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CH A P T E R 6

G e n e r a l i z i n g T e r w i l l i g e r ’s

l i k e l i h o o d a p p r o a c h : a n e w s c o r e

s t a t i s t i c t o t e s t f o r g e n e t i c

a s s o c i a t i o n

R. el Galta, S. Uitte de Willige, M.C.H. de Visser, L. Hsu, J.J. Houwing-

D uisterm aat

A b s t r a c t

In this report, we propose a one degree of freedom test for association be-

tween candidate genes and binary traits. W e consider the situ ation of ob-

serv ed haploty pes, i.e. haploty pe tagging single nu cleotide poly morphisms

are ty ped from which the haploty pes can be deriv ed with almost 1 0 0 % cer-

tainty . T he method is a generaliz ation of the approach of T erwilliger (1 9 9 5 )

and is especially powerfu l for the situ ation of one associated haploty pe. A s

alternativ e to the lik elihood ratio statistic, we deriv e a score statistic, which

is locally most powerfu l. B y means of a simu lation stu dy , we compare the

performance of the score statistic to P earson’s chi-sq u are statistic and the lik e-

lihood ratio statistic proposed by T erwilliger (1 9 9 5 ) . W e illu strate the method

on three candidate genes stu died in the L eiden T hrombophilia S tu dy ( U itte de

W illige et al., 2 0 0 5 ) . W e conclu de that the statistic follows a chi sq u are distri-

bu tion u nder the nu ll hy pothesis and that the score statistic has often more

power than T erwilliger’s lik elihood ratio statistic, especially for v ariants with

freq u encies between 0 .1 and 0 .4 and which hav e a small impact on the stu died

disorder.

Sub m itted for p ub lic ation
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Chapter 6. Generalizing Terwilliger’s likelihood approach

6.1 I ntrodu ction

F or genetic association studies, single nucleotide poly morphisms (SN P s)

are popular genetic markers, because they are stable, easier to ty pe than the

micro satellite markers and distributed with a high density ov er the genome

(Collins et al., 1 9 9 7). The pattern of v ariants appears to be structured with sets

of phy sically close SN P s inherited together in blocks (Daly et al., 20 0 1 ; Gabriel

et al., 20 0 2). Within a block, SN P s are highly correlated (linkage diseq uilib-

rium) and each block contains only a few common haploty pes (Gabriel et al.,

20 0 2). These haploty pes can be described by a small number of SN P s. Sev eral

methods are described to identify the minimal informativ e subset of SN P s, so

called haploty pe tagging SN P s (htSN P s) (see Sebastiani et al. (20 0 3 ) and Stram

(20 0 4 ) for references).

In the case of zero recombination within a block, the haploty pes can be

uniq uely identifi ed and n haploty pes can be described by n-1 SN P s (B afna

et al., 20 0 3 ; Clark, 20 0 4 ; Clay ton et al., 20 0 4 ) . Stram (20 0 4 ) introduced a mea-

sure for reliability of haploty pe assignment r2
h

( E pstein and Satten, 20 0 3 ; Satten

and E pstein, 20 0 4 ) . F or r2
h

close to one, the haploty pes are known and associ-

ation between the observ ed haploty pes and a disease can be studied by com-

paring the haploty pe freq uencies of the gene in cases and controls. E x amples

in the literature of genes with known haploty pes are A P O E ( F ullerton et al.,

20 0 0 ) , CRP (Carlson et al., 20 0 5 ) and the fi brinogen gamma (F GG), fi brinogen

alpha (F GA ), and fi brinogen beta (F GB ) genes (Uitte de Willige et al., 20 0 5 ) .

N ote that Carlson et al. (20 0 5 ) ) used the haplo.stats package (Schaid et al.,

20 0 2) which does take into account the uncertainty in phase by using the E M

algorithm and then they noted that the same results could be obtained by us-

ing the htSN P s. The reason for this is that the htSN P s uniq uely correspond to

the haploty pes.

If a causal mutation occurred in one haploty pe in the past, it would be

natural to consider haploty pes rather than indiv idual genoty pes (Clark, 20 0 4 )

and to assume that only one haploty pe carries the causal v ariant (Terwilliger,

1 9 9 5 ) . The haploty pe freq uencies in cases can therefore be modelled by the fre-

q uencies in controls plus one additional parameter, which accounts for the ex -

cessiv eness of the causal haploty pe. Under this assumption, a statistic which

tests the null hy pothesis of this additional parameter eq ual to zero will hav e

more power than the classical chi-sq uare test, since the latter tests for any dif-

ferences in freq uencies between cases and controls.

Terwilliger (1 9 9 5 ) proposed this model in the contex t of multi-allelic mark-
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Chapter 6. Generalizing Terwilliger’s likelihood approach

ers and used the likelihood ratio test, i.e. comparing the likelihood under the

alternative to the likelihood under no association, for testing. Since it is un-

known which marker allele is associated with the disease, the likelihood cor-

responding to this model is a weighted sum over all alleles i of conditional

likelihoods given that allele i is over-represented in the set of cases. As for

weights Terwilliger (1995) proposed to use the allele frequencies in the popu-

lation from which the cases and controls were sampled. The excess frequency

of the associated allele in cases is modelled by the parameter λ which is the

fraction attributable at risk (Clayton, 2000). The corresponding log likelihood

function has a number of unusual features. For example, the allele frequencies

that are used as weights are unknown parameters in the conditional likelihood

functions. The score function, the first derivative of the log likelihood func-

tion with respect to λ evaluated at λ = 0 is a constant zero for any observed

data. Therefore, the distribution of the likelihood ratio (TLR) statistic under

the null hypothesis is not straightforward and the 50 : 50 mixture of chi square

distributions of null and one degrees of freedom, which was suggested by Ter-

williger (1995), appears to yield conservative p-values (Sham et al., 1996).

Under Hardy-Weinberg equilibrium and complete linkage disequilibrium,

the observed haplotype frequencies in the controls agree with the population

frequencies many generations ago. Hence the frequency of a haplotype in the

population corresponds to the prior probability that the mutation occurred

on that haplotype. If one is focussed in detecting common haplotypes with

a small impact on the trait, an alternative for the haplotype frequencies is a

fl at prior. The advantages of using a fl at prior are that the probabilities do not

have to be estimated. Furthermore the first derivative of the log likelihood

with respect to λ evaluated at λ = 0 is not equal to zero and the score statistic

as alternative for the likelihood ratio statistic can be used. Advantages of score

statistics compared to likelihood ratio statistics are that they are also locally

most powerful, and because they do not need to evaluate the log likelihood

under the alternative, they are often easier to compute and robust to small

model deviations under the alternative (Cox and Hinkley, 1974).

In this paper we consider the score statistic as alternative to the classical

chi-square and the original TLR statistic of Terwilliger (1995) in the context of

haplotypes. We also include the likelihood ratio statistic corresponding to the

log likelihood using equal weights. We carried out a simulation to study the

performance of the four statistics under the null hypothesis and to compare

the power of the four statistics under various alternatives. Finally we illustrate

the proposed statistics by an association analysis of three candidate genes in
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Chapter 6. Generalizing Terwilliger’s likelihood approach

the Leiden Thrombophilia Study (LETS) (Uitte de Willige et al., 2005).

6.2 M ethods

Let m be the number of haplotypes describing most of the genetic varia-

tion in a gene. Assume that the haplotype frequencies are in Hardy-Weinberg

equilibrium proportions. Let p = (p1, · · · , pm) be the vector of haplotype

frequencies in controls. Assume that only one haplotype denoted with in-

dex i is over-represented in the cases, then the haplotype frequencies in

the cases can be modelled as qi = pi + λ(1 − pi) and qj = pj − λpj for

j ∈ (1, · · · , i − 1, i + 1, · · · , m). Let x = (x1, · · · , xm) and y = (y1, · · · , ym)

be vectors of haplotype counts in the cases and the controls, respectively, and

let n1 and n2 be the total number of case chromosomes and of control chromo-

somes, respectively, and n = n1 + n2. Then the conditional likelihood Li given

that haplotype i carries the mutation is given by

Li(λ, p|x, y) = (pi + λ(1 − pi))
xi (1 − λ)n1−xi

m

∏
j 6=i

p
xj

j

m

∏
j=1

p
yj

j (6.1)

and the likelihood proposed by Terwilliger is equal to

L(λ, p|x, y) =
m

∑
j=1

pjLj, (6.2)

with Lj given in formula (6.1).

It is easy to see that likelihood function (6.2) can be generalized to the fol-

lowing likelihood function:

L(λ, p|x, y, w) =
m

∑
j=1

wjLj,

with Lj given in formula (6.1) and w = (w1, · · · , wm) a vector of known posi-

tive weights restricted by ∑
m
j=1 wj = 1. The first derivative of the log likelihood

l(λ, p|x, y, w) = lo g (L(λ, p|x, y, w)) to λ evaluated in λ = 0 is equal to

Uw =
∂

∂λ
l(λ, p|x, y, w)|λ=0

=
m

∑
j=1

wj(xj − n1 pj)

pj
.
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Chapter 6. Generalizing Terwilliger’s likelihood approach

For known allele frequencies pj, the distribution of the Uw under H0 can

be approximated by the normal distribution with zero mean and variance

VAR[Uw] = n1(∑
m
j=1 w2

j p−1
j − 1). Note that Uw = 0 when for all j wj = pj.

Often the haplotype frequencies are unknown and have to be estimated

from the data. Under the null hypothesis we can estimate the frequencies from

the combined sample of cases and controls by p̂j =
xj+yj

n and an estimate of

the score statistic Uw is given by

Ûw =
m

∑
j=1

wj(xj − n1 p̂j)

p̂j
.

under H0, Ûw has approximately mean equal to zero and variance

VAR(Ûw) ≈ n−1n1n2(
m

∑
j=1

w2
j p−1

j − 1). (6.3)

Note that the variance VAR(Ûw) is increased by n2/n fold compared to the

variance VAR(Uw) because the allele frequencies are estimated from the data.

Now the score statistic Ŝw is defined by

Ŝw =
Û2

w

ˆVAR(Ûw)
,

where ˆVAR(Ûw) is obtained by replacing pj by its estimate p̂j in formula (6.3).

When all haplotypes are common, a natural choice of weights is wj = 1
m .

Under the alternative hypothesis of the presence of one positively associ-

ated haplotype i, the expectation of Û 1
m

is

EHA
[Û 1

m
] ≈

n1n2λ

n − n1λ
(

n

n1qi + n2 pi
− m), (6.4)

with
n1 pi+n2qi

n the frequency of the associated haplotype in the combined sam-

ple and qi = pi + λ(1 − pi). When
n1 pi+n2qi

n is larger than 1
m this expectation

becomes negative. Therefore we propose a chi-square distribution with one

degree of freedom to approximated the distribution of this statistic under the

null hypothesis.

6.3 Results

S im ulation study

By means of a simulation study, we first evaluated the type I error rate of

the score statistic Ŝ 1
m

, Pearson’s chi square χ2, the likelihood ratio with equal
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Chapter 6. Generalizing Terwilliger’s likelihood approach

weights LR, and the Terwilliger’s likelihood ratio with weights equal to pj’s

TLR. For the score statistic we used the chi square distribution with one degree

of freedom to approximate the distribution under the null hypothesis. For the

LR and TLR statistics we used the 50:50 mixture of two chi squares with zero

and one degree of freedom. We generated 10,000 samples of 200 case chromo-

somes and 200 control chromosomes from the multinomial distributions with

probabilities p1 · · · pm for m equal to 4, 5, 8, 10, 15 and 20 haplotypes. Similar

to the simulation described by Terwilliger, the frequency of the most common

haplotype, p1, was set to 0.5, whereas the remaining haplotypes were equally

frequent (0.5/(m − 1)). The results are shown in left columns of table 6.1.

For all m, the type I error rates of the score statistic Ŝ 1
m

were maintained

at the nominal error rate. For m < 10, the type I error rates of Pearson’s chi

square corresponded to the nominal level. However for larger m the type I

error rates became conservative due to sparse data. For all m considered, the

type I error rates for the TLR statistic were conservative (< 0.03). The type

I error rates for the LR statistic were also somewhat small (≈ 0.04), but were

better than the type I error rates for the TLR statistic.

To evaluate the power of the statistics, we generated 10,000 samples of n1

case chromosomes and n2 control chromosomes from the multinomial distri-

butions with probabilities p1(1− λ) + λ and pj(1− λ) for j = 2 · · ·m for cases

and pj j = 1 · · ·m for controls, respectively. First, we considered the model

used by Terwilliger (1995). The most common haplotype frequency p1 in con-

trols was again set to 0.5 and this haplotype was more frequent in cases. The

parameter λ was fixed to 0.5 which corresponds to a haplotype frequency of

0.75 in the cases. The number of haplotypes m was again set to 4, 5, 8, 10, 15

and 20. The number of case and control chromosomes, n1 and n2 were now

100. The results are shown in the right columns of table 6.1.

For m < 8, the power of Pearson chi square was good. For m ≤ 8 the power

of the score statistic Ŝ 1
m

was similar to the power of TLR statistic, while for

m > 8, the TLR statistic had higher power than Ŝ 1
m

. For m > 8, the haplotype

frequencies of the non associated haplotypes become too small yielding a large

variance of the score statistic (see formula 6.3). The LR statistic appeared to

perform worse than both Ŝ 1
m

and T LR . Therefore we did not consider this

statistic in the following simulations.

Second, we studied the power of the Pearson’s chi square, Ŝ 1
m

, and T R L as

function of the excess frequency λ for various values of the frequency of the

associated haplotype p1 = 0.1, 0.2, 0.3, 0.4 and 0.5. The remaining haplotypes

72



Chapter 6. Generalizing Terwilliger’s likelihood approach

were again equally frequent. We restricted ourselves to a number of observed

haplotypes m of 5 and 8, because most of the genes can be described by up

to 8 common variants. The parameter λ was varied between 0 and 0.5. The

number of chromosomes n1 and n2 were 200. We used a nominal significance

level of 0.05. The results are depicted in figure 6.1.

For p1 = 0.5, the score statistic Ŝ 1
m

and likelihood ratio TLR performed

similarly, and better than Pearson’s chi square. For m = 5 and p1 = 0.4 or

0.3 and for m = 8 and p1 = 0.4, 0.3 or 0.2, the score statistic Ŝ 1
m

performed

better than TLR especially for small λ. For p1 = 0.2 and m = 5 all three

statistics had similar power. For p1 = 0.1 and m = 5 or m = 8, Pearson’s

chi-square performs similar to TLR. Both statistics performed better than Ŝ 1
m

except forλ ≤ 0.1 and p1 = 0.1 and m = 5. Note that for p1 = 0.1 and m = 5,

the power of the score statistic was small around λ = 0.2. This drop in power

was due to the fact that the expectation of Ŝ 1
m

becomes small (see formula 6.4).

Especially for common variants with frequency p1 of 0.3 or 0.2 and a small

impact on the disease (λ ≤ 0.1), the score statistic performed well. For m = 5

and m = 8 and p1 = 0.3, the gain in power of the score statistic compared

to TLR statistic was about 4% and 8% for λ of 0.05 and 0.1 respectively. For

m = 5 and p1 = 0.2, both statistics performed similar. For m = 8 and p1 = 0.2

the gain in power of the score statistic was large, namely 7% and 12% for λ of

0.05 and 0.1 respectively.

Data example

We applied the three statistics to a study on association between haplo-

types of fibrinogen alpha (FGA), beta (FGB) and gamma (FGG) and the risk

of deep venous thrombosis in LETS (K oster et al., 1993; van der Meer et al.,

1997). Fifteen haplotype tagging SNPs were typed in 474 cases and 474 con-

trols (Uitte de Willige et al., 2005). Within the three genes, the SNPs were in

high linkage disequilibrium (r2
h > 0.95). The number of common haplotypes

(frequency larger than 5% ) describing FGG, FGA and FGB were three, five and

five respectively. Since we focus on common haplotypes, we pooled the rare

haplotypes with the less frequent haplotype category with frequency larger

than 5% . In this analysis we considered p-values below 0.05 to be significant.

In table 6.2 the data are described and the results are given.

For all genes, haplotype H2 appeared to be more frequent in the cases than

in the controls. For FGG, FGA and FGB the allelic odds ratios of presence

of H2 versus the rest was 1.34, 1.29 and 1.28 respectively. Note that these
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Chapter 6. Generalizing Terwilliger’s likelihood approach

odds ratios were rather similar while the p-values of the corresponding chi

square statistics were different namely, 0.008, 0.051 and 0.059 respectively. The

difference in p-values was caused by the difference in degrees of freedom of

the chi square statistics and the frequencies of the other haplotypes. From the

results of the standard chi-square statistics we concluded that only FGG was

significantly associated to thrombophilia.

The p-values of the TLR were respectively 0.004, 0.021 and 0.078. These p-

values were in line with the estimates of λ, namely 0.09, 0.07 and 0.05 respec-

tively. Since FGA and FGB both had 5 variants, the frequency of the associated

haplotype H2 was 0.3 and 0.2 respectively and the λ’s were rather small, the

score statistic should have more power than TLR for these genes.

The p-values of the score statistic Ŝ 1
m

were 0.021, 0.007, 0.024 for FGG, FGA

and FGB respectively. Indeed the p-values for FGA and FGB were smaller

than the corresponding p-values of TLR statistic. The p-values for FGG and

for FGB were larger than for FGA, because the frequencies of H2 in the com-

bined case control sample were around 1
m (see formula 6.4). Based on the

results of the score statistic, all genes were significantly associated to throm-

bophilia.

6.4 Discussion

In this report we have derived a new score statistic to test for association

between a candidate gene and a binary trait. For candidate genes with a small

impact on the disease and five to eight observed variants this new statistic ap-

pears to perform better than Terwilliger’s LR statistic. Moreover the statistic is

easy to compute and follows a chi square distribution under the null hypoth-

esis. For more than eight variants, Terwilliger’s LR statistic is more powerful.

However by pooling less frequent haplotypes, the number of observed haplo-

types is often smaller than eight.

Instead of using multi-locus haplotypes, some authors advocate to test

each locus separately (Clayton et al., 2004). However, since mutations arise

on haplotypes and because of the high degree of linkage disequilibrium, we

prefer haplotype based tests for highly structured genes (Clark, 2004). For can-

didate genes that exists of several blocks we suggest to apply the test for each

block separately. Alternatively the uncertainty has to be taken into account.

For multi allelic markers, Slager and Schaid (2001) and Czika and Weir

(2004) proposed a multi allelic version of the trend test to test for association of

genotypes. Also for genotypes at multi allelic markers, Houwing-Duistermaat
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Chapter 6. Generalizing Terwilliger’s likelihood approach

and Elston (2001) considered various ways to test for association using logis-

tic regression models. If Hardy-Weinberg equilibrium does not hold, these

methods should be preferred. Further, the parametrization used has a lower

bound for the parameter λ which is often larger than -1. An alternative, more

symmetrical parametrization might be the log relative risk corresponding to a

logistic model. Moreover, in logistic models adjustments for other covariates

are easily made. More research is needed to build these kind of models and

derive corresponding tests for pairs of haplotypes.

We conclude that by choosing alternative weights, in particular constant

weights, in the likelihood of Terwilliger, a set of new powerful and robust

statistical tests was derived. For genetic association studies aiming to identify

common associated variants, we recommend to first pool rare variants and

then apply both the standard Pearson’s chi square statistic as well as the new

score statistic. By using both statistics more insight in the data can be obtained.

A program is freely available which computes the statistics and corresponding

p-values.

75



Chapter 6. Generalizing Terwilliger’s likelihood approach

0.0 0.1 0.2 0.3 0.4 0.5
λ

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

p1=0.5

 m=5

0.0 0.1 0.2 0.3 0.4 0.5
λ

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

p1=0.5

 m=8

0.0 0.1 0.2 0.3 0.4 0.5
λ

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

p1=0.4

0.0 0.1 0.2 0.3 0.4 0.5
λ

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er
p1=0.4

0.0 0.1 0.2 0.3 0.4 0.5
λ

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

p1=0.3

0.0 0.1 0.2 0.3 0.4 0.5
λ

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

p1=0.3

0.0 0.1 0.2 0.3 0.4 0.5
λ

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

p1=0.2

0.0 0.1 0.2 0.3 0.4 0.5
λ

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

p1=0.2

0.0 0.1 0.2 0.3 0.4 0.5
λ

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

p1=0.1

0.0 0.1 0.2 0.3 0.4 0.5
λ

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

p1=0.1

FIGU RE 6.1: Power curves of χ2 (——) , Ŝ 1
m

(− · −·) a nd TLR (· · · · ·) a s function of λ for va rious

va lues of the frequency of the a ssocia ted va ria nt p1 = 0.1, 0.2, 0.3, 0.4, 0.5 a nd m = 5 (left

column), a nd m = 8 (right column)

76



Chapter 6. Generalizing Terwilliger’s likelihood approach

TAB L E 6.1: Type I error rate and power of the statistics χ2 , Ŝ 1
m

, LR, TLR.

type I error rate power when λ = 0.5

m nominal χ2 Ŝ 1
m

LR TLR χ2 Ŝ 1
m

LR TLR

4 0.05 0.053 0.052 0.042 0.032 0.91 0.94 0.91 0.95

0.01 0.009 0.010 0.010 0.007 0.78 0.84 0.80 0.86

0.001 0.001 0.001 0.001 0.000 0.53 0.62 0.56 0.65

5 0.05 0.053 0.048 0.040 0.032 0.88 0.94 0.89 0.95

0.01 0.010 0.010 0.010 0.007 0.71 0.83 0.77 0.87

0.001 0.001 0.001 0.001 0.000 0.44 0.59 0.53 0.64

8 0.05 0.048 0.049 0.038 0.035 0.77 0.92 0.86 0.95

0.01 0.008 0.010 0.008 0.004 0.53 0.80 0.74 0.86

0.001 0.001 0.000 0.001 0.000 0.25 0.54 0.50 0.65

10 0.05 0.045 0.051 0.034 0.023 0.70 0.90 0.84 0.95

0.01 0.006 0.008 0.008 0.003 0.43 0.76 0.70 0.85

0.001 0.000 0.001 0.000 0.000 0.18 0.49 0.47 0.60

15 0.05 0.043 0.048 0.041 0.020 0.58 0.86 0.80 0.95

0.01 0.007 0.010 0.010 0.003 0.31 0.69 0.65 0.85

0.001 0.000 0.001 0.002 0.000 0.09 0.42 0.42 0.63

20 0.05 0.043 0.052 0.045 0.021 0.48 0.84 0.77 0.95

0.01 0.005 0.011 0.010 0.004 0.20 0.64 0.62 0.84

0.001 0.000 0.001 0.002 0.000 0.04 0.35 0.39 0.60
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TABLE 6.2: Descriptives and results of genetic association on LETS.

haplotype case control χ2 Ŝ 1
m

TLR λ̂

chromosomes chromosomes

FGG (n1 = 938, n2 = 942) 0.008 0.021 0.004 0.09

H1 334 (36.3) 366 (38.9)

H2 315 (33.2) 254 (27.0)

H3+ H4 289 (30.5) 321 (34.1)

FGA (n1 = 936, n2 = 942) 0.051 0.007 0.021 0.07

H1 270 (28.8) 266 (28.2)

H2 320 (34.2) 270 (28.7)

H3 95 (10.2) 117 (12.4)

H4 100 (10.7) 121 (12.9)

H5 151 (16.1) 168 (17.8)

FGB (n1 = 936, n2 = 932) 0.059 0.024 0.078 0.05

H1 328 (35.0) 310 (33.3)

H2 231 (24.7) 189 (20.3)

H4 135 (14.4) 149 (16.0)

H6 128 (13.7) 143 (15.3)

H3+ H5+ H7 114 (13.2) 141 (15.1)
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