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CH A P T E R 1

I n t r o d u c t i o n

1.1 I n t r o d u c t i o n

The focus of this thesis is on statistical methods for complex genetic traits. A

genetic trait is complex w hen genetic and env ironmental factors are inv olv ed.

R esearchers seek to identify genetic factors causing such traits using family as

w ell as population-b ased approaches. S ince many genes are lik ely to b e in-

v olv ed in the etiology of a complex trait, the contrib ution of each single locus

can b e small and therefore, such genes are diffi cult to detect. M any existing

statistical methods hav e b een dev ised to study simple M endelian disorders

and so they are not suitab le for study ing complex genetic traits. Therefore,

study ing such traits necessitates the dev elopment of new statistical methods.

A strategy for study ing complex genetic traits is to perform link age analy sis

to identify regions, and then carry out association analy sis to v erify w hether

a candidate gene is inv olv ed.

In this chapter w e b riefl y describ e and discuss sev eral statistical methods

and analy ses used in genetic studies. F or a reference b ook of statistical meth-

ods in human genetics w e refer to E lston et al. ( 2 0 0 2 ) . R ecently F orab osco et al.

( 2 0 0 5 ) prov ided a v aluab le rev iew of methods for link age analy sis and asso-

ciation studies. Throughout this chapter w e also refer to more sub ject-specifi c

rev iew s. F inally w e close this chapter w ith an outline of the content of the

next chapters.

1.2 F a m i l i a l Co r r e l a t i o n

In genetic epidemiology , researchers aim to identify genetic factors inv olv ed

in the etiology of traits. Any ev idence of correlation b etw een phenoty pes and

genoty pes is suggestiv e of the presence of such genetic factors. H ow ev er, b e-

fore genetic mark ers are ty ped, inv estigators should assure that the trait clus-

ters w ithin families. C losely related indiv iduals tend to hav e similar pheno-

ty pes compared w ith non related indiv iduals or distant relativ es. Although
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Chapter 1. Introduction

the presence of such a clustering may be due to shared environmental factors

rather than shared genetic factors, the absence of familial clustering implies

that it is of no benefit to continue the study. Its presence after adjusting for en-

vironmental factors implies that genetic factors may play a role in producing

a predisposition to a trait.

Many methods have been proposed in the literature for the analysis of fa-

milial correlation. L iang and B eaty (2000) discussed methods of analysis of

aggregation for the family case-control design. For binary traits, familial ag-

gregation is often measured by odds ratios using logistic regression models

that allow for dependence between family members (B onney, 19 8 6 ; L iang and

B eaty, 19 9 1). G eneraliz ed estimating eq uations (G EE)(L iang and Z eger, 19 8 6 )

are often used to address the dependence between family members, when es-

timating the parameters. For more references about the G EE approach to deal

with familial correlation for binary traits see Fitz G erald and K nuiman (2000)

or Tregouet and Tiret (2000). For q uantitative traits, familial correlation is of-

ten studied by fitting multivariate normal models to the trait values of fam-

ily members (B eaty and L iang, 19 8 7 ; Rao and W ette, 19 8 7 ). The covariances

between relatives depend on their degrees of relationship. For randomly se-

lected families, Houwing-D uistermaat et al. (19 9 5) used a generaliz ed linear

mixed model (McCullagh and N elder, 19 8 9 ), and derived the score statistic to

test for familial clustering within relatives based on their degrees of relation-

ship. The score statistic does not assume any distribution of random effects.

However, assessing familial aggregation in non-random pedigrees req uires

accounting for the sampling scheme.

Ascertainment

O ften families are selected based on the phenotype of one or more family

members. Family members who caused the family to be entered in a study are

referred to as probands. For binary traits, a proband may be an affected subject

with a disease. For q uantitative traits, a proband may have a phenotype that

exceeds a certain threshold. Many studies (Cardon and Fulker, 19 9 4 ; Carey

and W illiamson, 19 9 1; Risch and Z hang, 19 9 5; Z hang and Risch, 19 9 6 ) have

shown that the power substantially increases when selected samples are used.

There are different ascertainment schemes e.g. complete ascertainment,

single ascertainment and q uadratic ascertainment. In complete ascertainment,

all families with at least one family member with the req uired phenotype are

eq ually probable to enter the study. In single ascertainment and q uadratic

ascertainment families enter the study with probabilities proportional to the
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number and the square of the number of family members having the required

phenotype, respectively.

When families are selected through probands, the statistical methods used

should take into account the ascertainment procedure (Elston and Sobel, 1979;

Morton, 1959). For single ascertainment, many authors have proposed to con-

dition on the observed phenotypes of the probands (Beaty and Liang, 1987;

Cannings and Thompson, 1977; Hopper and Mathews, 1982). For quantita-

tive traits, Elston and Sobel (1979) and Rao and Wette (1987) proposed to con-

dition on the event that the phenotype of the proband exceeds a pre-specified

threshold value. Rao et al. (1988) and de Andrade and Amos (2000) compared

the two ways of correcting for ascertainment in the context of the variance

components approach. Both studies concluded that the former adjustment

for ascertainment is less efficient than the latter provided that the threshold is

well known. Whereas conditioning on exceeding the threshold is less efficient

if the threshold is not known.

However if single ascertainment cannot be assumed, conditioning on af-

fected probands may not be sufficient. Ewens and Shute (1986) showed that if

remaining family members are related to ascertainment, the estimates of ge-

netic parameters may be biased. They proposed to split the family in a set of

probands related to ascertainment and a set of relatives not related to ascer-

tainment.

1.3 L ink ag e analy sis

Once familial aggregation is established, researchers pursue the study by

gathering genetic materials of family members relevant for the study. Then

genome wide linkage analysis is performed to identify regions that may con-

tain susceptibility genes. Methods for linkage analysis rely on the biological

phenomenon of recombination. During meiosis, recombination occurs when

homologous chromosome pairs exchange genetic material. The probability

of a recombination event occurring between loci increases with the physical

distance between them. Hence, alleles at close loci are more likely to be trans-

mitted jointly to descendants than alleles at distant loci. Moreover, relatives

who have similar phenotypes are expected to have inherited the same genetic

materials in the vicinity of the genes that predispose to those phenotypes.

Linkage analysis has been divided into classes: parametric and non-

parametric methods. P arametric linkage analysis methods are based on the

analysis of the recombination between the unobserved disease locus and ob-

served genetic markers along the human genome. They require specification
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of genetic parameters describing the mode of trait inheritance, such as pen-

etrance and disease-allele frequency. When genetic parameters are correctly

specified parametric linkage analysis is the most powerful. V ery distant loci

are expected to recombine with probability θ = 0.5, while close (linked) loci

recombine with probability θ < 0.5. To estimate the probability of a recom-

bination, and test the null hypothesis of no linkage, between the unknown

predisposing gene locus and a marker locus the LOD score method is usually

used. The LOD score is defined as follows

Z = max
0≤θ≤0.5

l o g 10[
L(θ)

L(θ = 0.5)
], (1.1)

where L(θ) is the likelihood of the observed data given assumed parameter

values. A test is significant if Z ≥ 3 (see Lander and Kruglyak (1995) for

details). For a comprehensive introduction to parametric linkage analysis we

refer to Ott (1999).

Although parametric linkage methods have been successful in localiz-

ing genes responsible for simple Mendelian diseases, these methods have

achieved only limited success in identifying genes predisposing to complex

traits (Risch, 2000). Many complex genetic traits are controlled by multiple

genetic factors. For such traits the mode of inheritance is often unknown. In

contrast to parametric linkage methods, non-parametric linkage methods do

not require the specification of mode of inheritance. Non-parametric meth-

ods rely only on the information of sharing alleles identical by descent (IBD)

between relatives at a given locus to study whether this locus is genetically

linked to the unobserved disease locus. Two alleles are IBD if they are both

physical copies of the same ancestral gene (Lange, 2002). Relatives may share

0, 1 or 2 allele IBD at any given locus. According to the Mendelian law of

inheritance, the probabilities π0, π1 and π2 of sharing 0, 1 and 2 alleles IBD

under random segregation, can be calculated for any two relatives. For exam-

ple, a pair of siblings shares 0, 1 and 2 alleles IBD with probabilities π0 = 0.25,

π1 = 0.5 and π2 = 0.25. Linkage between a disease locus and marker geno-

types can be studied by comparing the observed numbers of alleles shared

IBD by affected relative pairs to the expected number of alleles IBD under

random segregation. An increase in the number of alleles IBD indicates the

presence of a susceptibility gene in the region.

A widely used design for binary traits is the affected sibling pair design. To

test for linkage between a disease locus and a marker locus, Day and Simons

(1976) proposed the proportion test, which compares the observed proportion
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of sib pairs that share two IBDs with π2 = 0.25, As an alternative, Green

and Woodrow (1977) proposed the mean test, which compares the observed

mean IBD with its null value of 0.5. Risch (1990b,c) proposed a likelihood ratio

statistic that compares the likelihood of observing 0, 1 and 2 alleles IBD with

the likelihood under random segregation. For a valuable review about allele

sharing based test statistics for affected relative pairs and general pedigrees

we refer to Shih and Whittemore (2001).

Since many marker loci should be tested, multiple testing problems arise.

A classical method to adjust for multiple testing is Bonferroni correction.

However, this method does not take into account the dependency between

marker loci. Hence, it yields conservative p-values. Lander and Kruglyak

(1995) proposed to reject the null hypothesis of no linkage for loci with p-

values smaller than 0.0001.

For a large sample of affected relative pairs, Feingold et al. (1993) used a

Gaussian approximation to the IBD process to test for linkage using all marker

loci jointly. The authors assumed (1) the presence of at most a single disease

locus on any chromomsome, (2) the Haldane’s mapping function, and (3) the

observed markers are dense and fully informative about the IBD status. They

modelled the excess of IBD sharing at the disease locus with a parameter α.

For affected sib pairs, α is equal to λs−1
λs

, with λs the relative risk of a sibling

of an affected subject (Risch, 1990a). Since the location of the disease gene is

unknown, they proposed to use the maximum of the mean IBD sharing over

marker loci as the test statistic for linkage. Further, they used a Gaussian ap-

proximation based on the central limit theorem to derive its null distribution.

Recently Liang et al. (2001) introduced a GEE approach for affected sib

pairs to estimate the location of a single disease gene in a candidate region

previously identified by other approaches. The method also uses the IBD in-

formation on all markers simultaneously by incorporating the correlation be-

tween them. Schaid et al. (2005) extended the GEE approach to other relative

pairs, and Biernacka et al. (2005) derived a similar GEE approach when two

disease loci exist on the same chromosomal region of interest.

For quantitative traits, many methods have been proposed in the litera-

ture. A famous method for modeling excess IBD sharing in relative pairs is

the Haseman-Elston (HE) approach (Haseman and Elston (1972), Amos and

Elston (1989)). The method regresses the squared trait difference of pair mem-

bers on their estimated proportion of IBD sharing. Since the square differ-

ence does not capture all the information on the linkage (Wright, 1997), Elston

(2000) reconsidered the HE method by regressing the product of the trait dif-
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ference and trait sum on the estimated proportion of IBD sharing. Another

linkage analysis method for quantitative trait-locus is the variance compo-

nents (VC) approach (Amos, 1994). VC methods fit multivariate normal mod-

els to the trait values of family members, and model the covariance between

relatives conditional on their IBD sharing. For small effect size the VC ap-

proach is equivalent to the HE approach (Putter et al., 2002). A typical VC

model is described as follows. Let yk be a vector of the trait values for the kth

family. The variable yk can be written as

yk = µ + Xkβ + qk + gk + ek

where µ is the overall mean; β is a vector of the regression coefficients for the

covariates; Xk is a design matrix of the covariate values; qk is a vector of ran-

dom genetic effects of the locus with qk ∼ N(0, σ2
q Π̂k); gk is a vector of random

effects representing the sum of residual genetic effects with gk ∼ N(0, σ2
g Rk);

ek is a vector of uncorrelated variables representing residual environmental

factors, with ek ∼ N(0, σ2
e Ik). The covariance of yk is

C O V (yk|Π̂k, Rk) = σ2
q Π̂k + σ2

g Rk + σ2
e Ik

where Rk is the matrix of degree of relationship for the family; Π̂k is the ma-

trix of the estimated proportion of IBD shared by relative pairs in the family;

Ik is an identity matrix. Testing for linkage is equivalent to testing the null

hypothesis H0 : σ2
q = 0 versus H1 : σ2

q > 0. For reviews on linkage methods

for quantitative traits see Feingold (2001) and Amos and de Andrade (2001).

1.4 Association studies

Genetic association studies generally aim to narrow candidate regions,

which may be chosen because on the basis of their known biological function

or because they were initially identified by linkage analysis. Genetic associa-

tion analysis compares allele or genotype frequencies at markers in candidate

regions in affected individuals with those in unaffected individuals. An allele

associated with a disease should be over-represented in affected individuals.

A marker may be associated with the disease because it is a disease locus, or

because one of its alleles is in linkage disequilibrium (LD) with a causal vari-

ant at a disease locus. Let A and B be alleles at two distinct loci and let AB be

the corresponding haplotype. A and B are said to be in LD if

P r (AB) 6= P r (A)P r (B),
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with Pr(A), Pr(B) and Pr(AB) the probability of the occurrence of A, B, and

AB in the population, respectively. LD suggests that two loci may be very

close to one another.

Disease-marker association may also be due to population admixture. This

may occur if allele frequencies differ among subpopulation groups. To elimi-

nate false evidence for association due to population admixture, family-based

designs are used. A simple and common family-based design is the case-

parent trio design, which compares the frequencies of alleles transmitted to

affected individuals with those non-transmitted. For a review of family-based

designs and corresponding statistical methods we refer to Zhao (2000). In this

thesis we do not consider further this type of design.

A classical design to perform association study is the case-control design.

U nrelated cases (affected individuals) and unrelated controls (unaffected in-

dividuals) are ascertained for study. Let qi and pi be the frequency of the

associated allele i at a marker in cases and controls respectively. Hastbacka

et al. (1992) modelled the excess of the associated allele in cases by

qi = pi + δ(1 − pi),

with δ the fraction attributable at risk (Clayton, 2000). δ can serve as a mea-

sure of linkage disequilibrium. Devlin and Risch (1995) provided a detailed

discussion about measures of linkage disequilibrium.

For di-allelic markers, testing for disease-marker association can be carried

out using Pearson’s χ2 with one degree of freedom. For a review of linkage

disequilibrium methods for di-allelic markers see Lazzeroni (2001). For multi-

allelic markers, Pearson’s χ2 has degrees of freedom equal to the number of

alleles minus one. When markers with many alleles are considered, sparse

data may occur, making the asymptotic distribution of Pearson’s χ2 invalid.

Despite the fact that Monte-Carlo simulation can be used to derive the em-

pirical p-values, χ2 has low power due to large degrees of freedom. As an

alternative, the maximum of the chi-squared statistics of 2-by-2 tables, each

of which compares one allele against the rest, can be used when at most one

allele is associated (Ewens et al., 1992). Sham and Curtis (1995) proposed to

use the maximum of chi-squared statistics corresponding to all possible 2-by-2

tables, comparing any combination of alleles against the rest.

An alternative to taking the maximum is to take the sum over all possibil-

ities. When one allele is associated Terwilliger (1995) modelled the excess of

the associated allele in cases by the parameter δ. Since it is unknown which

marker allele is associated with the disease, the likelihood corresponding to
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this model is a weighted sum over all alleles i of conditional likelihoods given

that allele i is over-represented in the set of cases. As weights Terwilliger

(1995) used the allele frequencies in the overall population. Testing for asso-

ciation can be carried out by comparing the likelihood of the data under the

alternative hypothesis of the presence of one associated allele with the likeli-

hood of data under the null hypothesis of no disease-marker association.

When one allele is associated, the maximising approach and the Ter-

williger’s likelihood approach perform much better than Pearson’s χ2, espe-

cially for markers with many alleles. However, if more than one allele is asso-

ciated with the disease, they may have low power as they are designed to test

the alternative hypothesis of the presence of one associated allele (Sham et al.,

1996).

When a candidate region contains multiple markers, an alternative to

studying single-marker association with a disease is haplotype-based associa-

tion analysis. A haplotype is a combination of alleles at multiple linked mark-

ers inherited together. When haplotypes can be observed directly they can be

viewed as variants of a multiallelic maker and then methods for multiallelic

markers can be used to study genetic association. However haplotypes are

often not observable and they should be inferred from genotype data. Many

methods for inferring haplotypes and estimating their frequencies have been

developed in the literature (see Niu (2004) for a review). However, when hap-

lotypes can not be determined with certainty, the analysis should take this un-

certainty into account. Further discussions of haplotype-based methods are

given by Schaid (2004).

1.5 S cop e of th is th esis

This thesis aims to develop new statistical methods to study genetic back-

grounds of complex traits. These methods are presented in a number of subse-

quent chapters. The order of chapters is motivated by the commonly adopted

strategy to identify genes responsible for complex genetic traits, namely start-

ing with aggregation analysis, followed by linkage analysis and accomplished

by association studies.

Chapter 2 deals with the ascertainment issue when modelling familial ag-

gregation. A new statistical tool is proposed for testing familial clustering of

binary and quantitative traits when families are selected based on the pheno-

types of the probands. Familial correlation is modelled using a generalized

linear mixed model. To adjust for ascertainment we condition on the phe-

notypes of the individuals relevant for ascertainment. Further we illustrate
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the methods using data on a sample of first-degree relatives of probands with

type 2 diabetes mellitus.

Chapter 3 is concerned with linkage analysis. Inspired by Liang et al.

(2001), we derived two global test statistics for linkage. The approach is based

on allele IBD sharing and uses all markers simultaneously. Excess IBD shar-

ing at disease locus is modelled by a parameter α (Feingold et al., 1993). The

likelihood of data is the average of conditional likelihoods of data given that

a marker locus is a disease locus. Either the likelihood ratio or score statistics

can be used to test for linkage. Results of a simulation study of each method’s

performance are presented.

In Chapters 4, 5 and 6 new methods for analysis of disease association with

multiallelic markers or haplotypes are described. Chapter 4 uses the semi-

Bayesian likelihood approach proposed by Terwilliger (1995) to derive a score

statistic for testing genetic association. The score test is simple to compute and

enables us to derive empirical p-values by means of Monte-Carlo simulations.

Further, we present the results of analytic as well as empirical comparisons

of the performance of the score statistic and some existing statistics for mul-

tiallelic markers including Pearson χ2. Chapter 5 presents an application of

some of the methods described in chapter 4 to simulated data from Genetic

Analysis Workshop 14 (Bailey-Wilson et al., 2005). The aim of this chapter is

to illustrate how these methods perform when they are applied to candidate

regions initially identified by means of linkage analysis. Chapter 6 describes a

generalization of the method presented in chapter 4, its performance in com-

parison with Pearson’s χ2 and likelihood ratio proposed by Terwilliger (1995)

and their application to data on thrombosis.

Chapter 7 is concerned with (1) the use of combining information from

two sources (parents and teachers) when diagnosing children with attention

deficit hyperactivity disorder (ADHD) in genetic studies, and (2) studying fa-

milial aggregation among three phenotypic subtypes of ADHD in an isolated

population. A test statistic is described that compares the distribution of the

kinship coefficient between two samples. The kinship coefficients of all pairs

in each sample are obtained using the genealogical information of 22 genera-

tions.
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