor H antigen specific responses, 

patients with severe hematological malignancies received donor lymphocyte infusion 

(DLI) to enhance the GvL effect after HSCT. Since these procedures were performed 

after HLA-identical sibling transplantation it was reasoned that minor H antigen 

mismatches were involved in the good clinical response of these patients23, 96. The 

anti-leukemic response was later found to be indeed associated with hematopoietic 

restricted minor H antigen mismatches60, 97. The drawback of these therapies is the 

increased risk of GvHD. Although there is evidence that the presence of GvHD might 

be needed or can be a surrogate marker for a good GvL response63. Nevertheless 

DLI is less popular as it was a decade ago, because of the increased risk of GvHD 

and more importantly the current use of new drugs like monoclonal antibodies, which 

specifically target malignant cells25.

In the meantime minor H antigen specific targeted immunotherapies after HSCT are 

under study. Clinical trials (EudraCT number 2012-002435-28 and 2012-002879-34) 

have recently started in which patients are vaccinated with hematopoietic restricted 

minor H antigenic peptides in order to enhance the GvL response98-100. Another 

method to induce minor H antigen specific responses is to perform transfers of minor 

H antigenic specific T cell receptors to generate hematopoietic restricted minor H 

antigen specific T cells. Clinical implementation of transfusion of these generated 

antigen specific T cells is being prepared101-105 (EudraCT number 2007-004334-16 

and 2010-02462520). 

2.2 Minor H antigens in solid organ transplantation

Whereas the clinical relevance of minor H antigens is well documented in HSCT57, 106, 107, 

information on their impact in solid organ transplantation is scarce108. Similar to HSCT 

HLA matching is important, since rejection is much more common in HLA partially-

matched or fully-mismatched donor-recipient combinations. However, rejection of 

renal transplants still occurs in HLA-identical sibling pairs in whom 10-year survival 

has hovered at 68-70% in the most recent multi-center analyses109, 110. It remains 

questionable whether minor H antigens play a role in solid organ transplantation. The 

impact of minor H antigen mismatches can be studied best in HLA-identical sibling 

transplantation. These studies, however, are hampered by the fairly low number of solid 

organ familial transplants and basically restrict itself to sib-sib renal transplantation. 

Nevertheless in recent years a number of studies have been executed in order to 

identify the role of minor H antigens in different settings of renal transplantation with 

conflicting results. The studies include mainly the effect of gender mismatches111-114, 
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Table 3. Overview of literature describing clinical associations regarding minor 
H antigen mismatches in renal transplantation 

Year Minor H antigen Important findings Reference
1978 A2/HY Reduced graft survival of male organs in fe-

male HLA-A2 recipients
117

1981 A2/HY HY cytotoxicity in acute rejection in HLA-iden-
tical sibling transplantation

118

1994 HY No effect of HY in completely HLA matched 
living donor transplantation

119

2004 A2/HA-1 HA-1 cytotoxic and regulator T cells are found 
in tolerant kidney transplantation patients

120

2007 A2/HA-1 HA-1 mismatch associated with chronic  
allograft nephropathy

115

2007 HA-1, HA-2, HA-3, HA-8, 
HB-1, ACC-1, ACC-2, HwA9, 
UGT2B17 and HY 

Possibility to reduce immunosuppression  
despite minor H antigen mismatches

121

2008 HY Acute and chronic rejection associated with 
male grafts in female recipients

111

2008 HY De novo HY-antibody formation associated 
with acute rejection

112

2008 HA-1, HA-2, HA-3, HA-8, HB-
1, ACC-1 and UGT2B17 

Minor H antigen mismatches had no  
significant effect on death-censored 5-year 
graft survival

116

2009 HY Acute, but not chronic rejection is associated 
with male grafts in female recipients

113

2012 HY Less rejection of male donor kidneys in male 
recipients

114

2013 HA-1, HA-2, HA-3, HA-8, 
HB-1, ACC-1, ACC-2, HwA9, 
HwA10, HwA11, UGT2B17, 
LRH-1, LB-ECGF-1, CTSH, 
LB-ADIR, CD31 and HY

No effect of any minor in HLA-identical sibling 
transplantation

122

2.3 Minor H antigens in pregnancy

Pregnancy is considered to be the best experiment of nature to study transplantation. 

Although the fetus is haplo-identical to the mother, in general pregnancy goes 

without major (immunological) complications. This is mainly the result of the separate 

circulation of the mother and the fetus. Nevertheless this barrier between mother and 

child is not 100% secure. Still cells flow from mother to child and vice versa. This cell 

flow in mutual direction can lead to both cytotoxic and tolerogenic minor H antigen 

specific responses, which can be found for decades after pregnancy123-128. On the 

and some of a limited number of autosomally encoded minor H antigens both on

acute and chronic rejection115, 116. Table 3 summarizes studies wherein the role of 

minor H antigens in renal transplantation is well investigated. 

Introduction 
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one hand tolerogenic responses might play a role in the normal maintenance of 

pregnancy since in and around the uterus a tolerogenic environment is created129-132. 

On the other hand, minor H antigen HY specific cytotoxic responses might play a 

role in secondary miscarriages after a first born boy133. The clinical consequences of 

the presence of these responses further in life are difficult to predict. Probably they 

are of non-importance to women themselves. Nevertheless these immune responses 

become interesting when these women become HSCT donors134.

3. Chimerism

Chimerism is retrieved from the Greek mythological figure Chimaera; a monster 

consisting partly of a lion, a goat and a dragon or a snake. Today chimerism is defined 

as the long term persistence of genetically different material within one individual135. 

Transplantation of a solid organ or the hematopoietic system leads to macrochimerism. 

Smaller quantities of chimeric cells are referred to as microchimerism. This can be 

detected after blood transfusion136, 137 or after the physiological exchange of cells 

between mother and fetus during pregnancy135, 138-140. 

3.1 Microchimerism after pregnancy

By now it is generally accepted that fetal cells travel to the mother during pregnancy135, 141. 

Some of these cells have a stem cell like phenotype, which can remain in women for 

many years after full term pregnancy, resulting in fetal microchimerism (FMc)138, 139. Cells 

do not only travel from child to mother, but from mother to child as well142. These cells 

can reside in the offspring for decades and is referred to as maternal microchimerism 

(MMc)135. There is evidence that MMc might be replaced by FMc when girls grow 

up and become pregnant themselves140. FMc is frequently studied by the detection 

of (fragments of) the Y-chromosome, resulting from pregnancies of a boy. Strikingly, 

male microchimerism can be found in nulliparous women as well. This has been 

shown in peripheral blood and tissue analyses143-145. Therefore not only maternal 

cells but microchimeric cells of other sources present in the mother can travel to the 

child as well135. These cells can be derived from either previous male pregnancies 

of the nulliparous women’s mother or from microchimeric cells already present in  

the mother from other sources. This phenomenon is referred to as transmaternal 

cell trafficking. With transmaternal cell trafficking male microchimerism in women 

with older brothers can be explained. Possible sources of male microchimerism in 

nulliparous women without older brothers are vanished male twins146 or (un)known 

miscarriages of male fetuses147-149. Even male leukocytes present in semen may enter 

the female’s circulation150, 151. 

Chapter I
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3.2 Clinical consequences of microchimerism and subsequent immunization

The influence of FMc has merely been studied in the context of auto-immune 

diseases141, 152-155 and cancer156-158. Conflicting results have been published regarding 

this subject, describing either no association or a positive association between 

the presence of microchimerism and the incidence of auto-immune diseases or 

cancer. It is unknown which role microchimeric cells play in the pathogenesis of 

these diseases. Microchimeric cells are often found in autoreactive tissue. It remains 

questionable whether the presence of these cells are the cause or the consequence 

of auto-immunity. It is unknown whether microchimeric cells react against host tissue 

resulting in tissue damage or that the host reacts against the microchimeric cells, 

leading to inflammation and auto-immune reactivity159. Furthermore there is evidence 

that FMc might play a role in regeneration of damaged tissue160. 

Immune responses after transplantation are possibly associated with chimerism. 

A beneficial effect of microchimerism has been described with established 

microchimerism and alloreactive Treg in the setting of solid organ transplantation161-163. 

Until now the influence of the presence of microchimerism in a HSCT donor or 

recipient on outcome of the transplant is unknown. 

4. The human T cell repertoire

It is generally accepted that the T cell repertoire is almost naïve at birth and is 

educated throughout life. Education of T cells starts in the thymus by rearrangement of 

the T cell receptor (TCR) and by positive and negative selection164-166. The specificity 

of the TCR is determined by the alpha and beta chain. During thymic selection 55 

different alfa chains can be combined with 73 different beta chains. Together with the 

junction area (N-region) this combination leads to a variety of TCRs. To prevent auto-

immunity only TCRs with intermediate affinity to self-peptide presented in host MHC 

will survive, referred to as positive selection167. The thymocytes will further develop to 

become either CD4pos or CD8pos T cells. When matured, the T cells leave the thymus 

naive. Although they have a specific TCR, which can only recognize a limited number 

of antigens, these T cells are not antigen specific yet. Only upon antigen recognition 

in combination with specific co-stimulation they will become mature antigen specific 

T cells. The many different TCRs enable T cells to make adequate immune responses 

against many different antigens. This results in a broad T cell repertoire. In combination 

with different co-stimulatory molecules CD4pos and CD8pos T cells have distinct 

functions. CD8pos cytotoxic or killer T cells recognize the antigen in the context of 

HLA class I molecules on the surface of antigen presenting cells (APC) like dendritic 

cells (DC), monocytes and B cells. With or without the help of CD4pos T cells they 

Introduction 
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play an important role in antigen specific immune responses. A subclass of T cells, 

namely regulatory T cells (Treg), keep the immune system in balance and minimize 

auto-immunity168. Natural Treg are merely CD4posCD25highFoxp3pos. In general these 

T cells do not act in an antigen specific manner and maintain tolerance against auto-

antigens169. CD8pos Treg seem to regulate in a more antigen specific manner170, 171. 

Until now the identification of specific regulatory markers on CD8pos Treg has been 

difficult. The few human studies describing CD8pos antigen specific Treg describe 

different markers, like Foxp3, CTLA-4, CD40L, LAG-3, CD127, TGF-beta120, 171-173.

4.1 Minor H antigen specific T cell repertoire

As described in paragraph 2, minor H antigens are presented in MHC class I or MHC 

class II molecules. In general CD4pos T helper cells recognize antigens presented in 

class II molecule and CD8pos cytotoxic T cells, recognize antigens presented in the 

HLA class I molecule. Accordingly different CD4 and CD8 mediated minor H antigen 

specific responses have been described49, 94, 174, 175. Most of the studied minor H 

antigen specific responses in transplantation are CD8pos T cell mediated responses. 

This has several reasons. Firstly, the first described minor H antigens were CD8pos 

and played an important role in antigen specific responses after transplantation. 

HLA-A2 restricted HY specific responses are important in GvHD44, 47 and HLA-A2 

restricted HA-1 specific responses play an important role in GvL176. Secondly, it is 

technically easier to study CD8pos T cells; tetramer availability is merely HLA class 

I restricted and in vitro culturing and functional read-out systems have been further 

developed for CD8 mediated responses.  

Apart from cytotoxic responses, tolerogenic responses against minor H antigens have 

been studied. Years after BMT177 and renal transplantation120 minor H antigen specific 

regulation has been described. Also after normal pregnancy127 these responses are 

present in many women. It seems that minor H antigen specific CD8pos Treg express 

CTLA-4 and TGF-beta and may regulate in an IL-10 dependent manner120, 127.

As described above antigen specificity of the T cell is determined by its TCR. But 

within one individual and within the population the same antigen can be recognized 

by different TCRs leading to similar immune responses. Nevertheless some antigens 

are recognized by a limited number of TCRs. This has been described in relation to 

bacterial or viral antigens and in autoimmunity178-180. Strikingly, it seems that recognition 

of the minor H antigen HA-1 is restricted to a single TCR Vbeta chain181, 182. HA-1 antigen 

specific T cells have been isolated by tetramer selection or clonal expansion from 

unrelated individuals. All the retrieved T cell clones expressed the TCR Vbeta TRBV7-

9. Since HA-1 is a favorite target for antigen specific immunotherapy this finding 

has led to adoptive immunotherapy protocols in which the TCR is transferred101-105. 

Chapter I
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Although good pre-clinical results have been made with TCR adoptive transfer 

studies it is not known whether HA-1 specific Treg also share this TRBV7-9. If so, 

infusion of HA-1 specific T cells might lead to adverse effects, meaning increasing 

the chance to relapse, instead of reducing this chance. 

5. Aim of this thesis

In this thesis minor H antigen specific cytotoxic and regulatory immune responses 

are studied in health and disease. In the first three chapters several aspects of 

cell exchange and transmaternal cell trafficking between mother and child during 

pregnancy are investigated. It is questioned whether these responses influence 

transplantation outcome. 

In chapter 2 the presence of minor H antigen specific cytotoxic T cells against non-

maternal antigens in cord blood is described. It is generally believed that the immune 

system and therefore also cord blood is naïve and antigen inexperienced at birth. 

Before it has been described that already in cord blood minor H antigen specific 

T cells against non-inherited maternal antigens are present126. In this chapter we 

investigated whether transmaternal cell trafficking leads to microchimerism in cord 

blood. Furthermore we questioned if these few non-maternal cells traveling to a new 

fetus can result in minor H antigen specific responses.

In chapter 3 possible consequences of this transmaternal cell trafficking in HSCT 

is explored. Taking birth order into account in HLA-identical sibling transplantation 

leads to better transplantation outcome when the donor is transplanted with its 

younger sibling183, 184. Due to transmaternal cell trafficking the younger sibling might 

have come into contact with non-shared antigens of his older sibling in a tolerogenic 

environment during pregnancy185. We questioned whether it is possible to relate this 

birth order effect to minor H antigen mismatches. This was investigated in an unique 

international collaborative study, in which we analyzed a group of 311 HLA-identical 

sibling transplantations. 

As described above, after pregnancy microchimerism and minor H antigen specific 

cytotoxic and regulatory responses can be present. In chapter 4 we studied whether 

there is a correlation between the detectable presence of microchimerism in 

peripheral blood and minor H antigen specific regulatory responses. To address this 

question a cohort of women from whom detailed obstetric and family history could be 

collected, was studied. As a proof of principal the minor H antigen HY was used. In 

all these women male microchimerism in different leukocyte subsets was determined. 

Both class I and class II HY specific regulation was subsequently tested.  

These first chapters study minor H antigens in relation to or in the context of HSCT. 

Introduction 
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In chapter 5 minor H antigen responses are studied in HLA-identical sibling renal 

transplantation. With a large international multicenter study we studied the effect of 

15 autosomally encoded minor H antigens and the HY antigen on rejection after renal 

transplantation.  

In the last chapter we studied the T cell receptor of HA-1 specific T cells in more 

detail. HA-1 specific TCR-transferred T cells are currently under study for clinical 

application. Therefore we questioned whether the formerly described restricted TCR 

Vbeta usage of HA-1 specific CTL181, 182 is also applicable for HA-1 specific Treg 

which is crucial information for the clinical application of HA-1 TCR transferred T 

cells.

In conclusion, this thesis emphasizes the presence of minor H antigen specific immune 

responses directly after birth, which will be present throughout life. The presence of 

minor H antigen mismatched microchimeric cells obtained through pregnancy from 

a mother or a child play a crucial role in this. Subsequent immunization against minor 

H antigens can lead to both cytotoxic and tolerogenic responses. Furthermore HA-1 

specific T cells can share the same TCR Vbeta, yet being functionally different. The 

here performed studies enhances our understanding of immune reactions after HSCT 

and if applicable after renal transplantation, especially regarding the birth order effect 

and the assumed less favorable role of women as transplant donors.

Chapter I
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