
 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/25002  holds various files of this Leiden University 
dissertation 
 
Author: Ramshorst, Jan van 
Title: Intramyocardial bone marrow cell injection : clinical and functional effects in 
ischemic heart disease 
Issue Date: 2014-04-02 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/25002


Chapter 1

General Introduction

Modified	from:	
Bone Marrow Cell Injection for Chronic Myocardial Ischemia: 

The Past and the Future.
Jan	van	Ramshorst,	Sander	F.	Rodrigo,	Martin	J.	Schalij,	

Saskia	L.M.A.	Beeres,	J.J.	Bax,	Douwe	E.	Atsma

Department	of	Cardiology,	Leiden	University	Medical	Centre,	Leiden,	The	Netherlands

Journal of Cardiovascular Translational Research 2011;4:182-191



R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

Chapter 1

10



R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

General introduction

11

INTRODUCTION

Coronary artery disease is a major cause of mortality and morbidity in the western world. 
Despite major advances in surgical and percutaneous revascularization techniques, a 
large number of patients end up with end-stage coronary artery disease, not amenable 
for mechanical revascularization. These patients often have stress-inducible myocardial 
ischemia, resulting in disabling complaints of angina, refractory to medical treatment1. 
Furthermore, ischemic myocardial damage can result in chronic heart failure, due to 
reduced left ventricular function and subsequent remodeling of the left ventricle (LV). 
Cell-based therapy is currently under investigation as a new therapeutic option 
to restore ischemically damaged myocardium and increase neovascularization. In 
numerous preclinical studies, it has been reported that various cell types have the 
capacity to promote cardiomyogenesis and new blood vessel formation through different 
mechanisms, resulting in improvements in cardiac function. On the basis of these 
encouraging findings, a large number of clinical studies have been performed in the 
last decade, generally demonstrating modest but significant clinical benefits. However, 
a large variability exists in the observed beneficial effects of cell therapy, which is likely 
to be related to differences in study design, patient population and cell characteristics. 
Therefore, many questions remain unanswered regarding the effect of cell-based therapy 
on damaged myocardium, including the exact mechanism of action, the optimal delivery 
method, and cell type and dose in various patient populations. 
As an introduction to this thesis, an overview of the current status of cardiac cell therapy 
will be provided. First, cell types available for cardiac cell therapy will be described, 
along with the mechanisms through which these cells may improve myocardial perfusion 
and function. Furthermore, the different routes of cell delivery will be discussed and 
compared. Finally, the available experience from of experimental and clinical studies 
investigating cell therapy in patients with ischemic heart disease will be reviewed. 

CELL TYPES FOR CARDIAC REPAIR
In vitro studies have been performed on various cell types to evaluate their potential to 
restore damaged myocardium. Below we discuss the origin of these cells, the proposed 
mechanism of action and potential safety concerns of each cell type. (Figure 1)
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Figure 1: Mechanisms by which bone marrow cells may improve myocardial perfusion and 
contractile function.

HEMATOPOETIC STEM CELLS
Hematopoetic stem cells (HSCs) can be isolated from the bone marrow, and comprise 1 to 
3% of the total mononuclear cell fraction. In peripheral blood, low numbers of circulating 
HSCs are detectable, although this may be augmented by granulocyte colony-stimulating 
factor (G-CSF) administration, resulting in mobilization of HSCs as well as other bone 
marrow stem and progenitor cells into the blood2. HSCs are commonly identified by 
the expression of CD34+ and CD133+ cell surface antigens and have the potential to 
differentiate into all types of blood cells. 
In a landmark study by Orlic et al.3, it was suggested that HSC were capable of 
replacing infarcted myocardium after differentiation into cardiomyocytes. However, 
since experimental studies yielded discordant results with regard to the presence of 
de novo myocardium formation4-6, the ability of HSCs to differentiate into cardiac cells 
remains controversial. Nonetheless, in most randomized and non-randomized studies, 
transplantation of hematopoietic cells in ischemic myocardium resulted in beneficial 
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effects on cardiac function4, 7-11. Paracrine effects may account for these functional benefits, 
given that experimental studies demonstrated that CD34+ cells can secrete cytokines that 
may stimulate angiogenesis, inhibit apoptosis, recruit resident cardiac progenitor cells 
and change extracellular matrix composition12, 13. However, because the expression of 
CD34+ markers is overlapping with other hematopoietic cell types such as endothelial 
progenitor cells, the exact role of HSCs in myocardial improvement is still not fully 
determined. 

ENDOTHELIAL PROGENITOR CELLS
Endothelial progenitor cells (EPCs) reside in the bone marrow, comprising 0.1 to 0.4% of 
mononuclear cells14, and are detectable in peripheral blood in very low concentrations15. 
Classically, these cells are described as committed progenitor cells that can only give 
rise to endothelial cells and other vascular cell types (e.g. pericytes, smooth muscle cells, 
fibroblasts)16. In addition, EPCs possess the capacity to contribute to new vessel formation 
by secretion of pro-angiogenic cytokines16. Conditions such as cardiac ischemia or acute 
myocardial infarction (MI) may initiate mobilization of EPCs from the bone marrow into 
the blood where they can migrate to the site of injury17.
EPCs were originally identified by their expression of the hematopoetic stem cell markers 
CD34, CD133 and VEGF receptor18-20. The cells are characterized by a high proliferative 
capacity, and have been demonstrated to incorporate into foci of neovascularization21 
and to differentiate into endothelial cells, and thus may be regarded as circulating 
angioblasts. However, the precise phenotype and nomenclature of EPC has been subject 
of debate16 since other EPC populations have been identified in cultured EPCs such as 
‘early outgrowth EPCs’, which express the monocyte marker CD14 in the absence of 
hematopoetic markers CD34 or CD4522. These cells possess a relatively low proliferative 
capacity and are thought to contribute to the process of angiogenesis predominantly by 
paracrine mechanisms.
Numerous observational clinical studies have documented that EPC numbers and 
function are related to the presence of cardiovascular disease. In patients with established 
cardiovascular disease, lower numbers and impaired function of circulating EPCs was 
documented23. Furthermore, the presence of cardiovascular risk factors was found to be 
related to circulating EPC numbers and endothelial function24. Moreover, reduced EPC 
levels were found to be an independent predictor of cardiovascular events in patients with 
coronary artery disease15, 25, suggesting a relation between reduced levels of circulating 
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EPCs and atherosclerotic disease progression. Furthermore, the numbers and function 
of EPCs have shown improvement after life style alterations26, 27 and pharmacological 
treatments such as statins28-31. Although the clinical usefulness of EPCs as therapeutic 
cell type may be influenced by their low numbers or decreased angiogenic potential 
in patients with cardiovascular disease, these cells are suggested to have potential for 
vascular regeneration. 

MESENCHYMAL STEM CELLS
Mesenchymal stem cells (MSCs) can be isolated from many tissues, including bone 
marrow, adipose tissue and umbilical cord blood. Although they are uncommon in 
bone marrow, making up only 0.001 to 0.01% of the total nucleated cells32, MSCs can 
easily be expanded in vitro due to their extensive proliferative capacity. This cell type 
is characterized by expression of a specific set of membrane molecules (CD73, CD90, 
CD105), together with lack of expression of the hematopoietic markers CD14, CD34 
and CD45 and human leucocyte antigen-DR. MSCs can differentiate into cells of the 
mesenchymal cell type, including osteoblasts, adipocytes and chondrocytes33. In addition, 
under specific in vitro conditions they can give rise to functional cardiomyocytes34 and 
vascular cells35. Some experimental in vivo studies demonstrated differentiation of MSCs 
into cardiomyocyte-like phenotypes after intramyocardial injection36, 37. However, since 
other studies did not observe cardiomyogenic differentiation35, 38, 39, the in vivo potential 
of MSCs to differentiate into cardiomyocytes remains unclear. 
Still, improvements in cardiac function were observed in the majority of experimental 
studies36, 38-40. These functional improvements may be related to stimulation of 
angiogenesis, by differentiation of MSCs into endothelial cells and smooth muscle 
cells35, 39 and secretion of pro-angiogenic cytokines41. Furthermore, MSCs may promote 
protection of ischemic tissue by production of a variety of growth factors and cytokines, 
which may beneficially affect post-infarct LV remodeling 41 In addition, MSCs are well 
amenable for enhancement of their therapeutic potential through pharmacological or 
genetic means. Overexpression of (prosurvival) genes such as Akt42, GSK-3beta43 and 
myocardin44 augmented the ability of MSCs to restore cardiac function in acute MI 
models in an even higher degree as compared to non-transduced MSC treatment.
An unique characteristic of MSCs seems to be the interaction between these cells and 
the immune system. First, they are immunosuppressive to activated T-lymphocytes 
and can reduce inflammation by inhibiting T-cell proliferation without promoting 
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apoptosis45, 46 In addition, allogeneic MSCs have been thought be capable of evading 
the host immune system since they express only very low levels of histocompatibility 
complex type II, making MSCs an attractive candidate for allogeneic cell use. However, 
induction of an immune response was described after administration of allogeneic MSCs 
in immunocompetent hosts47, 48, although the clinical significance of this response for 
cardiac cell therapy remains unclear. Therefore, the clinical applicability of allogeneic 
MSC injection remains to be investigated. 
Nonetheless, some safety issues have been raised with regard to MSC administration. 
Due to the heterogeneity among MSC and MSC-like populations and their broad 
differentiation capacity, administration of these cells carries the potential risk of 
unwanted differentiation of administrated cells. Although it is commonly assumed that 
the host tissue will direct the differentiation of transplanted cells, some studies observed 
osteogenic differentiation of implanted MSCs49. Of note, this observation was only made 
in 2 small studies comprising rodent animal models, and rodent-MSC. In both studies, 
extensive culturing had been performed (up to 11 passages). Although only scarce data 
are available, it is conceived that in human MSCs cultured for a normal duration (and 
even reaching 25 passages), the occurrence of transformation will be very unlikely 50. 
Therefore, the risk of tumor formation after MSC transplantation in the clinical setting is 
considered to be very low 51. 
Another safety concern arose from the study of Vulliet et al, which demonstrated the 
potential of MSCs to cause coronary obstruction and micro-infarction after intracoronary 
injection52. After injection of culture expanded canine MSCs in this canine MI model 
(about two-fold larger compared to MSCs used in human studies), microinfarcted 
regions containing high concentrations of injected MSC concentration were observed. In 
order to avoid this risk, clinical studies investigating MSC transplantation have focused 
on the intramyocardial transplantation method. 

ADIPOSE TISSUE-DERIVED STEM CELLS 
MSCs harvested from adipose tissue are referred to as adipose tissue-derived stem 
cells (ADSCs). They have shown to express surface markers similar to those observed 
on MSCs, though slight distinctions have been observed53. In contrast to bone marrow 
derived MSC, ADSCs can be harvested in large quantities from adipose tissue (on 
average 1 x 106 stem cells out of 100 ml) making extensive culturing unnecessary. ADSCs 
have the capacity of self-renewal and differentiation into various pluripotent endothelial 
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and vascular progenitor cells54, comparable to MSCs. Although MSCs and ADSCs have a 
number of slight distinctions comprising surface phenotype and processes of cell homing, 
the consequences of these differences are not clear53. In vitro studies have shown that 
ADSCs have the capacity to develop into ventricle-like, atrial-like, and pacemaker-like 
cells displaying spontaneous action potentials, after 3 weeks of culturing55. Furthermore, 
ADSCs have been suggested to have the ability to engraft into injured myocardium and 
express specific cardiomyocyte markers56. In addition, ADSC transplantation in acute MI 
models resulted in significant improvements in left ventricular ejection fraction (LVEF), 
although no new cardiomyocyte formation was demonstrated 57, 58. Since improved 
capillary density was observed, the beneficial effect was suggested to be attributable 
from vasculogenesis57, 58. Currently, the first-in-men study to explore safety and feasibility 
of ADSC transplantation in patients with AMI (APOLLO trial) is underway53. 

VERY SMALL EMBRYONIC-LIKE STEM CELLS
Recently, a novel population of rare multipotent cells (approximately 0.02% of the 
mononuclear cell population) has been described in adult bone marrow cells59. These 
cells, called very small embryonic-like stem cells (VSELs), are identified by Sca-1pos/
Linneg/CD45neg and express the cardiac markers Nkx2.5/Csx, GATA-4, and MEF2C. In 
vitro, VSELs are able to differentiate into different cell types, including cell types of the 
cardiac and vascular lineages59. VSELs are mobilized into the peripheral blood after 
tissue ischemia60 and home to the site of injury61.
Intramyocardial injection of VSELs in mice models of MI resulted in improvement in 
cardiac function62, which effect was further augmented by cardiogenic predifferentiation63. 
Isolated VSEL-derived cardiomyocytes and vascular cells were detected in the infarct 
region, although the number of VSEL-derived cells was too low to be responsible for 
the observed improvements. Therefore, it has been hypothesized that the secretion of 
paracrine factors by differentiating VSELs may plays an important role in improving 
myocardial perfusion and function, through comparable mechanisms as has been 
proposed for other cell types64. 
Because of their pluripotency, including the capacity to differentiate into cardiac 
myocytes, in combination with the suggestion of a substantial paracrine function, VSELs 
are attractive candidates for future therapeutic strategies. Nonetheless, although VSEL 
appear to be stable in vitro65, limited in vivo data are available, requiring additional 
experimental studies to further explore the safety profile of this cell type.
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(UNSELECTED) BONE MARROW-DERIVED MONONUCLEAR CELLS
Bone marrow mononuclear cells (BMNCs) represent a heterogeneous cell population 
containing hematopoietic and non-hematopoietic cells with diverse phenotypes. These 
cells include HSCs, EPCs, MSCs and various cell populations such as side population 
cells, multipotent adult progenitor cells, and VSELs66. Mononuclear cells can be isolated 
by direct marrow aspiration or can be obtained from the peripheral circulation. Because 
BMNCs are relatively easy to isolate in large numbers and do not require complex 
culture conditions, they have been used in the majority of clinical trials in cardiac 
patients. Apart from these practical considerations, BMNCs may have other advantages 
over selected cell types. Particularly, different cell populations may affect the function 
of each other, being more effective in combination as suggested by Suuronen et al67.. In 
line with this suggestion, synergistic effects on neovascularisation were observed after 
transplanting different types of EPCs compared to administration of a single cell type68. 
Furthermore, after intramyocardial injection in a mouse MI model, BMNCs showed a 
more robust survival pattern as compared to MSC en skeletal myoblasts, resulting in 
reduced LV remodeling after MI69. Therefore, it has been suggested that the combination 
of mononuclear cells, as naturally present in the bone marrow, may be one of the most 
suitable and effective options for myocardial cell treatment. Combined with favorable 
safety profile, this cell population is suggested to be a qualified candidate for clinical 
application, although appropriate safety monitoring is still recommended and ongoing 
70.

SKELETAL MYOBLAST CELLS
Skeletal myoblasts are tissue-committed progenitor cells which normally reside under 
the basal membrane of mature muscular fibers. These precursor cells are mobilized by 
injury, and have the capacity to regenerate muscle fibers by proliferation and fusion71. 
Skeletal myoblasts can be obtained by skeletal muscle biopsy and can be efficiently 
expanded in vitro, making them suitable for autologous application. Being committed 
precursor cells, skeletal myoblasts carry a low risk on ectopic differentiation. Another 
advantage of skeletal myoblasts is their resistance to ischemia and oxidative stress, 
facilitating survival in recently infarcted or poorly vascularized cardiac tissue72. 
Because of these appealing characteristics, skeletal myoblasts have been studied 
extensively as a potential source for cardiac cell therapy73-76. In animal models of MI, 
generation of functional multinucleated myotubes by the transplanted cells was 
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observed77, 78, often aligned parallel to the host cardiomyocytes. Moreover, administration 
of skeletal myoblasts into cryoinfarcted regions of rabbit hearts revealed formation of 
islands containing elongated striated cells that retained characteristics of both skeletal 
and cardiac cells79. However, the expression of cardiac markers is now recognized to 
be the result of fusion with host cardiomyocytes, and not from transdifferentiation80. 
Importantly, immunohistochemical results revealed a lack of connexin-43 expression, 
resulting in a lack of electrical coupling between engrafted myoblasts and the neighboring 
cardiomyocytes. This hampers synchronized mechanical activity, possibly attenuating 
the beneficial effect on myocardial function81, 82. Moreover, this electric ‘insulation’ of 
transplanted cells is likely to create an arrhythmogenic substrate, increasing the risk of 
malignant arrhythmias83. Of note, the use of genetic modification to create myoblasts 
overexpressing connexin-43 may be a promising solution84, 85, although the precise 
effects of this approach on the differentiation and electrophysiological properties of the 
transplanted cells should be further explored86.
In addition to their myogenic potential, skeletal myoblasts were also found to release 
paracrine factors that can stimulate angiogenesis87, enhance cardiomyocyte survival88 
and decrease expression of matrix metalloproteinases89, leading to reduced myocardial 
fibrosis. Therefore, skeletal myoblasts may contribute to a reduction in LV remodeling by 
paracrine mechanisms, which is in line with the results of the MAGIC trial that observed 
a decrease in LV end-diastolic and end-systolic volume which was not accompanied by 
an improvement in LV function73. 
The combination of myogenesis and significant paracrine function makes skeletal 
myoblasts interesting candidates for therapeutic purposes. However, further 
investigation is warranted to perform a comprehensive assessment of the safety profile 
and the potential benefits. 

RESIDENT CARDIAC STEM CELLS
Traditionally, the heart was thought to be a postmitotic organ because mature 
cardiomyocytes withdraw from the cell cycle and cease to proliferate. Recent discovery 
of resident cardiac stem cells in the heart has demonstrated that, in contrast to long-
standing belief, the heart has intrinsic regenerative potential. Cardiac stem cells consist 
of a heterogeneous cell population including several multipotent progenitor cells and 
adult cardiac stem cells, which can be differentiated by surface marker expression. 
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In 2003, Beltrami et al.90 reported the identification of c-kitpos cells negative for blood lineage 
markers (Linneg) in rat hearts, with the capacity to differentiate into cardiomyocytes, 
smooth muscle and endothelial cells. Transplantation of these cells in rodent and canine 
models of MI resulted in myocardial regeneration, with injected cells showing sarcomere 
formation and expression of N-cadherin and connexin-43. In addition, increased capillary 
density was observed90, 91. Recently, successful isolation and expansion of c-kitpos cells 
from human myocardial biopsy specimens has been described, with comparable in vivo 
results after transplantation in a rat model. Despite these promising results, doubts have 
been raised with regard to the capacity of myocardial c-kitpos cells from adult human 
hearts to undergo cardiomyogenic differentiation92 and the availability of c-kitpos cells in 
diseased human hearts93.
Another type of cardiac stem cells has been identified based on the expression of stem cell 
antigen-1 (Sca-1)94. These cells were able to generate cardiomyocytes after treatment with 
oxybutine or 5-azacytidine94, 95. In experimental in vivo studies, these cells were retrieved 
in the infarct border zone and seemed to have differentiated into cardiomyocytes96. 
However, it has been suggested that these findings are mainly due to cell fusion with 
resident cardiac cells94, 97.
An interesting population of multipotent progenitor cells which is present in the heart, 
but also in bone marrow, skin and muscle are side population cells. These cells are 
characterized by their cytoplasmatic exclusion of Hoechst dye98 and have the capacity 
to generate functional cardiomyocytes in vitro99. Although residing in the heart in small 
amounts, side population cells can be mobilized from the bone marrow after acute MI. 
The therapeutic potential of side population cells remains to be determined, since no 
data are available on their clonogenic potential and capacity for self-renewal. Moreover, 
the ability of side population cells to improve myocardial perfusion and function in vivo 
is not yet clear.
A heterogeneous population of progenitor cells can be derived from subcultures of 
postnatal human myocardial biopsy specimens, the so called cardiosphere-derived cells 
(CDCs). These cells form multicellular, self-adherent spherical clusters (cardiospheres) in 
culture100 and are self-renewing and clonogenic. CDCs express antigenic characteristics 
of stem cells at each stage of processing (expressing KDR in human, flk-1 in mice, 
CD31, CD34, c-Kit, Sca-1), as well as proteins vital for cardiac contractile and electrical 
function101. These cells have the ability to undergo cardiac differentiation with 
spontaneous contractile activity, and can also give rise to endothelial and smooth muscle 
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cells100. Experimental studies have demonstrated beneficial effects of CDC injection in 
porcine and murine models of MI101-103. Since survival of injected cells was low, these 
improvements may partially be attributed to paracrine effects, such as recruitment of 
resident progenitor cells or inhibition of apoptosis101, 102, 104.

EPICARDIUM-DERIVED CELLS
A subset of epicardial cells, referred to as epicardium-derived cells (EPDCs), undergo 
epithelial-to-mesenchymal transition (EMT) during cardiomorphogenesis and thereby 
acquire the ability to migrate into the subepicardial space and subsequently into the 
myocardium. Human EPDCs can be identified by receptor expression of CD44, CD90, 
CD105, HLA-ABC and CD46 at the plasma membrane, but are negative for CD34 and 
Sca-1105. Furthermore, human EPDCs express cardiac marker genes (cardiac troponin 
T, GATA4, dHand, Mef2C and connexin 43) and smooth muscle genes (ASMA, 
CNN1, SM22)105. These cells have the capacity to differentiate into multiple cell types, 
including coronary smooth muscle cells, subendocardial and atrioventricular cushion 
mesenchymal cells, adventitial fibroblasts and interstitial cardiac fibroblasts106-112. In 
addition, it is suggested that, under certain in vitro conditions, EPDCs can differentiate 
into cardiomyocytes113, although their in vivo potential to do so is still subject of debate114, 

115. Following epicardial biopsy, these cells can be cultured with specific factors, e.g. 
TGF-ß116, myocardin105 or Tß4117 to promote epicardial EMT and subsequent differentiation. 
In vivo experiments have shown that intramyocardial injection of human EPDCs into 
ischemic myocardium of a MI mouse model preserved cardiac function and attenuated 
ventricular remodeling118. In addition, co-injection of EPDCs and CPCs synergistically 
improved cardiac function in MI mice119. Since no graft-derived cardiomyocytes were 
observed in this study, this improvement was suggested to result from complementary 
paracrine mechanisms. In line with these findings, EPDCs have shown to provide 
paracrine factors to enhance vascular recruitment117, 118 and demonstrated to directly 
interact with cardiomyocytes, thereby inducing proliferation and correct mechanical and 
electrical coupling of cardiomyocytes120. Because of their regulating role in myocardial 
development, their ability to interact with surrounding myocardium and their potential 
to improve cardiac performance, this cell type might be a promising source for cell-based 
therapy.
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Cardiac tissue-derived stem and progenitor cells show promising abilities in terms of 
proliferation and differentiation capacity. Due to their cardiac origin these cells may hold 
great potential as a source for myocardial regeneration. However, since only limited 
experimental data are available on most cell types, further pre-clinical investigations 
are necessary to assess the safety and possible therapeutic benefit of these cell types. 
Furthermore, cardiac stem cells for autologous purposes can only be obtained via 
endomyocardial biopsy or thoracic surgery (for example during coronary artery bypass 
grafting) which may be regarded as a disadvantage as compared to other adult stem 
cells. 

EMBRYONIC STEM CELLS
Human embryonic stem cells (hESCs) are conventionally derived from pluripotent 
cells from the inner mass of a 5 day old human embryo at the blastocyst stage and have 
the potency of unlimited proliferation in vitro121, 122. hESCs can give rise to cells of all 
three primary germ layers and will spontaneously differentiate to form multicellular 
aggregates when maintained in an undifferentiated state123. By culturing in specific 
growth media, differentiation into specified cell types can be established. Studies have 
shown that hESCs can differentiate into cardiomyocytes possessing functional and 
electrophysiological characteristics similar to genuine cardiomyocytes. For example, 
immunohistological studies demonstrated that hESC-derived cardiomyocytes express 
early cardiac-specific transcription factors, sarcomeric proteins and gap junction proteins, 
whereas electrophysiological assessment revealed these cells to resemble human fetal 
ventricular myocytes that can propagate action potentials124, 125. Of note, recently, a 
method was demonstrated for obtaining >99% pure cardiomyocytes from hESCs126. In 
addition to cardiomyocyte differentiation, hESCs have the capacity to differentiate into 
endothelial and smooth muscle cells127.
Because of their pluripotency, ESCs can form any cell type of the heart, providing an 
extensive regeneration potential. The ability to form cells from all three germ layers, 
however, is accompanied by the risk of ectopic differentiation at the implantation site, 
as observed after ESC transplantation in healthy animals and animal models of acute 
MI128, 129. Subsequently, increased interest has risen in methods to guide differentiation 
preceding implantation130 to reduce the risk of ectopic differentiation. Several strategies 
have been used to guide differentiation of ESCs into cardiomyocytes, including co-
culturing with endoderm-like cells or their conditioned medium, addition of growth 
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factors and hormones, and pre-treatment of cells with reagents aimed at blocking cell 
death131. To preclude unwanted differentiation of administrated ESCs, it is essential to 
produce homogenous populations of each of the cardiovascular cell types and exclude 
residual undifferentiated cells122. 
Besides the risk of teratoma formation, other disadvantages may hamper the use of 
ESCs for cardiac regeneration. Since ESCs have demonstated to express specific human 
leukocyte antigen (HLA) subclasses, the potential risk of graft rejection might necessitate 
immunosuppression. Because steroid use is known to be harmful to ischemic myocardium, 
research to diminish the immunogenicity of the cells for allogeneic transplantation is 
ongoing132. Finally, considerable ethical concerns surrounding ESC procurement from 
viable human embryos is an important limitation for the development of hESCs into a 
clinically applicable treatment for cardiac regeneration. 

INDUCED PLURIPOTENT STEM CELLS
A promising method for obtaining multipotent stem cells is direct reprogramming of 
adult fibroblasts by overexpression of a limited set of defined transcription factors. By 
virus-mediated overexpression of these transcription factors, human somatic cells can be 
reprogrammed into induced pluripotent stem (iPS) cells133, which are practically similar 
to ESCs. During reprogramming, the expression of introduced exogenous transcription 
factors declines whereas the endogenous pluripotency network is upregulated, therefore 
it is proposed that the exogenous transcription factors only initiate the reprogramming122. 
In vitro, iPS cells have shown to differentiate into cell types of all three embryonic 
germinal layers exhibiting the morphology, proliferation, gene expression, epigenetic 
status and differentiation potential similar to ESCs134, 135. Functional cardiomyocytes 
with nodal-, atrial-, or ventricular-like electrophysiological phenotype have been 
derived from human iPS cells, using methods based on those effective for hESCs136. In 
addition, iPS cells have shown to be capable of differentiation into vascular progenitor 
cells and vascular cells137. Of note, the efficiency of cell reprogramming as well as the 
differentiation capacity of the cell is suggested to be influenced by the choice of cell 
origin used for reprogramming122. In addition to the strong differentiation potential of 
iPS cells, which is possibly approaching the capacity of ESC-derived cells, iPS cells are 
suitable candidates for autologous application138. Moreover, it has been proposed that 
iPS cells may be employed to generate unlimited numbers of identical, well-defined and 
genetically characterized, transplantable functional cells for therapeutic repair of cardiac 
tissue. 
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Few studies have investigated the effect of iPS transplantation into the heart. Nelson et 
al.139 reported that the intramyocardial delivery of mouse iPS cells achieved regeneration 
of cardiac tissue and improvement of post-ischemic cardiac function. However, data 
concerning cell survival and engraftment rate are not yet available and these issues 
remain to be investigated. 
Transplantation of iPS cells has several limitations in terms of their clinical applicability 
in cardiac regeneration. Genome-integrating viral vectors used for inducing iPS cells 
contain known oncogenes, thereby causing a risk for tumor formation. This problem 
can be overcome by reprogramming without viral integration using plasmids or direct 
reprogramming protein delivery140-142. Furthermore, human iPS cells are derived only 
at a low efficiency of about 0.01%, making the generation of a therapeutic amount of 
cells time-consuming. In addition, it is not clear whether human iPS cells have complete 
nuclear reprogramming and could therefore result in impaired differentiation of iPS cells 
into the required cell type143, potentially contributing to reduced treatment efficacy. 
In addition to cardiac repair, iPS cells can be used as models of cardiac disease, as these 
cells are more representative of disease phenotype compared to mouse models, and may 
theoretically even be used as a model representing a single patient. Thereby, iPS cells can 
be used to study mechanisms of disease and aid in the development of new therapeutic 
strategies122. 

CELL DELIVERY
In addition to finding the ideal cell type for cardiac repair, determining the optimal cell 
delivery method is crucial to maximize efficacy and minimize risks associated with cell 
treatment. Optimizing cell delivery methods requires targeted delivery of cells to minimize 
risk of extraneous diffusing and maximize survival and engraftment of transplanted 
cells. Also, the etiology of the cardiac disease influences the choice of delivery method. 
For example, chronic ischemic myocardial disease may be less attractive to approach via 
the intracoronary route because chronic occlusions or stenoses may hamper access to 
the target vessel, making the intramyocardial injection method a more feasible option. 
Currently available routes of administration include intramyocardial (epicardial or 
endocardial injection), intracoronary and intravenous infusion of cells (figure 2).
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Intracoronary IntravenousIntramyocardial

Figure 2: Possible routes of administration of therapeutic cells.

INTRAMYOCARDIAL INJECTION
Using the intramyocardial route, cells are directly injected into the myocardium. At 
present, direct intramyocardial injection has been described using a trans-endocardial, 
trans-epicardial and trans-venous approach. 
Trans-endocardial delivery involves catheter-based targeted injection of cells into 
the myocardium guided by fluoroscopy or an electrophysiological cardiac mapping 
system. The most established 3D mapping system relies on electro-anatomical mapping 
to navigate the injection catheter inside the heart, accurately distinguishing viable, 
hibernating and infarcted myocardium144. The derived three-dimensional map is used to 
assess the viability of the myocardial target site followed by injection of the cells through 
a small extendable needle. This technique has the advantage of assessing viability of 
potential injection sites, allowing accurate targeting of cell injections into the infarct 
border zone145 or ischemic myocardium146-148. Endocardial damage and ventricular 
perforation have been suggested as potential procedural risks. However, this method 
has successfully been used in several trials, with only 1 patient reported to have had 
pericardial effusion146, 147, 149-151.
Trans-epicardial cell injection has been most commonly performed following sternotomy 
for concurrent coronary artery bypass grafting and has the advantage that it allows 
direct visualization of the myocardium. Due to the invasive nature of this approach, it’s 
primarily used in pre-clinical trials. Since in patients trans-epicardial cell transplantation 
is conducted as an adjunct to coronary bypass surgery, the efficacy of cell injection by 
itself may be difficult to assess.
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Trans-venous intramyocardial cell delivery is a catheter-based method which approaches 
the myocardium through the epicardial surface from the cardiac venous system. To 
achieve this, a catheter containing an intravascular ultrasound probe to localize the 
adjacent coronary artery and pericardium, is positioned in specific branches of the 
cardiac venous system. Using a small-caliber needle, the coronary vein is punctured 
and the needle is introduced into the ventricular wall followed by cell administration152. 
Procedural associated risks include damaging or perforating the venous wall facing 
the epicardium, resulting in pericardial hemorrhage. A disadvantage over the other 
intramyocardial routes is the inability to reach all myocardial territories due to the 
anatomy of coronary veins.

INTRACORONARY INJECTION
Intracoronary infusion of cells is the most commonly used cell delivery method in 
clinical trials. Cells are infused through the central lumen of an over-the-wire balloon 
into the distal end of the infarct-related coronary artery. Transient low-pressure inflation 
of the balloon catheter prevents backflow of the cells, thereby enhancing myocardial 
delivery of cells. This technique is particularly suited for the infusion of cells into a 
specific coronary territory and is therefore mainly used in the setting of acute or chronic 
MI8, 153-156. Although isolated reports have observed potential risks of intracoronary cell 
infusion157-159, meta-analyses have shown that this delivery technique is safe and is not 
associated with a higher incidence of overall clinical events160, 161.

INTRAVENOUS INJECTION
Intravenous cell infusion is performed through a central or peripheral venous catheter 
and is technically the easiest method of cell delivery. Despite the advantage of the least 
invasive route and lowest risks, the effect of intravenous cell delivery heavily depends 
on stem cell homing signals and vascularisation at the target area. Animal studies 
indicated very low cell retention within the infarcted heart after intravenous infusion 
and indicated that most of the infused cells become trapped in the lungs, liver and 
spleen162. Furthermore, this technique may theoretically introduce clusters of larger cells 
(e.g. MSCs) in the circulation, causing microemboli in the vasculature of multiple organ 
systems.
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COMPARING DELIVERY ROUTES
Amongst the various cell delivery techniques that have been tested in preclinical and 
clinical studies, intracoronary and intramyocardial catheter-based cell injection are 
considered most promising. However, until now, no delivery strategy has emerged as 
the most optimal cell delivery route for cell transplantation and variable retention rates 
are reported for all delivery routes70.
At present, a comparison of different delivery routes has not been performed in 
humans. Using animal models, comparative studies have been performed to assess the 
engraftment of transplanted cells in the myocardium using different delivery routes. 
Freyman et al.159 transplanted MSCs using a porcine infarction model and evaluated 
the engraftment rate after 14 days. The percentage of MSCs retained in the infarct zone 
was 6% after intracoronary infusion, 3% after intramyocardial injection and 0% after 
intravenous infusion. In contrast, Hou et al. 163 reported myocardial cell retention of 3% 
after intracoronary delivery, 11% after intramyocardial delivery and 3% after intravenous 
delivery in a swine model of MI, 6 days after BMNC transplantation. In a recent study, 
van der Spoel et al. found no difference between transendocardial and intracoronary 
injection in a pig model of ischemic cardiomyopathy, with both methods resulting in 11% 
cell retention164. 
Since cell engraftment and retention are also dependent of other variables, such as cell 
type and myocardial substrate, comparison of different studies is difficult. Therefore, 
more comparative studies will be necessary to determine the optimal delivery method for 
each situation. In deciding on which technique to use, factors such as cell type, presence 
of homing signals and anatomic location of target site could be taken into consideration.

EXPERIMENTAL STUDIES

ACUTE MYOCARDIAL INFARCTION
After the landmark study of Orlic et al in 2001, which demonstrated that locally delivered 
hematopoetic stem cells were capable of de novo myocardium formation after acute 
myocardial infarction3, numerous experimental studies have been performed in animal 
models of myocardial infarction. Because of contradicting results of these studies5,	165-167, 
the ability of bone marrow-derived cells to form de novo myocardium has been subject of 
discussion. However, in other experimental studies, other mechanisms were elucidated 
by which bone marrow cells may improve myocardial performance. Importantly, 
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stimulation of neoangiogenesis was observed by differentiation in vascular cells and 
excretion of pro-angiogenic substances13, 35, 165, 168-170. Thus, the subsequent improvement 
in myocardial perfusion may result in improved survival of host cardiomyocytes 
and attenuation of the post-infarction remodeling process. Furthermore, it has been 
suggested that bone marrow-derived cells such as HSC and MSC can secrete cytokines 
that may inhibit apoptosis, recruit resident progenitor cells and influence extracellular 
matrix composition12, 13 41.
Skeletal myoblasts have been observed to form functional myotubes77, 78, and islands of 
cardiomyocyte-like cells79, but complete cardiomyogenic differentiation has not been 
observed. Of note, due to a lack of connexin-43 expression, electromechanical coupling 
between transplanted myoblasts and the host cardiomyocytes is absent. This may create 
an arrhythmogenic substrate83 and may reduce the beneficial effect on myocardial 
function81, 82. 
Cardiomyogenic regeneration has been observed after injection of embryonic stem cells171 
and iPS172. Because of the risk of ectopic differentiation using these cells, transplantation 
of pre-differentiated, cardiac-committed embryonic stem cell- or iPS-cells has been 
investigated in a number of studies, resulting in cardiomyogenesis in vivo173-175 and 
improvements in myocardial function176.
Resident cardiac stem cells, especially the c-kitposLinneg cells and cardiosphere-derived 
cells, have also been demonstrated to be able to regenerate injured myocardium in vivo. 
For the other subtypes of resident cardiac stem cells, as well as mesenchymal stem cells 
and EPDC, the capacity for in vivo cardiomyogenesis remains subject of controversy. 
Nonetheless, transplantation of these cell types is associated with improvements in 
cardiac function, probably by other mechanisms, as described in the paragraphs about 
these cell types. Thus, for these cell types, it remains to be investigated to what extent 
cardiomyogenesis may contribute to clinically significant improvements of cardiac 
performance.
 
CHRONIC HEART FAILURE
For application of cell therapy in the clinical setting, assessment of the in vivo potential 
of stem and progenitor cells to restore ischemically damaged myocardium is of pivotal 
importance. Skeletal myoblasts were the first cells to be investigated in a rabbit model 
of MI, resulting in formation of elongated, striated cells with characteristics of both 
skeletal muscle and cardiac cells 79. Numerous studies in small and large animal models 
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confirmed that myoblast injection was associated with improvements in myocardial 
function177, but the exact mechanism of improvement remains unclear. Myotube 
formation by injected myoblasts was observed in several studies, however, since the 
number of surviving myocytes is relatively low76, 78 and electrical integration is absent81, 

82, it has been questioned whether myogenesis in itself may account for the observed 
improvements. Accordingly, it has been hypothesized that the beneficial effects of 
myoblast injection are related to paracrine function of the injected cells87-89 or a “packing 
effect” of engrafted cells, supporting the infarcted wall and increasing elasticity, thus 
attenuating remodeling72. 
Bone marrow-derived MSCs have mainly been investigated using models of acute MI. 
Most studies reported improvements of myocardial function after MSC transplantation, 
with discrepant results regarding cardiogenic differentiation36, 38-40. Of interest, in a porcine 
model of chronic MI, Tomita et al.178 demonstrated that transplanted MSCs engrafted 
in infarcted myocardium, differentiating in cells expressing troponin I and containing 
organized sarcomeres and Z-bands. In addition, capillary density was increased at the 
injection sites. In this study, MSC transplantation resulted in enhanced left ventricular 
function and attenuation of left ventricular dilatation and pathologic thinning of the 
infarcted myocardium178. 
Bone marrow-derived mononuclear cells have extensively been investigated in models 
of acute MI, showing beneficial effects on myocardial perfusion and function, often in 
the absence of substantial cardiac regeneration13, 165, 179. Only a limited number of studies 
using BMNCs have been performed in models of chronic MI. In one of these studies, 
Mathieu et al.180 injected BMNCs or MSCs into the infarct and border zone of a canine 
model of chronic MI to compare the efficacy of both cell types. They concluded that 
BMNC injection was superior to MSCs in improving cardiac function and reducing infarct 
size, and suggested that these improvements were mediated by a favorable angiogenic 
paracrine effect180. Similarly, after injecting chronic infarcted rat myocardium with 
BMNCs, Fukushima et al.181 concluded that the small number of surviving donor-derived 
cells was unlikely to be responsible for the observed improvements in cardiac function, 
suggesting that the effect was mainly due to paracrine mechanisms. Overall, the majority 
of studies on BMC transplantation in chronic MI models demonstrated an improved 
myocardial function without the formation of new cardiomyocytes180-183, suggesting that 
excretion of paracrine substances plays an important role in the mechanism by which 
bone marrow cells improve cardiac function. 
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Cardiac progenitor cells have shown promising results in models of acute MI, with 
transplanted cells differentiating toward cardiac lineages and enhancing cardiac 
performance after injection90, 91, 184, 185. In line with these findings, animal models of chronic 
MI demonstrated cardiac progenitor cells to differentiate into cells expressing markers 
specific for cardiac myocytes, endothelial cells, and vascular smooth muscle cells186. 
Furthermore, cell delivery was associated with beneficial effects on cardiac function, 
however, whether this was due to the effect of direct myocardial differentiation of the 
transplanted cells or caused by paracrine mechanisms is not clear186. Comparable results 
have been found after cardiosphere-derived cell administration into chronic MI models13, 

103, 165, 179, 187, although long-term engraftment was low, again suggesting a paracrine-
mediated effect102. 
Theoretically, ESCs and iPCs are thought to posses great potential for cardiac repair. 
Delivery of hESCs in acute MI models has indeed shown to induce formation of 
new myocardium and improvement of myocardial function128, 129, 188, 189. In a study 
of Fernandes et al.190, injection of these cells in chronic MI models also demonstrated 
formation of new cardiomyocytes, although no beneficial effects on cardiac function 
were observed. In this study, it was suggested that the effect of cell transplantation might 
be more pronounced in the acute of sub acute phase of MI190. Despite the beneficial effects 
following transplantation into animal myocardium, several studies also demonstrated 
the development of tumours140, 191. Currently, research is focusing on refining techniques 
for differentiation and purification to guide differentiation of these pluripotent cells into 
cardiomyocytes.

CHRONIC MYOCARDIAL ISCHEMIA
The majority of experimental studies investigating the effects of cell therapy have been 
performed in animal models of acute myocardial infarction. Only a minority of studies has 
been conducted using animal models of chronic myocardial ischemia, such as ameroid 
constrictor placement in the left anterior descending or circumflex coronary artery. 
Similar to studies in animal models of acute myocardial infarction models, comparison 
of different studies is difficult, since differences exist in cell isolation methods, cell dose, 
timing of delivery, and the characteristics of the animal model. Nonetheless, the results of 
these studies lead to the concept that bone marrow cell injection in ischemic myocardium 
may improve myocardial perfusion and function by stimulating angiogenesis, through 
differentiation into endothelial cells and smooth muscle cells, and secretion of pro-
angiogenic cytokines (figure 1). 
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For example, the study of Kawamoto et al. reported macroscopic collateral formation 
and increased capillary density after intramyocardial cell injection in a swine model of 
myocardial ischemia192. In this study, adhesive CD 31+ cells isolated from peripheral 
blood were injected in ischemic myocardium using a 3D electromechanical mapping 
system, resulting in enhanced neovascularization which was accompanied by 
improvements in LV function. In line with these results, Silva et al. described increased 
capillary density and improved LV function after MSC injection using a canine ischemia 
model35. In addition, injected MSC were found to colocalize with endothelial cells and 
smooth muscle cells but not with cardiomyocytes, suggesting differentiation of MSC into 
these vascular cell types.
In contrast, Fuchs et al observed improved myocardial perfusion and enhanced 
contractility in the absence of microscopic or macroscopic collateral formation193. In 
this study, freshly aspirated, unselected bone marrow cells were injected into ischemic 
myocardium of pigs using a 3D electromechanical mapping system, Of note, this study 
demonstrated that the injected bone marrow cells secreted angiogenic factors which 
induced in vitro endothelial cell proliferation, suggesting that the observed improvements 
were mainly the result of paracrine function of the injected cells, possibly leading to 
changes in vascular diameters or decreased resistance to collateral flow. Importantly, 
since freshly aspirated, non-enriched bone marrow was injected in this study, the absence 
of collateral formation may be attributable to lower dose of progenitor cells as compared 
to studies using bone marrow mononuclear cells or enriched cell populations. Moreover, 
red blood cell contamination may have reduced progenitor cell function194.
In a study focusing on the functional results of bone marrow cell injection, Schneider et 
al. compared intramyocardial injection of BMMC and MSC in a porcine model of chronic 
myocardial ischemia195. In all cell-treated animals, improved LV function, reduced 
fibrosis and increased vascular density were observed, with none of both cell types being 
superior. In addition, using strain rate imaging, a favorable effect on diastolic function 
was observed, as evidenced by improved parameters of filling pressure and myocardial 
relaxation.
Importantly, none of the animal studies did pose any concerns with regard to the safety of 
intramyocardial bone marrow cell injection for chronic myocardial ischemia. Of note, no 
excessive necrosis was observed at the sites of intramyocardial injection192, 193. Furthermore, 
in a porcine model of chronic myocardial ischemia, Krause et al. demonstrated that 3D 
electromechanical mapping-guided injection of both bone marrow-derived mononuclear 
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cells and MSC into ischemic myocardium did not increase fragmentation and duration of 
endocardial electrograms196. These findings suggest that injection of either bone marrow 
cells or MSC is not likely to create a substrate for arrhythmias, and confirms observations 
from early clinical studies197. 

CLINICAL STUDIES

ACUTE MYOCARDIAL INFARCTION
The effect of intracoronary bone marrow cell transplantation in patients with acute 
myocardial infarction has been investigated in multiple clinical trials. Whereas the first 
landmark studies showed contradicting results14, 198, 199, later studies have pointed out 
that bone marrow cell infusion is associated with moderate but significant effects on LV 
function160, 161, 200. Moreover, some studies presumed a beneficial effect on prognosis201, 202, 
although a recent meta-analysis did not confirm this203.
Of note, a large variability exists in the reported effects of bone marrow cell transplantation 
on myocardial function and infarct size. Several differences in the design of these 
studies may account for these variable findings. First, cell processing techniques have 
been suggested to account for the different results of these studies. Factors that have 
particularly been related to cell recovery and/or function are the separation protocol 
(lymphoprep versus ficoll separation), and the use of serum during incubation204. 
Furthermore, red blood cell194 and platelet contamination205 have been associated with 
impaired cell functionality after transplantation. Second, cell dose has been highly 
variable between studies, ranging from 12 million to over 240 million cells. Since a dose-
response relationship has been suggested in a meta-analysis200, this variability in cell dose 
may have contributed to the different outcomes. Third, several time intervals between 
myocardial infarction and cell transplantation have been studied. Of note, a recent meta-
analysis suggests that the optimal time interval for bone marrow cell transplantation 
is within 7 days after acute myocardial infarction200, whereas the REPAIR-AMI trial 
suggested that the beneficial effects of cell transplantation is limited to patients who 
receive bone marrow cells 4 or more days after acute myocardial infarction14. Thus, 
based on these findings, it may be supposed that 4-7 days after myocardial infarction 
is the optimal timing for bone marrow cell transplantation. Finally, different imaging 
techniques have been used for the evaluation of LV function and infarct size. Of note, 
LV ventriculography is often used, whereas only a part of the studies used magnetic 
resonance imaging or single-positron emission computed tomography. 
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Clinical studies using other cell types in patients with acute myocardial infarction are 
scarce. Recently, a phase I clinical trial demonstrated the safety of intracoronary infusion 
of cardiosphere-derived cells 2-4 weeks after acute myocardial infarction. In addition, a 
decrease in infarct size and improved regional systolic function were observed in CDC-
treated patients. 
In summary, the optimal conditions for bone marrow cell transplantation after acute 
myocardial infarction remain to be determined. Further studies are necessary to establish 
the optimal cell type, isolation protocol, cell dose and timing of cell transplantation in 
patients with acute myocardial infarction.

CHRONIC HEART FAILURE
Bone	marrow	cell	therapy
Cell therapy for patients with ischemic heart failure has mainly been investigated using 
transcatheter intracoronary or intramyocardial injection of therapeutic cells, although 
some investigators used direct myocardial injection during surgical revascularization. A 
summary of currently available studies is provided in table1. 
Early studies demonstrated that intracoronary administration of bone marrow-derived 
cells is safe and feasible in patients with ischemic heart failure155, 206. These initial studies 
reported no signs of cardiac or systemic inflammation, cardiac arrhythmias, or other 
short term complications after cell transplantation155, 206. In addition, preliminary efficacy 
analysis suggested that intracoronary cell infusion may improve myocardial function 
and perfusion, which was confirmed by the results of the TOPCARE-CHD trial207. In this 
trial, patients were randomly assigned to receive either BMCs, circulating progenitor 
cells or no cell infusion into the patent coronary artery supplying the most dyskinetic 
myocardial area. Transplantation of BMCs was associated with a 2.9% increase in LVEF 
as assessed by LV angiography, which was paralleled by an improvement in New York 
Heart Association (NYHA) class207. In line with these findings, Erbs et al.208 documented 
that LVEF increased with 7.2% after intracoronary infusion of G-CSF mobilized cells as 
compared to placebo treatment. On the other hand, in a randomized controlled study 
by Yoa et al.209, no improvements in LV systolic function were detected using magnetic 
resonance imaging. Nonetheless, echocardiographic tissue doppler analysis revealed 
modest improvements in diastolic function. In addition to these favorable effects on 
clinical and functional parameters, the STAR-heart study210 reported an improvement in 
survival in patients receiving intracoronary BMC administration as compared to control 
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patients. However, this study comprised a non-randomized, open label study and the 
possible contribution of a placebo-effect could not be excluded.
Intramyocardial catheter-based injection of BMCs into ischemic myocardium211 or the 
infarct border zone145 with the use of a 3D-electromechanical mapping system is considered 
to be safe and feasible in patients with ischemic heart failure, although it must be noted 
that two studies reported one death in which an effect of the cell therapy could not be 
ruled out145, 211. In these non-randomized safety and feasibility studies, favorable effects 
on LVEF and perfusion were reported. A randomized trial conducted in 109 patients 
with ischemic heart failure confirmed these findings by demonstrating improvements 
in myocardial perfusion, LV function and anginal complaints after bone marrow cell 
injection into the infarct borderzone as compared to placebo-treatment. Moreover, bone 
marrow cell injection was associated with a significantly improved survival212.
In contrast, a recently published multicenter trial investigating intramyocardial bone 
marrow cell injection in patients with ischemic heart failure did not detect improvements 
in their pre-specified endpoints end-systolic volume, maximal oxygen consumption, and 
reversibility on SPECT213. However, it must be noted that a significant improvement in 
LV ejection fraction was observed in the bone marrow cell group as compared to the 
placebo group, which was mainly driven by improvements in patients of 62 years old or 
younger. Additional subgroup analysis suggested that the amount of CD34 and CD 131 
positive cells were associated with larger improvements in LV ejection fraction.
Clinical studies investigating surgical injection of bone marrow-derived cells in 
conjunction with bypass surgery have yielded mixed results. Initial safety and feasibility 
studies214, 215 reported improvements in cardiac function after cell treatment, however 
interpretation of these results was hindered by the concomitant revascularization. 
Subsequently performed randomized controlled trials yielded discordant results: 
whereas CD34+ cell administration by Patel et al.216 resulted in an improvement in LVEF 
of 8.9%, two other trials did not find217;218 a beneficial effect on left ventricular function 
following BMC transplantation. A number of reasons may account for this disparity of 
which the biasing effect of bypass surgery may be the most abundant.
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Skeletal	Myoblast	therapy
Since preclinical studies demonstrated the ability of skeletal myoblasts to generate 
functional myotubes in infarcted myocardium, clinical studies were initiated to estimate 
safety and efficacy of myoblast administration in patients with chronic heart failure. In 
most studies, skeletal myoblast transplantation has been carried out as an adjunct to 
routine surgical revascularization procedures, whereas a couple of studies performed 
direct catheter-based intramyocardial injection as a stand alone procedure.
Initial clinical studies evaluated safety and feasibility of intramyocardial skeletal 
myoblast transplantation in patients undergoing bypass surgery. Functional and clinical 
improvements were observed in these non-randomized studies74, 219-222, however safety 
issues arose from these studies since ventricular arrhythmias including sustained 
monomorphic ventricular tachycardia and ventricular fibrillation were reported after cell 
transplantation74, 219, 221, 222. Although a direct relation between the observed arrhythmias 
and skeletal myoblasts transplantation is not proven, later studies performed concomitant 
internal cardioverter-defibrillator (ICD) implantation as a precaution.
Since the aforementioned studies lacked a control group, the attributed beneficial effect 
of cell transplantation over bypass surgery alone could not be determined. Therefore, 
the MAGIC clinical trial223 was initiated to investigate efficacy of skeletal myoblast 
transplantation in heart failure patients undergoing bypass surgery. This multicenter, 
randomized, placebo-controlled trial administrated low dose (400 x 106), high dose (800 x 
106), or placebo suspension in akinetic myocardium, accompanied by ICD implantation. 
Injection of high dose skeletal myoblasts resulted in reduced LV remodeling, as evidenced 
by decreased LV end-diastolic and -systolic volumes as assessed by echocardiography. 
However, no significant differences in regional or global LV function were observed223.
Transplantation of skeletal myoblasts has also been performed using direct catheter-
based delivery methods. In line with the findings of trans-epicardial myoblast 
administration, an increased occurrence of cardiac arrhythmias was observed following 
transendocardial delivery, emphasizing the need for prophylactic ICD implantation74, 75, 

221, 224-226. Nonetheless, these small-sized clinical studies suggested that trans-coronary-
venous221 and transendocardial74, 75, 224-227 cell delivery of skeletal myoblasts was 
associated with improvements in cardiac performance and clinical symptoms. The 
SEISMIC study228 is a relatively small open-label randomized study in which patients 
were randomized to receive either skeletal myoblasts by trans-endocardial injection 
or optimal medical treatment. Cell therapy was associated with an increase in exercise 
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capacity, and an improvement in NYHA class. However, despite these beneficial effects, 
no significant improvement in global or regional LV function was detected in this 
study228. Unfortunately, the larger phase II/III randomized MARVEL trial was stopped 
because of financial reasons after inclusion of 23 patients229. In these patients, ventricular 
tachycardias were more frequent in cell-treated patients and no functional benefit could 
be demonstrated. Thus, larger randomized studies are necessary to assess the safety as 
well as the functional benefits of skeletal myoblast administration in patients with heart 
failure.

REFRACTORY ANGINA PECTORIS
Supported by encouraging preclinical data and an unmet clinical need, several clinical 
studies were initiated to investigate intramyocardial bone marrow cell injection as 
a novel therapeutic option for the treatment of chronic myocardial ischemia. In these 
studies, patients with refractory angina ineligible for conventional revascularization 
were treated with transendocardial bone marrow cell injection, performed during 
cardiac catheterization with the use of electromechanical mapping. In table 2, a summary 
of these studies is provided. Four studies included patients with angina 230-233, whereas 
one study included patients with heart failure211. The combined experience of these 
studies indicated that bone marrow cell injection is a safe and feasible treatment in 
patients with chronic myocardial ischemia. However, 1 patient in the study of Perin et 
al. died suddenly at 14 weeks follow-up. Although sudden cardiac death is a relatively 
common complication of ischemic heart failure, a cell-related cause of this event could 
not be ruled out. Of note, 2 studies demonstrated that intramyocardial bone marrow cell 
injection was not associated with progression of atherosclerosis234 and did not alter the 
electrophysiological properties of the injected myocardium 197.
Importantly, most of these initial clinical studies reported improvements in myocardial 
perfusion, LV function and anginal complaints after bone marrow cell injection. Since 
only preliminary conclusions could be drawn from these nonrandomized studies, 
several randomized trials were initiated to assess the efficacy of intramyocardial bone 
marrow cell injection. 
In a small-sized randomized trial, Losordo et al. documented the feasibility and 
safety of intramyocardial injection of granulocyte colony-stimulating factor-mobilized 
(G-CSF) CD34+ stem cells149. No significant effect on angina frequency, exercise time, or 
Canadian Cardiovascular Society (CCS) score was observed, which may have been due 
to underpowering for these outcomes. 
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This study was extended to a randomized, double-blind multicenter trial, which 
investigated the effect of intramyocardial injection of low dose (1x105 cells/kg) and 
high dose (5x105 cells/kg) G-CSF mobilized CD34+ cells in 167 patients with chronic 
myocardial ischemia235. In this study, intramyocardial CD34+ cell injection was associated 
with improvements in exercise tolerance and anginal symptoms, which were preserved 
after 12 months follow-up. However, SPECT imaging only demonstrated a transient 
increase in stress myocardial perfusion after 6 months which was not detectable at 12 
months follow-up. Of note, the improvements were larger in the low dose group than 
in the high dose group, possibly suggesting a biphasic dose-response relationship, as 
suggested by the authors.
In the smaller PROTECT-CAD trial, Tse et al. evaluated the effect of intramyocardial 
bone marrow cell injection on myocardial perfusion, LV function and clinical parameters 
in 28 patients with chronic myocardial ischemia150. Patients were randomized in a 1:1:1 
ratio to receive low dose bone marrow cells (n=9), high dose bone marrow cells (n=10), or 
placebo solution (n=9). Diabetes and previous percutaneous coronary intervention were 
more frequent in the placebo group than in the bone marrow cell groups, suggesting 
that baseline risks were not completely balanced between the groups. Although bone 
marrow cell injection was associated with a modest increase in exercise capacity and LV 
ejection fraction, no significant treatment effect on CCS class was observed, indicating 
no effect of bone marrow cell injection on anginal complaints. Moreover, the changes in 
myocardial perfusion did not differ significantly between the (pooled) cell group and the 
placebo group. Only when post hoc analysis was performed, a significant improvement 
in myocardial perfusion was observed in bone marrow cell-injected myocardial regions.
Obviously, differences in cell type, dose and method of preparation may often account for 
variable treatment effects, but this would not explain the apparent discrepancy between 
clinical observations and SPECT parameters in the study of Losordo et al. Therefore, as 
suggested by the authors, it may be argued that the effect of CD34+ cell injection may 
be diffusely spread throughout the ischemic myocardium, resulting in subtle changes in 
myocardial blood flow which may not be detectable on SPECT imaging. It is theoretically 
conceivable that the improvement in myocardial perfusion after cell injection may tend 
to be more focal236 or diffuse35, depending on factors such as cell type, cell dose and 
injection technique. Possibly, new techniques such as positron-emission tomography 
imaging may provide more information about this mechanism237.
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Intracoronary infusion of BMC has been described in patient with chronic myocardial 
ischemia. However, adverse events possibly related to cell injection have been reported 
by Boyle et al.238 in a small safety study. In contrast, a cohort consisting of 112 patients 
with severe coronary artery disease was described which underwent intracoronary cell 
transfusion without any complications239. Nevertheless, the safety of this administration 
route in patients with severe coronary artery disease remains to be further investigated.

AIM AND OUTLINE OF THE THESIS

The aim of this thesis was to investigate the effect of intramyocardial bone marrow cell 
injection in patients with chronic ischemic heart disease. The effect of bone marrow cell 
injection was assessed using conventional clinical measures such as CCS angina class, 
quality of life evaluation and exercise testing. Furthermore, various imaging techniques 
were used to evaluate the functional benefits of bone marrow cell injection in terms of 
myocardial perfusion, global and regional LV function, diastolic function, and cardiac 
sympathetic nerve function. 
In chapter 2, the results are described of a randomized, placebo controlled, double-
blinded trial investigating intramyocardial bone marrow cell injection in patients 
with chronic myocardial ischemia. The results of the cross-over phase of this study 
are reported in chapter 3. In chapter 4, a substudy of this trial is presented in which 
the effect of bone marrow cell injection on diastolic function is evaluated. Chapter 5 
discusses the findings of myocardial innervation imaging using MIBG in patients which 
underwent bone marrow cell injection. In chapter 6, the results are described of a study 
which evaluated the effects of bone marrow cell injection in patients with ischemic heart 
failure. In particular, the effect on LV dyssynchrony was assessed. Finally, the long term 
results of bone marrow cell injection in patients with chronic myocardial ischemia are 
evaluated in chapter 7. 
The last chapter concerns the summary and conclusions of the thesis. 
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