
Team automata : a formal approach to the modeling of collaboration
between system components
Beek, M.H. ter

Citation
Beek, M. H. ter. (2003, December 10). Team automata : a formal approach to the modeling of
collaboration between system components. Retrieved from https://hdl.handle.net/1887/29570
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/29570
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/29570


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/29570 holds various files of this Leiden University 
dissertation. 
 
Author: Beek, Maurice H. ter 
Title: Team automata : a formal approach to the modeling of collaboration between 
system components 
Issue Date: 2003-12-10 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/29570


9. Discussion

In this chapter we summarize the main contributions of this thesis and point
out some topics worth further investigation. We moreover indicate how —
in theory — team automata can be used for system design and where — in
practice — they have actually been used.

Contributions of the Thesis

In this thesis we have formally presented team automata as a model for
component-based system design. Team automata are based on the well-known
method for modeling collaboration between system components by synchro-
nizations of actions or transitions. A distinguishing feature of team automata
is the freedom to choose on which actions and when their constituting com-
ponent automata synchronize. In addition, there is the distinction of a team
automaton’s alphabet into input, output, and internal actions.

Through the classification of a broad range of ways to synchronize ac-
tions in team automata, a systematic study of the role that synchronizations
play when modeling collaboration between system components has been con-
ducted. To begin with, we have studied their effect on the inheritance of
various automata-theoretic properties from team automata to their consti-
tuting component automata and subteams, and vice versa. We have further-
more studied their effect on the inheritance of various automata-theoretic
properties from team automata to their constituting component automata
and subteams, and vice versa. These studies are not complete and thus offer
interesting pointers for further investigation.

The relation between team automata and two related models, viz. I/O
automata and Petri nets, has been investigated in considerable detail. This
has shown that I/O automata fit into the framework of team automata,
whereas so-called non-state-sharing vector team automata can be translated
into ITNCs — a model of vector-labeled Petri nets. Vector team automata are
team automata in which the (team) actions have been replaced by vectors of
(component) actions, from which the participation of a component automaton



310 9. Discussion

in a synchronization can thus be seen immediately. Consequently, non-state-
sharing vector team automata are the subclass of vector team automata with
the characteristic that whether or not a synchronization can take place only
depends on the local states of the component automata actively involved in
that synchronization. As a result, synchronizations involving disjoint sets of
component automata are independent, which would thus allow a concurrent
semantics for non-state-sharing vector team automata. This is a point worth
further investigation.

Team automata are naturally suited for component-based system design
due to the fact that they can themselves be used as component automata
of higher-level team automata. This allows the iterative composition of team
automata. We have been able to show that iterated composition does not
lead to an increase of the number of possibilities for synchronization. Every
iterated team automaton over a composable system can be interpreted as a
team automaton over that composable system, by reordering its state space
and transition space. We have moreover been able to show that every team
automaton can be iteratively composed over its subteams.

We have studied the computations and behavior of team automata in re-
lation to those of their constituting component automata. Several types of
team automata that satisfy compositionality could be identified. To describe
the compositionality of team automata, we have had to develop an extensive
theory of (synchronized) shuffles. An examiniation of the compositionality
of further types of team automata is certainly a topic worth further investi-
gation. This might very well require the introduction and analysis of more
sophisticated types of shuffles.

Using Team Automata

Modeling a system as a team automaton in the early phases of design for-
ces one to identify the active components of the system and to consider the
intended communications and synchronizations in detail, which is bound to
lead to a better understanding of system functionality and to explicit and
unambiguous design choices. This forms the basis of further design and im-
plementation, while at the same time the mathematically rigorous definitions
provide the possibility of formal analysis tools for proving crucial design prop-
erties, without first having to implement the design.

In Theory

To model a system as a team automaton, first the components have to be
identified. Each of them should be given a description in the form of an au-



9. Discussion 311

tomaton — an easy to understand model that moreover forms the basis for
system descriptions in a number of model-checking tools (see, e.g., [Hol91],
[Kur94], [Hol97], and [Hol03]). Based on the idea of synchronizations of com-
mon actions, these components can be connected in order to collaborate.
Within each component, a distinction has to be made between internal ac-
tions — which are not available for synchronization with other components —
and external actions — which can be used to synchronize components and
may be subject to synchronization restrictions. By assigning such different
roles to actions it is possible to describe many types of collaboration.

Consequently, for each external action separately, a decision is made as to
how and when the components should synchronize on this action. If the action
is supposed to be a passive action that may not be under the component’s
local control, then it can be designated as an input action of that component,
otherwise as an output action. If such a distinction between the roles of
an external action is not necessary, then the choice is arbitrary. A natural
option would be to make it an output action in all components in which it
occurs. Once the synchronization constraints for each external action have
been determined, one may apply, e.g., a maximality principle to construct a
unique team automaton satisfying all constraints.

The team automata framework thus supports component-based system
design by making explicit the role of actions and the choice of transitions
that govern the collaboration between components. The crucial feature is the
freedom of choice for the synchronizations collected in the transition relation
of a team automaton. This is indeed one of the main reasons given in [Ell97]
for introducing team automata to model groupware systems rather than using
I/O automata for that purpose. Another important reason is that, in order for
a team automaton to be capable of modeling various types of collaboration
between its components by synchronizations of common actions, synchro-
nizations between output actions of its components should not be excluded a
priori. As a matter of fact, the peer-to-peer types of synchronization explic-
itly use the possibility to synchronize on output actions. Finally, no matter
how convenient input enabling may be when modeling reactive systems, it
does hinder a realistic modeling of collaborations that involve humans — in
fact, Tuttle himself was the first to acknowledge this when he introduced I/O
automata in [Tut87] (cf. Section 7.1) — while modeling such collaborations
was one of the main reasons for the introduction of team automata.

In Practice

An increasing number of papers bears witness to the usefulness of team
automata in the early design phase of reactive systems in general, and of



312 9. Discussion

groupware systems in particular. Moreover, these examples are not limited
to modeling within CSCW (see, e.g., [Ell97], [EK00], [Lav00], [BEKR01a],
[BEKR01b], and [BB03]) but extend to areas such as software engineering
(see, e.g., [HB00], [Hoe01], and [EG02]) and — most recently — security (see,
e.g., [BLP03]). In fact, a spectrum from hardware components to protocols
for interacting groups of people has been modeled by team automata. There
is still quite some work left to do, though. For one, the components of a team
currently cannot exchange any information, i.e. they have no private memory.
In order to be useful also in later stages of the design of groupware systems (or
to model, e.g., workflow systems) team automata should thus — among other
things — be extended with the flow of information between components. An
initial attempt in this direction was recently undertaken in [BCM03]. Fur-
thermore, team automata are currently inappropriate for capturing aspects
of group activity such as social aspects and informal unstructured activity.

We now close this Discussion with an initial observation on the potential
of team automata within a process model recently introduced in the field of
CSCW. In [Dew01], Dewan claims that traditional software process models
such as the waterfall model and the spiral model — while efficient for de-
scribing the different phases in the life cycle of software in general — lack too
many “collaboration-specific details” to be efficient for “collaborative sys-
tems”. These are software systems including “both general infrastructures
and specific applications for supporting collaboration”. Therefore, Dewan
proposes a new process model well suited for collaborative systems.

The initial phase of Dewan’s model consists of decomposing the function-
ality of collaborative systems into smaller subfunctions, which can be worked
upon more-or-less independently. Examples of such collaboration functions
are listed in [DCS94] and [Dew01]. Among them are merging and access con-
trol . Merging combines independent versions into a single object, whereas
access control determines the operations a user is authorized to perform. In
Section 8.2 we showed how team automata could be applied — in a conflict-
free strategy — to merge previously distributed packages back together. In
Section 8.3 we consequently showed how access control mechanisms could be
made precise and given a formal description using team automata. Team au-
tomata thus seem promising for modeling these two subfunctions of Dewan’s
process model.


