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Introduction 
 

Acinetobacter baumannii is a Gram-negative, non-motile bacterium notorious for its 

ability to colonize and spread among hospitalized patients. The fact that A. baumannii is 

more frequently associated with colonization than infection, even in susceptible patients, 

emphasizes the relatively low virulence of this bacterium. However, severe A. baumannii 

infections, including pneumonia and bacteremia, do occur in critically ill patients. Given 

the accumulating numbers of A. baumannii strains resistant to the last resort antibiotics, 

today’s global nosocomial spread is a major cause of concern. It remains unclear which 

factors determine the clinical success of A. baumannii. The aim of the studies presented in 

this thesis was to obtain insight into the factors contributing to the epidemicity and 

pathogenicity of this bacterium. In this chapter, the current state of knowledge regarding 

Acinetobacter species, including their taxonomy, epidemiology, antibiotic resistance, 

clinical features and pathogenesis, is reviewed. 

 

 

Taxonomy, epidemiology and antibiotic resistance 

 

Bacteria belonging to the genus Acinetobacter have undergone significant taxonomic 

changes during the last decades. Until the mid 1980s, this genus comprised only a single 

species, A. calcoaceticus [1], although a second species, A. lwoffii, was included on the 

Approved Lists of Bacterial Names [2]. At the time, glucose-acidifying strains were also 

often referred to as ‘Bacterium anitratum’ [3]. With the recent description of A. pittii 

[genomic species (gen. sp.) 3], A. nosocomialis (gen. sp. 13TU) [4], A. rudis [5] and A. 

brisouii [6], the genus Acinetobacter currently comprises 27 validly named species. The 

species A. baumannii, A. calcoaceticus, A. pittii and A. nosocomialis are genotypically 

closely related and phenotypically difficult to distinguish, which has given rise to the 

proposal to group them in the A. calcoaceticus - A. baumannii (Acb) complex [7]. From a 

clinical perspective this is not appropriate as the complex combines three clinically 

relevant species (A. baumannii, A. pittii, and A. nosocomialis) [8–12] with an 

environmental species (A. calcoaceticus) that is occasionally encountered in clinical 

specimens, but to our knowledge not associated with infection [13]. It is noteworthy that 

due to the difficulty in separating these Acb complex species with commercial 

identification systems commonly used in diagnostic microbiology [13,14], the clinical role 

of A. pittii and A. nosocomialis may be underestimated.  

 The ecology of bacteria belonging to the genus Acinetobacter is diverse. These 

organisms have been recovered from soil, surface water, vegetables, animals, human 
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body lice, and humans [15–19]. Twenty-five to 44% of healthy individuals were found to 

carry Acinetobacter species on the skin, particularly at moist sites like the axillae and toe 

webs [16,19]. The majority of the Acinetobacter species isolated from the skin belong to A. 

lwoffii, A. johnsonii and A. junii, whereas A. baumannii skin carriage is rare in healthy 

individuals [19]. The natural reservoirs of A. baumannii remain to be discovered. Bacteria 

of this species have been isolated mainly from hospitalized patients, but also from the 

hospital environment, and from sick animals [20]. There are indications that skin and 

mucous membranes colonized by clinically relevant species is an important source of 

infections in hospitalized patients, thereby contributing to the development and 

persistence of outbreaks [7,21,22]. A. baumannii has the capacity to survive on inanimate 

surfaces, such as ventilation equipment and bedding materials [23–27], for up to five 

months [28,29], thereby creating an important secondary reservoir from which spread to 

patients may occur.  

 The incidence of A. baumannii infections varies widely: from less than 1% in 

different European hospitals [30,31] to e.g. 32% among ventilated patients in a Taiwanese 

hospital [32]. A. baumannii, A. pittii and A. nosocomialis are the species most frequently 

involved in these infections [11,33–35]. A. baumannii strains have become endemic in 

multiple centres [36–40] and outbreaks have been observed worldwide [13,41]. A 

systematic review of published nosocomial outbreaks in the intensive care units (ICU) 

setting from 2005 to 2010 has revealed that A. baumannii was responsible for almost 25% 

of ICU infection outbreaks [42]. Three major lineages of genetically highly related A. 

baumannii strains, designated European (EU) clone I, II and III, are frequently implicated in 

outbreaks [43,44]. A recent striking manifestation is the occurrence of A. baumannii 

infections in soldiers severely injured during the conflicts in Iraq and Afghanistan [45]. 

Although Acinetobacter is mainly associated with nosocomial infection, several cases of 

community-acquired pneumonia, mostly associated with underlying diseases, have been 

reported [46–48].  

 During the last three decades, clinicians are increasingly faced with infections of 

A. baumannii isolates resistant to almost all clinically applicable antibiotics [12,49,50]. By 

the late 1990s, carbapenems and polymyxins were the only remaining useful agents that 

could combat severe infections with this microorganism in certain hospitals. To date, 

however, carbapenem-resistant strains are accumulating worldwide [12,49,51], a worrying 

development given the paucity of alternative treatment agents [52]. The ability of A. 

baumannii to persist in the hospital environment and to colonize patients in addition to its 

multidrug-resistant (MDR) phenotype makes control of outbreaks caused by this organism 

difficult [7,53].  
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Clinical manifestation and risk factors 

 

Acinetobacter is an opportunistic pathogen that almost exclusively affects predisposed 

individuals, i.e., critically ill patients, including intensive care unit (ICU) and heavy trauma 

patients, as well as hospitalized neonates [7,54–56]. It can cause various types of 

infection, including pneumonia, urinary tract infections, skin and wound infections, and 

bacteremia [7,41]. These infections are mainly caused by A. baumannii, although A. pittii 

and A. nosocomialis also play a role [33,35,57–62]. Hospital-acquired infections caused by 

other Acinetobacter species are rare and if they occur, the clinical course is usually mild.  

Prolonged hospital stay and previous antibiotic use have been identified as risk 

factors for A. baumannii infection [63–65]. In addition, invasive devices, such as tubes, 

catheters, and vascular devices may act as portes d’entrée for Acinetobacter species 

[64,65]. Consequently, A. baumannii has emerged as a particularly important organism in 

ICUs, responsible for increased length of hospital stay and consequently of healthcare 

costs [66,67]. 

 Mortality in patients with A. baumannii infection in the ICU fluctuates widely, 

depending on patient characteristics, such as age and immune status [68], but also on 

geographic region; in the USA, crude mortality rates of 2% to 34% have been described 

[69–71], whereas in Taiwan and Turkey, rates as high as 20-68% [72–75] and 60-81% 

[76,77] have been reported, respectively. A multicenter study of Acinetobacter outbreaks 

in the Netherlands from 1999 to 2001 showed that in 1% of cases, death was a direct 

consequence of A. baumannii infection, whereas it had possibly played a role in the death 

of 8% of the infected patients [26]. The impact of A. baumannii on mortality remains a 

matter of debate as it is often difficult to determine whether mortality is caused by the 

patient’s underlying illness or by the A. baumannii infection [7,78,79].  

 Altogether, MDR A. baumannii has a major clinical impact on the healthcare 

setting. In the next section, the factors that play a role in the pathogenesis of this 

troublesome pathogen will be discussed. 

 

 

Pathogenesis and host defenses 

 

The balance between on the one hand the host’s defense and on the other particular 

bacterial characteristics, so-called virulence factors [80], determines the outcome of 

infection. In the following paragraphs, we will discuss host defense mechanisms in general 

and the current knowledge of the virulence factors of A. baumannii (summarized in Figure 

1). 



General introduction and outline of the thesis 

 14 

Host defense mechanisms 

 

The first line of defense encountered by pathogens is the anatomical barrier presented by 

the skin and mucous membranes. Chemical features of these epithelia, including the 

presence of fatty acids, low pH, antimicrobial peptides and enzymes, help to prevent 

pathogen entry [81]. Moreover, a key component of mucosal secretions, lactoferrin, binds 

iron and thereby hinders bacterial growth. If pathogens do cross the protective epithelial 

barrier, humoral and cellular effectors of the host innate immune response come into 

play. The major humoral innate defense mechanism, the complement system, is activated 

in the presence of pathogens [82,83]. Activation leads to the deposition of C3b on the 

pathogen surface, initiating opsonisation for phagocytosis and the formation of the 

membrane-attack complex (MAC), which can cause direct lysis of the pathogen. The 

chemotactic activity of complement component C5a attracts immune cells from the 

circulation. Pathogens can also be recognized by specific pattern recognition receptors on 

host cells, including Toll-like receptor (TLR)2, TLR4, TLR5, and TLR9 and C-type lectins 

[84,85]. This results in the production and release of chemokines and cytokines and the 

subsequent recruitment of neutrophils and monocytes from the circulation. Neutrophils 

phagocytose and kill engulfed pathogens through the production of toxic reactive oxygen 

species (ROS) mediated by NADPH oxidase and myeloperoxidase as well as non-oxidative 

mechanisms. The recruited monocytes differentiate, depending on the local environment, 

into macrophages or dendritic cells that can phagocytose and kill the pathogen but are 

also involved in initiating an adaptive immune response. In response to bacteria, host cells 

can produce antimicrobial peptides, including the cathelicidin LL-37 and human defensins, 

that inhibit bacterial growth and modulate the host response [86]. Although these 

inflammatory reactions are essential to eradicate the pathogen, they can also contribute 

to a wide range of deleterious effects, such as tissue damage [87].  

Many bacteria have evolved different mechanisms to resist or evade these host 

defenses, as described below and summarized in Figure 1. 

 

 

Virulence mechanisms 

 

Adherence 

The ability of bacteria to adhere to surfaces is the initial step in the colonization of various 

niches [88,89]. A. baumannii can adhere to different abiotic surfaces, such as glass and 

plastic [90–96], for prolonged periods [97,98], which may contribute to its persistence on 

medical devices and the hospital environment [28].  
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Figure 1. Overview of the interaction of A. baumannii with its host. Bacteria can adhere to the host 

surface (1) via adhesins and aspecific factors. They multiply, form microcolonies and produce 

exopolysaccharides resulting in the formation of a biofilm (2). Quorum sensing, histidine metabolism, 

specific outer membrane proteins and pili play a role in this process. Once adhered, bacteria can invade 

the host via a zipper-like mechanism or secrete several enzymes that degrade host cell molecules 

enabling them to enter the underlying tissues (3). Such toxic agents produced by the bacteria can, 

either directly or via outer membrane vesicles, be transferred to the host cells leading to apoptosis (5). 

The host cells can sense the bacteria via specific pattern recognition receptors, which triggers an innate 

immune response (4). Once inside the host, bacteria activate dendritic cells (7), which subsequently 

activate the adaptive immune response. Neutrophils and macrophages residing in the tissues or 

bloodstream can phagocytose and kill the invaded bacteria (8). However, bacteria can also prevent 

killing by these cells either by inducing apoptosis of the host cells or by preventing ROS-induced DNA 

damage. The ability of bacteria to evade the killing actions of the complement system, e.g., by binding 

complement inhibitors to their surface, and the ability to acquire iron via siderophores enables them to 

survive and multiplicate inside the host (6).  

AHL, acylated homoserine lactones; AIF, apoptosis inducing factor; Bap, biofilm-associated protein; DC, 

dendritic cell; hBD, human beta defensin; IL, interleukin; iNOS, inducible nitric oxide synthase; LPS, 

lipopolysaccharide; MAPK, mitogen-activated protein kinases; NFкB, nuclear factor кB; Omp, outer 

membrane protein; OMV, outer membrane vesicle; PNAG, poly-β-(1-6)-N-acetyl glucosamine; ROS, 

reactive oxygen species; TLR, Toll-like receptor. 
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Acinetobacter is also able to colonize biotic surfaces, including human skin and mucosal 

surfaces [16,19], which was corroborated by laboratory studies demonstrating that 

Acinetobacter strains could adhere to human epithelial cells in vitro [91,94,99,100].  

 Specific factors, such as adhesins, and aspecific factors like surface 

hydrophobicity play an integral role in bacterial adherence [81,94,101]. Adhesins are 

bacterial components capable of binding to a large variety of surfaces, thereby mediating 

interactions between the bacterium and a surface. They can broadly be divided into 

fimbrial and afimbrial adhesins [102,103]. Fimbriae are short, hair-like bacterial 

appendages [104] that can be assembled by various pathways, including the chaperone-

usher pathway. Via this pathway two proteins are produced, a periplasmic chaperone, 

which facilitates the folding of pilus subunits and an outer membrane usher that facilitates 

the dissociation of the subunits of the chaperone, exposing the subunit´s interactive 

surface and driving its assembly into the pilus [103]. Genome analyses revealed the 

existence of different fimbrial genes in A. baumannii [105–107]. In agreement with these 

findings, various types of fimbrial adhesins have been identified in Acinetobacter species, 

including bundle forming thin pili, which are associated with adherence to abiotic and 

biotic surfaces, and individual thick pili that are associated with twichting motility, i.e., the 

ability to move on solid surfaces [108], enabling colonization of adjacent surface areas 

[92,93,95]. Pili mediated by the CsuA/BABCDE chaperone-usher system have been 

identified as important structures to enable adherence to glass and plastic surfaces [95]. 

Another chaperone-usher system with a similarly organised pilus gene cluster, the acuA 

cluster, was identified in the environmental species A. baylyi [92]. Altogether, these 

studies indicate that Acinetobacter species express different pili that are associated with 

the adherence to abiotic and biotic surfaces. 

In addition to fimbrial adhesins, many bacterial species express a family of cell-

surface adhesins that specifically recognize and bind components of the extracellular 

matrix [109]. Koljalg et al demonstrated that different clinical A. baumannii isolates could 

adhere to the extracellular matrix constituents collagen, fibronectin, fibrinogen and 

vitronectin [110], but the microbial surface components recognizing these adhesive matrix 

molecules have not been identified yet. Outer membrane protein A (OmpA) is the most 

abundant surface protein of A. baumannii and has been shown to be required for 

adherence of A. baumannii ATCC19606
T
 to fungal filaments and alveolar epithelial cells 

[111]. Other factors like surface hydrophobicity play a role in the adherence of 

Acinetobacter to abiotic [91,94] and cellular surfaces [92]. Clinical A. baumannii strains 

were found to constitute higher hydrophobicity as compared to A. baumannii strains 

isolated from skin of healthy individuals [112]. Thus, in addition to pili, other cell surface 

adhesins and surface hydrophobicity of Acinetobacter strains are thought to play a role in
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their adherence to host surfaces. 

   

Biofilm formation 

Once bacteria have adhered to a surface, they can multiply and form microcolonies, 

followed by the production of exopolysaccharides, resulting in a highly structured 

microbial community: the biofilm [113,114]. The biofilm confers several advantages to 

bacteria within this structure as compared to their free-living counterparts: (i) the biofilm 

is an efficient scavenging system for trapping and concentrating essential minerals and 

nutrients from the environment [115]; (ii) sessile bacteria are more resistant to the effects 

of antibiotics and to effector cells and molecules of the host defense system than 

organisms in suspension [113]; and (iii) the proximity of bacteria within the biofilm 

provides an ideal environment for the horizontal transfer of genes, including antibiotic 

resistance genes [116]. 

 The ability of A. baumannii to form biofilms on glass and plastic surfaces 

[95,96,117] has been shown to depend on CsuA/BABCDE-mediated pili [95]. The 

expression of these pili is regulated by a two-component regulatory system comprised of a 

sensor kinase encoded by bfmS and a response regulator encoded by bfmR [118]. In 

addition, OmpA is needed for the formation of robust biofilms on abiotic surfaces [111]. 

Outer membrane proteins NlpE [106], Omp33 and the peptidoglycan-binding protein LysM 

as well as the putative porins CarO, OprD-like and DcaP-like proteins are also involved in 

A. baumannii biofilm formation on plastic, although their precise role in this process 

remains to be determined [119]. Choi et al described that the pgaABCD genes encode 

enzymes that synthesize the extracellular polysaccharide poly-β-(1-6)-N-acetyl 

glucosamine in A. baumannii [120], which is an important component of the biofilm. A 

homologue of the staphylococcal biofilm-associated protein (Bap) is involved in inter-

bacterial adhesion in mature biofilms and is needed for the stabilization of A. baumannii 

biofilms formed on glass [121].  

 Biofilm formation is influenced by environmental factors, such as the 

concentration of free calcium and iron, both of which enhance A. baumannii biofilm 

formation on plastic [95,122]. Two recent studies described the involvement of proteins 

participating in histidine metabolism in biofilm formation by A. baumannii, although the 

precise role still needs to be identified [119,123]. In this connection, it was suggested that 

A. baumannii reprograms bacterial gene expression by using certain aminoacids like 

histidine, leading to biofilm formation as described for Pseudomonas putida [124]. 

 The association between A. baumannii biofilm formation, antibiotic resistance 

and clinical success is ambiguous. Rodriguez-Bano et al [125] and King et al [126] did not 

find that MDR resistant A. baumannii isolates were more frequently biofilm-formers on 
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abiotic surfaces as compared to susceptible isolates, in contrast to several other studies 

[127,128]. It is of note that all these studies only examined an indirect association by 

comparing antibiotic resistant and susceptible strains for their ability to form a biofilm. 

Shin et al reported that the extended-spectrum β-lactamase PER-1 was up-regulated in A. 

baumannii cultured under biofilm conditions [123]. Another study has demonstrated a 

positive association between the expression of blaPER-1 and the ability of A. baumannii to 

form a biofilm [122]. Furthermore, a putative resistance nodulation cell division type 

efflux pump (RND pump) is increased in bacteria residing in biofilms. Overexpression of 

this type of efflux pump in A. baumannii confers resistance to different antibiotics 

[129,130], suggesting that changes in the A. baumannii proteome during biofilm formation 

play a role in the resistance to antibiotics. 

  Altogether, A. baumannii in biofilm structures are protected against 

environmental stresses, such as desiccation [131] and exposure to antibiotics, which may 

explain the survival properties of this organism on environmental surfaces and medical 

devices. 

 

Quorum sensing 

In order to build a highly structured and complex biofilm community, bacteria are thought 

to communicate with one another through a process called quorum sensing [132]. The 

term ‘quorum sensing’ describes the ability of bacteria to monitor the microbial 

population density, which is reflected by levels of specific signal molecules, autoinducers 

[132]. In Gram-negative bacteria, quorum sensing is typically mediated by autoinducers 

belonging to the group of acylated homoserine lactone derivatives (AHLs) [133]. These 

signal molecules are synthesized at a low basal level and diffuse from the bacterium 

according to their concentration gradient. Increased population density results in the 

accumulation of AHLs, which interact with transcription factors that control the expression 

of, among others, virulence genes [134,135]. Smith et al recently described the existence 

of genes encoding autoinducer processing in a clinical A. baumannii strain [107]. This is 

supported by the finding of three different quorum sensing signal molecules among 

Acinetobacter species, including A. baumannii, A. pittii and A. nosocomialis [136,137] and 

several studies that described an association between autoinducer production and biofilm 

formation by Acinetobacter [138–140]. 

 

Invasion 

Once adhered to the host surface, pathogens may gain access into the host by a process 

called invasion [141]. For this purpose, pathogens can secrete several enzymes that 

degrade host cell molecules enabling them to disseminate into the host while avoiding 
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uptake by host cells, so-called extracellular invasion. Intracellular invasion occurs when a 

pathogen actually penetrates host cells, which can occur via two mechanisms: a zipper-

like mechanism, which requires the direct interaction of bacterial ligands to host’s cell 

surface receptors; and a trigger mechanism, which is initiated by injection of bacterial 

effector proteins into host cells by a type III secretion system. In both cases, the host’s 

cytoskeleton is rearranged to promote bacterial invasion. 

 A. baumannii can invade different respiratory epithelial cells [111,142] via a 

zipper-like mechanism [142]. OmpA plays a role in the invasion of these cells by A. 

baumannii ATCC19606
T
 [111,142] and was involved in the dissemination of this strain into 

the bloodstream in a mouse pneumonia model [142]. A. baumannii secretes enzymes that 

can potentially degrade host cell molecules, including lipases and hemolysins [97], by 

which this pathogen may invade the host. Moreover, Jacobs et al reported a role for 

phospholipase D of A. baumannii in bronchial epithelial cell invasion in vitro and 

dissemination in vivo [143]. These so-called invasins can, in addition to promoting 

bacterial invasion, also induce cytotoxicity as described below. 

 

Induction inflammatory responses 

The bacterial cell envelope-associated lipopolysaccharide (LPS) is considered to be the 

principal component of Gram-negative bacteria that is responsible for the induction of the 

host’s immune response. The lipid A part of LPS of different A. baumannii isolates is a 

bisphosphorylated diglucosamine with at least six saturated fatty acyl chains with lengths 

of 12 or 14 carbons [163], a structure that is associated with a high cytokine-inducing 

capacity [164]. This notion is supported by different studies showing that LPS of A. 

baumannii and A. hemolyticus induced an inflammatory response in vivo [163,165,166]. 

TLR4 plays a key role in innate sensing of A. baumannii via the LPS moiety, in initiating an 

adequate inflammatory response and, hence, in effective elimination of bacteria from e.g. 

the lung and in prevention of systemic bacterial spread. TLR2, however, reduced 

inflammatory innate responses and delayed eradication of A. baumannii in a murine 

model of pneumonia [166]. In vitro, both TLR2 and TLR4 have been shown to engage with 

A. baumannii [163,167], triggering activation of NF-κB and mitogen-activated protein 

kinases (MAPKs) pathways and the subsequent production of IL-8 in alveolar epithelial 

cells [163]. OmpA is another immunomodulatory factor of A. baumannii [168]. It was 

found to be associated with the activation and maturation of dendritic cells that drive T 

cell differentiation towards a T helper cell type 1 response [168].  

 Only a few studies have investigated host’s immune responses to A. baumannii. It 

was shown that C57BL/6 mice were capable of clearing A. baumannii within 72 h after 

intranasal inoculation with relatively high doses [166,169–171]. These results suggest that 
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innate immune defenses in the lungs can effectively control A. baumannii infection and 

prevent development of severe disease. In mice, A. baumannii induces the production of 

moderate amounts of the pro-inflammatory cytokines and chemokines tumor necrosis 

factor (TNF)α, interleukin (IL)-1β, IL-6, IL-17, monocyte chemotactic protein (MCP)-1, 

macrophage inflammatory protein (MIP)-2 and keratinocyte chemoattractant (KC) 

[166,169–173], resulting in the recruitment of neutrophils. Early recruitment of 

neutrophils into the lung has been shown to be important for initiating an efficient host 

defense against respiratory A. baumannii infection in mice [169,171,172]. 

 Neutrophils can engulf microbes into a phagosome that fuses with intracellular 

granules to form a phagolysosome, in which bacteria are killed through the action of 

reactive oxygen species (ROS) and oxygen-independent mechanisms such as antimicrobial 

peptides [174]. Qiu et al demonstrated a crucial role for NADPH oxidase-dependent ROS in 

the neutrophil-mediated killing of A. baumannii ATCC17961 in a mouse model of 

pneumonia [175]. However, A. baumannii may also evade killing after phagocytosis as has 

been described for a strain that induced the expression of several oxidative-stress 

responsive proteins during the late stationary phase of growth in vitro, which may 

function in ROS detoxification [176]. Furthermore, another study described the role of the 

enzyme RecA in protection of A. baumannii from DNA damaging agents, including ROS 

produced by macrophages in vitro [177]. In addition to the oxidative-dependent killing 

mechanisms, Acinetobacter has also been shown to be susceptible to the antimicrobial 

peptides present in neutrophils [178,179]. Different A. baumannii strains are susceptible 

to the antimicrobial action of human beta defensin 2, which is produced by alveolar 

epithelial cells in response to this pathogen, showing that epithelial cells are capable of 

producing mediators necessary for the clearance of A. baumannii [163]. 

 

Cytotoxicity 

The ability to produce toxins plays a crucial role in the pathogenesis of many bacteria 

[144]. Toxic agents can be secreted by the pathogen into the surrounding environment or 

directly injected into the host cell via e.g. a type III secretion system. Although A. 

baumannii has not been documented to produce specific toxins, strains of this species 

have been shown to be toxic to human respiratory epithelial cells and macrophages 

[142,145–147]. OmpA was involved in the induction of cell death in these cells [145] as 

well as in fungal filaments [111] by activating caspase-dependent and apoptosis inducing 

factor (AIF)-dependent pathways [145]. In addition, OmpA was shown to be present in 

outer membrane vesicles (OMVs) produced by a clinical A. baumannii isolate [148] that 

bound to host cells [149]. It was postulated that OMVs from A. baumannii were thus a 

vehicle to deliver OmpA and probably other effector molecules into host cells.  
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Iron acquisition  

Iron is a vital nutrient for virtually all forms of life as it has an essential role in many 

cellular processes. The vast majority of iron in the vertebrate host is bound to the iron 

storage proteins ferritin, transferrin and lactoferrin or complexed within the porphyrin 

ring of heme, making the levels of free iron in the tissues and bloodstream very low [150]. 

One of the most commonly found strategies evolved by microorganisms to survive in 

these iron-limited conditions of the host is the synthesis and excretion of low molecular 

weight compounds with a very high affinity for iron, called siderophores [151–153]. These 

siderophores may compete directly with host proteins for bound iron in order to make it 

available for the microbial cell [152]. Bacteria may also access iron through Omp receptors 

that recognize the whole complex of host proteins and iron, allowing the internalization of 

iron without the intermediacy of a siderophore [151]. 

 Several studies have shown that A. baumannii isolates have the ability to grow 

under iron-limiting conditions in vitro [97,154–156] and different siderophores, heme-

acquisition and ferrous iron-uptake systems, have been described [97,154,155,157–160]. 

Furthermore, inner and outer membrane proteins related to FatA, which is part of an 

outer membrane receptor that recognizes and internalizes iron-siderophore complexes in 

the fish pathogen Vibrio anguillarum [161], were detected in a clinical isolate of A. 

baumannii [157]. The wide distribution of multiple iron-acquisition systems among 

different A. baumannii isolates suggests that iron-acquisition is an indispensible attribute, 

and hence, an important virulence factor. 

 

Serum multiplication 

When invading the tissues and the bloodstream, bacteria have to evade the killing actions 

of the complement system in order to survive. Some A. baumannii strains are shown to be 

resistant to the killing action of human serum [97,126,143,162]. OmpA plays a role in 

serum resistance of A. baumannii by binding complement factor H, thereby inhibiting the 

alternative complement pathway [162]. It was also found that the production of 

phospholipase D is associated with serum resistance of A. baumannii [143], although the 

mechanism involved has not been characterized yet. The resistance of A. baumannii to the 

killing actions of complement likely plays an important role in the ability of the organism 

to survive in the host’s tissues and bloodstream. 
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Outline of the thesis 
 

Altogether, a variety of virulence factors have been identified in A. baumannii. However, 

in most studies only one or a few strains have been used and it is not known whether 

these findings can be extrapolated to other strains of this species. Moreover, not all 

studies have used well-validated genotypic species identification methods, making it 

difficult to extrapolate findings to particular species. Whether these factors explain the 

clinical success of A. baumannii relative to other Acinetobacter species remains to be 

determined. The studies presented in this thesis aimed to improve insight into the 

bacterial and host factors associated with the pathogenesis of A. baumannii as a first step 

towards an explanation for the success of A. baumannii as a human pathogen.  

 

The three main questions underlying the studies presented in this thesis were: 

(i) Can adherence to and biofilm formation on (a)biotic surfaces explain the clinical 

success of A. baumannii relative to other Acinetobacter species? 

(ii) What is the role of the host innate immune response in the clinical success of A. 

baumannii relative to other Acinetobacter species?  

(iii) Which virulence attributes are expressed by A. baumannii? 

 

To answer these questions, we made use of a large collection of epidemiologically well-

described strains that has been set up during an ongoing project at the Leiden University 

Medical Centre. This project was started up in the early 1980s at the Dijkzigt Rotterdam 

University Hospital (currently the Erasmus University Hospital Rotterdam) and focuses on 

the epidemiology and taxonomy of Acinetobacter. We selected strains that differ in their 

behaviour in the clinical setting, i.e., MDR A. baumannii strains known to be involved in 

outbreaks of infection, susceptible sporadic A. baumannii strains and strains of other, 

clinically less-relevant Acinetobacter species. In chapter 2, we compared these strains and 

species for their ability to form biofilms on abiotic surfaces, to adhere to human cells and 

to induce an innate immune response in these cells. In chapter 3, we studied the role of 

CsuA/BABCDE-dependent pili, which have been described to be involved in biofilm 

formation on abiotic surfaces [95] in the adherence to human cells and in the induction of 

an inflammatory response in these cells. To investigate the role of the host response in 

more detail, we compared the persistence of and host response to different well-

characterized A. baumannii strains and an A. junii strain in a mouse pneumonia model 

(chapter 4). We used a systems biology approach involving genomics, phenomic and 

virulence studies in order to investigate the genetic basis of the different virulence 

attributes and to identify species characteristics that may explain why some Acinetobacter 
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species are successful as human pathogens and others are not (chapter 5). Several papers 

have suggested that membrane vesicles play a role in the delivery of virulence factors to 

host cells [148,149] but it is not clear how and when in the life cycle of the bacterium 

these vesicles are produced. Moreover, it is not known whether laboratory procedures 

influenced the generation of particular vesicles. We used advanced electron microscopy 

techniques in combination with a lenient vesicle purification method to investigate the 

formation and structure of membrane vesicles produced by A. baumannii in different 

growth phases (chapter 6). As a novel model to study virulence attributes, we developed a 

three-dimensional human epidermal skin model of Acinetobacter colonization (chapter 7). 

Finally, the main findings from our studies are summarized and discussed in chapter 8 and 

a summary in Dutch can be found in chapter 9. 
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Abstract 

 

The dramatic increase in antibiotic resistance and the recent manifestation in war trauma 

patients underscore the threat of Acinetobacter baumannii as a nosocomial pathogen. 

Despite numerous reports documenting its epidemicity, little is known about the 

pathogenicity of A. baumannii. The aim of this study was to obtain insight into the factors 

that might explain the clinical success of A. baumannii. 

We compared biofilm formation, adherence to and inflammatory cytokine 

induction by human cells for a large panel of well-described strains of A. baumannii and 

compared these features to that of other, clinically less relevant Acinetobacter species. 

Results revealed that biofilm formation and adherence to airway epithelial cells varied 

widely within the various species, but did not differ among the species. However, airway 

epithelial cells and cultured human macrophages produced significantly less inflammatory 

cytokines upon exposure to A. baumannii strains than to strains of A. junii, a species 

infrequently causing infection. 

The induction of a weak inflammatory response may provide a clue to the 

persistence of A. baumannii in patients. 
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Introduction 
 

With the recent description of Acinetobacter bereziniae (genomic species (gen. sp.) 10), A. 

guillouiae (gen. sp. 11) [1], A. venetianus [2] and A. soli [3], the genus Acinetobacter 

comprises 23 named species and 11 species with provisional designations. Of these, A. 

baumannii and the closely related A. gen. sp. 3 and 13TU are clinically the most relevant. 

Strains of these species have the ability to colonize and spread among critically ill 

hospitalized patients. Outbreaks of multidrug resistant A. baumannii strains have been 

observed worldwide [4], [5]. A striking manifestation is the dramatic increase in the 

frequency of imipenem resistant Acinetobacter isolates in US hospitals [6] and the recent 

occurrence of infection in severely injured soldiers during the conflicts in Iraq and 

Afghanistan [7]. Three major lineages of genetically highly related A. baumannii strains, 

designated European clone I, II and III, have been found to be frequently implicated in 

outbreaks [8], [9]. Other Acinetobacter species, such as A. junii, A. johnsonii and A. lwoffii 

that can frequently be found on the human skin are only incidentally involved in infection, 

which usually has a mild course [4]. This suggests differences in the pathogenic potential 

among Acinetobacter species. 

The high prevalence of A. baumannii strains in the hospital in epidemic and 

endemic situations might be explained by several factors, including their resistance to 

antibiotics [10] and desiccation [11], their ability to form biofilms on medical devices [12], 

and to colonize skin and mucosal surfaces of vulnerable hosts [13], [14]. Adherence of 

bacteria to host cells is generally considered to be an essential initial step in the 

colonization process [15]. Once the primary colonizing bacteria have attached to a surface, 

microcolonies are formed after which bacteria may secrete exopolysaccharides resulting 

in a highly structured sessile microbial community, the biofilm [16]. Several studies have 

documented the ability of A. baumannii to adhere to epithelial cells and to form biofilms 

on glass and plastic surfaces [12], [17], [18]. Adherent bacteria can interact with cells of 

the host defense systems resulting in the release of cellular mediators and effector 

molecules, such as interleukin (IL)-6 and IL-8 and antimicrobial peptides, which help to 

eradicate the pathogen [19]. 

Little is known about the pathogenicity of A. baumannii. Moreover, the scarce 

reports on the virulence of A. baumannii are focused on one or a few strains only. The 

purpose of the present study was to obtain insight into the factors that might explain the 

clinical success of A. baumannii. To this aim, biofilm formation was investigated for a large 

set of well-described A. baumannii strains that differed in epidemicity and clonality. Next, 

biofilm formation by A. baumannii was compared to that of other Acinetobacter species, 

including A. gen. sp. 3 and 13TU, A. calcoaceticus and A. junii. For a subset of A. baumannii 
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and A. junii strains, adherence to airway epithelial cells and induction of inflammatory 

cytokine production by these cells and cultured human macrophages was quantitated. 

Furthermore, the presence of pilus-like structures that may play a role in adherence and 

biofilm formation was assessed with scanning electron microscopy (SEM). 

 

 

Materials and Methods 
 

Bacterial strains, culture conditions and antimicrobial susceptibility testing 

Forty-five A. baumannii, 3 A. gen. sp. 3, 3 A. gen. sp. 13TU, 3 A. calcoaceticus, and 7 A. junii 

isolates, were selected from the Leiden University Hospital Acinetobacter collection for 

this study. Of the A. baumannii strains, 18 were from outbreaks, 16 presumably not from 

outbreaks on basis of time-space-origin, and 11 of which the association with an outbreak 

was unknown. Eight of the A. baumannii strains belonged to European clone I, 11 to clone 

II, and 3 to clone III. All isolates had previously been identified to species by one or more 

validated genotypic identification methods [27], [28], [29]. Bacteria were preserved for 

prolonged periods in nutrient broth supplemented with 20% (v/v) glycerol at -80°C. Prior 

to each experiment, inocula from frozen cultures were grown overnight at 30°C [30] on 

sheep blood agar plates (BioMerieux, Boxtel, the Netherlands). For experiments, fresh 

subcultures were made either under these conditions or in Luria-Bertani (LB) medium. 

Susceptibility to antimicrobial agents was determined by disc diffusion according to CLSI 

recommendations [31]. Strains resistant to more than two of the following drug classes 

were defined as multidrug resistant: cephalosporins, carbapenems, ampicillin-sulbactam, 

quinolones, aminoglycosides. 

 

Biofilm formation 

Biofilm formation in 96-wells polyvinylchloride microtiter plates (Falcon, BD, Breda, the 

Netherlands) was assayed as described [32]. Briefly, bacteria from an overnight culture in 

LB medium were suspended to 1×10
6
 colony forming units (CFU)/ml as calculated from 

the absorbance of a suspension at 600 nm. Five µl of this suspension was inoculated in 

100 µl of M63 medium consisting of KH2PO4 (12 g/l), K2HPO4 (7 g/l), (NH4)2SO4 (2 g/l), 

glucose (0.2% w/v), MgSO4 (1 mM) and casaminoacids (0.5% w/v). After 24 h incubation at 

28°C and 37°C, wells were washed and biofilms attached to the wells were stained with 

crystal violet (1% w/v). The optical density at 590 nm, expressed in arbitrary units (a.u.), 

was taken as a quantitative measure of biofilm mass. To determine the bacterial 

concentration after 24 h, serial dilutions of the supernatants were made in phosphate 

buffered saline (PBS; pH 7.4) and plated onto blood agar. 



Chapter 2 

 39 

ch
a

p
te

r 
2

 

Adherence to human airway epithelial cells 

Adherence of bacteria to human bronchial epithelial H292 cells (ATCC CRL-1848, Manassas, 

VA, USA) was determined as described [18]. Briefly, H292 cells were cultured in RPMI-1640 

medium supplemented with 2 mM L-glutamine, 50 µg/ml streptomycin, 1000 U sodium 

penicillin G, and 10% (v/v) heat-inactivated foetal calf serum (FCSi) (all from Gibco, 

Invitrogen, Breda, The Netherlands), further referred to as culture medium, in 25 cm
2
 

tissue culture flasks (Greiner Bio-One, Frickenhausen, Germany) at 37°C/5% CO2. At 

confluency, cells were trypsinized and 2x10
5
 cells were cultured on plastic coverslips 

(Thermanox, Nunc, Amsterdam, the Netherlands) placed in 24-wells plates. At 85-90% 

confluency, H292 cells were washed with PBS and incubated at 37°C/5% CO2 in culture 

medium without antibiotics for 24 h. Subsequently, cells were washed with PBS and 

incubated for 1 h at 37°C with 1×10
7
 (range 7×10

6
–4×10

7
) CFU of an overnight culture on 

blood agar. Bacterial adherence to H292 cells was quantified by light microscopy using two 

parameters: (i) percentage of epithelial cells associated with at least one bacterium; and 

(ii) average number of bacteria per epithelial cell [18]. 

 

Cytokine induction in human airway epithelial cells 

Cytokine production by airway epithelial cells in response to bacteria was determined as 

described [33] with minor modifications. In short, bacteria were cultured overnight at 

30°C on blood agar and suspended in RPMI-1640 to a concentration of 5×10
8
 CFU/ml as 

assessed spectrophotometrically. Approximately 2×10
5
 H292 cells, cultured in 24-wells 

plates as descrived above, were incubated in culture medium without antibiotics and FCSi 

for 24 h. Next, cells were washed with PBS and  incubated for 1 h at 37°C/5% CO2 with 

1×10
6
, 1×10

7
, or 1×10

8
 CFU live or heat-inactivated (by 1 h incubation at 100°C) bacteria. 

H292 cells were washed five times with PBS to remove non-adherent bacteria and RPMI-

1640 with 2 mM L-glutamine was added. After additional 5 or 23 h incubation at 37°C, 

supernatants were collected and stored at −20°C. A]er 24 h, bacterial CFU count in the 

supernatants was determined. In each experiment, RPMI-1640 with 2 mM L-glutamine 

alone was added to the cells to determine background values. A mixture of cytokines (100 

ng/ml TNFα, 20 ng/ml IL-1β and 10 ng/ml IFNγ; all from Biosource, Nivelles, Belgium) with 

10 ng/ml rough type lipopolysaccharide (LPS, Escherichia coli J5, Sigma-Aldrich, 

Zwijndrecht, the Netherlands), further referred to as cytomix, was added to the cells as a 

positive control. 

 

Cytokine induction in cultured human macrophages 

Buffy coats from healthy human donors were purchased from Sanquin bloodbank, 

Amsterdam, the Netherlands, upon written consent with regard to scientific use. The 
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current study did not require approval from an ethics committee according to the Dutch 

Medical Research Involving Human Subjects Act. Monocytes were isolated from 

buffycoats by Ficoll amidotrizoate density centrifugation and magnetic sorting using anti-

CD14-coated beads (Miltenyi Biotec, Auburn, CA, USA) according to the manufacturer's 

instructions. Monocytes were resuspended in culture medium and cultured at a 

concentration of 2×10
5
 cells/ml in wells of a 24-wells plate at 37°C/5% CO2 in the presence 

of either 5 ng/ml recombinant human granulocyte–macrophage colony-stimulating factor 

(Biosource International, Camarillo, CA, USA) to induce differentiation of monocytes into 

macrophage type 1 or in the presence of 50 ng/ml recombinant human macrophage 

colony-stimulating factor (R&D Systems, Minneapolis, MN, USA) for type 2 macrophages 

[20]. After three days, 0.5 ml of fresh culture medium was added. On the sixth day 

following isolation, cells were washed once in PBS and 0.5 ml RPMI-1640 with 2 mM L-

glutamine was added. Bacteria were cultured overnight at 30°C on blood agar and 

suspended in PBS to a concentration of 5×10
7
 CFU/ml as assessed spectrophotometrically. 

Cells were stimulated with 1×10
7
 CFU of live bacteria for 24 h, after which supernatants 

were collected and stored at −20°C. In each experiment, PBS and LPS (100 ng/ml) were 

added to the cells as negative and positive control, respectively. 

 

Determination of levels of inflammatory mediators 

The levels of IL-6, IL-8, TNFα, IL-12p40 and IL-10 in culture supernatants were determined 

by ELISA (Biosource) according to the manufacturer's instructions. The lower limit of 

detection was 15 pg/ml for IL-6, 7 pg/ml for IL-8, and 25 pg/ml for TNFα, IL-12p40 and IL-

10. 

 

Electron microscopy analysis of bacterial surface structures 

Bacteria from an overnight culture on blood agar at 30°C were suspended in PBS and fixed 

for 1 h at room temperature with 1.5% (w/v) glutaraldehyde in 0.1 M sodium cacodylate 

buffer (1:1). Fixed bacteria were transferred to poly-L-lysine-coated glass slides. After 1 h 

incubation at room temperature, bacteria were fixed to the slides with 1.5% 

glutaraldehyde for 30 min at room temperature. Thereafter, slides were washed twice in 

PBS, dehydrated through a series of graded ethanol, critical-point-dried, and coated with a 

layer of palladium-gold. Bacteria were examined using a JEOL JSM-6700F field emission 

scanning electron microscope. 

 

Statistical analysis 

Results are expressed as medians and ranges unless stated otherwise. The Kruskal-Wallis 

one-way analysis of variance and the Wilcoxon rank sum test were used to evaluate 
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differences in distribution. Spearman rank correlation coefficients were calculated to 

evaluate possible associations between epidemicity and adherence to epithelial cells and 

biofilm formation on plastic. P values of ≤0.05 were considered significant. 

 

 

Results 
 

Biofilm formation 

Biofilm formation on plastic at 28°C and 37°C was first investigated for a comprehensive 

set of A. baumannii strains. The results revealed a large variation in biofilm formation 

among A. baumannii isolates; the results at 28°C and 37°C did not differ (Fig. 1). There was 

no difference in the median biofilm size between strains from outbreaks (0.9; 0–1.8 a.u.) 

and those not assumed to be from outbreaks (0.8; 0.1–2.8 a.u.). Strains of European clone 

II (1.1; 0.6–1.8 a.u.) formed larger (p≤0.05) biofilms than strains of clone I (0.8; 0–1.0 a.u.), 

but not larger than strains of clone III (1.0; 0.6–1.3 a.u.). Multidrug resistant strains (0.8; 

0–1.8 a.u.) did not form larger biofilms than susceptible strains (0.8; 0.1–2.8 a.u.). 

Furthermore, no association between biofilm formation and body site of isolation was 

found (data not shown). 

 
 

Figure 1. Biofilm formation by Acinetobacter. Biofilm formation after 24 h at 28°C for the clinically 

relevant A. baumannii (n=45), A. gen. sp. 3 (n=3) and A. gen. sp. 13TU (n=3) and for the clinically less-

relevant A. calcoaceticus (n=3) and A. junii (n=7). Data are expressed as mean biofilm mass (in 

arbitrary units (a.u.)) of three independent experiments; each performed in sixplicate. Outbreak-

associated (+) or non-outbreak-associated (−) isolate. European clone I (I), II (II) or III (III) isolate. 

Multidrug resistant (MDR; +) or susceptible (−) isolate. 
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Next, biofilm formation by A. baumannii strains was compared to that by strains of other 

Acinetobacter species. No significant differences in the median size of the biofilms at 28°C 

were found between clinically relevant species, i.e., A. baumannii (0.8; 0–2.8 a.u.), A. gen. 

sp. 3 (1.4; 1.3–1.5 a.u.) and A. gen. sp. 13TU (0.4; 0.2–0.7 a.u.), and the other 

Acinetobacter species, i.e., A. calcoaceticus (1.1; 1.0–1.1 a.u.) and A. junii (1.6; 0.5–3.0 

a.u.). Similar results were obtained at 37°C except for strains of A. gen. sp. 13TU that 

formed smaller (p≤0.05) biofilms than all other species. Of note, the number of bacteria in 

the supernatants at the end of each experiment did not differ much between the different 

strains (data not shown). 

 

Adherence to human airway epithelial cells 

For further comparison of clinically relevant to less-relevant Acinetobacter strains and 

species, experiments exploring the ability of strains to adhere to and induce cytokines by 

human cells were conducted with a subset of strains (further referred to as subset), 

including six strains of A. baumannii and six strains of A. junii, a species infrequently 

causing infections (Table 1A). All selected strains were epidemiologically unrelated and 

were genotypically diverse as assessed by AFLP genomic fingerprinting.  

 

Table 1A. Characteristics of subset of Acinetobacter strains 

Origin Year Specimen Clone Outbreak‡

LUH1398 St. Zagora (BG) 1993 Throat secr. II

LUH7312 Leiden (NL) 2001 Sputum +

LUH7493 Leiden (NL) 2001 Sputum

RUH875 Dordrecht (NL) 1984 Urine I +

RUH3023T 

(ATCC19606)
Atlanta (USA) 1965 Urine

RUH3239 London (UK) 1985 Urine I +

LUH3283 Leiden (NL) 1995 Blood

LUH5851 Leiden (NL) 1999 Ear

LUH6931 Nottingham (UK) 2000 Faeces

LUH6981 Leiden (NL) 2000 Faeces

LUH8161 Leiden (NL) 2002 Blood

RUH2228T 

(ATCC17908)
Heidelberg (GER) <1962 Urine

Strain

A. baumannii

A. junii

 
‡Outbreak-associated (+) strain, (i.e. common AFLP profile in >2 patients and 

with same time-space-origin). 

 

Adherence to human airway epithelial H292 cells varied widely among the Acinetobacter 

strains (Table 1B). No significant difference in the percentage of H292 cells associated with 

bacteria was observed between A. baumannii (30; 7–55%) and A. junii (23; 11–70%). In 

addition, no difference in the number of A. baumannii and A. junii per positive H292 cell 

was seen; the median number of bacteria per H292 cell was 3 (range 1–5). Of note, 
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differences in the inoculum (within the set range of 7×10
6
–4×10

7
) between the various 

experiments did not influence the outcome of the adherence assay. Furthermore, cell 

monolayers remained intact and the morphology of the cells was not affected by the 

bacteria (data not shown). 

 

Table 1B. Biofilm formation, adherence and cytokine induction by Acinetobacter 

LUH1398 0.8 (0.5-1.1) 38 (32-65) 3 (3-3) 0.9 (0.0-3.9) 1.5 (0.4-4.8)

LUH7312 0.3 (0.3-0.4) 53 (38-76) 5 (3-6) 2.1 (0.1-14.5) 3.5 (0.8-12.8)

LUH7493 0.4 (0.3-0.5) 35 (16-46) 2 (2-3) 1.1 (0.0-3.6) 2.3 (0.1-4.8)

RUH875 1.0 (0.8-1.1) 24 (17-45) 3 (2-3) 1.2 (0.0-5.6) 2.0 (0.3-4.6)

RUH3023T 

(ATCC19606)
1.9 (0.9-2.2) 19 (9-21) 2 (1-2) 0.6 (0.0-2.7) 1.0 (0.1-3.5)

RUH3239 0 (0.0-0.0) 6 (3-14) 1 (1-2) 1.0 (0.0-4.4) 1.5 (0.1-3.5)

LUH3283 0.7 (0.0-0.8) 70 (62-83) 3 (3-4) 2.0 (0.1-11.9) 2.5 (0.8-10.0)

LUH5851 1.6 (1.4-1.8) 31 (15-41) 2 (2-3) 2.0 (0.2-11.8) 3.3 (1.6-8.1)

LUH6931 0.6 (0.6-0.6) 12 (9-13) 2 (2-2) 1.4 (0.0-7.4) 2.1 (0.4-8.7)

LUH6981 2.7 (2.6-3.0) 9 (5-29) 2 (1-2) 1.7 (0.1-12.3) 4.9 (1.5-11.5)

LUH8161 3.0 (3.0-3.0) 15 (8-25) 3 (3-3) 3.1 (0.1-8.7) 3.8 (0.7-9.9)

RUH2228T 

(ATCC17908)
1.7 (1.1-1.8) 47 (45-48) 3 (2-3) 2.2 (0.1-13.1) 3.0 (0.8-9.4)

Strain

A. junii

IL-8 (ng/ml)¶

A. baumannii

Biofilm formaIon† % Bacterial-associated 

cells‡

No. of bacteria per 

cell‡

IL-6 (ng/ml)¶

 
†Biofilm formation on plastic after 24 h at 28°C. Results are expressed as median optical density values at 

590 nm (ranges) of three independent experiments; each performed in sixplicate. ‡Adherence to human 

bronchial epithelial H292 cells after 1h. Results are expressed as median percentage of H292 cells that is 

associated with bacteria and median number of bacteria per H292 cells (range) of two independent 

experiments; each performed in duplicate. ¶IL-6 and IL-8 levels in the culture supernatants of H292 cells, 24 

h after exposure to bacterial strains. Results are expressed as median values (range) in ng/ml of three 

independent experiments; each performed in triplicate. 

 

Cytokine production by human airway epithelial cells in response to Acinetobacter 

Pilot experiments demonstrated that 1×10
8
 CFU bacteria induced higher (p≤0.05) levels of 

the major cytokines IL-6 and IL-8 in H292 cells than 1×10
6
 and 1×10

7
 CFU did. Furthermore, 

stimulation with live bacteria resulted in higher (p≤0.05) IL-6 and IL-8 production by H292 

cells than heat-inactivated bacteria did. Time-course experiments demonstrated that the 

levels of IL-6 and IL-8 were higher (p≤0.05) after 24 h than after 6 h stimulation. Therefore, 

further stimulation experiments were performed for 24 h with 1×10
8
 CFU live bacteria. 

Results revealed that H292 cells produced less (p≤0.05) IL-8 in response to A. 

baumannii strains (1.8; 1.0–3.5 ng/ml) than to A. junii strains (3.2; 2.1–4.9 ng/ml; Fig. 2). 

Interleukin-6 production was lower in response to A. baumannii strains (1.1; 0.6–2.1 

ng/ml) than to strains of A. junii (2.0; 1.4–3.1 ng/ml; Fig. 2), without reaching statistical 

significance (p=0.055). Of note, H292 cells stimulated with cytomix produced 2.3 (0.6–3.0) 

ng/ml IL-6 and 3.4 (1.4–4.1) ng/ml IL-8 and unstimulated cells produced 0.1 (0–0.1) ng/ml 

IL-6 and 0.2 (0.1–0.2) ng/ml IL-8. Cytokine induction did not vary widely among strains of 
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each species, except for A. baumannii strain LUH7312 that induced significantly higher 

levels of IL-6 and IL-8 than the other A. baumannii strains. Stimulation of H292 cells with 7 

additional A. baumannii strains that were epidemiologically unrelated and genotypically 

diverse also resulted in low IL-8 (1.3; 0.3–1.7 ng/ml) and IL-6 production (0.1; 0–0.2 

ng/ml), demonstrating that, with the exception of strain LUH7312, A. baumannii strains 

induced significantly (p≤0.01) less IL-6 and IL-8 than A. junii strains. 

Since live bacteria were used in this assay, there was a possibility of outgrowth 

that may have caused the difference in cytokine induction. However, the number of 

bacteria in the supernatants at the end of each experiment did not differ much between 

A. baumannii and A. junii (range 8×10
6
–7×10

7
 CFU/ml). Of note, cell monolayers remained 

intact and the morphology of the cells was not affected by the bacteria (data not shown). 

 

 
 

Figure 2. Cytokine production by human airway epithelial cells in response to Acinetobacter. Boxplots 

showing IL-6 and IL-8 production in ng/ml by H292 airway epithelial cells 24 h after stimulation with 

strains of A. baumannii (n=6) and A. junii (n=6). Boxes represent medians and second and third 

interquartiles, whiskers represent range of 6 strains. *significant (p≤0.05) difference between A. 

baumannii and A. junii. 

 

 

Finally, preliminary experiments demonstrated that exposure of primary human bronchial 

epithelial cells of a single donor to six A. baumannii strains (in triplicate) resulted in lower 

(p≤0.05) levels of IL-8 (0.9; 0.5–3.6 ng/ml) than to six A. junii strains (4.5; 0.9–30.7 ng/ml). 

Cytomix induced 8.6 (7.4–11.5) ng/ml IL-8 in these cells. Of note, no IL-6 was produced by 

these primary cells upon exposure to these two Acinetobacter species or to cytomix. 

 

Cytokine production by cultured human macrophages in response to Acinetobacter 

In tissues, macrophages trigger an adequate innate immune response upon encountering 

pathogens. In this regulatory process, macrophages serve a dual purpose. Initially, they 
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contribute to the elimination of pathogens and the elicitation of an inflammatory reaction. 

When the infection recedes due to removal of the pathogens, their function may shift 

toward resolution of inflammation and tissue repair. In line with this notion, we 

investigated cytokine production by two clearly distinct types of macrophages, i.e., pro-

inflammatory macrophages (further referred to as type 1 macrophages), and 

macrophages with an anti-inflammatory/pro-angiogenic phenotype (type 2 macrophages) 

[20], upon exposure to A. baumannii and A. junii strains. Results revealed that 

macrophage type 1 produced significantly (p≤0.05) less tumor necrosis factor (TNF)α, IL-

12p40, IL-10 and IL-8 in response to strains of A. baumannii [195 (108–244) ng/ml TNFα, 7  

(2-11) ng/ml IL-12p40, 22 (0-149) pg/ml IL-10 and 49 (27-66) ng/ml IL-8] than to strains of 

A. junii [650 (458–812) ng/ml TNFα, 130 (111–155) ng/ml IL-12p40, 764 (126–1587) pg/ml 

IL-10 and 111 (48–208) ng/ml IL-8; Fig. 3]. A. baumannii strains also induced less (p≤0.05) 

inflammatory cytokines in macrophage type 2 than A. junii strains (Fig. 3). Of note, cell 

monolayers remained intact and the morphology of the cells was not affected by the 

bacteria (data not shown). 

 

Electron microscopy analysis of bacterial surface structures 

Pili have been described to be involved in biofilm formation, adherence and the induction 

of an immune response [21]. Therefore, we performed SEM to assess the presence of such 

surface structures on four A. baumannii strains that differed in their ability to form biofilm 

and adhere to human cells. SEM of bacteria cultured for 16 h at 37°C on blood agar plates 

revealed two types of cell appendages: short pilus-like structures and long extensions (Fig. 

4). The latter varied in length, were irregularly distributed over the cell surface, and 

sometimes connected bacteria. The pilus-like structures were detected in A. baumannii 

strain LUH1398, a large biofilm former and highly adherent, in LUH7312, a small biofilm 

former and highly adherent, and RUH3023
T
, a large biofilm former but poorly adherent 

(Fig. 4, white arrows). Long cell extensions were seen in A. baumannii strain RUH3023
T
 

and RUH3239, a small biofilm former and poorly adherent (Fig. 4, black arrows). In 

addition to these structures, there was a marked surface heterogeneity, from smooth 

(LUH7312) to pockmarked (LUH1398). 

In contrast to A. baumannii strain RUH3023
T
 and RUH3239, strain LUH1398 and 

LUH7312 formed only a few cell clusters with no more than four cells grouped together on 

the glass slides (data not shown). No difference in structural features was observed 

between strains cultured at 37°C and 30°C. 
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Figure 3. Cytokine production by human macrophages in response to Acinetobacter. Boxplots showing 

TNFα (A), IL-12p40 (B), IL-8 (C) and IL-10 (D) production by cultured human macrophages type 1 (white 

boxes) and 2 (gray boxes) 24 h after stimulation with strains of A. baumannii (n=6), A. junii (n=6), LPS 

and without stimulation (none). Boxes represent medians and second and third interquartiles, 

whiskers represent range of 6 strains (for A. baumannii and A. junii) or range of experiments with 4 

different donors (for LPS and none). *significant (p≤0.05) difference between A. baumannii and A. 

junii. 
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Discussion 
 

This study was undertaken to obtain some insight into the mechanisms underlying the 

clinical success of A. baumannii. The main conclusion from the present study is that strains 

of A. baumannii induced a poor inflammatory response in human cells, despite the finding 

that they adhered well to these cells. This conclusion is based on the following findings. 

 

 

 

Figure 4. Scanning electron micrographs of A. baumannii. Scanning electron micrographs of A. 

baumannii strain LUH1398, LUH7312, RUH3023, and RUH3239. Black arrows indicate long cell 

extensions; white arrows indicate short pili-like structures. Magnification: 30,000x. Bars: 100 nm. 

 

First, airway epithelial H292 cells in vitro produced less IL-6 and IL-8 in response to A. 

baumannii strains than to A. junii strains. Furthermore, cultured human macrophages 

produced less TNFα, IL-12p40, IL-8 and IL-10 in response to A. baumannii strains than to A. 

junii strains. In agreement with our in vitro data, Qiu et al documented that the high 

susceptibility of A/J mice to A. baumannii ATCC17961 infection was associated with a 

reduced local pro-inflammatory response and reduced elimination of bacteria from the 

lungs [22]. Knapp et al showed in an in vivo model that A. baumannii strain RUH2037 

induced the release of pro-inflammatory cytokines and chemokines resulting in clearance 

of bacteria from the lungs of experimentally infected mice [23]. Although study-design and 

outcome were distinct from our study, the findings emphasize the importance of 

inflammatory cytokines for clearing of A. baumannii. It is furthermore of note that our 
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finding that clinically relevant strains induced a weak immune response in vitro has also 

been reported for Haemophilus influenzae [24]. 

There was a wide variation in biofilm formation among a large set of well-

described A. baumannii strains. Although epidemic strains did not form larger biofilms 

than sporadic strains, it appeared that strains of European clone II formed larger biofilms 

than strains of clone I. It is of note that clone II, which was less frequently involved in 

outbreaks during the 1990s than clone I, is now emerging in several European countries 

with many strains being carbapenem resistant [25], [26]. Further to A. baumannii, the 

intra-strain variation in biofilm formation of A. gen. sp. 3 and 13TU and of the clinically 

less-relevant species A. calcoaceticus and A. junii was also considerable. Interestingly, 

there was no difference between these species, except for A. gen. sp. 13TU that formed 

small biofilms. 

Many of the strains used for the current biofilm experiments had previously been 

used to investigate adherence to H292 airway epithelial cells [18]. In that study, it was 

shown that adherence to airway epithelial cells varied considerably among strains of A. 

baumannii, while strains of clone II had higher adherence values than those of clone I [18]. 

Likewise, the present study showed a considerable intra-species variation in adherence to 

human airway epithelial cells but no difference between A. baumannii and A. junii strains. 

Biofilm formation on plastic was not correlated to adherence to human cells, indicating 

that different mechanisms are involved in these colonization processes. Furthermore, the 

ability to form biofilm on plastic and the capacity to adhere to human cells was not always 

accompanied by the presence of pilus-like cell surface structures and long cell extensions. 

Taken together, it seems that biofilm formation and adherence to human cells is strain- 

and not species-specific. Thus, these features do not solely explain the success of A. 

baumannii in the susceptible host. 

In summary, biofilm formation and adherence to airway epithelial cells did not 

differ between clinically relevant and less-relevant Acinetobacter strains and species. 

However, there was a difference in the production of inflammatory cytokines by airway 

epithelial cells and macrophages between A. baumannii and A. junii. This may be a first 

clue to explain the difference in clinical behavior between A. baumannii and A. junii. We 

hypothesize that A. baumannii may survive and persist in the airways of patients and 

cause disease at least in part by inducing a weak inflammatory response. 
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Abstract 

 

Acinetobacter baumannii is a nosocomial pathogen responsible for outbreaks of infection 

worldwide. The factors associated with its ability to colonize/infect human hosts are 

largely unknown. Adherence to host cells is the first step in colonization/infection, which 

can be followed by biofilm formation. A. baumannii ATCC19606
T
 biofilm formation on 

abiotic surfaces depends on expression of the CsuA/BABCDE chaperone–usher pili 

assembly system. The present study focused on the involvement of CsuA/BABCDE-

dependent pili in the interactions between A. baumannii 19606
T
 and human bronchial 

epithelial cells and sheep erythrocytes. Light microscopy analysis revealed that CsuE-

mutant #144 adhered to more bronchial epithelial cells than the parental strain. Similar 

amounts of interleukin (IL)-6 and IL-8 were produced by bronchial epithelial cells in 

response to these two bacterial strains. Scanning electron microscopy revealed the 

presence of two types of surface extensions on ATCC19606
T
, i.e., short (29 nm; 5–140 nm) 

pili and long (260 nm; 143–1008 nm) extensions. The latter were not observed on the 

CsuE-mutant and therefore are likely the previously described CsuA/BABCDE-encoded 

extensions. We conclude that CsuA/BABCDE-dependent pili are not involved in adherence 

of A. baumannii ATCC19606
T
 to bronchial epithelial cells. The structure of the short pili 

and their possible role in adherence to human cells requires further investigation. 
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Introduction 
 

During the last decades, Acinetobacter baumannii has emerged globally as an important 

nosocomial pathogen that gives rise to outbreaks of colonization and infection of critically 

ill, hospitalized patients [3], [6], [12] and [16]. The strains involved are frequently 

multidrug-resistant (MDR) and have the ability to spread epidemically among patients and 

survive in the hospital environment [25]. The recent appearance of carbapenem resistance 

in these strains is a major source of concern [17]. 

Despite the widely documented problems regarding nosocomial A. baumannii 

infections, little is known about the mechanisms that contribute to the epidemicity and 

pathogenicity of this species. It is generally thought that the intimate interaction between 

bacteria and their host begins with the adherence of the microorganism to host tissues 

followed by colonization of the host [2]. During colonization, bacteria may form 

microcolonies and produce exopolysaccharides resulting in a highly structured microbial 

community called biofilm [5]. Bacteria within a biofilm exhibit increased resistance to 

antimicrobial compounds, including those elicited by the host's immune response [5]. The 

progression from colonization to infection of the host depends on the balance between 

the host's immune response and the virulence of the bacterium. 

Several in vitro studies have shown that particular strains of A. baumannii can 

adhere to human cells [13] and form biofilms on abiotic surfaces [18], [22], [26] and [27]. 

Tomaras et al. have demonstrated that the ability of A. baumannii strain ATCC19606
T
 to 

form pili, adhere to and form biofilms on abiotic surfaces depends on the expression of 

csuE, which is part of the CsuA/BABCDE chaperone–usher pili assembly system [22]. Pili 

may not only promote adherence and biofilm formation, but the coupling of pili to host 

cell receptors may also induce inflammation through the production of inflammatory 

mediators, including chemokines and cytokines [21]. 

The aim of the present study was to investigate the involvement of A. baumannii 

CsuA/BABCDE-mediated pili in adherence to vertebrate cells and the inflammatory 

response of human bronchial epithelial cells. 

 

 

Materials and Methods 
 

Bacterial strains and culture conditions 

A. baumannii type strain ATCC19606
T
 and the csuE isogenic insertion mutant ATCC19606 

#144 [22] were used. High-resolution fingerprinting by AFLP analysis confirmed that both 

isolates belong to the same strain (similarity of 99.4% as calculated by the Pearson 
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correlation coefficient). Upon verification, CsuE-mutant #144 did not form a biofilm on 

polystyrene after 24 h incubation at 28°C and 37°C. Of note, biofilm formation on abiotic 

surfaces was tested as described before [22]. 

Bacteria were preserved for prolonged periods in nutrient broth supplemented 

with 20% (v/v) glycerol at −80°C. Prior to each experiment, inocula from frozen cultures 

were grown overnight at 30°C on sheep blood agar plates (BioMerieux, Boxtel, The 

Netherlands) or trypticase soy agar (BD, Sparks, MD, USA) containing 5% sheep 

erythrocytes. For experiments, subcultures were made under these conditions. 

 

Bronchial epithelial cell culture 

Human bronchial epithelial H292 cells (ATCC CRL-1848, Mansas, VA, USA) were cultured as 

described previously [13]. Briefly, H292 cells were cultured in RPMI-1640 medium 

supplemented with 2 mM L-glutamine, 50 μg/ml streptomycin, 1 mg/ml sodium penicillin 

G, and 10% heat-inactivated fetal calf serum (FCS) (all from Gibco, Invitrogen, Breda, The 

Netherlands), further referred to as culture medium, at 37°C/5% CO2 in 25 cm
2
 tissue 

culture flasks (Greiner Bio-One, Frickenhausen, Germany). At confluency, cells were 

trypsinized and 2x10
5
 H292 cells were resuspended in 0.5 ml of RPMI-1640 supplemented 

with 2 mM l-glutamine and 10% FCS, further referred to as RPMI medium, in 24-wells 

plates. 

 

Bacterial adherence to bronchial epithelial cells 

The adherence of bacteria to human bronchial epithelial cells was determined as 

described [13]. Briefly, 2x10
5
 H292 cells were cultured for 24 h in RPMI medium on 13-mm 

diameter plastic coverslips (Thermanox, Nunc, Rochester, NY, USA) placed in 24-well 

plates. Bacteria were cultured overnight at 30°C on blood agar plates and suspended in 

RPMI medium to an optical density at 600 nm of 0.6 (SmartSpec 3000, BioRad), 

corresponding to a concentration of ~1x10
8
 colony forming units (CFU)/ml, which was 

verified afterwards by standard vital counting. H292 cells were incubated for 1 h at 37°C 

with 1x10
7
 (range 7x10

6
–4x10

7
) bacteria. Next, each coverslip was removed and washed 

five times with prewarmed PBS. The cells on the coverslip were fixed with methanol and 

stained with Giemsa, after which the coverslips were mounted onto microscope slides. 

Bacterial adherence was quantitated by light microscopy examination. For each coverslip, 

a minimum of 800 H292 cells were inspected and the percentage of epithelial cells 

associated with at least one bacterium was determined. In addition, 100 H292 cells with 

attached bacteria were analyzed to assess the number of bacteria associated with human 

bronchial epithelial cells. Each bacterial strain was examined in duplicate in four 

independent experiments performed on different days. 
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Stimulation of bronchial epithelial cells 

Cytokine production in bronchial epithelial cells in response to the presence of bacteria 

was determined using a stimulation assay. Bacteria were cultured overnight at 30°C in 

Luria–Bertani (LB) medium (10 g bactotryptone, 5 g yeast extract (both from BD, Sparks, 

MD, USA), 5 g sodium chloride (Merck, Darmstadt, Germany) in 1000 ml distilled water), 

washed twice with PBS and suspended in RPMI medium to a concentration of 1x10
8
 

CFU/ml as calculated from the absorbance of a suspension at 600 nm. Approximately 

2x10
5
 H292 cells were cultured in 0.5 ml of RPMI medium in 24-well plates. At 85–90% 

confluency, H292 cells were washed once with prewarmed PBS and incubated at 37°C/5% 

CO2 with 1x10
7
 bacteria. After 1 h, H292 cells were washed five times with prewarmed PBS 

to remove non-adherent bacteria and incubated again in fresh RPMI medium. After 23 h 

incubation at 37°C, supernatants were collected and stored at −20°C, unkl determinakon 

of the levels of the inflammatory mediators interleukin (IL)-6 and IL-8 by ELISA. In each 

experiment, RPMI medium alone was added to the cells in order to obtain background 

values. Five independent experiments were performed in triplicate. 

 

Determination of inflammatory mediators 

The levels of IL-6 and IL-8 in culture supernatants were determined by enzyme-linked 

immunosorbent assays (ELISA, Biosource, Camarillo, CA, USA) according to the 

manufacturer's instructions. The lower limit of detection was 15 pg/ml for IL-6 and 7 

pg/ml for IL-8. 

 

Scanning electron microscopy 

For scanning electron microscopy (SEM), bacteria from an overnight culture on blood agar 

were suspended in PBS and subsequently fixed for 1 h at room temperature with 1.5% 

glutaraldehyde in 0.1 M sodium cacodylate buffer (1:1). Fixed bacteria were washed twice 

in PBS and transferred to poly-l-lysine-coated glass slides. After 1 h incubation at room 

temperature, bacteria were fixed to the slides with 1.5% glutaraldehyde for 30 min at 

room temperature. Thereafter, slides were washed twice in PBS, dehydrated through a 

series of graded ethanol, critical-point-dried, and finally coated with a layer of palladium-

gold. The bacteria were examined using either a JEOL JSM-6700F or a Zeiss Supra 35VP 

field emission scanning electron microscope. 

 

Detection of CsuA/B protein 

For detection of the CsuA/B protein, bacteria from an overnight culture on blood agar 

were used to prepare whole-cell lysates as described before [7]. Proteins were size-

fractionated on 12.5% polyacrylamide gels [1], transferred to nitrocellulose [24], and 
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incubated with polyclonal anti-CsuA/B antiserum raised in rabbits using recombinant 

CsuA/B (overexpressed and purified by Ni-affinity column chromatography) as antigen 

[23]. The immunocomplexes were detected by chemiluminescence using horse radish 

peroxidase (HRP)-labeled protein A. Protein concentrations were determined as described 

previously [4]. 

 

Detection of acuA gene 

The presence of the acuA gene, a pilus-encoding gene identified in another Acinetobacter 

species, A. baylyi, was determined using a PCR that amplified part of the acuA gene (289 

bp of 582 bp). Total DNA was extracted from bacteria grown overnight on Iso-Sensitest 

plates (Oxoid Ltd, Basingstoke, Hampshire, UK) at 30°C. Five bacterial colonies were 

suspended in 20 μl of lysis buffer (0.25% sodium dodecyl sulfate (SDS), 0.05 N NaOH). The 

suspension was heated for 15 min at 95°C. After addition of 180 μl of sterile H2O and 

centrifugation, supernatants were used for PCR experiments. Amplification reactions were 

carried out in a total volume of 25 μl containing 5 μl of total DNA, 25 pmol of each primer 

and 3 U of Taq DNA polymerase (Qiagen, Hilden, Germany). Primers for amplification of 

the acuA gene were acuAforward (5′-CAA CGC TAT GTG CTG CTG G-3′, located at position 32–

50 of the acuA gene) and acuAreverse (5′-GGC CCA CCC AAA GTA ATC C-3′, located at 

position 320–302 of the acuA gene). Amplification conditions consisted of an initial cycle 

at 94°C for 1 min followed by 35 cycles of 30 s at 94°C, 40 s at 48°C, 1 min at 72°C, and a 

final cycle at 72°C for 6 min. PCR products were visualized by electrophoresis and staining 

with ethidium bromide on 1.5% agarose gels. 

 

Statistical analysis 

Results are means ± standard deviations unless indicated otherwise. Data were analyzed 

for statistical significance using the Wilcoxon rank sum test. p-Values of ≤0.05 were 

considered significant. 

 

 

Results 

 

Adhesion to human bronchial epithelial cells and sheep erythrocytes 

To investigate whether CsuE-mediated pili are involved in the initial colonization process, 

adherence of A. baumannii 19606
T
 and its isogenic CsuE-mutant #144 to human bronchial 

epithelial cells was compared in vitro. Light microscopy analysis of Giemsa-stained cells 

showed that the CsuE-mutant adhered to a significantly (p < 0.05) higher percentage of 

epithelial cells (29 ± 6.8%) than strain 19606
T
 (16 ± 3.5%). The number of bacteria per 
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infected cell was not significantly higher for the mutant (1.9±0.2 bacteria/infected cell) 

than for the parental strain (1.4±0.1 bacteria/infected cell). Of note, the monolayers and 

morphology of the bronchial epithelial cells remained intact after 1 h incubation with 

either of the two A. baumannii strains. Differences in inoculum size between experiments 

did not influence the outcome of the adherence assays (data not shown). 

SEM analysis revealed that strain 19606
T
 and the CsuE-mutant were able to 

adhere to sheep erythrocytes (Fig. 1), showing that both strains can attach to at least two 

types of vertebrate cells. 

 

 
 

Figure 1. Scanning electron micrographs of A. baumannii strain 19606
T
 (A) and its CsuE-mutant (B) in 

the presence of sheep erythrocytes. Bars: 1 μm. 

 

 

Cytokine induction in human bronchial epithelial cells 

To investigate whether CsuA/BABCDE-mediated pili contribute to the ability of A. 

baumannii to induce cytokine production by human cells, bronchial epithelial H292 cells 

were exposed to strain 19606
T
 and its CsuE-mutant in vitro and the levels of IL-6 and IL-8 

in the culture supernatant were determined after 24 h. The results revealed that bronchial 

epithelial cells co-incubated with strain 19606
T
 or its CsuE-mutant produced significantly 

(p<0.05) higher levels of the cytokine IL-6 (875±398 pg/ml and 823±441 pg/ml, 

respectively) and the chemokine IL-8 (1751±608 pg/ml and 1930±705 pg/ml, respectively) 

than unstimulated cells (274±159 pg/ml IL-6 and 428±105 pg/ml IL-8). However, there was 

no significant difference between the ability of strain 19606
T
 and the mutant to elicit IL-6 

and IL-8 production by bronchial epithelial cells. 

 

Electron microscopy analysis of bacterial surface structures 

SEM analysis of bacteria cultured for 16 h at 30°C on blood agar plates revealed the 

existence of two types of cell appendages in strain 19606
T
: thin and short (median 29 nm; 

range 5–140 nm, n = 20 bacteria) pili-like structures and long cell extensions (Fig. 2A,B). 
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The latter (median 260 nm, n = 20 bacteria) varied in length from 143 nm to 1008 nm and 

were irregularly distributed over the cell surface. The CsuE-mutant, which was grown 

under similar conditions, lacked the long cell extensions and had a more dense 

distribution of the short pili at its surface than strain 19606
T
 (Fig. 2D). Of note, short pili 

could not be observed on all mutant cells. The CsuE-mutant adhered poorly to the poly-l-

lysine-coated glass slides used for SEM and bacteria of this strain were mainly found 

adhering to debris on the glass slide. Interestingly, the short pili were seen mainly at the 

interface between the bacterial surface and the debris, suggestive of their involvement in 

adherence. Furthermore, the mutant strain showed, in contrast to the parental strain, 

only a few cell clusters with no more than two cells grouped together on the surface of 

the glass slides (Fig. 2C). 

 

 
 

Figure 2. Scanning electron micrographs of A. baumannii 19606
T
 (A and B) and CsuE-mutant (C and D) 

cells suspended from blood agar plates. Black arrows indicate long cell extensions; white arrows 

indicate thin and short pili. Bars: 1 μm (A and C) and 100 nm (B and D). 

 

 

Detection of CsuA/B protein 

Since secretion of CsuE, which is the tip adhesion on the pilus, is thought to precede the 

secretion of the CsuA/B subunit for pilus biogenesis [20], we reasoned that bacteria 

lacking this secretion event build up the CsuA/B protein in their cytoplasm, leading to 
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feedback inhibition or degradation of CsuA/B. We assessed the production of CsuA/B by A. 

baumannii 19606
T
 and its CsuE-mutant by immunoblot analysis of whole lysates with anti-

CsuA/B serum. The results demonstrated that the 18-kDa CsuA/B protein is expressed by 

the parental strain 19606
T
. In contrast, the isogenic CsuE-mutant did not express 

detectable levels of CsuA/B protein (Fig. 3), indicating that the pili produced by the CsuE-

mutant are different from those assembled via the CsuA/BABCDE chaperone–usher 

system. 

 

 
 

 

Figure 3. Detection of the CsuA/B protein in A. baumannii 19606
T
 (lane 1) and the CsuE-mutant (lane 

2). M, molecular weight markers. 

 

 

Detection of acuA gene 

A. baylyi strain ADP1 expresses a chaperone usher system, named Acu, which is required 

for formation of thin pili in this environmental isolate [8]. To determine whether this 

system might be involved in formation of CsuA/BABCDE-independent short pili in A. 

baumannii, the presence of acuA, which encodes the structural subunit of thin pili in A. 

baylyi [8], was determined using PCR. Although not shown, this approach showed that a 

289-bp acuA amplicon could be produced when total DNA from A. baylyi strain ADP1 was 

used as a template. In contrast, no amplicon was produced when total DNA from A. 

baumannii strain 19606
T
 and the CsuE-mutant were used as a template. These 

observations suggest that the short pili produced by the parental strain 19606
T
 and the 

CsuE-mutant are assembled by a system that seems different from CsuA/BABCDE and Acu. 

 

 

Discussion 

 

In this study, we demonstrated that production of the CsuA/BABCDE-mediated pilus, 

which is essential for biofilm formation on abiotic surfaces [22], is not required for the 

adherence of A. baumannii ATCC19606
T
 to H292 cells and induction of inflammatory 

cytokine production by these bronchial epithelial cells. Interestingly, in addition to the 

CsuA/BABCDE-mediated pili, strain 19606
T
 was found to produce CsuA/BABCDE-
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independent short pili, which to our knowledge have not been reported before in A. 

baumannii. 

Our conclusion is based on the following findings. First, light and scanning 

electron microscopy showed that A. baumannii type strain 19606
T
 and its isogenic CsuE-

mutant adhered to human bronchial epithelial cells and sheep erythrocytes in vitro, 

indicating that CsuA/BABCDE-mediated pili are not essential for adherence to vertebrate 

cells. The finding that the CsuE-mutant strain adhered to a significantly larger number of 

epithelial cells than the parental strain might be attributed to increased expression of 

another type of pilus on the surface of the latter strain, as has been described for 

Escherichia coli [15]. Secondly, we found that A. baumannii type strain 19606
T
 and its 

CsuE-mutant induced similar levels of inflammatory cytokines IL-6 and IL-8 in bronchial 

epithelial cells, suggesting that CsuA/BABCDE-mediated pili are not involved in induction 

of inflammatory responses in human bronchial epithelial cells interacting with this 

bacterial pathogen. 

The presence of pili on the surface of Acinetobacter strains was first described by 

Henrichsen and Blom in 1975 in A. baylyi BD4 (formerly A. calcoaceticus BD4) [9]. This 

strain was found to produce bundle-forming thin pili (2–3 nm in diameter) associated with 

adherence to abiotic and biotic surfaces [8] and individual thick pili (6 nm in diameter) 

involved in twitching motility [9], i.e., the ability to move on solid surfaces [14] enabling 

colonization of adjacent surface areas. The involvement of thin pili in adherence to abiotic 

surfaces was also demonstrated for A. venetianus strain RAG-1 [19]. Recently, Ishii et al. 

described two types of appendages in the highly adhesive Acinetobacter sp. strain Tol 5, 

an anchor-like appendage that tethers the bacterium to the substratum over distances of 

several hundreds of nanometers, and a peritrichate fibril-type appendage that attaches to 

the substratum at multiple places fixing the cell at shorter distances [10]. We have 

extended these findings by describing the existence of two types of cell appendages in the 

A. baumannii type strain 19606
T
: (i) irregular long cell extensions connecting bacteria that 

are assumed to represent the CsuA/BABCDE-mediated pili described by Tomaras et al. [22] 

and; (ii) thin and short pili-like structures that contact the surface areas adjacent to 

bacterial cells. The latter pili were not observed by Tomaras et al. [22], possibly because of 

the use of different experimental conditions and techniques, i.e., Luria–Bertani media and 

transmission electron microscopy versus blood agar and scanning electron microscopy, 

which were used to culture bacteria and visualize surface structures, respectively. 

Interestingly, the short pili were mainly seen at the site where the bacterium adhered to a 

surface area. Lee et al. [13] also described the presence of thin pili-like extensions on the 

surface of an A. baumannii strain that anchored the bacterium to the membrane surface 

of human bronchial epithelial cells. These findings raise the challenging question as to 
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whether the presence of a particular surface area triggers the production of short pili by A. 

baumannii, as has been described for Acinetobacter sp. strain Tol 5 [11]. 

It should be noted that although no PCR product could be amplified, acuA, which 

encodes pili in A. baylyi that are related to F17 pili of Escherichia coli [8], still could be 

present in A. baumannii 19606
T
. This is supported by the finding that a genome search of 

the A. baumannii AB307-0294 genome using acuA from A. baylyi leads to detection of 

genes encoding subunits of F17-related pili. 

In summary, in addition to the already described CsuA/BABCDE-mediated pilus 

that plays a role in biofilm formation on abiotic surfaces, A. baumannii ATCC19606
T
 

produces a CsuA/BABCDE-independent thin and short pilus, which may be involved in 

adherence of the bacterium to biotic surfaces such as those of human respiratory cells. 

Further genetic, structural and physiological studies are necessary to elucidate the role of 

this thin pilus in the pathobiology of A. baumannii. 
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Abstract 

 

Despite many reports documenting its epidemicity, little is known on the interaction of 

Acinetobacter baumannii with its host. To deepen our insight into this relationship, we 

studied persistence of and host response to different A. baumannii strains including 

representatives of the European (EU) clones I-III in a mouse pneumonia model. 

Neutropenic mice were inoculated intratracheally with five A. baumannii strains and an A. 

junii strain and at several days morbidity, mortality, bacterial counts, airway inflammation, 

and chemo- and cytokine production in lungs and blood were determined. A. baumannii 

RUH875 and RUH134 (EU clone I and II, respectively) and sporadic strain LUH8326 resulted 

in high morbidity/mortality, whereas A. baumannii LUH5875 (EU clone III, which is less 

widespread than clone I and II) caused less symptoms. A. baumannii type strain RUH3023
T
 

and A. junii LUH5851 did not cause disease. All strains, except A. baumannii RUH3023
T
 and 

A. junii LUH5851, survived and multiplied in the lungs for several days. Morbidity and 

mortality were associated with the severity of lung pathology and a specific immune 

response characterized by low levels of anti-inflammatory (IL-10) and specific pro-

inflammatory (IL-12p40 and IL-23) cytokines at the first day of infection. Altogether, a 

striking difference in behavior among the A. baumannii strains was observed with the 

clone I and II strains being most virulent, whereas the A. baumannii type strain, which is 

frequently used in virulence studies appeared harmless.  
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Introduction  

 

Multidrug-resistant Acinetobacter baumannii is a cause of severe infections in critically ill 

patients and notorious for its ability to spread epidemically. Three clonal lineages of A. 

baumannii, European (EU) clone I, II and III, are implicated in outbreaks worldwide [1,2]. 

Other Acinetobacter species, including the skin colonizer A. junii [3], are only incidentally 

involved in infection [4].  

 Various factors are assumed to contribute to the ability of A. baumannii to 

colonize the hospital environment and patients [5–11]. However, knowledge on the host’s 

response to A. baumannii is limited. Recognition by Toll-like receptor 4 and CD14 [12] and 

early recruitment of neutrophils [13,14] are important factors in the host innate defence 

against respiratory A. baumannii infection in mice. Others demonstrated the differential 

ability of clinical A. baumannii isolates to induce severe infections in neutropenic mice 

[15]. We previously showed in vitro that A. baumannii strains induce significantly less 

inflammatory cytokine production in human airway epithelial cells and cultured human 

macrophages than A. junii strains do [5], emphasizing the role of the innate immune 

system in A. baumannii infections.  

The aim of the present study was to investigate the virulence of and host innate 

immune response to well-characterized A. baumannii strains, including representatives of 

clones I-III, and an A. junii strain in a mouse pneumonia model.  

 

 

Materials and Methods 

 

Bacteria 

Five A. baumannii strains, including reference strains of EU clones I-III, the type strain 

(RUH3023
T
=ATCC19606

T
) and a sporadic isolate (LUH8326), and one A. junii strain were 

investigated (Table 1). Bacteria were preserved in glycerolbroth at -80°C. Prior to 

experiments, strains were rendered virulent by a single passage in mice.  

 

Animals  

Specific pathogen-free female C3H/HeN mice weighing 18-20 g were housed fifteen per 

cage and had ad libitum access to chow and water throughout the experiments. Animal 

studies were approved by the Animal Experimental Committee of the Angers University 

Hospital (permit C49007002) and complied with relevant laws related to the conduct of 

animal experiments. 

 



Host response in A. baumannii pneumonia 

 68 

Table 1. Strain characteristics 

Year Specimen EU Clone* Outbreak† MDR‡

RUH875 Dordrecht (NL) 1984 urine I + +

RUH134 Rotterdam (NL) 1982 urine II + +

LUH5875 Utrecht (NL) 1997 blood III + +

LUH8326 Leiden (NL) 2002 wound  - -  -

RUH3023T Atlanta (USA) 1965 urine - -  -

(ATCC19606T)

LUH5851 Leiden (NL) 1999 ear - - - 

Strain City (country)

A. baumannii

A. junii

 
*Strain belonging to European clones I-III (+) or not belonging to these clones (-). All 

isolates have been identified to species by one or more genotypic methods [1,33,34]. 

†Outbreak-associated (+) strain (i.e., common AFLP profile in >2 patients and with same 

time-space-origin) or (-) sporadic strain. ‡Mulkdrug-resistant (+) strain (i.e., resistant to 

more than two of the following drug classes or combinations: cephalosporins, 

carbapenems, ampicillin-sulbactam, quinolones and aminoglycosides) or (-) susceptible 

strain. 

 

Mouse pneumonia 

The survival of Acinetobacter strains after intratracheal infection of mice was assessed 

according to Eveillard et al [15]. To favour the onset of infection, mice were rendered 

transiently neutropenic by intraperitoneal injection with 150 mg of cyclophosphamide per 

kg of body weight (in 100 μl of saline) at days 4 and 3 prior to infection. Bacteria from an 

overnight culture on blood agar were suspended into saline to an optical density of 0.5 

McFarland, corresponding to a concentration of approximately 10
8
 colony forming units 

(CFU)/ml. Mice were anesthesized by isoflurane in conjunction with oxygen and 50 μl of 

the bacterial suspension were injected intratracheally via a cannula. Immediately after 

inoculation, two animals were sacrificed, lungs were homogenized and vital count was 

performed to verify the infection inoculum (range 5.9x10
5
 - 4.7x10

6
 CFU/g lung tissue). At 

1, 2, 3 and 4 days after infection, if possible 8 mice per strain were anesthesized and blood 

was collected by intracardiac puncture, after which mice were sacrificed by cervical 

dislocation. Serum was obtained by centrifugation of blood samples and stored at -80°C 

for cytokine analysis. Spleens and part of the lungs were removed, weighed and 

homogenized in 3 ml of phosphate buffered saline (pH 7.4) using the GentleMACS 

Dissociator (Miltenyi Biotec, Germany). Vital counts in blood, lung and spleen 

homogenates were performed to assess the number of viable bacteria (lowest limit of 

detection: 20 CFU/ml). Lung homogenates were stored at -80°C for cytokine analysis. 

 A semi-quantitative analysis of mice morbidity was performed using a clinical 

score ranging from 0 for no clinical symptoms to 4 for maximal symptoms based on the 

following criteria: mice mobility (0, spontaneous; 1, only after stimulation; 2, absent), the 

development of conjunctivitis (0, absent; 1, present), and the aspect of the hair (0, 
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normal; 1 ruffled). Mortality was assessed daily and analyzed by Kaplan-Meier survival 

curve. 

 

Histological analysis of lung inflammation 

Lungs of mice at day 1-4 after inoculation were analyzed by histological examination as 

described [15]. A semi-quantitative analysis of the lung tissue damage was performed by 

grading five random 20x fields of hematoxylin/eosin-stained sections according to the 

following criteria: alveolar wall destruction [absent (0); <25% (1),  25-75% (2), >75% (3) of 

alveoli destructed], infiltration by leukocytes [absent (0); <20 (1), 20-50 (2), >50 (3) per 

field] and hemorrhage [absent (0); mild (1); moderate (2); severe(3)]. The sum of scores 

represents the lung pathology score ranging from 0 for no pathology to 9 for severe 

pathology. 

 

Determination of inflammatory mediators 

Levels of interleukin (IL)-1β, IL-6, IL-10, IL-12p40, IL-13, IL-23, keratinocyte-derived 

chemokine (KC), macrophage inflammatory protein (MIP)-1α, MIP-2, regulated upon 

activation, normal T cell expressed and secreted (RANTES) and tumor necrosis factor 

(TNF)α in serum and lung homogenates were determined using multiplexing xMAP 

technology (Luminex Corporation Austin, USA). Multiplex kits were from Millipore 

(Millipore Corporation, USA).  

 

Statistical analysis 

Data were analyzed using the Kruskal-Wallis one-way analysis of variance and Wilcoxon 

rank sum test (SPSS 17.0). Mortality data were analyzed by Cox-regression. Spearman rank 

correlation coefficients were calculated to evaluate associations between parameters. P ≤ 

0.05 were considered significant. 

 

 

Results 
 

Morbidity and mortality 

Mice infected with the different A. baumannii strains and the A. junii strain (Table 1) were 

monitored daily for morbidity and mortality. Mice infected with A. baumannii RUH3023
T
 

or A. junii LUH5851 showed virtually no signs of morbidity (Table 2). In contrast, infection 

with A. baumannii clone I (RUH875) and clone II (RUH134) caused high morbidity already 

at the first day of infection, which remained high during the second day.  
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Table 2. Morbidity and lung pathology associated with Acinetobacter respiratory infection 

A. junii

2.7 ± 1.0 2.9 ± 0.9 1.9 ± 1.2 2.3 ± 0.9 0.0 ± 0.2 0.0 ± 0.2

3.2 ± 0.6 2.7 ± 1.2 2.2 ± 1.2 3.3 ± 0.5 0 0.1 ± 0.2

NA NA 1.9 ± 1.3 1.5 ± 1.7 0 0

NA NA 0.2 ± 0.4 NA 0 0

8.2 ± 0.7 8.0 ± 0.9 6.8 ± 0.5 7.2 ± 0.0 2.1 ± 0.9 3.6 ± 1.1

8.0 ± 0.9 8.3 ± 0.8 6.9 ± 1.5 7.1 ± 0.3 2.1 ± 0.6 3.0 ± 1.2

NA NA 7.3 ± 0.6 7.5 ± 1.2 2.2 ± 0.2 2.7 ± 0.6

NA NA 6.7 ± 1.0 NA 2.4 ± 0.4 2.5 ± 0.5

A. baumannii

RUH875 

(clone I)
RUH3023T LUH5851

Clinical score*

     Day 1

RUH134 

(clone II)

LUH5875 

(clone III)

LUH8326 

(sporadic)

     Day 2

     Day 3

     Day 4

Lung pathology score†

     Day 1

     Day 2

     Day 3

     Day 4
 

*Morbidity was recorded daily using a clinical score, which includes mobility, the development of 

conjunctivitis, and aspects of the hair and ranges from 0 for no clinical symptoms to 4 for maximal 

symptoms. †Sections of lungs of mice were stained with haematoxylin & eosin and lung tissue 

damage was assessed using the lung pathology score, which includes alveolar wall destruction, 

leukocyte infiltration and hemorrhage and ranges from 0 for no pathology to 9 for severe 

pathology. Values are means ± standard deviations for 8 mice except for LUH8326 at day 3, where 

n=4. Values are representative for surviving mice only. NA, not assessable, due to the high 

mortality associated with these strains. 

 

Infection with clone III (LUH5875) and sporadic isolate LUH8326 was accompanied by 

significantly (p<0.01) less morbidity at the first day of infection. For LUH8326, morbidity 

increased during the second day of infection but for LUH5875 it remained low (Table 2). 

Mice infected with RUH3023
T
 or A. junii LUH5851 did not die, whereas mortality 

was very high among mice infected with LUH8326, RUH875, and RUH134 (52%, 72% and 

86%, respectively, Fig. 1). Less animals (28%) died after infection with LUH5875 (p<0.05, 

Fig. 1). Most animals died within the first 2 days of infection with RUH875, RUH134 and 

LUH8326 and between days 3-4 of infection with LUH5875. Of note, the results described 

in the next paragraphs are representative for the surviving mice only.  

 

Persistence of Acinetobacter strains in lungs and extrapulmonary dissemination 

After 24 h of infection, RUH875, RUH134, LUH5875 and LUH8326 had multiplied in the 

lungs to approximately 1x10
9
 CFU/g of lung (Fig. 2A). These strains persisted in the lungs 

up to day 3-4 of infection (Fig. 2A). In contrast, RUH3023
T
 was cleared from the lungs 

already within the first day of infection. The levels of A. junii LUH5851 remained stable 

during the first day of infection, declined sharply thereafter with complete clearance by 

day 3.   

RUH875, RUH134, LUH5875, LUH8326 and A. junii LUH5851 were found in blood 

and spleen after the first day of infection (Fig. 2B, C). The bacterial load in the spleen after 

the first day of infection was significantly (p<0.05) higher for RUH875 than for LUH5875. 
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Figure 1. Survival associated with Acinetobacter respiratory infection. Survival of mice after 

intratracheal infection with A. baumannii clone I strain RUH875, clone II strain RUH134, clone III 

strain LUH5875, sporadic strain LUH8326 and type strain RUH3023
T
, and A. junii strain LUH5851. 

Results are expressed as percentage survival at days 1-4 of infeckon. †, all mice dead/sacrificed.  

 

 

A. junii LUH5851 disseminated into the blood and spleen to a significantly (p<0.05) lower 

extent than RUH875, RUH134, LUH5875 and LUH8326. For these A. baumannii strains, 

levels in blood and spleen remained stable up to day 3-4, whereas A. junii LUH5851 was 

cleared completely from blood and spleen already at day 2 of infection. A. baumannii 

RUH3023
T
 did not disseminate into the blood and spleen.  

 

 
 

Figure 2. Persistence of Acinetobacter strains in the lungs and extrapulmonary dissemination. Levels 

of A. baumannii clone I strain RUH875 (black circles), clone II strain RUH134 (black downward 

triangles), clone III strain LUH5875 (black squares), sporadic strain LUH8326 (black upward triangles) 

and type strain RUH3023
T
 (black crosses), and A. junii strain LUH5851 (gray circles) in the lungs (A), 

bloodstream (B) and spleen (C) of mice at 1 to 4 days after intratracheal injection. Results are 

expressed as mean CFU per g of tissue (for lung and spleen) or CFU per ml (for blood) ± standard 

errors of the mean of 8 mice except for LUH8326 at 3 days after infection, where n=4. Values are 

representative for surviving mice only. Dotted lines represent the lowest limit of detection. 
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Overall, bacterial counts in lungs correlated (p<0.01) to those in the bloodstream (r=0.85) 

and spleen (r=0.85). Furthermore, morbidity and mortality were associated (p<0.01) with 

bacterial counts in the lungs (r=0.77 and r=0.62, respectively), bloodstream (r=0.86 and 

r=0.75, respectively) and spleen (r=0.85 and r=0.82, respectively). 

 

Lung pathology 

Histologic examination of the lungs of mice at the first day of infection with RUH875, 

RUH134, LUH5875 and LUH8326 revealed hypercellularity due to increased numbers of 

lymphocytes, monocytes and macrophages, and thickened alveolar walls (Fig. 3, Table 2). 

The lungs of mice infected with these strains were highly consolidated and many areas 

had hemorrhagic lesions. The severity of tissue damage remained stable over time for all 

strains (Table 2). Alveolar wall destruction was more severe after the first day of infection 

with RUH875 and RUH134 than with LUH5875 and after the second day of infection with 

RUH875 and RUH134 than with LUH8326. Infection with RUH3023
T
 and A. junii LUH5851 

resulted in significantly (p<0.05) less lung damage (Table 2).  

 Overall, severity of tissue damage was correlated (p<0.001) to bacterial levels in 

the lungs (r=0.81), morbidity (r=0.81) and mortality (r=0.84). 

 

 
 

Figure 3. Light micrographs of lungs of mice infected with Acinetobacter. Sections of the lungs of 

mice at 1 day after infection with A. baumannii clone I strain RUH875, clone II strains RUH134, clone 

III strain LUH5875, sporadic strain LUH8326, type strain RUH3023
T
 or A. junii strain LUH5851, stained 

with haematoxylin-eosin. Arrows indicate inflammatory cell infiltrates. Bars, 50 μm.  
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Inflammatory response to Acinetobacter 

After the first day of infection with A. baumannii strains RUH875, RUH134, LUH5875 and 

LUH8326, levels of all chemo- and cytokines in the lungs were substantially elevated 

(p<0.05) as compared to basal levels. The levels of the chemokines KC, MIP-1α, MIP-2, and 

the pro-inflammatory cytokines IL-1β, IL-6 and TNFα further increased and peaked at day 

2 of infection (Table 3). 

 

Table 3. Inflammatory response in lungs of mice infected with four virulent A. baumannii strains 

Chemokines Day 

KC† 1 386 (38 - 700) * 311 (198 - 474) * 377 (4 - 555) * 310 (28 - 493) *

basal: 17 (3 - 57) 2 326 (150 - 749) * 236 (16 - 306) * 186 (25 - 540) * 204 (7 - 1753) *

3 NA NA 52 (8 - 224) 45 (32 - 422)

4 NA NA 41 (4 - 45) NA

MIP-1α† 1 142 (1 - 404) 114 (13 - 287) * 112 (13 - 217) * 147 (6 - 201) *

basal: 2 (1 - 5) 2 589 (118 - 888) * 319 (5 - 1076) * 760 (3 - 909) * 196 (2 - 765) *

3 NA NA 78 (12 - 654) * 124 (90 - 596) *

4 NA NA 114 (5 - 191) * NA

MIP-2† 1 171 (4 - 246) * 145 (71 - 372) * 119 (3 - 257) * 137 (6 - 220) *

basal: 5 (1 - 45) 2 400 (200 - 755) * 342 (4 - 591) * 365 (6 - 546) * 312 (3 - 406) *

3 NA NA 79 (4 - 253) * 109 (86 - 219) *

4 NA NA 97 (3 - 202) * NA

RANTES†† 1 1753 (975 - 5282) * 1682 (893 - 2708) * 2124 (1406 - 2452) * 1885 (996 - 3340) *

basal: 236 (221 - 501) 2 1229 (794 - 1760) * 1278 (671 - 1773) * 1559 (1475 - 1627) * 1000 (812 - 1381) *

3 NA NA 930 (691 - 1010) * 958 (665 - 2027) *

4 NA NA 834 (646 - 850) * NA

IL-1β† 1 20 (5 - 60) * 19 (7 - 66) * 18 (5 - 31) * 30 (5 - 48) *

basal: 1 (1 - 2) 2 51 (13 - 264) * 33 (3 - 135) * 69 (6 - 268) * 24 (2 - 81) *

3 NA NA 19 (3 - 84) * 28 (12 - 75) *

4 NA NA 14 (4 - 20) * NA

IL-6† 1 133 (3 - 217) * 67 (19 - 280) * 85 (2 - 181) * 119 (1 - 174) *

basal: 3 (2 - 11) 2 127 (43 - 670) * 76 (4 - 395) * 98 (0.4 - 376) * 72 (1 - 151) *

3 NA NA 10 (1 - 217) 6 (3 - 266)

4 NA NA 9 (1 - 14) NA

IL-12p40†† 1 1901 (1202 - 3091) * 2249 (743 - 4130) * 2824 (1818 - 5251) * 3698 (1900 - 5365) *

basal: 203 (163 - 237) 2 1730 (377 - 2380) * 1513 (976 - 2644) * 1991 (1093 - 3005) * 1031 (834 - 1282) *

3 NA NA 669 (381 - 1853) * 760 (415 - 2210) *

4 NA NA 319 (116 - 494) NA

IL-23† 1 99 (58 - 113) * 82 (48 - 122) * 150 (104 - 175) * 113 (98 - 150) *

basal: 11 (6 - 17) 2 73 (33 - 227) * 86 (59 - 108) * 79 (46 - 112) * 63 (36 - 89) *

3 NA NA 43 (19 - 135) * 59 (23 - 169) *

4 NA NA 26 (6 - 61) NA

TNFα† 1 10 (0.1 - 17) 8 (1 - 22) * 11 (1 - 30) * 12 (0.4 - 17) *

basal: 0.4 (0.2 - 5) 2 15 (3 - 28) * 11 (0.4 - 32) * 15 (1 - 32) * 6 (0.4 - 21) *

3 NA NA 2 (0.3 - 35) 2 (2 - 23)

4 NA NA 4 (1 - 9) NA

IL-10†† 1 824 (416 - 2126) * 991 (578 - 1724) * 2445 (1834 - 4053) * 2168 (1348 - 3753) *

basal: 273 (157 - 355) 2 792 (389 - 4168) * 1346 (568 - 1923) * 2016 (844 - 2741) * 876 (541 - 1837) *

3 NA NA 2923 (862 - 1234) * 1903 (862 - 3330) *

4 NA NA 3740 (1154 - 4051) * NA

IL-13†† 1 976 (678 - 2073) * 1481 (567 - 3274) * 2739 (571 - 3691) * 1628 (531 - 3958) *

basal: 215 (173 - 251) 2 1456 (565 - 4134) * 792 (275 - 1145) * 1368 (282 - 1765) * 527 (244 - 959) *

3 NA NA 262 (207 - 490) 327 (194 - 592)

4 NA NA 338 (123 - 511) NA

LUH8326 

(sporadic)

RUH134 

(clone II)

Pro-inflammatory cytokines

Anti-inflammatory cytokines

LUH5875

(clone III)

RUH875 

(clone I)

 
Mice were intratracheally infected with A. baumannii RUH875, RUH134, LUH5875 or LUH8326 for 1-4 

days. Levels of inflammatory mediators were determined in the lung homogenates of mice directly after 

instillation (basal values), and 1-4 days after instillation. Results are medians and ranges for 8 mice, 

except for LUH8326 at 3 days after infection, where n=4. Values are representative for surviving mice 

only. NA, not assessable, due to the high mortality associated with these strains. *, significantly (p<0.05) 

different from basal level. †, results in ng/g of lung tissue; ††, results in pg/g of lung tissue. 
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The kinetics of production of the anti-inflammatory IL-10 differed significantly in animals 

infected with the four strains with a peak at day 1 in animals infected with LUH8326, at 

day 2 after infection with RUH134 and at day 3 after infection with LUH5875. At the first 

day of infection, levels of IL-10 in lungs were significantly (p<0.05) lower in mice infected 

with RUH875 and RUH134 as compared to infection with LUH5875 and LUH8326. IL-10 

levels remained lower after the second day of infection with RUH875 and RUH134 as 

compared to LUH5875. Moreover, levels of the anti-inflammatory IL-13 in lungs of mice 

infected for 1 day with RUH875 tended to be lower (p=0.1) than with LUH5875. In addition 

to these anti-inflammatory cytokines, lower (p<0.05) levels of the pro-inflammatory IL-

12p40 and IL-23 were seen in lungs of mice infected for 1 day with RUH875 and RUH134 

than with LUH5875 and LUH8326. A. baumannii RUH3023
T
 and A. junii LUH5851 did not 

induce cyto- and chemokine production (data not shown). 

In serum, all cyto- and chemokine levels were elevated 1 day after infection with 

RUH875, RUH134, LUH5875 and LUH8326, except for IL-23 that was not detectable (Table 

S1 in the online data supplement). For the majority of the cyto- and chemokines measured 

(KC, MIP-1α, MIP-2, IL-1β, IL-6 and TNFα), levels in the lungs corresponded to levels in 

serum. However, the kinetics of the innate response in lungs and serum differed, with 

some cyto- and chemokines peaking earlier (IL-1β and IL-10) and some later (MIP-1α, 

MIP-2, RANTES and TNFα) in serum than in the lungs of infected animals. No significant 

differences in levels of inflammatory mediators were seen between RUH875, RUH134, 

LUH5875 and LUH8326. Infection of mice with RUH3023
T
 and A. junii LUH5851 did not 

cause an increase in inflammatory mediators in serum, except for a 5-fold increase of 

RANTES and IL-1β levels (Table S1). 

Overall, cyto- and chemokine levels in lungs and serum correlated (p<0.05) to 

bacterial levels in lungs and blood, respectively. We determined whether there was a 

correlation between cyto- and chemokine production at day 1 and tissue pathology, 

morbidity and mortality of mice at days 1-3 after infection with A. baumannii RUH875, 

RUH134, LUH5875, and LUH8326. Results revealed that low levels of IL-10 in lungs of mice 

were associated with severe lung pathology (r=-0.70, p<0.05) at the first day of infection. 

Morbidity was associated with low IL-10 levels (r=-0.72, p<0.001), low IL-12p40 (-0.37, 

p<0.05) and IL-23 (r=-0.67, p<0.001) levels in the lungs. Moreover, low levels of IL-10 in 

lungs at day 1 correlated to mortality at days 2 (r=-0.77; p<0.05) and 3 of infection (r=-

0.72, p<0.01). A similar correlation was found between IL-12p40 and IL-23 levels at day 1 

and mortality at days 2 (r=-0.37, p<0.05 and r=-0.71, p<0.01, respectively) and 3 (r=-0.35, 

p<0.05 and r=-0.67, p<0.01, respectively).  
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Table S1. Inflammatory response in serum of mice infected with Acinetobacter 

Chemokines  Day

KC 1 60 (7 - 256) * 57 (7 - 251) * 46 (1 - 346) * 67 (7 - 145) * 1 (0.2 - 4) 8 (0.2 - 11) *

basal: 0.1 (0.03 - 0.6) 2 21 (4 - 54) * 9 (2 - 674) * 12 (2 - 80) * 6 (0.2 - 72) * 0.2 (0.1 - 0.4) 0.4 (0.2 - 5)

3 NA NA 0.1 (0 - 93) 0.01 (0 - 0.02) 0 (0 - 0.03) 0 (0 - 0.2)

4 NA NA 0.1 (0 - 1) NA 0 0

MIP-1a 1 0.4 (0.1 - 2) * 0.3 (0.1 - 1) * 0.2 (0.1 - 0.3) * 0.1 (0.1 - 0.3) * 0.1 0.1

basal: 0.1 2 2 (1 - 11) * 2 (0.1 - 5) * 4 (0.1 - 17) * 1 (0.1 - 4) * 0.1 0.1

3 NA NA 7 (0.1 - 84) * 2 (0.4 - 82) * 0.1 0.1

4 NA NA 6 (0.1 - 23) * NA 0.1 0.1

MIP-2 1 18 (1 - 25) * 11 (2 - 23) * 5 (0.1 - 13) * 11 (2 - 19) * 0.2 (0.1 - 0.2) 0.2 (0.1 - 1)

basal: 0.1 (0.1 - 0.2) 2 10 (1 - 22) * 8 (0.1 - 18) * 10 (0.3 - 14) * 3 (0.1 - 10) 0.1 0.1

3 NA NA 0.5 (0.1 - 65) 0.1 (0.1 - 58) 0.1 0.1 (0.1 - 0.2)

4 NA NA 0.1 (0.1 - 1) NA 0.1 0.1

RANTES 1 49 (4 - 127) * 31 (12 - 101) * 19 (4 - 53) * 23 (4 - 50) * 18 (12 - 32) * 25 (9 - 46) *

basal: 4 (4 - 6) 2 27 (4 - 59) 21 (4 - 126) * 22 (4 - 50) * 16 (4 - 38) 13 (12 - 21) * 15 (12 - 19)

3 NA NA 10 (4 - 113) 6 (4 - 110) 9 (4 - 21) 8 (4 - 32) *

4 NA NA 15 (12 - 30) * NA 11 (9 - 18) * 12 (9 - 21) *

Pro-inflammatory cytokines

IL-1b 1 393 (5 - 845) * 185 234 (5 - 617) * 225 119 (119 - 223) * 62 (5 - 119)

basal: 30 (5 - 55) 2 144 (55 - 617) * 144 (5 - 584) 411 (55 - 684) * 78 (55 - 908) * 62 (5 - 119) 119 (119 - 223) *

3 NA NA 78 (5 - 1002) 30 (5 - 1495) 119 (5 - 119) 119 (5 - 119) *

4 NA NA 119 (56 - 223) * NA 119 (5 - 223) 119 (5 - 223) *

IL-6 1 33 (2 - 99) * 27 (7 - 95) * 30 (1 - 84) * 40 (1 - 105) * 0 (0 - 1) 5 (0 - 10)

basal: 0.01 (0.01 - 0.1) 2 27 (9 - 79) * 16 (0.3 - 633) * 34 (5 - 181) * 8 (0 - 158) * 0 0 (0 - 1)

3 NA NA 1 (0 - 151) * 1 (0.1 - 134) * 0 0 (0 - 0.1)

4 NA NA 0.2 (0 - 4) NA 0 0

IL-12p40 1 42 (20 - 173) * 27 (20 - 85) 25 (20 - 75) 20 (20 - 28) 20 20 (20 - 22)

basal: 20 2 20 (20 - 61) 20 (20 - 72) 20 (20 - 50) 20 (20 - 57) 20 20

3 NA NA 20 (20 - 85) 20 20 20

4 NA NA 20 (20 - 27) NA 20 20

TNFa 1 128 (3 - 285) * 84 (5 - 223) * 70 (3 - 97) * 55 (3 - 110) * 3 24 (3 - 24) *

basal: 3 2 259 (84 - 345) * 191 (3 - 446) * 185 (3 - 450) * 77 (3 - 540) * 3 (3 - 24) 3 (3 - 24)

3 NA NA 121 (3 - 3749) * 21 (3 - 2295) 3 (3 - 24) 3 (3 - 24)

4 NA NA 24 (3 - 234) * NA 3 (3 - 82) 3 (3 - 24)

Anti-inflammatory cytokines

IL-10 1 992 373 45 159 (45 - 528) * 20 (16 - 124) * 20 (20 - 92) *

basal: 16 2 620 147 (35 - 519) * 319 159 (16 - 552) * 18 (16 - 20) 20 (20 - 75) *

3 NA NA 390 305 20  * 20 (16 - 58)

4 NA NA 1475 NA 30 (20 - 92) * 20 (16 - 58) *

IL-13 1 2 (1 - 3) * 2 (1 - 2) 2 (1 - 2) 2 (1 - 3) * 2 (1 - 2) 1 (1 - 2)

basal: 1 (1 - 2) 2 1 (1 - 2) 2 (1 - 2) 2 (1 - 4) 2 (1 - 2) * 2 (1 - 2) 1 (1 - 2)

3 NA NA 1 (1 - 2) 1 (1 - 2) 1 (1 - 2) 1 (1 - 2)

4 NA NA 1 (1 - 2) NA 1 (1 - 2) 1 (1 - 2)

RUH3023T LUH5851

(102 - 550) * (55 - 1002) *

RUH875 RUH134 LUH5875 LUH8326

(16 - 1541) *

(45 - 1271) * (16 - 2127) * (16 - 1023) *

(20 - 3020) *

(237 - 1299) * (16 - 1528) *

(16 - 45053) *

 
Mice were intratracheally infected with A. baumannii RUH875, RUH134, LUH5875, LUH8326, RUH3023

T
 or 

A. junii LUH5851 for 1-4 days. Levels of inflammatory mediators were determined in the serum of mice 

directly after instillation (basal values), and 1-4 days after instillation. Results are median and ranges for 8 

mice, except for LUH8326 at 3 days after infection, where n=4. Values are representative for surviving 

mice only. NA, not assessable, due to the high mortality associated with these strains. *, significantly (p < 

0.05) different from basal level. 

 

 

Discussion 

 

The outcome of pneumonia differed strikingly among A. baumannii strains with clone I 

and II and the sporadic isolate being highly virulent and the clone III strain (a clone less 

widespread than clones I and II) being less virulent. Infection of mice with type strain 

RUH3023
T
 and A. junii LUH5851 did not result in morbidity/mortality.  
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The clone I, II, III strains and the sporadic strain survived and multiplied in the lungs and 

disseminated to the bloodstream at high levels. Difference in mortality between clone III 

versus clone I, II and the sporadic strain could not be attributed to bacterial loads in lungs 

or blood, suggesting that proliferation in lungs and extrapulmonary dissemination are not 

the only factors contributing to the virulence of these strains. 

We previously demonstrated in vitro that A. junii strains induced a stronger 

innate immune response in human cells than A. baumannii strains, implying that A. junii 

may be quickly eliminated by the host [5]. The finding that A. junii LUH5851 did not 

survive in our pneumonia model supports this presumption, although experiments 

focusing on the first hours of infection are necessary to assess the relationship between 

clearance and the innate immune response. Multiple factors play a role in clearance of 

pathogens from the lungs, including phagocytosis and killing by neutrophils and 

macrophages, by antimicrobial peptides and serum components [16]. As we used 

neutropenic mice, other factors than neutrophils contributed to the rapid clearance of the 

A. junii strain and RUH3023
T
. It is of note that RUH3023

T
 was more susceptible to killing by 

human serum in vitro than A. baumannii RUH875, RUH134, LUH5875 and LUH8326 (de 

Breij et al, unpublished).The type strain of A. baumannii (ATCC19606
T
) was used as a 

model strain in several virulence studies [9,17–21]. The finding that this strain, in contrast 

to other A. baumannii strains, did not survive in the mouse pneumonia model and in a 

mouse thigh infection model [22] (de Breij et al, unpublished), challenges the relevance of 

this strain as representative for the A. baumannii species. Altogether, noted differences in 

virulence among A. baumannii strains, as also observed by others [15,23], underscore that 

the choice of strain is a critical variable in virulence studies.  The reference strains of EU 

clones I and II that are associated with outbreaks worldwide were highly virulent in our 

study. It is important to further assess whether this is a general feature of these clones as 

this might have implications for clinical diagnostics [24,25].  

Eveillard et al [15] described a significant increase in TNFα and MIP-2 levels in 

lungs of mice after infection with five different A. baumannii strains. They showed that 

MIP-2 levels were higher in mice after the second day of infection with two virulent strains 

than with three less-virulent strains. Further to this, we found a clear association with the 

severity of infection and levels of the anti-inflammatory cytokine IL-10. The effects of IL-10  

during bacterial infections are complex. During an overwhelming infection, as in our 

mouse studies, the anti-inflammatory effects of IL-10 are most likely beneficial to the host 

by down-regulating inflammation and its unfavourable effects [26,27]. However, IL-10 also 

hampers the appropriate pro-inflammatory response to the bacteria, and then it can be 

hazardous for the host [28,29]. Indeed, we also found that low levels of IL-12p40 and IL-23 

were associated with a poor outcome, which is in agreement with Happel et al, who 
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demonstrated the critical roles of IL-12p40 and IL-23 in host survival in a murine model of 

Klebsiella pneumoniae infection [30]. Others reported that increased levels of IL-12p40 as 

well as TNFα and IL-4 in neutropenic mice infected with Cryptococcus neoformans were 

associated with survival of these mice but not with a decreased fungal burden [31]. IL-23 is 

a cytokine together with enhanced IL-1β and IL-6 production known to drive an IL-17-

producing T cell population in mice [32] that enhance epidermal defence and neutrophil 

influx. However, it is uncertain whether this cytokine plays a crucial role in host defence 

against A. baumannii as IL-17 depletion did not increase mortality in A. baumannii infected 

mice [23]. 

In conclusion, a striking difference in morbidity and mortality associated with A. 

baumannii strains was noted, with EU clone I and II strains being the most virulent. 

Furthermore, the outcome of experimental A. baumannii pneumonia is associated with IL-

10 and IL-12p40/IL-23 levels. Future studies will have to clarify whether this response 

influences the impact of A. baumannii strains in the human host. If so, levels of these 

mediators may have predictive values or be targets for treatment. 
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Abstract 

 

An understanding of why certain Acinetobacter species are more successful in causing 

nosocomial infections, transmission and epidemic spread in healthcare institutions 

compared with other species is lacking. We used genomic, metabolomic and virulence 

studies to identify differences between Acinetobacter species. Fourteen strains 

representing nine species were examined. Genomic analysis of six strains showed that the 

A. baumannii core genome contains many genes important for diverse metabolism and 

survival in the host. Few were unique compared to less clinically successful species. In 

contrast, when the accessory genome of an individual A. baumannii strain was compared 

to a less successful species (A. calcoaceticus), many unique operons with putative 

virulence function were identified, including the csu operon, the acinetobactin 

chromosomal cluster, and bacterial defence mechanisms. Metabolomic studies showed 

that compared to A. calcoaceticus (RUH2202), A. baumannii ATCC 19606
T
 was able to 

utilise nitrogen sources more effectively and was more tolerant to pH, osmotic and 

antimicrobial stress. Virulence differences were also observed, with A. baumannii ATCC 

19606
T
, A. pittii SH024, and A. nosocomialis RUH2624 persisting and forming larger 

biofilms on human skin than A. calcoaceticus. A. baumannii ATCC 19606
T
 and A. pittii 

SH024 were also able to survive in a murine thigh infection model, whereas the other two 

species were eradicated. The current study provides clues to the elucidation of differences 

in clinical relevance among Acinetobacter species.  
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Introduction 

 

In contemporary medicine, certain Acinetobacter species have proven to be highly 

successful in their ability to cause outbreaks and develop antibiotic resistance [1,2]. 

However, great diversity exists in the clinical importance of the various species, with some 

being dominant as human pathogens and others merely acting as colonizing or 

environmental organisms [2]. To date, with the recent description of the novel species 

Acinetobacter pittii (former name Acinetobacter genomic species [gen. sp.] 3) and 

Acinetobacter nosocomialis (former name Acinetobacter gen. sp. 13TU) [3], the genus 

Acinetobacter comprises 26 validly named species and 9 DNA–DNA hybridization groups 

(gen. sp.) with provisional designations. A. baumannii has long been considered the most 

clinically important species, with the greatest number of healthcare–related outbreaks 

and reports of multidrug resistance. More recently, and likely as a consequence of 

improved laboratory identification, A. pittii and A. nosocomialis have also surfaced as 

clinically significant, with increasing reports of outbreaks and antibiotic resistance 

[4,5,6,7,8,9]. Species that have less commonly been associated with human disease 

include A. lwoffii, A. junii, and A. haemolyticus, and some species have only been identified 

as colonizing human skin or very rarely described as causing human disease, such as A. 

johnsonii and A. radioresistens [2,7]. To our knowledge, A. calcoaceticus has never been 

implicated in serious human disease [2]. However, given the difficulty in phenotypically 

differentiating it from A. baumannii, A. pittii and A. nosocomialis, these species are often 

grouped together in diagnostic microbiology laboratories as the ‘A. calcoaceticus – A. 

baumannii complex’. 

Thus far, the attributes that make one Acinetobacter species more adept at 

causing human outbreaks and disease than another are poorly understood. Previous 

studies have shown that A. baumannii has the ability to survive in both wet and dry 

conditions in the hospital environment [10,11,12]. A recent clinical study showed that 

relative to A. nosocomialis, A. baumannii was an independent predictor of mortality [5]. A 

variety of virulence mechanisms have been identified in A. baumannii, including 

siderophore–mediated iron acquisition systems, biofilm formation, adherence and outer 

membrane protein function, the lipopolysaccharide (LPS), capsule formation, and 

quorum–sensing [13]. Significantly less is understood about the non–baumannii species. In 

this study, we used a systems biology approach involving genomics, phenomics and 

virulence studies, to identify species characteristics that may explain why some 

Acinetobacter species are successful as human pathogens and others are not. This work 

deepens our understanding of Acinetobacter biology, which is critical to develop improved 
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diagnostic, preventative and therapeutic strategies against this troublesome human 

pathogen.    

 

 

Materials and Methods 
 

Bacterial strains and culture conditions 

The 14 strains included in this study are shown in Table 1. The genomes of eight strains 

were sequenced in the present investigation, while for six strains, the publicly available 

genomes were used (Table 1). Cultures were performed at 30°C or 37°C on sheep blood 

agar plates (bioMérieux, Boxtel, The Netherlands) or in Luria–Bertani (LB) broth. 

 

Whole genome sequencing 

Genomic DNA was extracted using the Invitrogen Easy–DNA kit (Invitrogen, CA, USA) or as 

described by Boom et al. [32]. Genomes were sequenced using 454 FLX pyrosequencing 

(Roche) with DNA standard fragment and 3 kb jumping libraries according to the 

manufacturer’s recommendations [33]. Genomes were assembled using Newbler and the 

runAssembly script was then used to assemble reads into contigs. Final assemblies were 

BLASTed to the NCBI non-redundant database and UniVecCore was used to remove any 

contaminating sequence. For annotation, ab initio gene models were predicted using 

GeneMark, Glimmer3, MetaGene, and Zcurveb (Delcher et al, Nucleic Acids Res 27, 1999; 

Guo et al, Nucleic Acids Res 27, 2003; Noguchi et al, Nucleic Acids Res 34, 2006). An 

evidence-based approach constructed open reading frames (ORFs) from BLASTX hits with 

the NCBI non–redundant protein database; all BLAST hits with e–values better than 1 x  

10
–10

 were used as BLAST evidence. A summary of gene finding data for each locus can be 

viewed at the Broad Institute Acinetobacter group database 

(http://www.broadinstitute.org/annotation/genome/Acinetobacter_group/GenomeStats.

html). 

 

Phylogenetic analysis and comparative genomics 

Predicted proteins from each Acinetobacter genome were compared using an all–against–

all BLAST search and Pseudomonas aeruginosa PAO1 was used as the outgroup. Reciprocal 

best blast matches (RBM), regardless of percent identity, were stored in a custom MySQL 

relational database to facilitate identification of orthologous groups shared by selected 

phylogenetic and phenotypic groups of organisms. RBM matching proteins were clustered 

using the Markov clustering algorithm implemented in MCL [34], and clusters with one 

protein per genome were defined. These represent orthologous core genes that are
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present as a single copy in each genome. The protein sequences for each cluster were 

aligned using CLUSTALW [35] and the resulting multiple sequence alignments were 

concatenated for tree building. A neighbour joining (NJ) tree was made using MEGA4 [36] 

and evaluated using 100 bootstrap replicates. The criteria used to define an operon were 

(i) genes were consecutive, (ii) genes were transcribed in the same orientation, (iii) the 

intergenic distance between the genes was no longer than 150 bp, and (iv) gene length 

was at least 450 bp [37,38].  

 

Table 1. Characteristics of bacterial strains used in this study 

Origin (Place, year)

A. baumannii
1

ATCC 19606
T

Unknown, before 1949 Urine 3.97 3766 This study ACQB0000000

A. baumannii ATCC 17978 Unknown, ~1951 Unknown 3.98 3791 [45] CP000521

A. baumannii AB0057 Washington, D.C., USA, Blood 4.05 3853 [46] CP001182

A. baumannii AB307–0294 Buffalo, NY, USA, 1994 Blood 3.76 3458 [46] CP001172

A. baumannii AYE Le Cremlin–Bicêtre, FR, 2001 Urine 3.94 3607 [47] CU459141

A. baumannii ACICU Rome, IT, 2005 CSF 3.90 3667 [48] CP000863

A. calcoaceticus
1

RUH2202 Malmoe, SE, 1980–82 Wound 3.88 3566 This study ACPK00000000

A. pittii
1

SH024 Cologne, DE, 1993 Skin 3.97 3689 This study ADCH0000000

A. nosocomialis
1

RUH2624 Rotterdam, NL, 1987 Skin 3.87 3631 This study ACQF00000000

A. lwoffii SH145 Cologne, DE, 1994 Skin 3.48 3134 This study ACPN0000000

A. junii SH205 Cologne, DE, 1994 Skin 3.46 3186 This study ACPM0000000

A. radioresistens SH164 Cologne, DE, 1994 Skin 3.16 2874 This study ACPO0000000

A. johnsonii SH046 Cologne, DE, 1994 Skin 3.69 3363 This study ACPL00000000

A. baylyi ADP1 Atlanta, GA, USA, before 1958 Soil 3.60 3325 [49] CR543861

 Reference

Genbank 

Accession No.

Genome 

Size (Mb)Species Strain Source

No. of 

Genes

 
DE, Germany; FR, France; IT, Italy, NL, The Netherlands; SE, Sweden; US, United States 
1
Representative strains of the A. calcoaceticus-A. baumannii complex that were analysed in detail. 

 

 

Metabolic profiling 

To assess for metabolic differences between Acinetobacter species, we used Phenotype 

Microarrays (PM) as described previously by Biolog Inc. (Hayward, CA, USA) [39]. This 

technology uses tetrazolium violet irreversible reduction to formazan as a reporter of 

active metabolism. Twenty 96–well microarray plates were used (PM 1-20) comprising 

1920 different metabolic and toxic compound conditions, including 192 assays of C-source 

metabolism (PM 1–2), 384 assays of N–source metabolism (PM 3, 6 – 8), 96 assays of P-

source and S–source metabolism (PM 4), 96 assays of biosynthetic pathways (PM 5), 96 

assays of ion effects and osmolarity (PM 9), 96 assays of pH effects (PM 10), and sensitivity 

to 240 chemicals (PM 11–20) (Bochner, FEMS Microbiol Rev 33, 2009). In brief, a 

standardized bacterial cell density suspension containing a tetrazolium redox dye 

(measures cell respiration) was transferred into wells of the microplates, which contained 

dried nutrients or chemicals to create the unique culture conditions. Plates were 

incubated at 37°C and metabolic activity was measured colorimetrically using the redox 

dye (Bochner, FEMS Microbiol Rev 33, 2009). Bioinformatic software (OmniLog V. 1.5) 

quantified metabolism as a color–coded kinetic graph. Two independent experiments 
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were performed for all analyses. A best blast hit approach was used to map all the 

proteins in the four genomes to the KEGG reactions database using the KEGG proteome 

database (http://www.genome.jp/kegg/, release 54.1); an E–value threshold of 1x10
–50

 

was applied. Phenotype microarray data was analyzed using GenoPhenomicon: the 

activity of each well was predicted as active/not active using a support vector machine 

(SVM) predictor built using SVMpython v.2 (http://www.tfinley.net 

/software/svmpython2/), using a training dataset of 800 manually validated samples. 

Relationships between genome content and phenotype microarray data were then 

inspected. 

The analysis of PM data was carried out on the raw data–set provided by Biolog 

Inc., obtained by three replicates of each substrate. Binary coefficients (1/0) for positive 

metabolism (1) or no metabolic activity (0) were attributed to each PM well and a matrix 

of binary vectors, each representing a single Acinetobacter species, was prepared as 

previously described [40]. Binary data were then used to compute a similarity matrix by 

using Jaccard coefficient with the software PAST [41].  

          

Growth on human skin equivalents 

Human keratinocytes were isolated from fresh mamma reduction surplus skin as 

previously described [42]. Human epidermal skin constructs were generated as described 

previously [51]. In brief, human epidermal skin constructs were incubated with 300 µl of a 

mid–logarithmic bacterial suspension (3x10
5 

colony forming units [CFU]/ml) at 37ºC (7.3% 

CO2). After 1 h, skin constructs were washed with phosphate buffered saline (PBS) to 

remove non–adherent bacteria and were incubated for an additional 23 h and 47 h. Two 

circular biopsies (4 mm in diameter) were taken from the skin, homogenized in PBS and 

serially diluted to determine the number of CFU. A third biopsy of each skin construct was 

fixed in 4% formaldehyde, dehydrated and embedded in paraffin for subsequent staining 

with Alcian–blue PAS (Merck, Darmstadt, Germany) for morphological analysis. Three 

independent experiments were performed. 

 

Bronchial epithelial cell adhesion and cytokine production 

Adherence of bacteria to human bronchial epithelial cells (H292 cells, ATCC CRL–1848, 

Manassas, VA, USA) and cytokine production by these cells was determined as described 

previously [30,43]. In brief, H292 cells were incubated for 1 h at 37°C with 1x10
8
 CFU of an 

overnight bacterial culture on blood agar. Bacterial adherence to H292 cells was quantified 

by light microscopy and the average number of bacteria per 100 epithelial cells was 

recorded. Two independent experiments were performed in duplicate. For cytokine 

production, H292 cells were washed five times after 1 h of bacterial infection (as described 
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above) with prewarmed PBS, and fresh RPMI medium was added. After 23 h incubation at 

37°C, supernatants were collected and stored at –20°C until determination of cytokine 

levels. RPMI medium alone was used as a control. Interleukin (IL)–6 and IL–8 were 

determined by enzyme–linked immunosorbent assays (ELISA, Biosource, CA, USA) 

according to the manufacturer’s instructions. The lower limit of detection was 15 pg/ml 

for IL–6 and 7 pg/ml for IL–8. Three independent experiments were performed. 

 

Murine thigh infection model 

The survival of Acinetobacter strains in a mouse thigh muscle infection model was 

assessed as previously described [44], with modifications. Female Swiss mice (Charles 

River Nederland, Maastricht, The Netherlands) were made transiently neutropenic by 

intraperitoneal injection with cyclophosphamide (150 mg/kg body weight in 150 µl) on day 

4 and 3 prior to infection. Approximately 1x10
4
 CFU (in 50 µl of saline) of a mid–

logarithmic culture was injected in the right thigh muscle (three animals per strain). At 48 

h after infection, mice were sacrificed and infected thigh muscles were removed and 

homogenized in 1 ml PBS and viable counts were performed. The animal studies were 

approved by the Leiden Experimental Animal Committee (Permit number: 10038) and 

were performed in compliance with Dutch laws related to the conduct of animal 

experiments. All efforts were undertaken to minimize suffering. 

 

Statistical analysis 

All data were analysed for statistical significance using the Wilcoxon rank sum test. P 

values of ≤ 0.05 were considered statistically significant. 

 

 

Results 
 

Genome characteristics of the Acinetobacter species 

As shown in Table 1, 14 genomes were included in this analysis, covering nine different 

Acinetobacter species (species names will be used for non–baumannii species 

throughout). Eight strains were sequenced as part of this study with mean coverage of 22–

fold. Overall, the species that make up the A. calcoaceticus – A. baumannii complex had 

the largest genomes, with A. radioresistens having the smallest (3.16 Mb). Genome sizes 

of strains within the A. baumannii species varied by up to 289 Kb. The number of genes 

corresponded to genome size, ranging from 3,690 in A. baumannii to 2,874 in A. 

radioresistens. Phylogenetic analysis showed that the species that make up the A. 

calcoaceticus – A. baumannii complex were most closely related, with A. nosocomialis 
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being closest to A. baumannii, followed by A. pittii and A. calcoaceticus (Figure S1). The 

other species formed distinct phylogenetic branches (Figure S1). 

 

Analysis of the A. baumannii core genome 

To understand the genetic core of A. baumannii, we first analysed the orthologous genes 

found in all six A. baumannii genomes. This analysis yielded 2,800 genes, indicating that 

the accessory genome varied between 658 – 1,053 genes depending on the strain. A 

distribution of the A. baumannii core genome based on functional gene categories is 

shown in Figure 1. Apart from genes of general or unknown function, genes related to 

molecule transport and metabolism were most abundant (35%), including amino acid 

(11%), carbohydrate (5%), lipid (5%), nucleotide (3%), coenzyme (4%) and inorganic ion 

(7%) processing. 

        

 
 

Figure S1. Phylogenetic analysis of the eight sequenced strains of Acinetobacter species from this 

study.  

 

Interestingly, despite Acinetobacter deriving its name from akineto meaning non–motile, 

A. baumannii has several core cell motility genes. These include a type IV pilus apparatus 

and pilus assembly genes (pilB, pilW, pilL, pilJ, pilI, pilY1, pilQ, pilO, pilN, pilM), fimbrial 

biogenesis genes (fimT, pilZ), and twitching motility genes (pilU, pilT, which are important 

for pilus retraction). In fact, it has recently been shown that A. baumannii is motile under 

certain conditions [14,15], and this may play an important role in its ability to colonize and 

spread on surfaces, and to form biofilms [16]. We also identified 24 genes that appear to 

determine A. baumannii cell shape and division, including the cell division genes (ftsA, 

ftsZ, ftsW, ftsK), the rod shape determining genes (mreB, rodA) and the min operon (minE, 

minD, minC), which controls the position in which FtsZ assembles in the center of the cell. 
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Given that cell division biosynthetic machinery has been targeted in other successful 

antibacterial therapies, the identification of these genes is promising [17].           

 

 
 

Figure 1. A. baumannii core genome. Functional distribution of the genes found in all six A. baumannii 

strains included in this study.   

 

Comparison of A. baumannii genome with other Acinetobacter species 

To begin to decipher the genetic attributes that may help explain why some Acinetobacter 

species are clinically more significant than others, we assessed for genes observed 

uniquely in pathogenic species of Acinetobacter (the six A. baumannii genomes, and the A. 

pittii and A. nosocomialis genome). This analysis identified 51 genes, including 12 operons, 

shared among these eight genomes that were not present in the other species (Table S1). 

Importantly, one of these operons was the csu operon, which includes six genes, and 

codes for proteins involved in a chaperone – usher pili assembly system [18]. This operon 

appears important for pili assembly, adherence to abiotic surfaces and biofilm formation 

[18]. The presence of this operon only in pathogenic species of Acinetobacter highlights its 

potential role in determining the clinical success of these species. The predominant 

functional categorization of the remaining genes was in molecule transport and 

metabolism, and transcription (Table S1).  

 

Comparison of specific strains of the A. calcoaceticus – A. baumannii complex       

The data presented thus far provide some evidence that a small number of core genes 

may partly explain the clinical success of certain Acinetobacter species; however the 

number of genes that differed was few, suggesting that additional genetic characteristics 

that distinguish pathogenic from less pathogenic strains may be found among the 

accessory genomes.                     
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Table S1. Unique genes found in pathogenic species of Acinetobacter (A. baumannii [six strains], A. pittii 

and A. nosocomialis) and not in other less or non-pathogenic species 

A. pittii A. nosocomialis

ACIB1v1_040004 transcriptional regulator, TetR family Transcription No 89.6 90.1

ACIB1v1_050001 CsuA/B Cell motility 99.4 99.4

ACIB1v1_050002 CsuA Cell motility 84.1 85.2

ACIB1v1_050003 CsuB Cell motility Yes 89.5 87.4

ACIB1v1_050004 CsuC Cell motility 96.3 94.5

ACIB1v1_050005 CsuD Cell motility 95.8 95.3

ACIB1v1_050006 CsuE Cell motility 95.7 99.3

ACIB1v1_050012 transcriptional regulator, TetR family Transcription No 72.2 72.2

ACIB1v1_050037 acetyltransferase, gnat family General function prediction only No 96.0 99.3

ACIB1v1_090011 transcriptional regulator, AsnC family Transcription No 95.3 97.3

ACIB1v1_090012 kynureninase Amino acid transport and metabolism 90.6 95.9

ACIB1v1_090013 proline-specific permease ProY Amino acid transport and metabolism Yes 90.2 96.8

ACIB1v1_090014 conserved hypothetical protein Lipid transport and metabolism 72.0 83.8

ACIB1v1_090017 conserved hypothetical protein Function unknown No 79.6 89.0

ACIB1v1_150007 transcriptional regulator, GntR family Transcription Yes 99.2 100.0

ACIB1v1_150008 dihydroxy-acid dehydratase Carbohydrate transport and metabolism 99.5 99.5

ACIB1v1_150009 MFS family permease General function prediction only Yes 99.8 99.0

ACIB1v1_150010 hypothetical protein Function unknown 97.3 99.1

ACIB1v1_150012 conserved hypothetical protein No COG annotation No 92.9 97.7

ACIB1v1_150014 oxidoreductase FMN-binding Energy production and conversion Yes 97.8 97.6

ACIB1v1_150015 saccharopine dehydrogenase Function unknown 95.8 96.6

ACIB1v1_150017 transcriptional regulator, MerR family Transcription No 91.3 97.8

ACIB1v1_150046 transcriptional regulator, LysR family Transcription No 97.1 97.7

ACIB1v1_150047 hypothetical protein Function unknown Yes 97.9 95.1

ACIB1v1_150048 hypothetical protein Function unknown 97.4 96.0

ACIB1v1_150094 putative acid phosphatase General function prediction only Yes 97.8 97.2

ACIB1v1_150095 conserved hypothetical protein No COG annotation 93.0 94.4

ACIB1v1_230050 transcriptional regulator, LysR family Transcription No 96.7 95.8

ACIB1v1_230051 3-oxoacyl-[acyl-carrier-protein] reductase Lipid transport and metabolism No 95.1 95.1

ACIB1v1_240001 conserved hypothetical protein General function prediction only No 87.5 93.6

ACIB1v1_240049 FAD dependent oxidoreductase Amino acid transport and metabolism Yes 94.8 92.5

ACIB1v1_240050 ABC transporter, permease Inorganic ion transport and metabolism 97.7 98.8

ACIB1v1_240051 ABC transporter, ATP binding protein Amino acid transport and metabolism 95.5 97.6

ACIB1v1_240052 2-aminoethylphosphonate ABC transport Inorganic ion transport and metabolism Yes 98.3 98.8

system, 1-amino-ethylphosphonate-binding

protein component

ACIB1v1_240053 transcriptional regulator, GntR family Transcription 97.9 99.6

ACIB1v1_240056 acyl carrier protein phosphodiesterase Lipid transport and metabolism No 96.0 97.5

ACIB1v1_240122 cyanate transport protein CynX Inorganic ion transport and metabolism Yes 78.8 90.0

ACIB1v1_240123 guanine deaminase Nucleotide transport and metabolism 80.6 91.3

ACIB1v1_240159 glutathione-dependent formaldehyde Amino acid transport and metabolism No 97.7 96.9

dehydrogenase

ACIB1v1_240186 4-hydroxybenzoate transporter Amino acid transport and metabolism No 94.5 94.5

ACIB1v1_250041 cis,cis-muconate transport protein Amino acid transport and metabolism No 98.9 98.6

ACIB1v1_250167 conserved hypothetical protein No COG annotation No 96.2 94.2

ACIB1v1_250168 transcriptional regulator, LysR family Transcription No 98.2 98.6

ACIB1v1_250169 tartrate dehydrogenase Energy production and conversion Yes 98.9 98.7

ACIB1v1_250170 betaine/choline/glycine transport protein Cell wall/membrane/envelope biogenesis 99.3 99.5

ACIB1v1_250174 putative dioxygenase subunit beta Energy production and conversion 95.6 97.3

ACIB1v1_430020 transcriptional regulator, TetR family Transcription No 93.1 93.6

ACIB1v1_460007 Peptidase M20D, amidohydrolase General function prediction only No 93.2 92.1

ACIB1v1_490004 TonB-dependent receptor Inorganic ion transport and metabolism Yes 96.2 96.8

ACIB1v1_490005 aminopeptidase N Amino acid transport and metabolism 97.6 97.4

ACIB1v1_820017 haloacid dehydrogenase General function prediction only No 93.9 90.6

Homologues (nt ID %)
ATCC19606 Description COG Description Operon

 

To interrogate the accessory genome in more detail, we analysed representative strains 

from the four species that make up the A. calcoaceticus – A. baumannii complex (Table 1). 

A distribution of genes is shown in Figure 2A. A total of 2505 genes were common to all 

four species, with the greatest number of unique genes observed in A. baumannii ATCC 

19606
T
. Based on category of gene (COG) functional classification, the distribution of 

genes unique to A. baumannii ATCC 19606
T
 compared to each one of the other three 
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strains was similar, with the greatest number of unique genes having a role in amino acid, 

carbohydrate and lipid transport and metabolism, and transcription (Figure 2B). 

 
 

Figure 2. Distribution of genes in individual strains of the A. calcoaceticus – A. baumannii complex. (A) 

Venn diagram showing the number of overlapping genes between the four strains that make up the A. 

calcoaceticus – A. baumannii complex. (B) The number of genes present in A. baumannii ATCC 19606
T
 

but absent in each of A. calcoaceticus, A. pittii and A. nosocomialis. 

 

 

Of most interest was the comparison between A. baumannii ATCC 19606
T
 and A. 

calcoaceticus. This comparison identified 759 unique genes in A. baumannii ATCC 19606
T
. 

Of these, only 169 were found in the other five A. baumannii genomes analysed in this 

study, indicating that the majority of the unique genes (78%) were part of the accessory 

genome of A. baumannii ATCC 19606
T
. Of the 759 unique genes, 333 had a COG 

classification, and they were significantly overrepresented in several functions necessary 

for basic bacterial growth and survival, including transcription (56 genes), DNA replication, 

recombination, and repair (33 genes), amino acid, inorganic ion and carbohydrate 
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transport and metabolism (66 genes), and cell envelope biogenesis and outer membrane 

function (19 genes). 

Of the 333 genes, there were 69 unique operons that were enriched in virulence–

related genes, including those involved in siderophore transport and biosynthesis, LPS 

biosynthesis, pili and biofilm formation, Curli fimbriae assembly, and bacterial defence 

mechanisms (Table 2). Several operons responsible for iron handling were identified, 

including the acinetobactin chromosomal locus (operons 36 – 39, Table 2), encoding a key 

Acinetobacter siderophore [19,20]. The genetic organisation of this locus and homologues 

in A. pittii, A. nosocomialis and A. calcoaceticus are shown in Figure 3A. A. calcoaceticus 

and A. nosocomialis lacked the full complement of genes that make this locus (Table 2 and 

Figure 3A). We also identified a more recently described siderophore operon (operon 17, 

Table 2 and Figure 3B) [14], made up of eight genes, with A. baumannii ATCC 19606
T
 being 

the only strain with the full complement of genes, and A. nosocomialis and A. 

calcoaceticus being deficient in most of them.  

 

Table 2. Select operons with putative virulence function found in A. baumannii ATCC 19606
T 

and not in  

A. calcoaceticus 

A. baumannii

ATCC 19606
T
 ORFs

1
A . pittii A. nosocomialis

2 Pili assembly and biofilm form. csuAB/ABCDE ACIB1v1_50001–6 91.8 ± 7.1 91.8 ± 7.1

17 Siderophore transp. bios. cirA , menG , iucA/C, araJ , rhbE/C ACIB1v1_160094–101
3

46.2 ± 17.9 31.1 ± 3.7

29 Defense mechanism cas1, csy1, csy2, csy3, csy4 ACIB1v1_260071–75 – –

36 Siderophore transp. bios. bauD , bauC , bauE , bauB and bauA ACIB1v1_480066–70 97.8 ± 1.0 –

37 Siderophore transp. bios. basC and basD ACIB1v1_480071–72 97.4 ± 1.0 –

38 Siderophore transp. bios. basE, basF, basG ACIB1v1_480073–75 97.6 ± 0.3 47.8 ± 0.4

39 Siderophore transp. bios. barA, barB, basH, basI, basJ ACIB1v1_480076–80 95.1 ± 6.3 32.8 ± 0.8

40 Siderophore transp. bios. tonB , PEPN ACIB1v1_490004–5 97.0 ± 0.3 97.5 ± 0.3

46 Cell motility and secretion pilA ACIB1v1_560044–45 60.2 ± 14.5 73.3 ± 0.3

47 LPS biosynthesis lpsC and lpsE ACIB1v1_600015–16
4

33.9 68.2 ± 29.8

50 Curli fimbriae assembly csgG ACIB1v1_700078–80 94.8 ± 1.1 –

56 LPS biosynthesis wzx , degT , wbbJ , mviM and vipA ACIB1v1_740018–22
6

42.6 ± 23.8 48.3 ± 17.2

Homologues average similarity

Operon ID Function Genes

 (ID% ± SD)
2

 
Bios., Biosynthesis; Form., Formation; ID, Identity; SD, Standard Deviation; Transp., Transport. 
1
Based on Microbial Genome Annotation Platform (www.cns.fr/agc/mage) [50]. 

2
Expressed as the average 

identity at the nucleotide level ± standard deviation. 
3
Only three, two and two genes (out of eight) are 

found in A. pittii, A. nosocomialis and A. calcoaceticus, respectively. The homologues identified exhibited 

low similarity. 
4
Both genes belong to an LPS operon that spans from ORF ACIB1v1_600009 to 16, and 

which is only partially present within A. calcoaceticus (three of eight genes are absent). 
5
lpsC is absent 

from A. pittii genome. 
6
Only vipA is present in A. calcoaceticus and exhibited moderate similarity. The 

operon is poorly conserved and partially present also in A. pittii and A. nosocomialis. 

 

Unique genes related to bacterial defence mechanisms were also observed in A. 

baumannii ATCC 19606
T
, including those coding for ABC transporters, and CRISPR – (Cas) 

and phage–related proteins. Clustered regularly interspaced short palindromic repeats 

(CRISPRs) are recently described adaptive bacterial immune mechanisms that protect 

bacteria from invading foreign genetic elements such as bacteriophages [21,22]. Such 

systems are likely advantageous in hostile environments, and when combined with other 
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phage resistance mechanisms, may provide a survival benefit to the bacterial host [21]. 

The A. baumannii ATCC 19606
T
 CRISPR system includes cas1 and cas3; however we could 

not locate cas2, which is thought to be required with cas1 to form a functional CRISPR 

system [22]. The CRISPR operon was not found in A. calcoaceticus, A. nosocomialis or A. 

pittii. 

 

 

 

Figure 3. Genetic organisation and conservation of the siderophore clusters found in A. baumannii 

ATCC 19606
T
 and not in A. calcoaceticus. (A) Siderophore cluster 1 (operons 36 – 39) is known as the 

acinetobactin chromosomal cluster, and (B) siderophore cluster 2 (operon 17) (See Table 2 for details 

about the operons). The presence of homologues for each gene in A. pittii, A. nosocomialis, and A. 

calcoaceticus is shown.  

 

 

Comparison of the metabolic versatility of specific strains of the A. calcoaceticus – A. 

baumannii complex  

Given the predominance of metabolism genes differentiating pathogenic and less 

pathogenic strains, we analyzed the metabolic profile of the four species of the A. 

calcoaceticus – A. baumannii complex using phenotype microarrays. Of the 1920 

conditions tested, the four species shared 1356 metabolic responses (70.6%), of which 795 

compounds or conditions could be utilized by all the species and 561 by none of them. A 

summary of the entire metabolic profile of the four species is shown in Figure 4. A. 

baumannii ATCC 19606
T
 appeared to utilize peptide nitrogen sources (PM 6–8) more 

effectively and to be more tolerant to pH stress (PM 10) than the other three species. A. 

baumannii ATCC 19606
T
 and A. pittii had a reduced ability to utilise most of the 

phosphorus and sulfur sources (PM 4) (Figure 4).  

We then focused on the most clinically disparate of the species, and compared A. 

baumannii ATCC 19606
T
 with A. calcoaceticus in more detail. In 195 conditions, A. 

baumannii ATCC 19606
T
 was significantly more metabolically active than A. calcoaceticus. 

These conditions comprised 10 carbon sources, 105 nitrogen sources (of which 98 were 

di– and tri–peptides) and 80 stress conditions, of which 26 related to osmotic and pH 

stress and 54 related to the presence of antimicrobials and other cytotoxic compounds. 
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Figure 4. Metabolic diversity of specific strains of the A. calcoaceticus – A. baumannii complex. 

Phenotype Microarray (PM) comparative results showing the number of compounds used (green) or 

not used (red) by A. baumannii ATCC 19606
T
 [A], A. nosocomialis [B], A. pittii [C] and A. calcoaceticus 

[D]. The external circle and PM number represent the Biolog plate number.  

 

 

Apart from the likely survival advantage inferred by the greater ability of A. baumannii 

ATCC 19606
T
 to metabolise in the presence of osmotic, pH and antimicrobial exposure, 

one of the carbon sources utilized by this strain was D–glucarate. D–glucarate is found in 

the human body and has been shown to be a carbon source utilized by a range of gram–

negative bacteria [23,24]. D–glucarate catabolism generates α–ketoglutarate, which 

enhances the citric acid cycle. Recently, over–expression of the citric acid cycle was shown 

to occur in an A. baumannii strain with increased virulence in the presence of ethanol [25]. 

 

Virulence differences between strains of the A. calcoaceticus – A. baumannii complex 

Given the differences in the number of operons with putative virulence function that were 

observed between the four species of the A. calcoaceticus – A. baumannii complex, we 

performed a range of in vitro and in vivo virulence studies to characterise further the 

functional significance of their genetic differences. Given the predilection of A. baumannii 

to colonise or infect the respiratory tract, we first analysed the interaction of the four 

species with human bronchial epithelial cells. Cell adherence and pro–inflammatory 

cytokine response (IL–8) was most pronounced with A. pittii (P < 0.05) (Figure 5, A, B and 

C). All strains induced similar levels of IL–6 in these cells.  
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Figure 5. Virulence attributes of individual strains belonging to the A. calcoaceticus – A. baumannii 

complex. (A) Adherence of A. baumannii ATCC 19606
T
, A. pittii, A. nosocomialis and A. calcoaceticus to 

human bronchial epithelial cells after 1 h. Results are expressed as mean number of bacteria per 100 

epithelial cells ± standard deviation (SD) of two independent experiments performed in duplicate. (B) 

Levels of IL–6 and (C) IL–8 in the culture medium of human bronchial epithelial cells after 24 hour 

stimulation with specific strains of the A. calcoaceticus – A. baumannii complex. Results are expressed 

as mean levels of IL–6 and IL–8 (in ng/ml) ± SD of three independent experiments. Asterisk signifies 

statistical significance (P < 0.05). (D) Persistence and biofilm formation of A. baumannii ATCC 19606
T
 

(squares), A. pittii (upward triangles), A. nosocomialis (downward triangles) and A. calcoaceticus 

(diamonds) on three–dimensional human skin constructs. Results are expressed as mean CFU per skin 

construct ± SD of three independent experiments. Dotted line represents the lower limit of detection. 

(E) Alcian–blue PAS staining shows biofilm formation (black arrow) on human skin constructs by A. 

baumannii ATCC 19606
T
 but not by (F) A. calcoaceticus. Scale bar is equivalent to 20 µm. (G) 

Approximately 1x10
4
 CFU were injected in the thigh muscles of neutropenic mice and the number of 

viable bacteria was determined after 48 h. Results are expressed as mean number of bacteria (in 

CFU/muscle) ± SD from three animals. Dotted line represents lower limit of detection. Asterisk 

signifies statistical significance (P < 0.05). 
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Given the likely importance of biofilm formation to the success of Acinetobacter in 

hospitals, we next tested the four species in a unique biofilm assay. Thus far, the 

correlation between biofilm formation on abiotic surfaces and clinical significance has 

been poor [26]. Therefore, we used a novel assay that may predict the ability of 

Acinetobacter to colonise and form a biofilm on human skin. Using a three–dimensional 

human skin construct [51], we observed that A. baumannii ATCC 19606
T
, A. pittii and A. 

nosocomialis were able to multiply rapidly and persist on human skin, whereas A. 

calcoaceticus grew to a significantly lower density (Figure 5D). In addition, biofilms of the 

former three species were visible on the stratum corneum, whereas no such bacterial 

structures were seen for A. calcoaceticus (Figure 5, E and F). Finally, we assessed the 

survival of the four strains in a neutropenic mouse thigh muscle infection model. A. 

baumannii ATCC 19606
T
 and A. pittii were able to survive in the thigh muscle at least up to 

48 h, whereas A. calcoaceticus and A. nosocomialis were eradicated (Figure 5G).  

 

 

Discussion 
 

This study provides a combined genomic, phenomic and virulence assessment of a range 

of Acinetobacter species that have been variably associated with humans. From a genomic 

analysis of nine different Acinetobacter species, we identified a small number of genes 

unique to pathogenic species. The majority of these genes are predicted to be important 

for molecule transport and metabolism but also included the putative virulence csu 

operon. Investigating the accessory genome of individual strains of the four species of the 

A. calcoaceticus – A. baumannii complex, we found a range of unique operons with 

putative functions relating to host survival and virulence in A. baumannii ATCC 19606
T
 but 

not in A. calcoaceticus. A. pittii appeared most similar to A. baumannii ATCC 19606
T
, 

whereas A. nosocomialis lacked several of these important operons, particularly the full 

repertoire of genes of the acinetobactin chromosomal locus. Global metabolomic studies 

supported the genomic analysis in that A. baumannii ATCC 19606
T
 was able to utilise more 

carbon and nitrogen sources, and was more tolerant to a range of cellular stresses than A. 

calcoaceticus. Moreover, the pathogenic species were able to multiply and form biofilms 

on human skin significantly more than A. calcoaceticus. Only A. baumannii and A. pittii 

were able to survive in a mammalian thigh infection model.       

As a consequence of improved laboratory speciation, it is becoming apparent that 

non–baumannii species, particularly A. nosocomialis and A. pittii, are clinically significant 

human pathogens. For example, in a recent study from Norway, A. nosocomialis was the 

most common species (47%) isolated from blood cultures over a three–year period, 
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followed by A. pittii (20%) [27]. With regard to their clinical impact, a more contemporary 

study has  shown that relative to A. nosocomialis, bacteremia with A. baumannii was an 

independent predictor of mortality [5]. Interestingly, and consistent with our study 

findings, there was no significant difference between A. baumannii and A. pittii, however 

the number of patients in the A. pittii group was small [5]. Genetically and metabolically, 

we showed that A. pittii appeared similar to A. baumannii, and they also behaved similarly 

in the mammalian infection model. A. nosocomialis lacked several of the virulence related 

operons, particularly the acinetobactin siderophore cluster, and its metabolome was more 

closely aligned to A. calcoaceticus, both of which may explain its failure to survive in the 

murine model and its reduced virulence in clinical studies [5].  

Within mammalian hosts, free iron is often a scarce resource and for pathogenic 

organisms to survive in vivo they often utilize a range of iron scavenging systems. Such 

systems have been analysed across different A. baumannii strains [14,29] however this is 

the first analysis, to our knowledge, of such genes in non–baumannii species. In addition 

to the acinetobactin chromosomal locus, we observed another siderophore cluster and a 

putative iron uptake receptor in A. baumannii ATCC 19606
T
 that was not present in A. 

calcoaceticus. This second cluster (operon 17 in Table 2) is a recently described 

siderophore cluster made up of eight genes that is well conserved across A. baumannii 

strains [14]. The full repertoire of genes from this cluster was not found in A. pittii, A. 

nosocomialis, and A. calcoaceticus, and the few homologues identified exhibited low 

similarity (Table 2). Such genetic differences between Acinetobacter species in key 

virulence attributes may help explain why some species have greater clinical impact. 

Apart from genes involved in metabolism and transcription, we identified the csu 

operon as an operon found in pathogenic species of Acinetobacter (six A. baumannii 

strains, A. pittii and A. nosocomialis) but not in non–pathogenic species. Loss of function 

of this operon leads to a lack of pili–like structures on the surface of A. baumannii and to 

loss of cell attachment and biofilms on abiotic surfaces [18]. Interestingly, this operon was 

not shown to be important for attachment to and cytokine production by human 

bronchial epithelial cells [30]. We hypothesize that this operon may aid in Acinetobacter 

attachment and colonization of plastic medical devices such as ventilator tubing and 

catheters, with a subsequent increased risk of invasive infection. The definitive role of this 

operon in mammalian virulence requires further evaluation.    

  We observed a diverse repertoire of core metabolic genes in A. baumannii, which 

is likely to be important for its ability to survive in vivo, as well as in unique ecological 

niches of healthcare institutions. To assess the global metabolic capabilities of the 

Acinetobacter species, we used phenotype microarrays, which enabled us to assess nearly 

2000 metabolic and toxic compound conditions. Overall, A. baumannii ATCC 19606
T
 was 
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able to utilize nitrogen sources more effectively and was more tolerant to pH stress than 

A. nosocomialis, A. pittii and A. calcoaceticus. The differences were more marked when A. 

baumannii ATCC 19606
T
 was compared to A. calcoaceticus. Interestingly, A. baumannii 

and A. pittii were unable to utilize most of the phosphorus sources despite both strains 

having the necessary genetic composition for phosphate metabolism. Several studies have 

highlighted the key role of the Pho regulon in phosphate management, virulence and 

stress response [31]. Whether the inability of A. baumannii and A. pittii to utilize 

phosphorus is linked to expression of the Pho regulon remains a question that needs 

further evaluation. 

Taken together, these data provide a systems biology approach to understanding 

the potential differences between important species of the Acinetobacter genus. We 

provide genetic and metabolic insights into why some species may be more clinically 

important than others, and also highlight the functional significance of these differences in 

various virulence models. A limitation of our study is that we only analysed one strain for 

each of the non-baumannii species, and our results need confirmation using a larger set of 

strains. Furthermore, confirmation of our findings using targeted gene deletion and 

complementation is required to define the significance and role of the unique operons 

found in pathogenic versus non-pathogenic species. Overall, these data provide useful 

insights to the elucidation of differences in clinical relevance among Acinetobacter species.  
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Abstract 

 

Acinetobacter baumannii is an important nosocomial pathogen responsible for 

colonization and infection of critically ill patients. The effect of the bacterium on the host 

follows from the interplay between virulence attributes of the micro-organism and the 

condition of the host. As some virulence attributes can be delivered to the host by 

membrane vesicles, this study aimed at characterization of the formation and morphology 

of membrane vesicles formed by A. baumannii ATCC19606
T
 in vitro using cryo-electron 

tomography. Results revealed that different membrane vesicles were formed by A. 

baumannii during the various stages of its life cycle: (i) small outer membrane vesicles 

(OMVs; ±30 nm in diameter) formed at distal ends in the log-phase; (ii) larger OMVs (200-

500 nm) formed at septa during cell division; (iii) inner and outer membrane vesicles 

(IOMVs; 100-300 nm) formed in the stationary phase, and (iv) OMVs with a rough surface 

formed in the late stationary phase. Exposure of A. baumannii to a sub-inhibitory 

concentration of the antibiotic ceftazidime resulted in filamentous forms that produced 

large numbers of OMVs. We argue that the different types of membrane vesicles formed 

during the various stages of the life cycle of A. baumannii play distinct roles in infection.  
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Introduction 

 

Acinetobacter baumannii is a Gram-negative bacterium that can colonize and infect 

severely ill, hospitalized patients. Multidrug-resistant strains of A. baumannii have the 

propensity to spread among patients and numerous endemic and epidemic episodes 

caused by this species have been reported [13,32]. Although colonization is far more 

common than infection, severe A. baumannii-associated infections, including ventilator-

associated pneumonia and catheter-related bloodstream infections, do occur [32]. Several 

virulence attributes are thought to play a role in A. baumannii infections, including its 

ability to adhere to and invade host cells [7,10,11,25], form a biofilm, induce host cell 

death [6], resist the killing actions of serum [20] and produce siderophores [15].  

It has been reported that virulence factors of Gram-negative bacteria can be 

delivered to host cells by outer membrane vesicles (OMVs) [18,22,23]. OMVs are 

nanovesicles composed of outer membrane and periplasm components, such as 

phospholipids, proteins, and lipopolysaccharides (LPS) [1,26]. However, OMVs produced 

by a clinical A. baumannii isolate were found to contain not only proteins from the outer 

membrane, including the potent cytotoxic outer membrane protein A (OmpA), and the 

periplasm, but also components from the inner membrane and cytoplasm [23]. OmpA 

present on OMVs of A. baumannii can contribute directly to host cell death [18], indicating 

that OMVs from A. baumannii are an important vehicle to deliver bacterial effector 

molecules to host cells. Moreover, it has been suggested that A. baumannii release OMVs 

as a mechanism of horizontal gene transfer whereby carbapenem resistance genes can be 

delivered to surrounding A. baumannii isolates [34]. It is of note that these studies on the 

composition and function of OMVs of A. baumannii all used extensive purification 

methods for the isolation of OMVs, including (ultra)-filtration and centrifugation. A 

disadvantage of this isolation procedure could be the presence of inner membrane and 

cytoplasmic proteins in OMVs resulting from random capture by membrane fragments. 

Thus, these preparations may not represent the naturally occurring OMVs [22]. The aim of 

the present study was to characterize the formation and morphology of naturally formed 

membrane vesicles by A. baumannii ATCC19606
T
 during the various stages of its life cycle 

using cryo electron tomography. 
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Material and Methods 
 

Bacterial strain and culture conditions 

A. baumannii ATCC19606
T
 was used in the present study. Bacteria were preserved for 

prolonged periods in nutrient broth supplemented with 20% (v/v) glycerol at -80°C. For 

experiments, inocula from fresh overnight cultures on sheep blood agar plates were 

grown overnight in Luria Bertani (LB) medium at 37°C under shaking. One hundred 

microliters of the overnight culture were added to 15 ml of prewarmed LB medium in an 

Erlenmeyer flask and incubated at 37°C under vigorous shaking. Where indicated, bacteria 

were cultured for 2.5 h at 37°C under vigorous shaking in the presence of 4 mg/L 

ceftazidime (Sigma-Aldrich, Zwijndrecht, The Netherlands), i.e. below the MIC level of 16 

mg/L of A. baumannii ATCC19606
T 

[8]. 

 

Isolation of vesicles 

Bacterial suspensions were cultured for 1, 2.5, 6, 20, and 48 h in LB medium at 37°C. 

Thereafter the bacteria were centrifuged for 10 min at 3,000 g and the supernatants were 

centrifuged for 1 h at 17,000 g to remove remaining cells and debris. Next, the pellets 

were resuspended in 1 to 2 ml phosphate buffered saline (PBS; pH 7.4) and these 

preparations were used for analysis by cryo electron microscopy.  

 

Cryo electron microscopy 

Cryo sample preparation 

A few microliters of vesicle preparation were applied to glow-discharged lacey carbon EM 

grids. For cryo electron tomography, 5 or 10 nm protein A - gold particles were added as 

fiducial markers to the sample. Excess medium was automatically blotted onto Whatman 

no. 4 filter paper for 1 to 2 sec in a controlled environment operated at room temperature 

and 100% humidity. Subsequently, the specimen was vitrified by plunging into liquid 

ethane in a Vitrobot Mark IV (FEI Company, Eindhoven, The Netherlands). Samples were 

stored in liquid nitrogen until use. Grids were mounted in a Gatan 626 cryo holder (Gatan, 

Pleasanton, Germany) for cryo electron microscopy imaging. 

 

Cryo electron microscopy 

Cryo electron microscopy (cryo EM) was performed on several microscopes. For large 

scale automated data collection we used custom written software (unpublished) that was 

able to automatically scan and image large areas. These images were recorded on a Tecnai 

12 electron microscope with a LaB6 source and operated at 120 keV using a 4k x 4k Eagle 

camera (FEI Company). Cryo electron tomography (cryo ET) was performed on a Tecnai 20 
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FEG operated at 200 keV and a Tecnai G2 Polara operated at 300 keV (FEI Company). 

Images were recorded using Explore 3D software on a 2k x 2k camera mounted behind a 

GIF energy filter (Gatan) operated at a slit width of 20 eV. Cryo ETs of membrane vesicles 

were recorded with 2° tilt steps between -70° to +70° at a defocus of -5 micron, while 

tomograms of whole bacteria were recorded between -60° to +60° at a defocus between -

6 and -8 micron and a magnification between 13,500 and 19,000 corresponding with a 

pixel size of 1.02 resp. 0.69 nm.  

 

Image analysis and visualization 

Tomographic tilt series were processed using IMOD version 3.9 [21]. Projection images 

were roughly aligned by cross-correlation and fine alignment was done using fiducial 

markers. The tomograms were reconstructed using weighted back-projection. Cryo 

electron tomograms were denoised using non-linear anisotropic diffusion. The number of 

OMVs and their size were measured using ImageJ [33]. Image segmentation and 3D 

surface rendering was performed using AMIRA version 5.2 (Visage Imaging, Berlin, 

Germany). 

 

 

Results  
 

Acinetobacter morphology 

We investigated the general morphology of logarithmic phase A. baumannii ATCC19606
T
 

using cryo EM/ET (Figure 1). The bacteria did not form aggregates and readily attached to 

the carbon surface of the electron microscopy grid (Figure 1A). The size of (visibly 

classified) non-dividing bacteria was 1.54 ± 0.07 micron in length and 0.77 ± 0.04 micron in 

width (n=9). The bacterial outer membrane was smooth (Figure 1B) with occasional small 

ripples, predominantly at the distal ends. The distance between the outer and inner 

membrane layers was 33.4 ± 1.48 nm and the peptidoglycan layer measured about 7 ± 0.7 

nm in width and was centered between the inner and outer membrane (Figure 1C, D).  

The bacterial cell surface was covered by a ~150 nm thick layer with very low 

contrast and a radial appearance (data not shown). Also long filaments, bacterial fimbriae 

or pili, were extending from the surface of the bacteria as was observed earlier by others 

(11). The bacteria regularly contained 50-500 nm dark inclusions (Figure 1B) possibly 

containing phosphor, magnesium and potassium [3,16]. 
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Figure 1. Cryo electron microscopic overview of A. baumannii ATCC19606
T
 morphology and 

membrane structure. A, A. baumannii ATCC19606
T
 (white arrow) on a lacey carbon support. B, 

Typical morphology of a single bacterium. In many cells a dark inclusion is present (white arrow). C, 

Detailed image of the bacterial membrane, showing the inner membrane (IM), the peptidoglycan 

layer (PG) and the outer membrane (OM). D, Density profile of the bacterial membrane showing the 

inner membrane, peptidoglycan and outer membrane. Scale bars are 2 μm (A) and 200 nm (B).  

 

 

Formation and structure of membrane vesicles during logarithmic phase 

In order to investigate whether the morphology and formation of membrane vesicles 

depends on the stage of the bacterial life cycle we imaged the vesicles from A. baumannii 

ATCC19606
T
 cultured for 1 and 2.5 h (early and mid-logarithmic phase), 6 h (late 

logarithmic phase), and 20 and 48 h (early and late stationary phase, respectively).  

Cryo ET recordings from 1 and 2.5 h cultured A. baumannii revealed the presence 

of ~30 nm vesicles budding off from the outer membrane (Figure 2B - G). These outer 

membrane vesicles (OMVs) were rarely observed possibly due to their small size and/or 

their limited occurrence. The formation of OMVs mainly occurred at the bacterial distal 

ends. At these sites we noted that the peptidoglycan layer was thickened and less dense, 

and the distance between inner and outer membrane was increased (Figure 2 A-F). In 

addition, large OMVs - typically 200-500 nm in diameter - were formed predominantly at 

sites of bacterial cell division (Figure 3A, B). Cryo ET on large OMVs showed that these 

vesicles lacked internal structures and displayed a smooth appearance (Figure 3C, D). 

These OMVs lacked fimbriae and the previously noted 150 nm thick low contrast layer 

that is present on the whole bacterium. Cryo electron microscopic images of OMV 
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formation indicated that these OMVs are connected to septa via a small outer membrane 

tubal structure (Figure 3B, E). 

 
Figure 2. Formation of small outer membrane vesicles during logarithmic growth phase. A, Cryo 

electron tomographic slice of A. baumannii. B-F, Tomographic slices through the tomogram from the 

area that is outlined in (A) with white arrows indicating budding of outer membrane vesicles (OMVs). 

G, Surface representation of part of the bacterium that is outlined in (A) with colored in blue the 

bacterial outer membrane and in red to purple the formed OMVs. H, Schematic representation of the 

formation of small OMVs. Scale bars are 200 nm (A) and 100 nm (B to F). 

 

 

 
 

Figure 3. Formation of large outer membrane vesicles during logarithmic growth phase. A, Outer 

membrane vesicles (OMVs; white arrow) are often formed at or in the vicinity of bacterial septa 

during cell division. B, Sometimes OMVs are attached to the cell wall of dividing bacteria via a long 

tube (white arrow). C, Slice from a cryo electron tomogram through a large OMV reveal a smooth 

surface. D, 3D reconstruction of the tomogram in C. E, Schematic representation of the various stages 

of formation of large OMV at septa. Scale bars are 300 nm (A and B) and 50 nm (C). 
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Formation and structure of membrane vesicles during stationary phase 

While in early (<6 h) bacterial cultures the number of vesicles was low, it dramatically 

increased during stationary phase (>6 h) cultures (Figure 4). The number of membrane 

vesicles did not linearly increase with the number of viable bacteria in the culture 

medium, suggesting that membrane vesicles are primarily formed from stationary bacteria 

and/or dying bacteria. 

 

 
 

Figure 4. A. baumannii growth curve and membrane vesicle formation. The growth curve of A. 

baumannii ATCC19606
T
 is plotted (round dots and black line) and the number of outer membrane 

vesicles (squares and dark grey striped line) and inner and outer membrane vesicles (triangles and 

light grey striped line) are plotted in time.  

 
 

Also from cryo EM it appeared that the majority of membrane vesicles was formed by 

cellular degradation. While logarithmic phase A. baumannii exhibited a very regular shape, 

stationary bacteria often displayed anomalous shapes, such as bulges of the outer 

membrane (Figure 5A - C). It seemed that these deviating bacterial shapes are 

intermediates of bacterial fragmentation (Figure 5C, D) possibly associated with the 

process of bacterial cell death. Vesicles pinched off from dying bacteria, resulted in the 

formation of vesicles containing both inner and outer membranes (IOMV; Figure 5C, E - G, 

left panel), as demonstrated by tomographic reconstruction (Figure 5E, F). Probably 

IOMVs contain all components that are present in the periplasmic space and the 

cytoplasm (e.g. DNA). Almost all IOMVs contained a 150 nm low dense layer and fimbriae 

on their surface. These were occasionally observed in OMVs in stationary phase bacteria. 

It appeared that in several IOMVs the inner membrane was dissociated or totally 

detached from the peptidoglycan layer, while this peptidoglycan layer remained 

associated with the outer membrane (compare Figure 5E and Figure 1C). Additionally, we 

observed intermediate structures with evidence of gradual breakdown of the inner 

membrane (Figure 5G) and secondary vesicle formation, i.e. membrane vesicle formation 

from IOMVs (Figure 5G, right panel). This breakdown of IOMVs and the formation of 
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membrane vesicles from IOMVs could explain the decrease in the relative numbers of 

IOMVs compared to the numbers of OMVs in later growth stages (Figure 4). The size of the 

membrane vesicles increased with the development from early logarithmic phase towards 

late stationary phase; OMVs being 72.3 ± 68.4 nm, while IOMVs were about 2 to 3 times 

larger (189 ± 115 nm).  

 

 
 

Figure 5. Formation of inner and outer membrane vesicles during late stationary phase. A, B, Bacteria 

deform and exhibit bulges that result in the (C) formation of membrane vesicles comprising both 

inner and outer membranes and peptidoglycan. D, Schematic representation of the stages of the 

formation of inner and outer membrane vesicles (IOMVs). E, Slice from a tomogram of an IOMV, with 

arrows showing the inner membrane (IM) and outer membrane (OM). F, 3D reconstruction of the 

tomogram in E, with in green the outer membrane and in purple the inner membrane. G, Once the 

IOMVs have been released from the bacteria they can have different shapes and the peptidoglycan 

and the inner membrane seem to degrade. Additionally, it appeared that MVs can arise from larger 

MVs. Scale bars are 300 nm (A, B and C) and 100 nm (E and G). 

 

 

In A. baumannii cultures occasionally bacterial remnants were observed. In the most 

extreme case the bacterial remnants were transformed into a branched arrangement 

from which at the end OMVs were released (Figure 6A, B). These OMVs (Figure 6C - E) 

were rather uniform in size measuring roughly 75 nm. Cryo ET showed that the surface of 
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these vesicles had a rough appearance, being covered with small and large densities, most 

probable representing membrane (-associated) proteins (Figure 6E). On almost all these 

OMVs a large (10 nm) density was present (Figure 6D, E) that, judged by its shape and size, 

could be hemolysin (37). Large numbers of these rough OMVs were observed in the 

vicinity of bacterial remnants and given the surface area of an A. baumannii and the 

average radius of the OMVs, between 100 and 400 vesicles could be derived from a single 

bacterium. 

 

 
 

Figure 6. Formation of outer membrane vesicles from late stationary phase bacteria. A, outer 

membrane vesicles (OMVs) were formed form bacteria in their late stationary phase. B, From 

branching membrane structures OMVs are released (area from large white box in A). C, These OMVs 

are round and have a rough surface (area from large white box in A). D, Cryo electron tomography 

showed that these OMVs have many small densities on their surface and regularly contain a large 

cylindrical density. E, 3D reconstruction of the tomogram from D more clearly shows the rough 

surface and the densities that are suggestive for proteins (blue), the lipid membrane (green) and the 

large cylindrical protein complex (purple). Scale bars are 1 μm (A), 200 nm (B) and 50 nm (C) and 25 

nm (D). 

 

 

Effect of ceftazidime on vesicle formation 

A sub-inhibitory concentration of the cephalosporin ceftazidime, which interferes with 

peptidoglycan synthesis, was added to A. baumannii cultures to investigate the effects of 

this antibiotic on the formation of OMVs. As expected in 2.5 h exposed cultures many 

filaments had been formed; in most extreme cases reaching lengths up to several tens of 

microns (Figure 7A). Membrane ruffling was observed along the whole outer membrane 

of ceftazidime-exposed bacteria instead of being localized solely to the distal ends of 

control bacteria. Additionally, deformations of the peptidoglycan layer and the outer 

membrane of antibiotic-exposed bacteria were observed frequently. In the presence of 

ceftazidime, membrane vesicle formation was more abundant than in the absence of the 

antibiotic. Especially at sites of potential septum formation (Figure 7B, C) and at distal 

ends (Figure 7D - F) membrane vesicle formation was more frequent than in control A. 
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baumannii. Cryo ET showed that these membrane vesicles often contained peptidoglycan 

at the inside and fimbriae and the low contrast layer on the outer surface (Figure 3G, H).  

 

 
 

Figure 7. Formation of outer membrane vesicles by ceftazidime-treated bacteria. A, Ceftazidime 

inhibits bacterial division resulting in the formation of long bacterial structures. B, C, The formation of 

outer membrane vesicles (OMVs) was observed at potential sites of cell division with membrane 

roughing and peptidoglycan expansion (the white box in B depicts the position of C). D, At the 

bacterial distal ends, broadening of the peptidoglycan layer and formation of OMVs was regularly 

observed (white arrow). E, A large extension of the outer membrane. F, 3D reconstruction of the area 

in D shows OMVs (yellow) with attached fimbriae (orange), the formation of OMVs by bulging of the 

outer membrane (blue) and the inner bacterial membrane (purple). Scale bars are 2 μm (A and B), 

200 nm (C to E). 

 

 

Discussion 

 

The main finding of the present study is that A. baumannii ATCC19606
T
 forms 

morphologically diverse types of membrane vesicles during different stages of its life 

cycle. In exponentially growing bacterial cultures outer membrane vesicles (OMVs) were 
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formed mainly at distal ends of the bacteria and at septa of dividing cells. Stationary phase 

and dying bacteria released large numbers of vesicles, i.e. rough OMVs and inner and 

outer membrane vesicles (IOMVs), the latter were formed by partial fragmentation and 

budding off the cells. The timing of IOMV formation suggests that they are mainly derived 

from dying bacteria. These OMVs and IOMVs were abundant and it appeared that their 

surfaces were covered with low contrast material with a radial appearance, fimbriae and 

protein complexes. This is in accordance with the mass spectrometry measurements on 

purified membrane vesicles from A. baumannii [24]. It is conceivable that the biogenesis 

of membrane vesicle formation by A. baumannii in the present in vitro cultures may also 

occur in vivo. For example, Jin et al demonstrated that A. baumannii ATCC19606
T 

secreted 

membrane vesicles during pneumonia in a mouse model of infection [18]. Others reported 

that A. baumannii present in alveolar macrophages in a patient with fatal A. baumannii 

pneumonia secreted multiple pleomorphic vesicles [28], suggesting the possibility of 

secretion of different types of vesicles during infection.  

What are the functions of the various types of membrane vesicles in A. 

baumannii infection? It has been reported that pathogenic Gram-negative bacteria, 

including A. baumannii, deliver toxins and other virulence attributes to host cells via OMVs 

[2,17-19]. So far, proteomic studies on OMVs from A. baumannii including the ATCC19606
T
 

strain have indicated that inner membrane and cytosolic proteins as well as some 

virulence factors were present in these vesicles [19,23]. In addition, IOMVs of A. 

baumannii contain cytoplasmic material, including genetic material, and therefore they 

could be involved in gene transfer among bacteria. It should be noted that knowledge of 

the transfer of genetic material among clinical A. baumannii strains is still very limited. 

Together, further studies are clearly needed to identify the virulence attributes present in 

the various membrane vesicles formed by A. baumannii during its life cycle. 

Other important findings pertain to the main mechanisms underlying the 

biogenesis of membrane vesicles in A. baumannii. Several genetic, biochemical, proteomic 

and microscopic observations have indicated that disruption of peptidoglycan synthesis 

genes and the removal of proteins that interconnect peptidoglycan-outer membrane 

interactions can lead to increased formation of OMVs [12,27]. Our cryo electron 

tomographic data showed that OMVs were formed primarily at sites where reorganization 

of peptidoglycan occurred, i.e. the peptidoglycan layer increased in thickness and was 

deformed, thus supporting the current models for OMV formation.  

We found that sub-inhibitory concentrations of ceftazidime, which interferes 

with peptidoglycan synthesis by inhibiting the penicillin-binding-proteins (PBPs) in the 

cytoplasmic membrane of Gram-negative bacteria [9], resulted in filament formation, as 

described before [4]. These strands of non-dividing bacteria contain enhanced quantities 
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of LPS conferring the risk of delayed, higher release of LPS during treatment of infections 

[14]. Moreover, these sub-inhibitory concentrations of ceftazidime enhanced OMV 

production at distal and septal sites. It is conceivable that these OMVs carry LPS on their 

surface. Therefore, the possibility that inadequate dosing of antibiotics, such as penicillins 

and cephalosporins, has serious adverse effects in patients suffering from A. baumannii 

infection should be considered. 

In this study we investigated both the formation and three-dimensional structure 

of naturally occurring membrane vesicles from A. baumannii using cryo electron 

tomography. To ensure optimal preservation of membrane vesicles from A. baumannii 

ATCC19606
T
, we isolated the membrane vesicles from bacterial cultures by centrifugation 

steps only. This lenient isolation procedure limits rupture of cells and vesicles, stripping 

proteins from the surface and induction of vesicle fusion [22] resulting from harsh 

purification methods, that are regularly used in other studies. Furthermore, we employed 

cryo fixation of the samples using vitrification to preserve the membrane vesicles with 

high integrity. Cryo electron tomography has been used since this method is able to 

resolve cellular structures with high accuracy and resolution in three dimensions. In earlier 

investigations on the structure and formation of membrane vesicles either negative 

staining of purified MVs was employed or fixation, dehydration, staining and sectioning 

techniques were used [18,29-31,35]. In line with the above considerations, cryo electron 

tomography is increasingly used to study bacteria [5,36,38].  

Our findings show that several types of membrane vesicles are formed by A. 

baumannii ATCC19606
T
 during the different stages of the bacterial life cycle and we 

cannot exclude that these different types exert specific functions and have clinical 

significance.  
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Abstract  

 

Acinetobacter baumannii can colonize body surfaces of hospitalized patients. From these 

sites, invasion into the host and spread to other patients and the hospital environment 

may occur. Eradication of the organism from the patient’s skin is an important infection 

control strategy during epidemic and endemic episodes. In this study, a three-

dimensional, air-exposed human epidermal skin equivalent was exploited to study 

Acinetobacter skin colonization. We characterized the adherence of A. baumannii 

ATCC19606
T
 and A. junii RUH2228

T
 to and biofilm formation on the skin equivalent and 

the responses to these bacteria. Furthermore, we assessed the ability of the disinfectant 

chlorhexidine to decolonize the skin equivalents. Results revealed that both strains 

replicated on the stratum corneum up to 72 h, but did not invade the epidermis. A. 

baumannii, in contrast to A. junii, formed large biofilms on the stratum corneum. Bacterial 

colonization did not affect keratinocyte activation, proliferation or differentiation nor did 

it induce a strong inflammatory response. Disinfection with chlorhexidine solution 

resulted in complete eradication of A. baumannii from the skin without detrimental 

effects. This 3D model is a promising tool to study skin colonization and to evaluate the 

effects of novel disinfectant and antimicrobial strategies.  
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Introduction 

 

Multidrug resistant (MDR) strains of Acinetobacter baumannii are notorious for their 

association with outbreaks of colonization and infection worldwide [6,23]. During such 

outbreaks, A. baumannii can colonize body surfaces of severely ill patients from which the 

organisms may invade the patient causing infection and/or spread to other patients and 

their environment. Thus, the skin is thought to constitute an important reservoir for A. 

baumannii during outbreaks and endemic episodes [1,17]. Insight into Acinetobacter skin 

colonization and the microbial ecology of the skin may result in novel strategies to prevent 

or interfere with skin colonization and thus contribute to eradication of the organisms 

from a ward. 

Adherence and biofilm formation on plastic and adherence to human cells are 

widely used systems to study interactions of bacteria with abiotic and biotic surfaces. 

However, these systems may not adequately reflect the association of bacteria with the 

human skin, a process that takes place under relatively dry conditions [20]. Moreover, 

adherence and subsequent replication is strongly influenced by environmental conditions 

[19], including the physico-chemical barrier properties of the skin surface and its nutrient 

availability. Once bacteria have adhered to the skin, they may invade the epidermis and 

trigger an inflammatory response. To our knowledge little is known about the possible 

response of human skin cells to Acinetobacter.  

Tissue-engineered, air-exposed human skin models are 3D systems that mimic 

the native skin to a high degree [10,11]. Such epidermal skin equivalents are generated by 

culturing primary keratinocytes at the air–liquid interface on cell-free matrices (e.g., inert 

filters or de-epidermized dermis). The keratinocytes will proliferate, migrate and 

differentiate during epidermal development resulting in skin equivalents that contain all 

layers of the native epidermis [11]. The skin equivalents also have barrier properties that 

show high similarities with the human skin [21].  These systems are interesting models for 

studying pathogen-skin interactions. 

In the present study, we exploited a 3D human epidermal skin equivalent to 

study the adherence of an A. baumannii and an A. junii strain to the skin, subsequent 

biofilm formation and the skin’s response to these bacteria. Furthermore, we explored the 

usefulness of this model to investigate the effects of a disinfectant on the bacteria and the 

human skin.   
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Materials and methods 
 

Generation of epidermal skin equivalents 

Human keratinocytes were isolated from fresh plastic surgery surplus skin as previously 

described [10]. Briefly, the epidermis and dermis were enzymatically and mechanically 

separated and each layer subsequently digested to obtain single cell suspensions. 

Keratinocytes were cultured in Dermalife medium (Lifeline cell technology) supplemented 

with penicillin (10000 U) and streptomycin (10 mg/ml). Epidermal skin models were 

generated as described [11,21]. In short, approximately 2x10
5
 keratinocytes from a 

secondary culture were seeded onto a filter insert (12 mm in diameter, Costar, Corning) in 

12-wells plates in Dermalife medium. Three days after seeding, cells were put air-exposed 

by aspirating the apical medium. The basal medium was replaced with CnT-02-3D medium 

(CellTec) supplemented with 2.4×10
-2

 μM bovine serum albumin, 25 µM palmitic acid, 15 

µM linoleic acid and 7 µM arachidonic acid. Prior to bacterial inoculation, the medium was 

replaced by keratinocyte medium without penicillin and streptomycin. Experiments were 

performed using 7 days air-exposed cultures. 

 

Preparation of bacterial inoculum 

A. baumannii type strain ATCC19606
T
 and A. junii type strain ATCC17908

T
 (=RUH2228

T
) 

were used. Bacteria were preserved for prolonged periods in nutrient broth supplemented 

with 20% (v/v) glycerol at -80°C. Inocula from frozen cultures were grown overnight at 

37°C on sheep blood agar plates (BioMerieux). Bacteria were cultured for 2.5 h at 37°C in 

Luria Bertani (LB) medium [10 g of Bactotryptone, 5 g of Yeast extract (both from BD, 

Sparks) and 5 g of sodium chloride (Merck) in 1 l of distilled water] under vigorous shaking. 

This suspension was diluted in phosphate buffered saline (PBS; pH 7.4) to a concentration 

of approximately 3x10
5 

colony forming units (CFU)/ml as calculated from the absorbance 

of the suspension at 600 nm, and verified afterwards using standard vital counts.  

 

Colonization of epidermal skin equivalents 

Skin equivalents were incubated with 300 µl of the bacterial suspension at 37°C / 7.3% 

CO2. After 1 h, the bacterial suspension was aspirated to remove non-adherent bacteria. 

At different intervals after inoculation, the number of viable detachable and adherent 

bacteria was assessed microbiologically. Briefly, 600 µl of PBS were applied to the skin and 

the detachable bacteria were collected, serially diluted and plated onto diagnostic 

sensitivity test (DST) agar plates to determine the number of CFU. To assess the number of 

adherent bacteria, two biopsies (each 4 mm in diameter) were taken from the skin, 

homogenized in PBS using a glass Potter-Elvehjem tissue homogenizer and the 
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homogenates were subsequently serially diluted. The lower limit of detection of 

detachable and adherent bacteria was 12 and 115 CFU/skin equivalent, respectively. The 

number of adherent bacteria per skin equivalent (113.04 mm
2
) was calculated by 

multiplying the number of adherent bacteria in two biopsies (25.12 mm
2
) by 4.5. The total 

number of bacteria per skin equivalent was calculated by adding up the number of 

detachable bacteria per skin equivalent and the number of adherent bacteria per skin 

equivalent.  

 

Microscopic analysis of bacterial replication on skin equivalents 

To visualize bacterial colonization of the skin equivalents, one biopsy of each skin 

equivalent was fixed in 4% formaldehyde, dehydrated and embedded in paraffin. Next, 

paraffin blocks were cut into 5 µm sections, deparaffinized and rehydrated and then 

stained with Alcian-blue in combination with Periodic acid-Schiff (PAS, both from Merck) 

to detect polysaccharides.  

 

Immunohistochemical analysis of keratinocyte response  

For analysis of the effects of colonization of the skin equivalents, the levels of keratin (K) 

16, a marker for keratinocyte activation or stress; Ki67, a marker for keratinocyte 

proliferation; and K10, a marker for early keratinocyte differentiation were determined by 

immunohistochemical analysis. In short, standard antigen retrieval of deparaffinised and 

rehydrated paraffin sections was performed by immersing sections in 0.01 M citrate buffer 

(pH 6.0) for 30 min at 90°C followed by slow cooling down to room temperature for at 

least three h prior to staining of the sections. Sections were incubated overnight at 4°C 

with the primary mouse antibodies directed against human K16 (AbD serotec, clone LL025, 

5x diluted), Ki67 (DAKO, clone MIB-1, 75x diluted), and K10 (Abcam, clone DE-k10, 50x 

diluted). Thereafter, sections were incubated for 60 min with secondary biotinylated goat-

anti-mouse antibodies (DAKO) and subsequently 30 min with streptavidin-biotinylated 

horseradish peroxidase (DAKO). Chromogen 3-amino-9-ethyl-carbozole (AEC) solution was 

used as substrate solution. Sections were washed three times with PBS between 

subsequent incubations and finally counterstained with haematoxylin.  

To determine the proliferation index, the number of Ki67 positive nuclei from the 

total number of basal cells was used. A minimum of 100 basal cells was counted in 

sections of three different samples at a magnification of 200x.  

 

Determination of cytokine and chemokine levels  

The levels of IL-1α, IL-1β, IL-6, IL-8, IL-10, and TNFα in culture media were determined by 

ELISA (all from Biosource, Invitrogen) according to manufacturer’s instructions. The lower 
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limit of detection was 1 pg/ml for IL-1α and IL-1β, 15 pg/ml for IL-6, 7 pg/ml for IL-8 and 25 

pg/ml for IL-10 and TNFα. 

 

Determination of gene expression levels  

Total RNA was extracted from homogenized skin biopsies using the RNeasy Mini kit 

(Qiagen), followed by a treatment with DNase I (Qiagen). cDNA synthesis was performed 

on 300 ng of total RNA using the iScript cDNA synthesis kit (Bio-RAD) following 

manufacturer’s instructions. For each sample, a control for genomic DNA contamination 

was included by adding sterile water instead of reverse transcriptase. Real-time 

quantitative PCR was performed in an ICycler IQ (Bio-RAD) in a final volume of 25 µl 

comprising 1x IQ SYBR Green Supermix (Bio-RAD), 10 pmol of each primer (Table 1) and 5 

µl of 10x diluted cDNA. PCR conditions consisted of an initial denaturation step at 95°C for 

10 min followed by 40 cycles of denaturation at 95°C for 15 s, annealing at 56.5°C (for 

Ki67), 57.8°C (for LL-37), 60.8°C (for GAPDH and IL-1β), 61.7°C (for TNFα) or 62°C (for β2M, 

IL-1α, IL-6, IL-8, hBD-2, hBD-3, K16 and K10) for 15 s, and elongation
 
at 72°C for 20 s. 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and beta-2 microglobulin (β2M) 

were used for standardization. Experiments were performed in duplicate. Data were 

acquired and analyzed using ICycler IQ Optical System software (Bio-RAD) with automatic 

adjustment of the baseline and threshold parameters.  

 

Table 1. Primer sequences 

Forward Reverse 

β2M TGCTGTCTCCATGTTTGATGTATCT TCTCTGCTCCCCACCTCTAAGT
GAPDH AAGGTCGGAGTCAACGGATTT ACCAGAGTTAAAAGCAGCCCTG
IL-1α CGCCAATGACTCAGAGGAAGA AGGGCGTCATTCAGGATGAA
IL-1β ACGAATCTCCGACCACCACT CCATGGCCACAACAACTGAC
IL-6 GGTACATCCTCGACGGCATCT GTGCCTCTTTGCTGCTTTCAC
IL-8 GCCAGGAAGAAACCACCGGAAGG GGCTGCCAAGAGAGCCACGG
TNFα CCTGTGAGGAGGACGAACAT GGTTGAGGGTGTCTGAAGGA
hBD-2 TGATGCCTCTTCCAGGTGTTT GGATGACATATGGCTCCACTCTTA
hBD-3 TTATTGCAGAGTCAGAGGCGG CGAGCACTTGCCGATCTGTT
LL-37 ATTTCTCAGAGCCCAGAAGC CGGAATCTTGTACCCAGGAC
K16 GAGATGCGTGACCAGTACGA TTGTTCAGCTCCTCGGTCTT
K10 AGCATGGCAACTCACATCAG TGTCGATCTGAAGCAGGATG
Ki67 AATTCAGACTCCATGTGCCTGAG CTTGACACACACATTGTCCTCAGC

 

 

Decontamination of colonized skin equivalents 

Two days after inoculation with A. baumannii ATCC19606
T
, 0.5% chlorhexidine solution in 

70% ethanol or as a control PBS was applied to the skin equivalents using a sterile cotton 

swab. The numbers of detachable and adherent bacteria were assessed as described 

above 24 h after application of the disinfectant. 
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Statistical analysis 

Results are expressed as mean ± standard errors of the mean unless stated otherwise. 

Data were analyzed for statistical significance using the Wilcoxon rank sum test (SPSS 

17.0). P values ≤0.05 were considered significant. 

 

 

Results  
 

Replication of Acinetobacter on skin equivalents 

To compare the persistence of A. baumannii ATCC19606
T
 and A. junii RUH2228

T
 on the 

skin, human epidermal skin equivalents were inoculated with approximately 1x10
5
 CFU 

suspended in 300 μl of PBS. The suspensions were aspirated from the skin equivalents 

after 1 h to allow air-exposure again. The total number of bacteria on the skin equivalent 

increased during the first 12 h from 7x10
3
±6x10

3
 to 9x10

7
±3x10

6
 CFU for the A. baumannii 

strain and from 2x10
4
±1x10

4
 to 1x10

8
±1x10

7
 CFU for the A. junii strain and thereafter 

remained stable for the duration of the experiment (Figure 1).  

 
Figure 1. A. baumannii and A. junii replication on skin equivalents. Human epidermal skin equivalents 

were inoculated with approximately 1x10
5
 CFU of A. baumannii ATCC19606

T
 (triangles) or A. junii 

RUH2228
T
 (circles). After 1 h, the non-adhered bacteria were removed. At different intervals 

thereafter, the numbers of detachable and adherent bacteria were determined microbiologically. 

Results are expressed as mean number of adherent (dotted lines) and total (solid lines) colony 

forming units (CFU) per skin equivalent ± standard errors of the mean of three independent 

experiments. 

 

 

At 48 and 72 h after infection, the number of adhered A. baumannii ATCC19606
T
 was 

significantly greater than the number of detachable bacteria, indicating that the 

proportion of bacteria that adhered increased over time (Figure 1). For the A. junii strain, 
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the number of adherent bacteria exceeded that of detachable bacteria at 72 h after 

infection.  

 

Acinetobacter biofilm formation on skin equivalents 

Microscopic analysis revealed that bacteria of both strains persisted on the stratum 

corneum and did not invade the epidermis (Figure 2). Although there was no significant 

difference in the number of adherent bacteria between A. baumannii ATCC19606
T
 and A. 

junii RUH2228
T
  (Figure 1), Alcian blue-PAS staining revealed large biofilm structures by the 

A. baumannii but not by the A. junii strain on the stratum corneum at 48 and 72 h (Figure 

2). 

 

 

Figure 2. Biofilm formation on skin equivalents. Skin equivalents were exposed to A. baumannii 

ATCC19606
T
 and A. junii RUH2228

T
 up to 72 h. Thereafter, 5 µm sections of paraffin-embedded skin 

were stained with Alcian blue PAS and biofilm formation was analysed by light microscopy. Small 

arrows indicate clusters of bacteria, large arrows indicate bacteria within a biofilm matrix. Scale bars, 

20 μm. 

 

 

Response of skin equivalents to Acinetobacter 

Subsequently, the effect of bacterial colonization on keratinocyte differentiation, 

proliferation and cytokine and antimicrobial peptide production was evaluated. Results 

revealed that exposure of the skin equivalents to A. baumannii ATCC19606
T
 and A. junii 

RUH2228
T
 did not affect the mRNA expression of Ki67, K10 and K16 in keratinocytes 

(Figure 3A). In agreement, no difference was seen in protein expression of the 

activation/stress marker K16 between colonized and PBS-exposed skin equivalents (Figure 

3B). 
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Figure 3. Response of keratinocytes to Acinetobacter. Skin equivalents were exposed to A. baumannii 

ATCC19606
T
 (triangles), A. junii RUH2228

T
 (circles) or as a control PBS (crosses). At various intervals 

thereafter, mRNA expression (A) and at 48 h thereafter, protein levels (B) of keratinocyte 

activation/stress marker K16, proliferation marker Ki67 and differentiation marker K10 were 

determined using qPCR and immunohistochemistry, respectively. Scale bars, 20 μm. In addition, the 

mRNA expression (C) and protein (D) levels of the chemokine IL-8 and the pro-inflammatory cytokine 

interleukin (IL)-1α and IL-1β at different intervals were determined using qPCR and ELISA, 

respectively. Results are expressed as mean fold change in mRNA expression relative to PBS-exposed 

skin equivalents (A and C) or mean cytokine level in pg/ml (D) ± standard errors of the mean of three 

independent experiments. *, significantly different from PBS. 
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Moreover, the expression of K10 in the suprabasal viable cell layers of the exposed and 

non-exposed skin equivalents confirms that the early differentiation program was not 

altered by the Acinetobacter strains. In addition, the number of proliferating cells in the 

basal layers was not influenced by the bacteria, i.e. 20±2 versus 18±1 cells positive for 

Ki67/100 basal cells in A. baumannii-colonized skin versus PBS-exposed skin.  

 Furthermore, we assessed the production of the pro-inflammatory cytokines 

TNFα, IL-1α, IL-1β, IL-6, and IL-8 and that of the anti-inflammatory cytokine IL-10 by the 

skin equivalent in response to both Acinetobacter strains. During the first 48 h of infection, 

skin equivalents expressed similar levels of IL-1α and IL-8 after exposure to the two 

Acinetobacter strains as to PBS. However, after 72 h mRNA and protein expression levels 

of IL-8, but not of IL-1α, were slightly but significantly (p<0.05) higher in skin equivalents 

colonized by the A. baumannii strain as compared to those colonized by the A. junii strain 

and/or exposed to PBS (Figure 3C,D). In addition to IL-8 and IL-1α, IL-1β mRNA expression 

levels were significantly (p<0.05) higher in skin equivalents exposed to the Acinetobacter 

strains as compared to PBS-exposed skin equivalents, but only at 12 h of infection (Figure 

3C). IL-1β protein was, however, not detectable. Moreover, TNFα, IL-6 and IL-10 mRNA 

and proteins were not detectable in skin equivalents. 

 The skin equivalents constitutively expressed the antimicrobial peptides human 

beta-defensin (hBD)-2 and -3, but no LL-37. Infection of skin equivalents with the 

Acinetobacter strains did not induce enhanced expression of these peptides (data not 

shown). 

 

Eradication of A. baumannii from skin equivalent 

Finally, we examined the effect of chlorhexidine on A. baumannii ATCC19606
T
 colonization 

and on the epidermis. Swapping of skin equivalents colonized by the A. baumannii strain 

for 48 h with 0.5% chlorhexidine solution in 70% ethanol resulted in undetectable levels of 

A. baumannii on the skin (Figure 4A). In addition, this chlorhexidine solution did not affect 

skin morphology (Figure 4B) and mRNA expression levels of K16, IL-1α and IL-8, but 

enhanced the expression levels of Ki67 and K10 11-fold and 4-fold, respectively (Figure 

4C). This indicates that chlorhexidine enhanced keratinocyte proliferation and 

differentiation but did not induce epidermal activation/stress or inflammation in the skin 

(Figure 4C). 
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Figure 4. Treatment of infected skin equivalents with chlorhexidine. Skin equivalents were infected 

with A. baumannii ATCC19606
T
 for 48 h. Thereafter, chlorhexidine or PBS was applied to the skin 

equivalents. A, Twenty-four hours after treatment, the numbers of detachable and adherent bacteria 

were determined microbiologically. Results are expressed as mean number of adherent (white bars) 

and total (gray bars) colony forming units (CFU) per skin equivalent ± standard errors of the mean of 

three independent experiments. The dotted line represents the lower limit of detection. nd, not 

detectable; *, significant (p<0.05) difference. B, Light micrograph of section of chlorhexidine-treated 

skin stained with Alcian blue PAS. Scale bar, 20 μm. C, Twenty-four hours after treatment, mRNA 

expression levels of the keratinocyte activation/stress (K16), proliferation (Ki67) and differentiation 

(K10) markers as well as the inflammatory mediators IL-8 and IL-1α were determined using qPCR. 

Results are expressed as mean mRNA expression levels relative to PBS-treated skin ± standard 

deviations of four measurements. 

 

 

 

Discussion 
 

The main conclusion from the present findings is that the 3D human skin equivalent is a 

promising model to study skin colonization by Acinetobacter strains and to evaluate the 

effects of disinfectants and other antimicrobial agents. This is of importance as A. 

baumannii is able to colonize the skin [2,7,8,17,24], which can be a source for infection 

and spread to other patients and the environment. Recent papers have emphasized the 

benefits of skin disinfection as a tool to reduce colonization pressure in a ward [2,12,22]. 

Our main conclusion is based on the following findings. First, both A. baumannii 

ATCC19606
T
 and RUH2228

T
, which belongs to A. junii, a species that occurs on the human 

skin,
 
adhered to and replicated on the stratum corneum up to 72 h without invading the 

epidermis. An important difference between these two strains was the ability of the A. 

baumannii strain, but not the A. junii strain, to form a large biofilm on the skin 

equivalents. Secondly, bacterial colonization did not affect keratinocyte activation, 
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proliferation or differentiation nor did it induce a strong inflammatory response. Thirdly, 

disinfection with chlorhexidine solution resulted in complete eradication of the A. 

baumannii strain from the skin without detrimental effects. 

We have previously shown that both A. baumannii ATCC19606
T
 and A. junii 

RUH2228
T
 were able to form large biofilms on plastic [5]. On the present human skin 

model, however, only A. baumannii ATCC19606
T
 formed large biofilms. A possible 

explanation for the latter observation could be that A. baumannii, but not A. junii, can 

utilize the nutrients of the stratum corneum for biofilm formation. In agreement with this 

suggestion it has been shown that the metabolic versatility of A. baumannii is considerably 

greater than that of A. junii [3,18]. The ability of Acinetobacter to form biofilms appears to 

depend on the surface to which the bacteria adhere, as suggested earlier by Gaddy et al 

[13]. Although more strains should be examined before a definitive conclusion can be 

drawn, we hypothesize that the ability of A. baumannii to form a biofilm on human skin 

plays an important role in its persistence on the skin.  

We have previously shown that human bronchial epithelial cells and cultured 

human macrophages produce considerable amounts of inflammatory mediators in 

response to these Acinetobacter strains [5]. Using this skin equivalent model, however, A. 

baumannii ATCC19606
T
 and A. junii RUH2228

T
 induced a poor inflammatory response. This 

may be explained as follows. In our previous study, the cells were cultured in monolayers 

and infected with bacteria, enabling direct contact between the bacteria and the cells. 

However, in the current experiments the bacteria did not invade the epidermis, and thus, 

did not come in direct contact with live keratinocytes. These results underline the 

importance of the stratum corneum as a protective barrier against infections, as also 

shown by Duckney et al, who demonstrated that Staphylococcus epidermidis and 

Propionibacterium acnes induced an inflammatory response in a reconstructed human 

epidermis model only when applied subcutaneously in the culture medium and not when 

applied topically on the stratum corneum [9]. Moreover, it emphasizes that results from 

studies into pathogen-host interactions using keratinocyte monolayers (lacking a stratum 

corneum) will not reflect the in vivo situation.  

With the emergence of antibiotic resistance, there has been a re-appraisal of the 

use of antiseptics for skin disinfection [12,15]. Chlorhexidine is widely used as an 

antiseptic against many microorganisms, including A. baumannii [12]. However, several 

studies have shown that chlorhexidine may have toxic effects on human fibroblasts [14] 

and be detrimental to wound healing [14,16], making its use controversial in particular 

situations. Although the A. baumannii type strain used in this study was fully susceptible 

to treatment with chlorhexidine, a MDR A. baumannii isolate that was resistant to 

chlorhexidine concentrations up to 1% has already been reported [4]. In this light, it is 
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necessary to develop novel disinfectant strategies to eradicate A. baumannii from the 

colonized skin.  

In summary, we have described a novel model for Acinetobacter skin colonization 

using 3D human epidermal skin equivalents. This model will be beneficial in characterizing 

bacterial growth kinetics and the interactions of different bacterial species on a biotic 

surface. Moreover, this model may also be advantageous for identifying and evaluating 

new targets for disinfection and antimicrobial strategies.  
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General discussion 

 

During the last decades, A. baumannii has emerged as an important nosocomial pathogen 

responsible for outbreaks of infection worldwide. The spectrum of A. baumannii-host 

interactions is complex; ranging from a quiescent colonizer of the human skin to a 

dangerous invader of the bloodstream causing bacteremia and septic shock. The outcome 

of its interaction with the host depends on the balance between the virulence factors 

displayed by the bacterium and the condition of the host and the quality of its immune 

response (Figure 1).  

 The studies presented in this thesis aimed to gain further insight into the 

bacterial and host factors associated with the pathogenesis of A. baumannii to seek an 

explanation for the clinical success of A. baumannii.  

 

 

 

Figure 1. The pathogen-host balance. The outcome of colonization or infection by A. baumannii 

depends both on the virulence of the pathogen (in red) and on the condition of the host (in green).  

 

 

Adherence to and biofilm formation on abiotic and biotic surfaces 

As adherence to host cells is the first step in colonization and infection (chapter 1), we 

asked the question whether adherence to biotic surfaces differed between A. baumannii 

and less virulent Acinetobacter species. Results showed that strains of A. junii, which is a 

common skin colonizer, adhered equally well to human bronchial epithelial cells as A. 

baumannii strains (chapter 2). However, within each species there was a wide variation in 

quantitative adherence, expressed as the percentage infected epithelial cells (chapter 2). 

Strain variation within A. baumannii was previously also shown by Lee et al, who 

quantified the adherence of a large set of A. baumannii strains to human bronchial 
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epithelial cells [1]. They did not observe a difference in the percentage of infected cells 

between outbreak-associated strains and strains not associated with outbreaks. However, 

we found a correlation between the clonal lineage and the percentage of infected cells, 

with strains of EU clone II being more adherent than strains belonging to EU clone I [1]. 

Together, these data indicate that adherence to human mucosal cells is a general feature 

of Acinetobacter strains. In the next paragraph, the mechanisms that are thought to play a 

role in adherence of Acinetobacter to human cells are discussed. 

 Once bacteria have attached to an abiotic or biotic surface, they can multiply and 

form a biofilm, which protects them against environmental stresses, such as desiccation 

and exposure to antibiotics. The ability to form a biofilm may contribute to the survival of 

bacteria on environmental surfaces and medical devices like catheters and respiratory 

tubes (chapter 1). In this thesis, we first investigated whether A. baumannii strains can 

form biofilms on an abiotic surface. A wide variation in biofilm formation among A. 

baumannii strains was found (chapter 2). Although epidemic strains did not form larger 

biofilms than sporadic strains, it appeared that strains of EU clone II formed larger biofilms 

than strains of clone I. The finding that strains of EU clone II seemed to adhere better to 

epithelial cells [1] and form larger biofilms than strains of clone I raises the question 

whether there is a difference in clinical impact between these clones. Up to date however, 

both EU clone I and II strains are involved in outbreaks worldwide [2–5] and, although 

there are temporal and geographical shifts in their occurrence, there is, to our knowledge, 

no clear distinction in clinical-epidemiological behaviour. Therefore, differences in 

adherence to human cells [1] and biofilm formation on plastic cannot be directly linked to 

the clinical-epidemiological significance of the clones. 

As there was no association between biofilm formation on plastic and clinical 

significance among A. baumannii strains, we next investigated the capacity of other 

Acinetobacter species to form a biofilm. It was found that some strains of A. pittii and A. 

nosocomialis and of the less virulent species A. calcoaceticus and A. junii were also able to 

form biofilm on plastic. As for A. baumannii, intraspecies variation was considerable 

among these species. This led us to conclude that biofilm formation on plastic is strain- 

and not species-specific and does not explain the success of A. baumannii in the 

susceptible host. The poor correlation between the adherence to bronchial epithelial cells 

and biofilm formation on plastic (chapter 2) may be explained by the fact that different 

mechanisms are involved in these processes as will be described in the next section. 

 Biofilm formation on plastic and adherence to human cells are widely used 

systems to study interactions of bacteria with abiotic and biotic surfaces, respectively. 

However, these systems do not adequately reflect the real-life association of bacteria with 

its host. Moreover, it is known that biofilm formation is strongly influenced by 
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environmental conditions [6], such as the physical properties of the surface and nutrient 

availability. The colonized skin is thought to constitute an important reservoir for A. 

baumannii during outbreaks and endemic episodes [7,8]. In chapter 5 and 7, adherence 

and biofilm formation of Acinetobacter was investigated on this biologically relevant 

surface using a 3D human epidermal skin equivalent that mimics the native skin to a high 

degree [9,10]. The A. baumannii type strain ATCC19606
T
 and the A. junii type strain 

RUH2228
T
 both colonized the epidermis and persisted up to 72 h, but did not invade the 

epidermis (chapter 7). Moreover, strains of A. pittii (SH024) and A. nosocomialis 

(RUH2624) also survived and persisted on the skin equivalent, whereas a strain of the 

environmental species A. calcoaceticus (RUH2202) did not (chapter 5). Although both A. 

baumannii ATCC19606
T
 and A. junii RUH2228

T
 were able to form a large biofilm on plastic 

(chapter 2), only A. baumannii ATCC19606
T
 formed a biofilm on the human skin 

equivalent, as demonstrated using the polysaccharide stain Alcian blue-PAS (chapter 7). 

Together, these data demonstrate that the ability of Acinetobacter to form biofilms 

depends on the substrate with which the bacteria are interacting, as was also found by 

Gaddy et al [11].   

 

Mechanisms underlying adherence and biofilm formation 

The differences in adherence and biofilm formation among Acinetobacter strains triggered 

us to study the possible mechanisms underlying these colonization processes. It was 

previously shown that the ability of A. baumannii ATCC19606
T
 to form pili and to adhere 

to and form biofilms on abiotic surfaces depends on the expression of csuE, which is part 

of the CsuA/BABCDE chaperone-usher pili assembly system [12]. The involvement of these 

CsuA/BABCDE-mediated pili in adherence to human epithelial cells was investigated 

(chapter 3). Compared to A. baumannii ATCC19606
T
, the isogenic csuE-mutant did not 

show impaired adherence to human bronchial epithelial cells. Strikingly, the mutant could 

adhere even better to these cells than the parental strain. These results were later 

confirmed by Gaddy et al using human alveolar epithelial cells [13]. This indicates that the 

csuE-mediated pili are not required for adherence to human cells, although they are 

important attributes for the A. baumannii type strain to form microcolonies and biofilm on 

inanimate surfaces.  

As part of a multicenter study, the genome, metabolome and virulence of a range 

of Acinetobacter species that differ in success in the clinical setting was assessed (chapter 

5). It was found that the csu operon was present in pathogenic species of Acinetobacter 

(six A. baumannii strains, A. pittii and A. nosocomialis) but not in non-pathogenic species, 

suggesting that this operon is a putative virulence factor. CsuE-mediated adherence to 

indwelling medical devices like lines and respiratory tubes, may allow for multiplication of 
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the organism on these abiotic surfaces, which contributes to an increased risk of infection 

for the patient. 

Using scanning electron microscopy, we showed that ATCC19606
T
 expressed 

short fimbrial-like structures as well as thick cell extensions connecting bacteria (chapter 

3). The csuE-mutant appeared to densely express short fimbriae on its surface but no thick 

cell extensions. These thick cell extensions resemble the polysaccharide poly-β-1-6-N-

acetylglucosamine (PNAG) described recently by Choi et al, that was associated with A. 

baumannii biofilm formation on abiotic surfaces under shaking conditions [14]. As the 

csuE-mutant expressed more short fimbrial-like extensions on its surface than the parental 

strain, we hypothesized that these CsuA/BABCDE-independent short fimbrial-like 

extensions play a role in adherence to biotic surfaces as was shown previously for the 

acuA-encoded short fimbriae of A. baylyi strain ADP1 [15]. To test this hypothesis, the 

surface morphology of additional A. baumannii strains that differed in their ability to 

adhere to human cells was examined (chapter 2). There was a wide variation in the 

presence of cell surface extensions between these strains and we did not find a clear 

association between the presence of either the thick cell extensions or the short fimbriae 

and biofilm formation or adherence to human cells. To investigate the involvement of cell 

extensions in these colonization processes in more detail the presence of cell extensions 

should be examined at different growth conditions as it has been shown that pilus 

assembly is influenced e.g. by the presence of a substratum [16]. Moreover, biochemical 

approaches are necessary to elucidate the structure of these extensions. 

 

Host response to Acinetobacter 

On the other side of the pathogen-host balance (Figure 1), the host has several innate 

defense mechanisms to prevent infection. In chapter 2, we describe that human bronchial 

epithelial cells respond to infection with A. baumannii and A. junii strains by the 

production of the inflammatory cytokine IL-6 and the chemokine IL-8. Interestingly, A. junii 

strains induced higher levels of these inflammatory mediators than A. baumannii strains 

did. This difference was even more pronounced in cultured human macrophages, where 

A. junii induced higher levels of the pro-inflammatory TNFα and IL-12p40, the chemokine 

IL-8 and the anti-inflammatory IL-10 than A. baumannii strains did. Thus, strains of A. 

baumannii induced a limited TNFα, IL-12p40, IL-6, IL-8 and IL-10 response in human cells 

as compared to A. junii strains, despite the finding that they adhered equally well to these 

cells. Different studies have demonstrated the importance of inflammatory cytokines for 

clearing of A. baumannii in vivo [17–20]. Therefore, we hypothesized that A. baumannii 

may survive and persist in the airways of patients and cause disease at least in part by 

inducing a weak inflammatory response that poorly mediates the clearance of bacteria by 
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the host. To investigate this possibility, the persistence of and host response to different 

well-characterized Acinetobacter strains was determined using a mouse infection model 

(chapter 4). MDR A. baumannii reference strains of EU clone I (RUH875), II (RUH134) and 

III (LUH5875) as well as a susceptible sporadic A. baumannii isolate (LUH8326) had a 

dramatic effect on the neutropenic host as they survived and multiplied in the lungs of 

mice and disseminated into the bloodstream. As might be expected from the rare 

prevalence of A. junii in infection, the strain of this species did not persist in the lungs of 

mice, which might be explained by a strong inflammatory response to this strain, as we 

have shown in vitro (chapter 2). Surprisingly, the type strain of A. baumannii ATCC19606
T
 

was also cleared from the lungs rapidly without causing disease. This type strain, an urine 

isolate from the 1960s of which the clinical epidemiological significance is unknown, is a 

widely used model strain to study the pathogenesis of A. baumannii. The findings of our 

studies challenge the relevance of this A. baumannii strain in virulence studies.  

A striking difference in the outcome of pneumonia among the A. baumannii 

strains was observed with the clone I and II strains being most virulent (chapter 4). These 

findings emphasize that there are great differences in virulence among A. baumannii 

strains, and stress the need for rapid identification tools of high risk strains [21,22].  

 The mouse model studies also revealed that the host responded differently to the 

various A. baumannii strains, with higher levels of the pro-inflammatory IL-12p40 and IL-

23 and the anti-inflammatory IL-10 after infection with the less virulent EU clone III strain 

and the susceptible sporadic isolate as compared to the clone I and II strains (chapter 4). 

One possible explanation for the association between high levels of IL-10 and low 

mortality could be that this anti-inflammatory cytokine down-regulates inflammation and 

its unfavourable effects. In agreement with others, who described a role for IL-12p40 and 

IL-23 in mice survival after infection with other pathogens [23,24], we found that high 

levels of these cytokines in A. baumannii infected mice were associated with better 

outcomes. IL-23 is a cytokine that together with IL-1β and IL-6 in mice drives the 

development of an IL-17-producing T cell population [25], which plays a role in host 

defense against extracellular pathogens by mediating the recruitment of neutrophils and 

monocytes to infected tissues. However, it is uncertain whether this cytokine plays a 

crucial role in host defence against A. baumannii as IL-17 depletion did not increase 

mortality in A. baumannii infected mice [17]. Future studies will have to clarify the precise 

roles of these cytokines in the outcome of A. baumannii infection. If these cytokines also 

influence the impact of A. baumannii strains on the human host, these mediators could 

have predictive values or be targets for treatment. 
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Mechanisms underlying host innate immune response during Acinetobacter infection 

Several mechanisms can play a role in the observed inflammatory responses induced by 

the different Acinetobacter strains. The lipid A part of the LPS of A. baumannii was 

suggested to have a high cytokine-inducing capacity [26]. In line with this, it was shown 

that LPS of A. baumannii strain RUH2037 and of A. nosocomialis strains induced a pro-

inflammatory cytokine response in mice [18] and human cells in vitro [27], respectively. 

Using three-dimensional human skin equivalents, we demonstrated that A. baumannii 

ATCC19606
T
 and A. junii RUH2228

T
 both induced a very weak inflammatory response 

(chapter 7). This observation may be related to the barrier function of the stratum 

corneum but also by the low expression of TLR4, which serves as a LPS pattern recognition 

receptor, in keratinocytes, as also reported by others [28]. These studies underline the 

role of LPS and TLR4 in Acinetobacter signaling.  

It has been demonstrated for Pseudomonas aeruginosa that adaptive and 

dynamic changes can occur in the chemical composition of lipid A resulting in different 

potencies to activate the host innate immunity via binding to TLR4 [29]. Unpublished 

results showed that there are structural differences in the lipid A part of the LPS of several 

Acinetobacter species (personal communication with L. Dijkshoorn). Future studies 

investigating the host response to the LPS of different Acinetobacter strains are necessary 

to determine to what extent lipid A diversity contributes to the differences in host 

response among species. 

It has been suggested that the coupling of pili to host cell receptors induces 

inflammation through the production of inflammatory mediators [30]. We found that A. 

baumannii type strain ATCC19606
T
 and its csuE-mutant induced similar levels of 

inflammatory cytokines IL-6 and IL-8 in bronchial epithelial cells (chapter 3), suggesting 

that CsuA/BABCDE-mediated pili are not involved in induction of inflammatory responses 

in human bronchial epithelial cells interacting with this bacterial pathogen. 

 

Membrane vesicles 

For several Gram-negative bacterial species outer membrane vesicles (OMVs) were shown 

to transfer virulence factors into host cells, thereby inducing an immune response [31]. A. 

baumannii ATCC19606
T
 has been shown to excrete membrane vesicles in vitro that were 

proposed to play a role in the delivery of virulence factors, including the cytotoxic OmpA, 

to host cells [32]. These studies used extensive purification methods for the isolation of 

OMV, including (ultra)-filtration and centrifugation. A disadvantage of this harsh isolation 

procedure could be the presence of inner membrane and cytoplasmic proteins in OMV 

resulting from random capture by membrane fragments. Since it is not known whether 

these OMVs represent the naturally occurring OMVs or are artefacts [33], we examined 
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the formation and structure of membrane vesicles by A. baumannii in different growth 

phases without the use of extensive purification methods (chapter 6). Our results showed 

that A. baumannii ATCC19606
T
 forms structurally different MVs depending on its growth 

phase: (i) small OMVs and (ii) large OMVs, both formed during early growth phases; and 

(iii) vesicles containing both inner and outer membrane (IOMVs) formed during late 

stationary growth phases. Stationary phase or dying bacteria appeared to form the most 

MVs. Moreover, it was found that sub-lethal concentrations of the antibiotic ceftazidime, 

which interferes with peptidoglycan synthesis [34] and structure, enhanced the formation 

of OMVs at distal and septal sites of the bacterial cells. It is conceivable that these OMVs 

carry LPS on their surface. Therefore, the possibility that inadequate dosing of antibiotics, 

such as penicillins and cephalosporins, has serious adverse effects in patients suffering 

from A. baumannii infection should be considered [35].  

Jin et al demonstrated that A. baumannii ATCC19606
T
 secreted MVs during 

pneumonia in a mouse model of infection [32]. Moreover, it was reported that A. 

baumannii present in alveolar macrophages in a patient with fatal A. baumannii 

pneumonia secreted multiple pleomorphic vesicles [36], suggesting the possibility of 

secretion of different types of vesicles during in vivo infection. We argue that these 

differences in structure may have implications for their function. Obviously, future studies 

are needed to identify the virulence attributes present in the various membrane vesicles 

formed by A. baumannii and the interaction of these vesicles with the host. 

 

Metabolic versatility 

In addition to its ability to adhere to surfaces and form a biofilm, the capacity to utilize a 

wide range of different carbon sources and to replicate at room temperature and up to 

44⁰C [37,38] are likely to contribute to the persistence of A. baumannii in the hospital 

environment and the human host. In this connection, the multicenter study (chapter 5) 

identified a diverse repertoire of core metabolic genes in A. baumannii. Moreover, using 

phenotype microarrays, it was shown that A. baumannii ATCC19606
T
 was able to utilize 

nitrogen sources more effectively and was more tolerant to pH stress than A. nosocomialis 

(RUH2624), A. pittii (SH024) and A. calcoaceticus (RUH2202). Interestingly, A. baumannii 

and A. pittii were unable to utilize most of the phosphorus sources despite both strains 

having the necessary genetic composition for phosphate metabolism. These two species 

were also able to survive in the mouse thigh muscle infection model, in contrast to A. 

nosocomialis and A. calcoaceticus (chapter 5), suggesting that there may be a link 

between phosphate metabolism and virulence. Several studies have highlighted the key 

role of the Pho regulon in phosphate management, virulence and stress response [39]. 
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Whether the inability of A. baumannii and A. pittii to utilize phosphorus is linked to 

expression of the Pho regulon remains a question that needs further evaluation.  

The metabolic versatility of A. baumannii enables strains of this species to flourish 

in a variety of niches, from the hospital environment to the febrile patient.  

 

 

Summary and main conclusions 

 

The study of the pathogenesis of A. baumannii is still in its early phase. In the studies 

presented in this thesis, we compared possible virulence attributes among strains that 

differ in their behavior in the clinical setting, i.e., MDR A. baumannii strains known to be 

involved in outbreaks of infection, susceptible sporadic A. baumannii strains and strains of 

other, less virulent Acinetobacter species. We demonstrated that both A. baumannii and 

less virulent Acinetobacter species can adhere to surfaces and form a biofilm, albeit with a 

wide variation among strains of each species. These results first of all show that a single 

strain is not representative for the species. Secondly, the presence of many virulence 

attributes in both clinically relevant and less-relevant strains indicates that the clinical 

success of A. baumannii cannot be explained by these virulence factors alone. Moreover, 

our results suggest that the outcome of infection depends mainly on the host. In this 

respect, a specific host innate immune response induced by different A. baumannii strains 

was associated with the outcome of A. baumannii pneumonia. Thus, the ability of certain 

A. baumannii strains to induce specific immune responses in susceptible hosts in 

combination with their metabolic versatility and a MDR phenotype are likely to be 

important features associated with the clinical success of this pathogen.  

To date, the genomes of different Acinetobacter strains have been sequenced. In 

this post-genomic era, studies have shifted towards gene expression and function [40]. 

Integrating the wealth of information from genomics, transcriptomics, proteomics and 

metabolomics with bacterial behavior and host responses will provide us more insight into 

the pathogenesis of A. baumannii. The work described in this thesis is a first step to 

unravel the factors that play a role in the pathogenesis of A. baumannii, which is critical in 

our efforts to develop improved diagnostic and therapeutic strategies against this 

pathogen. 
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Inleiding 
 

Acinetobacter baumannii is een belangrijke ziekenhuisbacterie die vooral bij ernstig zieke 

patiënten, zoals patiënten op intensive care afdelingen, aanleiding kan geven tot 

kolonisatie en infecties. Infecties veroorzaakt door deze bacterie variëren van pneumonie, 

urineweg-, huid- en wondinfecties tot bacteriëmie met sepsis. Behandeling kan problemen 

geven omdat stammen dikwijls resistent zijn voor meerdere of zelfs alle bruikbare 

antibiotica. Het zijn vooral de antibiotica-resistente stammen die zich epidemisch onder 

patiënten kunnen verspreiden. Er zijn drie groepen van genetisch verwante A. baumannii 

stammen, de zogenaamde Europese klonen I, II en III, die verantwoordelijk zijn voor 

epidemieën in ziekenhuizen wereldwijd. 

Naast A. baumannii zijn er twee nauw verwante species, A. pittii en A. 

nosocomialis, die relatief vaak in klinische materialen kunnen voorkomen en soms ook 

antibiotica-resistent zijn. Sommige van de overige Acinetobacter species kunnen ook bij de 

mens voorkomen en infecties geven, maar het beloop van zulke infecties is vaak mild en 

goed behandelbaar. Of de aanwezigheid van acinetobacters bij een patiënt tot ziekte leidt, 

wordt bepaald door de balans tussen de weerstand van de gastheer en de virulentie van 

de bacterie. Er is vooralsnog weinig bekend over de factoren die geassocieerd zijn met de 

pathogenese van A. baumannii infecties. De studies beschreven in dit proefschrift hadden 

tot doel meer inzicht te krijgen in deze factoren.  

 

 

Dit proefschrift 
 

Aangezien hechting een cruciale eerste stap is in het kolonisatieproces, hebben wij 

onderzocht of er verschil bestaat in het vermogen van diverse Acinetobacter stammen en 

species om te hechten aan humaan luchtwegepitheel. De resultaten in hoofdstuk 2 tonen 

dat zowel A. baumannii stammen als stammen van de klinisch minder relevante species A. 

junii kunnen hechten aan luchtwegepitheel. De mate van hechting varieerde sterk tussen 

de stammen binnen de twee species. Nadat bacteriën gehecht zijn aan een biotisch of 

abiotisch oppervlak kunnen zij zich vermenigvuldigen, microkolonies vormen en een 

beschermende slijmlaag (bestaande uit o.a. exopolysacchariden) produceren. Dit kan 

leiden tot een gestructureerd netwerk van bacteriën ingebed in een polysaccharidenlaag: 

een biofilm. Bacteriën in een biofilm zijn resistenter voor factoren van buitenaf, zoals 

antibiotica en effectorcellen van het immuunsysteem. Het vermogen van een groot aantal 

Acinetobacter stammen en species om biofilm te vormen op een abiotisch oppervlak is 

vergeleken in hoofdstuk 2. Ondanks het verschil in de mate van biofilmvorming tussen 
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individuele stammen was er geen verschil tussen de klinisch relevante species A. 

baumannii, A. pittii en A. nosocomialis en de klinisch minder relevante species A. junii en 

A. calcoaceticus. Deze studie toont dat hechting aan slijmvlies en biofilmvorming op een 

abiotisch oppervlak een algemeen kenmerk is van Acinetobacter stammen, ongeacht de 

species.  

 Tijdens epidemieën vormt de gekoloniseerde huid een belangrijk reservoir van A. 

baumannii. In hoofdstuk 5 en 7 is een driedimensionaal humaan huidmodel gebruikt om 

de hechting aan en biofilmvorming op een fysiologisch relevant biotisch oppervlak nader 

te bestuderen. Zowel stammen van A. baumannii, A. pittii, A. nosocomialis als de klinisch 

minder relevante A. junii konden hechten aan de huidcellen en zich vermenigvuldigen. 

Opvallend was dat een stam van de klinisch niet-relevante A. calcoaceticus niet kon 

persisteren op het huidmodel. Hoewel al deze stammen een biofilm vormden op plastic, 

ontwikkelden uitsluitend de drie klinisch relevante species een biofilm op de 

huidmodellen. Dit suggereert dat biofilmvorming ook afhankelijk is van het oppervlak 

waaraan de bacteriën gehecht zijn. 

 Om de verschillen in de mate van hechting en biofilmvorming tussen 

Acinetobacter stammen te kunnen verklaren, onderzochten we mogelijke mechanismen 

die een rol spelen bij deze kolonisatieprocessen. Pili, haarachtige structuren op het 

oppervlak van de bacterie, maken hechting van bacteriën aan (a)biotische oppervlakken 

en aan andere bacteriën mogelijk. In hoofdstuk 3 is beschreven dat de zogenaamde 

CsuA/BABCDE-pili, waarvan bekend is dat zij noodzakelijk zijn voor hechting en biofilm 

vorming van de A. baumannii typestam op plastic, geen rol spelen in de hechting van deze 

stam aan luchtwegepitheel. Ook voor een grotere set A. baumannii stammen was er geen 

relatie tussen de aanwezigheid van pili en de mate van hechting aan epitheel of biofilm 

vorming op plastic (hoofdstuk 2).  

 Hechting van bacteriën aan de huid of slijmvliezen van de gastheer kan een 

ontstekingsreactie opwekken, gekenmerkt door de productie van ontstekingsmediatoren 

zoals chemokines en cytokines en de recrutering van ontstekingcellen naar het 

geïnfecteerde weefsel. Deze ontstekingscellen spelen in het algemeen een belangrijke rol 

in het verwijderen van de bacteriën. In hoofdstuk 2 is de productie vergeleken van 

specifieke ontstekingsmediatoren door luchtwegepitheelcellen in reactie op A. baumannii 

en A. junii. Hoewel stammen van beide species even goed konden hechten aan deze 

cellen, wekten A. baumannii stammen significant minder ontstekingsmediatoren 

(interleukine (IL)-6) en chemokines (IL-8) op dan A. junii stammen. Dit verschil was nog 

groter in humane macrofagen, die behoren tot de eerste ontstekingscellen waar bacteriën 

mee in aanraking komen in het weefsel. Aangezien de productie van 

ontstekingsmediatoren cruciaal wordt geacht voor het verwijderen van de bacteriën, 
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veronderstelden wij dat A. baumannii stammen mogelijk kunnen overleven en persisteren 

in de luchtwegen van patiënten en ziekte kunnen veroorzaken doordat zij een zwakke 

ontstekingsreactie opwekken. Deze hypothese hebben wij in hoofdstuk 4 getoetst met 

behulp van een muismodel voor pneumonie. Binnen A. baumannii was er een duidelijk 

verschil in het beloop van de luchtweginfectie te zien: A. baumannii stammen behorend 

tot Europese kloon I en II waren zeer virulent, en veroorzaakten hoge morbiditeit en 

mortaliteit. Een Europese kloon III stam en een sporadische, antibiotica-gevoelige stam 

vermenigvuldigden zich in dezelfde mate in de longen en verspreidden zich in de 

bloedbaan van de muis. Echter, deze laatste twee stammen veroorzaakten minder 

symptomen. De stam behorend tot de laag-virulente species A. junii werd snel verwijderd 

uit de longen en veroorzaakte geen ziekte. Dit zou verklaard kunnen worden door de 

effecten van een sterke ontstekingsreactie opgewekt door deze stam zoals in vitro het 

geval was. De typestam van A. baumannii, een stam die veelvuldig gebruikt wordt in 

virulentiestudies, overleefde ook niet in de muis en veroorzaakte geen ziekte. Deze 

bevindingen benadrukken dat er een groot verschil is in virulentie tussen A. baumannii 

stammen. Met behulp van dit muismodel konden we ook vaststellen dat het aangeboren 

immuunsysteem van de gastheer verschillend reageert op A. baumannii stammen. Zo 

wekten de minder virulente A. baumannii stammen meer specifieke 

ontstekingsmediatoren (de ontstekingsstimulerende IL-12p40 en IL-23 en het 

ontstekingsremmende IL-10) op dan de virulente stammen. Verdere studies zullen de rol 

van deze ontstekingsmediatoren in het beloop van A. baumannii infecties moeten 

ophelderen. 

 Ook zonder direct contact kunnen bacteriën de gastheercel beïnvloeden, namelijk 

door middel van blaasjes afgesnoerd van hun buitenmembraan (vesicles), die door de 

gastheercel kunnen worden opgenomen. Deze vesicles kunnen virulentiefactoren 

bevatten die langs deze weg in de gastheercel terecht komen. In hoofdstuk 6 is de 

productie van membraanvesicles door de typestam van A. baumannii onderzocht met 

behulp van electronen-microscopische technieken. Deze A. baumannii stam vormde 

verschillende typen membraanvesicles, afhankelijk van de groeifase van de bacterie. 

Vervolgstudies moeten uitwijzen of deze verschillende membraanvesicles 

virulentiefactoren bevatten en de gastheer beïnvloeden. 

 Om mogelijke species-specifieke kenmerken te identificeren die het verschil in 

klinisch gedrag tussen Acinetobacter species kunnen verklaren, is een zogenaamde 

systeemstudie uitgevoerd, waarbij genomische, metabolische en virulentiestudies werden 

gecombineerd binnen een internationaal samenwerkingsproject (hoofdstuk 5). Een divers 

repertoire aan genen die een rol spelen in het metabolisme werden geïdentificeerd in alle 

zes geteste A. baumannii stammen. Slechts enkele van deze genen waren uniek voor A. 
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baumannii in vergelijking met klinisch minder relevante Acinetobacter species. Echter, 

wanneer het genoom van één A. baumannii stam vergeleken werd met dat van een A. 

calcoaceticus stam, werden meerdere unieke genclusters geïdentificeerd, waaronder het 

csu operon (dat codeert voor de hierboven beschreven CsuA/BABCDE-pili) en een 

gencluster dat een rol speelt bij ijzeropname. Daarnaast lieten de metabolische studies 

zien dat de A. baumannii stam efficiënter stikstofbronnen kon gebruiken en resistenter 

was voor pH, osmotische en antibiotica stress dan A. pittii, A. nosocomialis en A. 

calcoaceticus stammen. A. baumannii en A. pittii konden minder goed fosfaatbronnen 

gebruiken om te groeien dan A. nosocomialis en A. calcoaceticus. Juist deze 

laatstgenoemde species konden niet overleven in een muismodel van een 

dijbeenspierinfectie. Deze resultaten suggereren dat het klinische succes van 

Acinetobacter species afhankelijk is van genetische verschillen die een functionele impact 

hebben op metabolische en virulentie-eigenschappen. 

 

 

Conclusie 
 

De aanwezigheid van meerdere virulentiefactoren in zowel A. baumannii als klinisch 

minder relevante Acinetobacter species, toont aan dat het klinische succes van A. 

baumannii niet alleen verklaard kan worden door deze virulentiefactoren. Het vermogen 

van bepaalde A. baumannii stammen om een specifieke gastheerrespons op te wekken in 

combinatie met hun genetische flexibiliteit, metabolische verscheidenheid en antibiotica-

resistentie zijn waarschijnlijk alle belangrijke factoren die geassocieerd zijn met het 

klinische succes van deze bacterie. Het werk beschreven in dit proefschrift is een stap naar 

het ophelderen van de factoren die een rol spelen in de pathogenese van A. baumannii, 

wat essentieel is voor de ontwikkeling van nieuwe diagnostische en therapeutische 

strategieën ten aanzien van infecties door deze bacterie. 
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