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1. Prologue

More than three decades after the discovery

of MHC restriction [1], two decades after the
first elucidation of MHC structure [2] and the
peptide in the MHC-groove [3], and 18 years
after both the finding of MHC-specific peptide
binding motifs [4] and the identification of
the first tumor-specific cytotoxic T lymphocyte
epitope [5,6], T cell mediated immunotherapy
of cancer has now outgrown its infancy. Nev-
ertheless, trials in cancer patients have not
shown consistent and high percentages of
clinical successes [7-9], and immunotherapy of
cancer is, with a single exception [10], not yet a
standard (adjuvant) therapy.

Although the T cell arm of the immune sys-
tem is exquisitely equipped to eradicate virally
infected cells, the similar use of T cells for the
destruction of cancer cells that (over)express
tumor specific proteins has still to be exploited
to its full clinical potential. Our rapidly ac-
cumulating understanding of the mechanisms
involved in the adequate induction of anti-
tumor immunity in patients is currently being
used for the design of more effective immu-
notherapeutic treatments that will likely raise
clinical success rates. For the development of
effective T cell mediated cancer therapies it is
crucially important that both an optimal im-
munostimulatory context is realized and that
the targets of the CD8" cytotoxic T lympho-
cytes (CTL) and CD4* T helper (Th) lympho-
cytes are properly chosen. These targets are the
tumor-associated antigens (TAA) expressed in
the tumor cells and more specifically the T cell
epitopes contained in these proteins.

The studies in this thesis address the epitopes
recognized by CTL: the events leading to their
generation and presentation and, based on
these mechanisms, the prediction and identifi-
cation of cancer-specific epitopes to be used as
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targets in cancer immunotherapy. This intro-
ductory chapter will therefore especially review
current knowledge regarding T cell immunity
in cancer, its induction by immunotherapy, the
identity of TAA, and the generation, prediction
and identification of T cell epitopes.

Because two of the studies in this thesis
are at the basis of some reports in the
literature, the outline and scope of each
chapter is integrated, as boxed intermez-
zo, at its appropriate place in the text.

2. Innate and adaptive immunity
work together and are linked

The human immune system is equipped with
innate and adaptive (or acquired) arms that are
defending the body against foreign pathogens.
The innate system, composed of primarily
macrophages, dendritic cells (DC), granulo-
cytes, natural killer cells and the complement
system, is evolutionary much older and con-
stitutes a first line of defence that is already
present at the start of the immune response
and immediately interacts with pathogens,
foreign antigens, cells sensed as abnormal and
conserved structures shared by large groups
of micro-organisms (so-called pathogen-
associated molecular patterns). On the other
hand, the adaptive response, executed by

B- and T lymphocytes, before it can exert its
effector functions, first needs amplification
and selection for which it uses clonal receptors
with narrow specificity generated by gene rear-
rangements and somatic mutations. Thereby,
the adaptive response, unlike the innate re-
sponse, develops immunological memory. It

is only since the last decade that the prescient
prediction by Charles Janeway in 1989 that the
innate immune system is driving the adaptive



immune system [11] has been firmly grounded
and is dissected at the molecular level [12].
From a historical viewpoint, the model for
adaptive immune response regulation has
undergone strong changes in the last 50 years.
In the Self-Nonself (SNS) model, proposed

in 1959 by Burnet and Medawar, the induc-
tion of the response was completely defined

at the level of the lymphocyte by the non-self
nature of the antigen that is recognized (this
so-called signal one is the self-nonself dis-
criminator in this model). Under the pressure
of accumulating incompatible observations
that needed additional explanation, the SNS
model has been strongly adapted and refined.
In the 1970s, a helper cell (later found to be the
T helper cell) providing help was proposed [13],
and later the focus shifted to the stimulator
cell that induces lymphocyte activation. The
stimulator cell (now called antigen present-

ing cell; APC) was proposed to provide, next

to the antigen-specific signal one, a necessary
second costimulatory signal to the lymphocyte
[14]. Ten years later, in 1986, this was confirmed
empirically by Jenkins and Schwartz [15]. In
1989, Charles Janeway hypothesized that the
costimulation provided by the APC first needs
to be induced through ligation of so-called pat-
tern recognition receptors (PRR) on the APC by
conserved pathogen-associated molecular pat-
terns (PAMPs) of bacteria [16], thereby linking
innate and adaptive immunity. Thus, the PRR
allow APC to discriminate between infectious-
nonself and non-infectious-self. Therefore, this
model has been coined either the infectious-
Nonself model, PRR-model or Stranger-model
[17,18]. In 1997, the first Toll like receptor (TLR)
was identified [19] and was shown to act as PRR
for components of bacteria. Since then numer-
ous TLR that recognize a variety of conserved
microbial-associated products, like lipopolysa-
charide (LPS), have been identified [20], there-

by further unravelling the linkage between
innate and adaptive immunity. Meanwhile, in
1994, Polly Matzinger proposed the so-called
Danger theory (of immune activation) [21].
This theory, initially purely theoretical, made
‘danger’ caused to cells and tissues the central
concept and added still an extra level of cells
and signals to the activation of the APC. Its
activation could also be induced by danger/
alarm signals released from injured (necrotic)
cells, thus including endogenous non-foreign
signals in APC-activation and not putting the
primacy on innate immunity. As Matzinger
stated herself, “the danger theory, may seem
to propose just one more step down the path
of slowly increasingly complex cellular interac-
tions, this small step drops us off a cliff, landing
us in a totally different viewpoint, in which the
‘foreignness’ of a pathogen is not the important
feature that triggers a response, and ‘selfness’
is no guarantee of tolerance” [22]. The Danger
theory has been criticized by Janeway and his
co-worker Medzhitov, because of its “inherent
tautology”. As they state it (and rather ridicule
the theory): “the (adaptive) immune response
is induced by a danger signal, but the danger
signal is defined as just about anything that
can induce an immune response” [23]. Oth-
ers, as well, have pointed to the flaws in this
theory, being above all its conceptual empti-
ness and vagueness when the concept ‘danger’
is not specified and thus its metaphorical
generalizing character [24]. Currently in 2009,
studies have revealed several endogenous non-
foreign alarm signals, like heat shock proteins,
interferon-a (IFNw), interleukin-1p (IL-18) and
CD4o-ligand (CDi154) [25]. Furthermore, TLRs
have been found to engage not only pathogenic
components but also those from endogenous
origin. Thus, one may argue that the Danger
model is the most comprehensive theory be-
cause it incorporates also endogenous APC-ac-
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tivation signals. However, this model may un-
derestimate the importance of the exogenous
pathogenic signals and it was Janeway who was
the first to propose, and his group the first to
identify, the important linkage between the in-
nate and adaptive immune responses inducing
the costimulatory signals of the APC.

As the immune system is a diverse collection
of mechanisms that have come together dur-
ing the course of evolution, it is impossible to
explain its complexity by a too much restricted
paradigm (the Stranger model) and not helpful
to do so by a too much generalized metaphori-
cal paradigm, like the Danger model). Indeed,
later Matzinger [26,27] and others [28] have
tried to reconcile both models. In any case,
together innate and adaptive immune mecha-
nisms can counteract the attack of in principle
all pathogens ranging from viruses and bacteria

to multi-cellular parasitic organisms.
3. The T cell response in a nutshell

Whereas B lymphocytes upon antigen-
encounter produce antibodies (soluble B cell
receptors) that recognize pathogen-derived
native proteins, polysaccharides and lipids, T
lymphocytes by their cell surface expressed T
cell receptor (TCR) specifically recognize short
linear protein sequences, i.e. peptides, derived
from either endogenous or exogenous proteins.
Upon proper activation, B- and T cells divide,
expand in numbers, exert their effector func-
tions, and memory is installed.

Two major subsets of T cells collaborate to
mediate an effective immune response: CD8*
cytotoxic T lymphocytes (CTL) recognize
short peptides of a defined length (8-12 aa)
presented by HLA class I molecules on the cell
surface and CD4* T helper lymphocytes (Th
cells) recognize longer peptides of less defined
length (15-20 aa) that are presented by HLA
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class Il molecules. Th cells are involved in

the activation and regulation of B cells, CTL
and APC through secreted cytokines and cell
surface expressed molecules like CD40-ligand
(CD154). Th type 2 (Th2) cells are mainly in-
volved in B cell activation and Th type 1 (Thi)
cells accomplish CTL activation via their stim-
ulatory effect on APC and by secretion of cyto-
kines. Moreover, regulatory CD4* T cells (Treg)
exist that down-regulate T cell responses, e.g.
preventing autoimmunity but also suppressing
anti-tumor responses [29]. CTL are the killer
cells that lyse target cells expressing their cog-
nate class I-presented peptide by perforin and/
or Fas-mediated mechanisms. T cell activation
is accomplished when the peptide (first signal)
is presented in an appropriate costimulatory
context by the APC, in particular the DC.

This second signal can be provided by any of
the molecules within the B7-family [30] or
TNF receptor (TNFR)-family [31] of proteins.
Crucially important costimulatory molecules
of the B7-family are CD80o (B7.1) and CD86
(B7.2) whose interaction with CD28 activates
T cells [32]. Reversely, CD80/86 ligation of the
T cell-expressed counter-regulatory receptor
CTLA-4, whose expression is upregulated after
T cell activation [33], attenuates T cell re-
sponses by feedback inhibition. For sustained
T cell effector functions, survival and memory
maintenance, additional signals are required.
TNFR-family members that function after ini-
tial T cell activation to further costimulate and
sustain T cell responses are CD27 [34], 4-1BB
(CD137) [35], OX40 (CD134) and GITR, all ex-
pressed on (activated) T cells, interacting with
CD7o0, 4-1BB-ligand, OX4o0-ligand and GITR-
ligand, expressed by the APC [31]. Adhesion
molecules like intercellular adhesion molecule
1 (ICAM-1) interacting with LFA-1 on T cells
also contribute to T cell activation [36]. Apart
from cell surface receptors that mediate co-



stimulation, the cytokine milieu composed of
especially IL-2 (secreted by Th cells) [37], IL-7
[38], IL-12 (secreted by DC) [39-41], and IL-15
[42,43] has been shown to be decisive for T
cell activation, function and memory. Next to
positive signalling, negative regulation of T cell
activation is accomplished by ligation of PD-1
(a member of the CD28-family expressed on
activated T cells) with B7-family member PD-1
ligand (PD-L1 or B7-Hu1), which is sometimes
overexpressed on tumor cells [30]. B7-family
member ICOS-ligand (B7h) that engages with
ICOS which is expressed on activated and rest-
ing memory T cells [44] may down regulate
Thi-responses through the induction of IL-10
[45]. Together, the summation of positive and
negative signals coming together in the immu-
nological synapse between APC, in particular
DG, and T cell [46] determines the activation,
proliferation, effector functions and instal-
ment of memory of T cells. Once activated,

T cells loose receptors that are required for
lymph node entry, in particular CD62L [47]
and CCR7 [48], and accordingly can migrate
from the lymph node via the blood into the
peripheral tissues.

Thus, to accomplish Th and CTL activation,

DC need to provide appropriate costimulation.
This is induced after maturation (activation)
via TLR signalling by PAMPS (e.g. lipopolysac-
charide; LPS), and/or via ligation of cell surface
expressed CD40 by CD4o-ligand (expressed

on activated Th cells) [49-52]. 12). CD40 can

be seen as a master switch for T cell costimula-
tion because of its ability to induce By-family
ligands as well as several TNF family ligands on
DC [31,53]. Optimal DC maturation is enhanced
by proinflamatory cytokines like tumor necro-
sis factor (TNF)q, interferon (IFN), INFy and
IL-1B [54]. Immature DC, residing in peripheral
tissues — particularly in barrier organs such as
the skin and bowel - but also in the blood [55],

are dedicated to capturing antigens, mostly by
endocytosis. DC maturation via TLRs, together
with partially unresolved mechanisms [56],
induce migration of DC to lymph nodes [57,58]
where they acquire the ‘mature’ phenotype
specialized at presenting antigens and stimu-
lating T cells through enhanced expression

of CD80/86 and secretion of 1L-12, a cytokine
crucial for CTL effector and memory formation
[41,59]. DC are believed to be at the crossroads
of immunity and tolerance dependent on their
maturation status [60]. On the one hand, as
outlined, when in an immunogenic context DC
activate naive anti-foreign T cells and on the
other hand, when DC have an immature phe-
notype, they are capable of tolerizing autoreac-
tive T cells — which have escaped the process of
central tolerance - in the periphery (a process
called peripheral tolerization) [61]. Several
subsets of DC exist in vivo with distinct roles in
immunity to infection and maintenance of self
tolerance dependent on differences in their lo-
cation and intrinsic abilities to capture, process
and present antigens [62].

4. Protein degradation pathways and
the generation of T cell epitopes

HLA class I molecules can be found on the
surface of virtually all nucleated cells, whereas
HLA class II molecules are mainly expressed
by APC, but also by inflamed cells and thymus
epithelial cells. Peptides presented by HLA
class I and class I molecules are produced
through proteolysis in one of the three major
intracellular protein degradation and antigen
processing systems that exist: (1) Ubiquitin
(Ub)-mediated protein degradation that pro-
ceeds via the proteasome, which is called the
ubiquitin-proteasome system (UPS); (2) au-
tophagy, which is an intracellular degradation
system that delivers cytoplasmic constituents
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via the autophagosome to the lysosome. There
are at least three different types of autophagy
[63]: chaperone-mediated autophagy, micro-
autophagy, and macroautophagy, the latter
being best characterized; (3) endocytosis-me-
diated lysosomal degradation of extracellular
proteins and plasma membrane proteins.

The classical but outdated doctrine holds that
class I presented peptides are derived from
endogenous proteins by UPS-mediated deg-
radation, whereas class II presented peptides
result from degradation of exogenous proteins
in the endocytic pathway. However, as shown
in table 1, current knowledge reveals excep-

tions to these rules and interconnections be-

4.1. The autophagic pathway of antigen
processing

Autophagy is in principle a nonselective
process involved in removal of damaged or
surplus organelles, turnover of long lived pro-
teins, production of amino acids in nutrient
emergency, and cell survival and death [73].
In autophagy part of the cytoplasm becomes
surrounded by two concentric membranes.
Fusion of the outer membrane of this so-called
autophagosome with a lysosomal vesicle re-
sults in degradation of enclosed cytoplasmic
structures and macromolecules. The autopha-
gic process was already identified before the
UPS, and its contribution to intracellular

Table 1. Common and uncommon antigen processing pathways for the generation of MHC

class I and class II presented peptides.

Class Il presentation

Class | presentation

UPS pathway
Autophagic pathway

exception (cytosolic antigens)®

Endocytic pathway

. b
common (exogenous antigens)

common (cytosolic and nuclear antigens)

common (endogenous, often foreign, antigens)b exception (endogenous foreign antigens)®

. . d
cross-presentation (exogenous antigens)

2 The UPS pathway has been shown to be connected to class I loading compartments in several stud-
ies [64-66], which are not discussed in the text and reviewed in ref. 67.
b The balance between the autophagic and endocytic pathways for class II presentation is not yet fully

understood [68].

¢ Until now this pathway has been reported only twice, in conjunction with proteasomal degradation

[69,70].

d Production of cross-presented peptides proceeds via the endocytic route mostly in conjunction with
the UPS pathway, but can also proceed in a TAP- and proteasome-independent way [71] in the endo-
cytic tract. Autophagy has been implicated in cross-presentation as well [72].

tween degradation pathways. The best known
exception is the cross-presentation pathway
that enables DC and macrophages to pres-

ent exogenous antigens by class [ molecules.
Emphasis here will be on antigen processing
for class I presentation by the proteasomal
pathway because of its relevance for this thesis
(Fig. 1). First, the autophagic, endocytic and
cross-presentation pathways are addressed
briefly (Fig. 1).
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protein degradation is estimated to be as large
as that of the UPS [74]. Lately, autophagy has
attracted new research and its emerging roles
in innate and adaptive immune responses are
being unravelled [75,76]. In line with autoph-
agy eliminating intracellular pathogens, this
process has been shown to deliver viral genetic
material to endosomal TLRs in plasmacytoid
DC, thereby inducing IFNa secretion [77].
Importantly, autophagic sequestration of viral



components can fuel MHC class II presenta-
tion to CD4* Th cells [78]. Peptide supply for
class II presentation is even considered to de-
pend significantly on autophagic degradation
also of non-foreign (non-pathogenic) proteins
[79]. Although from a protein trafficking per-
spective (autophagosomes being fused to late
endosomes where class II loading occurs) it is
easier to understand the role of autophagy in
class II peptide-generation, autophagic degra-
dation may also be involved in class [ antigen
processing, for instance by its clearance of
ubiquitinated cytoplasmic protein aggregates
[80]. Recently, the first evidence for the in-
volvement of autophagy in class I presenta-
tion, intricately linked to the proteasomal
route, has been demonstrated in macrophages
for endogenous antigens from herpes simplex
virus type 1 [70]. This study suggests an inter-
section between the vacuolar and MHC class |
presentation pathways.

4.2. The endocytic pathway of antigen
processing

APC can internalize pathogens or parts there-
of, dying virally infected cells and dying tumor
cells into the endocytic pathway to provide

a representation of the protein environment
that they encounter in the periphery to T cells.
The antigens can be endocytosed by a variety
of mechanisms. Immature DC are highly effi-
cient in all forms of endocytosis, being phago-
cytosis (for bacteria and cells, taken up in the
phagosome), marcro- and micro-pinocytosis
and receptor-mediated uptake mechanisms
[60]. Degradation of the antigens is accom-
plished in diverse endosomal-lysosomal com-
partments by a large collection of proteases
with mostly broad substrate specificity and
variable pH requirements [81]. Most of the
endosomal proteases are known as cathepsins.

In a late endosomal, early lysosomal compart-

ment known as the MHC class Il compartment
(MIIC) the generated peptides encounter

class I molecules and are loaded in the class

II binding groove through exchange with the
class I invariant chain peptide (so-called CLIP)
[82]. Upon endocytosis of exogenous material,
DC will be activated and migrate to T cell ar-
eas in the lymph nodes [83]. Thus, in general,
pathogen-derived peptides produced in the
endocytic pathway will allow the initiation of a
CD4* T cell response.

4.3. Cross-presentation: cross-talk between
antigen processing pathways

For proper activation, naive CD8" T cells must
be stimulated by signal one (the MHC-pep
complex) together with costimulation pro-
vided by professional APC, such as DC. As DC
are mostly not infected themselves by viruses
(and neither often transformed), they must
acquire the antigen exogenously in peripheral
tissues and display it through a process termed
cross-presentation to CD8* T cells in the
lymph nodes [84]. Thus, cross-presentation is
the pathway by which the CD8* T cell response
can be initiated towards viral infections or mu-
tations that exclusively occur in parenchymal
cells [85]. DC are the principal cells endowed
with the capacity to cross-present exogenous
antigenic material. To this end, endocytosed
antigenic material is transferred from the
endosomal-lysosomal pathway into the cytosol
for further processing by the UPS-pathway

and MHC class I loading in the ER. Exogenous
antigenic material can, therefore, end up stim-
ulating either the CD4* T cell response and/

or the CD8* T cell response, dependent on the
intracellular antigen trafficking. The access

to the cross-presentation pathway can occur
already directly at the moment of endocytosis,
as has been observed for antigen uptake via the
mannose receptor [86], or antigens can divert
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Figure 1. Overview of the common antigen processing pathways for MHC class I and 11
presentation. A. The UPS pathway. Posttranslational modification by ubiquitination marks defective
or outlived intracellular proteins for proteolytic degradation by the 26S proteasome(see 1'). The first
degradation step is moslty accomplished by the proteasome(2) but its bypassing may happen (see ‘?’).
Cytosolic aminopeptidases and endopeptidases act on proteasomal degradation fragments(3), ren-
dering smaller peptides. Some of these peptides are translocated via the TAP transporter into the ER.
There (further) N-terminal trimming may occur(s) and class I loading takes place(6) when peptides
conform to the binding-motif of the expressed class I molecules. Finally, this trimolecular complex
then moves through the Golgi apparatus(7) and is inserted in the plasma membrane. Furthermore, the
autophagic pathway (B) and the endocytic pathway (C), as explained in the text both leading to MHC
class II presentation, are depicted. Figure adapted from reference 68.

to this pathway later. The escape of antigens
from extracellular sources in the endocytic
route to the cytosol may rely on diverse, as yet
not completely resolved, mechanisms [68].
The delivery of proteins or peptides through a
membrane pore, similar as the so-called ER-
dislocon has been proposed. Likewise, fusion
of the ER with phagosomes has been demon-
strated explaining antigen transfer [87,88].
Alternatively, peptides and/or proteins may
leak from the phagosomes into the cytosol or
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the phagolysosomal membrane may rupture.
Moreover, evidence exist for loading of class

I molecules in the endo-lysosomal compart-
ments themselves [89] allowing cross-presen-
tation independent of cytosolic transit and
without proteasomal involvement [71]. Spatial
separation of cross-presentation and endog-
enous class I presentation may have the ad-
vantages of speed and absence of competition
[90]. Importantly, recently also the autophagic
pathway has been implicated in cross-presen-



tation of tumor antigens [72]. Induction of
(macro)autophagy in tumor cells was required
for cross-presentation by DC in vitro and in
vivo. Autophagosomes were suggested to be
the antigen carriers in this study. Although the
significance of cross-presentation in maintain-
ing tolerance (cross-tolerance) and inducing
immune responses (cross-priming [84]) has
been disputed [91], it is now recognized as a
major mechanism by which the immune sys-
tem monitors the presence of foreign antigen
and transformed cells in the periphery [92].

4-4. The ubiquitin-proteasome pathway for
MHC class I antigen processing

The production of peptides presented by MHC
class I molecules is mainly achieved during the
continuous turnover of endogenous proteins
in the proteasomal pathway.

Apart from non-selective lysosome-mediated
degradation, it has become clear since the
1970s that selective ATP-dependent proteoly-
sis by the ubiquitin-proteasome system (UPS
[93]) is a key mechanism not only in cellular
quality control, through its removal of abnor-
mal and damaged proteins, but also in protein
regulation [94]. The proteasome degrades
substrates that are involved in many cellular
processes such as stress response [95], cell
cycle control [96,97], transcription activation,
apoptosis and metabolic adaptation [98,99].
Substrates destined for degradation are first
covalently modified with ubiquitin chains in
an ATP-dependent cascade mediated by the
E1, E2, and E3 enzymes [94]. Proteins tagged
with multiubiquitin chains are then selected
by the 26S proteasome holoenzyme and de-
graded in an ATP-dependent process [100].
Although the majority of proteasome-mediat-
ed protein degradation is considered to start
with substrates that are ubiquitinated, there is
accumulating recent evidence that ubiquitin-

independent degradation can be accomplished
by both the 20S and 26S proteasome and may
have been underestimated [101,102].

4-4-1. Structure of the proteasome
Proteasomes are complex multi-subunit pro-
teases, ubiquitously expressed and abundantly
present both in cytosol and the nucleus. Sev-
eral types of proteasomes exist which share a
proteolytically active core, the 20S proteasome
[103]. This catalytic core unit is a cylindrical
structure of four stacked rings. The two inner
rings each consist of seven distinct 3-subunits
(B1-7) and the two outer rings are assem-

bled from seven homologous but different
a-subunits (ca-7) together forming a central
channel in which proteolysis takes place. Thus
of each subunit two copies are present in the
20S proteasome. The channel prevents unwar-
ranted proteolysis of cellular proteins and its
access is restricted to unfolded proteins or
polypeptides [104]. Although the isolated 20S
proteasome can degrade peptides in an ATP-
independent manner, which can be used in
vitro for the assessment of proteasomal cleav-
ages in model polypeptides, it can not actively
unfold native proteins.

The 26S proteasome consists of the 20S core
unit capped - at one or both sites - with the 19S
regulatory complex [103]. The 19S cap [105] rec-
ognizes multi-ubiquitinated proteins, unfolds
these substrates by an ATP-dependent mecha-
nism, removes ubiquitin chains, and provides
a passageway for threading unfolded proteins
into the 20S core complex by opening the gate
of the channel that is otherwise blocked by
N-termini of a-subunits. The proteasome acti-
vator 28 (PA28) [105,106] is another regulatory
complex which forms a cap that, like the 19S
cap, can associate with one or both ends of the
208 core particle, which may lead to hybrid
proteasomes [107,108]. Recently, a thymus spe-
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cific proteasome type has been discovered that
incorporates a different B5-subunit [109] with a
modulated cleavage specificity. Consequently,
the class I-presented peptide repertoire in the
thymus may be significantly different which
could be important for proper positive selec-
tion of CD8* T cells [110].

4-4-2. Cleavage specificity of the
proteasome

The catalytic activities of the proteasome re-
side in three of the B-subunits, each in twofold
present in the 20S unit. The Pi1-subunit is re-
sponsible for the so-called caspase-like activity,
cleaving after acidic or small hydrophobic resi-
dues, P2 cleaves after basic or small hydropho-
bic amino acids (the trypsin-like activity) and
the B5-subunit cuts after hydrophobic residues
whether bulky or not (chemotrypsin-like activ-
ity) [1m]. Consequently, and in line with its task
to degrade a multitude of different substrates,
the proteasome has a broad cleavage specific-
ity with the capacity to cut in principle after or
before all twenty amino acids [112-114]. How-
ever, not all amide (peptide) bonds are equally
prone to be cleaved by the proteasome. For
instance the proteasome does not readily cleave
after a lysine [115]. Apart from the residues di-
rectly linking a scissile amide bond (indicated
as P1 and P1’ residues), also residues in the
N-terminal and C-terminal flanking regions,
up to eight residues, contribute to the propen-
sity of the proteasome to hydrolyze a specific
bond. Consequently, single residue differences
in epitope-flanking regions from two related
viral proteins could lead to abrogation of CTL
epitope production [116,117]. Similarly, carboxy-
terminal liberation of a CTL epitope from hep-
atitis C virus was impaired due to a mutation
in the flanking region [118]. The broad cleavage
specificity of the proteasome makes it extreme-
ly difficult to deduce algorithms capable to
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reliably predict proteasomal cleavages in silico
(see below). Proteasomes cleave in a proces-
sive manner [119], meaning that each substrate
leaves the proteasome before the next one en-
ters. The cleavage propensity of the proteasome
is stochastic in nature [112]. Thus, a certain
amide bond may be either cleaved or not in dif-
ferent copies of the same protein, mostly lead-
ing to a cleavage pattern with partially overlap-
ping degradation fragments having different
abundances and also resulting in differences
in frequencies between cleavages. The length
of proteasome degradation fragments varies
between 3 and 23 amino acids, and the median
length products of 7 to 9 aa comprise only ~15%
of the products [12,113].

Under inflammatory circumstances when
INF-y is produced, and also constitutively in
cells of lymphoid organs, proteasomes ex-
change the normal, so-called constitutive,
catalytic subunits (B1, B2 and B5) with slightly
different subunits, the immuno(i)-subunits
ip1 (also called LMP2), i2 (MECL1) and ifB5
(LMP7), giving rise to so-called immunpro-
teasomes [120-122]. Cleavage specificities of
the immuno-subunits are quantitatively, and
also slightly qualitatively, different compared
to their constitutive counterparts [123]. Con-
sequently, differences in epitope production
have been found in cells expressing either of
the subunit types. Some CTL epitopes were
found dependent on immuno-subunits [124-
126] while another epitope was only generated
in cells expressing constitutive subunits [127].
Stimulation with INF-y also has the capacity
to induce PA28. The PA28 cap, together with
the immuno-subunits, is up-regulated in DC
upon maturation [128], although the effect on
proteasome composition in DC is only very
moderate due to low turnover of proteasomes
[129]. The incorporation of the PA28 subunit
reportedly enhanced the presentation of some



viral epitopes [126,130] but its precise influence
on antigen processing is not yet completely
resolved.

4-4-3. Substrates for the UPS, rapid protein
turnover and the DRiP model

In 1996, it was proposed by Yewdell that a sig-
nificant proportion of proteasomal substrates
originate from so-called defective ribosomal
products (DRiPs) [131]. This could explain the
observation that after viral infection, epitopes
derived from long-lived viral proteins are rap-
idly, within an hour, presented [132,133]. DRiPs
include all proteins that fail to achieve a stable
conformation due to defects in transcription,
translation, post-translational modifications
or protein folding [134]. Formal proof for the
DRiPs hypothesis has not been provided yet
[135,136], but strong support has been reported
[133,137,138]. Two related studies showed that
(1) blocking protein synthesis slowed the
export of MHC class I molecules from the

ER, indicating decreased supply of antigenic
peptides [138] and (2) in acute influenza infec-
tion TAP becomes fully employed owing to the
production and degradation of viral proteins
[137]. Both studies indicate that an important
proportion of MHC class I ligands are derived
form newly synthesized proteins. The direct
linkage of translation and antigen presenta-
tion would make perfect sense for immunity
to acute virus infections, in which speed is of
extreme importance to minimize viral replica-
tion [139]. Also because a DRiP itself has not
yet been identified [140], refinements of the
DRiP-model, involving the existence of an im-
munoribosome, have been postulated [139,141].
An alternative model proposes that a subset of
nascent polypeptides is stochastically delivered
to the 20S proteasome owing to neglect by the
protein folding machinery, which would also
explain rapid peptide presentation [136]. In

mature DC, in which antigen processing and
presentation is optimized, DRiPs were found
to be stored rapidly in intracellular aggregates
that have been termed DALIS (for dendritic
cell aggresome-like induced structures) [142].
DALIS only form when protein synthesis is
ongoing and this is the place where DRiPs
become ubiquitinated [143]. Thus, DC regulate
the degradation of DRiPs by producing DALIS.
Another special source of polypeptides for
cytosolic proteolysis are the products of cryp-
tic translation [144], which include peptides
encoded by introns, intron/exon junctions,

5- and 3- untranslated regions, and alter-
nate translational reading frames [145]. These
polypeptides with no biological function may
constitute a subcategory of DRiPs [144]. Sev-
eral CTL epitopes have been demonstrated to
result from cryptic translation [146-149].

4-4-4. Generation of class I ligands,
overview

MHC class I antigen processing involves a
process that can be divided in the three most
defining events: proteolysis in the cytosol and
ER, transport of peptides into the endoplasmic
reticulum (ER), and the assembly of the class I
peptide complex.

In principle all proteins that are tagged for de-
struction are prone to be degraded into single
residues. Next to the first degradation step by
the proteasome, cytosol-resident aminopepti-
dases and endopeptidases accomplish further
protein degradation of proteasome-degrada-
tion products (length 2-22 aa, on average 7-9
aa [113]). Cytosolic aminopeptidases that have
been implicated are puromycine sensitive
aminopeptidase (PSA) [150], bleomycin hydro-
lyse (BH) [150] and leucine aminopeptidase
(LAP) [151]. Endopeptidases reportedly acting
on proteasomal products and contributing to
protein degradation are tripeptidyl peptidase 11
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(TPPII) [152] and thimet oligopeptidase (TOP)
[153-155]. Various other cytosolic (endo)pep-
tidases, like nardilysin [156], neurolysin [157],
insuline degrading enzyme (IDE) [158], exist in
the cytosol, but their involvement in protein
degradation has not yet been demonstrated.
The generation of immunogenic peptides pre-
sented by class I molecules can be considered
as a by-product of protein degradation, because
upon partial degradation a small proportion

of intermediate degradation products (length
on average 8-16 aa) escape from very rapid
destruction in the cytosol [159] by transfer into
the ER where class I loading takes place. This
is accomplished by the transporter associated
with antigen processing (TAP), a heterodimer
that translocates peptides (on average 8-16 aa
in length [160]) in an ATP-dependent fashion
(reviewed in ref. 161). In the ER, peptides can
be N-terminally trimmed by the ER-resident
aminopeptidase ERAP1/ERAAP [162,163] and,
dependent on their binding affinity, assemble
with MHC class I heavy chain and light chain
(B2-microglobulin) in a complex folding mech-
anism assisted by the chaperones calnexin, cal-
reticulin and Erps7 and the accessory protein
tapasin (reviewed in ref. 164). Peptides need to
fulfil the specific binding requirements of the
class I molecule to which they bind. Seminal
studies in the 1980s learned that residues in the
peptide function as anchors, of which the side
chains bind in pockets of the class I binding
groove, enabling peptides to bind with high
affinity to the class I molecule [4]. The combi-
nation of primary anchor residues (mostly at
position two and the C-terminal position for
the human class I molecules) and secondary
anchors in the peptide that are required for
efficient binding is defined in the peptide bind-
ing motif for each MHC/HLA class [ molecule,
which also allows the in silico prediction of
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peptide binding for any peptide with the ap-
propriate length [165].

The extensively polymorphic HLA class I mol-
ecules - each individual expresses up to six
HLA class I molecules, of which hundreds of
variants are known [166]) - can be grouped

in several HLA class I supertypes [167] with
overlapping binding motifs, but each molecule
may have its own fine specificity.

4-4-5. Generation of class I ligands, post-
proteasomal processing

For class I binding, peptides need a defined
length (8-12 aa, mostly g or 10 aa) with an-
chors at appropriate positions in the peptide.
Seminal studies have shown the absence of
C-terminal excision of model CTL epitopes in
proteasome-inhibited cells [168-170]. Together
with a failure to detect C-terminal trimming
activities in the cytosol or ER [151,159], this has
led to the current notion that the proteasome
liberates the exact C-terminus of the vast ma-
jority of class I presented peptides [144,171].
Although some CTL epitopes are directly
made by the proteasome, a significant frac-
tion of class I ligands is made as N-terminally
extended variant by the proteasome. The gen-
eration of the amino-terminus of these class I
ligands is accomplished by aminopeptidases
that reside either in the cytosol (PSA, BH, and
LAP) or the ER (ERAAP/ERAP1). Redundancy
in the function of these N-terminal trimming
enzymes occurs [172]. For instance, the SI-
INFEKL epitope from ovalbumin (OVA) that
was dependent on LAP in one study [151] was
normally presented in LAP knock-out mice
[172]. It has been shown in knockout mice
that especially the trimming in the ER by
ERAAP/ERAP: is required for the presenta-
tion of many class I ligands [173-175], although
other peptides can be (partially) destroyed

by ERAAP activity [175,176]. Contradictory



results have been reported as to which extent
ERAAP/ERAP;1 influences the anti-viral CD8*
T cell immunohierarchies [175,177]. From a
mechanistic viewpoint, peptides in the ER may
be (partially) protected from destruction by
ERAAP/ERAP:1 through their binding to class 1
molecules [178].

Cytosolic endopeptidases of which the role in
class | antigen processing has been studied are
TPPII and TOP. TPPII is a very large homo-
oligomer of 5-6 MDa consisting of subunits of
~138 kDa that are organized as two stacks of 10
dimers each that form a twisted, spindle shape
structure [103,179,180]. It was first known for its
(tripeptidyl) aminopeptidase activity removing
tripeptides from the substrate’s N-terminus
[180]. Indeed, N-terminal liberation of a CTL
epitope (from RU1) was reported to depend on
TPPII (in conjunction with PSA) [181]. It was
found that TPPII can substitute for partially
impaired proteasome function when cells are
cultured under prolonged periods with protea-
some inhibitors [182-185]. TPPII was identified
to exert a relatively low endoproteolytic activity
of the trypsin-like type next to its amino-pep-
tidase activity [183]. Accordingly, a CTL epitope
from HIV Nef was found to be produced both
at its N-terminus and its C-terminus in an
endoproteolytic manner by TPPII [186], and a
CTL epitope from influenza virus nucleopro-
tein was likewise suggested to be TPPII-depen-
dent [187,188]. The HIV Nef epitope is the first
epitope of which the C-terminus is known to
be produced independently of the proteasome.
As TPPII was found to be responsible for the
degradation of the majority of cytosolic poly-
peptides (> 15 aa) in vivo [152], it was suggested
that this enzyme may be necessary for the post-
proteasomal generation of many class I ligands.
However, subsequent studies [189-191] showed
that in general TPPII seems not to be required

for the (C-terminal) generation of CTL epitopes
(reviewed in ref. 192).

TOP is a ubiquitously expressed cytosolic me-
tallopeptidase of which the crystal structure
revealed a deep substrate-binding channel
[193]. TOP has great flexibility in substrate
recognition [194,195], and prefers to release
3-5 residues from the C-terminus of substrates
with a preferred length of 6-17 aa [196]. In
principle, this endows TOP with the capac-

ity to either destroy or generate class I ligands
dependent on the specific substrate (either

a minimal epitope or a C-terminal extended
epitope-precursor). A positive effect of TOP
overexpression on the presentation of a spe-
cific CTL epitope (from hsp6s M. tuberculosis)
has been reported [197]. Most studies, how-
ever, demonstrate a destructive effect of TOP
on the production of class I presented peptides
[154,155,198]. Overexpression of TOP (5 to 16-
fold the physiological level) reduced total class
I expression, and RNAi-mediated silencing of
TOP (modestly) enhanced class I expression
[155]. At the level of defined epitopes, destruc-
tion by TOP was only shown for one epitope
(namely SIINFEKL) [155]. A recent study, again
points to the possible role of TOP in both
antigen destruction and antigen generation,
because, using a biochemical approach, in the
cytosol both the substrates and products of
TOP were demonstrated to include peptides of
the length of class I ligands [199].

4-4-6. Major unresolved questions in class I
antigen processing

Several important issues in class I antigen
processing of endogenous proteins are still
considerably unknown and debated. First, as
discussed before, the precise origin of class I
presented peptides has not yet been unrav-
elled. Although it is apparent that rapid pre-
sentation of epitopes derived from long lived
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proteins occurs, it has not yet been established
that DRiPs [140] and/or immunoribosomes
[135] really exist and are the major source of
class I ligands. Alternative mechanisms may
account for rapid antigenic presentation by
class [ molecules [136].

Second, although the major role of the protea-
some in antigen processing is undisputed for
the majority of class I ligands, a vast number
of studies have indicated that there might

be a significant fraction of class I-peptides
that is generated independently - or partially
independently - of the proteasome by other
endopeptidases. Benham et al. [200] observed
that proteasome inhibitor insensitivity was
allele-specific. In particular HLA-A3 and -An
matured efficiently, whereas other alleles test-
ed were not resistant to inhibitor treatment,
suggesting that a non-proteasomal protease or
peptidase may preferentially generate peptides
with basic C-termini binding in the acidic
F-pocket of the HLA-A3/Aun-binding groove.
Likewise, Luckey et al. observed a broad resis-
tance to proteasome inhibition of cell surface
expression of 13 human class I alleles [201].
They also observed relatively high levels of re-
expression of class [ molecules accommodat-
ing basic C-termini (HLA-A3, -A68, -B2705),
but several other alleles, in particular those
that bind a broad array of C-termini, displayed
the same behaviour. In another study, compar-
ison by mass spectrometry of the cell surface
HLA-B2705-displayed peptide-repertoire un-
der conditions with and without proteasome
inhibition revealed that the repertoire was
mainly unaffected and demonstrated the com-
plete range of HLA-B2705 binding C-termini
(including basic aa) suggesting a role for at
least one non-proteasomal (endo)peptidase
with a broad range of specificities [202]. It was
shown that this peptidase is not TPPII [191].
Proteasome inhibition has been shown to
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have indifferent effects on the presentation of
defined epitopes [187,188,203]. Treatment of
cells with proteasome inhibitors even led to
enhanced presentation of several defined epi-
topes [204-208]. Taken together, these results
strongly suggest the existence of endoproteo-
lytic activities that complement the protea-
some in the generation of the C-terminus of
class I ligands. However, by using as primary
tool proteasome inhibitors that are known

to be leaky, especially for the tryptic-activity
of the proteasome [114], these studies do not
proof the existence of proteasome-indepen-
dent generation of class I ligands. Only one
defined epitope from HIV Nef was found to be
made in a non-proteasomal manner by TPPII
[186]. However, subsequent studies rendered a
broad role of this enzyme in the generation of
class I ligands unlikely [192]. Thus, the extent
of non-proteasomal processing and the iden-
tity of the alternative endopeptidases that are
involved remain to be explored.

A third open issue is the extent to which cy-
tosolic peptides are protected by chaperones
from rapid destruction in the cytosol [144,209].
The group of Shastri has shown that post-pro-
teasomal N-terminally extended variants of the
OVA SIINFEKL epitope bind to the chaperone
TRiC [210], which may increase the efficiency
of presentation. In a more recent study, they
showed that both N-terminal and C-terminal
pre-proteasomal processing-intermediates
from the same SIINFEKL-epitope are associ-
ated with the hspgoa chaperone [211]. These
findings raise important questions. Because
only one model CTL epitope was studied, the
prevalence of the association of processing-
intermediates with chaperones is not clear, and
the nature of the pre-proteasomal intermedi-
ates is still unresolved as well [209].



Scope of the thesis, mechanisms of
antigen processing:

In chapter 6, the non-proteasomal process-
ing leading to class I presentation is elabo-
rated. Alternative cytosolic endopeptidases
that liberate the C-terminus of CTL epitopes
were identified. Nardilysin is for the first
time implicated in the C- and N-terminal
generation of defined CTL epitopes. TOP

is shown to function as a C-terminal trim-
ming enzyme, generating a CTL epitope by
making the final C-terminal cut. The roles of
both enzymes in class I antigen processing
in general are investigated.

5. Immunity to cancer and tumor im-
munoediting

From a historical viewpoint, the study of im-
munity to malignancies is deeply rooted in the
treatment of tumors [212]. Based on a single
observation in a patient that recovered from
sarcoma after he had developed severe erysip-
elas, at the end of the 19th century, the New
York surgeon William Coley started to treat
cancer patients with bacterial vaccines result-
ing in sporadic regressions [213]. It was only
much later that the underlying mechanisms,
inducing innate immunity, were explained at
the molecular level by the discovery of bacte-
rial endotoxins [214] and tumor necrosis factor
[214]. In the 1950s, studies of chemical induced
tumors in syngeneic mice [215] definitively
indicated the existence of tumor-specific an-
tigens and, thus, recognisability of tumors by
adaptive immunity. This raised hope for a well-
grounded immunotherapy of cancer. These
findings also instigated Burnet [216,217] and
Thomas [218] to independently propose the
theory of immunosurveillance of cancer, spec-
ulating that spontaneously arising cancer cells

are often destroyed or kept in check by the
immune system. A temporary setback again in
the tumor immunology field was caused in the
mid-1970s by a study of Hewitt and colleagues
that showed absence of immunogenicity of
spontaneously arising tumors [219]. However,
several years later the group of Boon found
that spontaneous murine leukemia cells pos-
sessed weak antigens that only led to rejec-
tion after the immune system was challenged
with related more immunogenic tumor cells
[220]. Based on this work and allowed by new
insights in the basics of antigen presentation
[1,2], in the early 1990s the same group identi-
fied by a laborious genetic approach the first
mouse [221] and human [5,6] tumor antigens
and their encoded CTL epitopes. Since then,
the identification of tumor-specific antigens
and insights in immunity to cancer in general
has progressed tremendously.

Current knowledge tells that by the time can-
cer is clinically detectable, it likely has already
been adapted to the host immune recognition
and attack, so that it effectively evades any
immune response. The concept of immuno-
surveillance - which has been doubted for a
long while because no differences in tumor
development were found between athymic
nude mice (that later were found to not com-
pletely lack functional T cells) and syngeneic
wild-type mice [222,223] - has been substanti-
ated only recently [224,225]. For instance, a
deficiency in IFNy enhanced host susceptibil-
ity to both chemically induced and spontane-
ous tumors [226]. In another mouse study a
genetic trait was serendipitously found that
conferred resistance to a highly aggressive
sarcoma cell line [227]. This was dependent
on innate immunity infiltrates of natural
killer cells, macrophages, and neutrophils that
independently killed the tumor cells [228].

Immunosurveillance is now seen as a phase
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in a broader evolutionary process of the tu-
mor as reaction to immune pressure, called
cancer immunoediting [229]. Immunoediting
ranges from tumor recognition and elimina-
tion (through immunosurveillance) to tumor
sculpting (by immunoselection) and escape.
Both innate and adaptive cellular immunity
takes part in tumor suppression and tumor
shaping in a complex process influenced by
multiple variables such as the tumor’s type,
anatomic location, stromal response, cytokine
profile and inherent immunogenicity [224]. In
immunoediting, before escape, an equilibrium
phase is envisioned in which occult tumors are
kept in check by the immune system during a
period of latency, previously also called tumor
dormancy [230]. A study reporting the occur-
rence of metastatic melanoma in two allograft
recipients that had received kidneys from the
same donor who had suffered from primary
melanoma 16 years before her death, indeed
strongly suggests an apparent equilibrium
phase in the donor [231].

Often - it is not known how often - tumors
escape from naturally induced immune pres-
sure. Obviously, this also happens under cir-
cumstances of non-optimal therapeutically
induced immunity. Numerous immune eva-
sion mechanisms, all affecting the interplay
of tumor and immune system, are known that
contribute to escape from natural or thera-
peutically induced anti-cancer immunity (re-
viewed in ref. 232).

The tumor’s inherent low capacity to appropri-
ately stimulate the immune system, primarily
caused by the absence of a proinflammatory
environment and costimulatory context [233],
but also often by a low density of (cancer-
specific) MHC-peptide complexes, will lead to
T cell ignorance, anergy or deletion, together
called peripheral tolerance [234].
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Cross-presentation of tumor antigens and
subsequent T cell activation, needed to induce
robust tumor immunity, will fail when a too
low number of tumor cells are dying (either
by apoptosis [235] or necrosis) or when DC are
not appropriately matured [236]. Although
(dying) tumor cells may sometimes inher-
ently express danger signals, such as uric acid
[237], it has now become increasingly clear
that mostly the tumor microenvironment
both actively (e.g. by secretion of TGF-f and
IL-10) and passively suppresses the induction
of tumor immunity (reviewed in ref. 238). Es-
pecially the maturation of DC is mostly lack-
ing or incomplete in the tumor environment
[239,240]. Stimulation by immature DC will
lead to T cell tolerization [236,241] and may
induce regulatory T cells that often play an
immune suppressive role in cancer immunity
[29,242]. Another mode of suppression is ac-
complished by tumors that express high levels
of PD-L1 interacting with inhibitory B7-family
member PD-1 on activated and exhausted T
cells [243]. Moreover, tumor sculpting, either
caused by natural immunity or by therapeuti-
cally induced immunity, may result in loss of
tumor antigens [232,244] and possibly even
antigenic drift [245], a mechanism common in
viral immunity. Finally, lesions in molecules of
antigen processing and presentation pathways,
such as class I and TAP downregulation, often
occur in tumors, highly likely as a result of im-
mune pressure [105,246].

6. T cell mediated immunotherapy
for cancer, modalities, and basic
requirements

Immunotherapy of cancer by T cells can be
divided in passive adoptive T cell transfer and

active immunostimulatory vaccination strate-



gies (reviewed in refs. 247-249). Subsequently,
adoptive transfer and active vaccination strate-
gies can be categorized in antigen-non-defined
or antigen/epitope-defined forms.

6.1. Adoptive transfer of undefined tumor-
specific or defined epitope-specific T cells
The only routine immunotherapy for cancer in
the clinic to date is the infusion of donor lym-
phocytes after allogeneic stem cell transplanta-
tion in leukaemia. This therapy is curative in
significant percentages of patients [10]. The
broad donor-derived CD4* and CD8* T cell
repertoire targeting a diversity of undefined
(allogeneic) leukaemia antigens is exploited

in this setting. Remarkable clinical responses
were observed in metastatic melanoma pa-
tients after adoptive transfer of autologous
tumor-specific infiltrating lymphocytes (TIL)
that were ex vivo expanded to high numbers
[250]. The non-myeloablative conditioning
regime in this trial may have contributed to
the further expansion in vivo of the adoptively
transferred T cells, by making space and also
by the depletion of negative regulatory CD4*
T cells or so-called myeloid derived suppres-
sor cells [251,252]. Furthermore, the CD4* T
cell component in the transferred TILs has
likely helped the memory CD8* T cell popula-
tion [250]. Because it is often hard to expand
tumor-specific CTL at high numbers ex vivo,
efforts are undertaken to introduce tumor-
epitope specific T cell receptors (TCR) in
peripheral blood lymphocytes (PBL) of the
patient [253]. Promising clinical results were
reported in patients with metastatic mela-
noma who were given autologous PBL retro
virally transduced with the TCR specific for the
well known MART-1(27-35) HLA-A2-presented
epitope [254]. TCR gene transfer has the ad-
vantage that the problem of expanding enough
tumor-specific T cells is bypassed. However,

targeting a single epitope may lead to antigen
loss variants. Therefore, adoptive transfer of
PBL transduced with multiple ‘off the shelf’
TCRs targeting CTL epitopes in different TAA
is a logical and promising next step.

6.2. Vaccination strategies with undefined
antigens

Irradiated autologous tumor cells or allogeneic
HLA-matched tumor cell lines that are modi-
fied to express GM-CSF, IL-2 and other cyto-
kines or costimulatory molecules have been
used as vaccines.

In various clinical trials this type of vaccine has
induced immune responses [255] and clinical
responses have been reported [256-259]. How-
ever, several disadvantages are connected to
this strategy like the suboptimal direct antigen
presenting capacity of tumor cells, absence

of HLA class II presentation, uncertain cross-
presentation, and often the lack of autologous
tumor samples needed for preparation of the
vaccine. Other forms of vaccination with the
full potential of undefined antigens from the
targeted tumor are tumor lysates (loaded on
DC [260]), heat shock proteins (HSPs) derived
from the tumor and DC transfected with am-
plified tumor mRNA [261,262]. The main ad-
vantage of vaccination with autologous tumor
cells, or tumor derived lysates, HSPs or mRNA,
is the presence of the full undefined repertoire
of relevant tumor antigens, including those
with mutations that are unique in the individ-
ual tumor. In this sense the strategies applying
autologous tumor material are all personalized
non-standardized vaccines that have to be pro-
duced for each patient separately. These thera-
pies aim to induce T cell responses against as
much as possible (undefined) tumor-specific
HLA class I (and in certain settings HLA class
II) presented peptides.
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6.3. Vaccination strategies with defined full
length tumor associated antigens
Vaccinations with recombinant viral vectors

or naked DNA plasmids encoding defined full
length tumor associated antigens and vaccina-
tion with recombinant tumor proteins them-
selves have been applied in vaccines aiming

to raise humoral and T cell responses against
the tumor expressing the antigen. Likewise,
DC electroporated with mRNA encoding full
length TAA are currently being optimized for
clinical testing [263]. Vaccination strategies
aiming to raise immunity to a full length an-
tigen have the advantage that the HLA haplo-
type of the individual patient does not need to
be considered. On the other hand, and apart
from the problems related to each mode of de-
livery (virus, DNA, mRNA, protein; reviewed
in refs. 247 and 248), vaccination with single
whole antigens has the important drawback
that vaccine induced immune pressure may
induce escape through antigen loss variants of
the tumor. In principle this could be circum-
vented by vaccination with multiple full length
defined antigens (either in the form of DNA,
mRNA [263] or protein).

6.4. Vaccination strategies with defined T
cell epitope containing synthetic peptides
Since the first identification of a defined tu-
mor-specific CTL cell epitope [6], the concept
of immunizing cancer patients with synthetic
peptide epitopes has been elaborated. Numer-
ous clinical peptide vaccine trials have been
conducted with sometimes promising results.
The relatively poor immunogenicity of pep-
tides per se requires them to be injected either
together with adjuvants or loaded on DC
(reviewed in refs. 264 and 265). Further opti-
mization of the peptide vaccination strategy
is envisaged [266]. It is now firmly established
that for robust and persistent CD8* T cell re-
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sponses a concomitant CD4* T helper response
is needed [52,267-269]. Therefore, HLA class II
presented tumor-specific epitopes are prefer-
ably incorporated in peptide vaccines to pro-
mote the CTL mediated tumor destruction.
Important advantages of peptide vaccination
are its defined nature and the easy manner to
synthesize peptides by good manufacturing
practice (GMP), enabling peptide vaccines to
be used as pre-fabricated ‘off the shelf’ vac-
cines. Furthermore, modifications aiming at
increasing the immunostimulatory context of
the vaccine - like conjugation with synthetic
Toll like receptor (TLR) ligands [270] - can
easily be accomplished. Immunizations with

a single (or only a few) CTL epitope(s) may
induce outgrowth of antigen loss variants of
the tumor. Therefore, peptide vaccines should
preferably contain multiple HLA class I pre-
sented CTL epitopes derived from different
target antigens together with a tumor-specific
HLA class Il presented CD4* T helper epitope.
The use of longer (e.g. 30-mer) epitope-con-
taining vaccine peptides that require process-
ing which can only be accomplished efficiently
by professional antigen presenting cells (DC)
has been shown beneficial [271-273].

7. Tumor associated antigens and
their classification

For immunotherapeutic purposes the most
important criteria to classify tumor associated
antigens (TAA) are: (1) broadness of expression
(shared between patients and/or cancer types),
(2) tumor specificity (absence of expression

in healthy tissues) and (3) the function of the
TAA in the oncogenic process and/or cancer
survival. Additionally, (4) possible changes in
turnover kinetics of the TAA are important to
consider [274], as e.g. in the case of p53 [275].



With respect to broadness of expression, there
is a first rough division in unique tumor anti-
gens that are restricted to only an individual
tumor in one patient — which for obvious rea-
sons restricts their immunotherapeutic appli-
cability - and the antigens that are shared be-
tween cancer patients. When combined with
the criterion of tumor-specificity, this results
in the following often used classification.
Unique tumor-specific antigens are resulting
from mutations occurring in a single tumor

of one patient. The first example of a unique
point-mutation was found in the melanoma as-
sociated mutated antigen-1 (MUMI1) gene [276]
(for more examples, see listing in ref. 277).
Shared lineage-specific differentiation anti-
gens are expressed in both the tumor and its
original healthy tissue. Examples are the mela-
noma/melanocyte antigens (MART-1/Melan-A,
gp100, tyrosinase, TRP2) and prostate antigens
(PSA, kallikrein 4).

Shared tumor-specific antigens are expressed
in different tumors but not in healthy tissues.
The most prominent among these TAA is the
group of so-called cancer-testis antigens like
the MAGE, BAGE and GAGE families and
NY-ESO-1, which in normal tissues are only
expressed in testis and/or placental tissues.
Further examples are viral oncoproteins (e.g.
HPV16 E6 and E7) and the fusion-proteins
encoded by translocated genes (e.g. BCR-ABL).
Shared antigens overexpressed in tumors are
formally not tumor-specific but have a much
higher expression level in tumors. Often these
TAA are widely expressed in different cancer
types, like hTERT, survivin and PRAME. Oth-
ers, like carcinoembryonic antigen (CEA) and
MUC1, own a more restricted expression pat-
tern. A special case in this category of TAA is
P53 because this oncoprotein is mutated in a
variety of tumors and apart from being over-
expressed can also show enhanced turnover,

rendering it possibly applicable for immuno-
therapy [275]. Moreover because of its rapid
degradation in normal cells, there appears to
be no tolerance of p53 at the level of CD4* T
cells [278].

Some antigens can be positioned in between
two of the categories; e.g. PRAME is widely
expressed in various cancer types and, in con-
trast, in healthy tissues only at very low levels
in adrenals, ovaries and endometrium, next to
its expression in testis and placenta [279].
Further extensive listings of TAAs can be
found in the literature [280] or in databases

(e.g. at www.cancerimmunity.org).

7.1. Strategies for the identification of TAA
Identification of TAA can be accomplished
with different experimental strategies [281-
284]. The discovery of MAGE-1 [5] in the early
1990’s as the gene encoding the first tumor-
specific CTL epitope [6] is one of the pillars of
tumor immunology. An autologous melanoma
specific CTL line was used to find the tumor
specific cDNA that encodes the recognized
CTL epitope from a cDNA library derived from
the melanoma. Subsequently, the minimal
CTL epitope was identified by cDNA trunca-
tion and peptide recognition techniques.

This classical strategy of expression profiling,
which is often revered to as ‘direct immunol-
ogy’ because it is based on natural immunity,
has since then been applied for the identifica-
tion of (among others) the MAGE, BAGE and
GAGE families [285,286], Melan-A/MART-1
[287,288], tyrosinase [289] and gp10o [290].
In a biochemical strategy, the CTL clone can
also be used to identify the HPLC-fraction of
peptides isolated from the tumor cell surface
that contain the epitope. Subsequently, mass
spectrometry can identify the precise epitope
sequence, and databank searches may lead to
the identification of novel TAA [285-290].
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A key characteristic of both strategies is the
use of an autologous tumor specific CTL as the
selection tool. The unknown tumor specific
CTL epitope is used as handle to identify the
source protein, and, therefore, tumor protein
discovery and T cell epitope identification are
intertwined in these strategies.

The serological identification of antigens by
recombinant expression cloning (SEREX)
strategy defines putative tumor antigens using
patient-derived serum IgG antibodies to screen
proteins expressed from tumor-derived cDNA
libraries [291]. Tumor antigens identified by
SEREX will likely contain CD4* T helper cell
epitopes because isotype switching from IgM
to IgG implies the presence of specific help
from CD4* T cells. The cancer-testis antigen
NY-ESO-1 [292] is only one example of a large
array of (putative) tumor associated antigens
that were identified by SEREX methodology
[282].

With the rise of genomics and in silico data
mining techniques, transcriptome analysis is
currently used to detect tumor-specific expres-
sion profiles directly at the genetic level with-
out the need for patient derived T cells or se-
rum (in more detail reviewed in ref. 293). Vari-
ous methods are used, like classical mRNA/
c¢DNA subtraction techniques, representation-
al differential analysis (RDA) [294,295], dif-
ferential PCR display and comparison of cDNA
profiles obtained by serial analysis of gene
expression (SAGE) [296], DNAChip/microar-
ray analysis [297-299] and expressed sequence
tag (EST) databases. These studies often aim
to identify expression profiles that can be used
for the improved diagnosis [299], classification
[297,298] or prognosis [300] of cancer. Tumor-
specific expression of identified transcripts has
to be confirmed at the protein level before im-
munogenicity studies are planned. The advent
of the complete human genome sequence has
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enabled recent studies identifying mutational
profiles in various cancers [301,302] that reveal
the number and uniqueness of cancer-related
mutations (within and between classes of
cancer). Importantly, each mutation may give
rise to (unique) cancer-specific T cell epitopes
[303].

7.2. Selection of TAA for T cell immuno-
therapy

Which tumor associated antigens are most
suitable as immunotherapeutic target? And
how many TAA should be targeted simulta-
neously? These important questions are still
being debated. First, the ideal tumor antigen
target is widely expressed in different tumor
types, enabling ‘off the shelf” vaccines that
are applicable in broad patient populations.
Secondly, the function of the targeted TAA

in the oncogenic process is highly relevant,
although for several TAA not yet known. The
phenomenon of immune escape by selection
of antigen loss variants of the tumor is far
beyond only theoretical consideration [304-
306]. Therefore, TAA that either play a role in
the oncogenic process or promote cancer cell
survival are favourable targets. In this respect,
the lineage specific differentiation antigens
are lower ranked tumor antigens than purely
oncogenic proteins like the HPV16 derived E6
and E7 proteins and the BCR-ABL fusion pro-
tein [307,308]. Overexpressed anti-apoptotic
proteins like survivin are interesting because
down regulation or loss of such TAA would
severely impede the growth potential of the
tumor cell [309,310]. Likewise, the telomerase
catalytic subunit (hTERT) is involved in the
pathogenic process [311] and has a reported
anti-apoptotic role [312]. Another tumor anti-
gen for which a role in tumorigenesis and me-
tastasis has been reported is PRAME [300,313-
315]. These tumor antigens (survivin, hTERT



and PRAME) are widely expressed in different
tumor types and constitute also for this reason
attractive tumor antigens. However, it can not
be excluded that therapy-induced immune
pressure may give rise to selection of antigen
loss variants, even of anti-apoptotic or tumor
promoting proteins, as has been observed

in patients with melanomas expressing the
melanoma inhibitor of apoptosis protein (ML-
IAP) [255]. A third important consideration

is the immunogenicity of the targeted tumor
antigen. Tolerance to the non-mutated lineage
specific differentiation antigens (like gp1oo,
tyrosinase and MART-1/Melan-A), which are
self proteins, may severely hamper an effec-
tive immune response against these antigens
[316,317]. Such tolerance is likely affecting the
immunodominant epitopes more than sub-
dominant T cell epitopes, which is a reason
why the latter category of epitopes in these
differentiation antigens has attracted consider-
able attention (see below). To circumvent both
the selection of antigen loss variants and the
tolerance to differentiation antigens, targeting
of multiple antigens by polyvalent vaccines

(or multi-specific adoptive transfer) is essen-
tial. An additional advantage is that the full
potential of the anti-tumor response in the
patient is better exploited. The rule here would
be: targeting more antigens is better. Lately,
driven by these problems, different groups
have made an argument in favour of person-
alized immunotherapy targeting the unique
antigens caused by mutations [301] that are
often only present in the tumor of one patient
[303,318,319]. These tumor antigens are purely
tumor specific, and therefore not tolerogenic,
and are believed to be often crucial to the on-
cogenic process [277,303]. Furthermore, the
natural immune response in some patients was
found to be stronger against the unique anti-
gens than the response against shared antigens

[320]. Immunotherapies against non-defined
tumor antigens such as vaccination with DC
transfected with tumor-derived mRNA [262]
or tumor-lysate pulsed DC are in fact personal-
ized therapies that target both the shared and
the unique antigens of each patient. However,
the application of a defined patient-tailored
immunotherapy will require identification of
the unique antigens at the epitope level sepa-
rately for each patient and meets with tremen-
dous technical and logistic difficulties [318].

8. Identification of tumor-specific T
cell epitopes

To date, a total of 180 HLA class I restricted
CTL epitopes and 75 HLA class II restricted

T helper epitopes in shared tumor associated
antigens have been reported (according to the
listing at www.cancerimmunity.org; update
September 2006). Although this number of T
cell epitopes seems a reasonable starting point
for the design of defined immunotherapeutic
vaccines, there is strong skewing to epitopes
derived from antigens expressed primarily

in melanoma and 75 (42%) of the HLA class

I epitopes are presented in HLA-A2, leaving
epitopes restricted by other HLA class I al-
leles severely underrepresented. This severely
hampers the design and development of de-
fined epitope-based vaccines targeting other
tumors than melanoma, especially in patients
lacking HLA-A2. Furthermore, the identifica-
tion of HLA class II peptides recognized by T
helper cells, which are indispensable as help to
mount efficient CD8* effector T cell responses
[52,267-269], has lagged behind (Fig. 2).
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8.1. Identification of CTL epitopes starting
with CTL of unknown specificity

The discovery of CTL epitopes has proceeded
along two different experimental lines: either
starting with a pre-existing CTL clone with
unknown specificity (direct immunology), or
departing from a predicted epitope (reverse
immunology). In the first years all epitopes
were identified by the direct immunology
approach of expression cloning (Fig. 2). A
patient-derived autologous tumor-specific
CTL clone recognizing an unknown epitope
was used to screen a tumor derived cDNA
library (mostly from melanoma) which is
expressed in antigen-negative (tumor) cells.
Subsequently, recognition of truncated vari-
ants of the epitope-encoding cDNA and
mapping of synthetic peptides revealed the
minimal epitope sequence. In this procedure,
next to the unknown CTL epitope, the equally
unknown source tumor antigen was often dis-
covered together with the epitope (see above)
[285-290]. The major drawback of this labori-
ous strategy is the dependence on autologous
tumor-specific T cells that are either generated
in mixed lymphocyte tumor cultures (MLTC)
or obtained as tumor infiltrated lymphocytes
(TIL). Such T cell responses are generally
scarce and the induction in MLTC is depen-
dent on the availability of autologous tumor
cell lines, which have been mainly obtained
from melanomas. Furthermore, CTL responses
from MLTC or TIL are per definition directed
to immunodominant epitopes. In recent years,
the direct approach has been adapted for the
identification of epitopes in known antigens
without the need for autologous tumor cell
lines. As elaborated by Chaux et al., TAA arti-
ficially expressed in DC were used for the gen-
eration of autologous CTL clones specifically
recognizing unknown epitopes derived from

the transduced antigen. Peptide-mapping
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experiments then again revealed the exact
epitope sequence [321]. By virtue of the natu-
ral CTL response that is used this method as
well will result in the identification of mostly
immunodominant epitopes, and a systematic
search for novel epitopes is impossible.

An alternative biochemical approach for
defining the unknown specificity of tumor-
reactive CTL, which are either induced against
tumor cells [322,323] or e.g. against peptides
eluted from tumor cells [324], starts with the
immuno-affinity purification of the HLA class
I - peptide complexes from the relevant tumor
cell. The peptides are subsequently isolated
and fractionated by (multiple rounds of) high-
performance liquid chromatography (HPLC)
to reduce the complexity of the peptide pool.
Pinpointing the fraction that contained the ep-
itope through recognition by the CTL together
with tandem mass spectrometry (MS/MS)
mediated sequencing of the peptides in that
fraction then identifies the precise peptide
sequence [322-327]. Subsequently, database
searches may identify the unknown source an-
tigen [324-327]. A particular advantage of this
strategy is that it may identify post-transla-
tionally modified epitopes [328,329] (or special
epitopes generated by protein/peptide splicing
[283,284,330]). Still another way to analyse the
specificity of pre-existing CTL clones is the
application of synthetic peptide libraries to
search for reactive mimicry epitopes. The nat-
ural epitope may subsequently be identified by
screening recognition of substitution analogs,
defining a recognition motif and database
searching [331]. The combination of library
screening-deduced T cell recognition motifs in
the peptide and MS/MS sequencing of eluted
peptides has also been exploited to identify a
novel mouse CTL epitope [326].



8.2. Identification of CTL epitopes by
reverse immunology

Since the first finding of HLA specific pep-
tide binding motifs in the early 1990s [4], it is
possible to screen known TAA for contained
peptides that are predicted to be cell surface
expressed. Predicted HLA class I ligands can
be tested for their immunogenicity by raising
CD8* T cells against the exogenously loaded
peptide. Subsequently, peptide-specific CTL
are tested for their recognition of tumor cells
expressing the relevant TAA and restriction
element to prove the natural presentation of
the CTL epitope. The basis of this indirect
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ogy strategy. The advantage of reverse immu-
nology is that it is the only strategy that can
be used to systematically search for novel epi-
topes, including subdominant ones, in known
proteins and presented in any HLA molecule
of interest. Both the prediction phase and

the validation phase of reverse immunology
have their own difficulties and weaknesses,
although significant improvements have lately
been implemented.

8.2.1. Prediction phase of reverse

immunology
The prediction phase of the reverse immunol-
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Figure 2. Numbers of CTL and T helper epitopes from shared tumor associated antigens iden-
tified by direct immunology versus reverse immunology since 1991. Source of the data are T cell
epitope listings provided by the Academy of Cancer Immunology (www.cancerimmunity.org; update

2006).

strategy for CTL epitope identification, which
was coined ‘reverse immunology’, is that an
initial epitope-prediction-phase is followed by
an epitope-validation-phase (a flow scheme is
presented in Fig. 3). Nowadays, approximately
40% of the CTL epitopes in shared tumor as-
sociated antigens (Fig. 2), and also numerous
CTL epitopes in viral and microbial antigens,
have been identified via the reverse immunol-

ogy approach takes advantage of our growing
knowledge concerning the intracellular gen-
eration of peptides presented by HLA class
molecules as outlined before in paragraph 4.4
and reviewed recently [144,171,332,333]. The de-
termination of peptide binding motifs for the
prevalent HLA class I molecules has allowed
the in silico screening of TAA by computer
algorithms for aa sequences with predicted
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binding capacity. Various HLA class I binding
algorithms have been developed of which the
BIMAS algorithm [165] and the SYFPEITHI
algorithm [334] are freely accessible and cur-
rently the most widely used (algorithms are
listed in Table 2 and see refs. 335 and 336).
The algorithms employ slightly different pep-
tide binding motifs and different arithmetic
methods, based on either the contribution to
binding of each aa in a peptide independently
or the overall peptide structure, but are all
extremely valuable to select the small percent-
age of peptides with potential binding capacity
[337]. Guidelines for validation and compari-
sons between the different algorithms have
been made [337,338], and significant differ-
ences in the predictions often occur (exempli-
fied in chapter 7). Therefore, from a practical
point of view, the combination of two or more
methods is advisable to reduce the number of
non-selected peptides with binding capacity.
Experimental verification of actual binding ca-
pacity is preferred, because the ranking of the
predictions does not perfectly correlate with
the actual binding measurements and false
positive prediction of binding occurs (exempli-
fied in chapter 7 and chapter 4 [339]).

HLA class I binding assays exist in various
forms (briefly reviewed in chapter 4 and ref.
293), and can be divided on the one hand in
cell free assays (using soluble HLA) versus cel-
lular assays using HLA class [ molecules on the
cell surface (chapter 4 [339]), and on the other
hand in competitive assays (chapter 4 [339])
(resulting in semi-quantitative data) versus
assays that do not use a (labelled) reference
peptide and are therefore quantitative. Next to
verification of binding capacity, the stability
of peptide binding can be measured. Highly
stable peptides have been shown to be more
immunogenic [340], because they allow a sus-
tained interaction with the T cell.
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Scope of the thesis, development of
binding assays:

In chapter 4 [339], peptide binding assays
were developed for 13 prevalent HLA class I
molecules. Using B-LCL expressing the class
I molecule of interest and a fluorescently-
labeled class I ligand with proven high af-
finity as reference peptide to compete with,
reliable competition-based cellular assay are
now available for easy measurement of pep-
tide binding.

8.2.2. Improved CTL epitope prediction by
verification of proteasomal processing and
TAP translocation

The tumor-specific CTL epitopes that were
identified by reverse immunology in the first
years (until 2001) were predicted by taking into
account only the HLA class I peptide binding
capacity [341-344]. However, it was observed
that numerous CTL that were raised against
high affinity binding peptides did not recog-
nize tumor cells expressing the relevant TAA
and restriction element [345-349]. A major rea-
son for this was the lack of intracellular gen-
eration of predicted peptides by the processing
machinery. Thus, a refining of the epitope pre-
diction procedure was needed.

Scope of the thesis, improved prediction
of CTL epitopes:

In chapter 2 [350], the in vitro proteasome-
mediated excision of class I binding peptides
from their flanking regions was incorporated
in the epitope prediction procedure. This
allowed the selection of four C-terminally
liberated peptides from 19 high affinity HLA-
A2 binding peptides in TAA PRAME. These
four peptides were proven to be naturally
presented epitopes. The other peptides were
considered to be likely not produced intra-
cellularly, avoiding laborious T cell induc-



tions against these peptides. The same strat-
egy was followed in chapter 5 [307] to iden-
tify CTL epitopes in the fusion regions of the
BCR-ABL fusion proteins expressed in CML
and ALL. Putative CTL epitopes were found,
of which one was proven to be expressed.
Some published epitopes were made likely to
be not expressed.

This optimization of the prediction procedure
(chapter 2) has greatly enhanced the accuracy
of epitope predictions and has since then been
applied successfully in studies identifying CTL
epitopes in various tumor associated antigens
(see e.g. chapter 5 [307] and refs. 351-354) and
autoimmune antigens [355-357].

Four computer algorithms, which are based
on different computational methods, are cur-
rently freely available via the internet for the
prediction of proteasomal cleavages: MAPPP/
FragPredict [358], PAProC [359], NetChop

[360], and Pcleavage [361] (Table 2). Protea-
somes cleave abundantly at certain sites and
cleave much less abundant or do not cleave at
other sites. However, due to the broad specific-
ity of the proteasome, the stochastic nature of
proteasomal digestion [112,360] (overlapping
fragments are often found in the experimental
systems [112,307,350]), and (partly) undefined
influences of distant residues on cleavage ef-
ficiency, a qualitatively and quantitatively accu-
rate prediction of proteasomal digestion sites is
very complicated. In general, predictions may
still result in a high number of improperly pre-
dicted cleavage sites [350]. Therefore, experi-
mental determination of proteasome-mediated
digestion is needed to reliably select peptides
that are C-terminally liberated (see also below).
An extra level of complexity here is the differ-
ent forms in which proteasomes occur. Some
CTL epitopes are preferentially made by immu-
no-proteasomes [362], which are expressed in
professional antigen presenting cells [128] and
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Figure 3. Flow chart of the reverse immunology approach for CTL epitope identification.
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contain variant catalytic subunits with slightly
different catalytic activity [123], and other epi-
topes are preferentially made by constitutive
proteasomes [127,363], although most epitopes
are liberated by both types of proteasomes. To
cover both categories of epitopes, predictions
and experimental verifications should use (in
silico and in vitro, respectively) both types of
proteasomes. Instead of first performing HLA
class I binding assays [350], the proteasomal
digestion pattern can also be determined first
[351]. This reflects the physiological mechanis-
tic order and has the advantage that binding of
only those peptides that are C-terminally liber-
ated by a major cleavage site needs to be veri-
fied experimentally.

Translocation of peptides into the ER via TAP
is also an important event in the class [ antigen
presentation pathway. However, the specificity
of the TAP heterodimer for peptides is much
less selective because peptides meant to bind
in all possible HLA class I molecules should
be translocated into the ER. Specificity of TAP
even seems to have evolved to fit the specificity
of the proteasome [364]. Despite that, differ-
ences in translocation efficiencies between
peptides exist [160] and TAP affinity has im-
pact on HLA class I presentation [365]. Thus
reasoning, in silico TAP translocation predic-
tion algorithms have been developed [366-368]
(Table 2) to incorporate TAP translocation
efficiency in the overall HLA class I ligand pre-
diction. However, a problem related to deter-
mination of TAP translocation efficiencies (in
silico or in vitro) is the amino-terminal trim-
ming that can occur both in the cytosol and

in the ER. Therefore it is not a priori known
which peptides should be tested. In general,
TAP translocation efficiency, either predicted
or experimentally verified, has until now been
incorporated in only few reverse immunology
studies identifying novel CTL epitopes [356].
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Recently, five integrated in silico CTL epitope
prediction tools have been developed that com-
bine predictions of proteasomal cleavages, TAP
translocation and HLA class [ binding [115,369-
373] (see Table 2 and further discussed in chap-
ter 7). In addition, an algorithm was developed
that directly predicts CTL epitopes using large
datasets of T cell epitopes and non-epitopes as
training data for the algorithm (CTLPred) [374].

8.2.3. Validation phase of reverse
immunology

In the validation phase of the reverse immu-
nology approach, the natural presentation
and immunogenicity of the putative epitope
should be demonstrated. In principle, two
roads are open (Fig. 3). First, the biochemical
purification of HLA-peptide complexes - from
cells expressing the relevant TAA and HLA
class I molecule - followed by the mass spec-
trometric search for the predicted peptides

in the eluted HLA class I bound ligands (the
‘predict-calibrate-detect’ method; see below)
[375,376]. However, this method validates cell
surface expression of predicted HLA class I
ligands but not their immunogenicity. There-
fore, in the vast majority of studies the predic-
tion phase is directly followed by the induc-
tion of (naive) T cells against the exogenously
loaded predicted epitope. Peptide-specific T
cells are then used as tool to test the natural
presentation of the epitope. T cells have mostly
been induced in vitro using human peripheral
blood lymphocytes (PBL) from healthy donors
[307,350]. Furthermore, PBL [353,377] or TIL
[351] from patients with the relevant tumor
antigen and restriction element have been
used. An alternative approach is the induction
of T cell responses in HLA class I transgenic
mice [378]. Peptide specific T cells should be
used at the clonal level to enhance specificity
of the response and to reduce aspecific back-



ground recognition of target cells that lack
tumor antigen or restriction element. Next to
tumor cells expressing the relevant TAA and
HLA class I molecule, target cells should pref-
erably include transfected target pairs with or
without the tumor antigen and lacking or ex-
pressing the relevant HLA molecule. This en-
ables exclusion of aspecific recognition effects
by T cell clones that may be cross-reactive to
irrelevant antigens. The sensitivity of the CTL
clone for the peptide should be high, which is
to be determined with peptide titration, before
a definitive judgement of the natural presenta-
tion of the epitope can be made. While CTL
recognition of properly chosen target cells will
prove the natural presentation of the predicted
epitope, it should be noted that, in principle,
sometimes a length variant of the predicted
epitope (with comparable binding capacity)
may be the actually recognized peptide. Is
such a case suspected, then tandem mass spec-
trometry is required to determine the exact aa
sequence of the epitope-variant after its isola-
tion from the cell surface (Fig. 3).

8.3. Identification of HLA class II present-
ed T helper epitopes

Like CTL epitope identification, the identifi-
cation of HLA class II presented T helper cell
epitopes can either start with a CD4* T cell rec-
ognizing an unknown epitope or may depart
from T helper cells which are induced against
either predicted epitopes or a complete set of
overlapping peptides in a reverse immunology
setting (Fig. 2).

In vivo sensitized CD4* T cells that recognize a
tumor-antigen have been employed to identify
epitopes by expression cloning [379,380]. Con-
trary to HLA class I ligands, peptides binding
in HLA class II are relatively long and differ-
ent length variants of a T helper epitope are
often recognizable by a single T helper clone.

This characteristic has often advantageously
been exploited to screen the T helper cell re-
activity against a complete set of overlapping
peptides of a TAA using responder CD4* T
cells that were derived from either patients

or healthy donors. Subsequently, peptide-
specific T helper clones were tested for their
recognition of endogenously processed TAA
to validate the epitope [381-383]. The applica-
tion of in silico algorithms for the prediction
of HLA class II presented epitopes has lagged
behind the use of predictions for CTL epitope
identification. Binding requirements for pep-
tides in HLA class II molecules are much less
restricted than for class I molecules. Thus, the
HLA class II binding motifs share a certain
degree of degeneracy, and prediction of bind-
ing is less straightforward. Furthermore, the
peptides bound in HLA class II have a broad
length spectrum (9-25 aa) and class I antigen
processing pathways are only incompletely
defined making any assessment of process-
ing uncertain. In addition to the classical
endosomal-lysosomal pathway of exogenous
and transmembrane proteins, alternate and
partially overlapping routes for class II ligand
generation exist in the cytosol [67]. Both
proteasome-dependent and proteasome-inde-
pendent cytosolic generation of class II ligands
derived from either exogenous or endogenous
sources have been reported [64-66,384,385].
Furthermore, HLA class Il antigen processing
can differ depending on the route of delivery
of exogenous antigens [64] and the precise
antigen presenting cells in which it takes place
[66]. Despite this complexity in the process-
ing, several HLA class II binding algorithms
have been developed [334,386-388] (listed in
Table 2). The degeneracy of HLA class II bind-
ing motifs allows the search and prediction of
promiscuous pan-class II binding peptides,
which are obviously more widely applicable
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Table 2. Web-based algorithms for prediction of HLA class I and class II ligands and ligand/

epitope databases.

Name’ URL Possibilities / additional information”

HLA Peptide Binding Prediction

BIMAS http://bimas.dcrt.nih.gov/molbio/hla_bind MHC class |

SYFPEITHI http://www.uni-tuebingen.de/uni/kxi/ MHC class | and Il

NetMHC http://www.cbs.dtu.dk/services/NetMHC MHC class |

PREDEP http://margalit.huji.ac.il/ MHC class |

ProPred-1 http://www.imtech.res.in/raghava/propred1/index.html MHC class | (with proteasome cleavage filter)
nHLAPred http://www.imtech.res.in/raghava/nhlapred/ MHC class | (two methods)

IEDB (HLA class I)
HLA-A2 (No name)

http://tools.immuneepitope.org/analyze/html/mhc_binding.html
http://zlab.bu.edu/SMM/

Multipred http://research.i2r.a-star.edu.sg/multipred/

MHCPred http://www jenner.ac.uk/MHCPred

IEDB (MHC class II) http://tools.immuneepitope.org/tools/matrix/iedb_input?matrixClass=II
MHC-BPS http://bidd.cz3.nus.edu.sg/mhc/

SVMHC http://www-bs.informatik.uni-tuebingen.de/SVMHC/

SVRMHC http://svrmhc.umn.edu/SVRMHCdb/

ProPred (class Il) http://www.imtech.res.in/raghava/propred

MHC2Pred http://www.imtech.res.in/raghava/mhc2pred/

Proteasomal Cleavage sites Prediction
NetChop
PAProC http://paproc.de

MAPPP (FragPredict)  http://www.mpiib-berlin.mpg.de/MAPPP/cleavage.html
MAPPP (combined)
Pcleavage

http://www.cbs.dtu.dk/services/NetChop

http://www.mpiib-berlin.mpg.de/MAPPP/expertquery.html
http://www.imtech.res.in/raghava/pcleavage/

TAP translocation Prediction

TAPPred http://www.imtech.res.in/raghava/tappred/
MHCPred http://www.jenner.ac.uk/MHCPred
PRED™" http://antigen.i2r.a-star.edu.sg/pred TAP/

Integrated Proteasomal cleavage, TAP translocation and Binding prediction

EpiJen http://www.jenner.ac.uk/EpiJen/
WAPP http://www-bs.informatik.uni-tuebingen.de/WAPP
NetCTL http://www.cbs.dtu.dk/services/NetCTL/

MHC-Pathway
IEDB (combined)
CTLPred

http://70.167.3.42/
http://tools.immuneepitope.org/analyze/html/mhc_processing.html
http://www.imtech.res.in/raghava/ctipred/

Databases of HLA class | and Il ligands and tumor T cell epitopes

SYFPEITHI http://www.uni-tuebingen.de/uni/kxi/

T-cell tumor epitopes  http://www.cancerimmunity.org/peptidedatabase/Tcellepitopes.htm
IEDB http://beta.immuneepitope.org/home.do

MHCBN http://bioinformatics.uams.edu/mirror/mhcbn/index.html

HLA class | (different methods)
HLA-A2, 9- and 10-mers only

HLA-A2, -A3 and -DR supertypes

HLA class | and Il (and TAP)

MHC class Il

HLA class | and class Il (flexible length)
MHC class | and HLA class Il

HLA class | and class Il

HLA class Il

MHC class Il (promiscous binding)

Based on artificial neural network
Based on evolutionary algorithm
Based on peptide cleavage data
Combined with MHC class | binding
Based on cleavage data or ligands

TAP transporter affinity
TAP transporter affinity
TAP transporter affinity

Uses MHCPred

Uses SVMHC

Uses NetMHC and NetChop

Older version of IEDB (combined)
Newer version of MHC-Pathway
Directly based on epitope databases

HLA ligands and binding motifs, T cell epitopes
T cell epitopes derived from TAA

T cell epitopes (among others)

MHC binding and non-binding peptides

¢ Full name, institute and references can be found on webpage. Several references are also provided in the text of the current review.

b Method and additional information to be found on webpage

for vaccine development. HLA class II peptide
binding predictions have successfully led to
the identification of promiscuous T helper
epitopes in among others NY-ESO-1 [389],
TRP-2 [390], and hTERT [391], and Melan-A/
MART-1 [392].
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8.4. Identification of HLA class I and

HLA class II ligands by tandem mass
spectrometry

As discussed above, starting from pre-existing
CTL with unknown or known specificity, the
combination of microscale liquid chromatog-
raphy coupled to tandem mass spectrometry
(MS/MS) with functional immunoassays has
been used for the identification or confirma-



tion of tumor-specific CTL epitopes, respec-
tively [322-328].

Without the availability of an epitope-specific
T cell, tandem mass spectrometry can also be
applied for the validation of predicted HLA
class I ligands (Fig 3). This alternative reverse
immunology strategy was coined the ‘predict-
calibrate-detect’ (PCD) method [376,378]. Pre-
dicted ligands are synthesized and used for the
calibration of an HPLC - mass spectrometry
system to identify co-eluting natural ligands
of identical mass of which the precise identity
is then verified by MS/MS sequencing. In this
manner, Stevanovic and colleagues identified
class I ligands from p53, CEA and MAGE-A1 in
peptides extracted from tumor tissue or tu-
mor cell lines [375,378]. Although technically
demanding, the PCD method advantageously
does not depend on the often cumbersome
generation of peptide-specific CTL clones and
allows the identification of low abundant pep-
tides. It is, therefore, a secure intermediate sta-
tion in the identification of CTL epitopes. The
immunogenicity of the ligands still needs to be
determined by T cell inductions [378,393].
With the aim to identify as many novel tumor-
specific HLA ligands as possible in a single tu-
mor sample, mass spectrometric ligand iden-
tification has been coupled to gene expression
profiling to reveal antigens (over)expressed in
the tumor but not in healthy tissue from the
same patient [319]. This method has recently
been used to identify HLA class I ligands de-
rived from both universal and novel renal cell
carcinoma (RCC) associated antigens [394].
These HLA class I ligands were in part unique
for the patient and can therefore in principle
be used in a personalized therapy.

Subtractive mass spectrometric approaches
have been used for the direct identification of
differentially expressed HLA class I and class
IT ligands with the aim to identify disease-

related (e.g. TAA derived) ligands. Peptides in
HLA-DR4 from an diabetes auto-antigen were
identified by mass spectrometric comparison
of HPLC-fractionated peptides purified from
either untreated cells or cells that endogenous-
ly processed the antigen after it was delivered
via a lectin-based method [395]. Lemmel et

al. were the first to use differential stable iso-
tope labelling (e.g. differential acetylation) of
HLA class I bound peptides extracted from
colon carcinoma versus regular colon tissue

to quantify their ratio by mass spectrometry
[396]. A variant of this subtractive analysis
applied differential stable isotope labelling to
two isoforms of a meningococcal outer mem-
brane protein before their uptake by DC, again
to create a so-called mass-tag (resulting in
spectral doublets) that simplified the compari-
sons between HLA class II ligands extracted
from the two sources [397]. The same group
applied metabolic labelling by culturing virus-
infected cells with stable isotope-labelled
amino acids. Comparisons between the la-
belled peptides extracted from infected cells
and the unlabeled peptides from non-infected
cells have led to the identification of viral and
infection-induced HLA class I ligands [398].
These pairwise comparative methods of mass
spectrometric analysis could also be applied to
tumor antigens.

As most tumor cells do not express HLA class
11, the direct isolation of class II bound pep-
tides from tumor cells was not considered
feasible. Instead, several strategies have been
used to target antigens into antigen presenting
cells [395,399,400]. A recent study, however,
reports the successful identification of (tumor-
associated) HLA class II ligands from dissected
primary tumor samples that were found to
express HLA class II [401].

The advent of proteomics in the identification
of HLA bound ligands is typically technology-
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driven [402,403]. With the development of
improved mass spectrometry technologies that
are more sensitive and more accurate the iden-
tification by MS/MS of many more peptides in
one sample is now possible. High throughput
MS/MS analyses in an automated data-de-
pendent mode followed by database searches
allows the identification of a significant per-
centage of the full HLA bound ‘ligandome’ of
a sample without prior focussing on predicted
epitopes. It is already now possible to identify
up to 3000 peptides per allele from one cell
line (personal communication P.A. van Veelen,
unpublished data). Further improvements in
sample preparation and separation techniques,
and data analysis will still boost the results
[404]. This will lead to the identification of
novel tumor-specific HLA class I ligands (like-
ly immunogenic T cell epitopes) derived from
both known and as yet unknown universal tu-
mor associated antigens and also from unique
mutated antigens. Basic insights and the de-
velopment of anti-cancer immunotherapies,
which may include individualized vaccinations
with defined tumor-specific epitopes that are
partly unique for the patient [318], will greatly
benefit from these developments.

9. The need to define more T cell
epitopes

Several reasons exist to further broaden the
repertoire of defined tumor specific CTLand T
helper cell epitopes. First of all, the immuno-
monitoring of cancer patients treated with any
T cell mediated therapy is required to assess the
effectiveness of the treatment. Monitoring can
also be performed to determine the existence of
precursors in healthy donors against a specific
candidate target CTL epitope. Monitoring of T
cell responses is mostly accomplished ex vivo
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by measuring T cell populations with tetramers
of the tumor-epitope or by measuring specific
cytokine (e.g. IFNy) production upon stimula-
tion with defined T cell epitopes [405]. In the
case of vaccination with undefined antigens
(tumor cells, tumor lysates or e.g. tumor cell
derived mRNA) or full length TAA (irrespec-
tive of the vehicle), the monitoring of T cell
responses against multiple T cell epitopes will
better reveal the effects induced by the therapy.
Even in the case of vaccination with a single
minimal epitope, immunomonitoring of a T cell
response induced by so-called ‘antigenic spread’
against a non-vaccine CTL epitope that is ex-
pressed on the tumor may be necessary to cor-
rectly assess the efficacy of the therapy [406].

Scope of the thesis, immunomonitoring:
In chapter 3 [407], we screened HLA-A*0201-
subtyped healthy individuals and advanced
melanoma patients for the existence of CD8*
T cells directed against the four HLA-Ao201-
restricted CTL epitopes from PRAME that
were identified in chapter 2. IFNy enzyme-
linked immunosorbent spot assays and
tetramer staining were used to detect CTL
reactivity. T cell reactivity was found to be
directed especially towards the PRA0108
epitope.

Recent studies, as well, have assessed above
mentioned PRAME epitopes as candidate
targets for immunotherapy. It was shown that
CD8* T cells against all four HLA-Ax2 restricted
epitopes were detectable in healthy donors
[408,409], and in patients suffering from CML
[408-410].

A strong argument can be made for a defined
multi-epitope and multi-TAA directed T cell
immunotherapeutic approach, either by us-
ing adoptive transfer of PBL transduced with
multiple TCR or by applying vaccination strat-



egies. Targeting multiple TAA will enhance the
barrier against escape of antigen loss variants
of the tumor and will exploit more fully the
anti-tumor T cell potential of the patient (in
the case of vaccination). Loss of HLA class

I molecules on tumor cells, which can be
another reason for immune escape, is often
restricted to only one or a few alleles [411]. Tar-
geting multiple epitopes restricted by different
class I molecules of the patient will circumvent
such an escape mechanism. Where the latter
goals may also be reached by vaccination with
multiple full length TAAs (expressed in the
tumor), it has been shown that the use of op-
timal epitopes can induce immune responses
with increased potency compared with the
response induced by the same epitopes in the
context of the full length protein [412].

Given the pivotal role of CD4* T cells in pro-
moting the primary and secondary CD8* T
cell responses through the induction of DC
maturation and the production of cytokines
[52,267-269], the inclusion of T helper epi-
topes in a multi-epitope based vaccine will
have strong beneficial effects. Furthermore,
vaccination with minimal CTL peptide epit-
opes, unless administered on DC, may cause

T cell tolerance through their systemic spread
and presentation on non-professional antigen
presenting cells [413,414]. To circumvent this,
vaccines should contain longer epitope-con-
taining peptides that require processing which
can only be accomplished efficiently by profes-
sional antigen presenting cells (DC).

When enough CTL and T helper epitopes -
derived from different TAA and presented in
various prevalent HLA molecules - are iden-
tified, it would be feasible to combine these
epitopes in a defined epitope-based vaccine (as
peptide vaccine or e.g. recombinant ‘string-of-
bead’ viral delivery system [415]) that is tai-
lored to the TAA expression pattern and HLA

haplotype of each patient. Importantly, vacci-
nation with longer (35-mer) peptides, contain-
ing both CTL and T helper epitopes in their
natural protein context, leads to a far more
robust CD8* T cell response and therapeutic
immunity in a mouse model [271]. Both the
induction of a concurrent CD4* T cell response
and the restricted processing and presentation
of the long peptides only by professional APC
contributed to this enhanced efficacy [416].
Vaccines based on defined epitopes have the
additional advantage that the binding and
TCR recognition characteristics of the epitopes
can be optimized by aa replacements. In the
case of differentiation TAA, tolerance against
the immunodominant epitopes is expected,
and these are therefore not first choice. The
subdominant epitopes, however, mostly have

a lower binding capacity rendering them less
immunogenic. Designing modified analogs of
the epitope, also called altered peptide ligands,
with improved binding characteristics can be
used to efficiently recruit a non-tolerized T cell
repertoire [417,418]. However, care should be
taken that vaccination with epitope analogs
does not induce CTL that are incapable of
recognizing tumor cells as has been observed
in patients vaccinated with optimized variants
of MART and gp1oo CTL epitopes [419]. Obvi-
ously, any epitope contained in epitope-based
vaccines should be thoroughly checked for its
natural processing and cell surface presen-
tation to avoid responses against so-called
cryptic epitopes that are not presented on the
tumor cells [420,421].

10. Purpose and chronology of the
thesis

The research presented in this thesis has been
initiated to identify CTL epitopes in the leuke-
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mia specific BCR-ABL fusion regions (chapter
5). As these fusion regions contain only a low
number of epitopes, the priority shifted to epi-
tope identification in tumor associated antigen
PRAME using an optimized epitope-prediction
procedure (chapter 2). To facilitate further
epitope discovery, HLA class I binding assays
were developed (chapter 4), and the potential
usefulness of the epitopes that were identified
was examined in healthy donors and patients
(chapter 3). Meanwhile a study was started to
further unravel the proteolytic mechanisms in-
volved in CTL epitope generation (chapter 6).
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