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CH A P T E R 2

S c o r e s t a t i s t i c t o t e s t f o r g e n e t i c

c o r r e l a t i o n f o r p r o b a n d - f a m i l y

d e s i g n

R. el Galta, C.M. van Duijn, J.C. van Houwelingen and J.J. Houwing-

Duis ter m aat

A b s t r a c t

In genetic epidemiological studies, informative families are often oversam-

pled to increase th e pow er of a study . F or a prob and-family design, w h ere rel-

atives of prob ands are sampled, w e derived th e score statistic to test for clus-

tering of b inary and q uantitative traits w ith in families due to genetic factors.

T h e derived score statistic is rob ust to ascertainment sch eme. W e considered

correlation due to unspecifi ed genetic effects and/ or due to sh aring alleles

identical b y descent (IB D ) at ob served mark er locations in a candidate region.

A simulation study w as carried out to study th e distrib ution of th e statistic un-

der th e null h y poth esis in small data-sets. T o illustrate th e score statistic, data

on 3 3 families w ith ty pe 2 diab etes mellitus (D M 2 ) w ere analy z ed. In addition

to th e b inary outcome D M 2 , w e also analy z ed th e q uantitative outcome, b ody

mass index (B M I) . F or b oth traits, familial aggregation w as h igh ly signifi cant.

F or D M 2 , including also IB D sh aring at mark er D 3 S 3 6 8 1 as a cause of corre-

lation gave an even more signifi cant result, w h ich suggests th e presence of a

trait gene link ed to th is mark er. W e conclude th at for th e prob and-family de-

sign th e score statistic is a pow erful and rob ust tool for detecting clustering of

outcomes.

P ub lis h ed in Ann Hum Genet. 2 0 0 5 ; 6 9 :3 7 3 -8 1
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Chapter 2. Score test for proband-family design

2.1 I ntrodu ction

Complex genetic traits are often determined by multiple genetic and envi-

ronmental factors with small effects (L ander and Schork , 19 9 4 ) necessitating

large-scale studies to obtain enough power to identify genetic factors. T he

power can also be increased by enrichment of the sample for the presence of

genetic factors via selection of families with an unusual distribution of the

trait ( A mos and de A ndrade, 2001; Carey and W illiamson, 19 9 1; E lston, 2000;

L iang and B eaty, 2000; Risch and Z hang, 19 9 5). F or binary and q uantitative

traits, the selected families often have a high proportion of affected individu-

als and of subjects with phenotypes ex ceeding some threshold T , respectively.

In this paper, we consider a proband-family design where relatives are sam-

pled through probands. W e defi ne a set of probands to be a set of family

members chosen in such a way that the remaining relatives are not related to

ascertainment (E wens and Shute, 19 86 ) . A score statistic is derived to test for

clustering of a trait due to genetic factors within these families.

In family studies, a fi rst q uestion to be answered is whether genetic factors

play a role in the observed trait. Closely related individuals should tend to

have similar outcomes compared to non or distantly related individuals. A n-

other q uestion of interest may be whether correlation ex ists due to the pres-

ence of a genetic factor located in a genomic region. If a genetic factor is link ed

to a mark er, relatives with ex cess sharing of mark er alleles identical by de-

scent (I B D) should tend to have similar outcomes compared to relatives with

less sharing of alleles IB D.

Since the families selected through probands are non random, the statisti-

cal methods used should tak e into account the ascertainment procedure (E l-

ston and Sobel, 19 79 ; Morton, 19 59 ) . F or single ascertainment, Cannings and

T hompson (19 77) proposed to condition on the phenotypes of the probands.

However if single ascertainment cannot be assumed, conditioning on affected

probands may not be suffi cient. E wens and Shute (19 86 ) showed that if re-

maining family members are related to ascertainment, the estimates of ge-

netic parameters may be biased. T hey proposed to split the family in a set of

probands related to ascertainment and a set of relatives not related to ascer-

tainment. F or ex ample if nuclear families with at least one affected offspring

are ascertained, the set of probands should consist of all observed offspring

regardless of their affection status and the only family members not related to

ascertainment are the parents. L ik e E wens and Shute (19 86 ) we also assume

that family members who do not belong to the set of probands are not related
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Chapter 2. Score test for proband-family design

to ascertainment.

For randomly selected families, Houwing-Duistermaat et al. (2003, 1995)

derived the score statistic to test for correlation due to genetic factors. The test

can be applied before complex genetic models are fitted. The score statistic

does not assume any distribution of random effects. Adjustments for covari-

ates can be made. In this paper we derive the score statistic for clustering of

binary and quantitative traits in the proband family design by using the con-

ditional likelihood given the phenotypes of the probands. By conditioning

on the phenotypes of the individuals relevant for ascertainment, the method

is robust to the ascertainment scheme (Ewens and Shute, 1986). To take into

account the relationship between covariates and outcome, we propose to use

data from other sources, such as large-scale epidemiological studies.

Commenges et al. (1995) proposed also a score statistic for testing familial

aggregation of binary traits in families ascertained via probands. However,

they only considered a random intercept model, which yields equal correla-

tion between family members and they assumed single ascertainment. Fur-

thermore the effects of covariates on the trait are estimated under the null hy-

pothesis using the data on the relatives. However for larger sets of probands,

it can be impossible to estimate the parameters. For example for age depen-

dent traits, the effect of age cannot be estimated from the data if the set of

probands consists of all offspring and the remaining relatives are only the

parents. Moreover, Rao et al. (1988) and de Andrade and Amos (2000) showed

that conditioning on the trait value of the proband is not efficient for param-

eter estimation. Therefore we suggest to obtain parameters from an available

population based study. Commenges et al. (1995) used the normal distribution

for the distribution of the statistic under the null hypothesis. As alternative,

we propose the scaled χ
2 distribution. By means of simulation we study the

performance of the scaled χ
2 and the normal distribution in small data-sets.

As an illustration we applied the score statistics to a sample of first-degree

relatives of probands with type 2 diabetes mellitus (DM2). Probands were

patients with DM2 living in the GRIP population (Genetic Research in Iso-

lated Populations), and known to be affected by the physicians participating

in GRIP. To study correlation due to sharing alleles IBD at marker positions,

we used genotypes at five makers located in a region earlier identified as pos-

sibly harboring a genetic factor that plays a role in the distribution of DM2 in

this set of families (Aulchenko et al., 2003). We also studied body mass index

(BMI) to illustrate the use of the score statistic on quantitative traits. Age and

sex specific distributions were obtained from the Rotterdam Study (Hofman
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Chapter 2. Score test for proband-family design

et al., 1991), a large population-based follow up study.

2.2 M eth ods

Th e generaliz ed linear mix ed model (G L M M )

Let Yk = (Yk,1, ..., Yk,nk
)′ be the response vector of a family with nk relatives.

We assume that each component of Yk has a distribution f in the exponential

family with a dispersion parameter φ. Let µk,i be the expected value of Yk,i

which may depend on a vector of covariates xk,i. To model genetic correla-

tion among family members, the following generaliz ed linear mixed model

(GLMM) is proposed

Yk,i ∼ f (µki, φ)

µk,i = E(Yk,i|xk,i, uk,i) = h−1(xk,iβ + uk,i),

with h a link function (McCullagh and N elder, 1989). For a quantitative out-

come h may be the identity function and for a qualitative outcome h may be

the logit function. The vector β is a vector of regression coefficients and uk =

(uk,1, ..., uk,nk
)′ is a random vector with mean 0 and covariance matrix τ2Rk. If

τ2 = 0 the variables Yk,i are independent and the model µk,i = h−1(xk,iβ) is

simply a generaliz ed linear model (McCullagh and N elder, 1989).

For uk equal to an additive genetic effect, the correlation structure Rk has

elements Rk,ij equal to the coefficients of relationships (Sham, 1998). The coef-

ficient of relationships can be written as follows

Rk,ij = π2
ij +

1

2
π1

ij, (2.1)

with πl
ij, l = 0, 1, or 2 the probability of sharing l alleles identical by descent

(IBD) between individual i and j. When genetic markers are typed, correlation

due to sharing alleles IBD at marker positions may be of interest. For a certain

marker, we propose to extend the correlation structure (2.1) to the following

set of correlation structures:

Rk,ij = ρ(π̃2
ij +

1

2
π̃1

ij) + (1 − ρ)(π2
ij +

1

2
π1

ij), with 0 ≤ ρ ≤ 1, (2.2)

with π̃l
ij, l = 0, 1, or 2 the conditional probability of sharing l alleles IBD be-

tween relative i and j at the marker locus, given the marker data and the family

structure. N ow the random effect uk represents correlation due to tight link-

age between a marker and a gene involved in the etiology of the trait and due
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Chapter 2. Score test for proband-family design

to residual genetic factors. The proportion of the additive genetic variance

explained by a locus is modelled by the parameter ρ. For ρ = 0, Rk equals

correlation structure (2.1) and no contribution of the locus to the genetic cor-

relation is modelled. For ρ = 1, Rk is the mean IBD sharing matrix at a locus

and hence this model assumes that the total genetic variance is explained by

this locus.

The choice of ρ depends on the population and trait studied. For a ge-

netically homogeneous population where only one gene is expected to be in-

volved in the etiology of the studied trait, ρ may be set to 1. For complex

genetic traits studied in the general population, small values of ρ may be of

interest. Alternatively plots of ρ versus the p-value may be made to study

if the p-value decreases by adding the correlation due to IBD sharing to the

correlation structure (1).

For randomly chosen families, Houwing-Duistermaat et al. (1995) used the

GLMM above and derived the score statistic to test the null hypothesis H0 :

τ2 = 0 of no correlations between relatives of randomly chosen families. The

statistic is given by

∑
1≤k≤m

Qk = ∑
1≤k≤m

(Yk − µk)
′Rk(Yk − µk),

with m the number of families.

Score statistic for proband family design

Since the score statistic adds over independent families, it suffices to give

the statistic and its distribution only for a single family. Therefore we drop

the family index k. Suppose a family has n members with np probands related

to ascertainment and nr = n − np remaining relatives not related to ascertain-

ment. Let Zi = Yi − µi with µi the known mean. To let µi depend on covariates

a marginal model may be used (Diggle, 1994). Now let the first np observa-

tions belong to the set of probands then we can write Z′ = (Zp ′, Zr ′) with

Zp = (Z1, ..., Znp)
′ and Zr = (Znp+1, ..., Zn)′. Analogously we decompose the

correlation matrix R into four blocks, R =

(

Rpp Rpr

Rpr ′ Rrr

)

. The logarithm of

the conditional likelihood l(Z|Zp, τ) of Z given the outcomes of the probands

Zp is

l(Z|Zp, τ) = l(Z|τ) − l(Zp|τ)

= log(Eu[ f (Z|u, τ)]) − log(Eu[ f (Zp|u, τ)]).
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Chapter 2. Score test for proband-family design

The corresponding score statistic to test H0 : τ2 = 0 is obtained by taking the

first derivative of l(Z|Zp, τ) with respect to τ2 at τ2 = 0

∂

∂τ2
l(Z|Zp, τ2)|τ2=0 = Q − E|τ2=0(Q),

with Q a quadratic form equal to the stochastic part of the first derivative plus

a constant. The statistic Q can be written as follows

Q = Z′RZ = Zr ′RrrZr + 2Zp ′RprZr + Zp ′RppZp.

Note that the stochastic part of Q can be written as a sum of two statistics

L = 2Zp ′RprZr and Qr = Zr ′RrrZr. The linear term L measures correlation

between probands and relatives. The quadratic form Qr is the score statis-

tic applied to the relatives and ignoring the probands. If the outcome of the

proband is unknown, no information is available about the correlation be-

tween the proband and the family members. Furthermore from the formula

for Q it is clear that information is lost when more relatives are allocated to

the set of probands (see also Ewens & Shute, 1986).

U nder the null hypothesis of no correlation, the conditional expectation

E(Q|Zp) and variance V a r(Q|Zp) of the statistic given the outcomes of the

probands are

E(Q|Zp) = E(Qr) + Zp ′RppZp =
n

∑
i=np+1

RiiV a r(Zi) + Zp ′RppZp,

and

V a r(Q|Zp) = V a r(L|Zp) + 2C o v (L; Qr|Zp) + V a r(Qr)

= 4
n

∑
j=np+1

(
np

∑
i=1

ZiRij)
2V a r(Zj) + 4

n

∑
j=np+1

np

∑
i=1

ZiRijE(Z3
j )

+
n

∑
i=np+1

R2
ii(E(Z4

i ) − 3V a r(Zi)
2) + 2

n

∑
i,j=np+1

R2
ijV a r(Zi)V a r(Zj).

For binomially and normally distributed outcomes, formulae for the expec-

tation and the variance of Q are given in the appendix. Asymptotically, the

statistic
Q−E(Q|Zp)√

V a r(Q|Zp)
follows a standard normal distribution N(0, 1). Alterna-

tively, the distribution of Q under H0 : τ2 = 0 can be approximated by a scaled

chi-square distribution cχ2
υ with the scale parameter c given by c = V a r(Q|Zp)

2E(Q|Zp)

and the degrees of freedom υ given by υ = 2E(Q|Zp)2

V a r(Q|Zp)
(le Cessie and van

Houwelingen, 1995).
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Chapter 2. Score test for proband-family design

2.3 Simulation study

In order to study the performance of the cχ2 and normal distributions as

approximations of the null distribution of the score statistic, we performed

a simulation study. For sake of simplicity we used the data structure of our

example of 33 families (see below). We generated 100,000 data sets of inde-

pendently binomially distributed outcomes and 100,000 data sets of indepen-

dently normally distributed outcomes. The score statistics were calculated

using correlation structure (2.1) based on the coefficients of relationship. We

also studied the performance of the distributions in a very small set of nine

families.

In table 2.1, the actual p-values corresponding to a nominal p-value of 0.05,

0.01, 0.001 and 0.0001 are given. The results were in favour of the cχ2 distri-

bution for both binomially and normally distributed outcomes. Even for the

set of nine families, the cχ2 distribution performed very well.

TAB LE 2.1: Type I error rate when using cχ2 distribution and normal distribution as

approximation for the distribution of Q under the null hypothesis. The estimates

are based on 100,000 simulations.

33 families 9 families

nominal cχ2 normal cχ2 normal

Binomial (DM2)

0.05 0.0547 0.0606 0.0550 0.0649

0.01 0.0143 0.0194 0.0137 0.0239

0.001 0.0020 0.0041 0.0017 0.0070

0.0001 0.0004 0.0011 0.0002 0.0019

Normal (BMI)

0.05 0.0538* 0.0615* 0.0566 0.0651

0.01 0.0125* 0.0196* 0.0151 0.0233

0.001 0.0016* 0.0047* 0.0027 0.0069

0.0001 0.0002* 0.0011* 0.0004 0.0023

* based on 27 families
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Chapter 2. Score test for proband-family design

A data example

D escription of families

To illustrate the score statistic, we used data from 79 patients with type 2

diabetes mellitus (DM2), their first-degree relatives and spouses (Aulchenko

et al., 2003). These families were derived from the GRIP population (Ge-

netic Research in Isolated Populations), an isolated village in the Southwest

of the Netherlands. The GRIP population is described in detail elsewhere

(Aulchenko et al., 2003; V aessen et al., 2002; van Duijn et al., 2001). Probands

are patients with DM2 treated by physicians participating in GRIP. Among

the relatives are patients not related to ascertainment namely patients of other

physicians and subjects who did not know that they have DM2. In a combined

linkage and association study, a genome scan was carried out on these data

and Aulchenko et al. (2003) found a borderline association between marker

D3S3681 and DM2 (LO D score of 1.20, P= 0.01).

For DM2 we analysed 33 families informative for linkage. O ne of these

families was a combination of two nuclear families. Three families had

probands with unknown disease status. In total 31 probands and 65 relatives

were observed. The percentage of women was 60% . The mean age in years

was 62 (range 45-94). We did not use subjects younger than 45 years, because

we do not have information on the prevalence of DM2 for these age groups. In

table 2.2 the number of families for combinations of number of affected rela-

tives and number of observed relatives in the family are given. The mean size

of the families was 2.9 (range 2 to 5) and the number of affected relatives per

proband was 0.72 (range 0 to 4). The quantitative outcome body mass index

(BMI) was known for a subset of 27 families with 46 relatives. BMI was only

known for 7 probands. In this subset, the distributions of age and sex agreed

with those of larger set of 33 probands. Also for this outcome we assumed that

the family members are not related to ascertainment if they are not probands.

The age and gender specific distributions of DM2 and BMI were obtained

using data from the Rotterdam Study (Hofman et al., 1991). The Rotterdam

Study is a population based follow up study of the elderly with about 8000

subjects aged 55 and over. For both sexes, we fitted logistic and linear re-

gression models to estimate the relationschip between age and DM2 and BMI

respectively. The following marginal models were obtained
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Chapter 2. Score test for proband-family design

TABLE 2.2: Counts of families per combinations of number of affected relatives and

number of observed relatives in the family.

Number of relatives

1 2 3 4 total

0 11 3 3 0 17

Number 1 3 4 3 0 10

of affected 2 - 1 3 1 5

relatives 3 - - 0 0 0

4 - - - 1 1

total 14 8 9 2 33

logit(µ(D M 2)) =

{ −4.379 + 0.035 ∗ age for women

−3.529 + 0.025 ∗ age for men
(2.3)

and µ(B M I ) =

{

25.48 + 0.018 ∗ age for women

28.10 − 0.036 ∗ age for men
(2.4)

and σ2(B M I ) = 13.62 . We used these models also for the distributions of

DM2 and BMI for subjects aged between 45 and 55 years. In table 2.3, the

observed and expected prevalence of DM2 and the observed and expected

mean of BMI in the relatives are given. The expected values were computed

using model (2.3) and (2.4) respectively. The prevalence of DM2 and the mean

of BMI was higher than expected.

The conditional probabilities of sharing zero, one or two alleles IBD at

marker D3S3681 and four informative proximal markers namely D3S1276,

D3S3634, D3S1603, and D3S1271 were computed using the multipoint option

in GENEHUNTER (K ruglyak et al., 1996) and using all available family mem-

bers regardless of their age. Unfortunately no informative distal marker was

available. The genetic distances between adjacent markers are 2.67, 2.67, 0.53,

and 2.67 cM successively. The markers appeared to be highly informative

(> 0.89), using the entropy as a measure of the informativeness (K ruglyak

et al., 1996), hence also the Spearman’s rank correlations between the esti-

mated proportion of alleles shared IBD at each marker locus and the coef-

ficient of relationship are rather small (< 0.53). The Spearman’s rank cor-

relations between the estimated proportion of alleles shared IBD at pairs of

19



Chapter 2. Score test for proband-family design

TABLE 2.3: Observed and expected prevalence of DM2 and mean of BMI

Observed Expected*

Prevalence of DM2

women (n=40) 0.35 0.10

men (n=25) 0.40 0.11

Mean of BMI (standard error)

women (n=28) 29.27 (0.91) 26.40

men (n=18) 28.63 (0.93) 25.98

* expected values are based on the Rotterdam Study

markers varied from 0.74 (D3S3681 and D3S1271 at distance 8.54 cM) to 0.90

(D3S3634 and D3S1603 at distance 0.53 cM). Due to recombination between

two physically close located markers D3S3634 and D3S1603, the estimated

proportion of alleles shared IBD differed between these marker loci.

Results

We applied the score statistics to test for clustering of DM2 and BMI due

to genetic factors. Correlation structure (2.1) based on familial relationship

appeared to be highly significant for both traits (P < 0.00001). For testing cor-

relation structure (2.2) for the five markers, plots of ρ versus minus log10 of

p-value are given in figure 2.1 for DM2 and in figure 2.2 for BMI. All p-values

were highly significant (P < 0.00001). Especially for DM2, adding correla-

tion due to sharing allele IBD at marker D3S3681 to the familial correlation

decreased the p-value for clustering.

2.4 Discussion

In this paper we proposed a score statistic for the proband family design

to test for the presence of a prespecified correlation structure for binary and

quantitative outcomes. The score statistic allows for adjusting of covariates.

No assumption about the distribution of the random effects is made. Fur-

thermore by conditioning on the trait value of all individuals related to ascer-

tainment the method is robust to the ascertainment scheme. By means of a

simulation study we showed that the cχ2 distribution performs well as an ap-

proximation of the distribution of the score statistic under the null hypothesis

even in very small data-sets.
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FIGU RE 2.1: For DM2 the p-values for testing correlation due to sharing alleles IBD at the

fi ve marker positions and residual genetic correlation for ρ = 0, 0.1, ..., 1. T he parameter

ρ models the proportion of genetic variances explained b y IBD sharing.

We analysed the clustering of DM2 and BMI in families of DM2 cases. Age

and sex specific distributions of DM2 and BMI were obtained from the Rotter-

dam Study. The number of DM2 cases was higher than expected taking into

account the age and sex distributions. Also the mean BMI was higher than

expected in these families. This may indicate that genetic factors play a role in

these families. Application of the score statistics indeed showed significant fa-

milial clustering of DM2 and BMI. Furthermore for DM2 adding IBD sharing

at the five marker locations decreased the p-value. This decrease was most

pronounced for marker D3S3681, which also showed some association with

DM2 (Aulchenko et al., 2003). The next step in analysing these data will be

estimation of the parameters. However the methodology has to be developed

(see below).
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FIGURE 2.2: For BMI the p-values for testing correlation due to sharing alleles IBD at the

five marker positions and residual genetic correlation for ρ = 0, 0.1, ..., 1. The parameter

ρ models the proportion of genetic variances explained by IBD sharing.

In this paper we derived formulae for binomially and normally distributed

outcomes. However the score statistic can be used for any distribution belong-

ing to the exponential family. Furthermore we restricted ourselves to correla-

tion due to additive genetic effects because for many complex traits, dominant

effects are assumed to be small (Risch, 1990a). If dominant effects do exist the

power will be only slightly reduced, because dominant effects only infl uence

the correlation among pairs who can share two alleles IBD.

In addition to correlation due to any genetic component we also consid-

ered correlation partly due to excess sharing of alleles IBD in candidate re-

gions. We made plots of ρ, the proportion of genetic variance explained by the

locus versus the p-value. A decrease of the p-value at ρ = 0 suggests a role

of a gene involved in the etiology of the trait linked to the marker locus. Note
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Chapter 2. Score test for proband-family design

that our statistic does not test the null hypothesis of no linkage. A formal test

for linkage is a score statistic for H0 : ρ = 0. For quantitative traits, this score

statistic corresponds to the statistic derived by Putter et al. (2002). However

for binary traits, derivation of the score statistic is complex due to the non lin-

ear relation between the outcome and the random effects. Nevertheless for

both quantitative and binary outcomes, the test statistic Q provides insight

in the underlying correlation structure and should be used before genetic pa-

rameters are estimated.

When a trait appears to be significantly correlated, the next step is to es-

timate the genetic parameters modelling the covariance structure. A natu-

ral framework of estimation methods are generalized estimating equations

(GEE), because they do not fully specify the distribution (see Tregouet and

Tiret (2000) and Ziegler et al. (1998) for reviews on application of these meth-

ods to family studies). For quantitative traits observed in random families,

Stram et al. (1993) proposed GEE for segregation analysis. For binary traits,

Liang and Beaty (1991) used these methods to study the dependence within

families under the assumption that the families sampled are geometrically

proportional to the number of affected family members. For a case-control

family design, Zhao et al. (1998) derived GEE corresponding to the likelihood

proposed by Whittemore (1995). To correct for ascertainment, Whittemore

(1995) proposed to use different intercepts for probands than for the remain-

ing family members. Further research is needed to extend these methods to

the more general selection scheme as considered in this paper.

Methods of estimation should allow for more than one proband per family

and also for different relationships between probands and relatives. Further-

more under the alternative, estimation of the parameters modelling the mean

from data on the relatives may be biased (Pfeiffer et al., 2001). Hence to adjust

for covariates, estimates of parameters should be obtained from other sources.

Note that biased estimates of the regression parameters will affect the corre-

lation between residuals (Diggle and Zegger (1994, p. 63-64); Verbeke and

Molenberghs (1997, p. 120-122)) and consequently, the estimates of parame-

ters modelling the covariance.

The statistic Q measures deviation from the mean as well as cluster-

ing. Hence if the mean is invalid the type I error is inflated. Commenges

et al. (1995) proposed to estimate the parameters from the data on the rel-

atives, which is valid under the null hypothesis. However for large sets of

probands estimation of the parameters modelling the mean may not be possi-

ble. Furthermore for estimation of the genetic parameters, the means should
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Chapter 2. Score test for proband-family design

be known as pointed out above. It is natural to use estimates from other

sources when our statistic is applied before models are fitted. Therefore we

feel that it is important to know the effects of covariates on the trait in studied

populations and to use this knowledge in analysing selected families aiming

to elucidate the underlying genetic mechanisms. For our data example ob-

taining the age and gender distribution of DM2 and BMI from the Rotterdam

Study seems to be reasonable since GRIP is a recently isolated population. We

conclude that the score statistic is a good tool to study clustering of traits due

to genetic factors within families selected via probands.

The analysis was performed using S-plus codes, which are available from:

http:/ / www.medstat.medfac.leidenuniv.nl/ MS/

2.5 Appendix

For Yi ∼ N(µi, σ2) the expectation of Q given Zp is

E(Q|Zp) = σ2trace(Rrr) = nσ2,

and the variance of Q given Zp is

Var(Q|Zp) = 2σ4trace((Rrr)2) + 4σ2
n

∑
j=np+1

(
np

∑
i=1

ZiRij)
2.

For Yi ∼ Bin(1, µi) the expectation of Q given Zp is

E(Q|Zp) =
n

∑
i=np+1

µi(1 − µi),

and the variance of Q given Zp is

Var(Q|Zp) = 4
n

∑
j=np+1

(
np

∑
i=1

ZiRij)
2µj(1 − µj)

+
n

∑
i=np+1

µi(1 − µi)(1 − 6µi + 6µi)

+ 2
n

∑
i,j=np+1

(Rij)
2µiµj(1 − µi)(1 − µj)

+ 4
n

∑
j=np+1

np

∑
i=1

RijZiµj(1 − µj)(1 − 2µj).
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