
Team automata : a formal approach to the modeling of collaboration
between system components
Beek, M.H. ter

Citation
Beek, M. H. ter. (2003, December 10). Team automata : a formal approach to the modeling of
collaboration between system components. Retrieved from https://hdl.handle.net/1887/29570
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/29570
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/29570


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/29570 holds various files of this Leiden University 
dissertation. 
 
Author: Beek, Maurice H. ter 
Title: Team automata : a formal approach to the modeling of collaboration between 
system components 
Issue Date: 2003-12-10 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/29570


8. Applying Team Automata

In this chapter we give an impression of how team automata may be applied.
We do this by presenting — in a varying degree of detail — three examples,
each of which shows the usefulness of team automata in the early phases of
system design. Additionally, we would like to mention that in [BLP03] we
have initiated the use of team automata for the security analysis of multicast
and broadcast communication. To this aim, team automata were used to
model an instance of a particular stream signature protocol, while a well-
established theory for defining and verifying a variety of security properties
was reformulated in terms of team automata.

First we show — at a high level of abstraction — how to model a spe-
cific groupware architecture by team automata. To this aim we explain how
team automata can be used as building blocks by internalizing certain ex-
ternal actions in order to prohibit their further use on a higher level of the
construction (without changing the behavior of course).

Secondly, we show how team automata can be employed to model collab-
oration between teams of developers engaged in the development of models of
complex (software) systems. This thus provides an example of using team au-
tomata for modeling interaction between humans. However, we still abstract
from any social aspects and informal unstructured activity between humans.
The team automata model solely the collaboration between humans.

Thirdly, we present a more detailed example demonstrating the potential
of team automata for capturing information security and protection struc-
tures, and critical coordinations between these structures. On the basis of a
spatial access metaphor, various known access control strategies are formally
specified in terms of synchronizations in team automata. In [BB03] we have
initiated an attempt to validate some of the resulting specifications with the
model checker SPIN (see, e.g., [Hol91], [Hol97], and [Hol03]).



278 8. Applying Team Automata

8.1 Groupware Architectures

In this section we show how team automata can be employed to model group-
ware architectures. To this aim we first introduce some notions and operations
that are particularly useful when team automata are used for component-
based system design. Consequently we use these operations to model a spe-
cific groupware architecture.

Notation 23. Within this section we once again assume a fixed, but arbitrary
and possibly infinite index set I ⊆ N, which we will use to index the compo-
nent automata involved. For each i ∈ I, we let Ci = (Qi, (Σi,inp,Σi,out,Σi,int),
δi, Ii) be a fixed component automaton and we use Σi,ext to denote its set of
external actions Σi,inp ∪Σi,out. Moreover, we once again let S = {Ci | i ∈ I}
be a fixed composable system and we let T = (Q, (Σinp,Σout,Σint), δ, I) be
a fixed team automaton over S. Furthermore, we use Σ to denote the set
of actions Σinp ∪ Σout ∪ Σint and we use Σext to denote the set of external
actions Σinp∪Σout of any team automaton over S. Recall that I ⊆ N implies
that I is ordered by the usual ≤ relation on N, thus inducing an ordering on
S, and that the Ci are not necessarily different. -.

8.1.1 Team Automata as Architectural Building Blocks

As we have seen, a team automaton over a composable system is itself a
component automaton that can be used in further constructions of team au-
tomata. Team automata can thus be used as building blocks. Before a team
automaton is used as a building block, however, it may be necessary to in-
ternalize certain external actions in order to prohibit their further use on
a higher level of the construction. The operation of hiding makes certain
external actions of a component automaton invisible to other component au-
tomata by turning these external actions into internal actions. This operation
has also been defined for I/O automata (see, e.g., [Tut87]).

Definition 8.1.1. Let C = (P, (Γinp,Γout,Γint), γ, J) be a component au-
tomaton and let ∆ be an alphabet disjoint from P . Then

the ∆-hiding version of C is denoted by C∆H and is defined as C∆H =
(P, (Γinp \∆,Γout \∆,Γint ∪∆), γ, J). -.

Composability is in general not preserved by the operation of hiding since
composability requires the internal actions of the component automata to
belong to one component automaton only, whereas external actions are not
subject to such a restriction. The ∆-hiding version of a team automaton



8.1 Groupware Architectures 279

thus need not be a team automaton over the ∆-hiding versions of its original
constituting component automata. For our composable system S and subsets
∆i ⊆ Σi,ext, for all i ∈ I, the system S ′ = {(Ci)

∆i

H | i ∈ I} is composable if
and only if for all i ∈ I, ∆i ∩

⋃
j∈I\{i} Σj,ext = ∅.

The external actions that are to be hidden are those that are only used
for communications between certain component automata and that should
not be available for communication with other component automata.

Definition 8.1.2. A pair Ci, Cj, with i, j ∈ I, is communicating (in S) if
there exists an a ∈ (Σi,ext ∪Σj,ext) such that

a ∈ (Σi,inp ∩Σj,out) ∪ (Σj,inp ∩Σi,out).

Such an a is called a communicating action (in S). By Σcom we denote the
set of all communicating actions (in S). -.

Note that the communicating relation between component automata, i.e. the
set of all pairs of communicating component automata over component au-
tomata, is symmetric and irreflexive. Note furthermore that the fact that
an action is communicating does not imply that a team automaton over S
will actually have a synchronization involving this action as a communica-
tion, i.e. in its two roles of input and output. The communicating property
is based solely on alphabets and is thus by no means related to transition
relations.

With the hide operation we can internalize all communicating actions of
a team automaton, before this team automaton is used to build a higher-level
team automaton. The result is a team automaton that is closed with respect
to its communications to the outside world.

Definition 8.1.3. The (communication) closed version of T is denoted by
T and is defined as

T = T Σcom
H . -.

Rather than the team automaton itself we may now use its closed version in
a new construction. If we do this, then only those output (input) actions that
do not have a matching input (output) action within the team automaton are
external actions of the closed version of the team automaton. The remaining
external actions have been reclassified as internal actions.

In practice one often wants to work with several copies of a component
automaton. In our model, however, more than one copy of a component
automaton in a set of component automata in general means that this set does
not satisfy composability. An operation renaming the actions of a component



280 8. Applying Team Automata

automaton solves this problem. Modulo renaming, these copies all have the
same computations (and thus exhibit the same behavior). The operation of
renaming has also been defined for I/O automata (see, e.g., [Tut87]).

Recall that a function f : A→ A′ is a bijection if it is injective (f(a1) (=
f(a2) whenever a1 (= a2) and surjective (for every a′ ∈ A′ there exists an
a ∈ A such that f(a) = a′).

Definition 8.1.4. Let C = (P, (Γinp,Γout,Γint), γ, J) be a component au-
tomaton, let ∆ be an alphabet disjoint from P , and let h : (Γinp∪Γout∪Γint)→
∆ be a bijection. Then

the h-renamed version of C is denoted by Ch
N and is defined as Ch

N =
(P, (h(Γinp), h(Γout), h(Γint)), {(q, h(a), q′) | (q, a, q′) ∈ γ}, J). -.

In practice, an h-renamed version of a component automaton might best be
defined to generate new names which are disjoint from the domain set, e.g. by
requiring ∆ to be disjoint from its alphabet.

It is clear that, apart from the use of new names, certain properties of
team automata continue to hold for their h-renamed versions.

Lemma 8.1.5. Let h be a bijection such that T h
N is the h-renamed version

of T . Then

(1) C∞
T h
N

= ĥ(C∞
T ), where ĥ is the extension of h to Σ∪Q defined by ĥ(q) = q,

for all q ∈ Q,

(2) BΣ,∞
T h
N

= h(BΣ,∞
T ), and

(3) if an action a is free (ai, si, sipp, wipp, sopp, wopp, ms, sms, wms) in
T , then h(a) is free (ai, si, sipp, wipp, sopp, wopp, ms, sms, wms) in
T h
N . -.

In the next subsection we show how to apply the operations introduced here.

8.1.2 GROVE Document Editor Architecture

In [Ell97] the distributed architecture of the GROVE document editor (see,
e.g., [EGR90]) — depicted here in Figure 8.1 — is discussed. In this section
we show how to model this architecture using a formal description in terms
of team automata. In the process we point out where the notions introduced
in the previous subsection come into play.

We are given a user interface automaton C1, a keeper automaton C2, an
application automaton C3, and a coordination automaton C4. These together
form a composable system S = {Ci | i ∈ [4]}. Only the pairs Ci, Ci+1, i ∈ [3],



8.1 Groupware Architectures 281

automaton

automaton

user interface

keeper
automaton

automaton

keeper

user interface
automaton

automaton

user interface

keeper

application
automaton

automaton
coordination

application
automaton

automaton
coordination

automaton
coordination

application
automaton

communication automatonC5

C4

C3

C2

C1

T :

Fig. 8.1. The GROVE document editor architecture.

are communicating. All external actions of C2 and C3 are communicating in
S. C1 has external actions that are not communicating in S, but intended to
be used solely for interaction with the users. C4 has external actions to be
used for communication with the communication automaton C5, which is to
be added in a later stage. However, the non-communicating actions of C1 are
different from those of C4.

The architecture requires all components in S to synchronize on all com-
munications, thus we construct the maximal-ai-team automaton T over S.
Then this team automaton T is closed, resulting in its closed version T .
Now all communicating external actions are internal in T . In this way we
prohibit further synchronizations involving a component of S. The only re-
maining external actions are those of C1 and those of C4.

Next we introduce several renamed versions of T satisfying the following
two conditions.

First, the sets of actions of the renamed versions should be mutually dis-
joint in order to avoid undesired synchronizations of their user interfaces,
and of actions to be used for the interaction with the communication au-
tomaton C5. Note that this condition ensures that these renamed versions
form a composable system S ′.

Secondly, the external actions of T originating from the coordination
automaton C4 should be renamed in such a way that they will communicate
with actions from C5.



282 8. Applying Team Automata

Finally, to obtain the desired team automaton modeling the GROVE
document editor architecture we define a team automaton over S ′′ = {C5} ∪
S ′. Since we want C5 to communicate with all renamed versions of T we
construct the maximal-ai-team automaton over S ′′, which thus results in all
communicating actions being synchronized.

It is clear that the iterated way in which we have constructed this fi-
nal team automaton guarantees that no undesired synchronizations between,
e.g., a keeper automaton and the communication automaton can take place.
Not only all communication between the communication automaton and any
of the renamed versions of T takes place via their coordination automata,
but also there are no interactions between the renamed versions of T . This is
conveniently modeled by the communication closure. Moreover, the explicit
construction used to form the final team automaton makes all communica-
tions mandatory.

8.1.3 Conclusion

In this section we have seen how team automata can be used to model both
the conceptual and the architectural level of groupware systems. Actually,
many of the concepts and techniques of computer science, such as concurrency
control, user interfaces, and distributed databases, need to be rethought in the
groupware domain. Team automata are thus helpful for this rethinking. The
team automata framework allows one to separately specify the components
of a groupware system and to describe their interactions. It is thus neither
a message-passing model nor a shared-memory model, but a shared-action
model. In particular, we have seen that team automata provide us with tools
allowing formal and precise definitions of various basic groupware notions.

One way of viewing the team automaton framework is as having a two-
way mechanism to model a spectrum of group interactions. On the one hand
we have peer-to-peer types of synchronization, in which all participants are
considered equal. They model the group collaboration aspect that frequently
occurs in synchronous groupware. On the other hand there are master-slave
types of synchronization, in which output as a master may force the concur-
rent execution of a corresponding input action. They can be used to model
asynchronous cooperation, as in workflow systems to enact certain modules
(see, e.g., [EN93]).

Team automata thus fit nicely with the needs and the philosophy of group-
ware and thanks to the formal setup, theorems and methodologies from au-
tomata theory can be applied.



8.2 Team-Based Model Development 283

8.2 Team-Based Model Development

Software configuration management is a subfield of software engineering that
deals with organizing and controlling evolving software systems throughout
their life cycle (see, e.g., [IEEE93]). Through software configuration manage-
ment models, technical and administrative direction and surveillance over the
life cycle of software systems is given in order to identify the functional and
physical characteristics of modules and their assemblies, to control releases
and changes, to record the product status, and to validate the completeness,
consistency, and conformance to specifications of the product. Incorporated
are also areas such as construction management, process management, and
team work control (see, e.g., [Dar91]).

Since software systems are becoming more and more complex, it is in-
evitable to parallelize the development of models for these systems in such a
way that several teams of developers must work in parallel on (parts of) the
model under design. At some point in time the efforts of these teams however
need to be integrated and this, more often than not, leads to conflicts. Obvi-
ously, these conflicts need to be resolved. However, most of the time they are
difficult and time consuming to resolve and furthermore they often require
manual modeler intervention.

8.2.1 A Conflict-Free Cooperation Strategy

Software configuration management models use a cooperation strategy to en-
sure that changes are coordinated such that one change does not — unwill-
ingly — undo or conflict with the effects of another change. A conservative
cooperation strategy prevents conflicting changes by using a simple locking
scheme: developers working on a specific module version or configuration can
lock it against further changes, and while a version or configuration is locked
other developers are excluded from creating new versions. On the contrary,
in an optimistic cooperation strategy each developer is active in his or her
own workspace and various versions of the same module can be created.

Both conservative and optimistic cooperation strategies eventually need
to merge parallel changes. Existing approaches of merges often lack early
conflict detection, which results in conflicts becoming apparent only during
the actual merges. These conflicts then have to be resolved, which is very time
consuming. A conservative cooperation strategy does reduce the potential
number of conflicts, since each part of a model may only be changed by one
team at a time (the situation where two or more teams are working at cross
purposes is avoided). However, a change to one part can affect all dependent
parts and unfortunately thus still lead to conflicts during merge.



284 8. Applying Team Automata

We note that problems during merge are avoided if we have a precise
definition of when a change to a part is local, i.e. when the change only
affects that part and not the rest of the model. When using an optimistic
strategy, each part is edited in its own workspace by one unique team of
developers. If we thus require each team to make local changes only to its
own part, then integration becomes straightforward and, in fact, can be done
automatically due to the absence of conflicts. We call this a conflict-free
(cooperation) strategy.

We now illustrate our conflict-free strategy for the development of an
object-oriented model. As parts of the model we use packages of classes,
which are commonly used to structure a model (see, e.g., [RBP+91] and
[UML99]). A notion of local change can, e.g., be defined through invariancy
of the services offered through the interface of the package. The interface is
then the contract of the package with the rest of the model ([Mey92]).

Bank

office

accounts loans

savings

Fig. 8.2. The departments of a bank.

In Figure 8.2 we present part of a model in which a package Bank models a
real-life bank (the figure is drawn using the notation of [UML99]). Four of its
departments are modeled as subpackages. Bank can be developed in parallel
by four teams where each team separately develops one of the departments.
The changes made to each department are local and the merge to form the
modified bank is straightforward. Note that these packages can be developed
in entirely different geographic locations. Each team has its own workspace
to make its changes and is only dependent on the other teams during merge.



8.2 Team-Based Model Development 285

We use an optimistic strategy, but we constrain the changes in each
workspace to prevent conflicts during merge. A model is split into several
views for individual development and later merge. In this case we however
block changes to the views which cause conflict during merge. In any real-
istic project, however, the connections between the parts (packages) of the
model cannot stay the same during the complete life cycle of the model.
Modifications requiring non-local changes of packages (thus invalidating the
conflict-free strategy) need to occur and hence a conflict-free merge cannot be
guaranteed. These changes can however be localized by (temporarily) adding
a new package, which contains those original packages between which changes
have to be made. These changes are then local with respect to the newly
added package and thus allow for the conflict-free strategy to be applied to
the model with the extra package. This is illustrated in Figure 8.3.

P3 P4P2P1

New

P2 P3 P4

New

P2 P4P3P1

P1

DISTRIBUTE

MERGE

Fig. 8.3. A package is added.

The packages P1 to P4 are edited using the conflict-free strategy. However,
non-local changes are required between packages P2 and P3. The work under
development is merged and a temporary package New is added to group
these two wayward parts. Note that because up to now the changes to the



286 8. Applying Team Automata

packages of the model have been local, the merge is without conflicts. The
model is consequently redistributed with the new structure and work can
continue under the conflict-free strategy, since changes are once again local.
The extra package can be removed once the new connections between the
wayward packages are stable.

Note that in practice it may not be necessary to merge all the packages
under development. It may be sufficient only to merge the packages for which
the non-local changes are required to form a partial model, e.g., if each pack-
age is at most once the subject of such a temporary merge before a complete
intermediary model is produced.

The architecture of a model thus is initially determined by top-down
decomposition. This architecture can however be adapted to suit the need of
our strategy. We call this part of the conflict-free strategy the renegotiation
phase. Too many of such phases during the model’s life cycle are inconvenient.
They however indicate that the high-level architecture of the model is not
yet stable, or even that the model is as yet too premature to be developed
in a distributed fashion. Ideally, the initial breakdown of the model into
packages should only be done by experienced modelers, thereby reducing the
number of renegotiation phases as much as possible. The initial model should
consequently be developed in one workspace until there is enough confidence
that a right choice has been made for a stable enough architecture, after
which the conflict-free strategy can be applied to it. The same considerations
hold when one of the packages used in the conflic-free strategy is further split
up into two or more subpackages for further parallel development.

8.2.2 Teams in the Conflict-Free Strategy

The decomposition of a model into packages is also used to dictate the struc-
ture of the team of developers working on the model. Each such team works
on a distinct package of the model, i.e. for n packages we will have n teams
working in parallel under the conflict-free strategy, each on one of these dis-
tinct packages. Packages can be hierarchical, i.e. a package can contain other
packages. We have seen an example of this in Figure 8.2. We use this hier-
archical structuring of a package to likewise structure the teams working on
the model under the conflict-free strategy. Teams, in our approach, can be
hierarchical and the hierarchical decomposition of a package naturally leads
to the decomposition of the team working on the package into subteams.

Consider the hierarchical package P as sketched in Figure 8.4. It contains
the subpackages P1,1 and P1,2 and each of these subpackages is further split up
into two smaller subpackages (P2,1 and P2,2, and P2,3 and P2,4, respectively).
A team T is working (exclusively) on package P , as indicated by the dotted



8.2 Team-Based Model Development 287

arrow from P to T . This team T is split up into two teams that work on the
two subpackages of P , and one of these teams is further split up, as dictated
by the package architecture. The conflict-free strategy is thus used to manage
the efforts of T together with the other teams working on the other packages.
The same strategy is also used within the hierarchical package P to internally
structure the efforts of team T using subteams. Note that this is not required:
we have not further split up team T1,2 because we have chosen to keep one
large team to work on the entire package P1,2. The conflict-free strategy can
thus be used to parallelize the development of the model into parts, up to
the number of packages that exist in a model at the deepest level of nesting.
The choice of packages then partially dictates the structure of the teams.

TP

T2,2P2,4P2,3P2,2

T1,2T1,1P1,1

T2,1P2,1

P1,2

Fig. 8.4. Hierarchical teams.

Note that during a renegotiation phase the team structure is affected to
reflect the new distribution of packages. In Figure 8.3, we (temporarily) merge
the teams working on packages P2 and P3 in order to reflect the fact that they
are now working together to determine the new interactions between these
packages. Hence, the initial team structure is determined by the architecture
of the initial model and is adapted dynamically due to renegotiation. In the
example of Figure 8.3, the wayward packages P2 and P3, which are edited
by the teams T2 and T3, respectively, are temporarily placed in a package
New during renegotiation. These two teams together are then responsible for
modifying this new package, as sketched in Figure 8.5.

The structure of the model and the structure of the teams are thus tightly
coupled. The initial model determines how the teams can be distributed over
the packages for parallel development. On the other hand, desired non-local
changes of one of the teams can lead to a (temporary) change in architec-
ture. The model itself is “actively” involved in the development process. This



288 8. Applying Team Automata

P4

P4P1

P2 P3

New

T3T2T1

T1 T2 + T3

RENEGOTIATION

P1 P2 P3

T4

T4

Fig. 8.5. Merging teams.

contrasts with many workflow or software process models, where the model
under development is not really relevant (see, e.g., [KB95] and [DKW99]).
They focus more on the documents to be produced, and their timing. The
contents of these documents however do not play an explicit role.

In our approach, the activities of the teams can be divided into two cat-
egories: those which are internal to a team and those which involve other
teams (due to renegotiation). The management of the teams in the conflict-
free strategy can be divided along these lines. On the one hand, management
can be localized and is only concerned with coordinating the changes to one
package by one team. Here the focus is on coordinating a relatively small
group in a well-defined context. On the other hand, the structure of the
teams can be a separate management concern. The management of the hier-
archical structure of the model and of the teams as given in Figure 8.4 can
become an issue in its own right. This is a relatively more complex job than
“just” managing one team. Seniority and experience can come into play when
determining which role is played by which individual. Relatively unexperi-
enced individuals should manage relatively small teams such as T2,1, while
a more experienced manager should lead the more complex team T1,1. The
most experienced manager can decide whether changes leading to renegotia-
tion fit within the direction the model should be heading in order to match
its specification.

Note that we do not discuss how teams should be led. We postulate a
group of people who together perform a common editing of one package.
We do not claim that they should coordinate their work in any specific way.



8.2 Team-Based Model Development 289

We just define the extent of their possible changes by only allowing local
changes. We also do not discuss how two separate teams, when integrated,
should coordinate their efforts. This is a nontrivial task, especially if the
two teams previously worked according to different philosophies. We just
constrain the extent of their possible actions as a new, larger team. This is
a topic of research with strong sociological impact, which is however outside
the scope of this thesis, but naturally fits well within CSCW. The conflict-free
strategy does provide a context within which knowledge about how people
work can be embedded.

8.2.3 Teams Modeled by Team Automata

We now sketch how a hierarchical team structure, as induced by the struc-
ture of the model under development in the way described in the previous
subsections, can be modeled in terms of team automata. We interpret actions
as operations or changes of (a package of) the model. Since internal actions
of a component automaton cannot be observed by any other component au-
tomaton, these actions are ideally suited for representing a local change to
a package using the conflict-free strategy. The external actions, on the other
hand, are ideal for modeling the collaboration between packages.

In Figure 8.6 we represent our example teams T2 and T3 by two quite
trivial component automata T2 and T3, respectively. The states of T2 are p1,
p2, and p3, whereas q1 and q2 are the states of T3. The wavy arcs indicate the
initial states p1 and q1 of T2 and T3, respectively. T2 has no input actions,
output actions a and d, and internal actions b and c, while T3 only has
output actions, viz. a and d. Their transition relations are as depicted in
Figure 8.6. Now a possible scenario could be as follows. First T2 and T3
execute output action a in parallel. Consequently T2 executes a number of
internal actions (i.e. local changes to its package without consulting the other
teams). Eventually both component automata can execute output action d
in parallel, after which this procedure can be repeated. Naturally we could
imagine also T3 having some internal actions (i.e. local changes) to execute
once in a while.

Note that {T2, T3} is a composable system. In Figure 8.7, the state-reduced
version (T2,3)S of a team automaton T2,3 over {T2, T3} is given. Note that
output actions a and d are sopp in T2,3, requiring both T2 and T3 to change
state, whereas only T2 is changing state when internal actions b or c are
executed. The behavior of both T2 and T3 is thus reflected in the behavior
of T2,3. In our interpretation, such peer-to-peer types of synchronization can
represent changes which affect two or more packages, i.e. non-local changes.
The external actions of T2,3 thus represent the shared operations on the



290 8. Applying Team Automata

p3p2
a b

cd

T3:

p1 q1

d

a
q2

T2:

Fig. 8.6. Component automata T2 and T3.

merged packages P2 and P3. Note that we could also use master-slave types
of synchronization to model boss-employee relations in which employees have
to follow orders from their bosses.

c

b

d

a

(

p1

q1

) (

p2

q2

) (

p3

q2

)

(T2,3)S :

Fig. 8.7. State-reduced team automaton (T2,3)S over {T2, T3}.

The external actions of T2,3 consequently can be hidden in order to obtain
a team automaton with only internal actions, i.e. with only local operations
on its packages. The resulting team automaton can then be used as a com-
ponent automaton in a larger team automaton. In this way, subteams and
hierarchical team structures can be modeled. In Figure 8.8, e.g., team au-
tomaton T is defined as a composition of team automaton T2,3 with certain
component automata T1 and T4. As such, team automata are well suited for
modeling (the actions of) the hierarchical teams in the conflict-free strategy.

T2 T3 T4

T2,3

T

T1

Fig. 8.8. A team automaton T over T1, T2,3, and T4.



8.3 Spatial Access Control 291

8.2.4 Conclusion

In this section we have discussed a conflict-free strategy for the development
of a model by several teams of developers working in parallel on distinct pack-
ages of the model. We guided the changes made by each team so as to ensure
no conflicts occur during the merge of the produced efforts. This approach
is scalable as each package can be developed in a similar fashion by splitting
the package up further. We have moreover shown how packages under de-
velopment can (temporarily) be merged during a renegotiation phase, if we
need changes to a package that would invalidate the conflict-free strategy.

Additionally, we have discussed how the hierarchical structure of the
model in packages can be used to structure the teams working on the model.
The top-down decomposition of a model into packages guides the decompo-
sition of the people working on the model into similarly structured teams.
The renegotiation phase, when packages are temporarily merged, then gives
heuristics on how the teams should further cooperate to implement changes
without generating conflicts. We have sketched how this can formally be
modeled by team automata.

The conflict-free strategy, along with the explicit discussion on the team
structure and its actions, brings the worlds of CSCW, software engineer-
ing, software configuration management, and process modeling very close to-
gether. We have discussed how a large model can be developed and how the
work between the people doing the actual work can be coordinated. Special
to the approach is that the subject of the work, the model under develop-
ment, is used to structure the work and thus plays an active part in deciding
which changes are possible.

8.3 Spatial Access Control

As the complexity of reactive (computer) systems continues to increase, ab-
stractions tend to be especially useful. For this reason, computer science often
introduces and studies various models of computation that allow enhanced
understanding and analysis. Computer science has also created a number of
interesting metaphors (e.g., the desktop metaphor) that aid in end user un-
derstanding of computing phenomena. This section is concerned with a model
and a metaphor. The model is team automata and the metaphor is spatial
access control , which is based upon current notions of virtual reality, and
helps demystify concepts of access control matrices and capability structures
for the end user ([BB99]).



292 8. Applying Team Automata

Our aim here is to connect the metaphor of spatial access control to the
framework of team automata, and to show through examples how this com-
bination facilitates the identification and unambiguous description of some
key issues of access control. The rigorous setup of the framework of team
automata allows one to formulate, verify, and analyze general and specific
logical properties of various control mechanisms in a mathematically precise
way. In realistically large (computer) systems, security is a big issue, and
team automata allow formal proofs of correctness of its design. Moreover, a
formal approach as provided by the team automata framework forces one to
unambiguously describe control policies and it may suggest new approaches
not seen otherwise. There is a large body of literature concerning topics like
security, protection, and awareness in (computer) systems. Although team
automata are potentially applicable also to these areas, we are currently not
concerned with issues outside of spatial access control. We will conclude with
a discussion of some variations and extensions of our setup.

We now begin by discussing the spatial access control metaphor by means
of an example and subsequently we show how certain spatial access control
mechanisms can be made precise and given a formal description using team
automata. We first introduce information access modeling by granting and
revoking access rights, and show how immediate versus delayed revocation
can be formulated. Subsequently we extend our study to the more complex
issue of meta access control and, finally, we show how team automata can
deal with deep versus shallow revocation.

8.3.1 Access Control

A vital component of any (computer) system or environment is security and
information access control , but this is sometimes done in a rather ad hoc
or inadequate fashion with no underlying rigorous, formal model. In typical
electronic file systems, access rights such as read-access and write-access are
allocated to users on some basis such as “need to know”, ownership, or ad
hoc lists of accessors. Within groupware systems, there are typically needs for
more refined access rights, such as the right to scroll a document that is being
synchronously edited by a group in real time. Furthermore, the granularity of
access must sometimes be more fine grained and flexible, as within a software
development team. Moreover, it is important to control access meta rights.
For example, it may be useful for an author to grant another teammember the
right to grant document access to other non-team members (i.e. delegation).
Various models have been proposed to meet such requirements (see, e.g.,
[SD92], [Rod96], and [Sik97]).



8.3 Spatial Access Control 293

We use a spatial access metaphor based upon work of Bullock and col-
leagues in [BB97] and [BB99]. There, access control is governed by the rooms,
or spaces, in which subjects and objects reside, and the ability of a subject to
traverse space in order to get close to an object. Bullock also implemented a
system called SPACE to test out some of these ideas ([Bul98]). A basic tenet
of the SPACE access model is that a fundamental component of any collabo-
rative environment is the environment itself (i.e. the space). It is the shared
territory within which information is accessed and interaction takes place.
Often this shared space is divided into numerous regions that segment the
space. This allows decomposition of a very large space into smaller ones for
manageability. It also allows cognitive differentiation (i.e. different concerns,
memories, and thoughts associated with different regions), and distributed
implementation (i.e. different servers for different regions).

By adopting a spatial approach to access control, the SPACE metaphor
exploits a natural part of the environment, making it possible to hide explicit
technical security mechanisms from end users through the natural spatial
makeup of the environment. These users can then make use of their knowledge
of the environment to understand the implicit security policies. Users can
thus avoid understanding technical concepts such as so-called access matrices,
which helps to avoid misunderstandings.

We consider here a virtual reality, in which a user can traverse from room
to room by using keyboard keys, the mouse, or fancier devices. It is a natural
and simple extension to assume that access control checking happens at the
boundaries (doors) between spaces (rooms) when a user attempts to move
from one room to another. If the access is OK, then the user can enter and
use the resources associated with the newly entered room.

To illustrate the various concepts throughout this section, we present a
simple running example which is concerned with read and write access to
a file F by a user Kwaku. This file might be any data or document that is
stored electronically within a typical file system. The file system keeps track
of which users have which access rights to the file F . Three types of access
rights are possible for a file F : null access (implying the user can neither read
nor write the file), read access (implying the user cannot write the file), and
full access (implying the user can read and write — i.e. edit — the file).

In security literature, authentication deals with verification that the user
is truly the person represented, whereas authorization deals with validation
that the user has access to the given resource. Assume that when Kwaku logs
into the system, there is an authentication check. Then whenever he tries to
read or write F , authorization checking occurs, and Kwaku is either allowed



294 8. Applying Team Automata

the access, or not. Using the SPACE metaphor, the above three types of access
rights can be associated with three rooms as shown in Figure 8.9.

Room B: read access room

Room A: null access room

Room C: full access room

Fig. 8.9. A rooms metaphor for access control.

Room A is associated with no access to the document, room B is asso-
ciated with read access, and room C models full access. Suppose Kwaku is
in room B, the reading room. Presence in this room means that any time
Kwaku decides to read F , he can do so. However, if he attempts to make
changes to F , then he will fail because he does not have write access in room
B. There are doors between rooms, implying that user access rights can be
dynamically changed by changing rooms. We discuss this dynamic change in
more detail later in this section.

This access mechanism satisfies a number of end user friendly proper-
ties: it is simple, understandable by non-computer people, relatively natural
and unobtrusive, and elegant. Later we show how modeling this type of ac-
cess metaphor via team automata adds precision, mathematical rigor, and
analytic capabilities.

We now show how to model our access control example in the team au-
tomata framework. The component automaton CC depicted in Figure 8.10(a)
corresponds to room C of Figure 8.9, as it models full access to file F . The
states of CC are Ce modeling an empty room, Cn modeling F is not accessed,
Cr modeling F is being read, and Cw modeling F is being written (edited).
The wavy arc in Figure 8.10(a) denotes the initial state Ce. The actions of CC

are eBC (enter room), eCB (exit room), rC (begin reading), rC (end reading),
wC (begin writing), and wC (end writing).

CC thus has the transitions (Ce, eBC , Cn), (Cn, eCB , Ce), (Cn, rC , Cr),
(Cr , rC , Cn), (Cr , wC , Cw), and (Cw , wC , Cr). Now transition (Ce, eBC , Cn),
e.g., shows that in CC we can go from state Ce to Cn by executing action
eBC . We also see that transitioning directly from Cn to Cw is not possible.
Furthermore, entering and exiting room C may only occur via state Cn. We
choose to specify actions rC , rC , wC , and wC as internal actions of CC , and
eBC and eCB as external actions of CC . Both eBC and eCB clearly should
be externally visible and therefore cannot be internal. For the moment we



8.3 Spatial Access Control 295

CB :

eBC

Be BwBr

rB

(b)

eCB

Bn

eAB

CA :

eAB

Ae AwAr

(c)

eBA

An

eBA

CC :

eCB

Cw

wC

Cr

rC

Cn

rC wC

rB

Ce

eBC

(a)

Fig. 8.10. Component automata CC , CB, and CA: rooms C, B, and A.

choose them to be output actions. These two external actions are candidates
for being synchronized with actions of the same name in other component
automata when forming a team automaton over CC and the two component
automata described next.

Component automata CB and CA corresponding to rooms B and A, re-
spectively, are somewhat similar to CC . However, write access is denied in
rooms B and A and read access is denied in room A. Component automata
CB and CA are depicted in Figure 8.10(b,c). Note that CA has initial state An

(hence initially room A is not empty) and that both CB and CA have states
unreachable from the initial state. Actions rB and rB are internal, while the
rest of the actions of CB and CA are external (output) actions.

Now we want to combine CC , CB, and CA into one team automaton
reflecting a given access policy. They clearly form a composable system
{CC , CB, CA} and we combine them into a team automaton T CBA as fol-
lows. Since each state of T CBA is a combination of a state from CC , a state
from CB, and a state from CA, T CBA has 43 = 64 states. Initially T CBA is in
state (An, Be, Ce), which means one starts in room A, while rooms B and C
are empty.

Assuming that one can have only one kind of access rights at a time,
two of the rooms should be empty at any moment in time. This means that
T CBA should be defined in such a way that in each of its reachable states
two of the three component automata are always in state “empty”. We let
the component automata synchronize on the external actions eAB , eBA, eBC ,



296 8. Applying Team Automata

and eCB . Each such synchronized external action of T CBA corresponds to
exiting a room while entering another. Synchronization of action eAB , e.g.,
models a move from room A to room B. This move is represented by the
transition ((An, Be, Ce), eAB , (Ae, Bn, Ce)) showing that in component au-
tomaton CA we exit room A, in automaton CB we enter room B, and in
component automaton CC we do nothing (i.e. remain idle). This represents a
change in access rights from null access (in room A) to read access (in room
B). We do not include, e.g., the transition ((An, Be, Ce), eAB , (Ae, Be, Ce))
which would let the user exit room A but never enter room B. Furthermore,
the user could be in more than one room at a time if we would allow transi-
tions like ((An, Be, Ce), eAB , (An, Bn, Ce)). In TCBA we include only the four
transitions representing the synchronized changing of rooms. In each of these
transitions, one component automaton is idle. Since all internal (read and
write related) actions are maintained, in each of these only that component
automaton is involved to which such an action belongs.

The state-reduced version T CBA
S of the thus defined team automaton

T CBA over {CC , CB, CA} is depicted in Figure 8.11.

Be

Ae

Cr

Br

Ae

Ce

Be

Ae

Cn

Bn

Ae

Ce

Be

An

Ce

Be

Ae

Cw

rB

rC

eCB

wC

eAB eBA

eBC

rC wC

rB

T CBA
S :

Fig. 8.11. State-reduced team automaton T CBA
S over {CC , CB, CA}.



8.3 Spatial Access Control 297

Recall that T CBA is not the only team automaton over {CC , CB, CA}. Also
recall that the decision to consider eAB , eBA, eBC , and eCB as output actions
in all component automata of T CBA was made more or less arbitrarily. In
fact, it depends on how one views the action of entering and exiting a room
within the team automaton T CBA. By choosing all of those actions to be
output (and thus of the same type), exiting one room and entering another
is seen as a sopp action. Recall that, on the other hand, master-slave types of
synchronization occur when input actions can only occur as a response (slave)
to output actions. In our example, assume that one views the changing of
rooms as an action initiated by leaving a room and forcing the room that is
entered to accept the entrance. Then one would name, e.g., eAB an output
action of CA and an input action of CB, and eBA an output action of CB and
an input action of CA. This causes both eAB (with master CA and slave CB)
and eBA (with master CB and slave CA) to be sms . Likewise for the other
actions.

In addition, Section 5.4 defines strategies that lead specifically to uniquely
defined combinations of peer-to-peer and master-slave types of synchroniza-
tion within team automata. The team automata framework allows one to
model many other features useful in virtual reality environments. A door,
e.g., can be extended to join more than two rooms since any number of com-
ponent automata can participate in an output action. Furthermore, as said
before, a user could be in more than one room at a time.

8.3.2 Authorization and Revocation

We continue our running example by adding Kwaku, a user whose access
rights to file F will be checked by the access control system T CBA. Kwaku
is represented by component automaton CU , depicted in Figure 8.12. This
extension complicates our example in the sense that Kwaku’s read and write
access rights can be changed independently of his whereabouts. Only to enter
a room he has to be authorized. Thus access rights are no longer equivalent
with being in a room, but rather with the possibility to enter a room. To add
this to the team automaton formalization, we will use the feature of itera-
tively constructing team automata with team automata as their constituting
component automata.

Kwaku starts in state Un with no access rights. The actions m(r), m(r),
m(w), and m(w) model the (meta) operations of “being granted read access”,
“being revoked read access”, “being granted write access”, and “being re-
voked write access”, respectively. Since these clearly are passive actions from
Kwaku’s point of view, we choose all of them to be input actions. Note that
Kwaku can end up in state Uw if and only if he was granted access rights



298 8. Applying Team Automata

CU :
Uw

m(r) m(w)

Un Ur

m(r) m(w)

Fig. 8.12. Component automaton CU : user Kwaku.

to read and to write, i.e. actions m(r) and m(w) have taken place. When
Kwaku’s write access is consequently revoked by transition (Uw,m(w), Ur),
he ends up in state Ur.

Now suppose that we want to model Kwaku’s options for editing file F ,
which is protected by the access control system T CBA. Then we would like
to compose a team automaton over T CBA and CU . To do so, first note that
{T CBA, CU} is a composable system. Next we choose a transition relation,
i.e. for each action a subset from its complete transition space in {T CBA, CU}
is selected, thereby formally fixing an access control policy for Kwaku under
the constraints imposed by T CBA.

The initial state of any team over {T CBA, CU} is (An, Be, Ce, Un), i.e.
Kwaku is not yet editing F and is in the virtual room A without access
rights. Now imagine the access rights to be keys. Hence Kwaku needs the
right key to enter reading room B, i.e. action m(r) must take place be-
fore action eAB becomes enabled. This action m(r) leads us from the ini-
tial state to (An, Be, Ce, Ur). Now Kwaku has the key to enter room B
by ((An, Be, Ce, Ur), eAB , (Ae, Bn, Ce, Ur)). This transition models the ac-
ceptance of Kwaku’s entrance of room B, i.e. this action is the autho-
rization activity mentioned earlier. Hence our choice of the transition re-
lation fixes the way we deal with authorization. If we would include, e.g.,
((An, Be, Ce, Un), eAB , (Ae, Bn, Ce, Un)) in the transition relation, this would
mean that Kwaku can enter room B without having read access rights for F .
Note however that since transitions involving internal actions of either T CBA

or CU by definition cannot be pre-empted in any team over {T CBA, CU},
our transition relation must contain ((Ae, Bn, Ce, Un), rB , (Ae, Br, Ce, Un)).
Hence Kwaku, once in room B, can always begin reading file F . By not in-
cluding ((An, Be, Ce, Un), eAB , (Ae, Bn, Ce, Un)) in our transition relation we
avoid that Kwaku can read F without ever having been granted read access.
This leads to the question of the revocation of access rights.

As argued, (Ae, Bn, Ce, Ur) — meaning that Kwaku is in room B with
reading rights — will be a reachable state. Now imagine that while in this
state Kwaku’s reading rights are revoked by m(r). To which state should
this action lead, i.e. in what way do we handle revocation of access rights?
We could opt for modeling immediate revocation or delayed revocation. The



8.3 Spatial Access Control 299

latter is what we have chosen to model first. Thus our answer to the question
above is to include ((Ae, Bn, Ce, Ur),m(r), (Ae, Bn, Ce, Un)). The result is
that Kwaku can pursue his activities in room B, but cannot re-enter the
room once he has left it (unless his read access has been restored). He is thus
still able to read (browse) F , but the moment he decides to re-open the file
this fails. Likewise, if Kwaku is writing F when his writing right is revoked,
then he can continue editing (typing in) F , but he cannot re-enter room C
as long as his write access right has not been restored. On this side of the
revocation spectrum, a user can thus continue his or her current activity even
when his or her rights have been revoked. He or she can do so until he or
she wants to restart this activity, at which moment an authorization check
is done to decide if he or she has the right to restart this activity. In some
applications, this may be an intolerable delay.

Immediate revocation, on the other hand, means the following. If a user
is reading when his or her reading right is revoked, then the file immediately
disappears from view, while if a user is writing when his or her writing right
is revoked, then the edit is interrupted and writing is terminated in the mid-
dle of the current activity. In some applications, this is overly disruptive and
unfriendly. If we would want to incorporate immediate revocation into our ex-
ample we would have to adapt our distribution of actions a bit. As said before,
since rB is an internal action we cannot disallow action rB to take place after
((Ae, Bn, Ce, Ur),m(r), (Ae, Bn, Ce, Un)) has revoked Kwaku’s reading rights.
If we instead choose rB to be an external action, we are given the freedom not
to include ((Ae, Bn, Ce, Un), rB , (Ae, Br, Ce, Un)) in our transition relation.
The result is that as long as Kwaku is not being granted read access by ac-
tion m(r), the only way left to proceed for Kwaku in state (Ae, Bn, Ce, Un) is
to exit room B by ((Ae, Bn, Ce, Un), eBA, (An, Be, Ce, Un)). Modeling imme-
diate revocation thus requires that actions such as rB are visible, since in that
way we can choose them not to be enabled in certain states. Immediate revo-
cation also implies that we still want Kwaku to be able to stop reading and
leave state (Ae, Br, Ce, Un) by ((Ae, Br, Ce, Un), rB , (Ae, Bn, Ce, Un)). Action
rB can thus remain internal.

This finishes the description of a part of a team automaton T over {T CBA,
CU}. In Figure 8.13 the state-reduced version TS of T (for delayed revocation)
is depicted.

Recall that team automata are intended to be used to model (logical)
design issues. An action can take place provided certain preconditions hold,
and affects only states of those component automata involved in that action.
Hence at this level there is no notion of time and no means are provided to
give one action priority over another. A result of the lack of a notion of time



300 8. Applying Team Automata

Cw

Be

UwwC

Ur

Cw

Be

Ae

Un

Cw

Be

AewC

Ae

Cr

Be

Uw

Ae

Ur

Cr

Be

Ae

Un

Cr

Be

Ae

Cn

Be

Uw

Ae

Ur

Cn

Be

Ae

Un

Cn

Be

Ae

Ce

Be

Ur

An

Ce

Be

Uw

An

Ce

Be

Un

Ce

Bn

Ur

Ae

Ce

Bn

Uw

Ae

Ce

Bn

Un

Ae

Ce

Br

Ur

Ae

Ce

Uw

Ae

Ce

Un

Ae

Br

wC

wC
rC

rC

rB

rB

eCB

eBA

An

wC

wC

m(r)

m(w) m(w)

m(r)

rC

rC

rC

rC

rB

rB

eBA

eBA

m(r)

m(w)

m(r)

m(r)

m(r)m(r)
m(r) m(r)

m(w)m(w)

eCB

m(w)

eAB

m(w)

m(w)m(w)

eBC

m(w)

m(r)

eAB

rB

rB

eCB

Br

m(r)

m(w)

TS :

m(w)

m(r)

Fig. 8.13. Team automaton TS over {T CBA, CU}.

is, e.g., that nothing can be said about how long it takes before Kwaku has
left reading room B after his reading access right has been revoked. However,
time and priorities may be added to the basic model as extra features.

Again, T is not the unique team automaton over {T CBA, CU}, but it is a
team automaton one obtains by choosing a specific transition relation with
a specific protocol in mind. Once again this shows that the freedom of the
team automata model to choose transition relations offers the flexibility to
distinguish even the smallest nuances in the meaning of one’s design. An-
other interesting feature of the team automata framework is shown by the



8.3 Spatial Access Control 301

following application of the results proven in Section 5.2 to our running ex-
ample. In whatever order one chooses to construct a team automaton over
the component automata CC , CB, CA, and CU , we know that it will always
be possible to construct the team T discussed above. This means that in-
stead of first constructing T CBA over {CC , CB, CA}, and then adding CU , we
could just as well have constructed an iterated team by, e.g., starting from
the user component automaton CU and adding successively the component
automata CC , CB, and CA modeling the access rights that can be exercised.
Moreover, independent of the way a team automaton over CC , CB, CA, and
CU is constructed, more component automata can be added.

As an example, suppose that Kwaku has other interests than the file F .
Hence imagine a component automaton T NBA in which he can transition into
a state in which he plays some basketball. Then we may construct a team
over the team automaton T just described and the component automaton
T NBA modeling when Kwaku is entitled — or perhaps even forced — to
have a break (which is of some importance in these times of RSI). In general,
new component automata can be added to a given team automaton at any
moment of time, without affecting the possibilities of any new additions. We
thus conclude once again that the team automata framework scores high on
scalability. We will come back to this shortly.

8.3.3 Meta Access Control

Until now we have seen how team automata can be used to describe the con-
trol of a user’s access to a file depending on his or her rights. Here we further
elaborate on the granting and revoking of access rights and we consider meta
access control . This means that privileges such as granting and revoking of
rights can themselves be granted and revoked. The complicated (recursive)
situations that may arise in this fashion depend on the chosen (meta) ac-
cess control policy and we demonstrate how they can unambiguously and
concisely be defined in terms of team automata.

Figure 8.14 shows a component automaton C0 that models a building with
three levels — A, B, and C — corresponding to null access, read access, and
full access, respectively. This component automaton shows the same access
structure as the three rooms of Figure 8.10. Now, however, the status of the
user directly determines the level he or she operates on and the granting and
revoking of access rights is identified with changing levels. This differs from
the previous example where the status of the user only determined his or her
rights to enter a room.

Consequently, in C0 the user moves in two dimensions: vertically between
levels A, B, and C — indicating the dynamic change in access rights Kwaku



302 8. Applying Team Automata

CrCn Cw

Bn Br Bw

An Ar Aw

m(w)

m(r)

r w

r

m(r)

m(w)m(w)

m(r)

m(w)

m(r)

r w

wr

r w

C0 :
− Level C

− Level B

− Level A

m(r)

m(w) m(w)

m(r)

Fig. 8.14. Component automaton C0: the access building.

has for F — and horizontally between the states “null”, “reading”, and “writ-
ing” — indicating the current activities of Kwaku with respect to F . Notice
that in C0, e.g., the state Bw meaning that Kwaku is writing while having
read access but no write access, can only be reached from Cw by an action
m(w) or from Aw by an action m(r). Hence this state Bw can be entered only
when Kwaku is writing while his status changes. There is no transition to Bw

at level B. A similar remark holds for states Ar and Aw, which can be entered
only from level B by the read access revocation action m(r). States such as
Ar, Aw, and Bw are called irregular states because they are not reachable at
their own level.

To model meta access control, we assume the existence of a system ad-
ministrator, Abena, who can change Kwaku’s rights. Hence Abena has the
right to grant and revoke access by Kwaku to F . For this reason we have
chosen all actions of granting and revoking access rights in C0 to be input
actions, while all actions of reading and writing are output actions. The right
to grant and revoke are legitimate rights, but they are not directly applied
to F . They are in fact meta operations — hence m(r) and m(w) — and the
rights to apply these meta operations are meta rights. Similarly, if there is
a creator, Kwesi, who can allow (and disallow) Abena to grant and revoke,
then Kwesi has meta meta rights. Kwesi has the meta meta right to grant
and revoke Abena’s meta rights to grant and revoke Kwaku’s access rights to
F . A typical action of Kwesi is m2(w), which revokes Abena’s right to grant
and revoke write access to Kwaku.



8.3 Spatial Access Control 303

The notion of meta clearly extends to arbitrary layers. An example of
such a multi-layered structure of meta can be seen in the journal refereeing
process. The creator of a document may delegate publication responsibilities
to co-authors who may select a journal and grant m2(r) rights to the editor-
in-chief. The editor-in-chief may grant m(r) rights to assistant editors who
can then grant and revoke read access to reviewers. An interesting question
now arises as to the effect of revocation: should revocation of a meta right also
revoke the rights that were passed on to others? This is the issue of shallow
revocation versus deep revocation. Shallow revocation means that a revoke
action does not revoke any of the rights that were previously passed on to
others, whereas deep revocation means that a revoke action does revoke all
rights previously passed on. Team automata can be used to model shallow,
deep, or even hybrid revocation. Shallow revocation is often the easiest to
model, whereas deep revocation is known as a big challenge to model and
implement ([DS98]). We now show how deep revocation can be modeled using
team automata.

Figure 8.15 shows a component automaton capturing one layer (layer k)
of a multi-layer meta access specification for our example of read and write
access. We have already seen layer 0, viz. component automaton C0. For
each value of k ≥ 1 there are corresponding component automata that are
directly related to layer k (viz. Ck−1 at layer k − 1 and Ck+1 at layer k + 1).
For each such component automaton Ck, the horizontal actionsmk(r), mk(r),
mk(w), and mk(w) are output actions, whereas the vertical actions mk+1(r),
mk+1(r), mk+1(w), and mk+1(w) are input actions. For k = 0 we identify
r with m0(r), r with m0(r), w with m0(w), and w with m0(w). Similarly,
m(r) = m1(r), m(r) = m1(r), m(w) = m1(w), and m(w) = m1(w).

We can now define a multi-layered structure by recursively composing
a team automaton over C0, C1, . . . , and Cn, for some n ≥ k. Note that
{C0, C1, . . . , Cn} is a composable system. As mentioned before we can also
build this team automaton in an iterated way starting from, e.g., a team over
any two component automata Ck and Ck+1. In Figure 8.16, the state-reduced
version (T k

k−1)S of a team automaton T k
k−1 over Ck−1 and Ck, representing

layer k − 1 and layer k of this layered structure, is depicted.
The transition relation of this team T k

k−1 is chosen with the modeling
of deep revocation in mind. Finally, note that in Figure 8.16 we have added
superscripts to distinguish the states in Ck from the states in Ck−1, e.g., state
Br of Ck from state Br of Ck−1.

In our example, C2 represents the actions of the supervisor Kwesi and
C1 those of Abena. Now consider Kwesi in state B2

r . Then Figure 8.16 tells
us that Abena must be in one of the three states B1

n, B
1
r , or B1

w. Assume



304 8. Applying Team Automata

CrCn Cw

Bn Br Bw

An Ar Aw

mk(r) mk(w)

mk(r)

Ck :

mk+1(r) mk+1(r)

mk+1(w)

mk(r) mk(w)

mk(w)mk(r)

mk(w)mk(r)

mk+1(w)

mk+1(w)

mk+1(r)mk+1(r)

mk+1(w)mk+1(w)

mk+1(r)

mk+1(w)

mk+1(r)

Fig. 8.15. Component automaton Ck: meta access at layer k.

that Kwesi reached this state B2
r by performing action m2(r) from B2

n, while
Abena was in state A1

n having no rights to grant and revoke reading rights.
Action m2(r) is an output action of C2 and an input action of C1, and our
transition relation forces C1 to transition from A1

n to B1
n. The interpretation

is that Kwesi granted Abena the right to do read grants and revokes (to user
Kwaku for file F ).

Similarly, component automaton Ck can revoke the right to grant and
to revoke read access from Ck−1 at any time by performing output action
mk(r), and thus forcing Ck−1 to perform this action — this time as an input
action — as well. Continuing our example, this means that while in state
B2

r , Kwesi’s read granting right may be revoked by action m3(r) at any time.
If this happens, Kwesi is forced into the irregular state A2

r , which has only
one possible output action, viz. m2(r), leading to A2

n. Whenever that action
m2(r) occurs it revokes Abena’s right to change Kwaku’s read access.

We thus observe two general rules of activity in such a team automa-
ton over {C0, C1, . . . , Cn}, with each component automaton of the form de-
picted in Figure 8.15. First, when a “master” component automaton Ck where
1 ≤ k ≤ n, transitions right (grant) or left (revoke), then the “slave” compo-
nent automaton Ck−1 must transition upward (gaining some access right) or
downward (losing some access right). Secondly, the slave Ck−1 may be forced
to transition downward into an irregular state, in which case it will eventually
transition to the left. Ck−1 is itself a master and thus this transition to the
left again forces a downward transition of Ck−2, and so on until C0 on layer
0. Hence, as promised, we indeed model deep revocation.



8.3 Spatial Access Control 305

B
k
−
1

w

A
k r

B
k
−
1

w

B
k r

B
k
−
1

w

C
k r

B
k r

B
k
−
1

r

B
k
−
1

n

A
k r

B
k
−
1

n

B
k r

A
k
−
1

w

A
k n

A
k
−
1

w

B
k n

A
k
−
1

w

C
k n

B
k n

A
k
−
1

r

A
k
−
1

n

A
k n

A
k
−
1

n

B
k n

C
k
−
1

w

A
k w

C
k
−
1

w

B
k w

C
k
−
1

w

C
k w

B
k w

C
k
−
1

r

C
k
−
1

n

A
k w

C
k
−
1

n

B
k w

A
k
−
1

n

C
k n

C
k n

B
k
−
1

n

C
k r

B
k
−
1

r

C
k r

A
k n

B
k
−
1

r

A
k r

C
k
−
1

r

A
k w

A
k
−
1

r

A
k
−
1

r

m
k
(r
)

m
k
(r
)

m
k
+
1 (
w
)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1 (
w
)

m
k
+
1 (
w
)

m
k
(r
)

m
k
(r
)

m
k
(r
)

m
k
+
1
(r
)

m
k
+
1 (
r)

m
k
+
1 (
r)

m
k
+
1 (
r)

m
k
+
1
(r
)

m
k
(r
)

m
k
+
1
(r
)

m
k
+
1
(r
)

m
k
+
1 (
r)

m
k
+
1
(w

)

m
k
+
1 (
r)

m
k
+
1
(r
)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1
(r
)

m
k
+
1 (
r)

m
k
+
1
(r
)

m
k
+
1
(r
)

m
k
+
1
(r
)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
+
1
(w

)

m
k
(w

)

m
k
(w

)

m
k
(w

)

m
k
+
1
(w

)

m
k
+
1 (
r)

m
k
+
1 (
r)

m
k
+
1 (
r)

m
k
−
1
(w

)

m
k
−
1
(r
)

m
k
−
1
(w

)

m
k
−
1
(r
)

m
k
−
1
(w

)

m
k
−
1
(r
)

m
k
−
1 (
r)

m
k
−
1 (
r)

m
k
−
1 (
r)

m
k
−
1
(r
)

m
k
−
1
(r
)

m
k
−
1
(w

)

m
k
−
1
(w

)

m
k
−
1
(w

)

m
k
−
1
(w

)

m
k
−
1
(w

)

m
k
−
1
(w

)

m
k
−
1
(w

)

m
k
−
1
(w

)

m
k
−
1
(w

)

m
k
−
1 (
r)

m
k
−
1 (
r)

m
k
−
1
(r
)

m
k
−
1
(r
)

m
k
−
1
(r
)

m
k
−
1 (
r)

(T
k k
−

1
) S

:

C
k
−
1

r

C
k w

C
k
−
1

n

C
k w

m
k
−
1
(r
)

m
k
(w

)

m
k
(w

)

m
k
(w

)

m
k
(w

)

m
k
(w

)

m
k
(w

)

m
k
(w

)

m
k
(w

)

m
k
(w

)
m
k
(r
)

m
k
(r
)

m
k
(r
)

m
k
(r
)

m
k
(r
)

m
k
(r
)

m
k
(r
)

m
k
(r
)

m
k
(r
)

F
ig
.
8
.1
6
.
S
ta
te
-r
ed

u
ce
d
te
am

au
to
m
at
on

(T
k k
−
1
) S

ov
er

C
k
−
1
an

d
C
k
.



306 8. Applying Team Automata

8.3.4 Conclusion

In this section we have demonstrated by means of examples how team
automata can be used for modeling access control mechanisms presented
through the metaphor of spatial access. The combination of the formal frame-
work of team automata and the spatial access metaphor leads to a powerful
abstraction well suited for a precise description of (at least some of the)
key issues of access control. The team automata framework supports the
design of distributed systems and protocols, by making explicit the role of
actions and the choice of transitions governing the communication, coordina-
tion, cooperation, and collaboration. Examples include, e.g., peer-to-peer and
master-slave types of synchronization, or heterogenous combinations thereof.
Moreover, the formal setup and the possibility of a modular design provide
analytic tools for the verification of desired properties of complex (computer)
systems. Team automata are thus a fitting companion to the virtual spaces
metaphor used in virtual reality systems that supports notions of rooms and
buildings. Each space is represented by a component automaton, dynamic ac-
cess changes are represented by joint external actions, while resource accesses
within a space can be represented by internal actions.

Obviously there are numerous other possible examples as well as variations
of the example we have considered above. For one, the assumption that write
access can only be granted if read access has been granted can easily be
dropped. Similarly, grant and revoke rights can be coupled more loosely.
Read and write operations are specified here at the file level, but could also
have been specified at the page level, object level, or record level, to name but
a few. This might mean that delayed revocation is precisely the right choice.
At the file level, the r and r actions might be seen at the user interface as
open and close file. The w and w actions might be edit and save operations.
When dealing with a transaction system, combinations of these operations
might correspond to begin transaction and end transaction.

The team automata framework handles group decision making well and
therefore allows convenient implementations of distributed access control . Dis-
tributed access control means that the supervisory work of granting and re-
voking access rights is administered by multiple agents. Thus Kwaku could
have two administrative supervisors who must agree on any change of access
rights. This can be modeled as an action of two masters and one slave: the ac-
tions would be output for both supervisors, requiring both to participate, and
input for the slave. Alternatively, by including transitions with one supervisor
being inactive, we can model the case of approval being required by either
one of the two supervisors. Hybrids between pure master-slave and pure peer-
to-peer types of synchronization, as in heterogenous team automata, are also



8.3 Spatial Access Control 307

useful. All these variations are due to the fact that the choice of a transition
relation is the crucial modeling issue of the team automata framework.

Recall that team automata model the logical architecture of a design.
They abstract from concrete data, configurations, and actions, and only de-
scribe behavior in terms of a state-action diagram (structure), the role of
actions (input, output, or internal), and synchronizations (shared actions).
It is not feasible (nor necessary) to have a distinct component automaton
for each individual, and for each file in an organization. In many situations,
categories and roles are used rather than individuals. Any implementation
would have the team automaton as a class entity, and an activation record
for each person, containing their current state. Similarly, by keeping a status
of the files one can model the criterion “only one person can write a file at a
time, but many readers is OK”. The model cast in the spirit of component
automata depicting roles rather than individuals becomes much more useful
and general, and avoids some notational problems of exponential growth.

As observed earlier, time and priorities are not incorporated in neither
the spatial access metaphor nor the team automata model as discussed here.
However, similar to the Petri net model one may consider to extend team
automata with time and priorities (see, e.g., [ABC+95], which focuses on
performance analysis). When time and/or priorities are part of access control
this would allow the designer to control the sojourn times in the local states
and to control the resolution of conflicting actions.

Using team automata for modeling (spatial) access control forces one to
make explicit and unambiguous design choices and at the same time provides
the possibility of mathematically precise analysis tools for proving crucial
design properties, without first having to implement one’s design.




