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CHAPTER 1

Introduction

1.1 Introduction

The focus of this thesis is on statistical methods for complex genetic traits. A
genetic trait is complex when genetic and environmental factors are involved.
Researchers seek to identify genetic factors causing such traits using family as
well as population-based approaches. Since many genes are likely to be in-
volved in the etiology of a complex trait, the contribution of each single locus
can be small and therefore, such genes are difficult to detect. Many existing
statistical methods have been devised to study simple Mendelian disorders
and so they are not suitable for studying complex genetic traits. Therefore,
studying such traits necessitates the development of new statistical methods.
A strategy for studying complex genetic traits is to perform linkage analysis
to identify regions, and then carry out association analysis to verify whether
a candidate gene is involved.

In this chapter we briefly describe and discuss several statistical methods
and analyses used in genetic studies. For a reference book of statistical meth-
ods in human genetics we refer to Elston et al. (2002). Recently Forabosco et al.
(2005) provided a valuable review of methods for linkage analysis and asso-
ciation studies. Throughout this chapter we also refer to more subject-specific
reviews. Finally we close this chapter with an outline of the content of the
next chapters.

1.2 Familial Correlation

In genetic epidemiology, researchers aim to identify genetic factors involved
in the etiology of traits. Any evidence of correlation between phenotypes and
genotypes is suggestive of the presence of such genetic factors. However, be-
fore genetic markers are typed, investigators should assure that the trait clus-
ters within families. Closely related individuals tend to have similar pheno-
types compared with non related individuals or distant relatives. Although
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Chapter 1. Introduction

the presence of such a clustering may be due to shared environmental factors
rather than shared genetic factors, the absence of familial clustering implies
that it is of no benefit to continue the study. Its presence after adjusting for en-
vironmental factors implies that genetic factors may play a role in producing
a predisposition to a trait.

Many methods have been proposed in the literature for the analysis of fa-
milial correlation. Liang and Beaty (2000) discussed methods of analysis of
aggregation for the family case-control design. For binary traits, familial ag-
gregation is often measured by odds ratios using logistic regression models
that allow for dependence between family members (Bonney, 1986; Liang and
Beaty, 1991). Generalized estimating equations (GEE)(Liang and Zeger, 1986)
are often used to address the dependence between family members, when es-
timating the parameters. For more references about the GEE approach to deal
with familial correlation for binary traits see FitzGerald and Knuiman (2000)
or Tregouet and Tiret (2000). For quantitative traits, familial correlation is of-
ten studied by fitting multivariate normal models to the trait values of fam-
ily members (Beaty and Liang, 1987; Rao and Wette, 1987). The covariances
between relatives depend on their degrees of relationship. For randomly se-
lected families, Houwing-Duistermaat et al. (1995) used a generalized linear
mixed model (McCullagh and Nelder, 1989), and derived the score statistic to
test for familial clustering within relatives based on their degrees of relation-
ship. The score statistic does not assume any distribution of random effects.
However, assessing familial aggregation in non-random pedigrees requires
accounting for the sampling scheme.

Ascertainment

Often families are selected based on the phenotype of one or more family
members. Family members who caused the family to be entered in a study are
referred to as probands. For binary traits, a proband may be an affected subject
with a disease. For quantitative traits, a proband may have a phenotype that
exceeds a certain threshold. Many studies (Cardon and Fulker, 1994; Carey
and Williamson, 1991; Risch and Zhang, 1995; Zhang and Risch, 1996) have
shown that the power substantially increases when selected samples are used.

There are different ascertainment schemes e.g. complete ascertainment,
single ascertainment and quadratic ascertainment. In complete ascertainment,
all families with at least one family member with the required phenotype are
equally probable to enter the study. In single ascertainment and quadratic
ascertainment families enter the study with probabilities proportional to the
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Chapter 1. Introduction

number and the square of the number of family members having the required
phenotype, respectively.

When families are selected through probands, the statistical methods used
should take into account the ascertainment procedure (Elston and Sobel, 1979;
Morton, 1959). For single ascertainment, many authors have proposed to con-
dition on the observed phenotypes of the probands (Beaty and Liang, 1987;
Cannings and Thompson, 1977; Hopper and Mathews, 1982). For quantita-
tive traits, Elston and Sobel (1979) and Rao and Wette (1987) proposed to con-
dition on the event that the phenotype of the proband exceeds a pre-specified
threshold value. Rao et al. (1988) and de Andrade and Amos (2000) compared
the two ways of correcting for ascertainment in the context of the variance
components approach. Both studies concluded that the former adjustment
for ascertainment is less efficient than the latter provided that the threshold is
well known. Whereas conditioning on exceeding the threshold is less efficient
if the threshold is not known.

However if single ascertainment cannot be assumed, conditioning on af-
fected probands may not be sufficient. Ewens and Shute (1986) showed that if
remaining family members are related to ascertainment, the estimates of ge-
netic parameters may be biased. They proposed to split the family in a set of
probands related to ascertainment and a set of relatives not related to ascer-
tainment.

1.3 Linkage analysis

Once familial aggregation is established, researchers pursue the study by
gathering genetic materials of family members relevant for the study. Then
genome wide linkage analysis is performed to identify regions that may con-
tain susceptibility genes. Methods for linkage analysis rely on the biological
phenomenon of recombination. During meiosis, recombination occurs when
homologous chromosome pairs exchange genetic material. The probability
of a recombination event occurring between loci increases with the physical
distance between them. Hence, alleles at close loci are more likely to be trans-
mitted jointly to descendants than alleles at distant loci. Moreover, relatives
who have similar phenotypes are expected to have inherited the same genetic
materials in the vicinity of the genes that predispose to those phenotypes.

Linkage analysis has been divided into classes: parametric and non-
parametric methods. Parametric linkage analysis methods are based on the
analysis of the recombination between the unobserved disease locus and ob-
served genetic markers along the human genome. They require specification
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Chapter 1. Introduction

of genetic parameters describing the mode of trait inheritance, such as pen-
etrance and disease-allele frequency. When genetic parameters are correctly
specified parametric linkage analysis is the most powerful. Very distant loci
are expected to recombine with probability θ = 0.5, while close (linked) loci
recombine with probability θ < 0.5. To estimate the probability of a recom-
bination, and test the null hypothesis of no linkage, between the unknown
predisposing gene locus and a marker locus the LOD score method is usually
used. The LOD score is defined as follows

Z = max
0≤θ≤0.5

log10[
L(θ)

L(θ = 0.5)
], (1.1)

where L(θ) is the likelihood of the observed data given assumed parameter
values. A test is significant if Z ≥ 3 (see Lander and Kruglyak (1995) for
details). For a comprehensive introduction to parametric linkage analysis we
refer to Ott (1999).

Although parametric linkage methods have been successful in localiz-
ing genes responsible for simple Mendelian diseases, these methods have
achieved only limited success in identifying genes predisposing to complex
traits (Risch, 2000). Many complex genetic traits are controlled by multiple
genetic factors. For such traits the mode of inheritance is often unknown. In
contrast to parametric linkage methods, non-parametric linkage methods do
not require the specification of mode of inheritance. Non-parametric meth-
ods rely only on the information of sharing alleles identical by descent (IBD)
between relatives at a given locus to study whether this locus is genetically
linked to the unobserved disease locus. Two alleles are IBD if they are both
physical copies of the same ancestral gene (Lange, 2002). Relatives may share
0, 1 or 2 allele IBD at any given locus. According to the Mendelian law of
inheritance, the probabilities π0, π1 and π2 of sharing 0, 1 and 2 alleles IBD
under random segregation, can be calculated for any two relatives. For exam-
ple, a pair of siblings shares 0, 1 and 2 alleles IBD with probabilities π0 = 0.25,
π1 = 0.5 and π2 = 0.25. Linkage between a disease locus and marker geno-
types can be studied by comparing the observed numbers of alleles shared
IBD by affected relative pairs to the expected number of alleles IBD under
random segregation. An increase in the number of alleles IBD indicates the
presence of a susceptibility gene in the region.

A widely used design for binary traits is the affected sibling pair design. To
test for linkage between a disease locus and a marker locus, Day and Simons
(1976) proposed the proportion test, which compares the observed proportion
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Chapter 1. Introduction

of sib pairs that share two IBDs with π2 = 0.25, As an alternative, Green
and Woodrow (1977) proposed the mean test, which compares the observed
mean IBD with its null value of 0.5. Risch (1990b,c) proposed a likelihood ratio
statistic that compares the likelihood of observing 0, 1 and 2 alleles IBD with
the likelihood under random segregation. For a valuable review about allele
sharing based test statistics for affected relative pairs and general pedigrees
we refer to Shih and Whittemore (2001).

Since many marker loci should be tested, multiple testing problems arise.
A classical method to adjust for multiple testing is Bonferroni correction.
However, this method does not take into account the dependency between
marker loci. Hence, it yields conservative p-values. Lander and Kruglyak
(1995) proposed to reject the null hypothesis of no linkage for loci with p-
values smaller than 0.0001.

For a large sample of affected relative pairs, Feingold et al. (1993) used a
Gaussian approximation to the IBD process to test for linkage using all marker
loci jointly. The authors assumed (1) the presence of at most a single disease
locus on any chromomsome, (2) the Haldane’s mapping function, and (3) the
observed markers are dense and fully informative about the IBD status. They
modelled the excess of IBD sharing at the disease locus with a parameter α.
For affected sib pairs, α is equal to λs−1

λs
, with λs the relative risk of a sibling

of an affected subject (Risch, 1990a). Since the location of the disease gene is
unknown, they proposed to use the maximum of the mean IBD sharing over
marker loci as the test statistic for linkage. Further, they used a Gaussian ap-
proximation based on the central limit theorem to derive its null distribution.

Recently Liang et al. (2001) introduced a GEE approach for affected sib
pairs to estimate the location of a single disease gene in a candidate region
previously identified by other approaches. The method also uses the IBD in-
formation on all markers simultaneously by incorporating the correlation be-
tween them. Schaid et al. (2005) extended the GEE approach to other relative
pairs, and Biernacka et al. (2005) derived a similar GEE approach when two
disease loci exist on the same chromosomal region of interest.

For quantitative traits, many methods have been proposed in the litera-
ture. A famous method for modeling excess IBD sharing in relative pairs is
the Haseman-Elston (HE) approach (Haseman and Elston (1972), Amos and
Elston (1989)). The method regresses the squared trait difference of pair mem-
bers on their estimated proportion of IBD sharing. Since the square differ-
ence does not capture all the information on the linkage (Wright, 1997), Elston
(2000) reconsidered the HE method by regressing the product of the trait dif-
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ference and trait sum on the estimated proportion of IBD sharing. Another
linkage analysis method for quantitative trait-locus is the variance compo-
nents (VC) approach (Amos, 1994). VC methods fit multivariate normal mod-
els to the trait values of family members, and model the covariance between
relatives conditional on their IBD sharing. For small effect size the VC ap-
proach is equivalent to the HE approach (Putter et al., 2002). A typical VC
model is described as follows. Let yk be a vector of the trait values for the kth
family. The variable yk can be written as

yk = µ + Xkβ + qk + gk + ek

where µ is the overall mean; β is a vector of the regression coefficients for the
covariates; Xk is a design matrix of the covariate values; qk is a vector of ran-
dom genetic effects of the locus with qk ∼ N(0, σ2

q Π̂k); gk is a vector of random
effects representing the sum of residual genetic effects with gk ∼ N(0, σ2

g Rk);
ek is a vector of uncorrelated variables representing residual environmental
factors, with ek ∼ N(0, σ2

e Ik). The covariance of yk is

COV(yk|Π̂k, Rk) = σ2
q Π̂k + σ2

g Rk + σ2
e Ik

where Rk is the matrix of degree of relationship for the family; Π̂k is the ma-
trix of the estimated proportion of IBD shared by relative pairs in the family;
Ik is an identity matrix. Testing for linkage is equivalent to testing the null
hypothesis H0 : σ2

q = 0 versus H1 : σ2
q > 0. For reviews on linkage methods

for quantitative traits see Feingold (2001) and Amos and de Andrade (2001).

1.4 Association studies

Genetic association studies generally aim to narrow candidate regions,
which may be chosen because on the basis of their known biological function
or because they were initially identified by linkage analysis. Genetic associa-
tion analysis compares allele or genotype frequencies at markers in candidate
regions in affected individuals with those in unaffected individuals. An allele
associated with a disease should be over-represented in affected individuals.
A marker may be associated with the disease because it is a disease locus, or
because one of its alleles is in linkage disequilibrium (LD) with a causal vari-
ant at a disease locus. Let A and B be alleles at two distinct loci and let AB be
the corresponding haplotype. A and B are said to be in LD if

Pr(AB) 6= Pr(A)Pr(B),
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with Pr(A), Pr(B) and Pr(AB) the probability of the occurrence of A, B, and
AB in the population, respectively. LD suggests that two loci may be very
close to one another.

Disease-marker association may also be due to population admixture. This
may occur if allele frequencies differ among subpopulation groups. To elimi-
nate false evidence for association due to population admixture, family-based
designs are used. A simple and common family-based design is the case-
parent trio design, which compares the frequencies of alleles transmitted to
affected individuals with those non-transmitted. For a review of family-based
designs and corresponding statistical methods we refer to Zhao (2000). In this
thesis we do not consider further this type of design.

A classical design to perform association study is the case-control design.
Unrelated cases (affected individuals) and unrelated controls (unaffected in-
dividuals) are ascertained for study. Let qi and pi be the frequency of the
associated allele i at a marker in cases and controls respectively. Hastbacka
et al. (1992) modelled the excess of the associated allele in cases by

qi = pi + δ(1− pi),

with δ the fraction attributable at risk (Clayton, 2000). δ can serve as a mea-
sure of linkage disequilibrium. Devlin and Risch (1995) provided a detailed
discussion about measures of linkage disequilibrium.

For di-allelic markers, testing for disease-marker association can be carried
out using Pearson’s χ2 with one degree of freedom. For a review of linkage
disequilibrium methods for di-allelic markers see Lazzeroni (2001). For multi-
allelic markers, Pearson’s χ2 has degrees of freedom equal to the number of
alleles minus one. When markers with many alleles are considered, sparse
data may occur, making the asymptotic distribution of Pearson’s χ2 invalid.
Despite the fact that Monte-Carlo simulation can be used to derive the em-
pirical p-values, χ2 has low power due to large degrees of freedom. As an
alternative, the maximum of the chi-squared statistics of 2-by-2 tables, each
of which compares one allele against the rest, can be used when at most one
allele is associated (Ewens et al., 1992). Sham and Curtis (1995) proposed to
use the maximum of chi-squared statistics corresponding to all possible 2-by-2
tables, comparing any combination of alleles against the rest.

An alternative to taking the maximum is to take the sum over all possibil-
ities. When one allele is associated Terwilliger (1995) modelled the excess of
the associated allele in cases by the parameter δ. Since it is unknown which
marker allele is associated with the disease, the likelihood corresponding to
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this model is a weighted sum over all alleles i of conditional likelihoods given
that allele i is over-represented in the set of cases. As weights Terwilliger
(1995) used the allele frequencies in the overall population. Testing for asso-
ciation can be carried out by comparing the likelihood of the data under the
alternative hypothesis of the presence of one associated allele with the likeli-
hood of data under the null hypothesis of no disease-marker association.

When one allele is associated, the maximising approach and the Ter-
williger’s likelihood approach perform much better than Pearson’s χ2, espe-
cially for markers with many alleles. However, if more than one allele is asso-
ciated with the disease, they may have low power as they are designed to test
the alternative hypothesis of the presence of one associated allele (Sham et al.,
1996).

When a candidate region contains multiple markers, an alternative to
studying single-marker association with a disease is haplotype-based associa-
tion analysis. A haplotype is a combination of alleles at multiple linked mark-
ers inherited together. When haplotypes can be observed directly they can be
viewed as variants of a multiallelic maker and then methods for multiallelic
markers can be used to study genetic association. However haplotypes are
often not observable and they should be inferred from genotype data. Many
methods for inferring haplotypes and estimating their frequencies have been
developed in the literature (see Niu (2004) for a review). However, when hap-
lotypes can not be determined with certainty, the analysis should take this un-
certainty into account. Further discussions of haplotype-based methods are
given by Schaid (2004).

1.5 Scope of this thesis

This thesis aims to develop new statistical methods to study genetic back-
grounds of complex traits. These methods are presented in a number of subse-
quent chapters. The order of chapters is motivated by the commonly adopted
strategy to identify genes responsible for complex genetic traits, namely start-
ing with aggregation analysis, followed by linkage analysis and accomplished
by association studies.

Chapter 2 deals with the ascertainment issue when modelling familial ag-
gregation. A new statistical tool is proposed for testing familial clustering of
binary and quantitative traits when families are selected based on the pheno-
types of the probands. Familial correlation is modelled using a generalized
linear mixed model. To adjust for ascertainment we condition on the phe-
notypes of the individuals relevant for ascertainment. Further we illustrate
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the methods using data on a sample of first-degree relatives of probands with
type 2 diabetes mellitus.

Chapter 3 is concerned with linkage analysis. Inspired by Liang et al.
(2001), we derived two global test statistics for linkage. The approach is based
on allele IBD sharing and uses all markers simultaneously. Excess IBD shar-
ing at disease locus is modelled by a parameter α (Feingold et al., 1993). The
likelihood of data is the average of conditional likelihoods of data given that
a marker locus is a disease locus. Either the likelihood ratio or score statistics
can be used to test for linkage. Results of a simulation study of each method’s
performance are presented.

In Chapters 4, 5 and 6 new methods for analysis of disease association with
multiallelic markers or haplotypes are described. Chapter 4 uses the semi-
Bayesian likelihood approach proposed by Terwilliger (1995) to derive a score
statistic for testing genetic association. The score test is simple to compute and
enables us to derive empirical p-values by means of Monte-Carlo simulations.
Further, we present the results of analytic as well as empirical comparisons
of the performance of the score statistic and some existing statistics for mul-
tiallelic markers including Pearson χ2. Chapter 5 presents an application of
some of the methods described in chapter 4 to simulated data from Genetic
Analysis Workshop 14 (Bailey-Wilson et al., 2005). The aim of this chapter is
to illustrate how these methods perform when they are applied to candidate
regions initially identified by means of linkage analysis. Chapter 6 describes a
generalization of the method presented in chapter 4, its performance in com-
parison with Pearson’s χ2 and likelihood ratio proposed by Terwilliger (1995)
and their application to data on thrombosis.

Chapter 7 is concerned with (1) the use of combining information from
two sources (parents and teachers) when diagnosing children with attention
deficit hyperactivity disorder (ADHD) in genetic studies, and (2) studying fa-
milial aggregation among three phenotypic subtypes of ADHD in an isolated
population. A test statistic is described that compares the distribution of the
kinship coefficient between two samples. The kinship coefficients of all pairs
in each sample are obtained using the genealogical information of 22 genera-
tions.
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CHAPTER 2

Score statistic to test for genetic
correlation for proband-family
design

R. el Galta, C.M. van Duijn, J.C. van Houwelingen and J.J. Houwing-
Duistermaat

Abstract

In genetic epidemiological studies, informative families are often oversam-
pled to increase the power of a study. For a proband-family design, where rel-
atives of probands are sampled, we derived the score statistic to test for clus-
tering of binary and quantitative traits within families due to genetic factors.
The derived score statistic is robust to ascertainment scheme. We considered
correlation due to unspecified genetic effects and/or due to sharing alleles
identical by descent (IBD) at observed marker locations in a candidate region.
A simulation study was carried out to study the distribution of the statistic un-
der the null hypothesis in small data-sets. To illustrate the score statistic, data
on 33 families with type 2 diabetes mellitus (DM2) were analyzed. In addition
to the binary outcome DM2, we also analyzed the quantitative outcome, body
mass index (BMI). For both traits, familial aggregation was highly significant.
For DM2, including also IBD sharing at marker D3S3681 as a cause of corre-
lation gave an even more significant result, which suggests the presence of a
trait gene linked to this marker. We conclude that for the proband-family de-
sign the score statistic is a powerful and robust tool for detecting clustering of
outcomes.

Published in Ann Hum Genet. 2005; 69:373-81
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Chapter 2. Score test for proband-family design

2.1 Introduction

Complex genetic traits are often determined by multiple genetic and envi-
ronmental factors with small effects (Lander and Schork, 1994) necessitating
large-scale studies to obtain enough power to identify genetic factors. The
power can also be increased by enrichment of the sample for the presence of
genetic factors via selection of families with an unusual distribution of the
trait (Amos and de Andrade, 2001; Carey and Williamson, 1991; Elston, 2000;
Liang and Beaty, 2000; Risch and Zhang, 1995). For binary and quantitative
traits, the selected families often have a high proportion of affected individu-
als and of subjects with phenotypes exceeding some threshold T, respectively.
In this paper, we consider a proband-family design where relatives are sam-
pled through probands. We define a set of probands to be a set of family
members chosen in such a way that the remaining relatives are not related to
ascertainment (Ewens and Shute, 1986). A score statistic is derived to test for
clustering of a trait due to genetic factors within these families.

In family studies, a first question to be answered is whether genetic factors
play a role in the observed trait. Closely related individuals should tend to
have similar outcomes compared to non or distantly related individuals. An-
other question of interest may be whether correlation exists due to the pres-
ence of a genetic factor located in a genomic region. If a genetic factor is linked
to a marker, relatives with excess sharing of marker alleles identical by de-
scent (IBD) should tend to have similar outcomes compared to relatives with
less sharing of alleles IBD.

Since the families selected through probands are non random, the statisti-
cal methods used should take into account the ascertainment procedure (El-
ston and Sobel, 1979; Morton, 1959). For single ascertainment, Cannings and
Thompson (1977) proposed to condition on the phenotypes of the probands.
However if single ascertainment cannot be assumed, conditioning on affected
probands may not be sufficient. Ewens and Shute (1986) showed that if re-
maining family members are related to ascertainment, the estimates of ge-
netic parameters may be biased. They proposed to split the family in a set of
probands related to ascertainment and a set of relatives not related to ascer-
tainment. For example if nuclear families with at least one affected offspring
are ascertained, the set of probands should consist of all observed offspring
regardless of their affection status and the only family members not related to
ascertainment are the parents. Like Ewens and Shute (1986) we also assume
that family members who do not belong to the set of probands are not related

12
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to ascertainment.

For randomly selected families, Houwing-Duistermaat et al. (2003, 1995)
derived the score statistic to test for correlation due to genetic factors. The test
can be applied before complex genetic models are fitted. The score statistic
does not assume any distribution of random effects. Adjustments for covari-
ates can be made. In this paper we derive the score statistic for clustering of
binary and quantitative traits in the proband family design by using the con-
ditional likelihood given the phenotypes of the probands. By conditioning
on the phenotypes of the individuals relevant for ascertainment, the method
is robust to the ascertainment scheme (Ewens and Shute, 1986). To take into
account the relationship between covariates and outcome, we propose to use
data from other sources, such as large-scale epidemiological studies.

Commenges et al. (1995) proposed also a score statistic for testing familial
aggregation of binary traits in families ascertained via probands. However,
they only considered a random intercept model, which yields equal correla-
tion between family members and they assumed single ascertainment. Fur-
thermore the effects of covariates on the trait are estimated under the null hy-
pothesis using the data on the relatives. However for larger sets of probands,
it can be impossible to estimate the parameters. For example for age depen-
dent traits, the effect of age cannot be estimated from the data if the set of
probands consists of all offspring and the remaining relatives are only the
parents. Moreover, Rao et al. (1988) and de Andrade and Amos (2000) showed
that conditioning on the trait value of the proband is not efficient for param-
eter estimation. Therefore we suggest to obtain parameters from an available
population based study. Commenges et al. (1995) used the normal distribution
for the distribution of the statistic under the null hypothesis. As alternative,
we propose the scaled χ2 distribution. By means of simulation we study the
performance of the scaled χ2 and the normal distribution in small data-sets.

As an illustration we applied the score statistics to a sample of first-degree
relatives of probands with type 2 diabetes mellitus (DM2). Probands were
patients with DM2 living in the GRIP population (Genetic Research in Iso-
lated Populations), and known to be affected by the physicians participating
in GRIP. To study correlation due to sharing alleles IBD at marker positions,
we used genotypes at five makers located in a region earlier identified as pos-
sibly harboring a genetic factor that plays a role in the distribution of DM2 in
this set of families (Aulchenko et al., 2003). We also studied body mass index
(BMI) to illustrate the use of the score statistic on quantitative traits. Age and
sex specific distributions were obtained from the Rotterdam Study (Hofman

13
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et al., 1991), a large population-based follow up study.

2.2 Methods

The generalized linear mixed model (GLMM)

Let Yk = (Yk,1, ..., Yk,nk
)′ be the response vector of a family with nk relatives.

We assume that each component of Yk has a distribution f in the exponential
family with a dispersion parameter φ. Let µk,i be the expected value of Yk,i
which may depend on a vector of covariates xk,i. To model genetic correla-
tion among family members, the following generalized linear mixed model
(GLMM) is proposed

Yk,i ∼ f (µki, φ)

µk,i = E(Yk,i|xk,i, uk,i) = h−1(xk,iβ + uk,i),

with h a link function (McCullagh and Nelder, 1989). For a quantitative out-
come h may be the identity function and for a qualitative outcome h may be
the logit function. The vector β is a vector of regression coefficients and uk =
(uk,1, ..., uk,nk

)′ is a random vector with mean 0 and covariance matrix τ2Rk. If
τ2 = 0 the variables Yk,i are independent and the model µk,i = h−1(xk,iβ) is
simply a generalized linear model (McCullagh and Nelder, 1989).

For uk equal to an additive genetic effect, the correlation structure Rk has
elements Rk,ij equal to the coefficients of relationships (Sham, 1998). The coef-
ficient of relationships can be written as follows

Rk,ij = π2
ij +

1
2

π1
ij, (2.1)

with πl
ij, l = 0, 1, or 2 the probability of sharing l alleles identical by descent

(IBD) between individual i and j. When genetic markers are typed, correlation
due to sharing alleles IBD at marker positions may be of interest. For a certain
marker, we propose to extend the correlation structure (2.1) to the following
set of correlation structures:

Rk,ij = ρ(π̃2
ij +

1
2

π̃1
ij) + (1− ρ)(π2

ij +
1
2

π1
ij), with 0 ≤ ρ ≤ 1, (2.2)

with π̃l
ij, l = 0, 1, or 2 the conditional probability of sharing l alleles IBD be-

tween relative i and j at the marker locus, given the marker data and the family
structure. Now the random effect uk represents correlation due to tight link-
age between a marker and a gene involved in the etiology of the trait and due
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to residual genetic factors. The proportion of the additive genetic variance
explained by a locus is modelled by the parameter ρ. For ρ = 0, Rk equals
correlation structure (2.1) and no contribution of the locus to the genetic cor-
relation is modelled. For ρ = 1, Rk is the mean IBD sharing matrix at a locus
and hence this model assumes that the total genetic variance is explained by
this locus.

The choice of ρ depends on the population and trait studied. For a ge-
netically homogeneous population where only one gene is expected to be in-
volved in the etiology of the studied trait, ρ may be set to 1. For complex
genetic traits studied in the general population, small values of ρ may be of
interest. Alternatively plots of ρ versus the p-value may be made to study
if the p-value decreases by adding the correlation due to IBD sharing to the
correlation structure (1).

For randomly chosen families, Houwing-Duistermaat et al. (1995) used the
GLMM above and derived the score statistic to test the null hypothesis H0 :
τ2 = 0 of no correlations between relatives of randomly chosen families. The
statistic is given by

∑
1≤k≤m

Qk = ∑
1≤k≤m

(Yk − µk)′Rk(Yk − µk),

with m the number of families.

Score statistic for proband family design

Since the score statistic adds over independent families, it suffices to give
the statistic and its distribution only for a single family. Therefore we drop
the family index k. Suppose a family has n members with np probands related
to ascertainment and nr = n− np remaining relatives not related to ascertain-
ment. Let Zi = Yi − µi with µi the known mean. To let µi depend on covariates
a marginal model may be used (Diggle, 1994). Now let the first np observa-
tions belong to the set of probands then we can write Z′ = (Zp ′, Zr ′) with
Zp = (Z1, ..., Znp)′ and Zr = (Znp+1, ..., Zn)′. Analogously we decompose the

correlation matrix R into four blocks, R =
(

Rpp Rpr

Rpr ′ Rrr

)
. The logarithm of

the conditional likelihood l(Z|Zp, τ) of Z given the outcomes of the probands
Zp is

l(Z|Zp, τ) = l(Z|τ)− l(Zp|τ)

= log(Eu[ f (Z|u, τ)])− log(Eu[ f (Zp|u, τ)]).
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The corresponding score statistic to test H0 : τ2 = 0 is obtained by taking the
first derivative of l(Z|Zp, τ) with respect to τ2 at τ2 = 0

∂

∂τ2 l(Z|Zp, τ2)|τ2=0 = Q− E|τ2=0(Q),

with Q a quadratic form equal to the stochastic part of the first derivative plus
a constant. The statistic Q can be written as follows

Q = Z′RZ = Zr ′RrrZr + 2Zp ′RprZr + Zp ′RppZp.

Note that the stochastic part of Q can be written as a sum of two statistics
L = 2Zp ′RprZr and Qr = Zr ′RrrZr. The linear term L measures correlation
between probands and relatives. The quadratic form Qr is the score statis-
tic applied to the relatives and ignoring the probands. If the outcome of the
proband is unknown, no information is available about the correlation be-
tween the proband and the family members. Furthermore from the formula
for Q it is clear that information is lost when more relatives are allocated to
the set of probands (see also Ewens & Shute, 1986).

Under the null hypothesis of no correlation, the conditional expectation
E(Q|Zp) and variance Var(Q|Zp) of the statistic given the outcomes of the
probands are

E(Q|Zp) = E(Qr) + Zp ′RppZp =
n

∑
i=np+1

RiiVar(Zi) + Zp ′RppZp,

and

Var(Q|Zp) = Var(L|Zp) + 2Cov(L; Qr|Zp) + Var(Qr)

= 4
n

∑
j=np+1

(
np

∑
i=1

ZiRij)2Var(Zj) + 4
n

∑
j=np+1

np

∑
i=1

ZiRijE(Z3
j )

+
n

∑
i=np+1

R2
ii(E(Z4

i )− 3Var(Zi)2) + 2
n

∑
i,j=np+1

R2
ijVar(Zi)Var(Zj).

For binomially and normally distributed outcomes, formulae for the expec-
tation and the variance of Q are given in the appendix. Asymptotically, the
statistic Q−E(Q|Zp)√

Var(Q|Zp)
follows a standard normal distribution N(0, 1). Alterna-

tively, the distribution of Q under H0 : τ2 = 0 can be approximated by a scaled
chi-square distribution cχ2

υ with the scale parameter c given by c = Var(Q|Zp)
2E(Q|Zp)

and the degrees of freedom υ given by υ = 2E(Q|Zp)2

Var(Q|Zp) (le Cessie and van
Houwelingen, 1995).
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2.3 Simulation study

In order to study the performance of the cχ2 and normal distributions as
approximations of the null distribution of the score statistic, we performed
a simulation study. For sake of simplicity we used the data structure of our
example of 33 families (see below). We generated 100,000 data sets of inde-
pendently binomially distributed outcomes and 100,000 data sets of indepen-
dently normally distributed outcomes. The score statistics were calculated
using correlation structure (2.1) based on the coefficients of relationship. We
also studied the performance of the distributions in a very small set of nine
families.

In table 2.1, the actual p-values corresponding to a nominal p-value of 0.05,
0.01, 0.001 and 0.0001 are given. The results were in favour of the cχ2 distri-
bution for both binomially and normally distributed outcomes. Even for the
set of nine families, the cχ2 distribution performed very well.

TABLE 2.1: Type I error rate when using cχ2 distribution and normal distribution as
approximation for the distribution of Q under the null hypothesis. The estimates
are based on 100,000 simulations.

33 families 9 families
nominal cχ2 normal cχ2 normal

Binomial (DM2)
0.05 0.0547 0.0606 0.0550 0.0649
0.01 0.0143 0.0194 0.0137 0.0239
0.001 0.0020 0.0041 0.0017 0.0070

0.0001 0.0004 0.0011 0.0002 0.0019
Normal (BMI)

0.05 0.0538* 0.0615* 0.0566 0.0651
0.01 0.0125* 0.0196* 0.0151 0.0233
0.001 0.0016* 0.0047* 0.0027 0.0069

0.0001 0.0002* 0.0011* 0.0004 0.0023

* based on 27 families
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A data example

Description of families

To illustrate the score statistic, we used data from 79 patients with type 2
diabetes mellitus (DM2), their first-degree relatives and spouses (Aulchenko
et al., 2003). These families were derived from the GRIP population (Ge-
netic Research in Isolated Populations), an isolated village in the Southwest
of the Netherlands. The GRIP population is described in detail elsewhere
(Aulchenko et al., 2003; Vaessen et al., 2002; van Duijn et al., 2001). Probands
are patients with DM2 treated by physicians participating in GRIP. Among
the relatives are patients not related to ascertainment namely patients of other
physicians and subjects who did not know that they have DM2. In a combined
linkage and association study, a genome scan was carried out on these data
and Aulchenko et al. (2003) found a borderline association between marker
D3S3681 and DM2 (LOD score of 1.20, P=0.01).

For DM2 we analysed 33 families informative for linkage. One of these
families was a combination of two nuclear families. Three families had
probands with unknown disease status. In total 31 probands and 65 relatives
were observed. The percentage of women was 60%. The mean age in years
was 62 (range 45-94). We did not use subjects younger than 45 years, because
we do not have information on the prevalence of DM2 for these age groups. In
table 2.2 the number of families for combinations of number of affected rela-
tives and number of observed relatives in the family are given. The mean size
of the families was 2.9 (range 2 to 5) and the number of affected relatives per
proband was 0.72 (range 0 to 4). The quantitative outcome body mass index
(BMI) was known for a subset of 27 families with 46 relatives. BMI was only
known for 7 probands. In this subset, the distributions of age and sex agreed
with those of larger set of 33 probands. Also for this outcome we assumed that
the family members are not related to ascertainment if they are not probands.

The age and gender specific distributions of DM2 and BMI were obtained
using data from the Rotterdam Study (Hofman et al., 1991). The Rotterdam
Study is a population based follow up study of the elderly with about 8000
subjects aged 55 and over. For both sexes, we fitted logistic and linear re-
gression models to estimate the relationschip between age and DM2 and BMI
respectively. The following marginal models were obtained
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TABLE 2.2: Counts of families per combinations of number of affected relatives and
number of observed relatives in the family.

Number of relatives
1 2 3 4 total

0 11 3 3 0 17
Number 1 3 4 3 0 10

of affected 2 - 1 3 1 5
relatives 3 - - 0 0 0

4 - - - 1 1
total 14 8 9 2 33

logit(µ(DM2)) =
{
−4.379 + 0.035 ∗ age for women
−3.529 + 0.025 ∗ age for men

(2.3)

and µ(BMI) =
{

25.48 + 0.018 ∗ age for women
28.10− 0.036 ∗ age for men

(2.4)

and σ2(BMI) = 13.62 . We used these models also for the distributions of
DM2 and BMI for subjects aged between 45 and 55 years. In table 2.3, the
observed and expected prevalence of DM2 and the observed and expected
mean of BMI in the relatives are given. The expected values were computed
using model (2.3) and (2.4) respectively. The prevalence of DM2 and the mean
of BMI was higher than expected.

The conditional probabilities of sharing zero, one or two alleles IBD at
marker D3S3681 and four informative proximal markers namely D3S1276,
D3S3634, D3S1603, and D3S1271 were computed using the multipoint option
in GENEHUNTER (Kruglyak et al., 1996) and using all available family mem-
bers regardless of their age. Unfortunately no informative distal marker was
available. The genetic distances between adjacent markers are 2.67, 2.67, 0.53,
and 2.67 cM successively. The markers appeared to be highly informative
(> 0.89), using the entropy as a measure of the informativeness (Kruglyak
et al., 1996), hence also the Spearman’s rank correlations between the esti-
mated proportion of alleles shared IBD at each marker locus and the coef-
ficient of relationship are rather small (< 0.53). The Spearman’s rank cor-
relations between the estimated proportion of alleles shared IBD at pairs of
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TABLE 2.3: Observed and expected prevalence of DM2 and mean of BMI

Observed Expected*
Prevalence of DM2

women (n=40) 0.35 0.10
men (n=25) 0.40 0.11

Mean of BMI (standard error)
women (n=28) 29.27 (0.91) 26.40

men (n=18) 28.63 (0.93) 25.98
* expected values are based on the Rotterdam Study

markers varied from 0.74 (D3S3681 and D3S1271 at distance 8.54 cM) to 0.90
(D3S3634 and D3S1603 at distance 0.53 cM). Due to recombination between
two physically close located markers D3S3634 and D3S1603, the estimated
proportion of alleles shared IBD differed between these marker loci.

Results

We applied the score statistics to test for clustering of DM2 and BMI due
to genetic factors. Correlation structure (2.1) based on familial relationship
appeared to be highly significant for both traits (P < 0.00001). For testing cor-
relation structure (2.2) for the five markers, plots of ρ versus minus log10 of
p-value are given in figure 2.1 for DM2 and in figure 2.2 for BMI. All p-values
were highly significant (P < 0.00001). Especially for DM2, adding correla-
tion due to sharing allele IBD at marker D3S3681 to the familial correlation
decreased the p-value for clustering.

2.4 Discussion

In this paper we proposed a score statistic for the proband family design
to test for the presence of a prespecified correlation structure for binary and
quantitative outcomes. The score statistic allows for adjusting of covariates.
No assumption about the distribution of the random effects is made. Fur-
thermore by conditioning on the trait value of all individuals related to ascer-
tainment the method is robust to the ascertainment scheme. By means of a
simulation study we showed that the cχ2 distribution performs well as an ap-
proximation of the distribution of the score statistic under the null hypothesis
even in very small data-sets.

20



Chapter 2. Score test for proband-family design

0.0 0.2 0.4 0.6 0.8 1.0

ρ

10.8

11.0

11.2

11.4

11.6

11.8

-lo
g

10
(p

-v
al

ue
)

D3S3681
D3S1276
D3S3634
D3S1603
D3S1271

FIGURE 2.1: For DM2 the p-values for testing correlation due to sharing alleles IBD at the
five marker positions and residual genetic correlation for ρ = 0, 0.1, ..., 1. The parameter
ρ models the proportion of genetic variances explained by IBD sharing.

We analysed the clustering of DM2 and BMI in families of DM2 cases. Age
and sex specific distributions of DM2 and BMI were obtained from the Rotter-
dam Study. The number of DM2 cases was higher than expected taking into
account the age and sex distributions. Also the mean BMI was higher than
expected in these families. This may indicate that genetic factors play a role in
these families. Application of the score statistics indeed showed significant fa-
milial clustering of DM2 and BMI. Furthermore for DM2 adding IBD sharing
at the five marker locations decreased the p-value. This decrease was most
pronounced for marker D3S3681, which also showed some association with
DM2 (Aulchenko et al., 2003). The next step in analysing these data will be
estimation of the parameters. However the methodology has to be developed
(see below).
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FIGURE 2.2: For BMI the p-values for testing correlation due to sharing alleles IBD at the
five marker positions and residual genetic correlation for ρ = 0, 0.1, ..., 1. The parameter
ρ models the proportion of genetic variances explained by IBD sharing.

In this paper we derived formulae for binomially and normally distributed
outcomes. However the score statistic can be used for any distribution belong-
ing to the exponential family. Furthermore we restricted ourselves to correla-
tion due to additive genetic effects because for many complex traits, dominant
effects are assumed to be small (Risch, 1990a). If dominant effects do exist the
power will be only slightly reduced, because dominant effects only influence
the correlation among pairs who can share two alleles IBD.

In addition to correlation due to any genetic component we also consid-
ered correlation partly due to excess sharing of alleles IBD in candidate re-
gions. We made plots of ρ, the proportion of genetic variance explained by the
locus versus the p-value. A decrease of the p-value at ρ = 0 suggests a role
of a gene involved in the etiology of the trait linked to the marker locus. Note
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that our statistic does not test the null hypothesis of no linkage. A formal test
for linkage is a score statistic for H0 : ρ = 0. For quantitative traits, this score
statistic corresponds to the statistic derived by Putter et al. (2002). However
for binary traits, derivation of the score statistic is complex due to the non lin-
ear relation between the outcome and the random effects. Nevertheless for
both quantitative and binary outcomes, the test statistic Q provides insight
in the underlying correlation structure and should be used before genetic pa-
rameters are estimated.

When a trait appears to be significantly correlated, the next step is to es-
timate the genetic parameters modelling the covariance structure. A natu-
ral framework of estimation methods are generalized estimating equations
(GEE), because they do not fully specify the distribution (see Tregouet and
Tiret (2000) and Ziegler et al. (1998) for reviews on application of these meth-
ods to family studies). For quantitative traits observed in random families,
Stram et al. (1993) proposed GEE for segregation analysis. For binary traits,
Liang and Beaty (1991) used these methods to study the dependence within
families under the assumption that the families sampled are geometrically
proportional to the number of affected family members. For a case-control
family design, Zhao et al. (1998) derived GEE corresponding to the likelihood
proposed by Whittemore (1995). To correct for ascertainment, Whittemore
(1995) proposed to use different intercepts for probands than for the remain-
ing family members. Further research is needed to extend these methods to
the more general selection scheme as considered in this paper.

Methods of estimation should allow for more than one proband per family
and also for different relationships between probands and relatives. Further-
more under the alternative, estimation of the parameters modelling the mean
from data on the relatives may be biased (Pfeiffer et al., 2001). Hence to adjust
for covariates, estimates of parameters should be obtained from other sources.
Note that biased estimates of the regression parameters will affect the corre-
lation between residuals (Diggle and Zegger (1994, p. 63-64); Verbeke and
Molenberghs (1997, p. 120-122)) and consequently, the estimates of parame-
ters modelling the covariance.

The statistic Q measures deviation from the mean as well as cluster-
ing. Hence if the mean is invalid the type I error is inflated. Commenges
et al. (1995) proposed to estimate the parameters from the data on the rel-
atives, which is valid under the null hypothesis. However for large sets of
probands estimation of the parameters modelling the mean may not be possi-
ble. Furthermore for estimation of the genetic parameters, the means should
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be known as pointed out above. It is natural to use estimates from other
sources when our statistic is applied before models are fitted. Therefore we
feel that it is important to know the effects of covariates on the trait in studied
populations and to use this knowledge in analysing selected families aiming
to elucidate the underlying genetic mechanisms. For our data example ob-
taining the age and gender distribution of DM2 and BMI from the Rotterdam
Study seems to be reasonable since GRIP is a recently isolated population. We
conclude that the score statistic is a good tool to study clustering of traits due
to genetic factors within families selected via probands.

The analysis was performed using S-plus codes, which are available from:
http://www.medstat.medfac.leidenuniv.nl/MS/

2.5 Appendix

For Yi ∼ N(µi, σ2) the expectation of Q given Zp is

E(Q|Zp) = σ2trace(Rrr) = nσ2,

and the variance of Q given Zp is

Var(Q|Zp) = 2σ4trace((Rrr)2) + 4σ2
n

∑
j=np+1

(
np

∑
i=1

ZiRij)2.

For Yi ∼ Bin(1, µi) the expectation of Q given Zp is

E(Q|Zp) =
n

∑
i=np+1

µi(1− µi),

and the variance of Q given Zp is

Var(Q|Zp) = 4
n

∑
j=np+1

(
np

∑
i=1

ZiRij)2µj(1− µj)

+
n

∑
i=np+1

µi(1− µi)(1− 6µi + 6µi)

+ 2
n

∑
i,j=np+1

(Rij)2µiµj(1− µi)(1− µj)

+ 4
n

∑
j=np+1

np

∑
i=1

RijZiµj(1− µj)(1− 2µj).
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CHAPTER 3

Global tests for linkage

R. el Galta, J.C. van Houwelingen and J.J. Houwing-Duistermaat

Abstract

To test for global linkage along a genome or in a chromosomal region, the max-
imum over the marker locations of mean alleles shared identical by descent of
affected relative pairs, Zmax, can be used. Feingold et al. (1993) derived a
Gaussian approximation to the distribution of the Zmax. As an alternative we
propose to sum over the observed marker locations along the chromosomal
region of interest. Two test statistics can be derived. (1) The likelihood ra-
tio statistic (LR) and (2) the corresponding score statistic. The score statistic
appears to be the average mean IBD over all available marker locations. The
null distribution of the LR and score tests are asymptotically a 50:50 mixture
of chi-square distributions of null and one degree of freedom and a normal
distribution, respectively.
We compared empirically the type I error and power of these two new test
statistics and Zmax along a chromosome and in a candidate region. Two mod-
els were considered, namely (1) one disease locus and (2) two disease loci. The
new test statistics appeared to have the right type I error. Along the chromo-
some, for both models we concluded that for very small effect sizes, the score
test was more powerful than the other test statistics. For large effect sizes, the
likelihood ratio statistic and Zmax were comparable and performed much bet-
ter than the score test. For candidate regions of about 30 cM, all test statistics
were comparable.

To be submitted for publication
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3.1 Introduction

In complex genetic diseases, multiple genes are assumed to cause a predis-
position to disease. Each single susceptibility gene might contribute little to
disease, and therefore the statistical power to detect such a gene is low, espe-
cially if the gene is common and has low penetrance. Furthermore, some of
these genes might lie on the same chromosomal region of interest.

Regions harboring genes responsible for a trait are often identified by
means of genome wide linkage analysis, which studies co-segregation of an
unobserved disease locus and a marker locus. Two approaches can be con-
sidered, namely parametric and nonparametric linkage analysis. Parametric
methods require allele frequencies at the disease locus and the penetrances to
be known. Parametric linkage analysis is the most powerful when the genetic
parameters are correctly specified. For many complex traits the mode of in-
heritance is unknown. For such traits non-parametric methods are suitable,
as they do not make any assumption about the mode of inheritance. Non-
parametric methods rely only on the information of sharing alleles identical
by descent (IBD) between relatives at a locus to study whether it is genetically
linked to the unobserved disease locus. Linkage between a disease locus and
marker genotypes can be studied by comparing the observed IBD sharing of
affected relative pairs to the expected IBD sharing under random segregation.
An increase in IBD sharing indicates the presence of a susceptibility gene in
the region. Conventionally testing for linkage is carried out at each observed
locus throughout the human genome. To adjust for multiple testing, only p-
values smaller than 2.2 × 10−5 are considered to be significant (Lander and
Kruglyak, 1995). In this paper we propose two global tests for linkage, which
use IBD information from observed markers all together. All tests considered
in this paper, assume that each of unlinked chromosomal regions carries one
disease locus at most.

A global test for linkage, which tests all observed markers simultaneously,
can be obtained by summing the likelihood of the data over all marker lo-
cations along the region of interest. Throughout this paper, we will refer to
this approach as the averaging approach. Siegmund (2001) discussed briefly
the averaging approach for complete IBD information. However, we think
that this approach merits more consideration. For a candidate region, Liang
et al. (2001) proposed a generalized estimating equations approach to primar-
ily estimate the location of a disease gene. The authors used IBD information
from all markers jointly. Liang’s method can also be regarded as an averaging
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approach.
For various types of affected relative pairs, and dense and fully informa-

tive markers about IBD status, Feingold et al. (1993) proposed a global test
for linkage, which appeared to be the maximum of mean IBD over all mark-
ers (Zmax). The authors derived a Gaussian approximation to the significance
level of Zmax for large sample sizes. Teng and Siegmund (1998) extended this
approach to relative pairs with partial information about the IBD status.

In this paper, we considered the averaging approach for both complete
and partial information about the IBD status. For simplicity, we restricted to
affected sibling pairs (ASP). Two test statistics were derived namely the like-
lihood ratio statistic and the corresponding score statistic. The score statistic
appeared to be the average mean IBD over all available marker locations. The
null distribution of the likelihood ratio and score statistic are asymptotically
a 50:50 mixture of chi-square distributions of null and one degree of freedom
and a normal distribution, respectively.

For complete IBD information, we compared empirically the type I error
and power of these two test statistics and Zmax. To generate data two models
were considered, namely (1) single-locus disease model and (2) two-locus dis-
ease model. The new test statistics appeared to have the right type I error. For
both models we concluded that for a sample of 200 ASPs and a small effect
sizes (λs < 1.17, with λs the siblings relative recurrence risk (Risch, 1990a)),
the score test had slightly more power than the other test statistics. For large
effect sizes or large sample sizes, the likelihood ratio statistic and Zmax were
comparable and perform better than the score test. Further, we studied the ef-
fect of the information loss on the performance of the test statistics when only
partial information is available.

3.2 Methods

Complete IBD information

First we describe briefly the approach proposed by Feingold et al. (1993).
Let T be the length (in cM) of a chromosome of interest. Suppose that
we have N affected sib pairs. For a marker locus at the position t let Xk

t,i
be the event that the members of the ith sib-pair share k alleles identical
by descent (IBD), for k = 0, 1, 2 and let Xt,i = ∑2

k=0 kXk
t,i the number of

marker alleles shared IBD. Assume that all markers are fully informative
about the IBD status. Hence Xt,i has expectation E0[Xt,i] = 1 and variance
Var(Xt,i) = 1/2 under the null hypothesis of no linkage. Let Xt = ∑N

i=1 Xt,i
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and Zt = Xt−N√
N

. Assuming Haldane’s mapping function, {Zt, 0 ≤ t ≤ T} is
approximately a Gaussian Markov process which has zero mean and covari-
ance R(t, s) = 1/2 exp(−0.04|t − s|) under the null hypothesis. Under the
alternative hypothesis of the presence of one susceptibility gene at the loca-
tion τ on the chromosome, this process {Zt, 0 ≤ t ≤ T} is superimposed by
0.5
√

Nα exp(−0.04|t − τ|) with α representing the excess IBD sharing. The
parameter α varies between 0 and 1. For an additive model, α = λs−1

λs
with λs,

the sibling risk ratio (Risch, 1990a). For small α an approximation of the log
likelihood of this process is

L(τ, α|Zt, 0 ≤ t ≤ T) = L(α|Zτ) ∝ exp(
√

NαZτ − Nα2/4). (3.1)

It is not known which locus is the disease locus. To test the null hypothesis
H0 : α = 0 i.e. none of the markers is linked with the disease, Feingold et al.
(1993) proposed to use the maximum of the corresponding likelihood ratio
over the parameters α and τ, which appeared to be

Zmax =
√

max
τ

max
α

2logL(τ, α) = max
τ

√
2Zτ .

Feingold et al. (1993) derived the following approximation to calculate the
significance level of Zmax

P0(Zmax > b) ≈ 1−Φ(b) + 0.04Tϕ(b)

with ϕ and Φ are the standard normal density and distribution functions, re-
spectively.

Averaging approach

As an alternative to maximizing the conditional likelihood over τ one can
take the average of conditional likelihoods given the location of the disease
locus over all marker loci assuming that they are all equally likely to be in
complete linkage with the disease locus. Hence the average likelihood is ap-
proximately

L(α|Zt, 0 ≤ t ≤ T) ∝ ∑
t

L(τ = t, α) = ∑
t

exp(
√

NαZt − Nα2/4). (3.2)

Here, we assume also the presence of a single disease locus in the region of
interest. As test statistic we propose to use either the corresponding likelihood
ratio test

Λ = max
0≤α≤1

2 log(
L(α)

L(α = 0)
) = max

0≤α≤1
2 log(∑

t
exp(

√
NαZt − Nα2/4)) (3.3)
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or the score test

U =
∂ log(L(α = 0))/∂α√

−E[∂2 log(L(α = 0))/∂α2]
= ∑t Zt√

∑t,s Cov0(Zt, Zs)
, (3.4)

with L(α) given in formula (3.2) and ∑t,s Cov0(Zt, Zs) = ∑t,s R(t, s)/2, the
variance under the null hypothesis. Since the parameter α is positive, the null
distribution of Λ is approximately a 50:50 mixture of χ2

1 distribution and a
point mass at zero ( 1

2 χ2
1 + 1

2 χ2
0). The score test U follows asymptotically the

normal distribution under the null hypothesis. It is a one-sided test and rejects
the null hypothesis only for positive values of U. Let U2

+ = U2 if U > 0
otherwise U2

+ = 0. Then U2
+ is asymptotically distributed as 1

2 χ2
1 + 1

2 χ2
0. Note

that U2
+ approximates Λ for α small. Hence Λ and U are locally asymptotically

equivalent. The theoretical power of the score test U is given by

β = 1−Φ(
b
√

Var0(Z)− Eα[Z]√
Varα(Z)

), (3.5)

with Z = ∑t Zt, and Eα[Z] and Varα[Z], the expectation and the variance of Z
under the alternative hypothesis. The critical value b is the normal percentile
corresponding to a prespecified significance level. For instance b = 1.64 cor-
responds to a significance level of 0.05. The covariance matrix of the process
{Zt, 0 ≤ t ≤ T} is given in the appendix for two models, namely (1) one
disease locus on the chromosome and (2) two disease loci on the same chro-
mosome. For the likelihood ratio test Λ, the power can be estimated by means
of a simulation study. The value of α that maximize the average likelihood can
be used as an estimate of the effect size of the susceptibility gene. The poste-
rior probabilities are of interest; for instance the largest posterior probability
indicates the most likely location of a disease gene.

Incomplete IBD information

Since genotyped markers are typically not fully informative about the IBD
status, the IBD sharing Xt,i can be replaced by X̂t,i = E0[Xt,i|Gi] the mean IBD
under the null hypothesis of no linkage given the genotypes, Gi, of the ith sib-
pair for all observed markers. Given the disease locus at the location τ Teng
and Siegmund (1998) used the following likelihood to derive a corresponding
test statistic to Zmax for incomplete IBD information

L̃(τ, α|G) ∝
N

∏
i

(1 + α(X̂τ,i − 1)). (3.6)
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Similarly to the case of complete IBD information the average likelihood can
be obtained by summing over all available marker positions. Hence the aver-
age likelihood is

L̃(α) ∝ ∑
t

N

∏
i

(1 + α(X̂t,i − 1)). (3.7)

The likelihood ratio corresponding to L̃(α)

Λ̂ = max
0≤α≤1

2log(L̃(α)/L̃(α = 0))

Let Ẑt = ∑N
i=1(X̂t,i − 1)/

√
N. An estimate of the score test is

Û = ∑t Ẑt√
∑t,s ˆCov(Ẑt, Ẑs)

where the covariances are the sample covariances. The likelihood ratio Λ̂ fol-
lows approximately a 50:50 mixture of χ2

1 distribution and a point mass at
zero. The score test Û asymptotically follows the normal distribution.

3.3 Simulation

Complete IBD information

Single-locus disease model

Whole chromosome

For practical reasons we simulated data from a multivariate normal distri-
bution instead of generating the process of number of IBD sharing for affected
sib pairs. We generated a vector of length 100, which corresponds to IBD
data on 100 equidistant markers along a chromosome of 300 cM, from a mul-
tivariate normal distribution with the mean and covariance being evaluated
under the alternative hypothesis (Liang et al., 2001). Data at each position
were considered as an average IBD sharing of 200 affected sib-pairs. We re-
peated the procedure 10,000 times. We positioned one disease gene at 75 cM
on the chromosome, with varying values of α. The results are summarized in
Figure 7.1. Type I error and power were calculated at significance level of 0.05.
All test statistics provided reasonable type I error rates. For small effect size
(α ≤ 0.15), the score statistic U appeared to have slightly more power than
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Zmax and Λ. For larger effect size (α > 0.15), the test statistics Λ and Zmax had
similar power and performed better than U. From the simulation results we
observed that Λs and Zmax statistics attained the power of 80 % at α ≈ 0.37,
which corresponds to λs = 1.59. Hence, the sample size N required to achieve
the power of 80 % for a given α, can be approximated by using the following
formula

N = 200(0.37/α)2.

For example the sample size required to achieve a power of 80 % when
α(λs) = 0.05 (1.05), 0.1 (1.11), 0.15 (1.17) and 0.23 (1.3) are 10765, 2692, 1196
and 500 ASPs, respectively. The sample size required to attain a power of 80
% can be approximated by the using the corresponding formula to the for-
mula (3.5). The score test U achieved a power of 80 % at α(λs) = 0.6(2.5). The
sample size required to achieve a power of 80 % when α(λs) = 0.05 (1.05),
0.1 (1.11), 0.15 (1.17) and 0.23 (1.3) are 28800, 7200, 3200 and 800 ASPs, respec-
tively. Similar results were also obtained by using

N = 200(0.6/α)2.

Note that these results are only for one chromosome, and thus the sample
sizes required for genome scan are much higher, see also Cordell (2001).

Candidate region

To study the performance of the test statistics in a candidate region, we
generated 10000 data sets. Each data set consists of fully IBD information
for 500 ASPs, on 10 equidistant markers spanning a chromosomal region of 30
cM. The disease gene was positioned at the middle of the chromosomal region,
with varying values of α. The results are depicted in Figure 3.2. A nominal
significance level of 0.05 is considered. All test statistics were comparable in
terms of the power.

Two-locus disease model

In order to study the robustness of these test statistics we considered the
presence of two disease loci on the same chromosome. Data were generated
similar to the case of one disease locus from a multivariate normal distribution
with the mean and covariance matrix as given in the appendix (3.5) for various
values of α1 and α2, the parameters of increased IBD at the first and the second
disease locus, respectively. Unlike for the single-locus disease model, the IBD
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FIGURE 3.1: Power to detect linkage due to a single disease locus at τ = 75 cM when IBD
data are available on 100 fully equidistant markers along a chromosome of length 300 cM
for 200 ASPs.

process is now controlled by α1, α2, and the covariance matrix of IBD at the
disease loci through the penetrance matrix and the allele frequencies at the
disease loci. The disease loci were located at (τ1, τ2) = (90, 150). The results
are shown in Table 3.1. A nominal significance level of 0.05 is used. Compared
to the single-locus disease model, all test statistics appeared to gain power
when two disease loci exist. The power of the score statistic U was especially
improved. For effect sizes α1 ≤ 0.10 and α2 ≤ 0.10 the score statistic yielded
the highest power. For larger effect sizes the corresponding likelihood ratio
statistic Λ often performed the best. The Zmax statistic has good power relative
to U.
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FIGURE 3.2: Power to detect linkage due to a single disease locus at τ = 15 cM when IBD
data are available on 10 fully equidistant markers along a chromosome of length 30 cM for
500 ASPs.

Partial IBD information

We generated 10000 data sets under the null model and 1000 data sets un-
der the alternative model of one disease locus, using the ALLEGRO program
(Gudbjartsson et al., 2000). Each data set consisted of 200 affected sib-pairs
and their parents. We considered a chromosome with a length of 315 cM.
Genotypes were simulated for 41 markers spaced about 7.8 cM on average.
The disease locus was located at τ = 75 cM. The two adjacent observed mark-
ers to τ were located at t9 = 73 cM and t10 = 81 cM. We varied α from 0
to 0.3. Multipoint IBD’s were calculated using the Merlin program (Abeca-
sis et al., 2002). The simulation results are depicted in Figure 3.3 for affected
sib-pairs, with and without information on parental genotypes at the left and
right panel, respectively. A nominal significance level of 0.05 is used. Here

33



Chapter 3. Global tests for linkage

TABLE 3.1: Power to detect linkage due to two disease loci located on the same chro-
mosome at τ1 = 90 and τ2 = 150, when IBD data are available on 100 fully infor-
mative markers in 200 ASPs.

p1 p2 α1 α2 λs U Λ Zmax

0.033 0.033 0.05 0.05 1.051 0.10 0.07 0.07
0.05 0.033 0.10 0.05 1.082 0.14 0.12 0.12
0.05 0.05 0.10 0.10 1.113 0.18 0.16 0.15

0.063 0.031 0.15 0.05 1.113 0.19 0.21 0.21
0.064 0.05 0.15 0.10 1.146 0.23 0.24 0.22
0.065 0.065 0.15 0.15 1.183 0.28 0.30 0.28
0.08 0.066 0.20 0.15 1.226 0.35 0.44 0.42

0.081 0.081 0.20 0.20 1.267 0.44 0.54 0.51
0.092 0.068 0.25 0.15 1.267 0.43 0.59 0.59
0.096 0.084 0.25 0.20 1.317 0.48 0.65 0.63
0.1 0.1 0.25 0.25 1.370 0.55 0.70 0.67

p1 and p2 are the frequencies of disease alleles A and B at loci τ1 and τ2 re-
spectively. The data were generated under genetic models with the following
penetrance matrix

Genotypes at τ1

Genotypes at τ2 AA Aa aa
BB 0.95 0.95 0.95
Bb 0.95 0.09 0.09
bb 0.95 0.09 0.09

we compared the score test Û, the likelihood ratio Λ̂ and the maximum of the
score statistics Ẑmax proposed by Teng and Siegmund (1998). When parental
genotypes were available, all test statistics showed the same pattern as for the
perfect IBD information. The score test Û had the highest power for effect
sizes α < 0.15, and for α ≥ 0.15 the test statistics Λ̂ and Ẑmax performed simi-
larly and had the highest power. When parental genotypes were not available,
all test statistics appeared to be conservative and the power decreased. The
type I error rates of Û, Λ̂ and Ẑmax were about 0.048, 0.045 and 0.052 when
parental genotypes were available respectively, and they dropped to 0.04, 0.42
and 0.039 when parental genotypes were not available. In terms of the power
the Ẑmax statistic suffered the most from the loss of IBD information, whereas
the score statistic was the least affected. For small α < 0.15 the score statistic
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Û had the highest power, and for α ≥ 0.15 the likelihood ratio test Λ had the
highest power.
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FIGURE 3.3: Power to detect linkage due to a single disease locus when IBD information is
partially available on 41 markers along a chromosome of length 315 cM in 200 ASPs.

3.4 Discussion

In this paper, we proposed an averaging approach to test for linkage of an
unobserved disease locus and a marker locus when IBD data are available
on multiple markers. We first considered marker data to be fully informative
about the IBD status. We assumed that all observed marker loci are equally
likely to be the disease locus. As a basic model to our approach we used the
model proposed by Feingold et al. (1993). The model assumes the presence of
one disease locus at most on a chromosome. The likelihood of the data was
computed by summing the conditional likelihood given a marker locus being
the disease locus, over all observed marker loci. The corresponding likelihood
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ratio test or the score test can be used. Both test statistics are easy to compute
and have known asymptotic distributions under the null hypothesis. Further,
we adapted the method to the case of partial information on the IBD status.

We performed a simulation study to compare the performance of the av-
eraging approach in comparison to the maximising approach (Feingold et al.,
1993; Teng and Siegmund, 1998). For complete IBD information we consid-
ered a single-locus disease model as well as a two-locus disease model. The
score test of the averaging approach appeared to perform slightly better when
each single susceptibility gene contributed little to the disease and the sam-
ple size was small. However, this difference in power may disappear if the
sample size is large. For large effect sizes (α > 0.15), the likelihood ratio test
of the averaging approach performed best when two disease loci existed on
the same chromosome or when the IBD information was partial, and it had
similar power to the maximising approach when IBD information was com-
plete. In a candidate region the averaging approach has slightly higher power
to detect linkage relative to the maximising approach. The score test U and
the likelihood ratio Λ performed equally.

When information about IBD status is not fully known, the amount of IBD
sharing is often estimated by its expectation given the available genotypes
data from all observed markers assuming linkage equilibrium. However this
assumption may not be valid if the marker map is dense. The less the IBD
information the less accurate are the IBD estimates. Further, the variance of the
estimate is unknown and it should in turn be estimated by its sample variance
(Teng and Siegmund, 1998). Unlike the Ẑmax and Û statistics , the likelihood
ratio Λ̂ does not need to estimate the variance, and therefore it may be less
affected by the loss of IBD information when sample size is large. To reduce
the bias one should include all available parental genotypes in analysis (Risch,
1990c). Recently, Bacanu (2005) proposed an approach to eliminate the bias
due to the presence of linkage disequilibrium between adjacent markers. The
author partitioned the markers into interlaced and non-overlapping subsets,
and then analyzed each set separately. A final test statistic for linkage is the
standardized average of subset-specific statistics.

Liang et al. (2001) proposed a GEE method to estimate the location of a
single susceptibility gene in a candidate region. The authors proposed also a
GEE-based test statistic of linkage. The test statistic appeared to be a weighted
sum of the number of IBD sharing over the markers positions along the region
of interest. This statistic assigns more weight to markers at the ends of the
chromosomal region of interest. Power calculations using the formula (3.5)
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and the corresponding formula in Liang et al. (2001) (data not shown) show
that the score test proposed in this paper has more power than the GEE-based
test statistic as long as the susceptibility gene does not lie at the end of the
chromosomal region of interest. Moreover the GEE-based test statistic be-
comes very conservative relative to the test statistic Û when parental geno-
types are missing (data not shown), which is in agreement with the findings
of Lebrec et al. (2005).

Biernacka et al. (2005) extended the work of Liang et al. (2001) to address
the presence of two disease loci on the same chromosome. The averaging ap-
proach can also be extended to test for the presence and estimate the effect
sizes of two disease loci on the same chromosome. The likelihood can be ob-
tained by taking the sum of the conditional likelihoods given two disease loci
over all marker pairs. the corresponding likelihood ratio asymptotically fol-
lows a 0.25, 0.5 and 0.25 mixture of chi squares with zero, one and two degrees
of freedom, respectively (Self and Liang, 1987) Moreover, the application of
the approach for other relative pairs, i.e. half sibling, grandparent-grandchild,
cousin pairs, etc, is straightforward.

We conclude that the averaging approach improves the power to detect
linkage relative to the maximising approach when a single disease-locus of
small effect size exists on a chromosome or two disease loci lie on the same
chromosome.

3.5 Appendix
The expectation and the covariance of the process {Zt, 0 ≤ t ≤ T}when two
disease loci exist

Suppose that two loci disease loci are located at τ1 and τ2. Let α1 =
E[Xτ1,i − 1]/2 and α2 = E[Xτ2,i − 1]/2 be the deviation of the expectation of
the number of IBD sharing at τ1 and τ2 from the mean under the null hypothe-
sis. Using the fact that given the IBD at the disease loci the IBD process on the
same chromosome does not involve α1 and α2 (Teng and Siegmund, 1998), the
expectation and covariance matrix of the Gaussian process {Zt, 0 ≤ t ≤ T}
can be calculated using the following formulae

E[Zt] = E[E0[Zt|Zτ1 , Zτ2 ]]

Cov(Zt, Zs) = E[Cov0(Zt, Zs|Zτ1 , Zτ2)] + Cov(E0[Zt|Zτ1 , Zτ2 ], E0[Zs|Zτ1 , Zτ2)])

Using the theory of the conditional multivariate normal distributions (Ander-
son, 1984, p. 37) and the fact that the Gaussian process is Markovian, the
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expectation and the covariance are

E[Zt] =


0.5
√

Nα1e−0.04|τ1−t| for t < τ1 ≤ τ2
0.5
√

Nα2e−0.04|τ2−t| for τ1 ≤ τ2 < t
0.5
√

N(α1c1(t) + α2c2(t)) for τ1 ≤ t ≤ τ2

Cov(Zt, Zs) =



e−0.04|s−t|/2 + (Var(Zτ1 )− 1/2)e−0.04(|s−τ1|+|t−τ1|) for s ≤ t ≤ τ1 ≤ τ2
e−0.04|s−t|/2 + (Var(Zτ2 )− 1/2)e−0.04(|t−τ2|+|s−τ2|) for τ1 ≤ τ2 ≤ s ≤ t
Cov(Zτ1 , Zτ2 )e−0.04(|s−τ1|+|t−τ2|) for s ≤ τ1 ≤ τ2 ≤ t
Var(Zτ1 )c3(s, t) + Cov(Zτ1 , Zτ2 )c4(s, t) for s ≤ τ1 ≤ t ≤ τ2
Var(Zτ2 )c5(s, t) + Cov(Zτ1 , Zτ2 )c6(s, t) for τ1 ≤ s ≤ τ2 ≤ t
c(s, t)/2 + Var(Zτ1 )c1(s)c1(t) + Var(Zτ2 )c2(s)c2(t)
+Cov(Zτ1 , Zτ2 )(c1(s)c2(t) + c2(s)c1(t)) for τ1 ≤ s ≤ t ≤ τ2

with

c1(s) =
1− e−0.08|s−τ2|

1− e−0.08|τ2−τ1|
e−0.04|s−τ1|

c2(s) =
1− e−0.08|s−τ1|

1− e−0.08|τ2−τ1|
e−0.04|s−τ2|

c3(s, t) =
1− e−0.08|t−τ2|

1− e−0.08|τ2−τ1|
e−0.04|s−t|

c4(s, t) =
1− e−0.08|t−τ1|

1− e−0.08|τ2−τ1|
e−0.04(|s−τ1|+|t−τ2|)

c5(s, t) =
1− e−0.08|s−τ1|

1− e−0.08|τ2−τ1|
e−0.04|s−t|

c6(s, t) =
1− e−0.08|s−τ2|

1− e−0.08|τ2−τ1|
e−0.04(|s−τ1|+|t−τ2|

c(s, t) = e−0.04|s−t| − 1− e−0.08|s−τ2|

1− e−0.08|τ2−τ1|
e−0.04(|s−τ1|+|t−τ1|)

− 1− e−0.08|s−τ1|

1− e−0.08|τ2−τ1|
e−0.04(|s−τ2|+|t−τ2|)

Similar formula of the expectation was also given by Biernacka et al. (2005).
The variance and covariance of Zτ1 and Zτ2 can be directly calculated by

Cov(Zτ1 , Zτ2) = Cov(Xτ1,1, Xτ2,1)

= 4g22 + 2g12 + 2g21 + g11,
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with gij the probability that a pair share i and j alleles IBD at disease locus τ1
and τ2 respectively:

gij = P(Xτ1 ,1 = i, Xτ2 ,1 = j|φ)

=
∑G fG11×G12 fG21×G22 P(G11, G21|Xτ1 ,1 = i)P(G12, G22|Xτ2 ,1 = j)P(Xτ1 ,1 = i, Xτ2 ,1 = j)

∑i,j ∑G fG11×G12 fG21×G22 P(G11, G21|Xτ1 ,1 = i)P(G12, G22|Xτ2 ,1 = j)P(Xτ1 ,1 = i, Xτ2 ,1 = j)

where the sum is taken over all possible genotypes, G = (G11 × G12, G21 ×
G22), at both disease loci τ1 and τ2 of the first and second relative, respectively
(Biernacka, 2004). The function fGr1×Gr2 is the penetrance given the genotypes
Gr1 and Gr2 at both disease loci of the pair member r with r = 1, 2. The joint
probabilities of sharing i and j IBD at τ1 and τ2 P(Xτ1,1 = i, Xτ2,1 = j|φ) were
given by Haseman and Elston (1972). The probabilities that a pair has geno-
types G1 and G2 given that they share j IBDs, P(G|Xτ = j), for j = 0, 1, 2, are
summarized in Table 3.2 according to Thompson (1975).

TABLE 3.2: Probability P(G1, G2|Xτ = j), for j = 0, 1, 2

G1 G2 Xτ = 2 Xτ = 1 Xτ = 0
A/A A/A p2 p3 p4

A/A A/a 0 2p2q p3q
A/A a/a 0 0 p2q2

A/a A/A 0 2p2q p3q
A/a A/a pq pq(p + q) p2q2

A/a a/a 0 2pq2 pq3

a/a A/A 0 0 p2q2

a/a A/a 0 2pq2 pq3

a/a a/a q2 q3 q4

The locus has 2 alleles A and a with frequencies p and q.
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CHAPTER 4

Testing for association between a
disease and a multi-allelic marker: a
powerful score test

R. el Galta, T. Stijnen and J.J. Houwing-Duistermaat

Abstract

To study association between a candidate gene and a complex genetic disease,
Pearson’s χ2 statistic can be applied to a m-by-2 contingency table, where the
m categories correspond to m haplotypes or marker alleles. For m > 2, two al-
ternative approaches for Pearson’s χ2 can be followed that are more powerful
if one haplotype or marker allele is associated. For the first approach, various
2-by-2 tables are formed by combining various categories and the maximum
of the corresponding chi-square statistics is considered as the final statistic.
The second approach takes the average over the possible associated categories
by writing down an overall likelihood. For the latter approach we propose a
new score statistic, which gives more weight to haplotypes or marker alleles
that are common. Since the disease allele is often not observed, the power
of the various statistics depends both on the linkage disequilibrium pattern
as well as the frequencies of the associated haplotype or marker allele in the
cases and the controls. We heuristically compare various statistics within the
two approaches and present the results of a simulation that compares the per-
formance of all considered statistics. Finally we apply the statistics to a case
control study on the association between COL2A1 gene and radiographic os-
teoarthritis. Our conclusion is that overall the new proposed score statistic has
good power.

Submitted for publication
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Chapter 4. Score test for genetic association

4.1 Introduction

As more and more single nucleotide polymorphisms (SNPs) are discov-
ered, candidates genes will be saturated with SNPs and the focus on haplo-
type based analysis will increase. When the homologous chromosomes are
independently transmitted to the next generation, i.e. when Hardy-Weinberg
equilibrium holds, the haplotype counts can be summarized in a m-by-2 con-
tingency table, whose columns refer to m haplotypes and whose rows refer
to the disease status. When phase is unknown, the haplotype counts have to
be estimated. When phase is known (see for example Uitte de Willige et al.
(2005)) or when multi allelic markers are used (see for example Kizawa et al.
(2005)), summarizing the data in a m-by-2 table is straightforward. A clas-
sical test statistic for the m-by-2 table is Pearson’s χ2 statistic. For a large m
this statistic has low power and when the assumption can be made that one
haplotype is associated with the binary trait (Terwilliger, 1995), a more spe-
cific statistic may be preferred. In this paper we consider various statistics for
these m-by-2 tables.

Genetic association is a powerful approach for common associated vari-
ants (Wang et al., 2005). Usually the disease allele is not observed and the
power of the study will depend on the linkage disequilibrium between the
disease locus and the marker loci and on the frequencies of the associated
marker allele or haplotype in the cases and the controls (Zondervan and Car-
don, 2004). Note that if the disease allele is rare, it will be detectable if the
unobserved disease allele has a rather large effect on the trait and is some-
times present on a common haplotype. For sake of simplicity, we describe the
methods and simulations in terms of haplotypes, but they can be applied to
any m-by-2 table.

To deal with the fact that the associated haplotype is unknown, two ap-
proaches may be followed. (1) For each haplotype a statistic is computed by
combining the other haplotyes and the maximum of these statistics is taken as
the final statistic (maximizing approach). (2) For each haplotype a conditional
likelihood given that this haplotype is associated is computed. The overall
likelihood is the weighted sum over all haplotypes of all these conditional
likelihoods with weights equal to the prior probabilities that a haplotypes is
associated. These approaches can also be followed if one allows for a few
haplotypes to be associated. Then the maximum is taken over all possible 2-
by-2 tables and the likelihood is computed over all possible sets of associated
haplotypes.

42



Chapter 4. Score test for genetic association

The maximizing approach was considered by several authors. Ewens et al.
(1992) proposed to use the maximum of the χ2 statistics of 2-by-2 tables each
of which compares one variant against the rest (Ẑmax), when at most one vari-
ant is associated. Sham and Curtis (1995) proposed to use the maximum of
χ2 statistics corresponding to all possible 2-by-2 tables, comparing any com-
bination of variants against the rest (Ẑclump). From a rather small simulation
study, they concluded that Pearson’s χ2 and Ẑclump should be preferred above
Ẑmax for highly polymorphic markers. Intuitively, when one haplotype is as-
sociated with a disease, Ẑmax should be more powerful than Pearson’s χ2 and
Ẑclump, while if more than one associated haplotype exists Ẑclump should have
more power than Ẑmax. More simulations are needed to study the perfor-
mance of these test statistics.

An alternative to taking the maximum is to take the sum over all possibili-
ties. When one variant is associated Terwilliger (1995) proposed to model the
excess of the associated variant in cases by the parameter λ which is the pop-
ulation attributable risk (Clayton, 2000). Since it is unknown which variant
is associated with the disease, the likelihood corresponding to this model is a
weighted sum over all variants i of conditional likelihoods given that variant i
is over-represented in the set of cases. These weights represent the prior prob-
ability that a haplotype is associated to the disease. In line with the common
disease common variant hypothesis (Reich and Lander, 2001) and in line with
the method of Terwilliger (1995), the haplotype frequencies in controls can be
used as weights. To test for association the likelihood ratio test can be used.
Maximizing the log likelihood function over the haplotype frequencies and λ

appears not straightforward, because the weights are equal to the haplotype
frequencies, and these same haplotype frequencies are also unknown param-
eters in the conditional likelihood functions. In this paper we propose the
corresponding score statistic and we use Monte-Carlo permutation to derive
p-values (Sham and Curtis, 1995).

We first compare heuristically the power of the Pearson’s χ2, Ẑmax and
Ẑclump. We then derive the new score test and describe the results of a sim-
ulation study which we performed to compare the performance of the new
score test, χ2, Ẑmax and Ẑclump. In the simulations we assumed that phase is
known. In the discussion we describe how to derive p-values for the case of
phase ambiguity. As an illustration we apply these test statistics to a published
case-control study on association between COL2A1 gene and radiographic os-
teoathritis (Meulenbelt et al., 1999).
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4.2 The maximising approach

Assume that Hardy-Weinberg equilibrium holds and that we have a sam-
ple of n1 case chromosomes and of n2 control chromosomes. Let p =
(p1, · · · , pm) be the vector of frequencies of the m haplotypes in controls. Let
x = (x1, · · · , xm) and y = (y1, · · · , ym) be the vector of haplotype counts in
the cases and the controls, respectively and let n be equal to n1 + n2. Let Ẑi
be equal to the observed minus expected ith haplotype count xi − n1 p̂i with
p̂i = xi+yi

n , the estimate of haplotype frequency in combined sample. Let
Ẑ = (Ẑ1, · · · , Ẑm)′. Throughout the text the hat symbolˆrefers to two samples
statistics emphasizing the fact that haplotype frequencies are estimated under
the null hypothesis.

Testing the null hypothesis of no disease-marker association is classically
performed by means of Pearson’s χ2 statistic

χ2 =
m

∑
j=1

(xj − n1 p̂j)2

n1 p̂j
+

m

∑
j=1

(yj − n2 p̂j)2

n2 p̂j
=

n
n1n2

m

∑
j=1

(xj − n1 p̂j)2

p̂j
.

An alternative test statistic is Ẑmax, defined as

Ẑmax = max
i=1···m

Ẑ2
i

Var(Ẑi)
.

Sham and Curtis (1995) proposed the largest value of all possible χ2 statistics
of 2-by-2 tables each obtained by testing a combination of haplotype against
the rest. We denote this statistics by Ẑclump according to the program they use
for the computation. In addition, they proposed to use Monte-Carlo methods
to derive the empirical p-values of Ẑclump, χ2 and Ẑmax.

In order to compare these three test statistics heuristically, we rewrite them
as maxima of the same expression where the maximum is taken over different
sets. Pearson’s χ2 can be rewritten as:

χ2 = max
u∈R

(u′Ẑ)2

u′Var(Ẑ)u
,

where R is the set of vectors with m coordinates (see appendix 4.7). Since
∑m

i=1 Ẑi = 0, the Pearson’s χ2 test is the Hotelling’s test statistic applied to any
m− 1 coordinates of the vector Ẑ.

Now Ẑmax is the maximum value of all Pearson’s χ2 tests on 2-by-2 ta-
bles obtained by comparing any haplotype against the rest. Ẑmax can be re-
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expressed by

Ẑmax = max
u∈A

(u′Ẑ)2

u′Var(Ẑ)u
,

where A is the set of the m different permutations of the vector (1, 0, .., 0)′.
The Ẑclump statistic can be given by

Ẑclump = max
s⊆(1,...,m)

(∑i∈s xi − n1 ∑i∈s p̂i)2

n1(1−∑i∈s p̂i) ∑i∈s p̂i
= max

u∈S

(u′Ẑ)2

u′Var(Ẑ)u
,

where S is the set of vectors whose k coordinates set to 1 and m− k coordinates
set to 0, with k = 1, ..., m− 1 and s any subset of (1, 2, ..., m). This implies that
under the alternative hypothesis of the presence of an association, all associ-
ated haplotypes are assumed to have the same effect sizes in terms of relative
risk.

Note that A is a subset of S, which in turn, is a subset of R. Hence, if
only one haplotype is associated with the disease, the alternative hypothesis
is properly specified by A, and then Ẑmax is likely to have more power than
Ẑclump and χ2. However if two or more marker haplotypes are associated
with the disease and have the same effect size in terms of relative risk the
Ẑclump is expected to provide more power than Ẑmax and χ2 as the alternative
hypothesis is better specified by the set S. In case of associated haplotypes
with unequal effect sizes χ2 is expected to perform the best unless the number
of haplotypes is large.

4.3 The averaging approach

Assume that one of the haplotypes is over-represented in the cases. Denote
this haplotype with index i. The haplotype frequencies in the cases can be
modelled as qi = pi + λ(1− pi) with 0 ≤ λ ≤ 1 for the associated haplotype i
and as qj = pj − λpj for the remaining haplotypes with j = 1, · · · , m and j 6= i.
Here λ is the population attributable risk. Then the conditional likelihood of
data given that haplotype i is over-represented in cases is

Li(x, y|λ, p) = (pi + λ(1− pi))xi (1− λ)n1−xi
m

∏
j 6=i

p
xj
j

m

∏
j=1

p
yj
j . (4.1)

Terwilliger (1995) proposed the following likelihood, assuming that the prior
probability of a marker haplotype i being associated with the disease is equal
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to the haplotype frequency pi

L(x, y|λ, p) =
m

∑
j=1

pjLj, (4.2)

with Lj given in formula (4.1). The corresponding score statistic is an alterna-
tive to the likelihood ratio test proposed by Terwilliger (1995) for H0 : λ = 0
versus Ha : λ > 0. Since the first derivative of the likelihood L with respect
to λ at λ = 0 is equal to zero, we propose to use the second derivative of the
log-likelihood with respect to λ to derive the score statistic (Dudoit and Speed,
2000; Tritchler et al., 2003). The second derivative of the log-likelihood with
respect to λ evaluated for λ = 0 is

∂2

∂λ2 log(L(x, y|λ = 0, p)) =
m

∑
j=1

(xj − n1 pj)2

pj
−

m

∑
j=1

xj − n1 pj

pj
− n1(m− 1).

Derivation of the second derivative is given in the appendix (4.8). By di-
viding the second derivative by n1 and then taking the stochastic part of it, the
score statistic can be given by

Sp = X2 − U
n1

, (4.3)

with X2 = ∑m
j=1

(xj−n1 pj)2

n1 pj
, the one sample Pearson’s χ2 statistic (haplotype

frequencies in controls are known), and U = ∑m
j=1

xj−n1 pj
pj

, the score statistic
obtained by replacing the weights in the likelihood (4.2) by equal weights. For
equally frequent haplotypes the statistic U = 0, hence Sp = X2. Under the null
hypothesis, Sp has mean E[Sp] = m − 1 and variance Var(Sp) = 2n−1

1 (n1 −
1)(m− 1) (see Appendix 4.8). Hence, asymptotically the statistics Sp and X2

have the same expectation and the same variance.
When the haplotype frequencies pi are unknown, the score statistic can be

estimated by replacing the haplotype frequencies pi by their maximum likeli-
hood estimators under the null hypothesis p̂i = xi+yi

n . Now after some algebra
the score statistic can be given by

Ŝp = χ2 − n
n1n2

Û, (4.4)

with χ2, the two samples Pearson’s χ2 statistic on the m-by-2 table and

Û = ∑m
j=1

xj−n1 p̂j
p̂j

. It can be shown by means of the δ-method that the score
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statistic Ŝp and Pearson’s χ2 have asymptotically the same expectation and the
same variance under the null hypothesis (see appendix 4.8). For m large, the
score test Ŝp (Sp) follows approximately a normal distribution under the null
hypothesis. To ensure the validity of the asymptotic distribution, the number
of cases and control chromosomes should be much larger than the number of
marker haplotypes m. Nevertheless, the empirical distribution under the null
hypothesis of the statistic Ŝp (Sp) can easily be derived by using Monte-Carlo
methods (Sham and Curtis, 1995).

Under the alternative hypothesis of the presence of one positively associ-
ated haplotype i, it can be shown that the expectations of U and Û are

E[U] = n1λ(
1
pi
−m)

E[Û] ≈ n1n2λ

n− n1λ
(

n
npi + n1λ(1− pi)

−m) ≤ n1n2λ

n− n1λ
(

1
pi
−m).

This implies that the expectations of U and Û are negative if the frequency
of the associated haplotype pi is larger than the inverse of the number of
marker haplotypes 1

m . Consequently, the score statistic Ŝp (Sp) becomes larger
in expectation than χ2(X2) if the frequency of the associated haplotype is
larger than 1

m . Hence, for common associated haplotypes (pi > 1
m ) the score

statistic is expected to have higher power than Pearson’s χ2.
Terwilliger (1995) discussed the presence of more than one associated hap-

lotype. For two positively associated haplotypes i and k he proposed the fol-
lowing model with two free parameters λ1 and λ2 with λ1 + λ2 ≤ 1

qi = pi(1− λ1 − λ2) + λ1,

qk = pk(1− λ1 − λ2) + λ2 for i 6= k,

qj = pj(1− λ1 − λ2) for j 6= i and j 6= k.

The likelihood for two associated haplotypes given by Terwilliger (1995) was
incorrect since the weights are prior probabilities and did not sum to 1. There-
fore, we propose the following likelihood for two associated variants

L(x, y|λ1, λ2, p) =
m

∑
i=1

m

∑
k=1

pi pk

m

∏
j

q
xj
j p

yj
j ,

assuming qi = pi(1− λ1 − λ2) + λ1 + λ2 for i = k. Since i and k are inter-
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changeable with respect to λl for l = 1, 2 the following derivatives are

∂

∂λl
L(x, y|λ1 = 0, λ2 = 0, p) = 0,

∂2

∂λ1∂λ2
L(x, y|λ1 = 0, λ2 = 0, p) = 0, and

∂2

∂λ2
l

L(x, y|λ1 = 0, λ2 = 0, p) = n1X2 −mU − n1(m− 1).

In contrast to the Terwilliger’s likelihood ratio, Ŝp (equation 4.4) is the score
statistic of testing no disease-marker association regardless of the potential
number of associated variants.

4.4 Simulation study

The aim of the simulation study is to evaluate empirically the power of
the score test Ŝp in comparison with the Pearson’s χ2, Ẑmax and Ẑclump tests.
We generated at least 1000 replicates from the multinomial distributions ac-
cording to the models described previously. Without loss of generality we
assumed that the first or first two haplotypes are associated with the disease.
The remaining haplotypes were equally frequent. We varied the number of
variants m from 3 to 20. The p-values of the test statistics were calculated em-
pirically by means of 1000 Monte-Carlo permutations using a program based
on the program Clump (Sham and Curtis, 1995). We used a nominal p-value
of 0.05.

Type I error rate

To verify whether Monte-Carlo yields the right type I error rate of these test
statistics, data sets were generated under the null model (λ = 0) each time for
markers with 5, 7, 9, 11, 16 and 20 alleles. The frequency of the first allele was
set to 0.5, whereas the remaining alleles were equally frequent. The results
are shown in Table 4.1. The type I error rate is approximately equal to the
nominal rate for the score Ŝp, Pearson’s χ2, and Ẑclump tests, regardless of the
number of alleles m at the marker locus, whereas the Ẑmax becomes somewhat
conservative as the number of marker alleles m increases (Sham and Curtis,
1995).
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TABLE 4.1: The type I error rates based on 10000 simulated m-by-2 tables for λ = 0
and p1 = 0.5.

α m χ2 Ẑclump Ẑmax Ŝp m χ2 Ẑclump Ẑmax Ŝp

0.05 5 0.053 0.053 0.047 0.054 11 0.047 0.046 0.039 0.046
0.01 0.011 0.011 0.009 0.011 0.010 0.010 0.008 0.010

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001
0.05 7 0.051 0.048 0.045 0.052 16 0.049 0.049 0.040 0.047
0.01 0.011 0.010 0.009 0.010 0.011 0.011 0.007 0.010

0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.000 0.001
0.05 9 0.051 0.052 0.044 0.052 20 0.052 0.052 0.035 0.053
0.01 0.001 0.011 0.008 0.010 0.011 0.011 0.008 0.010

0.001 0.002 0.002 0.001 0.001 0.001 0.002 0.001 0.002

Single associated variant

To study the power of the statistics we first considered the model used by
Terwilliger (1995) for one positively associated common haplotype. The fre-
quency p1 of this haplotype was 0.5 in controls. The parameter λ was fixed
to 0.5, which corresponds to a haplotype frequency of 0.75 in the cases and a
relative risk γ of 3. We considered 100 case chromosomes (n1) and 100 con-
trol chromosomes (n2). The results are shown in Table 4.2. For m ≤ 5 all test
statistics performed well; however Ŝp had slightly higher power than other
test statistics. For m > 5 the score test Ŝp and Ẑmax tests appeared to perform
better than the Pearson’s χ2 and Ẑclump tests regardless of the number of hap-
lotypes at the marker locus. Especially for the significant level of 0.05, Ŝp and
Ẑmax had similar power, while for lower significant levels Ŝp had somewhat
lower power than Ẑmax. The power of Pearson’s χ2 decreased as the number
of haplotypes increased.

Second, we studied the power of the test statistics for various values of
the frequency of the associated haplotype (0.06 to 0.5). We chose λ so that the
relative risk γ of the associated variant with respect to its absence was about 2.
Because of low λ, the number of chromosomes n1 and n2 were now set to 200.
The results are depicted in figure 4.1. Almost overall Ẑmax outperformed the
other test statistics. Ŝp had the second best power. It performed better than
Pearson’s χ2 especially when m ≥ 10. Further it had higher power than Zclump
for p1 = 0.06 and 0.1 while for p1 = 0.15, 0.2, 0.3 and 0.4, the performances of
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TABLE 4.2: The power based on 10000 simulated m-by-2 tables for λ = 0.5 and p1 =
0.5.

α m χ2 Ẑclump Ẑmax Ŝp m χ2 Ẑclump Ẑmax Ŝp

0.05 3 0.92 0.93 0.93 0.94 9 0.76 0.85 0.91 0.88
0.01 0.79 0.80 0.80 0.83 0.55 0.68 0.79 0.73

0.001 0.54 0.55 0.55 0.58 0.30 0.42 0.57 0.48
0.05 4 0.89 0.90 0.91 0.92 11 0.72 0.84 0.93 0.88
0.01 0.73 0.76 0.77 0.79 0.51 0.67 0.82 0.72

0.001 0.47 0.5 0.53 0.54 0.27 0.40 0.60 0.48
0.05 5 0.86 0.89 0.90 0.91 16 0.64 0.82 0.95 0.88
0.01 0.69 0.74 0.77 0.77 0.42 0.63 0.85 0.72

0.001 0.43 0.49 0.54 0.53 0.20 0.36 0.61 0.46
0.05 7 0.80 0.87 0.89 0.89 20 0.60 0.82 0.95 0.88
0.01 0.61 0.70 0.76 0.74 0.38 0.62 0.85 0.72

0.001 0.35 0.45 0.55 0.50 0.20 0.35 0.62 0.46

Ŝp and Zclump were comparable. Pearson’s χ2 performed well when m = 5 or
when p1 = 0.06.

Two associated variants

To study the performance of the test statistics when there are two haplo-
types positively associated with the disease, we generated data according to
the model given by (4.5). We simulated data sets for (p1, p2) = (0.06, 0.06),
(0.06,0.1), (0.1, 0.15), (0.15,0.2), (0.2,0.3), (0.3,0.4) and their corresponding
excess frequencies (λ1, λ2) = (0.05, 0.05), (0.05,0.08), (0.08,0.1), (0.1,0.15),
(0.15,0.2), (0.18,0.25), respectively. The total relative risk of the two associated
variants with respect to their absence was again about two (between 1.9 and
2.1). The number of chromosomes n1 and n2 were set to 100. The power curves
are shown in figure 4.2. In contrast to the case of one associated haplotype, Ŝp
and Ẑclump performed now better than Zmax. For m ≤ 8 and p1 = 0.06, Ŝp ap-
peared to have somewhat less power than Pearson’s χ2 and Ẑclump. Whereas
for m ≥ 10 Ŝp had somewhat more power than Pearson’s χ2 and Ẑclump. For
the remaining situations (p1 ≥ 0.1, p2 ≥ 0.15), Ŝp had the best power and
Ẑclump had the second best power. The power of Pearson’s χ2 was compara-
ble to that of Ẑclump for m = 5 and it decreased with the increase of m. For
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FIGURE 4.1: Power curves of χ2 (——4——), Ẑclump (· · · · + · · · ·), Ẑmax (− · − · × · − · −) and Ŝp (— — 5—

—) for 200 case and 200 control chromosomes and a haplotypic relative risk of about 2.
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FIGURE 4.2: Power curves at the nominal level α = 0.05 of χ2 (——4——), Ẑclump (· · · ·+ · · · ·), Ẑmax
(− ·− · × · − · −) and Ŝp (— — 5— —) for 100 case and 100 control chromosomes and a relative risk
of about 2 for the combined associated haplotypes.

most situations, it had higher power than Ẑmax, which had low power.

4.5 Application to real data

To illustrate the score test with real data we used data obtained from a pub-
lished study on association between the collagen type II gene(COL2A1) and
radiographic osteoarthritis (ROA) (Meulenbelt et al., 1999). Osteoarthritis is
a degenerative disease of the joints. The VNTR marker next to COL2A1 was
typed in 820 subjects aged 50-70 years from a population-based cohort study,
the Rotterdam study. Radiographs of knees, hips, hands, and spine were
scored for the presence of ROA. 123 cases had ROA in at least 3 joints groups.
697 remaining subjects were used as controls. Five variants had frequencies
≥ 0.05. The other variants were combined into one group. Preliminary in-
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TABLE 4.3: Results of analysis of association between ROA and COL2A1 gene.
COL2A1 2# cases 2# controls

haplotypes n1 = 246 n2 = 1394 χ2 Ẑmax Ẑclump Ŝp

13R1 114 (0.46) 581 (0.42)
14R1 54 (0.22) 385 (0.28)
11R1 22 (0.09) 149 (0.11)

14R2+ 27 (0.11) 78 (0.06)
13R2 12 (0.05) 85 (0.05)

Others
pooled 17 (0.08) 116 (0.08)

P-value 0.013 0.009 0.044 0.012

spection of data suggested the existence of one positively associated variant.
The frequency of the potential associated variant, 14R2, was 0.06 (< 1/m with
m = 6) in controls. Its frequency was increased in the cases with a relative risk
of about 1.94 (λ ≈ 0.05). Hence one might expect that Pearson’s χ2 will per-
form slightly better than Ŝp (see Figure 4.2). (Meulenbelt et al., 1999) used Ter-
williger’s LR. They found evidence of association between ROA and COL2A1
(P=0.03). We also applied the score Ŝp, Pearson’s χ2, Ẑmax, and Ẑclump tests to
these data. Table 4.3 shows the distribution of the variants among cases and
controls and summarizes the results of applied test statistics. All test statistics
indicated the presence of a significant association at the 0.05 level. The score
test Ŝp, Pearson’s χ2, and Ẑmax gave quite similar p-values of about 0.01. The
Ẑclump test yielded a quite higher p-value of about 0.04.

4.6 Discussion

In this paper, we derived a new score statistic Ŝp, which corresponds to the
likelihood ratio statistic of Terwilliger (1995). The score test is easy to com-
pute and is asymptotically locally most powerful (Cox and Hinkley, 1974).
For a single common positively associated haplotype (frequency > 1/m), we
showed heuristically that the score test would provide more power than Pear-
son’s χ2 on the m-by-2 table. Further in contrast to the likelihood ratio statistic
of Terwilliger, the same score test is obtained regardless of the number of asso-
ciated haplotypes. For large m, the score test follows approximately a normal
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distribution under the null hypothesis. For small sample sizes or small m, the
empirical p-values can be derived by means of Monte-Carlo methods.

By means of simulations we compared the performance of this new statis-
tic to the existing statistics χ2, Ẑmax and Ẑclump. The Ŝp gives more weight
to common haplotypes, but for one associated haplotype it had similar or
slightly less power than Ẑmax. The power of Ẑmax was dramatically low for
many considered models of two associated haplotypes. The power of Pear-
son’s χ2 decreased with the number of observed haplotypes, due to the in-
creasing number of degrees of freedom.

In the simulation study we assumed that phase is known. When phase is
ambiguous, the haplotype counts have to be estimated and the uncertainty in
phase has to be taken into account when computing the p-value of the statis-
tics. This can easily be incorporated when Monte Carlo methods are used
by estimating the haplotype frequencies in each permutation step (see for ex-
ample Becker et al. (2005)). This adjustment is less efficient than maximiz-
ing the likelihood over the haplotype frequencies and the unknown param-
eter λ simultaneously, but in many situations the loss of information due to
phase-uncertainty is small. We recommend to consider smaller blocks or sin-
gle marker methods when the loss of information due to phase uncertainty is
rather large (Uh et al., 2005).

In this paper, we used the chromosome as unit of analysis and not the indi-
vidual. By doing so we have to assume Hardy Weinberg equilibrium and the
methods correspond to a multiplicative model for diplotypes (Sasieni, 1997).
Therefore the power will decrease when the true model deviates from this
multiplicative model as is the case for a recessive model. For this model we
recommend to use other methods (see also Cordell and Clayton (2005)).

Like the approach of Terwilliger (1995), Ŝp gives more weight to common
haplotypes. A positive association may be due to a common causal variant,
due to a rare mutation with a rather large impact which is sometimes present
on a common haplotype or due to multiple mutations on the associated hap-
lotype. When mutations are present on more than one haplotype, the score
statistic Ŝp can still detect this association, but identification of the causal vari-
ants will be difficult. Genetic association studies have no power to identify
genes with multiple rare mutations on rare haplotypes (Zondervan and Car-
don, 2004).

The advantages of the parameter λ are that it is directly related to recombi-
nation fraction and is less sensitive to haplotype frequencies than other mea-
sures (Devlin and Risch, 1995). However, when allelic association is mod-
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elled by means of λ it is not straightforward to adjust for other covariates.
Houwing-Duistermaat and Elston (2001) discussed various ways to quantify
allelic association and estimate the location of the gene responsible for the dis-
ease using logistic regression models. As an alternative to λ, the log relative
risk as measured by the regression coefficient in the logistic model may be
used to allow for adjustment of other covariates. More research is needed to
build this kind of flexible models.

We conclude that overall the score statistic Ŝp has good power regardless
of the number of observed haplotypes. When one haplotype is associated,
Ẑmax performs better, but when two haplotypes are associated, Ẑmax performs
dramatically bad and Ŝp performs well.

Software

The method described in this paper is implemented in software written in
C programming language and it is based on the source of Clump program
(Sham and Curtis, 1995). The C program will be available from our Web site
(http://clinicalresearch.nl/personalpage/)

4.7 Appendix 1

Pearson’s chi-square

Let R be the set of vectors with m coordinates and R−m be the set of vectors
with m − 1 coordinates. Let Ẑ−m the vector of the first m − 1 centered allele
counts. Since ∑m

i=1 Ẑi = 0, it follows

max
u∈R

(u′Ẑ)2

u′Var(Ẑ)u
= max

v∈R−m

(v′Ẑ−m)2

v′Var(Ẑ−m)v
.

The covariance matrix Var(Ẑ−m) is positive definite, hence applying the ex-
tend Cauchy-Schwarz inequality (Johnson and Wichern, 1998) and noting that
the maximum is attained when v ∝ Var(Ẑ−m)−1Ẑ−m give

max
v∈R−m

(v′Ẑ−m)2

v′Var(Ẑ−m)v
= Ẑ′−mVar(Ẑ−m)−1Ẑ−m.

After some algebra it follows

max
u∈R

(u′Ẑ)2

u′Var(Ẑ)u
=

m

∑
j=1

(xj − n1 p̂j)2

n1 p̂j
+

m

∑
j=1

(yj − n2 p̂j)2

n2 p̂j
.
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4.8 Appendix 2

Derivation of the score statistic

The first derivative of the likelihood is

∂

∂λ
L(x, y|λ, p) =

m

∑
i=1

pi
∂

∂λ
Li(x, y|λ, p)

=
m

∑
i=1
{xi(1− pi)(pi + λ(1− pi))−1 − (n1 − xi)(1− λ)−1}piLi(x, y|λ, p).

Hence the score statistic is

∂

∂λ
log(L(x, y|λ = 0, p)) =

∂
∂λ (L(x, y|λ = 0, p))

L(x, y|λ = 0, p)

=
m

∑
i=1

pi(xi − n1 pi)
pi

= 0

Therefore, the score statistic can be now obtained by evaluating the second
derivative of the log-likelihood with respect to λ at λ = 0 and using the fact
that the first derivative is zero

∂2

∂λ2 log(L(x, y|λ = 0, p)) =
∂2

∂λ2 L(x, y|λ = 0, p)
L(x, y|λ = 0, p)

(4.5)

The second derivative of the likelihood is

∂2

∂λ2 L(x, y|λ, p) =
m

∑
i=1
{−xi(1− pi)2(pi + λ(1− pi))−2 − (n1 − xi)(1− λ)−2}pi Li(x, y|λ, p)

+
m

∑
i=1
{xi(1− pi)(pi + λ(1− pi))−1 − (n1 − xi)(1− λ)−1}2 pi Li(x, y|λ, p).

Therefore the second derivative at λ = 0 is

∂2

∂λ2 L(x, y|λ = 0, p) = {
m

∑
i=1

(x2
i − xi)p−1

i + n1 − n2
1}L(x, y|λ = 0, p). (4.6)

Combining (4.5) and (4.6)

∂2

∂λ2 log(L(x, y|λ = 0, p)) =
m

∑
i=1

(xi − n1 pi)2

pi
−

m

∑
i=1

xi − n1 pi
pi

− n1(m− 1)
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Derivation of expectation and variance of Sp

The expectation of Sp is

E[Sp] = E[X2] = k− 1.

and the variance of n1Sp is

Var[n1Sp] =
m

∑
i,j=1

Cov[(xi − n1 pi)2, (xj − n1 pj)2]
pi pj

+
m

∑
i,j=1

E[(xi − n1 pi)(xj − n1 pj)]
pi pj

− 2
m

∑
i,j=1

E[(xi − n1 pi)2(xj − n1 pj)]
pi pj

=
m

∑
i,j=1

−n1 pi pj(1− 2pi − 2pj + 6pi pj)
pi pj

+ 2
m

∑
i,j=1

(n1 pi pj)2

pi pj

+
m

∑
i=1

n1 pi(1− 6pi + 8p2
i )

p2
i

+ 2
m

∑
i=1

n2
1 p2

i (1− 2pi)
p2

i
+

m

∑
i,j=1

−n1 pi pj

pi pj

+
m

∑
i=1

n1 pi

p2
i
− 2

m

∑
i,j=1

−n1 pi pj(1− 2pi)
pi pj

− 2
m

∑
i=1

n1 pi(1− 2pi)
p2

i

= 2n1(n1 − 1)(m− 1)

Note that

Cov[(xi − n1 pi)2, (xj − n1 pj)2] = −n1 pi pj{(1− 2pi − 2pj + 6pi pj)− 2n1 pi pj}
+ I{j=i}n1 pi{(1− 6pi + 8p2

i ) + 2n1 pi(1− 2pi)}

E[(xi − n1 pi)2(xj − n1 pj)] = −n1 pi pj(1− 2pi) + I{j=i}n1 pi(1− 2pi)

E[(xi − n1 pi)(xj − n1 pj)] = −n1 pi pj + I{j=i}n1 pi,

with I{j=i} = 1 if i = j otherwise 0. Hence the variance of Sp is

Var[Sp] = 2(m− 1)
n1 − 1

n1

Derivation of the asymptotic expectation and variance of Ŝp

The expectation and the variance of Ŝp can be given as follows

E[Ŝp] = E[χ2]− n
n1n2

E[Û]

Var[Ŝp] = Var[χ2]− 2
n

n1n2
Cov[χ2, Û] + (

n
n1n2

)2Var[Û]
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By means of δ-method it can be shown that

E[Û] ≈ 0,

Var[Û] ≈ n−1n1n2(
m

∑
j=1

p̂−1
j −m2),

Cov[χ2, Û] = E[χ2Û] ≈ 0.

Hence for n
n2
� ∞ and n1 → ∞

E[Ŝp] = E[χ2] = m− 1

Var[Ŝp] = Var[χ2] = 2(m− 1)
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CHAPTER 5

Methods to test for association
between a disease and a
multi-allelic marker applied to a
candidate region

R. el Galta, L. Hsu and J.J. Houwing-Duistermaat

Abstract

We report the analysis results of the GAW14 simulated micro-satellite marker
data set, using replicate 50 from the Danacaa population. We applied sev-
eral methods for association analysis of multi-allelic markers to case-control
data to study the association between Kofendrerd Personality Disorder (KPD)
and multi-allelic markers in a candidate region previously identified by the
linkage analysis. Evidence for association was found for marker D03S0127
(P < 0.01). The analyses were done without any prior knowledge of the an-
swers.

To appear in BMC Genetics
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5.1 Background

Terwilliger (1995) proposed a powerful method for the association analysis
between a disease and a multi-allelic marker. The model assumes that only
one marker allele is associated with the disease and that any marker allele
may be associated with the disease with prior probability equal to its allele
frequency in the population. The excess allele in the cases is modelled by a
parameter λ, the population attributable risk (Devlin and Risch, 1995). The
likelihood of the data given the allele frequencies and the parameter λ is the
weighted sum of the conditional likelihood functions given that an allele is
associated with the disease over all marker alleles with weights equal to the
allele frequencies. Hence more weight is assigned to more frequent marker
alleles.

To test the null hypothesis (λ = 0) against the alternative hypothesis
(λ > 0), Terwilliger (1995) proposed a likelihood ratio statistic (LR). However
this statistic appeared to be conservative and computation of the maximum-
likelihood estimates might be slow. Another point mentioned by Sham et al.
(1996) is that this likelihood ratio test statistic might not be robust against
model deviation, especially when there is more than one allele associated
with the disease. With this consideration, we derived the corresponding score
statistic Sp, which is a linear combination of Pearson’s chi-square χ2 and a
weighted sum of observed minus expected allele counts in cases. The score
test is locally most powerful and since it is evaluated under the null hypoth-
esis, it is expected to be robust against model deviation (El Galta et al., 2004).
The score statistic Sp is easy to compute, which enables one to use Monte-
Carlo permutations to estimate the empirical p-value of the test statistic (Sham
and Curtis, 1995). For a large number of alleles Pearson’s χ2 follows asymp-
totically a normal distribution (Haldane, 1939). Hence for a large sample size
and for a large number of marker alleles the distribution of the score test Sp
under the null hypothesis can be approximated by a normal distribution. An-
other alternative may be to replace the weights in the likelihood ratio statistic
proposed by Terwilliger (1995) by equal weights, which might be suitable if
the associated allele is less common.

For replicate 50 of the Danacaa population we applied the Pearson’s χ2, the
score test and Terwilliger’s LR test to the micro-satellite markers D03S0124,
D03S0125, D03S0126, and D03S0127 to test their association with Kofendrerd
Personality Disorder (KPD). The allelic distribution was compared between
a sample of 100 cases and a sample of 50 controls. In order to ensure a high
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power one might either select more controls, as they are easier to ascertain
than cases or to compare the allele frequencies in cases to the allele frequencies
in the population if they are known. Since the allele frequencies in controls
were supplied by GAW14 we considered the latter option to verify the result
of markers that showed significant association with KPD.

5.2 Material and Methods

Score test

Suppose we have a multi-allelic marker. Let pi be the frequency of ith al-
lele in the controls. Suppose we have n1 unrelated case chromosomes and n2
unrelated control chromosomes. Let xi and yi be the ith allele counts in cases
and controls respectively. The score statistic corresponding to the likelihood
proposed by Terwilliger (1995) is

Sp = ∑
(xi − n1 pi)2

pi
−∑

xi − n1 pi
pi

,

where the sum is taken over the alleles. When the allele frequencies are un-
known, pi can be estimated by the frequencies in combined sample xi+yi

n1+n2
.

When more than one allele is associated with the disease, the score test Sp is
expected to perform better than the likelihood ratio, since it sums over the
contributions of the alleles.

Data analysis

Firstly we selected four replicates from each of the Aipotu, Karangar and
Danacaa populations to perform genome-wide linkage analysis, i.e. we anal-
ysed 12 replicates. Each replicate consisted of 100 nuclear families. For each
replicate we applied the single-point Spairs allele-sharing scoring function
(Whittemore1994) as implemented in the Merlin program (Abecasis et al.,
2002) to search for regions with evidence for linkage. The parental genotypes
were used to compute the probabilities of sharing 0, 1 or 2 alleles identical
by descent. A region on chromosome 3 showed a significant linkage to latent
disease locus for several populations at level 0.0001.

For testing the association using the proposed methods, we selected repli-
cate 50 of the Danacaa population, as in this replicate marker D03S0127
showed highly significant linkage to the disease locus with a LOD score
greater than 6 (P < 0.0001). Flanking markers D03S0126, D03S0125, and
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D03S0124 showed borderline linkage with a LOD scores equal to 1.35, 1.45
and 2.42 respectively.

In order to obtain marker genotypes for 50 unrelated controls for the as-
sociation analysis we purchased packets 149 to 153. The first affected in each
family (n = 100) was used as a case regardless of being child or parent. We
tested for the Hardy-Weinberg equilibrium to each micro-satellite marker in
the controls. Then we applied the score test Sp, Pearson’s chi-square χ2, and
Terwilliger’s likelihood ratio (LR) to study association with KPD. For the score
test Sp, Pearson’s χ2 we used Monte-Carlo permutations to estimate the em-
pirical p-values. P-values lower than 0.05, were considered to be significant.

As an alternative to using the controls, we also used the provided allele fre-
quencies as reference allelic frequency distribution for Pearson’s χ2, the score
Sp and Terwilliger’s LR. Furthermore we also used Terwilliger’s LR with equal
weights.

Finally additional SNP’s in the vicinity of the associated marker D03S0127
were tested for association and the linkage disequilibrium between markers
was studied in this region.

5.3 Results

All markers were in Hardy-Weinberg equilibrium proportions. Table 5.1
presents the p-values for the association analysis of various markers with
the disease. Marker D03S0127 appeared to be highly significantly associated
with the disease. The score Sp and Pearson’s χ2 gave about the same p-value
(P = 0.008, 0.007), whereas Terwilliger’s LR yielded somewhat a larger p-
value (P = 0.033). For this marker, allele 1 and 3 were 2 and 3.3 times more
often present in cases than in controls respectively, whereas allele 6 occurred
approximately 2.8 times as often in controls as in cases. Marker D03S0125
showed borderline significant association with KPD. Next we repeated the
analysis of association between KPD and marker D03S0127 using the pro-
vided allele frequencies of 0.070, 0.206, 0.100, 0.114, 0.048, 0.111, 0.154 and
0.197 for allele 1 to 8 respectively. Again the score statistic Sp and Pearson’s χ2

yielded similar empirical p-values (P = 0.027) while LR of Terwilliger and LR
with equal weights gave an asymptotic p-value of 0.029 and 0.023 respectively.
Compared to the given allele frequencies only allele 3 showed some excessive
frequency in the cases and it occurred about 1.7 times as often in cases as in
the population.
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5.4 Discussion

In this paper we reported results of several methods for studying associa-
tion between a disease and a multi-allelic marker. Marker D03S0127 located at
chromosome 3 showed significant association with the disease. Both score Sp
and Pearson’s χ2 tests gave somewhat lower p-values than the Terwilliger’s
LR test. Further examination shows that marker D03S0127 appeared to have
two positively associated alleles. When we assumed known allele frequencies,
only one allele was positively associated with the disease and all test statistics
yielded similar p-values. Perhaps the fact that there are two associated alle-
les might be the reason why the Terwilliger’s LR test yielded somewhat lager
p-value in this data set. To study whether this holds in general, an extensive
simulation study is needed.

In addition to Pearson’s χ2 and LR, a new test statistic was applied to the
Gaw14 simulated data. The new test statistic is derived based on the score
function under the null hypothesis. So it possesses the usual optimal prop-
erties as other score test statistics: locally most powerful and robust against
model misspecification. In contrast to the LR test statistic the new score statis-
tic is very easy to compute and enables to use Monte-Carlo to derive empirical
p-values. Details of the derivation of this score statistic as well as a simulation
study of its power will be extensively provided in another paper.

The parameter λ is a preferred measure of allelic association since it is
directly related to recombination fraction and it is less sensitive to allele fre-
quencies than other measures (Devlin and Risch, 1995). However, when allelic
association is modelled by means of λ it is not straightforward to adjust for
other covariates. Houwing-Duistermaat and Elston (2001) discussed various
ways to quantify allelic association and estimate the location of gene respon-
sible for disease using logistic regression models. As an alternative to λ, the
log relative risk as measured by the regression coefficient in the logistic model
may be used to allow for adjustment of other covariates. More research is
needed to build this kind of flexible models.

Applying Pearson’s chi-square with one degree of freedom to 19 SNP’s re-
vealed strong association between KPD disease and two di-allelic markers in
this region: SNP B03T3056 and SNP B03T3057. Furthermore LD observed be-
tween B03T3056 and B03T3057 and B03T3056 and D03S0127 further confirms
the precedent results.
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Conclusions

All test statistics showed significant association between D03S0127 and
KPD. Probably due to the presence of more than one positively associated
allele the Pearson’s χ2 and score tests yielded lower p-values than the Ter-
williger’s likelihood ratio test in this data set.
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TABLE 5.1: Results of association tests for multi-allelic markers

Marker Number Allele counts Score Sp* Terwillger’s χ2*
of alleles cases controls LR

D03S0124 5 9 (0.045) 6 (0.060) 0.910 0.500 0.930
31 (0.155) 16 (0.160)
28 (0.140) 11 (0.110)
75 (0.375) 39 (0.390)
57 (0.275) 28 (0.280)

D03S0125 4 12 (0.060) 3 (0.030) 0.069 0.070 0.053
79 (0.395) 27 (0.270)
55 (0.275) 31 (0.310)
54 (0.270) 39 (0.390)

D03S0126 7 22 (0.110) 16 (0.160) 0.426 0.500 0.428
8 (0.040) 5 (0.050)

64 (0.320) 37 (0.370)
16 (0.080) 10 (0.10)
23 (0.115) 6 (0.060)
51 (0.255) 18 (0.180)
16 (0.080) 8 (0.080)

D03S0127 8 12 (0.060) 3 (0.030) 0.008 0.033 0.007
33 (0.165) 20 (0.200)
33 (0.165) 5 (0.050)
23 (0.115) 13 (0.130)
8 (0.040) 4 (0.040)

14 (0.070) 20 (0.200)
39 (0.195) 16 (0.160)
38 (0.190) 19 (0.190)

* P-values were obtained using 10000 Monte Carlo simulations
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CHAPTER 6

Generalizing Terwilliger’s
likelihood approach: a new score
statistic to test for genetic
association

R. el Galta, S. Uitte de Willige, M.C.H. de Visser, L. Hsu, J.J. Houwing-
Duistermaat

Abstract

In this report, we propose a one degree of freedom test for association be-
tween candidate genes and binary traits. We consider the situation of ob-
served haplotypes, i.e. haplotype tagging single nucleotide polymorphisms
are typed from which the haplotypes can be derived with almost 100% cer-
tainty. The method is a generalization of the approach of Terwilliger (1995)
and is especially powerful for the situation of one associated haplotype. As
alternative to the likelihood ratio statistic, we derive a score statistic, which
is locally most powerful. By means of a simulation study, we compare the
performance of the score statistic to Pearson’s chi-square statistic and the like-
lihood ratio statistic proposed by Terwilliger (1995). We illustrate the method
on three candidate genes studied in the Leiden Thrombophilia Study (Uitte de
Willige et al., 2005). We conclude that the statistic follows a chi square distri-
bution under the null hypothesis and that the score statistic has often more
power than Terwilliger’s likelihood ratio statistic, especially for variants with
frequencies between 0.1 and 0.4 and which have a small impact on the studied
disorder.

Submitted for publication
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6.1 Introduction

For genetic association studies, single nucleotide polymorphisms (SNPs)
are popular genetic markers, because they are stable, easier to type than the
micro satellite markers and distributed with a high density over the genome
(Collins et al., 1997). The pattern of variants appears to be structured with sets
of physically close SNPs inherited together in blocks (Daly et al., 2001; Gabriel
et al., 2002). Within a block, SNPs are highly correlated (linkage disequilib-
rium) and each block contains only a few common haplotypes (Gabriel et al.,
2002). These haplotypes can be described by a small number of SNPs. Several
methods are described to identify the minimal informative subset of SNPs, so
called haplotype tagging SNPs (htSNPs) (see Sebastiani et al. (2003) and Stram
(2004) for references).

In the case of zero recombination within a block, the haplotypes can be
uniquely identified and n haplotypes can be described by n-1 SNPs (Bafna
et al., 2003; Clark, 2004; Clayton et al., 2004). Stram (2004) introduced a mea-
sure for reliability of haplotype assignment r2

h (Epstein and Satten, 2003; Satten
and Epstein, 2004). For r2

h close to one, the haplotypes are known and associ-
ation between the observed haplotypes and a disease can be studied by com-
paring the haplotype frequencies of the gene in cases and controls. Examples
in the literature of genes with known haplotypes are APOE (Fullerton et al.,
2000), CRP (Carlson et al., 2005) and the fibrinogen gamma (FGG), fibrinogen
alpha (FGA), and fibrinogen beta (FGB) genes (Uitte de Willige et al., 2005).
Note that Carlson et al. (2005)) used the haplo.stats package (Schaid et al.,
2002) which does take into account the uncertainty in phase by using the EM
algorithm and then they noted that the same results could be obtained by us-
ing the htSNPs. The reason for this is that the htSNPs uniquely correspond to
the haplotypes.

If a causal mutation occurred in one haplotype in the past, it would be
natural to consider haplotypes rather than individual genotypes (Clark, 2004)
and to assume that only one haplotype carries the causal variant (Terwilliger,
1995). The haplotype frequencies in cases can therefore be modelled by the fre-
quencies in controls plus one additional parameter, which accounts for the ex-
cessiveness of the causal haplotype. Under this assumption, a statistic which
tests the null hypothesis of this additional parameter equal to zero will have
more power than the classical chi-square test, since the latter tests for any dif-
ferences in frequencies between cases and controls.

Terwilliger (1995) proposed this model in the context of multi-allelic mark-
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ers and used the likelihood ratio test, i.e. comparing the likelihood under the
alternative to the likelihood under no association, for testing. Since it is un-
known which marker allele is associated with the disease, the likelihood cor-
responding to this model is a weighted sum over all alleles i of conditional
likelihoods given that allele i is over-represented in the set of cases. As for
weights Terwilliger (1995) proposed to use the allele frequencies in the popu-
lation from which the cases and controls were sampled. The excess frequency
of the associated allele in cases is modelled by the parameter λ which is the
fraction attributable at risk (Clayton, 2000). The corresponding log likelihood
function has a number of unusual features. For example, the allele frequencies
that are used as weights are unknown parameters in the conditional likelihood
functions. The score function, the first derivative of the log likelihood func-
tion with respect to λ evaluated at λ = 0 is a constant zero for any observed
data. Therefore, the distribution of the likelihood ratio (TLR) statistic under
the null hypothesis is not straightforward and the 50 : 50 mixture of chi square
distributions of null and one degrees of freedom, which was suggested by Ter-
williger (1995), appears to yield conservative p-values (Sham et al., 1996).

Under Hardy-Weinberg equilibrium and complete linkage disequilibrium,
the observed haplotype frequencies in the controls agree with the population
frequencies many generations ago. Hence the frequency of a haplotype in the
population corresponds to the prior probability that the mutation occurred
on that haplotype. If one is focussed in detecting common haplotypes with
a small impact on the trait, an alternative for the haplotype frequencies is a
flat prior. The advantages of using a flat prior are that the probabilities do not
have to be estimated. Furthermore the first derivative of the log likelihood
with respect to λ evaluated at λ = 0 is not equal to zero and the score statistic
as alternative for the likelihood ratio statistic can be used. Advantages of score
statistics compared to likelihood ratio statistics are that they are also locally
most powerful, and because they do not need to evaluate the log likelihood
under the alternative, they are often easier to compute and robust to small
model deviations under the alternative (Cox and Hinkley, 1974).

In this paper we consider the score statistic as alternative to the classical
chi-square and the original TLR statistic of Terwilliger (1995) in the context of
haplotypes. We also include the likelihood ratio statistic corresponding to the
log likelihood using equal weights. We carried out a simulation to study the
performance of the four statistics under the null hypothesis and to compare
the power of the four statistics under various alternatives. Finally we illustrate
the proposed statistics by an association analysis of three candidate genes in
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the Leiden Thrombophilia Study (LETS) (Uitte de Willige et al., 2005).

6.2 Methods

Let m be the number of haplotypes describing most of the genetic varia-
tion in a gene. Assume that the haplotype frequencies are in Hardy-Weinberg
equilibrium proportions. Let p = (p1, · · · , pm) be the vector of haplotype
frequencies in controls. Assume that only one haplotype denoted with in-
dex i is over-represented in the cases, then the haplotype frequencies in
the cases can be modelled as qi = pi + λ(1 − pi) and qj = pj − λpj for
j ∈ (1, · · · , i − 1, i + 1, · · · , m). Let x = (x1, · · · , xm) and y = (y1, · · · , ym)
be vectors of haplotype counts in the cases and the controls, respectively, and
let n1 and n2 be the total number of case chromosomes and of control chromo-
somes, respectively, and n = n1 + n2. Then the conditional likelihood Li given
that haplotype i carries the mutation is given by

Li(λ, p|x, y) = (pi + λ(1− pi))xi (1− λ)n1−xi
m

∏
j 6=i

p
xj
j

m

∏
j=1

p
yj
j (6.1)

and the likelihood proposed by Terwilliger is equal to

L(λ, p|x, y) =
m

∑
j=1

pjLj, (6.2)

with Lj given in formula (6.1).
It is easy to see that likelihood function (6.2) can be generalized to the fol-

lowing likelihood function:

L(λ, p|x, y, w) =
m

∑
j=1

wjLj,

with Lj given in formula (6.1) and w = (w1, · · · , wm) a vector of known posi-
tive weights restricted by ∑m

j=1 wj = 1. The first derivative of the log likelihood
l(λ, p|x, y, w) = log(L(λ, p|x, y, w)) to λ evaluated in λ = 0 is equal to

Uw =
∂

∂λ
l(λ, p|x, y, w)|λ=0

=
m

∑
j=1

wj(xj − n1 pj)
pj

.
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For known allele frequencies pj, the distribution of the Uw under H0 can
be approximated by the normal distribution with zero mean and variance
VAR[Uw] = n1(∑m

j=1 w2
j p−1

j − 1). Note that Uw = 0 when for all j wj = pj.
Often the haplotype frequencies are unknown and have to be estimated

from the data. Under the null hypothesis we can estimate the frequencies from
the combined sample of cases and controls by p̂j =

xj+yj
n and an estimate of

the score statistic Uw is given by

Ûw =
m

∑
j=1

wj(xj − n1 p̂j)
p̂j

.

under H0, Ûw has approximately mean equal to zero and variance

VAR(Ûw) ≈ n−1n1n2(
m

∑
j=1

w2
j p−1

j − 1). (6.3)

Note that the variance VAR(Ûw) is increased by n2/n fold compared to the
variance VAR(Uw) because the allele frequencies are estimated from the data.
Now the score statistic Ŝw is defined by

Ŝw =
Û2

w
ˆVAR(Ûw)

,

where ˆVAR(Ûw) is obtained by replacing pj by its estimate p̂j in formula (6.3).
When all haplotypes are common, a natural choice of weights is wj = 1

m .
Under the alternative hypothesis of the presence of one positively associ-

ated haplotype i, the expectation of Û 1
m

is

EHA [Û 1
m
] ≈ n1n2λ

n− n1λ
(

n
n1qi + n2 pi

−m), (6.4)

with n1 pi+n2qi
n the frequency of the associated haplotype in the combined sam-

ple and qi = pi + λ(1− pi). When n1 pi+n2qi
n is larger than 1

m this expectation
becomes negative. Therefore we propose a chi-square distribution with one
degree of freedom to approximated the distribution of this statistic under the
null hypothesis.

6.3 Results

Simulation study

By means of a simulation study, we first evaluated the type I error rate of
the score statistic Ŝ 1

m
, Pearson’s chi square χ2, the likelihood ratio with equal
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weights LR, and the Terwilliger’s likelihood ratio with weights equal to pj’s
TLR. For the score statistic we used the chi square distribution with one degree
of freedom to approximate the distribution under the null hypothesis. For the
LR and TLR statistics we used the 50:50 mixture of two chi squares with zero
and one degree of freedom. We generated 10,000 samples of 200 case chromo-
somes and 200 control chromosomes from the multinomial distributions with
probabilities p1 · · · pm for m equal to 4, 5, 8, 10, 15 and 20 haplotypes. Similar
to the simulation described by Terwilliger, the frequency of the most common
haplotype, p1, was set to 0.5, whereas the remaining haplotypes were equally
frequent (0.5/(m− 1)). The results are shown in left columns of table 6.1.

For all m, the type I error rates of the score statistic Ŝ 1
m

were maintained
at the nominal error rate. For m < 10, the type I error rates of Pearson’s chi
square corresponded to the nominal level. However for larger m the type I
error rates became conservative due to sparse data. For all m considered, the
type I error rates for the TLR statistic were conservative (< 0.03). The type
I error rates for the LR statistic were also somewhat small (≈ 0.04), but were
better than the type I error rates for the TLR statistic.

To evaluate the power of the statistics, we generated 10,000 samples of n1
case chromosomes and n2 control chromosomes from the multinomial distri-
butions with probabilities p1(1− λ) + λ and pj(1− λ) for j = 2 · · ·m for cases
and pj j = 1 · · ·m for controls, respectively. First, we considered the model
used by Terwilliger (1995). The most common haplotype frequency p1 in con-
trols was again set to 0.5 and this haplotype was more frequent in cases. The
parameter λ was fixed to 0.5 which corresponds to a haplotype frequency of
0.75 in the cases. The number of haplotypes m was again set to 4, 5, 8, 10, 15
and 20. The number of case and control chromosomes, n1 and n2 were now
100. The results are shown in the right columns of table 6.1.

For m < 8, the power of Pearson chi square was good. For m ≤ 8 the power
of the score statistic Ŝ 1

m
was similar to the power of TLR statistic, while for

m > 8, the TLR statistic had higher power than Ŝ 1
m

. For m > 8, the haplotype
frequencies of the non associated haplotypes become too small yielding a large
variance of the score statistic (see formula 6.3). The LR statistic appeared to
perform worse than both Ŝ 1

m
and TLR. Therefore we did not consider this

statistic in the following simulations.

Second, we studied the power of the Pearson’s chi square, Ŝ 1
m

, and TRL as
function of the excess frequency λ for various values of the frequency of the
associated haplotype p1 = 0.1, 0.2, 0.3, 0.4 and 0.5. The remaining haplotypes
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were again equally frequent. We restricted ourselves to a number of observed
haplotypes m of 5 and 8, because most of the genes can be described by up
to 8 common variants. The parameter λ was varied between 0 and 0.5. The
number of chromosomes n1 and n2 were 200. We used a nominal significance
level of 0.05. The results are depicted in figure 6.1.

For p1 = 0.5, the score statistic Ŝ 1
m

and likelihood ratio TLR performed
similarly, and better than Pearson’s chi square. For m = 5 and p1 = 0.4 or
0.3 and for m = 8 and p1 = 0.4, 0.3 or 0.2, the score statistic Ŝ 1

m
performed

better than TLR especially for small λ. For p1 = 0.2 and m = 5 all three
statistics had similar power. For p1 = 0.1 and m = 5 or m = 8, Pearson’s
chi-square performs similar to TLR. Both statistics performed better than Ŝ 1

m
except forλ ≤ 0.1 and p1 = 0.1 and m = 5. Note that for p1 = 0.1 and m = 5,
the power of the score statistic was small around λ = 0.2. This drop in power
was due to the fact that the expectation of Ŝ 1

m
becomes small (see formula 6.4).

Especially for common variants with frequency p1 of 0.3 or 0.2 and a small
impact on the disease (λ ≤ 0.1), the score statistic performed well. For m = 5
and m = 8 and p1 = 0.3, the gain in power of the score statistic compared
to TLR statistic was about 4% and 8% for λ of 0.05 and 0.1 respectively. For
m = 5 and p1 = 0.2, both statistics performed similar. For m = 8 and p1 = 0.2
the gain in power of the score statistic was large, namely 7% and 12% for λ of
0.05 and 0.1 respectively.

Data example

We applied the three statistics to a study on association between haplo-
types of fibrinogen alpha (FGA), beta (FGB) and gamma (FGG) and the risk
of deep venous thrombosis in LETS (Koster et al., 1993; van der Meer et al.,
1997). Fifteen haplotype tagging SNPs were typed in 474 cases and 474 con-
trols (Uitte de Willige et al., 2005). Within the three genes, the SNPs were in
high linkage disequilibrium (r2

h > 0.95). The number of common haplotypes
(frequency larger than 5%) describing FGG, FGA and FGB were three, five and
five respectively. Since we focus on common haplotypes, we pooled the rare
haplotypes with the less frequent haplotype category with frequency larger
than 5%. In this analysis we considered p-values below 0.05 to be significant.
In table 6.2 the data are described and the results are given.

For all genes, haplotype H2 appeared to be more frequent in the cases than
in the controls. For FGG, FGA and FGB the allelic odds ratios of presence
of H2 versus the rest was 1.34, 1.29 and 1.28 respectively. Note that these

73



Chapter 6. Generalizing Terwilliger’s likelihood approach

odds ratios were rather similar while the p-values of the corresponding chi
square statistics were different namely, 0.008, 0.051 and 0.059 respectively. The
difference in p-values was caused by the difference in degrees of freedom of
the chi square statistics and the frequencies of the other haplotypes. From the
results of the standard chi-square statistics we concluded that only FGG was
significantly associated to thrombophilia.

The p-values of the TLR were respectively 0.004, 0.021 and 0.078. These p-
values were in line with the estimates of λ, namely 0.09, 0.07 and 0.05 respec-
tively. Since FGA and FGB both had 5 variants, the frequency of the associated
haplotype H2 was 0.3 and 0.2 respectively and the λ’s were rather small, the
score statistic should have more power than TLR for these genes.

The p-values of the score statistic Ŝ 1
m

were 0.021, 0.007, 0.024 for FGG, FGA
and FGB respectively. Indeed the p-values for FGA and FGB were smaller
than the corresponding p-values of TLR statistic. The p-values for FGG and
for FGB were larger than for FGA, because the frequencies of H2 in the com-
bined case control sample were around 1

m (see formula 6.4). Based on the
results of the score statistic, all genes were significantly associated to throm-
bophilia.

6.4 Discussion

In this report we have derived a new score statistic to test for association
between a candidate gene and a binary trait. For candidate genes with a small
impact on the disease and five to eight observed variants this new statistic ap-
pears to perform better than Terwilliger’s LR statistic. Moreover the statistic is
easy to compute and follows a chi square distribution under the null hypoth-
esis. For more than eight variants, Terwilliger’s LR statistic is more powerful.
However by pooling less frequent haplotypes, the number of observed haplo-
types is often smaller than eight.

Instead of using multi-locus haplotypes, some authors advocate to test
each locus separately (Clayton et al., 2004). However, since mutations arise
on haplotypes and because of the high degree of linkage disequilibrium, we
prefer haplotype based tests for highly structured genes (Clark, 2004). For can-
didate genes that exists of several blocks we suggest to apply the test for each
block separately. Alternatively the uncertainty has to be taken into account.

For multi allelic markers, Slager and Schaid (2001) and Czika and Weir
(2004) proposed a multi allelic version of the trend test to test for association of
genotypes. Also for genotypes at multi allelic markers, Houwing-Duistermaat
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and Elston (2001) considered various ways to test for association using logis-
tic regression models. If Hardy-Weinberg equilibrium does not hold, these
methods should be preferred. Further, the parametrization used has a lower
bound for the parameter λ which is often larger than -1. An alternative, more
symmetrical parametrization might be the log relative risk corresponding to a
logistic model. Moreover, in logistic models adjustments for other covariates
are easily made. More research is needed to build these kind of models and
derive corresponding tests for pairs of haplotypes.

We conclude that by choosing alternative weights, in particular constant
weights, in the likelihood of Terwilliger, a set of new powerful and robust
statistical tests was derived. For genetic association studies aiming to identify
common associated variants, we recommend to first pool rare variants and
then apply both the standard Pearson’s chi square statistic as well as the new
score statistic. By using both statistics more insight in the data can be obtained.
A program is freely available which computes the statistics and corresponding
p-values.
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FIGURE 6.1: Power curves of χ2 (——), Ŝ 1
m

(− · −·) and TLR (· · · · ·) as function of λ for various
values of the frequency of the associated variant p1 = 0.1, 0.2, 0.3, 0.4, 0.5 and m = 5 (left
column), and m = 8 (right column)
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TABLE 6.1: Type I error rate and power of the statistics χ2 , Ŝ 1
m

, LR, TLR.

type I error rate power when λ = 0.5
m nominal χ2 Ŝ 1

m
LR TLR χ2 Ŝ 1

m
LR TLR

4 0.05 0.053 0.052 0.042 0.032 0.91 0.94 0.91 0.95
0.01 0.009 0.010 0.010 0.007 0.78 0.84 0.80 0.86

0.001 0.001 0.001 0.001 0.000 0.53 0.62 0.56 0.65

5 0.05 0.053 0.048 0.040 0.032 0.88 0.94 0.89 0.95
0.01 0.010 0.010 0.010 0.007 0.71 0.83 0.77 0.87

0.001 0.001 0.001 0.001 0.000 0.44 0.59 0.53 0.64

8 0.05 0.048 0.049 0.038 0.035 0.77 0.92 0.86 0.95
0.01 0.008 0.010 0.008 0.004 0.53 0.80 0.74 0.86

0.001 0.001 0.000 0.001 0.000 0.25 0.54 0.50 0.65

10 0.05 0.045 0.051 0.034 0.023 0.70 0.90 0.84 0.95
0.01 0.006 0.008 0.008 0.003 0.43 0.76 0.70 0.85

0.001 0.000 0.001 0.000 0.000 0.18 0.49 0.47 0.60

15 0.05 0.043 0.048 0.041 0.020 0.58 0.86 0.80 0.95
0.01 0.007 0.010 0.010 0.003 0.31 0.69 0.65 0.85

0.001 0.000 0.001 0.002 0.000 0.09 0.42 0.42 0.63

20 0.05 0.043 0.052 0.045 0.021 0.48 0.84 0.77 0.95
0.01 0.005 0.011 0.010 0.004 0.20 0.64 0.62 0.84

0.001 0.000 0.001 0.002 0.000 0.04 0.35 0.39 0.60
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TABLE 6.2: Descriptives and results of genetic association on LETS.

haplotype case control χ2 Ŝ 1
m

TLR λ̂

chromosomes chromosomes
FGG (n1 = 938, n2 = 942) 0.008 0.021 0.004 0.09

H1 334 (36.3) 366 (38.9)
H2 315 (33.2) 254 (27.0)

H3+H4 289 (30.5) 321 (34.1)

FGA (n1 = 936, n2 = 942) 0.051 0.007 0.021 0.07
H1 270 (28.8) 266 (28.2)
H2 320 (34.2) 270 (28.7)
H3 95 (10.2) 117 (12.4)
H4 100 (10.7) 121 (12.9)
H5 151 (16.1) 168 (17.8)

FGB (n1 = 936, n2 = 932) 0.059 0.024 0.078 0.05
H1 328 (35.0) 310 (33.3)
H2 231 (24.7) 189 (20.3)
H4 135 (14.4) 149 (16.0)
H6 128 (13.7) 143 (15.3)

H3+H5+H7 114 (13.2) 141 (15.1)
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CHAPTER 7

Phenotypic Subtypes in Attention
Deficit Hyperactivity Disorder in an
Isolated Population

E.A. Croes, R. el Galta, J.J. Houwing-Duistermaat, R.F. Ferdinand, S. Lopez
Leon, T.A. Rademaker, M.C. Dekker, B.A. Oostra, F. Verhulst and C.M. Van
Duijn

Abstract

Background: We address the use of two informants in genetic studies and
whether familial aggregation is similar for the three phenotypic subtypes of
ADHD. Methods: Lifetime ADHD was diagnosed in a Dutch isolated popula-
tion using parents and teachers as informants, creating two subgroups (one or
two informants), then further divided into three phenotypic categories (inat-
tentive, hyperactive/impulsive, combined). Genealogy was collected for all
patients. Mean kinship coefficients for the subgroups were calculated. Re-
sults: Fifteen of twenty-six children were linked to a common ancestor within
ten generations. The mean kinship coefficient of patients confirmed by two in-
formants was significantly higher than in patients only scored positive by one
informant (p=0.03). All patients of the inattentive subtype were connected
to a common ancestor, which was significantly higher (0.028) than expected.
81% of these patients derive of consanguineous marriages, also higher than
expected. This means that recessive mutations may be involved in the inat-
tentive subtype. These patients were more closely related than those with the
other phenotypes (p < 0.01). Conclusion: Our data suggests that using two
informants in diagnosing ADHD helps identify a phenotype with a strong
genetic component. The inattentive phenotype showed strong familial clus-
tering and evidence of a recessive origin.

Published in Eur J Epidemiol. 2005; 20:789-94
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7.1 Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most com-
mon psychiatric disorders in children (Verhulst et al., 1997). It is characterised
by inattention, distractibility, over-activity and poor impulse control (Barkley,
2003). Males are more frequently affected than females (Gaub and Carlson,
1997). It has been suggested that ADHD is a risk for academic problems, anti-
social behaviour and substance abuse in adolescence and adulthood (Barkley,
1996; Cantwell, 1996; Hill and Schoener, 1996). There is strong familial aggre-
gation of ADHD in families (Faraone et al., 2001). The heritability of ADHD
has been estimated to be 0.50-0.98 (Faraone et al., 2000; Levy et al., 1997; Tha-
par et al., 1995). The mode of inheritance is thought to involve genes with
dominant effects (Lopera et al., 1999), but others have argued that the inher-
itance is more complex because many different genes are involved. A major
problem hampering genetic research of ADHD, and psychiatric genetic re-
search in general, is the difficulty in defining the phenotype (Thapar et al.,
1999). The phenotype is diverse, including patients with inattention, patients
who are hyperactive/impulsive, and those with both. There may be a differ-
ence in the contribution of genes to the clinical phenotype.

Another problem to address is that for ADHD no biochemical tests or op-
portunities to support the diagnosis with imaging are available. Therefore,
for children with ADHD, diagnostic information is based on reports of obser-
vations of behaviour in different contexts. By convention, in order to meet
DSM-IV criteria for ADHD, symptoms need to be present in at least two of
three settings (home, school, work) (Shaffer et al., 2000). Agreement between
various informants such as parents and teachers is low, ranging between 0.30
and 0.50 (Achenbach, McConaughy, and Howell, Achenbach et al.; Ferdinand
et al., 2003). Variation in the child’s behavior across different situations, and
differences in the way different observers judge the child’s behavior, are two
possible sources of cross-informant variance (van der Ende, 1999). By combin-
ing information from both parents and teachers, the validity of the diagnosis
of ADHD has been found to improve (de Nijs et al., 2004; Mitsis et al., 2000;
Verhulst et al., 1994). The first question we address is whether the use of two
informants is helpful in genetic studies. Second we addressed the question
whether familial aggregation is similar for the three phenotypic subtypes of
ADHD.
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7.2 Methods

Study Population

This study was conducted within the framework of the program Ge-
netic Research in Isolated Populations (GRIP). Approximately 150 individuals
founded this population in the Southwest of the Netherlands in the middle
of the 18th Century. The population is characterised by minimal migration
(< 5%) and rapid growth (700 inhabitants in 1848 and 20,000 inhabitants at
present). For this population the genealogical records are available since 1750.
The GRIP population has proved to be suitable to study complex diseases such
as type 1 and type 2 diabetes mellitus (Aulchenko et al., 2003; Vaessen et al.,
2002). For this study, two paediatric neurologists, who obtained referrals from
this genetically isolated village, asked all their patients diagnosed with ADHD
to participate in this study (n=49; 22% female). Thirty-three (67.3%) patients
and their parents agreed to participate.

This programme has obtained approval of the Medical Ethical Committee.
All parents provided informed consent for themselves and for their children.
Children over the age of eleven co-signed the informed consent.

Psychiatric Assessment

The Dutch version of the National Institute of Mental Health Diagnostic In-
terview Schedule for Children (NIMH DISC or DISC)-IV was used to assess
DSM-IV diagnoses (Ferdinand and van der Ende, 2000; Shaffer et al., 2000).
Psychologists and psychology students trained by the authors of the Dutch
DISC-IV administered the DISCs. The training schedule used was similar to
the schedule used by the authors of the original English version, at Columbia
University, New York. To obtain information regarding a wide range of cur-
rent DSM-IV Axis 1 diagnoses, parent DISCs (DISC-P) were administered dur-
ing face-to-face contacts, at a community general health centre or in a chil-
dren’s hospital. Furthermore, lifetime ADHD symptoms were also assessed
with the DISC-P. Teachers were interviewed with the ADHD section (current,
not lifetime) of the teacher DISC (DISC-T) via telephone. The child version of
the DISC (DISC-C) was not applied since most of the children included in our
sample were too young (< 11 years of age). To assess the presence of diag-
noses besides ADHD, the following diagnoses were assessed with the DISC-P:
social phobia, separation anxiety disorder, specific phobia, agoraphobia, gen-
eralised anxiety disorder, panic disorder without agoraphobia, panic disorder
with agoraphobia, obsessive compulsive disorder, posttraumatic stress dis-
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order, major depressive disorder, dysthymia, bipolar disorder, oppositional
disorder and schizophrenia.

Phenotypic subgroups (inattentive, hyperactive/impulsive, and com-
bined) of ADHD were formed based on application of the DSM-IV criteria
that had been assessed with the DISC. Current ADHD diagnoses were based
on information from parents and teachers. Two types of ADHD diagnoses
were derived: (1) ’based on one informant’, and (2) ’based on two informants’.
A diagnosis of ADHD based on one informant was applied when either par-
ent or teacher scored six or more criteria positive for the inattentive, hyperac-
tive or combined phenotype, while the other informant scored less than three
criteria positive. A diagnosis of ADHD based on two informants was applied
when one informant scored six or more criteria of one of the ADHD subgroups
positive and the second informant scored three or more criteria positive. The
threshold of ’3 criteria positive’ was chosen arbitrarily for the purpose of the
present study. DSM-IV does not provide explicit rules for the number of cri-
teria that need to be positive in 2 settings to obtain an ADHD diagnosis. It
merely states that symptoms have to be present in at least 2 settings. If a child
did not fulfil criteria for current ADHD with the DISC-P, lifetime information
from the DISC-P was used to obtain a lifetime diagnosis of ADHD, based on
parent information.

Genealogical information

Genealogical information comprising the name, date, and place of birth of
parents, grandparents and great-grandparents was collected during a home
interview. This genealogical information was extended up to 22 genera-
tions using municipal and church registers and data from a large genealogy
database holding genealogical information on 60,000 individuals from this re-
gion in the Netherlands (Vaessen et al., 2002).

Statistical analysis

The relationship between two patients was expressed as the kinship coef-
ficient. This is the probability that variation in the genome of a patient is
identical by descent to a randomly drawn allele at the same locus of another
patient. For example the kinship coefficient is 0.25 for sib-pairs, and 0.125 for
cousins, meaning that the probability of a random allele genotyped in a sib-
pair or cousin-pair to be identical by descent is 0.25 and 0.125 respectively.
Kinship coefficients were calculated for all pairs of patients with PEDKIN, us-
ing all information contained in the genealogical database (Zwetselaar, 2003).
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Furthermore, mean kinship coefficients as well as Inbreeding coefficients were
computed for each subgroup.

The null hypothesis of no differences between kinship coefficients of two
subgroups was tested using a statistic (Z) as outlined in the appendix. This
statistic Z is based on the difference between the means of the logarithm of
the kinship coefficients.

To assess whether the number of patients connected to a common ancestor
and the number of patients derived of consanguineous marriages is larger in
particular subgroups than expected based on the population structure respec-
tively, 100 random sets of controls were sampled from the pedigree.

7.3 Results

Of the thirty-three patients who agreed to participate, two were excluded
because their genealogy could not be worked up. Baseline characteristics of
the remaining study population and the co-morbidity found are presented
in Table 7.1. Five children did not fulfil criteria for any of the definitions of
ADHD used in the present study; these were excluded from further analyses.
In the remaining group of twenty-six ADHD patients, the mean age at the time
of the study was 10.1 years, and 23.1 % of patients were female. Oppositional
disorder (54%) and specific phobias (27%) were the most prevalent co-morbid
diagnoses. Eleven patients fulfilled the DSM-IV criteria for the combined type
of ADHD, twelve for the predominantly inattentive, and three for the pre-
dominantly hyperactive/impulsive type.

Based on genealogical information, fifteen out of twenty-six patients (58%)
could be linked to one common ancestor within ten generations (Figure 7.1).
In nine patients the inbreeding coefficient was higher than 0.001 (range 0.001
- 0.027). The parents of seven patients were related within four to seven gen-
erations (patients 1, 5, 8, 9, 10, 12, 15; Figure 7.1).

The mean kinship coefficient was highest for children with the inattentive
subtype of ADHD and lowest for those with the hyperactive/impulsive sub-
type (Table 7.2). Children with the inattentive phenotype were significantly
more closely related than those with the combined type (p < 0.01). All of
the patients with a consistent diagnosis of the inattentive subtype were con-
nected to a common ancestor, which is significantly higher (p=0.028) than ex-
pected based on the structure of the population. Eighty-one percent of these
patients derive of consanguineous marriages which is also significantly in-
creased (p=0.015). We further found that children with a diagnosis of ADHD
confirmed by two informants (mean kinship coefficient 0.0029) were signif-
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icantly more closely related than children in whom the diagnosis was only
confirmed by one informant (mean kinship coefficient 0.0005; p=0.03).

TABLE 7.1: Baseline characteristics of the study sample and co-morbidities

All ADHD ever No ADHD
Number of subjects 31 26 5
Mean age at examination (range) 10 (6-16) 10 (6-16) 10 (8-13)
Females (%) 22.6 23.1 20.0
Co-morbidity
Social phobia 2 2 0
Separation anxiety disorder 4 4 0
Specific phobia 8 7 1
Agoraphobia 3 3 0
Generalised anxiety disorder 1 1 0
Panic disorder with agoraphobia 1 1 0
Obsessive compulsive disorder 2 2 0
Oppositional disorder 15 14 1
Conduct disorder 2 2 0

Co-morbidities are based on DISC-P. Selective mutism, panic disorder without ago-
raphobia, posttraumatic stress disorder, major depressive disorder, dysthymia, bipolar
disorder, and schizophrenia were not present in any of the patients.

TABLE 7.2: Mean kinship coefficient in ADHD phenotypes*

ADHD phenotype Number of patients Kinship coefficient
Inattentive 12 0.0046
Hyperactive/impulsive 3 0.00002
Combined 11 0.0030

*Based on DSM-IV criteria.

7.4 Discussion

There are two important findings in this study. First, we found that adding
diagnostic information of a second informant results in a group of patients
who are genetically more closely related than patients in whom the diagnosis
is based on one informant. This finding indicates that a consistent diagno-
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FIGURE 7.1: Pedigree of the kindred. The symbol on top represents the common ancestor.
Filled symbols indicate individuals affected with ADHD. The double line denotes a mar-
riage between parents with a shared ancestor. A diamond symbol has been used to mask
the sex of the patients, in order to protect patient confidentiality.
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sis of ADHD, confirmed by a second informant, is more suitable for future
gene-finding studies. Second, we showed that children with the inattentive
subtype of ADHD are in our population genetically more cluster related than
those with the combined type. We confirmed previous studies which found
that ADHD clusters in families (Faraone et al., 2001). We found, however,
that patients with the inattentive phenotype were more closely related. Us-
ing extensive data-based genealogical information of the patients included in
this study, we also found evidence of inbreeding. The presence of inbreed-
ing strongly suggests that recessive genes are involved. In those which the
diagnosis was confirmed by two informants as well as those with the com-
bined phenotype, inbreeding was significantly increased in comparison to the
control group. The chances that two similar recessive mutations are transmit-
ted to a child are therefore much more likely when they come from the same
ancestor in a pedigree with so-called ”loops”, than in an out-bred pedigree
with non-related parents. So far, only genes with a dominant effect have been
considered in the aetiology of ADHD.

A major limitation of our study is the small sample. In order to use in-
formation on genealogy we had to restrict our study to an isolated population
for which we have genealogical data available. This has limited the number of
patients eligible for the study. Nevertheless, the relation between the number
of informants and the distance of relationship between patients was found to
be statistically significant, even with this small sample size. The advantage of
working with an isolated community is that we have detailed information on
genealogy, which is not available in the general population. The loops identi-
fied in seven of fifteen patients who were linked to a common ancestor further
suggest the involvement of a gene with a recessive effect. We have previously
shown that, in this population with inbreeding, homozygosity mapping is a
powerful approach in detecting genes with recessive effects (Bonifati et al.,
2003). Of note is the fact that in our study the mean kinship coefficients for
ADHD are relatively high. In the same genetically isolated population we
studied Alzheimer’s disease, which is known for its strong genetic clustering.
The mean kinship coefficient for the Alzheimer’s disease patients (0.0003) was
found to be smaller than in any of the ADHD-subgroups (Roks et al., 2001).
This suggests that the ADHD children in this population are closely related,
making it suitable for future genetic studies.

Several studies addressed the question whether the number of informants
confirming the ADHD diagnosis would improve the validity of the diagno-
sis (Achenbach, McConaughy, and Howell, Achenbach et al.; Ferdinand et al.,
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2003). Their findings indicate that scores of informants from different settings
(e.g., home, school) may differ, either due to a different behavior of the child in
these surroundings, or to differences in the interpretation of the child’s behav-
ior by the informants. Combining this unique contribution of each informant
may yield a more consistent diagnosis, which also may better discriminate
ADHD from other psychiatric disorders, such as conduct disorder (Crystal
et al., 2001; Mitsis et al., 2000). Various studies assessed associations between
type of informant (parent or teacher) and heritability of ADHD (Martin et al.,
2002; Thapar et al., 2000; Todd et al., 2001). Thapar et al. found that a com-
mon genetic factor underlies both the parent-rated and teacher-rated ADHD
symptoms (Thapar et al., 2000). However, they also found that additional
specific genetic factors might contribute to the ADHD symptoms as rated by
the teacher. Also Martin et al. concluded that ADHD diagnosed by using
parent and teacher information showed a high degree of heritability (Martin
et al., 2002). They suggested, however, that different genes might underlie the
symptoms reported by parent versus teacher.

Another complicating factor in the search for genes involved in ADHD
may be that phenotypic subtypes show differences in heritability (Neuman
et al., 2001; Todd et al., 2001), as seen by our finding of the closer genetic re-
lationships in children with inattentive and combined subtypes compared to
those with the hyperactive/impulsive subtype. Also our study shows that the
use of these subtypes, instead of viewing all subtypes as one single disorder,
may provide the best opportunity to find genes involved in ADHD (Neuman
et al., 2001; Todd et al., 2001).

In conclusion, our data showed that patients with the inattentive pheno-
type of ADHD were more closely related. By adding phenotypic information
of a second informant a genetically more homogeneous group may result suit-
able for gene finding studies.

7.5 Appendix

Statistic Z to test the null hypothesis of no difference in mean of kinship
coefficients between two groups.

Let dij be the natural logarithm of the kinship of pair(i, j) in group of size
nk . Let µk, σ2

k and γk be the mean, the variance and the covariance of two pairs
with one subject in common, respectively. To test the null hypothesis µ1 = µ2
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the following statistic Z is proposed

Z =
µ̂1 − µ̂2√

var(µ̂1) + var(µ̂2)
,

with µ̂k the mean of nk(nk−1)
2 kinship coefficients in group k. The variance of

µ̂k depends also on the covariance γk and is given by

var(µ̂k) =
2σ2

k + 4(nk − 2)γk

nk(nk − 1)

for k = 1, 2 . The variance var(µ̂k) is estimated by replacing σ2
k and γk by their

estimators. The distribution of Z under H0 is approximated by a standard
normal distribution.
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SUMMARY
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CHAPTER 8

Summary

Complex traits are caused by multiple genetic and environmental factors, and
are therefore difficult to study compared with simple Mendelian diseases. The
modes of inheritance of Mendelian diseases are often known. Methods to dis-
sect such diseases are well described in literature. For complex genetic traits,
the inheritance pattern is not clear and difficult to understand, and genetic
variants contributing to such traits probably have small effect sizes. Hence,
searching for genes responsible for complex traits requires different strategies
as well as new methods. A common strategy for mapping complex traits is
as follows: (1) perform a genome-wide linkage analysis using dense genetic
markers, and identify regions showing evidence of linkage, then (2) perform
association analysis to refine these regions. Along these lines we propose sev-
eral methods for detecting disease genes in this thesis.

In chapter 1 we provide a general introduction to statistical tools for map-
ping genes responsible for complex genetic traits. Familial clustering, as-
certainment issues, linkage analysis, and association analysis are considered.
Furthermore, the aim and the outline of this thesis are described.

A first step in studying the genetic background of any trait is to verify
whether it clusters within families. To this end, families ascertained through
one or more members are often collected, especially when the trait is rare.
Therefore, statistical methods that assume random families are not appropri-
ate to this kind of data. In chapter 2 we address this issue and develop a score
statistic for testing familial clustering that takes into account the ascertain-
ment scheme. The method does not assume any particular scheme, however,
the set relevant for ascertainment (probands) should be known (Ewens and
Shute, 1986). Familial correlation is modeled via a random effect parameter in
the context of a generalized linear mixed model (Houwing-Duistermaat et al.,
1995; le Cessie and van Houwelingen, 1995). The score statistics has the fol-
lowing features. It measures the proband-relative correlation as well as the
relative-relative correlation. It allows for adjusting of covariates. No assump-
tion about the distribution of the random effects is made. Furthermore, by
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conditioning on the trait value of all individuals related to ascertainment the
method is robust to the ascertainment scheme. The score test can also be used
to test the presence of correlation that is partly due to excess sharing of alleles
identical by descent (IBD) in a candidate region. The method is applied to a
candidate region in families of probands with type 2 diabetes mellitus.

In chapter 3 we develop an allele sharing method to test for linkage along
the genome or in a candidate region. The method considers all genetic mark-
ers jointly and hence multiple testing problems are avoided. At the disease
locus, the increase of the mean of the number of alleles shared identically by
descent (IBD) is modeled as a function of the relative risk ratio (Risch, 1990a).
At each marker locus, the average of mean IBDs is calculated over the num-
ber of affected sibling pairs and the resulting variables behave approximately
as a Gaussian Markov process along each chromosome (Feingold et al., 1993).
Furthermore, the method sums the conditional likelihood of data given that a
certain marker is a disease locus, over the marker positions. Either the likeli-
hood ratio or the score statistics can be used to test for global linkage in the
region of interest. Both statistics have known asymptotic distributions. For a
genome-wide scan, likelihood ratio should be used, while for candidate region
the score test is appropriate since it is comparable to the likelihood ratio when
the assumed model is true, and it may perform better when the gene effect
size is very small or the model is incorrect. However, for genome-wide scans
the sample size required for detecting positive linkage is very high, especially
for small effect sizes.

In chapter 4, 5, and 6 we propose new statistical tools for association anal-
ysis. For testing disease association with a single nucleotide polymorphism
(SNP), standard methods such as Pearson’s χ2 can be used. However, stan-
dard methods may not be suitable when testing disease association with a
multi-marker. As an alternative, Terwilliger (1995) proposed a likelihood ra-
tio test (TLR). The likelihood of the data is the weighted sum of the condi-
tional likelihoods given that an allele is associated with the disease over all
marker alleles with weights equal to the allele frequencies. In these chap-
ters we consider testing for genetic association between a disease and either
multi-allelic markers or haplotypes constructed from several flanking SNPs.
However, haplotypes must be constructed with certainty.

In chapter 4 we propose the score test corresponding to the Terwilliger’s
likelihood ratio. Under the null hypothesis of no genetic association the expec-
tation and variance of the score statistic and Pearson’s χ2 are approximately
equal. Under the alternative hypothesis of the presence of one associated al-
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lele, the score statistic has higher expectation than Pearson’s χ2 when the asso-
ciated allele is common, which may imply higher power in favour of the score
test. Furthermore we provide heuristic as well as empirical comparisons be-
tween the score test and other test statistics. We conclude that the score test
has the highest power on average. Furthermore, we illustrated the methods
based on a real data example.

In chapter 5 we apply, the score test proposed in chapter 4, TLR and Pear-
son’s χ2 to candidate regions that initially showed evidence of linkage with
Kofendrerd Personality Disorder (KPD), a fictional disorder. Data are from
the GAW14 simulated micro-satellite data problem (Bailey-Wilson et al., 2005;
Greenberg et al., 2005). All test statistics suggest the presence of association
between KPD disease and the multi-allelic marker, D03S0127, in this region.
Testing a dense map of SNPs reveal strong evidence of genetic association
with SNPs B03T3056 and B03T3057, which are in linkage disequilibrium with
a disease locus located at the end of chromosome 3 (Greenberg et al., 2005).
The analyses are done without prior knowledge of the answers.

In chapter 6, we generalise the method proposed by Terwilliger (1995).
Instead of allele frequencies we propose weights, which do not depend on
actual data. In this light, we derive a new score statistic, which is easy to
compute. The new score statistic has a power comparable to TLR statistic and
sometimes even better, especially when the excess of associated allele is small
and the allele frequency is relatively common. However, the score statistic
may not have a reasonable power if the frequency of the associated allele is
equal to the inverse of the number of marker alleles, or if there is one positively
and one negatively associated allele with the same amount of allele excess.
The score statistic is successfully applied to three candidate genes studied in
the Leiden Thrombophilia Study (Uitte de Willige et al., 2005).

Chapter 7 describes a study of the relevance of adding information of a
second informant when children are diagnosed with Attention Deficit Hyper-
activity Disorder (ADHD). Especially, two points are addressed: (1) The use-
fulness of the use of two informants in genetic studies, and (2) whether pheno-
typic subtypes of ADHD cluster similarly in families. The study is conducted
in a genetically isolated population in the Southwest of the Netherlands. Ge-
nealogical information is available for 22 generations. The study finds that
patients that are diagnosed based on two informants are more closely related
than those diagnosed based on one informant, which may be relevant for fur-
ther study of the genetic background of ADHD. Moreover, the study confirms
the familial clustering of ADHD, which was previously suggested by other
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studies. Furthermore, patients with the inattentive subtype of ADHD are
found to be more closely related. The study suggests that recessive genes
may be involved in causing ADHD. In order to study the closeness of famil-
ial relationship between two patient groups we propose a test statistic, which
compares the mean kinship coefficients of the two groups. For large sample
size, the test statistic follows the normal distribution. However, in this study
all patient groups are small and hence the asymptotic distribution of the test
statistic cannot be used. Nevertheless the significance level could be obtained
by means of Monte Carlo simulation.
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Samevatting

Veel aandoeningen zijn het resultaat van meerdere genetische en/of omgev-
ingsfactoren. In de genetische epidemiologie noemt men deze aandoenin-
gen gecompliceerde erfelijke aandoeningen. Genen die leiden tot het verkri-
jgen van dergelijke gecompliceerde erfelijke aandoening zijn vaak moeilijk
op te sporen. Zij hebben vaak lage penetranties. Dat wil zeggen dat som-
mige patiënten de genvariant wel dragen maar de ziekte niet ontwikkeld
hebben. Patiënten met dezelfde ziekte kunnen ook verschillende combinaties
van ziekteveroorzakende genen dragen. Men noemt dit fenomeen een het-
erogeniteit effect. Samenvattend is het onderliggende genetische mechanisme
van een gecompliceerde erfelijke aandoening meestal onbekend, en daarom is
het moeilijk te ontdekken. In tegenstelling tot gecompliceerde erfelijke ziek-
tes, zijn de erfelijke eigenschappen van veel Mendeliaanse ziektes gemakke-
lijk in de kaart te brengen. Mendeliaanse ziektes worden veroorzaakt door
één enkel gen en hebben daarom een duidelijk overervingpatroon. Metho-
den om de onderliggende genetische achtergrond van zulke ziektes te bestud-
eren zijn wel in de literatuur beschreven. Echter, het opsporen van gecom-
pliceerde ziekteveroorzakende genen vergt een andere benadering en vraagt
om nieuwe statistische methoden. Een veel gebruikte strategie om gecom-
pliceerde erfelijke aandoeningen in kaart te brengen is te beginnen met een
scan van het gehele genoom waarbij genetische familie verbanden geanal-
yseerd worden (linkage analyses.) Dit kan helpen bij het identificeren van
chromosoom-regio’s die mogelijk ziekteveroorzakende genen bevatten. Ver-
volgens voert men een associatie studie uit om dergelijke kandidaat regio’s te
verfijnen. Binnen deze methodologie stelt dit proefschrift zich tot doel om
nieuwe statistische methoden te ontwikkelen en te evalueren, die geschikt
kunnen zijn voor het analyseren van genetische gegevens van patiënten met
een gecompliceerde erfelijke aandoening in zowel families als populaties.

Voordat men een genetische studie kan opzetten, moet men eerst na-
gaan of er wel genetische factoren betrokken zijn bij de etiologie van de
bestudeerde aandoening. Dit kan gedaan worden met behulp van een analyse
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van de familiale aggregatie van de aandoening. Hiervoor kan men aselecte
steekproeven van families verzamelen. Echter, meestal worden families van
patiënten met de aandoening (probands) opzettelijk geselecteerd. Dit laatste
wordt vooral gedaan om de statistische power te verhogen.

In hoofdstuk 2 hebben wij een nieuwe statistische methode ontwikkeld
om de aanwezigheid van clustering van een aandoening binnen families van
probands te toetsen. Deze methode houdt rekening met de selectieprocedure.
De familiale correlatie wordt gemodelleerd aan de hand van een stochastisch
effect met verwachting nul, onbekende variantie en een correlatie die van
tevoren aangegeven moet worden. Toetsen op de afwezigheid van een cor-
relatie structuur is equivalent aan toetsen of de variantie van het stochastische
effect gelijk aan nul is. De methode doet geen specifieke aanname over de
verdeling van het stochastisch effect. Om familiale clustering te toetsen kan
men de correlatie bepalen als een functie van de graad van de verwantschap
tussen familieleden (kinship coefficient). De methode kan ook gebruikt wor-
den om de genetische correlatie te toetsen die gedeeltelijk te wijten aan een
bepaalde locus. Verder hebben we de methode geı̈llustreerd aan de hand van
genetische gegevens van families van probands met ouderdomssuikerziekte.

In hoofdstuk 3 hebben wij een niet-parametrische methode ontwikkeld
om de genetische linkage globaal te toetsen over het hele genoom of op een
gedeelte van een chromosoom. Deze methode is gebaseerd op een vergeli-
jking van het aantal IBD allelen van een marker dat twee familie leden met
de aandoening delen met het aantal dat ze zouden delen per toeval. IBD is
de Engelse afkorting voor identical by descent. Het aantal IBD allelen dient als
een maat van genetische gelijkenis tussen twee personen. De methode toetst
alle markers tegelijkertijd zodat het meervoudige toetsingsprobleem verme-
den wordt. Dit wordt bereikt door het optellen van de voorwaardelijke likeli-
hood functies gegeven dat een marker de ziekteveroorzakende gen bevat. Wij
hebben twee toets statistieken afgeleid, namelijk de likelihood ratio toets en de
score toets. Verder hebben wij de werking van deze twee toetsen bestudeerd
aan de hand van een simulatiestudie. Twee modellen werden beschouwd: (1)
één-locus model en (2) twee-locus model. Het blijkt dat de likelihood ratio toets
het beste presteert wat betreft van onderscheidend vermogen (power), terwijl
de scoretoets alleen geschikt is voor het vinden van kandidaat-regio’s of voor
situaties waarin het effect van het ziekteveroorzakende gen heel klein is.

Hoofdstukken 4, 5 and 6 beschrijven statistische methoden voor genetis-
che associatie analyses in de populatie. Hierbij vergelijkt men de allelfrequen-
ties tussen een groep patiënten en een willekeurige groep uit de populatie. De
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nadruk in deze hoofdstukken ligt op markers met meerdere allelen of haplo-
typen uit meerdere enkelvoudige nucleotide polymorphismes (SNPs). De meth-
odes gebruiken een semi-Bayesiaanse aanpak waarbij de totale likelihood de
som is van de gewogen voorwaardelijke likelihood functies gegeven dat een
allel (haplotype) geassocieerd is met de desbetreffende ziekte. Voor deze aan-
pak heeft Terwilliger (1995) de gewichten gelijk gesteld aan de allelfrequenties
en de corresponderende likelihood ratio (TLR) gebruikt als toets statistiek.

In hoofdstuk 4 hebben wij dezelfde likelihood as Terwilliger (1995) ge-
bruikt en daaruit een scoretoets afgeleid. De scoretoets is eenvoudig en, in
tegenstelling tot de likelihood ratio toets, doet hij geen aanname over het aan-
tal geassocieerde allelen. De nulverdeling van de toets kan gevonden wor-
den met behulp van Monte Carlo simulaties. Verder hebben wij deze toets
analytisch vergeleken met de bekende Chi-kwadraat toets voor cruistabellen.
Het blijkt dat de scoretoets het beter doet dan Chi-kwadraat toets wanneer
het geassocieerde allel frequent voorkomt. Aan de hand van een simulatie
hebben wij ook de power van de scoretoets vergeleken met andere bestaande
toetsen, inclusief de Chi-kwadraat toets. Wij hebben zowel markers met één
geassocieerd allel als met twee geassocieerde allelen beschouwd. Het blijkt
dat de scoretoets gemiddeld de beste power heeft. Ter illustratie hebben wij
de scoretoets toegepast op echte data.

Hoofdstuk 5 beschrijft de resultaten van toepassingen van de scoretoets
uit hoofdstuk 4, TLR and Chi-kwadraat op kandidaat- regio’s. De kandidaat-
regio’s zijn geı̈dentificeerd met behulp van linkage analyses op een aantal
chromosomen. De data waren afkomstig uit het Genetic Association Workshop
14 gesimuleerde microsatellieten probleem (Bailey-Wilson et al., 2005; Green-
berg et al., 2005). De bestudeerde ziekte was ”Kofendrerd Personality Dis-
order” (KPD), een fictieve aandoening. Alle toegepaste toetsen duiden aan
dat er mogelijk een associatie bestaat tussen KPD en de microsatelliet marker
D03S0127. Verdere associatie-analyses tussen KBD en 20 SNPs rond marker
D03S0127 laten zien dat er een sterke associatie is tussen KBD en de SNP
B03T3057 wat eigelijk ligt naast de echte ziekte locus in het end van chro-
mosoom 3. (Greenberg et al., 2005). De analyses werden uitgevoerd zonder
enige voorkennis van de antwoorden.

Hoofdstuk 6 presenteert een generalisatie van de methode beschreven in
hoofdstuk 4. Wij hebben de gewichten als allel- (haplotype-) frequenties in de
totale likelihood vervangen door constante gewichten. In deze nieuwe aanpak
hoeven de gewichten dus niet geschat te worden uit de data. Voor deze likeli-
hood hebben wij een nieuwe scoretoets afgeleid. De scoretoets is eenvoudig en
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heeft een normale verdeling. Het specificeren van de gewichten kan gedaan
worden op basis van de voorkennis dat onderzoekers bijvoorbeeld hebben
opgedaan uit eerder studies. Echter, men kan ook niet-informatieve (gelijke)
gewichten gebruiken wanneer er geen op voorhand informatie beschikbaar
is. Dat wil zeggen dat alle allelen (haplotypes) a-priori een even grote kans
hebben om geassocieerd te zijn met de ziekte. Voor gelijke gewichten hebben
wij verder een uitgebreide simulatie studie uitgevoerd om de werking van
deze nieuwe toets in vergelijking met Chi-kwadraat en TLR toets te bestud-
eren zowel onder het nulmodel als onder het alternatieve model. Wij hebben
alleen markers (haplotypes) met één geassocieerde variant beschouwd. In
het algemeen presteert de scoretoets het beste. De werking van scoretoets
is met succes geı̈llustreerd in de context van haplotype analyses aan de hand
van data van drie kandidaatgenen uit Leiden Thrombophilia Studie . De analy-
ses zijn uitgevoerd onder de veronderstelling van perfecte informatie omtrent
haploype phase .
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