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CH A P T E R 4

T e s t i n g f o r a s s o c i a t i o n b e t w e e n a

d i s e a s e a n d a m u l t i - a l l e l i c m a r k e r : a

p o w e r f u l s c o r e t e s t

R. el Galta, T. Stijnen and J.J. Houwing-Duistermaat

A b s t r a c t

To study association between a candidate gene and a complex genetic disease,

P ear son’s χ
2 statistic can be applied to a m-by-2 contingency table, wh er e th e

m categor ies cor r espond to m h aplotypes or mar k er alleles. F or m > 2, two al-

ter nativ e appr oach es for P ear son’s χ
2 can be followed th at ar e mor e power ful

if one h aplotype or mar k er allele is associated. F or th e fi r st appr oach , v ar ious

2 -by-2 tables ar e for med by combining v ar ious categor ies and th e maximum

of th e cor r esponding ch i-sq uar e statistics is consider ed as th e fi nal statistic.

Th e second appr oach tak es th e av er age ov er th e possible associated categor ies

by wr iting down an ov er all lik elih ood. F or th e latter appr oach we pr opose a

new scor e statistic, wh ich giv es mor e weigh t to h aplotypes or mar k er alleles

th at ar e common. S ince th e disease allele is often not obser v ed, th e power

of th e v ar ious statistics depends both on th e link age diseq uilibr ium patter n

as well as th e fr eq uencies of th e associated h aplotype or mar k er allele in th e

cases and th e contr ols. W e h eur istically compar e v ar ious statistics with in th e

two appr oach es and pr esent th e r esults of a simulation th at compar es th e per -

for mance of all consider ed statistics. F inally we apply th e statistics to a case

contr ol study on th e association between C O L 2 A 1 gene and r adiogr aph ic os-

teoar th r itis. O ur conclusion is th at ov er all th e new pr oposed scor e statistic h as

good power.

Sub mitted for p ub lic ation
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Chapter 4. Score test for genetic association

4.1 I ntroduction

A s more and more single nucleotide poly morphisms (SN P s) are discov -

ered, candidates genes will be saturated with SN P s and the focus on haplo-

ty pe based analy sis will increase. W hen the homologous chromosomes are

independently transmitted to the nex t generation, i.e. when Hardy -W einberg

eq uilibrium holds, the haploty pe counts can be summariz ed in a m-by -2 con-

tingency table, whose columns refer to m haploty pes and whose rows refer

to the disease status. W hen phase is unk nown, the haploty pe counts hav e to

be estimated. W hen phase is k nown (see for ex ample U itte de W illige et al.

(20 0 5 ) ) or when multi allelic mark ers are used (see for ex ample K iz awa et al.

(20 0 5 ) ) , summariz ing the data in a m-by -2 table is straightforward. A clas-

sical test statistic for the m-by -2 table is P earson’s χ
2 statistic. F or a large m

this statistic has low power and when the assumption can be made that one

haploty pe is associated with the binary trait (Terwilliger, 19 9 5 ) , a more spe-

cifi c statistic may be preferred. In this paper we consider v arious statistics for

these m-by -2 tables.

Genetic association is a powerful approach for common associated v ari-

ants (W ang et al., 20 0 5 ) . U sually the disease allele is not observ ed and the

power of the study will depend on the link age diseq uilibrium between the

disease locus and the mark er loci and on the freq uencies of the associated

mark er allele or haploty pe in the cases and the controls (Z onderv an and Car-

don, 20 0 4). N ote that if the disease allele is rare, it will be detectable if the

unobserv ed disease allele has a rather large effect on the trait and is some-

times present on a common haploty pe. F or sak e of simplicity , we describe the

methods and simulations in terms of haploty pes, but they can be applied to

any m-by -2 table.

To deal with the fact that the associated haploty pe is unk nown, two ap-

proaches may be followed. (1) F or each haploty pe a statistic is computed by

combining the other haploty es and the max imum of these statistics is tak en as

the fi nal statistic (max imiz ing approach). (2) F or each haploty pe a conditional

lik elihood giv en that this haploty pe is associated is computed. The ov erall

lik elihood is the weighted sum ov er all haploty pes of all these conditional

lik elihoods with weights eq ual to the prior probabilities that a haploty pes is

associated. These approaches can also be followed if one allows for a few

haploty pes to be associated. Then the max imum is tak en ov er all possible 2-

by -2 tables and the lik elihood is computed ov er all possible sets of associated

haploty pes.
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Chapter 4. Score test for genetic association

The maximizing approach was considered by several authors. E wens et al.

(1992) proposed to use the maximum of the χ2 statistics of 2-by-2 tables each

of which compares one variant against the rest (Ẑma x ), when at most one vari-

ant is associated. Sham and Curtis (1995) proposed to use the maximum of

χ2 statistics corresponding to all possible 2-by-2 tables, comparing any com-

bination of variants against the rest (Ẑc l u mp ). From a rather small simulation

study, they concluded that Pearson’s χ2 and Ẑc l u mp should be preferred above

Ẑma x for highly polymorphic markers. Intuitively, when one haplotype is as-

sociated with a disease, Ẑma x should be more powerful than Pearson’s χ2 and

Ẑc l u mp , while if more than one associated haplotype exists Ẑc l u mp should have

more power than Ẑma x . M ore simulations are needed to study the perfor-

mance of these test statistics.

An alternative to taking the maximum is to take the sum over all possibili-

ties. When one variant is associated Terwilliger (1995) proposed to model the

excess of the associated variant in cases by the parameter λ which is the pop-

ulation attributable risk (Clayton, 2000). Since it is unknown which variant

is associated with the disease, the likelihood corresponding to this model is a

weighted sum over all variants i of conditional likelihoods given that variant i

is over-represented in the set of cases. These weights represent the prior prob-

ability that a haplotype is associated to the disease. In line with the common

disease common variant hypothesis (Reich and L ander, 2001) and in line with

the method of Terwilliger (1995), the haplotype frequencies in controls can be

used as weights. To test for association the likelihood ratio test can be used.

M aximizing the log likelihood function over the haplotype frequencies and λ

appears not straightforward, because the weights are equal to the haplotype

frequencies, and these same haplotype frequencies are also unknown param-

eters in the conditional likelihood functions. In this paper we propose the

corresponding score statistic and we use M onte-Carlo permutation to derive

p-values (Sham and Curtis, 1995).

We first compare heuristically the power of the Pearson’s χ2, Ẑma x and

Ẑc l u mp . We then derive the new score test and describe the results of a sim-

ulation study which we performed to compare the performance of the new

score test, χ2, Ẑma x and Ẑc l u mp . In the simulations we assumed that phase is

known. In the discussion we describe how to derive p-values for the case of

phase ambiguity. As an illustration we apply these test statistics to a published

case-control study on association between CO L 2A1 gene and radiographic os-

teoathritis (M eulenbelt et al., 1999).

43



Chapter 4. Score test for genetic association

4.2 Th e max imising approach

Assume that Hardy-Weinberg equilibrium holds and that we have a sam-

ple of n1 case chromosomes and of n2 control chromosomes. Let p =

(p1, · · · , pm) be the vector of frequencies of the m haplotypes in controls. Let

x = (x1, · · · , xm) and y = (y1, · · · , ym) be the vector of haplotype counts in

the cases and the controls, respectively and let n be equal to n1 + n2. Let Ẑi

be equal to the observed minus expected ith haplotype count xi − n1 p̂i with

p̂i = xi+yi
n , the estimate of haplotype frequency in combined sample. Let

Ẑ = (Ẑ1, · · · , Ẑm)′. Throughout the text the hat symbolˆrefers to two samples

statistics emphasizing the fact that haplotype frequencies are estimated under

the null hypothesis.

Testing the null hypothesis of no disease-marker association is classically

performed by means of Pearson’s χ2 statistic

χ2 =
m

∑
j=1

(xj − n1 p̂j)
2

n1 p̂j
+

m

∑
j=1

(yj − n2 p̂j)
2

n2 p̂j
=

n

n1n2

m

∑
j=1

(xj − n1 p̂j)
2

p̂j
.

An alternative test statistic is Ẑmax, defined as

Ẑmax = max
i=1···m

Ẑ2
i

V ar (Ẑi)
.

Sham and Curtis (1995) proposed the largest value of all possible χ2 statistics

of 2-by-2 tables each obtained by testing a combination of haplotype against

the rest. We denote this statistics by Ẑclump according to the program they use

for the computation. In addition, they proposed to use Monte-Carlo methods

to derive the empirical p-values of Ẑclump, χ2 and Ẑmax.

In order to compare these three test statistics heuristically, we rewrite them

as maxima of the same expression where the maximum is taken over different

sets. Pearson’s χ2 can be rewritten as:

χ2 = max
u∈R

(u′Ẑ)2

u′V ar (Ẑ)u
,

where R is the set of vectors with m coordinates (see appendix 4.7 ). Since

∑
m
i=1 Ẑi = 0, the Pearson’s χ2 test is the Hotelling’s test statistic applied to any

m − 1 coordinates of the vector Ẑ.

Now Ẑmax is the maximum value of all Pearson’s χ2 tests on 2-by-2 ta-

bles obtained by comparing any haplotype against the rest. Ẑmax can be re-
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Chapter 4. Score test for genetic association

expressed by

Ẑmax = max
u∈A

(u′Ẑ)2

u′Var(Ẑ)u
,

where A is the set of the m different permutations of the vector (1, 0, .., 0)′.

The Ẑclump statistic can be given by

Ẑclump = max
s⊆(1,...,m)

(∑i∈s xi − n1 ∑i∈s p̂i)
2

n1(1 − ∑i∈s p̂i) ∑i∈s p̂i
= max

u∈S

(u′Ẑ)2

u′Var(Ẑ)u
,

where S is the set of vectors whose k coordinates set to 1 and m− k coordinates

set to 0, with k = 1, ..., m − 1 and s any subset of (1, 2, ..., m). This implies that

under the alternative hypothesis of the presence of an association, all associ-

ated haplotypes are assumed to have the same effect sizes in terms of relative

risk.

Note that A is a subset of S, which in turn, is a subset of R. Hence, if

only one haplotype is associated with the disease, the alternative hypothesis

is properly specified by A, and then Ẑmax is likely to have more power than

Ẑclump and χ2. However if two or more marker haplotypes are associated

with the disease and have the same effect size in terms of relative risk the

Ẑclump is expected to provide more power than Ẑmax and χ2 as the alternative

hypothesis is better specified by the set S. In case of associated haplotypes

with unequal effect sizes χ2 is expected to perform the best unless the number

of haplotypes is large.

4.3 The av eraging approach

Assume that one of the haplotypes is over-represented in the cases. Denote

this haplotype with index i. The haplotype frequencies in the cases can be

modelled as qi = pi + λ(1 − pi) with 0 ≤ λ ≤ 1 for the associated haplotype i

and as qj = pj − λpj for the remaining haplotypes with j = 1, · · · , m and j 6= i.

Here λ is the population attributable risk. Then the conditional likelihood of

data given that haplotype i is over-represented in cases is

Li(x, y|λ, p) = (pi + λ(1 − pi))
xi (1 − λ)n1−xi

m

∏
j 6=i

p
xj

j

m

∏
j=1

p
yj

j . (4.1)

Terwilliger (1995) proposed the following likelihood, assuming that the prior

probability of a marker haplotype i being associated with the disease is equal
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Chapter 4. Score test for genetic association

to the haplotype frequency pi

L(x, y|λ, p) =
m

∑
j=1

pjLj, (4.2)

with Lj given in formula (4.1). The corresponding score statistic is an alterna-

tive to the likelihood ratio test proposed by Terwilliger (1995) for H0 : λ = 0

versus Ha : λ > 0. Since the first derivative of the likelihood L with respect

to λ at λ = 0 is equal to zero, we propose to use the second derivative of the

log-likelihood with respect to λ to derive the score statistic (Dudoit and Speed,

2000; Tritchler et al., 2003). The second derivative of the log-likelihood with

respect to λ evaluated for λ = 0 is

∂2

∂λ2
log(L(x, y|λ = 0, p)) =

m

∑
j=1

(xj − n1 pj)
2

pj
−

m

∑
j=1

xj − n1 pj

pj
− n1(m − 1).

Derivation of the second derivative is given in the appendix (4.8 ). B y di-

viding the second derivative by n1 and then taking the stochastic part of it, the

score statistic can be given by

Sp = X2 −
U

n1
, (4.3)

with X2 = ∑
m
j=1

(xj−n1 pj)
2

n1 pj
, the one sample Pearson’s χ2 statistic (haplotype

frequencies in controls are known), and U = ∑
m
j=1

xj−n1 pj

pj
, the score statistic

obtained by replacing the weights in the likelihood (4.2) by equal weights. For

equally frequent haplotypes the statistic U = 0, hence Sp = X2. Under the null

hypothesis, Sp has mean E[Sp] = m − 1 and variance V ar(Sp) = 2n−1
1 (n1 −

1)(m − 1) (see Appendix 4.8 ). Hence, asymptotically the statistics Sp and X2

have the same expectation and the same variance.

When the haplotype frequencies pi are unknown, the score statistic can be

estimated by replacing the haplotype frequencies pi by their maximum likeli-

hood estimators under the null hypothesis p̂i = xi+yi
n . Now after some algebra

the score statistic can be given by

Ŝp = χ2 −
n

n1n2
Û, (4.4)

with χ2, the two samples Pearson’s χ2 statistic on the m-by-2 table and

Û = ∑
m
j=1

xj−n1 p̂j

p̂j
. It can be shown by means of the δ-method that the score
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Chapter 4. Score test for genetic association

statistic Ŝp and Pearson’s χ2 have asymptotically the same expectation and the

same variance under the null hypothesis (see appendix 4.8). For m large, the

score test Ŝp (Sp) follows approximately a normal distribution under the null

hypothesis. To ensure the validity of the asymptotic distribution, the number

of cases and control chromosomes should be much larger than the number of

marker haplotypes m. Nevertheless, the empirical distribution under the null

hypothesis of the statistic Ŝp (Sp) can easily be derived by using Monte-Carlo

methods (Sham and Curtis, 1995).

Under the alternative hypothesis of the presence of one positively associ-

ated haplotype i, it can be shown that the expectations of U and Û are

E[U] = n1λ(
1

pi
− m)

E[Û] ≈
n1n2λ

n − n1λ
(

n

npi + n1λ(1 − pi)
− m) ≤

n1n2λ

n − n1λ
(

1

pi
− m).

This implies that the expectations of U and Û are negative if the frequency

of the associated haplotype pi is larger than the inverse of the number of

marker haplotypes 1
m . Consequently, the score statistic Ŝp (Sp) becomes larger

in expectation than χ2(X2) if the frequency of the associated haplotype is

larger than 1
m . Hence, for common associated haplotypes (pi >

1
m ) the score

statistic is expected to have higher power than Pearson’s χ2.

Terwilliger (1995) discussed the presence of more than one associated hap-

lotype. For two positively associated haplotypes i and k he proposed the fol-

lowing model with two free parameters λ1 and λ2 with λ1 + λ2 ≤ 1

qi = pi(1 − λ1 − λ2) + λ1,

qk = pk(1 − λ1 − λ2) + λ2 for i 6= k,

qj = pj(1 − λ1 − λ2) for j 6= i and j 6= k.

The likelihood for two associated haplotypes given by Terwilliger (1995) was

incorrect since the weights are prior probabilities and did not sum to 1. There-

fore, we propose the following likelihood for two associated variants

L(x, y|λ1, λ2, p) =
m

∑
i=1

m

∑
k=1

pi pk

m

∏
j

q
xj

j p
yj

j ,

assuming qi = pi(1 − λ1 − λ2) + λ1 + λ2 for i = k. Since i and k are inter-
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Chapter 4. Score test for genetic association

changeable with respect to λl for l = 1, 2 the following derivatives are

∂

∂λl
L(x, y|λ1 = 0, λ2 = 0, p) = 0,

∂2

∂λ1∂λ2
L(x, y|λ1 = 0, λ2 = 0, p) = 0, and

∂2

∂λ2
l

L(x, y|λ1 = 0, λ2 = 0, p) = n1X2 − mU − n1(m − 1).

In contrast to the Terwilliger’s likelihood ratio, Ŝp (equation 4.4) is the score

statistic of testing no disease-marker association regardless of the potential

number of associated variants.

4.4 S imulation study

The aim of the simulation study is to evaluate empirically the power of

the score test Ŝp in comparison with the Pearson’s χ2, Ẑmax and Ẑclump tests.

We generated at least 1000 replicates from the multinomial distributions ac-

cording to the models described previously. Without loss of generality we

assumed that the first or first two haplotypes are associated with the disease.

The remaining haplotypes were equally frequent. We varied the number of

variants m from 3 to 20. The p-values of the test statistics were calculated em-

pirically by means of 1000 Monte-Carlo permutations using a program based

on the program Clump (Sham and Curtis, 1995). We used a nominal p-value

of 0.05.

Ty pe I error rate

To verify whether Monte-Carlo yields the right type I error rate of these test

statistics, data sets were generated under the null model (λ = 0) each time for

markers with 5, 7, 9, 11, 16 and 20 alleles. The frequency of the first allele was

set to 0.5, whereas the remaining alleles were equally frequent. The results

are shown in Table 4.1. The type I error rate is approximately equal to the

nominal rate for the score Ŝp, Pearson’s χ2, and Ẑclump tests, regardless of the

number of alleles m at the marker locus, whereas the Ẑmax becomes somewhat

conservative as the number of marker alleles m increases (Sham and Curtis,

1995).

48



Chapter 4. Score test for genetic association

TAB L E 4.1: The type I error rates based on 10000 simulated m-by-2 tables for λ = 0

and p1 = 0.5.

α m χ2 Ẑclump Ẑmax Ŝp m χ2 Ẑclump Ẑmax Ŝp

0.05 5 0.053 0.053 0.047 0.054 11 0.047 0.046 0.039 0.046

0.01 0.011 0.011 0.009 0.011 0.010 0.010 0.008 0.010

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001

0.05 7 0.051 0.048 0.045 0.052 16 0.049 0.049 0.040 0.047

0.01 0.011 0.010 0.009 0.010 0.011 0.011 0.007 0.010

0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.000 0.001

0.05 9 0.051 0.052 0.044 0.052 20 0.052 0.052 0.035 0.053

0.01 0.001 0.011 0.008 0.010 0.011 0.011 0.008 0.010

0.001 0.002 0.002 0.001 0.001 0.001 0.002 0.001 0.002

Single associated variant

To study the power of the statistics we first considered the model used by

Terwilliger (1995) for one positively associated common haplotype. The fre-

quency p1 of this haplotype was 0.5 in controls. The parameter λ was fixed

to 0.5, which corresponds to a haplotype frequency of 0.75 in the cases and a

relative risk γ of 3. We considered 100 case chromosomes (n1) and 100 con-

trol chromosomes (n2). The results are shown in Table 4.2. For m ≤ 5 all test

statistics performed well; however Ŝp had slightly higher power than other

test statistics. For m > 5 the score test Ŝp and Ẑmax tests appeared to perform

better than the Pearson’s χ2 and Ẑclump tests regardless of the number of hap-

lotypes at the marker locus. Especially for the significant level of 0.05, Ŝp and

Ẑmax had similar power, while for lower significant levels Ŝp had somewhat

lower power than Ẑmax. The power of Pearson’s χ2 decreased as the number

of haplotypes increased.

Second, we studied the power of the test statistics for various values of

the frequency of the associated haplotype (0.06 to 0.5). We chose λ so that the

relative risk γ of the associated variant with respect to its absence was about 2.

Because of low λ, the number of chromosomes n1 and n2 were now set to 200.

The results are depicted in figure 4.1. Almost overall Ẑmax outperformed the

other test statistics. Ŝp had the second best power. It performed better than

Pearson’s χ2 especially when m ≥ 10. Further it had higher power than Zclump

for p1 = 0.06 and 0.1 while for p1 = 0.15, 0.2, 0.3 and 0.4, the performances of
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TABLE 4.2: The power based on 10000 simulated m-by-2 tables for λ = 0.5 and p1 =

0.5.

α m χ2 Ẑclump Ẑmax Ŝp m χ2 Ẑclump Ẑmax Ŝp

0.05 3 0.92 0.93 0.93 0.94 9 0.76 0.85 0.91 0.88

0.01 0.79 0.80 0.80 0.83 0.55 0.68 0.79 0.73

0.001 0.54 0.55 0.55 0.58 0.30 0.42 0.57 0.48

0.05 4 0.89 0.90 0.91 0.92 11 0.72 0.84 0.93 0.88

0.01 0.73 0.76 0.77 0.79 0.51 0.67 0.82 0.72

0.001 0.47 0.5 0.53 0.54 0.27 0.40 0.60 0.48

0.05 5 0.86 0.89 0.90 0.91 16 0.64 0.82 0.95 0.88

0.01 0.69 0.74 0.77 0.77 0.42 0.63 0.85 0.72

0.001 0.43 0.49 0.54 0.53 0.20 0.36 0.61 0.46

0.05 7 0.80 0.87 0.89 0.89 20 0.60 0.82 0.95 0.88

0.01 0.61 0.70 0.76 0.74 0.38 0.62 0.85 0.72

0.001 0.35 0.45 0.55 0.50 0.20 0.35 0.62 0.46

Ŝp and Zclump were comparable. Pearson’s χ2 performed well when m = 5 or

when p1 = 0.06.

Two associated variants

To study the performance of the test statistics when there are two haplo-

types positively associated with the disease, we generated data according to

the model given by (4.5). We simulated data sets for (p1, p2) = (0.06, 0.06),

(0.06,0.1), (0.1, 0.15), (0.15,0.2), (0.2,0.3), (0.3,0.4) and their corresponding

excess frequencies (λ1, λ2) = (0.05, 0.05), (0.05,0.08), (0.08,0.1), (0.1,0.15),

(0.15,0.2), (0.18,0.25), respectively. The total relative risk of the two associated

variants with respect to their absence was again about two (between 1.9 and

2.1). The number of chromosomes n1 and n2 were set to 100. The power curves

are shown in figure 4.2. In contrast to the case of one associated haplotype, Ŝp

and Ẑclump performed now better than Zmax. For m ≤ 8 and p1 = 0.06, Ŝp ap-

peared to have somewhat less power than Pearson’s χ2 and Ẑclump. Whereas

for m ≥ 10 Ŝp had somewhat more power than Pearson’s χ2 and Ẑclump. For

the remaining situations (p1 ≥ 0.1, p2 ≥ 0.15), Ŝp had the best power and

Ẑclump had the second best power. The power of Pearson’s χ2 was compara-

ble to that of Ẑclump for m = 5 and it decreased with the increase of m. For
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FIGURE 4.2: Power curves at the nominal level α = 0.05 of χ2 (——4——), Ẑclump (· · · ·+ · · · ·), Ẑmax

(− ·− · × · − · −) and Ŝp (— — 5— —) for 1 00 case and 1 00 control chromosomes and a relative risk

of about 2 for the combined associated haplotypes.

most situations, it had higher power than Ẑmax, which had low power.

4.5 Application to real data

To illustrate the score test with real data we used data obtained from a pub-

lished study on association between the collagen type II gene(COL2A1) and

radiographic osteoarthritis (ROA) (Meulenbelt et al., 1999). Osteoarthritis is

a degenerative disease of the joints. The VNTR marker next to COL2A1 was

typed in 820 subjects aged 50-70 years from a population-based cohort study,

the Rotterdam study. Radiographs of knees, hips, hands, and spine were

scored for the presence of ROA. 123 cases had ROA in at least 3 joints groups.

697 remaining subjects were used as controls. Five variants had frequencies

≥ 0.05. The other variants were combined into one group. Preliminary in-
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TABLE 4.3: Results of analysis of association between ROA and COL2A1 gene.

COL2A1 2# cases 2# controls

haplotypes n1 = 246 n2 = 1394 χ2 Ẑmax Ẑclump Ŝp

13R1 114 (0.46) 581 (0.42)

14R1 54 (0.22) 385 (0.28)

11R1 22 (0.09) 149 (0.11)

14R2+ 27 (0.11) 78 (0.06)

13R2 12 (0.05) 85 (0.05)

Others

pooled 17 (0.08) 116 (0.08)

P-value 0.013 0.009 0.044 0.012

spection of data suggested the existence of one positively associated variant.

The frequency of the potential associated variant, 14R2, was 0.06 (< 1/ m with

m = 6) in controls. Its frequency was increased in the cases with a relative risk

of about 1.94 (λ ≈ 0.05). Hence one might expect that Pearson’s χ2 will per-

form slightly better than Ŝp (see Figure 4.2). (Meulenbelt et al., 1999) used Ter-

williger’s LR. They found evidence of association between ROA and COL2A1

(P= 0.03). We also applied the score Ŝp, Pearson’s χ2, Ẑmax, and Ẑclump tests to

these data. Table 4.3 shows the distribution of the variants among cases and

controls and summarizes the results of applied test statistics. All test statistics

indicated the presence of a significant association at the 0.05 level. The score

test Ŝp, Pearson’s χ2, and Ẑmax gave quite similar p-values of about 0.01. The

Ẑclump test yielded a quite higher p-value of about 0.04.

4.6 D iscussion

In this paper, we derived a new score statistic Ŝp, which corresponds to the

likelihood ratio statistic of Terwilliger (1995). The score test is easy to com-

pute and is asymptotically locally most powerful (Cox and Hinkley, 1974).

For a single common positively associated haplotype (frequency > 1/ m), we

showed heuristically that the score test would provide more power than Pear-

son’s χ2 on the m-by-2 table. Further in contrast to the likelihood ratio statistic

of Terwilliger, the same score test is obtained regardless of the number of asso-

ciated haplotypes. For large m, the score test follows approximately a normal

53



Chapter 4. Score test for genetic association

distribution under the null hypothesis. For small sample sizes or small m, the

empirical p-values can be derived by means of Monte-Carlo methods.

By means of simulations we compared the performance of this new statis-

tic to the existing statistics χ2, Ẑmax and Ẑclump. The Ŝp gives more weight

to common haplotypes, but for one associated haplotype it had similar or

slightly less power than Ẑmax. The power of Ẑmax was dramatically low for

many considered models of two associated haplotypes. The power of Pear-

son’s χ2 decreased with the number of observed haplotypes, due to the in-

creasing number of degrees of freedom.

In the simulation study we assumed that phase is known. When phase is

ambiguous, the haplotype counts have to be estimated and the uncertainty in

phase has to be taken into account when computing the p-value of the statis-

tics. This can easily be incorporated when Monte Carlo methods are used

by estimating the haplotype frequencies in each permutation step (see for ex-

ample Becker et al. (2005)). This adjustment is less efficient than maximiz-

ing the likelihood over the haplotype frequencies and the unknown param-

eter λ simultaneously, but in many situations the loss of information due to

phase-uncertainty is small. We recommend to consider smaller blocks or sin-

gle marker methods when the loss of information due to phase uncertainty is

rather large (Uh et al., 2005).

In this paper, we used the chromosome as unit of analysis and not the indi-

vidual. By doing so we have to assume Hardy Weinberg equilibrium and the

methods correspond to a multiplicative model for diplotypes (Sasieni, 1997).

Therefore the power will decrease when the true model deviates from this

multiplicative model as is the case for a recessive model. For this model we

recommend to use other methods (see also Cordell and Clayton (2005)).

Like the approach of Terwilliger (1995), Ŝp gives more weight to common

haplotypes. A positive association may be due to a common causal variant,

due to a rare mutation with a rather large impact which is sometimes present

on a common haplotype or due to multiple mutations on the associated hap-

lotype. When mutations are present on more than one haplotype, the score

statistic Ŝp can still detect this association, but identification of the causal vari-

ants will be difficult. Genetic association studies have no power to identify

genes with multiple rare mutations on rare haplotypes (Zondervan and Car-

don, 2004).

The advantages of the parameter λ are that it is directly related to recombi-

nation fraction and is less sensitive to haplotype frequencies than other mea-

sures (Devlin and Risch, 1995). However, when allelic association is mod-
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elled by means of λ it is not straightforward to adjust for other covariates.

Houwing-Duistermaat and Elston (2001) discussed various ways to quantify

allelic association and estimate the location of the gene responsible for the dis-

ease using logistic regression models. As an alternative to λ, the log relative

risk as measured by the regression coefficient in the logistic model may be

used to allow for adjustment of other covariates. More research is needed to

build this kind of fl exible models.

We conclude that overall the score statistic Ŝp has good power regardless

of the number of observed haplotypes. When one haplotype is associated,

Ẑmax performs better, but when two haplotypes are associated, Ẑmax performs

dramatically bad and Ŝp performs well.

Software

The method described in this paper is implemented in software written in

C programming language and it is based on the source of Clump program

(Sham and Curtis, 1995). The C program will be available from our Web site

(http://clinicalresearch.nl/personalpage/)

4.7 Appendix 1

Pearson’s chi-sq uare

Let R be the set of vectors with m coordinates and R−m be the set of vectors

with m − 1 coordinates. Let Ẑ−m the vector of the first m − 1 centered allele

counts. Since ∑
m
i=1 Ẑi = 0, it follows

max
u∈R

(u′Ẑ)2

u′Var(Ẑ)u
= max

v∈R−m

(v′Ẑ−m)2

v′Var(Ẑ−m)v
.

The covariance matrix Var(Ẑ−m) is positive definite, hence applying the ex-

tend Cauchy-Schwarz inequality (Johnson and Wichern, 1998) and noting that

the maximum is attained when v ∝ Var(Ẑ−m)−1Ẑ−m give

max
v∈R−m

(v′Ẑ−m)2

v′Var(Ẑ−m)v
= Ẑ′

−mVar(Ẑ−m)−1Ẑ−m.

After some algebra it follows

max
u∈R

(u′Ẑ)2

u′Var(Ẑ)u
=

m

∑
j=1

(xj − n1 p̂j)
2

n1 p̂j
+

m

∑
j=1

(yj − n2 p̂j)
2

n2 p̂j
.
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4.8 Appendix 2

Derivation of the score statistic

The first derivative of the likelihood is

∂

∂λ
L(x, y|λ, p) =

m

∑
i=1

pi
∂

∂λ
Li(x, y|λ, p)

=
m

∑
i=1

{xi(1 − pi)(pi + λ(1 − pi))
−1 − (n1 − xi)(1 − λ)−1}piLi(x, y|λ, p).

Hence the score statistic is

∂

∂λ
log(L(x, y|λ = 0, p)) =

∂
∂λ (L(x, y|λ = 0, p))

L(x, y|λ = 0, p)

=
m

∑
i=1

pi(xi − n1 pi)

pi
= 0

Therefore, the score statistic can be now obtained by evaluating the second

derivative of the log-likelihood with respect to λ at λ = 0 and using the fact

that the first derivative is zero

∂2

∂λ2
log(L(x, y|λ = 0, p)) =

∂2

∂λ2 L(x, y|λ = 0, p)

L(x, y|λ = 0, p)
(4.5)

The second derivative of the likelihood is

∂2

∂λ2
L(x, y|λ, p) =

m

∑
i=1

{−xi(1 − pi)
2(pi + λ(1 − pi))

−2 − (n1 − xi)(1 − λ)−2}pi Li(x, y|λ, p)

+
m

∑
i=1

{xi(1 − pi)(pi + λ(1 − pi))
−1 − (n1 − xi)(1 − λ)−1}2 pi Li(x, y|λ, p).

Therefore the second derivative at λ = 0 is

∂2

∂λ2
L(x, y|λ = 0, p) = {

m

∑
i=1

(x2
i − xi)p−1

i + n1 − n2
1}L(x, y|λ = 0, p). (4.6)

Combining (4.5) and (4.6)

∂2

∂λ2
log(L(x, y|λ = 0, p)) =

m

∑
i=1

(xi − n1 pi)
2

pi
−

m

∑
i=1

xi − n1 pi

pi
− n1(m − 1)
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Derivation of expectation and variance of Sp

The expectation of Sp is

E[Sp] = E[X2] = k − 1.

and the variance of n1Sp is

Var[n1Sp] =
m

∑
i,j=1

Cov[(xi − n1 pi)
2, (xj − n1 pj)

2]

pi pj
+

m

∑
i,j=1

E[(xi − n1 pi)(xj − n1 pj)]

pi pj

− 2
m

∑
i,j=1

E[(xi − n1 pi)
2(xj − n1 pj)]

pi pj

=
m

∑
i,j=1

−n1 pi pj(1 − 2pi − 2pj + 6pi pj)

pi pj
+ 2

m

∑
i,j=1

(n1 pi pj)
2

pi pj

+
m

∑
i=1

n1 pi(1 − 6pi + 8p2
i )

p2
i

+ 2
m

∑
i=1

n2
1 p2

i (1 − 2pi)

p2
i

+
m

∑
i,j=1

−n1 pi pj

pi pj

+
m

∑
i=1

n1 pi

p2
i

− 2
m

∑
i,j=1

−n1 pi pj(1 − 2pi)

pi pj
− 2

m

∑
i=1

n1 pi(1 − 2pi)

p2
i

= 2n1(n1 − 1)(m − 1)

Note that

Cov[(xi − n1 pi)
2, (xj − n1 pj)

2] = −n1 pi pj{(1 − 2pi − 2pj + 6pi pj) − 2n1 pi pj}

+ I{j=i}n1 pi{(1 − 6pi + 8p2
i ) + 2n1 pi(1 − 2pi)}

E[(xi − n1 pi)
2(xj − n1 pj)] = −n1 pi pj(1 − 2pi) + I{j=i}n1 pi(1 − 2pi)

E[(xi − n1 pi)(xj − n1 pj)] = −n1 pi pj + I{j=i}n1 pi,

with I{j=i} = 1 if i = j otherwise 0. Hence the variance of Sp is

Var[Sp] = 2(m − 1)
n1 − 1

n1

Derivation of the asymptotic expectation and variance of Ŝp

The expectation and the variance of Ŝp can be given as follows

E[Ŝp] = E[χ2] −
n

n1n2
E[Û]

Var[Ŝp] = Var[χ2] − 2
n

n1n2
Cov[χ2, Û] + (

n

n1n2
)2Var[Û]
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By means of δ-method it can be shown that

E[Û] ≈ 0,

Var[Û] ≈ n−1n1n2(
m

∑
j=1

p̂−1
j − m2),

Cov[χ2, Û] = E[χ2Û] ≈ 0.

Hence for n
n2

� ∞ and n1 → ∞

E[Ŝp] = E[χ2] = m − 1

Var[Ŝp] = Var[χ2] = 2(m − 1)
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