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6. Behavior of Team Automata

In this chapter we study the behavior of team automata. We begin with a
few elementary observations on the computational power for the case of finite
component automata, i.e. component automata with a finite set of states
and a finite alphabet (of input, output, and internal actions). For the rest of
this chapter we then turn to component automata and team automata with
possibly infinite sets of states and actions. We study the relation between
the computations and behavior of team automata on the one hand, and
those of their constituting component automata on the other hand. Since a
composable system does not uniquely define a team automaton, the relation
between the computations and behavior of a team automaton and those of its
constituting component automata depends on the allowed synchronizations.

We are particularly interested in conditions which guarantee that a team
automaton satisfies compositionality. This means that the behavior of a team
automaton can be described as a function of the behavior of its constituting
component automata. Since component automata and team automata have
languages as behavior, we use language-theoretic operations — so called shuf-
fles — to describe the combination of words into new words. In order to be
able to apply these shuffles in the context of team automata, we extensively
investigate their properties in two separate sections. This eventually enables
us to identify several types of team automata satisfying compositionality.

6.1 Behavior of Finite Component Automata

Most types of automata considered in this thesis may have an infinite set of
states and an infinite set of actions. As already discussed in Section 3.1, by
allowing the automata in our framework to have an infinite set of states we
end up with automata that have Turing machine power. In this section we
study the behavior of finite component automata, i.e. of component automata
with a finite set of states and a finite alphabet, and — subsequently — the
influence that the distinction between input, output, and internal actions has
on their behavior (cf. Section 7.1.4).
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In the remainder of this section, all component automata have a finite
set of states and a finite alphabet. Moreover, we restrict our study to an
investigation of their finite computations, and the resulting finitary behavior.

Component automata differ from automata only by the distinction of their
set of actions into input, output, and internal actions. In fact, by ignoring this
distinction, every finite component automaton C = (Q, (Σinp,Σout,Σint), δ, I)
can be viewed as an automaton A = (Q,Σ, δ, I) such that Σ = Σinp∪Σout∪
Σint, with BΣ

A = BΣ
C . Conversely, every automaton A = (Q,Σ, δ, I) such that

Q and Σ are finite can be viewed — once its alphabet is disjointly distributed
over input, output, and internal actions Σ1, Σ2, and Σ3 — as a component
automaton C = (Q, (Σ1,Σ2,Σ3), δ, I) such that Σ1 ∪ Σ2 ∪ Σ3 = Σ, with
BΣ

C = BΣ
A.

The computational power of automata with a finite set of states and a
finite set of actions equals that of the family of prefix-closed regular finitary
languages, which we denote by pREG. The family of regular languages, de-
noted by REG, is precisely the family of languages accepted by the well-known
model of finite (state) automata (cf. the introduction to Chapter 3). Formally,
pREG = {L ∈ REG | L is prefix closed}. It is known that pREG ⊂ REG and
FIN ⊂ REG, where FIN denotes the family of finite languages, while FIN and
pREG are incomparable.

We denote CA = {BΣ
C | Σ is an alphabet and C is a finite component au-

tomaton with alphabet Σ}. Then the above observations immediately yield
the following result.

Lemma 6.1.1. pREG = CA. -.

Note that the inclusion pREG ⊆ CA can be proven by choosing any distribu-
tion of an automaton’s alphabet over input, output, and internal alphabets.

Using this observation once more we now prove that all behavior collected
in CA (and hence in pREG) can also be obtained as the input, output, internal,
external, and locally-controlled behavior of component automata.

First we introduce some notation. Consider an arbitrary component au-
tomaton C = (Q, (Σ1,Σ2,Σ3), δ, I) and let Σ = Σ1 ∪ Σ2 ∪ Σ3. Conse-
quently we set Binp

C = BΣ1
C , thus Binp

C = presΣ1
(BΣ

C ); B
out
C = BΣ2

C , thus
Bout

C = presΣ2
(BΣ

C ); B
int
C = BΣ3

C , thus Bint
C = presΣ3

(BΣ
C ); B

ext
C = BΣ1∪Σ2

C ,
thus Bext

C = presΣ1∪Σ2
(BΣ

C ); B
loc
C = BΣ2∪Σ3

C , thus Bloc
C = presΣ2∪Σ3

(BΣ
C ).

Next we consider the following component automata as variants of C:
[C, inp] = (Q, (Σ,∅,∅), δ, I), [C, out ] = (Q, (∅,Σ,∅), δ, I), and [C, int ] =
(Q, (∅,∅,Σ), δ, I).

Lemma 6.1.2. Let [C, inp], [C, out ], and [C, int ] be as described above. Then

(1) BΣ
C = Binp

[C,inp] = Bout
[C,out] = Bint

[C,int],
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(2) BΣ
[C,inp] = Binp

[C,inp] = Bext
[C,inp],

(3) BΣ
[C,out] = Bout

[C,out] = Bext
[C,out] = Bloc

[C,out], and

(4) BΣ
[C,int] = Bint

[C,int] = Bloc
[C,int].

Proof. (1) Let alph ∈ {inp, out , int}. Then BΣ
C = BΣ

[C,alph] = presΣ(B
Σ
[C,alph])

= Balph
[C,alph].

(2) BΣ
[C,inp] = presΣ(B

Σ
[C,inp]) = Binp

[C,inp] and Bext
[C,inp] = presΣ∪∅(B

Σ
[C,inp])

= presΣ(B
Σ
[C,inp]).

(3,4) Analogous to (2). -.

Now we denote CAalph = {Balph
C | C is a finite component automaton}, with

alph ∈ {inp, out , int , ext , loc}.
All languages in CAalph are the images under a weak coding presΣ of

languages in CA = pREG. It is known that pREG is closed under (weak)
codings, i.e. whenever L ∈ pREG and L′ is a (weak) coding of L, then we
know that also L′ ∈ pREG. Using this closure of pREG under weak codings
we immediately obtain the following result.

Lemma 6.1.3. Let alph ∈ {inp, out , int , ext , loc}. Then

CAalph ⊆ pREG. -.

Combining this lemma with Lemmata 6.1.1 and 6.1.2 leads to the following
result, which shows that the distinction of the set of actions into input, out-
put, and internal actions has no influence on the behavior of finite component
automata.

Theorem 6.1.4. pREG=CA=CAinp=CAout=CAint=CAext=CAloc. -.

6.2 Team Behavior Versus Component Behavior

For the remainder of this chapter all component automata (and thus all
team automata) have a possibly infinite set of states and a possibly infinite
set of actions. We investigate the relation between the computations and
behavior of team automata on the one hand, and those of their constituting
component automata on the other hand. Since we know that subteams of a
team automaton can be viewed as components of (an iterated version of) that
team automaton, it suffices to study the relation between team automata and
their constituting component automata.
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We first continue our study started in Section 4.2. Given the computations
(behavior) of a team automaton we investigate how to extract the compu-
tations (behavior) of its constituting component automata. Later we change
focus and investigate how to combine the given computations (behavior) of a
composable system in such a way that the resulting computations (behavior)
are those of a team automaton over that composable system.

Initially we consider team automata in which all actions are ai . In such a
team automaton, in every synchronization on a given action always the same
component automata participate. The results we obtain in this case form a
satisfying picture. Consequently we move on to consider team automata with
only free actions. In such a team automaton — although depending on the
state a component (team) automaton is in — in every synchonization on a
given action always only one component automaton participates. Also in this
case we obtain interesting results. Finally, in a team automaton with only
si actions, the participation of component automaton in synchronizations
is fully state dependent. We argue that a drastically different approach is
required to obtain results in this case.

Notation 9. Also in this chapter we once more assume a fixed, but arbitrary
and possibly infinite index set I ⊆ N, which we will use to index the compo-
nent automata involved. For each i ∈ I, we let Ci = (Qi, (Σi,inp,Σi,out,Σi,int),
δi, Ii) be a fixed component automaton and we use Σi to denote its set of ac-
tions Σi,inp ∪ Σi,out ∪ Σi,int. Moreover, we once more let S = {Ci | i ∈ I}
be a fixed composable system and we let T = (Q, (Σinp,Σout,Σint), δ, I) be
a fixed team automaton over S. Furthermore, we use Σ to denote its set of
actions Σinp ∪Σout ∪Σint. Recall that I ⊆ N implies that I is ordered by the
usual ≤ relation on N, thus inducing an ordering on S, and that the Ci are
not necessarily different. Finally, we let Θ be an arbitrary but fixed alphabet
disjoint from Q. -.

6.2.1 From Team Automata to Component Automata

In this subsection we assume that the computations and behavior of a team
automaton are given. From these we want to extract computations and be-
havior of its constituting component automata. We start by addressing this
issue element-wise, i.e. given one particular computation (behavior) of a team
automaton, we want to know whether we can extract from it the underlying
computation (behavior) of one of its constituting component automata.

Notation 10. For the remainder of this section we let j ∈ I. -.
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Given a team computation α ∈ C∞
T we know from Corollary 4.2.7 that

πCj (α) ∈ C∞
Cj
. Hence we can simply apply projections on the computa-

tions of team automata in order to obtain computations of its constitut-
ing component automata. Moreover, by definition, presΘ(α) ∈ BΘ,∞

T and
presΘ(πCj (α)) ∈ BΘ,∞

Cj
. This reflects the fact that behavior is obtained by

filtering out state information from computations. We thus have the situation
depicted by the diagram in Figure 6.1.

presΘ presΘ

presΘ(πCj (α)) ∈ BΘ,∞
Cj

πCj (α) ∈ C∞
Cj

α ∈ C∞
T

presΘ(α) ∈ BΘ,∞
T

?

πCj

Fig. 6.1. Extracting behavior from team automata to component automata.

In addition we would like to obtain the Θ-behavior presΘ(πCj (α)) of com-
ponent automaton Cj directly from the Θ-behavior presΘ(α) of team automa-
ton T . We thus look for an operation that makes the diagram of Figure 6.1
commute. A natural candidate is the homomorphism presΣj

preserving only
those actions from presΘ(α) that belong to component automaton Cj. Hence
we wonder whether presΣj

(presΘ(α)) = presΘ(πCj (α)). In the following ex-
ample we show that this equality in general does not hold.

Notation 11. For the remainder of this section we may also specify our
fixed component automata Ci as (Qi,Σi, δi, Ii), i ∈ I, and our fixed team
automaton T as (Q,Σ, δ, I) whenever the distinctions of their alphabets into
input, output, and internal actions are irrelevant. -.

Example 6.2.1. Let component automata C1 = ({q1, q′1}, {a, b}, {(q1, b, q1),
(q1, a, q′1)}, {q1}) and C2 = ({q2, q′2}, {a, b}, {(q2, a, q

′
2), (q

′
2, b, q

′
2)}, {q2}) be as

depicted in Figure 6.2.
We assume {C1, C2} to be a composable system and consider team automa-

ton T = (Q, {a, b}, δ, {(q1, q2)}), with Q = {(q1, q2), (q1, q′2), (q
′
1, q2), (q

′
1, q

′
2)}

and δ = {((q1, q2), b, (q1, q2)), ((q1, q2), a, (q′1, q
′
2))}, over this composable sys-

tem. It is depicted in Figure 6.3(a).
Let α = (q1, q2)b(q1, q2)a(q′1, q

′
2) ∈ CT . Then presΣ2

(pres{a,b}(α)) = ba (=
a = pres{a,b}(q2aq

′
2) = pres{a,b}(πC2 (α)). -.
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q1 q′1
a

C1:

b

q2 q′2
a

C2:

b

Fig. 6.2. Component automata C1 and C2.

b

(b)(a)

(

q′1
q2

)

(

q1
q2

)

(

q′1
q′2

)

(

q1
q′2

)

(

q1
q2

)

(

q1
q′2

)

(

q′1
q′2

)

(

q′1
q2

)

a

a

T : T ′:

Fig. 6.3. Team automata T and T ′.

This example shows that in general we cannot assume that a component
automaton participates in a synchronization, just because it has the action
that is being synchronized as one of its actions. Hence there is no a priori
relation between a component automaton’s set of actions and its participation
in synchronizations of those actions. The question we ask ourselves in this
section now boils down to finding a necessary and sufficient condition which
guarantees that presΣj

(presΘ(α)) = presΘ(πCj (α)).
As suggested by the example, we thus need to find a way to know whether

or not a component automaton participates in a synchronization of the team
automaton. It is therefore not surprising that the condition we present next is
based on the ai principle, since every synchronization of an ai action involves
all component automata that share this action. However, we obviously do
not care about useless transitions as they can never be used anyway. It thus
suffices to require the actions of T to be ai with respect to useful transitions
only. Furthermore, for a given component Cj and action a ∈ Σj it suffices
to know that a is ai with respect to j, i.e. it is sufficient if Cj is required
to participate in every useful a-transition of T . This leads to the following
definition.
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Definition 6.2.2. The set of useful j-action-indispensable actions is de-
noted by uAI j(T ) and is defined as

uAI j(T ) = {a ∈ Σj | ∀q, q′ ∈ Q : (q, q′) ∈ δa is useful ⇒
projj

[2](q, q′) ∈ δj,a}. -.

Note that AI (T )∩Σj ⊆ uAI j(T ). We moreover note that whenever an action
a of a component Cj is not active in T , then a ∈ uAI j(T ).

We can now formulate a sufficient condition under which the preserving
homomorphism presΣj

makes the diagram of Figure 6.1 commute. First we
limit ourselves to finite computations.

Lemma 6.2.3. If Θ∩Σj⊆uAI j(T ), then for all α∈CT , presΣj
(presΘ(α))=

presΘ(πCj (α)).

Proof. Let Θ ∩ Σj ⊆ uAI j(T ) and let α = q0a1q1a2q2 · · ·anqn ∈ CT . By
induction on n we prove presΣj

(presΘ(α)) = presΘ(πCj (α)).
If n = 0, then α = q0 and thus presΣj

(presΘ(q0)) = presΘ(πCj (q0)) = λ.
Next assume that n = k+1, for some k ≥ 0, and that presΣj

(presΘ(β)) =
presΘ(πCj (β)), where β = q0a1q1a2q2 · · · akqk. Hence α = βanqn. This im-
plies that presΣj

(presΘ(α)) = presΣj
(presΘ(β))an if an ∈ Θ ∩ Σj and

presΣj
(presΘ(α)) = presΣj

(presΘ(β)) if an /∈ Θ ∩Σj.

First consider that an ∈ Θ ∩ Σj . Then projj
[2](qn, qn+1) ∈ δj,an since

Θ ∩Σj ⊆ uAI j(T ) and thus presΘ(πCj (α)) = presΘ(πCj (β)anprojj(qn+1)) =
presΘ(πCj (β))an = presΣj

(presΘ(βanqn)) by the induction hypothesis. Hence
presΣj

(presΘ(α)) = presΘ(πCj (α)).
Next consider that an /∈ Θ ∩Σj. Then an /∈ Θ or an /∈ Σj .

If an /∈ Σj , then πCj (α) = πCj (β) and thus, by the induction hypothesis,
presΘ(πCj (α)) = presΘ(πCj (β)) = presΣj

(presΘ(β)). As presΣj
(presΘ(β)) =

presΣj
(presΘ(βanqn)) it follows that presΘ(πCj (α)) = presΣj

(presΘ(α)).
If an /∈ Θ, then presΘ(πCj (α)) = presΘ(πCj (β)) and thus, by the induction
hypothesis, presΘ(πCj (α)) = presΣj

(presΘ(β)) = presΣj
(presΘ(α)). -.

Next we allow also infinite computations.

Corollary 6.2.4. If Θ ∩ Σj ⊆ uAI j(T ), then for all α ∈ C∞
T ,

presΣj
(presΘ(α)) = presΘ(πCj (α)).

Proof. Let Θ ∩ Σj ⊆ uAI j(T ) and let α ∈ C∞
T . Due to Lemma 6.2.3 we

only need to consider the infinite case. Hence we assume that α ∈ Cω
T . Let

α1 ≤ α2 ≤ · · · ∈ CT be such that α = lim
n→∞

αn. Thus presΣj
(presΘ(α)) =

presΣj
(presΘ( lim

n→∞
αn)). Then, by the definition of homomorphisms on infi-

nite words, presΣj
(presΘ( lim

n→∞
αn)) = lim

n→∞
presΣj

(presΘ(αn)). Consequently,
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by the same reason and from Lemma 6.2.3 it now follows that
lim
n→∞

presΣj
(presΘ(αn)) = lim

n→∞
presΘ(πCj (αn)) = presΘ(πCj ( lim

n→∞
αn)) =

presΘ(πCj (α)). -.

It turns out that the condition proposed above is also necessary.

Lemma 6.2.5. If (Θ ∩ Σj) \ uAI j(T ) (= ∅, then there exists an α ∈ CT

such that presΣj
(presΘ(α)) (= presΘ(πCj (α)).

Proof. Let (Θ ∩ Σj) \ uAI j(T ) (= ∅. Then the following situation must ex-
ist. Let α = q0a1q1a2q2 · · · anqn ∈ CT be such that for all 1 ≤ i < n, either
ai /∈ Θ, or ai /∈ Σj , or projj

[2](qi−1, qi) ∈ δj,ai , while projj
[2](qn−1, qn) /∈ δj,an ,

with an ∈ Θ∩Σj . Hence presΣj
(presΘ(α)) = presΣj

(presΘ(a1a2 · · ·an−1))an.

Then projj
[2](qn−1, qn) /∈ δj,an however implies that presΘ(πCj (α)) =

presΘ(πCj (q0a1q1a2q2 · · · an−1qn−1)) (= presΣj
(presΘ(a1a2 · · · an−1))an =

presΣj
(presΘ(α)). -.

We thus conclude that the proposed condition is necessary and sufficient for
the diagram of Figure 6.1 to commute.

Theorem 6.2.6. For all α ∈ C∞
T , presΣj

(presΘ(α)) = presΘ(πCj (α)) if and
only if Θ ∩Σj ⊆ uAI j(T ).

Proof. (Only if) This is the contrapositive of Lemma 6.2.5.
(If) Directly from Corollary 6.2.4. -.

Summarizing, we thus have the following situation. Whenever Cj contains at
least one action from Θ which is not useful j-action-indispensable in T , then
T can execute a computation α for which presΣj

(presΘ(α)) does not equal
presΘ(πCj (α)) (cf. Lemma 6.2.5).

Until now we extracted the behavior of the component automata of a team
automaton from the computations of this team automaton. The above results
however also provide us with a sufficient condition for obtaining the behavior
of component automaton Cj directly from the behavior of team automaton
T , viz. by simply applying presΣj

to its behavior.

Theorem 6.2.7. If Θ ∩Σj ⊆ uAI j(T ), then B
Θ∩Σj,∞
T ⊆ BΘ,∞

Cj
.

Proof. Let Θ ∩ Σj ⊆ uAI j(T ) and let v ∈ BΘ∩Σj,∞
T . This means that

v ∈ presΘ∩Σj
(C∞

T ). Now let α ∈ C∞
T be such that presΘ∩Σj

(α) = v. From
Corollary 4.2.7 we know that πCj (α) ∈ C∞

Cj
. Since Θ ∩ Σj ⊆ uAI j(T ),

Corollary 6.2.4 implies that presΣj
(presΘ(α)) = presΘ(πCj (α)). Hence v =

presΘ∩Σj
(α) = presΣj

(presΘ(α)) = presΘ(πCj (α)) ∈ BΘ,∞
Cj

. -.
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Note that Example 4.2.8 implies that it can still be the case that B
Θ∩Σj,∞
T ⊂

BΘ,∞
Cj

, even if Θ ∩Σj ⊆ uAI j(T ).
Contrary to what might be expected from Theorem 6.2.6, the next exam-

ple demonstrates that the statement from Theorem 6.2.7 cannot be reversed,
i.e. Θ ∩Σj ⊆ uAI j(T ) is not a necessary condition for B

Θ∩Σj ,∞
T ⊆ BΘ,∞

Cj
to

hold. The reason is that the Θ ∩ Σj-behavior of T can be nonempty due to
team computations in which Cj does not participate at all.

Example 6.2.8. (Example 6.2.1 continued) Consider team automaton T ′ =
(Q, {a, b}, {((q1, q2), a, (q1, q′2))}, {(q1, q2)}) over {C1, C2}. It is depicted in Fig-
ure 6.3(b).

Clearly BΣ,∞
T ′ = {λ, a}. Now let Θ = {a, b}. Then Θ ∩ Σ1 = {a, b} ∩

{a, b} = {a, b} # {b} = uAI 1(T ′). However, BΘ∩Σ1,∞
T ′ = B{a,b},∞

T ′ = {λ, a} ⊆

{bn | n ≥ 0} ∪ {bω} ∪ {bna | n ≥ 0} = B{a,b},∞
C1

= BΘ,∞
C1

. -.

Whereas a simple projection πCj applied to a computation of T suffices to
obtain a computation of Cj , a similarly simple preserving homomorphism
presΣj

applied to a behavior of T need not always yield a behavior of Cj
unless all actions Σj of Cj are useful j-ai . The reason for this difference is as
follows.

In a computation of T we still have available the information as to which
components from S participated in each synchronization performed during
this computation. When we deal with a behavior of T , however, only the
sequence of executed actions is available, i.e. we have lost all information
as to which component automata from S participated in which execution.
This implies that whenever we can be sure of a component automaton’s
participation in each execution of an action it has as an action itself, then we
can simply apply our preserving homomorphism to the behavior of a team
automaton in order to obtain the behavior of that component automaton.

Since every action of a component automaton from S is useful j-action-
indispensable in the maximal-ai team automaton T over S, Theorem 6.2.7
implies the following result. Slightly less general versions of this result,
viz. without Θ being an arbitrary alphabet, have been formulated for other
automata-based specification models with composition based on the ai prin-
ciple (see, e.g., [Tut87] and [Jon87]). Theorems 6.2.6 and 6.2.7 however show
a more precise condition guaranteeing this result and moreover exclude the
existence of a similar relation in case composition is not based on the ai
principle.

Theorem 6.2.9. Let T be the Rai -team automaton over S. Then

B
Θ∩Σj,∞
T ⊆ BΘ,∞

Cj
. -.
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At this point it is important to recall that in case S is such that none of
its constituting component automata shares an action, then the maximal-
free team automaton over S equals the maximal-ai team automaton over S
(cf. Theorem 4.5.5) — in which case this theorem can thus be applied.

This completes our display of how to obtain the computations (behavior)
of component automata constituting S from the computations (behavior) of
team automata over S. In the next section we study the dual approach.

6.2.2 From Component Automata to Team Automata

Contrary to the previous subsection we now assume that the computations
and behavior of a set of component automata are given. Consequently we
want to use this information to describe computations and behavior of team
automata that can be composed over that set of component automata. We
start by addressing this issue element-wise, i.e. given a computation (behav-
ior) of each component automaton in a subset of S we want to know whether
there exists a team automaton over S with a computation (behavior) that
uses this combination of computations.

Definition 6.2.10. Let α ∈
∏

i∈I C
∞
Ci
. Then

α is used in T if there exists a β ∈ C∞
T such that for all i ∈ I, πCi(β) =

proji(α). -.

Note that any vector of initial states is used in T since
∏

i∈I Ii ⊆ C∞
T . If

K ⊆ I and αk ∈ C∞
Ck
, for all k ∈ K, then we say that

∏
k∈K αk is used in

T whenever there exists a γ ∈
∏

i∈I C∞
Ci

that is used in T and which is such
that projk(γ) = αk, for all k ∈ K. Finally, as vectors

∏
{j} C

∞
Cj

have one
element we will also say that α ∈ C∞

Cj
is used in T whenever

∏
{j} α is.

In the following example we show that in general not all vectors over
computations of component automata from S are used in T . It may be the
case that a computation of a component automaton from S never participates
in a team computation. Moreover, it may happen that a vector over two or
more computations of component automata from S is not used as such in T ,
even when each entry of this vector is used in T .

Example 6.2.11. (Examples 6.2.1 and 6.2.8 continued) We immediately see
that C2 has a computation α′ = q2aq′2bq

′
2 ∈ CC2 that is not used in T since

there exists no β ∈ C∞
T such that πC2(β) = α′.

Next we consider the team automaton T ′′ over {C1, C2}, which is obtained
from team automaton T ′ as specified in Example 6.2.8 by adding transition
((q1, q2), a, (q′1, q2)) to its transition relation. It is depicted in Figure 6.4(a).
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Fig. 6.4. Team automaton T ′′ and maximal-ai team automaton T ai .

Clearly, both α1 = q1aq′1 ∈ CC1 and α2 = q2aq′2 ∈ CC2 are used in T ′′

since β1 = (q1, q2)a(q′1, q2) ∈ CT ′′ and β2 = (q1, q2)a(q1, q′2) ∈ CT ′′ are such
that πC1(β1) = α1 and πC2(β2) = α2. However, β1 and β2 are the only two
nontrivial computations of T ′′. Because πC1(β2) = q1 and πC2(β1) = q2 this
means that there exists no β ∈ C∞

T ′′ such that πC1(β) = α1 and πC2(β) = α2.
Hence (α1,α2) is not used in T ′′.

Finally, note that (α1,α2) is used in team automaton T since β =
(q1, q2)a(q′1, q

′
2) ∈ CT is such that πC1(β) = proj1((α1,α2)) = α1 and

πC2(β) = proj2((α1,α2)) = α2. -.

While in general not every vector over computations of component automata
from S is used in T , we wonder whether the situation improves in case T is
defined in a particular way.

In analogy with the previous subsection, we first consider T to be such
that all of its actions are ai . This is not yet enough, though, since whenever
T has an empty transition relation, then all of its actions are ai while none
of the computations of component automata from S is used in T . Therefore
we furthermore require T to be the maximal-ai team automaton over S.
However, in the following example we show that in general not all vectors
over computations (behavior) of component automata from S are used in
computations of the maximal-ai team automata over S.

Example 6.2.12. (Example 6.2.11 continued) The maximal-ai team automa-
ton over {C1, C2} is T ai = (Q, {a, b}, δai , {(q1, q2)}), where δai = {((q1, q2), a,
(q′1, q

′
2)), ((q1, q

′
2), b, (q1, q

′
2))}. It is depicted in Figure 6.4(b).

Trivially, q1 ∈ CC1 . However, since (q1, q2)a(q′1, q
′
2) is the only nontriv-

ial computation of T ai , there exists no computation β′ ∈ C∞
T ai such that

πC1(β
′) = q1 and πC2(β

′) = α2. Hence (q1,α2) is not used in T ai . -.
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The fact that the ai type of synchronization forces component automata to
synchronize on their shared actions provides us with enough information to
formulate the conditions under which a vector of computations is used in
a computation of the maximal-ai team automaton over S. To this aim we
define a vector α consisting of computations of the component automata
from S — one for each such component automaton — to be ai-consistent
if there exists a word w over Σ with the following property: whenever we
preserve from w only the actions of a component automaton from S, then
we obtain exactly the behavior resulting from the computation in α that
originates from that component automaton. In an ai-consistent vector the
computations forming its entries thus “agree” with respect to the behavior
of their respective components.

Definition 6.2.13. Let α ∈
∏

i∈I C
∞
Ci
. Then

α is ai-consistent if there exists a w ∈ Σ∞ such that for all i ∈ I,
presΣi

(w) = presΣi
(proji(α)). -.

It turns out that each ai-consistent vector over computations of component
automata from S is used in the maximal-ai team automaton T over S.

Lemma 6.2.14. Let T be the Rai -team automaton over S and let α ∈∏
i∈I C

∞
Ci
. Then

if α is ai-consistent, then α is used in T .

Proof. Let α be ai-consistent. Then by definition there exists a w ∈ Σ∞ such
that presΣi

(w) = presΣi
(proji(α)), for all i ∈ I.

First consider the case that w ∈ Σ∗. Let w = a1a2 · · · an for some
n ≥ 0 and ak ∈ Σ, for all k ∈ [n]. For each i ∈ I, let the indices
i1, i2, . . . , ini ∈ [n] be such that presΣi

(w) = ai1ai2 · · · aini
. Hence ni = 0

if presΣi
(w) = λ and 1 ≤ i1 < i2 < · · · < ini ≤ n otherwise. Moreover,

observe that
⋃

i∈I{i1, i2, . . . , ini} = [n]. Since for all i ∈ I, presΣi
(w) =

presΣi
(proji(α)) and proji(α) ∈ CCi , it follows that for all i ∈ I, proji(α) =

qi0ai1q
i
1ai2 · · ·aini

qini
with qi0 ∈ Ii and qi1, q

i
2, . . . , q

i
ni
∈ Qi.

Now define β = q0a1q1a2 · · · anqn, with qk ∈
∏

i∈I Qi for all 0 ≤ k ≤ n,
in such a way that for all i ∈ I and for all 0 ≤ k ≤ n, proji(qk) = qi! if
i! ≤ k < i!+1 with " < ni (by convention, i0 = 0) and proji(qk) = qini

if
ini ≤ k ≤ n. Consequently we prove that β ∈ CT while — in one stroke —
πCi(β) = proji(α), for all i ∈ I, follows from an inductive argument.

By its definition, q0 =
∏

i∈I q
i
0 ∈

∏
i∈I Ii = I. Next consider (qk−1, ak, qk),

for some k ∈ [n]. Let i ∈ I. We distinguish the following two cases.
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If ak ∈ Σi, then k = i! for some " ∈ [ni] and i!−1 ≤ k − 1 < k = i!. The
definitions of qk−1 and qk then yield proji(qk−1) = qi!−1 and proji(qk) = qi!.
Since proji(α) ∈ CCi it follows that (qi!−1, q

i
!) ∈ δi,ai#

= δi,ak
.

If ak /∈ Σi, then k (= i! for some " ∈ [ni].
If k < ini , then there exists an " ≥ 1 such that i!−1 ≤ k − 1 < k < i! and
thus proji(qk−1) = proji(qk) = qi!−1.
Conversely, if k ≥ ini , then ini ≤ k−1 < k ≤ n and thus again proji(qk−1) =
proji(qk).

Since
⋃

i∈I{i1, i2, . . . , ini} = [n], it follows that ak ∈ Σi for at least one
i ∈ I and hence (qk−1, qk) ∈ Rai

ak
(S) = δak

. This implies that for all k ∈ [n],
q0a1q1a2 · · · akqk ∈ CT and for all i ∈ I, πCi(q0a1q1a2 · · · akqk) ∈ CCi . Hence
for all i ∈ I, πCi(β) = πCi(q0a1q1a2 · · · anqn) = proji(α) and α is thus used
in the maximal-ai team automaton T .

Next consider the case that w ∈ Σω. Let w = a1a2 · · · , with ak ∈ Σ
for all k ≥ 1. Let i ∈ I. For each i ∈ I, if presΣi

(w) ∈ Σ∗
i , then as before

there are indices i1, i2, . . . , ini such that presΣi
(w) = ai1ai2 · · · aini

. Moreover,
proji(α) = qi0ai1q

i
1ai2 · · · aini

qini
. If presΣi

(w) ∈ Σ∞
i , then there is an infinite

sequence 1 ≤ i1 < i2 < · · · such that presΣi
(w) = ai1ai2 · · · . Then because w

is such that for all i ∈ I, presΣi
(w) = presΣi

(proji(α)), we can assume that
proji(α) = qi0ai1q

i
1ai2 · · · for some qik ∈ Qi, with k ≥ 0.

Now we define β = q0a1q1a2 · · · such that for all i ∈ I, πCi(q0) = qi0 and
πCi(qk) = qi!, for i! ≤ k < i!+1 and " ≥ 1. Clearly q0 ∈ I. Similar to the
finitary case it can now be shown that (qk−1, ak, qk) ∈ δ, for all k ≥ 1.

Hence β ∈ Cω
T and, moreover, πCi(β) = proji(α), for all i ∈ I. -.

From the proof of this lemma we immediately obtain the following result.
Corresponding versions of both these results have been formulated for other
automata-based specification models with composition based on the ai prin-
ciple (see, e.g., [Tut87] and [Jon87]).

Corollary 6.2.15. Let T be the Rai -team automaton over S and let α ∈∏
i∈I C

∞
Ci
. Then

if w ∈ Σ∞ is such that for all i ∈ I, presΣi
(w) = presΣi

(proji(α)), then
there exists a β ∈ C∞

T such that presΣ(β) = w. -.

We thus see that ai-consistency is a sufficient condition for a vector over
computations of component automata from S to be used in the maximal-ai
team automaton over S. Next we show that this condition is also necessary.

Theorem 6.2.16. Let T be the Rai -team automaton over S and let α ∈∏
i∈I C

∞
Ci
. Then
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α is used in T if and only if α is ai-consistent.

Proof. (If) This is Lemma 6.2.14.
(Only if) Let β ∈ C∞

T be such that πCi(β) = proji(α), for all i ∈ I.
Since every action of T is ai , we can now apply Corollary 6.2.4 to obtain
presΣi

(presΣ(β)) = presΣ(πCi(β)) = presΣi
(πCi(β)) = presΣi

(proji(α)), for
all i ∈ I. Hence α is ai-consistent. -.

In order to formulate a general result relating the computations of maximal-
ai team automata to the computations of their constituting component au-
tomata, we now define when a composable system is ai-consistent.

Definition 6.2.17. S is ai-consistent if for all i ∈ I and for each γ ∈ C∞
Ci

there exists an ai-consistent vector α∈
∏

i∈I C∞
Ci

such that proji(α)=γ. -.

Note that we have now defined ai-consistency both for vectors (over com-
putations) and for composable systems. However, from the context it will
always be clear whether we deal with an ai-consistent vector or rather with
an ai-consistent composable system.

An ai-consistent composable system thus guarantees that for all compu-
tations of its constituents there exists a vector over such computations which
is ai-consistent and thus each computation of a component automaton from
S is used in a computation of the maximal-ai team automaton T over S.
In that case the set of computations (behavior) of a component automaton
from S thus equals the set of computations (behavior) of the maximal-ai
team automaton over S projected on that component automaton.

Theorem 6.2.18. Let T be the Rai -team automaton over S. Then

(1) C∞
Ci

= πCi(C
∞
T ), for all i ∈ I, if and only if S is ai-consistent, and

(2) if S is ai-consistent, then BΣi,∞
Ci

= BΣi,∞
T , for all i ∈ I.

Proof. (1) (Only if) Let C∞
Ci

= πCi(C
∞
T ), for all i ∈ I. Let γ ∈ C∞

Ck
for some

k ∈ I. Since C∞
Ck

= πCk
(C∞

T ) there exists a β ∈ C∞
T such that πCk

(β) = γ.
Now let α =

∏
i∈I πCi(β). Since πCi(C

∞
T ) = C∞

Ci
, for all i ∈ I, it follows that

α ∈
∏

i∈I C
∞
Ci
. Furthermore, α is used and thus, by Theorem 6.2.16, α is

ai-consistent. Definition 6.2.17 then implies that S is ai-consistent.
(If) Due to Corollary 4.2.7 we only need to prove that whenever S is

ai-consistent, then for all i ∈ I, C∞
Ci
⊆ πCi(C

∞
T ). Now let γ ∈ C∞

Ck
for

some k ∈ I. Since S is ai-consistent there exists an ai-consistent vector
α ∈

∏
i∈I C

∞
Ci

such that projk(α) = γ. Then by Theorem 6.2.16 there exists
a β ∈ C∞

T such that πCk
(β) = projk(α) = γ. Hence γ ∈ πCk

(C∞
T ).
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(2) Let k ∈ I. Since T is the Rai -team automaton over S, Theorem 6.2.9
implies that BΣk,∞

T ⊆ B∞
Ck
. Moreover, by (1) and Corollary 6.2.4, B∞

Ck
⊆

BΣk,∞
T . -.

Next we move on to the case that our team automaton T under considera-
tion is the maximal-free team automaton over S. Hence T consists of com-
pletely independent, non-synchronizing component automata. Consequently,
our first intuition might be to jump to the conclusion that every single com-
putation of a component automaton from S is used in T .

As we have seen in Section 4.6, however, T does have one tricky char-
acteristic in case loops are present in the component automata from S: the
combination of a loop, e.g. on a, in one component automaton from S and an
a-transition in another component automaton from S results in the latter of
these a-transitions not being omnipresent in T . This implies that even if this
a-transition is useful in its component automaton, i.e. it is part of a computa-
tion of that component automaton, then it is not at all guaranteed that this
computation is used in T . The reason for this is the maximal interpretation
of the participation of transitions from component automata in transitions
of team automata that we adopted in Section 4.2.

Indeed, in the following example we show that in general not each com-
putation of a component automata from S is used in the maximal-free team
automaton over S.

Example 6.2.19. Let component automata C = ({p}, {b}, {(p, b, p)}, {p}) and
C′ = ({q, r}, {b}, {(q, b, r)}, {q}) be as depicted in Figure 6.5(a).

b b b

r
b

q

p

(

p

q

)

(

p

r

)

(b)

C:

C′:

(a)

T free :

Fig. 6.5. Component automata C and C′, and maximal-free team automaton T free .
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Obviously {C, C′} is a composable system. The Rfree-team automaton
over {C, C′} is T free = ({(p, q), (p, r)}, {b}, {((p, q), b, (p, q)), ((p, r), b, (p, r))},
{(p, q)}). It is depicted in Figure 6.5(b).

It is clear that α = qbr ∈ CC′ and that there does not exist a computation
β ∈ C∞

T free such that πC′(β) = α. Hence α is not used in T free . -.

In case we only deal with a specific type of component automata, however,
we can use Theorem 4.6.10(2). Recall that, given that S is j-loop limited
and that T is the maximal-free team automaton over S, this theorem states
that every transition of Cj is omnipresent in T . This means that whenever
(p, a, p′) is a transition of Cj , then for all states q of T for which projj(q) = p,
there exists a transition (q, a, q′) in T such that projj(q

′) = p′, i.e. in which
(p, a, p′) is participating. Since T is the maximal-free team automaton over
S we moreover know that proji(q

′) = proji(q), for all i ∈ I \{j}, i.e. (p, a, p′)
is the only participating transition. It thus comes as no surprise that in case
S is j-loop limited, each computation of a component automaton from S is
used in a computation of the maximal-free team automaton over S.

Lemma 6.2.20. Let T be the Rfree-team automaton over S and let α ∈ C∞
Cj
.

Then

if S is j-loop limited, then α is used in T .

Proof. Let S be j-loop limited.
First consider the case that α ∈ CCj . Let α = p0a1p1a2 · · · anpn for some

n ≥ 0, i.e. (pk−1, pk) ∈ δj,ak
, for all 1 ≤ k ≤ n. Since Q =

∏
i∈I Qi and

I =
∏

i∈I Ii, Theorem 4.6.10(2) implies that there exists a computation β =
q0a1q1a2 · · · anqn ∈ CT such that projj

[2](qk−1, qk) = (pk−1, pk) ∈ δj,ak
, for

all 1 ≤ k ≤ n. Hence πCj (β) = α and α is thus used in T .
Secondly, the case that α ∈ Cω

Cj
is analogous to the finitary case. -.

We thus see that loop limitedness is a sufficient condition for a vector over
computations of component automata from S to be used in the maximal-free
team automaton over S. We will soon see that this condition is not necessary.

From Corollary 4.2.7 we know that given a computation of a team au-
tomaton T over S, the projection on a component automaton from S is
included in the set of computations of that component automaton. Together
with Lemma 6.2.20 this implies that whenever S is j-loop limited, then the
set of computations of a component automaton from S equals the set of com-
putations of the maximal-free team automaton T over S projected on that
component automaton. Moreover, the behavior of that component automa-
ton is included in the behavior of T . Like the proof of Lemma 6.2.20, also
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the proof of this statement is based on the observation that in a maximal-free
team automaton, each executed action has only one participating component
automaton. This implies that the team automaton can always execute any
computation of any of its constituting component automata while keeping all
remaining component automata from S in an initial state.

Theorem 6.2.21. Let T be the Rfree-team automaton over S. Then

if S is loop limited, then C∞
Ci
=πCi(C

∞
T ) and BΣi,∞

Ci
⊆BΣ,∞

T , for all i∈I.

Proof. Let S be loop limited. Then Lemma 6.2.20 implies that C∞
Ci
⊆

πCi(C
∞
T ) and thus, by Corollary 4.2.7, C∞

Ci
= πCi(C

∞
T ). Now let k ∈ I,

let α ∈ BΣk,∞
Ck

and let β ∈ C∞
Ck

be such that presΣk
(β) = α. Since

C∞
Ck

= πCk
(C∞

T ), there must exist a γ ∈ C∞
T such that β = πCk

(γ). More-
over, since by Theorem 4.6.10(2) all transitions of Ck are omnipresent in T ,
it follows that we may assume that πC#

(γ) ∈ I!, for all " ∈ I \ {k}. Hence
presΣ(γ) = presΣ(πCk

(γ)) = presΣk
(β) = α and thus α ∈ BΣ,∞

T . -.

The behavior of the maximal-free team automaton T over S trivially is made
up of the behavior of not just one component automaton from S, but of the
behavior of all of the component automata from S. Therefore, in general
B
Σj ,∞
Cj

⊆ BΣ,∞
T will be proper, even if S is j-loop limited. Furthermore, the

fact that C∞
Ci

= πCi(C
∞
T ), for all i ∈ I, need not imply that S is loop limited.

Example 6.2.22. (Example 6.2.11 continued) The maximal-free team auto-
maton over {C1, C2} is T free = (Q, { a, b }, δfree , { (q1, q2) } ), where δfree =
{ ( (q1, q2), b, (q1, q2) ), ( (q1, q2), a, (q1, q′2) ), ( (q1, q2), a, (q′1, q2) ), ( (q1, q

′
2), a,

(q′1, q
′
2) ), ( (q′1, q2), a, (q

′
1, q

′
2) ), ( (q′1, q

′
2), b, (q

′
1, q

′
2) ) }. It is depicted in Fig-

ure 6.6(a).
Since β = (q1, q2)a(q1, q′2)a(q

′
1, q

′
2)b(q

′
1, q

′
2) ∈ CT free , α′ is used in T free . It

is moreover not difficult to see that for all k ∈ [2], C∞
Ck
⊆ πCk

(C∞
T free ) and

thus, by Corollary 4.2.7, C∞
Ck

= πCk
(C∞

T free ). However, {C1, C2} is not loop
limited because (q1, q1) ∈ δ1,b and (q′2, q

′
2) ∈ δ2,b. -.

Note that Theorem 6.2.21 relies heavily on the fact that in the maximal-free
team automaton over a loop-limited S, each action of a component automa-
ton can be executed independently of the current local states that the other
component automata of S are in, since none of these other component au-
tomata participates in such an execution. In the maximal-ai team automaton
over S, this situation can only occur when none of the other component au-
tomata from S contains any of the actions that was executed as part of the
computation of the maximal-ai team automaton. Hence even when S is ai-
consistent, then the behavior of Cj is in general not contained in the behavior
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Fig. 6.6. Team automata T free and T fa .

of the maximal-ai team automaton over S. From Theorem 6.2.18(2) we how-
ever know that if S is ai-consistent, then the behavior of Cj is contained in
the Σj-behavior of the maximal-ai team automaton over S.

Both for maximal-ai team automata (cf. Theorem 6.2.18(1)) and for
maximal-free team automata (cf. Theorem 6.2.21) over S we have thus found
a sufficient condition on S (ai-consistency and loop limitedness, respectively)
under which all component computations contribute to team computations.
In case of maximal-ai team automata this condition is even necessary. As
direct consequences of these results we have subsequently been able to relate
the behavior of component automata to that of maximal-ai team automata
(cf. Theorem 6.2.18(2)) and to that of maximal-free team automata (cf. The-
orem 6.2.21).

In the remainder of this chapter we moreover define the behavior of the
maximal-ai (maximal-free) team automaton over S in terms of the behav-
ior of its constituting component automata. This requires establishing which
combinations of words — if any — from the behavior of component automata
from S can be combined — and in particular how — such that a word from
the behavior of the maximal-ai (maximal-free) team automaton over S re-
sults. For this we use shuffling operations, known from the theory of formal
languages. We will consider both “free” shuffles (to deal with free actions)
and “synchronized” shuffles (to deal with ai actions).

In the succeeding two sections we formally define the different kinds of
shuffles and study some of their properties. In the subsequent and final sec-
tion of this chapter we then show that the behavior of team automata con-
structed on the basis of maximal-ai and/or maximal-free synchronizations
can be expressed as a (synchronized) shuffle of the behavior of their consti-
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tuting component automata, where the kind of shuffle depends on the type
of synchronization.

The two sections dealing with various kinds of shuffles are rather techni-
cal and relatively extensive. One of the main reasons for this resides in the
fact that our team automata framework allows for infinite computations and
infinite behavior. Therefore we need to consider shuffles on finite as well as
infinite words. Moreover, when dealing with composable systems consisting
of two or more component automata, notions of commutativity and asso-
ciativity for the various kinds of shuffles are of crucial importance. Readers
interested only in the results can jump to the final section of this chapter
and when necessary skim Subsections 6.3.1, 6.3.4, 6.4.1, and 6.4.4 for the
definitions needed to interpret the results.

6.3 Shuffles

This section marks the beginning of our exposition on shuffles. The idea
behind a shuffle of languages is the creation of a new language, the words of
which consist of the words of the original languages “woven” in a particular
fashion. For one, words of the original languages are part of the words of
the new language. Consider, e.g., the (finite) words eae and wv . Then we
can weave these words into a new (finite) word weave. To the best of our
knowledge, the oldest reference to this way of shuffling two (finite) words is
[GS65], which was presented at a conference as early as 1964.

In this simple example we described a shuffle of two finite words. We
know, however, that the languages of our component (team) automata may
contain infinite words. When we try to shuffle two infinite words in the above-
mentioned way we are forced to take some decisions concerning “fairness”.
Consider, e.g., the words aω and bω. Then we can weave these words into
new (infinite) words of the form (a+b+)ω, consisting of both infinitely many
a’s and infinitely many b’s. Hence aω and bω are woven in a fair way: finite
nonempty subwords of the two words occur alternatingly, i.e. each word gets
its fair turn in the new words. However, we could also decide to allow infinite
subwords of the original words to appear in the new word. In that case a
result of weaving aω and bω can be an (infinite) word from (a+b+)∗aω. Note,
however, that in this case the result does not contain an infinite number of
b’s. The oldest reference — again, to the best of our knowledge — to this
idea of shuffling two infinite words is [Sha78], and to this idea of fair shuffling
is [Par79] (where fair shuffling is called fair merging, though).

These simplified examples suggest that there is a clear need to define pre-
cisely and unambiguously what types of shuffles we shall consider. Another
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reason for being more precise is to avoid the confusion that could arise from
the fact that the (fair) shuffle is a well-known language-theoretic operation.
It thus has a long history within theoretical computer science, in particu-
lar within formal language theory. Shuffling is sometimes called interleaving,
weaving, or merging, and — given two words u and v — it may be denoted
by u7 v, u || v, u .. v, u-. v, u⊗ v, u ||| v, or u 9 v (see, e.g., [GS65], [Sha78],
[Par79], [Gis81], [Jan81], [BÉ96], [RS97]). The idea of shuffling also appears in
numerous other disguises throughout the computer science literature. Within
concurrency theory, e.g., as a semantics of parallel operators modeling com-
munication between processes (see, e.g., [Ros97] and [BPS01]). In the next
section we will consider also shuffles which are not merely interleavings, but
which may require the synchronized occurrence of certain symbols.

The remainder of this section and the subsequent section together form
a self-contained theory of shuffles. By no means do we claim that all results
are new. We are aware of the fact that some results have appeared in the
literature, but we have been unable to find a comprehensive theory of shuffles
in the literature that would suit our approach. Due to the generic setup of
the team automaton model we need to be able to deal with shuffles of infinite
words and, moreover, we need several specific shuffles that are combinations
of shuffling and synchronizing. Most of this has largely gone unexplored in
the literature.

In this section we introduce the basic shuffle, well-known from the lit-
erature. We study its basic properties and prove its commutativity and as-
sociativity. In the subsequent section we consequently introduce three more
intricate types of shuffles, built on top of the basic shuffle. We briefly study
also their properties and establish notions of commutativity and associativity
also for these types of shuffles. The fact that all four shuffles satisfy some sort
of commutativity and associativity is crucial for applying them in the context
of team automata in the final section of this chapter.

6.3.1 Definitions

We begin by introducing the basic shuffle.

Definition 6.3.1. Let u, v ∈ ∆∞. Then

a word w ∈ ∆∞ is a shuffle of u and v if one of the following four cases
holds. Either

(1) u, v ∈ ∆∗ and w = u1v1u2v2 · · ·unvn, where n ≥ 1, u1 ∈ ∆∗,
u2, u3, . . . , un, v1, v2, . . . , vn−1 ∈ ∆+, vn ∈ ∆∗, u1u2 · · ·un = u, and
v1v2 · · · vn = v, or
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(2) u ∈ ∆∗, v ∈ ∆ω, and w = u1v1u2v2 · · ·unvn, where n ≥ 1, u1 ∈ ∆∗,
u2, u3, . . . , un, v1, v2, . . . , vn−1 ∈ ∆+, vn ∈ ∆ω, u1u2 · · ·un ∈ pref (u),
and v1v2 · · · vn = v, or

(3) u ∈ ∆ω, v ∈ ∆∗, and w is a shuffle of v and u, or

(4) u, v ∈ ∆ω and either

(a) w is a shuffle of u and a prefix of v, or
(b) w is a shuffle of v and a prefix of u, or
(c) w = u1v1u2v2 · · · , where u1 ∈ ∆∗, uj , v1, vj ∈ ∆+ for all j ≥ 2,

u = lim
n→∞

u1u2 · · ·un, and v = lim
n→∞

v1v2 · · · vn.

A shuffle w of u and v is called fair (w.r.t. u and v) if u and v are finite
(case (1)), or if in case (2) u1u2 · · ·un = u, or if in case (3) w is a fair
shuffle of v and u, or if in case (4) subcase (c) holds. -.

For u, v ∈ ∆∞ the language consisting of all (fair) shuffles of u and v
is denoted by u || v (u ||| v) and is defined as u || v = {w ∈ ∆∞ | w is
a shuffle of u and v} and u ||| v = {w ∈ ∆∞ | w is a fair shuffle of u and v},
respectively.

For L1, L2 ⊆ ∆∞ the (fair) shuffle of L1 and L2 is denoted by L1 || L2

(L1 ||| L2) and is defined as the language consisting of all words which are
a (fair) shuffle of a word from L1 and a word from L2. Thus L1 || L2 =
{w ∈ u || v | u ∈ L1, v ∈ L2} =

⋃
u∈L1, v∈L2

(u || v) and L1 ||| L2 =⋃
u∈L1, v∈L2

(u ||| v).

Example 6.3.2. Let ∆ = {a, b, c, d}. Let u = abc ∈ ∆∗ and let v = cd ∈
∆∗. Then u || v = {abccd,acbcd,cabcd,abcdc,acbdc,cabdc,acdbc,cadbc,cdabc} =
u ||| v.

Consequently, let w1 = aω ∈ ∆∞ and let w2 = bω ∈ ∆∞. Then (ab)ω is a
fair shuffle of w1 and w2, whereas abaω is a shuffle of w1 and w2, but not a
fair shuffle.

Moreover, note that v ||| w2 = {bmcbndbω | m,n ≥ 0}, whereas v || w2 =
{bω} ∪ {bncbω | n ≥ 0} ∪ v ||| w2. -.

6.3.2 Basic Observations

Definition 6.3.1 immediately implies that the fair shuffle of two languages is
included in the shuffle of those two languages.

Lemma 6.3.3. Let u, v ∈ ∆∞ and let L1, L2 ⊆ ∆∞. Then

(1) u ||| v ⊆ u || v and
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(2) L1 ||| L2 ⊆ L1 || L2. -.

From Example 6.3.2 we conclude that both of these inclusions may be proper.
In fact, the following result follows immediately from Definition 6.3.1.

Lemma 6.3.4. (1) If u, v ∈ ∆∗, then u || v = u ||| v,

(2) if u ∈ ∆∗ and v ∈ ∆ω, then u || v =
⋃

u′∈pref(u)(u
′ ||| v), and

(3) if u, v ∈ ∆ω, then u || v =
⋃

u′∈pref(u)(u
′ ||| v) ∪

⋃
v′∈pref(v)(u ||| v′) ∪

u ||| v. -.

Example 6.3.5. (Example 6.3.2 continued) We thus have that w1 || w2 =
(a∗ ||| {w2}) ∪ ({w1} ||| b∗) ∪ (w1 ||| w2), with w1 ||| w2 = (a+ || b+)ω. -.

Note furthermore that two words always define at least one (fair) shuffle,
i.e. given u, v ∈ ∆∞, then u ||| v (= ∅ (and thus u || v (= ∅). Whenever both
u and v equal λ, however, then u || v = u ||| v = {λ}. Also the case that only
one of the words u and v is λ exhibits no surprises.

Lemma 6.3.6. Let u ∈ ∆∞. Then

u || λ = u ||| λ = {u} = λ ||| u = λ || u. -.

In Definition 6.3.1 we have defined a (fair) shuffle of two words as an (infi-
nite) alternation of (finite) nonempty subwords of the one word with (finite)
nonempty subwords of the other word. We now show that dropping the re-
quirement that the subwords be nonempty does not alter the definition.

Lemma 6.3.7. Let u, v ∈ ∆∞. Then

(1) w ∈ u ||| v if and only if w = u1v1u2v2 · · · , with ui, vi ∈ ∆∗ for all i ≥ 1,
u = u1u2 · · · , and v = v1v2 · · · , and

(2) w ∈ u || v if and only if w ∈ u ||| v or w = u1v1u2v2 · · · , with ui, vi ∈
∆∗ for all i ≥ 1, and either u1u2 · · · ∈ pref (u) and v = v1v2 · · · or
u = u1u2 · · · and v1v2 · · · ∈ pref (v).

Proof. (1) (Only if) Immediate from Definition 6.3.1.
(If) Let w = u1v1u2v2 · · · , with ui, vi ∈ ∆∗ for all i ≥ 1, u = u1u2 · · · ,

and v = v1v2 · · · . The proof of the statement makes use of the following con-
struction, which provides representations ρk, k ≥ 1, of prefixes of w satisfying
some particular properties. Formally, the representations ρk, for all k ≥ 1,
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are defined by ρ1 = (u1, v1) and if ρk = (α1,β1,α2,β2, · · · ,α!,β!) for some
l ≥ 1 and αj ,βj ∈ ∆∗, for all 1 ≤ j ≤ ", then

ρk+1 =






(α1,β1,α2,β2, . . . ,α!uk+1, vk+1) if β! = λ,
(α1,β1,α2,β2, . . . ,α!,β!vk+1) if β! (= λ and uk+1 = λ, and
(α1,β1,α2,β2, . . . ,α!,β!, uk+1, vk+1) if β! (= λ and uk+1 (= λ.

The representation ρk+1 is thus obtained by adding the words uk+1 and
vk+1 to ρk. They are added to ρk in such a way that only the first and the
last element of ρk+1 are allowed to equal λ. As a result in the representa-
tion ρk+1 of the prefix u1v1u2v2 · · ·uk+1vk+1 all intermediate λ’s have been
omitted. Formally, the representations thus constructed possess the follow-
ing properties that we use in this proof. Let ρk = (α1,β1,α2,β2, . . . ,α!,β!)
for some l ≥ 1 and αj ,βj ∈ ∆∗, for all j ∈ ["]. Then α1,β! ∈ ∆∗,
αj ∈ ∆+, for all 1 < j ≤ ", and βj ∈ ∆+, for all 1 ≤ j < ". Further-
more, α1β1α2β2 · · ·α!β! = u1v1u2v2 · · ·ukvk, α1α2 · · ·α! = u1u2 · · ·uk, and
β1β2 · · ·β! = v1v2 · · · vk. We now turn to the actual proof.

First consider the case that u, v ∈ ∆∗. Since w is an infinite alternation of
ui, vi ∈ ∆∗, there must exist an m ≥ 1 such that for all n > m, un = vn = λ.
Then ρm = (α1,β1,α2,β2, . . . ,α!,β!) is such that α1β1α2β2 · · ·α!β! = w,
α1,β! ∈ ∆∗, and β1,α2,β2,α3, . . . ,β!−1,α! ∈ ∆+. Hence w ∈ u ||| v.

Next consider the case that u ∈ ∆∗ and v ∈ ∆ω. Hence there must
exist an m ≥ 1 such that for all n > m, un = λ. Then with ρm =
(α1,β1,α2,β2, . . . ,α!,β!) we obtain that for all k ≥ 1, ρm+k = (α1,β1,
α2,β2, . . . ,α!,β!vm+1vm+2 · · · vm+k), where α1,β!vm+1vm+2 · · · vm+k ∈ ∆∗,
αj ∈ ∆+, for all 1 < j ≤ ", βj ∈ ∆+, for all 1 ≤ j < ", and
w = α1β1α2β2 · · ·α!β!vm+1vm+2 · · · . Hence w ∈ u ||| v.

Now consider the case that u ∈ ∆ω and v ∈ ∆∗. Let m ≥ 1 be the
smallest index such that um (= λ and for all n ≥ m, vn = λ. Then with ρm =
(α1,β1,α2,β2, . . . ,α!,β!), where β! = λ we obtain that for all k ≥ 1, ρm+k =
(α1,β1,α2,β2, . . . ,α!um+1um+2 · · ·um+k,λ), where α1 ∈ ∆∗, αj ∈ ∆+, for
all 1 < j < ", α!um+1um+2 · · ·um+k ∈ ∆+, βj ∈ ∆+, for all 1 ≤ j < ", and
w = α1β1α2β2 · · ·β!−1α!um+1um+2 · · · . Hence w ∈ u ||| v.

Finally, consider the case that u, v ∈ ∆ω. For every finite prefix w′ =
u1v1u2v2 · · ·umvm ∈ pref (w), for some m ≥ 1, we know that ρm =
(α1,β1,α2,β2, . . . ,α!,β!) is such that α1,β! ∈ ∆∗, αj ∈ ∆+, for all 1 < j ≤ ",
and βj ∈ ∆+, for all 1 ≤ j < ". We obtain that lim

!→∞
α1β1α2β2 · · ·α!β! =

lim
m→∞

u1v1u2v2 · · ·umvm = w. Hence w ∈ u ||| v.

(2) By using Lemma 6.3.4(3) this follows from (1). -.
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Lemma 6.3.7 thus serves as an alternative definition of a shuffle of two (possi-
bly infinite) words. With this alternative definition, commutativity of (fairly)
shuffling two (possibly infinite) words follows immediately.

Theorem 6.3.8. Let u, v ∈ ∆∞. Then

(1) u ||| v = v ||| u and

(2) u || v = v || u.

Proof. (1) By symmetry it suffices to prove that u ||| v ⊆ v ||| u. Let w ∈
u ||| v. By Lemma 6.3.7(1), w = u1v1u2v2 · · · , with ui, vi ∈ ∆∗ for all i ≥ 1,
u = u1u2 · · · , and v = v1v2 · · · . Clearly we can also write w as v0u1v1u2v2 · · · ,
with v0 = λ. Lemma 6.3.7(1) then implies that w ∈ v ||| u.

(2) Analogous. -.

This theorem implies that also the (fair) shuffle of two (infinitary) languages
is commutative.

Theorem 6.3.9. Let L1, L2 ⊆ ∆∞. Then

(1) L1 ||| L2 = L2 ||| L1 and

(2) L1 || L2 = L2 || L1.

Proof. (1) By symmetry it suffices to prove that L1 ||| L2 ⊆ L2 ||| L1. Let
w ∈ L1 ||| L2. Then there exist a u ∈ L1 and a v ∈ L2 such that w ∈ u ||| v.
By Theorem 6.3.8(1) it now follows that w ∈ v ||| u and hence w ∈ L2 ||| L1.

(2) Analogous. -.

Recall from Lemma 6.3.4(1) that in case of finite words there is no need
to distinguish shuffles from fair shuffles. The following results also follow
immediately from Definition 6.3.1.

Lemma 6.3.10. Let u, v ∈ ∆∗ and let w ∈ u || v. Then

(1) alph(w) = alph(u) ∪ alph(v) and

(2) |w| = |u|+ |v|. -.

Note that in case u or v (or both) are infinite words, then a word w from the
shuffle u || v does not necessarily contain all letters that are contained in u
and v, unless the shuffle is fair.

Lemma 6.3.10 immediately implies that the language formed by the shuf-
fles of two finite words is finite.
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Corollary 6.3.11. Let u, v ∈ ∆∗. Then

#(u || v) ≤ (#(alph(u) ∪ alph(v)))|u|+|v| and hence u || v is finite. -.

Next we wonder whether the language formed by the (fair) shuffles of two
possibly infinite words can be finite. It turns out that this is the case. In fact,
the series of results below leads to an exact formulation (cf. Theorem 6.3.26)
of the conditions that guarantee this.

Lemma 6.3.12. Let u, v ∈ ∆∞ and let z ∈ ∆∗. Then

(1) {z}(u ||| v) ⊆ zu ||| v and

(2) {z}(u || v) ⊆ zu || v.

Proof. (1) Let w ∈ {z}(u ||| v). Then w = zw′ for some w′ ∈ u ||| v. By
Lemma 6.3.7(1), w′ = u1v1u2v2 · · · for some ui, vi ∈ ∆∗ for all i ≥ 1, u =
u1u2 · · · , and v = v1v2 · · · . Thus w = zw′ = zu1v1u2v2 · · · with zu1u2 · · · =
zu. Hence w ∈ zu ||| v.

(2) Analogous. -.

Lemma 6.3.13. Let u, v ∈ ∆∞ and let a, b ∈ ∆. Then

(1) au ||| bv = {a}(u ||| bv) ∪ {b}(au ||| v) and

(2) au || bv = {a}(u || bv) ∪ {b}(au || v).

Proof. (1) From Lemma 6.3.12(1) it follows that {a}(u ||| bv) ⊆ au ||| bv and
by Theorem 6.3.8(1) also {b}(au ||| v) = {b}(v ||| au) ⊆ bv ||| au = au ||| bv.
Thus we are left with proving the inclusions in the statement from left to
right. Let w ∈ au ||| bv.

By Lemma 6.3.7(1), w = u1v1u2v2 · · · for some ui, vi ∈ ∆∗ for all i ≥ 1,
u1u2 · · · = au, and v1v2 · · · = bv. We can distinguish the following two cases.

First let k ≥ 1 be such that uk = au′
k and for all 1 ≤ j < k, uj = vj = λ.

In this case w ∈ {a}(u ||| bv).
Secondly, let k ≥ 1 be such that uk = λ, vk = bv′k, and for all 1 ≤ j < k,

uj = vj = λ. In this case w ∈ {b}(au ||| v).
Hence we conclude that w ∈ {a}(u ||| bv) ∪ {b}(au ||| v).

(2) Analogous. -.

Lemma 6.3.14. Let u1, v1 ∈ ∆∗ and let u2, v2 ∈ ∆∞. Then

(1) (u1 || v1)(u2 ||| v2) ⊆ u1u2 ||| v1v2 and

(2) (u1 || v1)(u2 || v2) ⊆ u1u2 || v1v2.
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Proof. (1) First assume that u1 = λ. Then u1 || v1 = {v1} by Lemma 6.3.6.
Moreover, by the commutativity of ||| and Lemma 6.3.12(1), we have that
{v1}(u2 ||| v2) ⊆ u2 ||| v1v2. The case that v1 = λ is symmetric.

Next we proceed by induction on |u1|+ |v1|. The cases |u1|+ |v1| = 0 and
|u1|+ |v1| = 1 have already been dealt with. Thus assume that |u1|+ |v1| ≥ 2
with u1 = au′

1 and v1 = bv′1 for some a, b ∈ ∆ and some u′
1, v

′
1 ∈

∆∗. Then by Lemma 6.3.13(2), u1 || v1 = au′
1 || bv′1 = {a}(u′

1 || bv′1) ∪
{b}(au′

1 || v′1). This yields (u1 || v1)(u2 ||| v2) = {a}(u′
1 || bv′1)(u2 ||| v2) ∪

{b} (au′
1 || v′1) (u2 ||| v2) ⊆ {a} (u′

1u2 ||| bv′1v2) ∪ {b} (au′
1u2 ||| v′1v2) ⊆

(au′
1u2 ||| bv′1v2) ∪ (au′

1u2 ||| bv′1v2) = (u1u2 ||| v1v2) by applying the induc-
tion hypothesis and Lemma 6.3.13 twice.

(2) Analogous. -.

In the following example we show that the inclusions of this lemma can be
proper.

Example 6.3.15. Let ∆ = {a, b}. Let u = v = ab ∈ ∆∗. Then u || v ⊇
(a || a)(b || b) by Lemma 6.3.14(2). Since abab ∈ u || v and (a || a)(b || b) =
a2b2, this inclusion is proper. -.

Lemma 6.3.14 has the following direct consequences.

Corollary 6.3.16. Let u = u1u2 · · ·un and v = v1v2 · · · vn be such that
ui, vi ∈ ∆∗, with 1 ≤ i < n, and un, vn ∈ ∆∞. Then

(1) (u1 || v1)(u2 || v2) · · · (un−1 || vn−1)(un ||| vn) ⊆ u ||| v and

(2) (u1 || v1)(u2 || v2) · · · (un || vn) ⊆ u || v. -.

Corollary 6.3.17. Let u, v ∈ ∆∞. Then

pref (u) || pref (v) ⊆ pref (u ||| v). -.

The statement of this corollary holds also the other way around. This will be
stated below as part of a more general equality. First we lift the statement
of this corollary to languages.

Corollary 6.3.18. Let K,L ⊆ ∆∞. Then

pref (K) || pref (L) ⊆ pref (K ||| L).

Proof. Let x ∈ pref (K) || pref (L). Then by definition there exist a u ∈ K
and a v ∈ L such that x ∈ pref (u) || pref (v), which according to Corol-
lary 6.3.17 implies that x ∈ pref (u ||| v). Consequently, by definition x ∈
pref (K ||| L). -.
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Consequently, we obtain the following result and its extension to languages.

Lemma 6.3.19. Let u, v ∈ ∆∞. Then

(1) pref (u ||| v) ⊆ pref (u) ||| pref (v) and

(2) pref (u || v) ⊆ pref (u) || pref (v).

Proof. (1) Let z ∈ pref (u ||| v). Then there exist u1, u2, . . . , un, v1, v2, . . . , vn,
and x such that z = u1v1u2v2 · · ·un−1vn−1x, where u1 ∈ ∆∗, u2, u3, . . . , un−1,
v1, v2, . . . , vn−1 ∈ ∆+, and x ∈ ∆∗ are such that x ∈ pref (unvn), with
un, vn ∈ ∆∗, u1u2 · · ·un ∈ pref (u), and v1v2 · · · vn ∈ pref (v). Hence z ∈
pref (u) ||| pref (v).

(2) Analogous. -.

Lemma 6.3.20. Let K,L ⊆ ∆∞. Then

(1) pref (K ||| L) ⊆ pref (K) ||| pref (L) and

(2) pref (K || L) ⊆ pref (K) || pref (L).

Proof. (1) Let x ∈ pref (K ||| L). Then by definition there exist a u ∈ K and
a v ∈ L such that x ∈ pref (u ||| v). Consequently, Lemma 6.3.19(1) implies
that x ∈ pref (u) ||| pref (v). Hence, by definition, x ∈ pref (K) ||| pref (L).

(2) Analogous. -.

Now we are ready to present the aforementioned equality and its exten-
sion to languages, including the converses of the statements of Corollar-
ies 6.3.17 and 6.3.18.

Theorem 6.3.21. Let u, v ∈ ∆∞ and let K,L ⊆ ∆∞. Then

(1) pref (u ||| v) = pref (u) ||| pref (v) = pref (u) || pref (v) = pref (u || v) and

(2) pref (K |||L) = pref (K) ||| pref (L) = pref (K) || pref (L) = pref (K ||L).

Proof. (1) By Lemmata 6.3.19(1) and 6.3.3(2), Corollary 6.3.17, and Lem-
mata 6.3.3(2) and 6.3.19(2) we obtain pref (u ||| v) ⊆ pref (u) ||| pref (v) ⊆
pref (u) || pref (v) ⊆ pref (u ||| v) ⊆ pref (u || v) ⊆ pref (u) || pref (v), which
proves the statement.

(2) Analogous by Lemmata 6.3.20(1) and 6.3.3(2), Corollary 6.3.18, and
Lemmata 6.3.3(2) and 6.3.20(2). -.
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We now continue our quest for a precise formulation of the conditions under
which the language formed by the (fair) shuffles of two possibly infinite words
can be finite.

We begin by isolating the case that u and v are words over the unary
alphabet {a}. Recall from Lemma 6.3.10 that whenever u = ak and v = a!,
for some k, " ∈ N, then u || v = {ak+!}. However, if u = aω, then u || v =
u ||| v = {u}.

Lemma 6.3.22. Let w ∈ ∆∗, let a ∈ ∆, and let k ≥ 0. Then

(1) waω ||| ak = (w ||| ak){aω} and

(2) waω || ak = (w || ak){aω}.

Proof. First observe that {aω} = aω ||| λ = aω || λ. Then by Lemma 6.3.14
we have (w ||| ak){aω} = (w || ak)(aω ||| λ) ⊆ waω ||| ak and (w || ak){aω} =
(w || ak)(aω || λ) ⊆ waω || ak. Hence we are done once we have proven that
waω || ak ⊆ (w ||| ak){aω}.

Let x ∈ waω || ak. This means that there exist n ≥ 1, v1 ∈ ∆∗,
v2, v3, . . . , vn, u1, u2, . . . , un−1 ∈ ∆+, and un ∈ ∆ω such that v1v2 · · · vn = a!

for some " ≤ k, u1u2 · · ·un = waω, and x = v1u1v2u2 · · · vnun. Without loss
of generality we may assume that v1v2 · · · vn = ak. This can be seen as fol-
lows. If v1v2 · · · vn = a! and " < k, then since un = w2aω for some suffix w2

of w we have x = v1u1v2u2 · · · vnw2ak−!aω.
In case w2 (= λ we have x = v1u1v2u2 · · · vnu′

nvn+1un+1 with u′
n = w2,

vn+1 = ak−!, and un+1 = aω.
In case w2 = λ we have x = v1u1v2u2 · · ·un−1v′nun with v′n = vnak−!.
Hence from here we assume that x = v1u1v2u2 · · · vnun with u1u2 · · ·un =
waω and v1v2 · · · vn = ak.

Suppose that u1u2 · · ·un−1 ∈ pref (w). Then for some suffix w2 of w
we have u1u2 · · ·un−1w2 = w and un = w2aω. Consequently, we thus have
v1u1v2u2 · · · vn−1un−1vnw2 ∈ ak ||| w = w ||| ak and thus x ∈ (w ||| ak){aω}.

In the case that u1u2 · · ·un−1 /∈ pref (w) we have u1u2 · · ·un−1 ∈ w{a}∗.
Let m = min {1 ≤ j ≤ n − 1 | u1u2 · · ·uj ∈ w{a}∗}, where min ap-
plied to a set of positive integers selects the smallest number among this
set of integers. Thus um = um,1um,2 with u1u2 · · ·um−1um,1 = w and
um,2 = {a}∗. Hence with v1v2 · · · vm = a! for some " ≤ k we have
um,2vm+1um+1vm+2 · · ·un−1vn = ap for some p ≥ k − l.

Now we have x = v1u1v2u2 · · · vmum,1apaω = v1u1v2u2 · · · vmum,1ak−!aω

and thus x ∈ (ak ||| w){aω} = (w ||| ak){aω}. -.

Whenever two nonempty words yield only one word as their shuffle, then it
must be the case that those words are words over the same unary alphabet.
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Lemma 6.3.23. Let u, v ∈ ∆∞ be such that both u (= λ and v (= λ. Then

(1) if u ||| v = {w}, for some w ∈ ∆∞, then u, v ∈ {a}∞, for some a ∈ ∆,
and

(2) if u || v = {w}, for some w ∈ ∆∞, then u, v ∈ {a}∞, for some a ∈ ∆.

Proof. (1) We prove the statement by contradiction, i.e. we assume that
alph(u) ∪ alph(v) contains at least two elements.

First consider the case that alph(u) \ alph(v) (= ∅. Let b ∈ alph(u) \
alph(v). Hence u = u1bu2 where u1 ∈ (∆\{b})∗ and u2 ∈ ∆∞. Let v = cz for
some c ∈ ∆ \ {b} and z ∈ (∆ \ {b})∞. Consider w1 = u1bcy and w2 = u1cby ,
where y ∈ u2 ||| z. Since u1bc ∈ u1b ||| c, Lemma 6.3.14(1) implies that
w1 ∈ u ||| v. Similarly w2 ∈ u ||| v because u1cb ∈ u1b ||| c. However, b (= c
and thus w1 (= w2, a contradiction.

Next consider the case that alph(u) = alph(v). Hence u = u1abu2 for
some a, b ∈ ∆, a (= b, u1 ∈ {a}∗, and u2 ∈ ∆∞. Let v = cz for some c ∈ ∆
and z ∈ ∆∞. Consider w1 = u1abcy and w2 = cu1aby , where y ∈ u2 ||| z. As
above both w1, w2 ∈ u ||| v but w1 (= w2, a contradiction.

Both cases thus lead to a contradiction and hence #(alph(u)∪alph(v)) =
1, i.e. u, v ∈ {a}∞ for some a ∈ ∆.

(2) This follows from (1) and Lemma 6.3.3(1) combined with the fact that
u ||| v (= ∅. -.

In fact, by Lemmata 6.3.6 and 6.3.23 it now follows that the (fair) shuffles of
two words form a singleton language if and only if either one of those original
words is empty, or both are words over the same unary alphabet.

Corollary 6.3.24. Let u, v ∈ ∆∞. Then

(1) u ||| v = {w}, for some w ∈ ∆∞, if and only if either u = λ, or v = λ,
or u, v ∈ {a}∞, for some a ∈ ∆, and

(2) u || v = {w}, for some w ∈ ∆∞, if and only if either u = λ, or v = λ,
or u, v ∈ {a}∞, for some a ∈ ∆. -.

Next we state the conditions under which the (fair) shuffles of an infinite and
a second (possibly infinite) word form a finite language.

Lemma 6.3.25. Let u ∈ ∆ω and let v ∈ ∆∞ \ {λ}. Then

(1) u ||| v is finite if and only if either u = waω and v ∈ {a}∗, or u = v = aω,
for some w ∈ ∆∗ and a ∈ ∆, and
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(2) u || v is finite if and only if either u = waω and v ∈ {a}∗, or u = v = aω,
for some w ∈ ∆∗ and a ∈ ∆.

Proof. (1) (If) Follows directly from Lemma 6.3.22(1).
(Only if) Let u ||| v be a finite set and let u = b1b2 · · · with bi ∈ ∆

for all i ≥ 1. Suppose first that alph(v) \ alph(u) (= ∅. Then v = v1cv2
for some v1 ∈ ∆∗, c ∈ ∆ \ alph(u), and v2 ∈ ∆∞. Now set, for all i ≥ 0,
Wi = v1b1b2 · · · bic(bi+1bi+2 · · · ||| v2). Since v1b1b2 · · · bic ∈ b1b2 · · · bi ||| v1c,
Lemma 6.3.14(1) implies that Wi ⊆ u ||| v for all i ≥ 0. For each i ≥ 0, all
words in Wi have a c at position |v1| + i + 1 and for all k > i, all words in
Wk have bi at position |v1| + i + 1. Since c (= bi for all i ≥ 1, this implies
that the Wi are mutually disjoint. Since they are not empty this implies that⋃

i≥0 Wi is infinite and hence u ||| v is infinite, a contradiction.
Hence it must be the case that alph(v) ⊆ alph(u). Now suppose that there

exist x ∈ ∆∗ and y ∈ ∆ω such that u = xy and alph(v) \ alph(y) (= ∅. Then
by the same reasoning as given above we know that y ||| v is infinite and
since by Lemma 6.3.12(1) x(y ||| v) ⊆ xy ||| v = u ||| v it follows that u ||| v
is infinite, again a contradiction.

Hence every symbol in v occurs infinitely often in u. Suppose that there
are (at least) two different symbols occurring infinitely often in u. Thus for all
N ∈ N there exists a kN ≥ N such that bkN (= c, where c is the first symbol of
v. Thus we have v = cv′ with c ∈ ∆ and v′ ∈ ∆∞. Let uN ∈ ∆ω be such that
u = b1b2 · · · bkNuN . Set for all N ≥ 0, WN = b1b2 · · · bkN−1cbkN (uN ||| v′).
Since b1b2 · · · bkN−1cbkN ∈ b1b2 · · · bkN−1bkN ||| c, Lemma 6.3.14(1) implies
that WN ⊆ u ||| v for all N ≥ 0. For each N ≥ 0, all words in WN have
c at position kN and for all N ′ such that kN ′ > kN , all words in WN ′

have bkN at position kN . Since c (= bkN this implies that WN ∩ WN ′ = ∅
whenever kN ′ > kN . Since (kN , N ≥ 0) contains an infinite strictly increasing
subsequence kN1 > kN2 > · · · this implies that

⋃
N∈N

WN is infinite and
hence u ||| v is infinite, a contradiction once again.

Thus it must be the case that at most one symbol occurs infinitely often
in u. Combining this with the already established fact that every symbol in v
occurs infinitely often in u, we obtain that u = waω for some w ∈ ∆∗, a ∈ ∆
and v ∈ {a}∞.

Finally assume that alph(w) \ {a} (= ∅ and suppose that v = aω. then
aiwaω (= ajwaω if i (= j, but aiwaω ⊆ u ||| v for all i ≥ 0. Thus also in this
case u ||| v is infinite, a contradiction. Hence if v = aω, then u = aω and
u ||| v = {aω}. If v (= aω, then v = ak for some k ≥ 1 and u = waω. In this
case u ||| v = (w ||| ak){aω} by Lemma 6.3.22(1) and thus u ||| v is finite.

(2) (If) Follows directly from Lemma 6.3.22(2).
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(Only if) If u || v is a finite set, then by Lemma 6.3.3(1) also u ||| v is a
finite set and the statement follows from (1). -.

As a summary of the results obtained in Corollaries 6.3.11 and 6.3.24 and
Lemma 6.3.25 we can now formulate the conditions under which the (fair)
shuffles of two words form a finite language.

Theorem 6.3.26. Let u, v ∈ ∆∞. Then

(1) u ||| v is finite if and only if either u, v ∈ ∆∗, or u = λ, or v = λ, or
there exists an a ∈ ∆ such that u, v ∈ {a}∞, or there exists a w ∈ ∆∗

such that either u = waω and v ∈ {a}∗, or v = waω and u ∈ {a}∗, and

(2) u || v is finite if and only if either u, v ∈ ∆∗, or u = λ, or v = λ, or
there exists an a ∈ ∆ such that u, v ∈ {a}∞, or there exists a w ∈ ∆∗

such that either u = waω and v ∈ {a}∗, or v = waω and u ∈ {a}∗. -.

6.3.3 Commutativity and Associativity

For later use of shuffles in the context of team automata, it is important to
know that shuffles are commutative and associative. In Subsection 6.3.2 we
showed the commutativity of the (fair) shuffles in Theorems 6.3.8 and 6.3.9
via the alternative definition of (fair) shuffles presented in Lemma 6.3.7. Be-
fore we deal with associativity we first present two lemmata that together
provide a result (cf. Theorem 6.3.29) that has Theorem 6.3.8(1) as a direct
corollary. This result actually is yet another alternative definition for the fair
shuffle of two (possibly infinite) words. It sheds light on the particular char-
acteristics of fair shuffles and it plays an important role in the remainder of
this section.

First we need some auxiliary definitions. Let ∆ be an alphabet. For each
i ∈ N and a ∈ ∆ we let [a, i] be a distinct symbol. Let [∆, i] = {[a, i] | a ∈ ∆}.
Thus for all i, j ∈ N such that i (= j, [∆, i] and [∆, j] are disjoint. We moreover
assume, for all i ∈ N, that ∆ and [∆, i] are disjoint. Let i ∈ N. We define the
homomorphisms βi : ∆∗ → [∆, i]∗ and βi : [∆, i]∗ → ∆∗ by βi(a) = [a, i] and
βi([a, i]) = a, respectively. Note that βi and βi are bijections. Intuitively, βi

is used to uniquely label every symbol in a word before this word is used in
a shuffle, after which βi can be used to remove this label again.

In addition we define the following homomorphisms. Let i ∈ N and let
J ⊆ N be such that i /∈ J . The homomorphism ϕi,J : (

⋃
{[∆, j] | j ∈ {i} ∪

J})∗ → ∆∗ is defined by ϕi,J ([a, i]) = a and ϕi,J ([a, j]) = λ, for all j ∈ J ,
whereas the homomorphism ψJ : (

⋃
{[∆, j] | j ∈ J})∗ → ∆∗ is defined by

ψJ ([a, j]) = a, for all j ∈ J . Note that ϕi,∅ = βi and ψ{j} = βj . Intuitively,
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ϕi,J is used to remove the label i from every symbol in a word that is labeled
by i and to erase every other symbol from that word, whereas ψJ simply
removes all labels in J from every symbol in a word that is labeled by such
a label from J .

Lemma 6.3.27. Let u, v ∈ ∆∞. Then, for all i, j ∈ N such that i (= j,

u ||| v ⊆ ψ{i,j}(ϕ
−1
i,{j}(u) ∩ ϕ−1

j,{i}(v)).

Proof. Without loss of generality we assume that i = 1 and j = 2. Moreover,
we prove only the case that u ∈ ∆∗ and v ∈ ∆∞. The proofs of the other
cases are analogous.

Let w ∈ u ||| v. Hence w = u1v1u2v2 · · ·unvn with n ≥ 1, u1 ∈ ∆∗,
u2, u3, . . . , un, v1, v2, . . . , vn−1 ∈ ∆+, vn ∈ ∆ω, u = u1u2 · · ·un, and v =
v1v2 · · · vn. Now consider w = β1(u1)β2(v1)β1(u2)β2(v2) · · ·β1(un)β2(vn). Re-
call from the definitions of β1, β2, ϕ1,{2}, and ϕ2,{1} that for all a ∈ ∆,
ϕ1,{2}(β1(a)) = a and ϕ1,{2}(β2(a)) = λ. Hence it follows immediately that
ϕ1,{2}(w) = u. Likewise, ϕ2,{1}(w) = v. Hence w ∈ ϕ−1

1,{2}(u) ∩ ϕ−1
2,{1}(v).

From the definitions of β1, β2, and ψ{1,2} we recall that for all a ∈ ∆,
ψ{1,2}(β1(a)) = a and ψ{1,2}(β2(a)) = a. This implies that ψ{1,2}(w) = w
and we are done. -.

Lemma 6.3.28. Let u, v ∈ ∆∞. Then, for all i, j ∈ N such that i (= j,

ψ{i,j}(ϕ
−1
i,{j}(u) ∩ ϕ−1

j,{i}(v)) ⊆ u ||| v.

Proof. Without loss of generality we again assume that i = 1 and j = 2.
Furthermore we again proof only the case that u ∈ ∆∗ and v ∈ ∆∞. The
proofs of the other cases are analogous.

Let w ∈ ψ{1,2}(ϕ
−1
1,{2}(u) ∩ ϕ−1

2,{1}(v)) and let w ∈ ϕ−1
1,{2}(u) ∩ ϕ−1

2,{1}(v)
be such that ψ{1,2}(w) = w. Since ϕ1,{2}(w) = u there exist m ≥ 0,
x1, x2, . . . , xm ∈ ∆∗, xm+1 ∈ ∆∞, and u1, u2, . . . , um ∈ ∆+ such that w =
β2(x1)β1(u1)β2(x2)β1(u2) · · ·β2(xm)β1(um)β2(xm+1) and u = u1u2 · · ·um.
Observe that the situation that m = 0 corresponds to the case that u = λ.
Similarly, ϕ2,{1}(w) = v and the fact that v (= λ imply that there exist n ≥ 1,
y1, y2, . . . , yn ∈ ∆∗, v1, v2, . . . , vn−1 ∈ ∆+, and vn ∈ ∆ω such that w =
β1(y1)β2(v1)β1(y2)β2(v2) · · ·β1(yn)β2(vn) and v = v1v2 · · · vn. We thus have
the situation that β2(x1)β1(u1)β2(x2)β1(u2) · · ·β2(xm)β1(um)β2(xm+1) =
β1(y1)β2(v1)β1(y2)β2(v2) · · ·β1(yn)β2(vn). Since [∆, 1] ∩ [∆, 2] = ∅ it must
be the case that either β2(x1) = λ or β1(y1) = λ.

First assume that β2(x1) = λ, i.e. x1 = λ. Now v ∈ ∆ω implies thatm (= 0.
Thus we have that β1(u1)β2(x2)β1(u2)β2(x3) · · ·β2(xm)β1(um)β2(xm+1) =
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β1(y1)β2(v1)β1(y2)β2(v2) · · ·β1(yn)β2(vn). Again by [∆, 1] ∩ [∆, 2] = ∅ and
from the fact that ui ∈ ∆+ for all 1 ≤ i ≤ m, vj ∈ ∆+ for all 1 ≤ j ≤ n− 1,
and vn ∈ ∆ω , we know that m = n and, for all 1 ≤ i ≤ n, β1(ui) = β2(yi)
and β2(vi) = β2(xi+1). Consequently w = ψ{1,2}(w) = u1v1u2v2 · · ·unvn ∈
u ||| v.

Next assume that β1(y1) = λ, i.e. y1 = λ. In this case we thus have
the situation that β2(x1)β1(u1)β2(x2)β1(u2) · · ·β2(xm)β1(um)β2(xm+1) =
β2(v1)β1(y2)β2(v2)β1(y3) · · ·β1(yn)β2(vn). Again by [∆, 1] ∩ [∆, 2] = ∅ and
from the fact that ui ∈ ∆+ for all 1 ≤ i ≤ m, vj ∈ ∆+ for all 1 ≤ j ≤ n− 1,
and vn ∈ ∆ω, we know that n = m+1, β1(ui) = β1(yi+1) and β2(vi) = β2(xi),
for all 1 ≤ i ≤ m, and β2(vm+1) = β2(xm+1). Consequently w = ψ{1,2}(w) =
v1u1v2u2 · · · vmumvm+1 ∈ u ||| v. -.

We now combine the two directly preceding lemmata to indeed obtain yet an-
other alternative definition of the fair shuffle of two (possibly infinite) words.
Note that since these lemmata use inverse homomorphisms based on the
complete two words being shuffled. It therefore serves only as an alternative
definition of the fair shuffle of these two words.

Theorem 6.3.29. Let u, v ∈ ∆∞. Then, for all i, j ∈ N such that i (= j,

u ||| v = ψ{i,j}(ϕ
−1
i,{j}(u) ∩ ϕ−1

j,{i}(v)). -.

This theorem now provides a different — rather elegant — proof of The-
orem 6.3.8(1) since we know that intersection is commutative and thus
u ||| v = ψ{i,j}(ϕ

−1
i,{j}(u) ∩ ϕ−1

j,{i}(v)) = ψ{i,j}(ϕ
−1
j,{i}(v) ∩ ϕ−1

i,{j}(u)) = v ||| u.
The fair shuffle of two words can thus be obtained by applying a combination
of (inverse) homomorphisms and intersection to those two words.

Example 6.3.30. (Example 6.3.2 continued) Note that we have ϕ−1
1,{2}(u) =

{β2(x1)β1(a)β2(x2)β1(b)β2(x3)β1(c)β2(x4) | xi ∈ ∆∗, i ∈ [3], x4 ∈ ∆∞} =
{β2(x1)[a, 1]β2(x2)[b, 1]β2(x3)[c, 1]β2(x4) | xi ∈ ∆∗, i ∈ [3], x4 ∈ ∆∞}
and ϕ−1

2,{1}(v) = {β1(y1)β2(c)β1(y2)β2(d)β1(y3) | yi ∈ ∆∗, i ∈ [2], y3 ∈
∆∞} = {β1(y1)[c, 2]β1(y2)[d, 2]β1(y3) | yi ∈ ∆∗, i ∈ [2], y3 ∈ ∆∞}. Thus,
e.g., [a, 1][c, 2][b, 1][d, 2][c, 1] ∈ ϕ−1

1,{2}(u)∩ ϕ−1
2,{1}(v) and hence we now obtain

that ψ{1,2}([a, 1][c, 2][b, 1][d, 2][c, 1]) = acbdc ∈ ψ{1,2}(ϕ
−1
1,{2}(u) ∩ ϕ−1

2,{1}(v)).
Finally, note that in Example 6.3.2 we have seen that indeed acbdc ∈
u ||| v. -.

This example shows why the construction ψ{i,j}(ϕ
−1
i,{j}(u) ∩ ϕ−1

j,{i}(v)), with
u, v ∈ ∆∞ and i (= j ∈ N, in general does not equal u || v: the inverse
homomorphisms are “fair” in the sense that they take only complete words
as input.
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It remains to prove that (fairly) shuffling is associative. The remainder of
this subsection is devoted to this. The setup is as follows. We first use Theo-
rem 6.3.29 to prove the associativity of fairly shuffling (cf. Theorem 6.3.32).
Lemma 6.3.4(1) then implies that associativity remains to be proven only
in case infinite words are involved. To this aim we subsequently relate the
shuffles of possibly infinite words to the shuffles of the finite prefixes of those
possibly infinite words (cf. Theorem 6.3.49). We then conclude by using this
result to prove associativity (cf. Theorem 6.3.51).

The following lemma streamlines the proof of the result succeeding it,
which states that fairly shuffling is associative.

Lemma 6.3.31. Let u, v, w ∈ ∆∞. Let i1, i2, i3 ∈ N be three different inte-
gers and let j ∈ N be different from i1. Then

ψ{i1, j} (ϕ
−1
i1, {j}

(u ) ∩ ϕ−1
j, {i1}

(ψ{i2, i3} (ϕ
−1
i2, {i3}

( v ) ∩ ϕ−1
i3, {i2}

(w ) ) ) ) =

ψ{i1,i2,i3}(ϕ
−1
i1,{i2,i3}

(u) ∩ ϕ−1
i2,{i1,i3}

(v) ∩ ϕ−1
i3,{i1,i2}

(w)).

Proof. Without loss of generality we assume that i1 = 1, i2 = 2, i3 = 3, and
j (= 1.

(⊆) Let z ∈ ψ{j,1}(ϕ
−1
1,{j}(u)∩ϕ

−1
j,{1}(ψ{2,3}(ϕ

−1
2,{3}(v)∩ϕ

−1
3,{2}(w)))) and let

z ∈ ϕ−1
1,{j}(u)∩ϕ

−1
j,{1}(ψ{2,3}(ϕ

−1
2,{3}(v)∩ϕ

−1
3,{2}(w))) be such that ψ{j,1}(z) = z.

Let x ∈ ψ{2,3}(ϕ
−1
2,{3}(v)∩ϕ

−1
3,{2}(w)) be such that z ∈ ϕ−1

1,{j}(u)∩ϕ
−1
j,{1}(x). Let

x ∈ ϕ−1
2,{3}(v) ∩ ϕ−1

3,{2}(w) be such that ψ{2,3}(x) = x. Hence x is of the form
x = b1c1b2c2 · · · such that for all i ≥ 1, bi ∈ [∆, 2]∪{λ} and ci ∈ [∆, 3]∪{λ},
β2(b1b2 · · · ) = v, and β3(c1c2 · · · ) = w. Furthermore z is of the form
z = a1b1c1a2b2c2 · · · such that for all i ≥ 1, ai ∈ [∆, 1] ∪ {λ} and bi, ci ∈
[∆, j] ∪ {λ}, β1(a1a2 · · · ) = u, and βj(b1c1b2c2 · · · ) = ψ{2,3}(b1c1b2c2 · · · ) is
such that βj(b1b2 · · · ) = β2(b1b2 · · · ) = v and βj(c1c2 · · · ) = β3(c1c2 · · · ) =
w. Now consider z = a1β2(βj(b1))β3(βj(c1))a2β2(βj(b2))β3(βj(c2)) · · · . Since
β1(a1a2 · · · ) = u, β2(β2(βj(b1))β2(βj(b2)) · · · ) = βj(b1b2 · · · ) = v, and
β3(β3(βj(c1))β3(βj(c2)) · · · ) = βj(c1c2 · · · ) = w, we know that ϕ1,{2,3}(z) =
u, ϕ2,{1,3}(z) = v, and ϕ3,{1,2}(z) = w. Hence z ∈ ϕ−1

1,{2,3}(u) ∩ ϕ−1
2,{1,3}(v) ∩

ϕ−1
3,{1,2}(w) and ψ{1,2,3}(z) = ψ{j,1}(z) = z.

(⊇) Let z ∈ ψ{1,2,3}(ϕ
−1
1,{2,3}(u) ∩ ϕ−1

2,{1,3}(v) ∩ ϕ−1
3,{1,2}(w)) and let z ∈

ϕ−1
1,{2,3}(u) ∩ ϕ−1

2,{1,3}(v) ∩ ϕ−1
3,{1,2}(w) be such that ψ{1,2,3}(z) = z. Hence z

is of the form z = a1b1c1a2b2c2 · · · such that for all i ≥ 1, ai ∈ [∆, 1] ∪ {λ},
bi ∈ [∆, 2] ∪ {λ}, and ci ∈ [∆, 3] ∪ {λ}, β1(a1a2 · · · ) = u, β2(b1b2 · · · ) = v,
and β3(c1c2 · · · ) = w. Let u = a1α1a2α2 · · · , with αi ∈ ([∆, j] ∪ {λ})∗, be
such that for all i ≥ 1, βj(αi) = ψ{2,3}(bici). Then clearly u ∈ ϕ−1

1,{j}(u).

Next let x = b1c1b2c2 · · · . Then x ∈ ϕ−1
2,{3}(v)∩ ϕ−1

3,{2}(w). Since for all i ≥ 1,

ϕj,{1}(αi) = βj(αi) = ψ{2,3}(bici) and ai ∈ [∆, 1] ∪ {λ}, it follows that
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u ∈ ϕ−1
j,{1}(ψ{2,3}(x)). Thus u ∈ ϕ−1

1,{j}(u) ∩ ϕ−1
j,{1}(ψ{2,3}(x)). Finally, the

fact that for all i ≥ 1, βj(αi) = ψ{2,3}(bici) now implies that ψ{j,1}(u) =
ψ{1,2,3}(z) = z. -.

Theorem 6.3.32. Let u, v, w ∈ ∆∞ and let L1, L2, L3 ⊆ ∆∞. Then

(1) {u} ||| (v ||| w) = (u ||| v) ||| {w} and

(2) L1 ||| (L2 ||| L3) = (L1 ||| L2) ||| L3.

Proof. (1) From Definition 6.3.1, Theorem 6.3.29, and Lemma 6.3.31 we ob-
tain that {u} ||| (v ||| w) = {x | ∃y ∈ v ||| w : x ∈ u ||| y} = {x | ∃y ∈
ψ{k,!}(ϕ

−1
k,{!}(v) ∩ ϕ−1

!,{k}(w)) : x ∈ ψ{i,j}(ϕ
−1
i,{j}(u) ∩ ϕ−1

j,{i}(y)), i, j, k, " ∈

N, i (= j, k (= "} = {x | x ∈ ψ{i,j}(ϕ
−1
i,{j}(u) ∩ ϕ−1

j,{i}(ψ{k,!}(ϕ
−1
k,{!}(u) ∩

ϕ−1
!,{k}(v)))), i, j, k, " ∈ N, i (= j, k (= "} = {x | x ∈ ψ{i,k,!}(ϕ

−1
i,{k,!}(u) ∩

ϕ−1
k,{i,!}(v) ∩ ϕ−1

!,{i,k}(w)), i, k, " ∈ N, i (= k, k (= ", " (= i} = {x | x ∈

ψ{j,!}(ϕ
−1
j,{!}(ψ{i,k}(ϕ

−1
i,{k}(u) ∩ ϕ−1

k,{i}(v))) ∩ ϕ−1
!,{j}(w), i, j, k, " ∈ N, i (=

k, j (= "} = {x | ∃z ∈ ψ{i,k}(ϕ
−1
i,{k}(u) ∩ ϕ−1

k,{i}(v)) : x ∈ ψ{j,!}(ϕ
−1
j,{!}(z) ∩

ϕ−1
!,{j}(w), i, j, k, " ∈ N, i (= k, j (= "} = {x | ∃z ∈ u ||| v : z ∈ z ||| w} =

(u ||| v) ||| {w}.
(2) By definition and (1) we obtain L1 ||| (L2 ||| L3) = {x ∈ u ||| y | u ∈

L1, y ∈ L2 ||| L3} = {x ∈ {u} ||| (v ||| w) | u ∈ L1, v ∈ L2, w ∈ L3} =
{x ∈ (u ||| v) ||| {w} | u ∈ L1, v ∈ L2, w ∈ L3} = {x ∈ z ||| w | z ∈
L1 ||| L2, w ∈ L3} = (L1 ||| L2) ||| L3. -.

Due to Lemma 6.3.4(1) this result implies that also in the special case that
we deal with finite words (finitary languages) only, shuffling is associative.

Corollary 6.3.33. Let u, v, w ∈ ∆∗ and let L1, L2, L3 ⊆ ∆∗. Then

(1) {u} || (v || w) = (u || v) || {w} and

(2) L1 || (L2 || L3) = (L1 || L2) || L3. -.

Hence what remains is the case that infinite words are involved. To this aim
we now seek to express the shuffles of possibly infinite words in terms of
shuffles of their finite prefixes, which obviously are fair shuffles.

We begin by defining (u, v)-decompositions as a way to interleave the
finite words u and v by alternating sequences from u and v. The construction
of these (u, v)-decompositions resembles a construction used in the proof of
Lemma 6.3.7.

Definition 6.3.34. Let w ∈ ∆∗. Then
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a decomposition of w is a sequence d = (u1, v1, u2, v2, . . . , un, vn) such
that n ≥ 1, u1 ∈ ∆∗, u2, u3, . . . , un, v1, v2, . . . , vn−1 ∈ ∆+, vn ∈ ∆∗, and
w = u1v1u2v2 · · ·unvn.

If u1u2 · · ·un = u and v1v2 · · · vn = v, then d is also called a (u, v)-
decomposition of w. -.

Together with Definition 6.3.1(1) this leads to the following result.

Lemma 6.3.35. Let u, v, w ∈ ∆∗. Then

there exists a (u, v)-decomposition of w if and only if w ∈ u || v. -.

Note that a shuffle w ∈ u || v may have several decompositions.

Example 6.3.36. Let ∆ = {a, b, c}. Let u, v ∈ ∆∗ be such that u = aba and
v = babc. Clearly w = abababc ∈ u || v. Note that both d1 = (a, ba, ba, bc)
and d2 = (aba, babc) are (u, v)-decompositions of w. Hence w does not have
a unique decomposition.

Note that also w′ = babcaba ∈ u || v. It is however easy to see that in this
case (λ, babc, aba,λ) is the unique (u, v)-decomposition of w′. -.

If d = (u1, v1, u2, v2, . . . , unvn) is a (u, v)-decomposition of a word z, then n
intuitively is the number of alternations of sequences from u and v that form
z = u1v1u2v2 · · ·unvn.

Definition 6.3.37. Let d = (u1, v1, u2, v2, . . . , un, vn), for some n ∈ N, be a
(u, v)-decomposition. Then

n is the norm of d, denoted by || d ||. -.

Definition 6.3.38. Let d = (x1, y1, x2, y2, . . . , xk, yk), for some k ∈ N, and
d′ = (u1, v1, u2, v2, . . . , un, vn), for some n ∈ N, be two decompositions of two
words over an alphabet ∆. Then

(1) d directly precedes d′ if k ≤ n and for all 1 ≤ j ≤ k − 1, xj = uj and
yj = vj , and, moreover, one of the following three cases holds. Either

(a) k = n, xk = uk, and yka = vk, for some a ∈ ∆, or

(b) k = n, yk = vk = λ, and xka = uk, for some a ∈ ∆, or

(c) k = n− 1, yk (= λ, vk+1 = λ, and uk+1 = a, for some a ∈ ∆, and

(2) d precedes d′ if there exist decompositions d0, d1, . . . , d! such that " ≥ 0,
d = d0, d′ = d!, and for all 0 ≤ j ≤ " − 1, dj directly precedes dj+1. -.
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Note that if d and d′ are two decompositions such that d directly precedes
d′, then || d′|| = || d || or || d′|| = || d || + 1. Hence if d precedes d′, then
|| d′|| ≥ || d ||.

It is not difficult to see that whenever a decomposition d precedes a de-
composition d′, then d decomposes a prefix of the word that d′ decomposes.
In fact, we have the following result.

Lemma 6.3.39. Let d = (x1, y1, x2, y2, . . . , xk, yk), for some k ∈ N, and
d′ = (u1, v1, u2, v2, . . . , un, vn), for some n ∈ N, be two decompositions — of
two words over an alphabet ∆ — such that d precedes d′. Then

x1x2 · · ·xk ∈ pref (u1u2 · · ·un), y1y2 · · · yk ∈ pref (v1v2 · · · vn), and
x1y1x2y2 · · ·xkyk ∈ pref (u1v1u2v2 · · ·unvn).

Proof. If d = d′ there is nothing to prove, so let us assume that d (= d′. From
Definition 6.3.38 it is clear that the statement holds in case d immediately
precedes d′.

If d precedes d′, then there exist (sj , tj)-decompositions dj of words wj ∈
∆∗ with 0 ≤ j ≤ ", for some " ≥ 1, such that d0 = d, d! = d′, and dj
immediately precedes dj+1, for all 0 ≤ j < ". Thus, for all 0 ≤ j < "− 1, sj ∈
pref (sj+1), tj ∈ pref (tj+1), and wj ∈ pref (wj+1). Hence s0 = x1x2 · · ·xk ∈
pref (s!) = pref (u1u2 · · ·un), t0 = y1y2 · · · yk ∈ pref (t!) = pref (v1v2 · · · vn),
and w0 = x1y1x2y2 · · ·xkyk ∈ pref (w!) = pref (u1v1u2v2 · · ·unvn). -.

A sequence of decompositions — of words wi into words ui and words vi,
with i ≥ 0 — preceding each other, uniquely defines the limit of the words
wi as an element of the shuffle of the limits of the words ui and the words vi.

Lemma 6.3.40. For all i ≥ 0, let di be a (ui, vi)-decomposition — of a word
wi over ∆ — such that di precedes di+1. Then

u = lim
i→∞

ui, v = lim
i→∞

vi, and w = lim
i→∞

wi exist, and w ∈ u || v.

Proof. By Lemma 6.3.39 it follows that ui ≤ ui+1, vi ≤ vi+1, and wi ≤ wi+1,
for all i ≥ 0, so indeed u, v, and w exist and we only have to prove that
w ∈ u || v. We distinguish two cases.

First we consider the case that there exists an N ∈ N such that
|| di|| = || dN || for all i ≥ N . Let N0 ∈ N be such an N . Again we dis-
tinguish two cases.
Let us assume first that, for all i ≥ N0, if di = (x1, y1, x2, y2, . . . , xn, yn),
then yn = λ. Consequently, for all i ≥ N0, vi = vN0 . From ui ≤ ui+1,
for all i ≥ 0, we infer that for all i > N0 there exist zi ∈ ∆∗ such
that ui+1 = uizi. Observe that u = lim

i→∞
ui = uN0 lim

i→∞
z1z2 · · · zi−N0 . Thus
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we obtain that for all i > N0 we have wi = wN0z1z2 · · · zi−N0 . Since
wN0 ∈ uN0 || vN0 by Lemma 6.3.35, we conclude that w = lim

i→∞
wi ∈

(uN0 || vN0) lim
i→∞

z1z2 · · · zi−N0 = (uN0 || vN0) ( lim
i→∞

z1z2 · · · zi−N0 || λ) ⊆

u || vN0 ⊆ u || v by Lemma 6.3.14(2) and the definition of u.
Next assume there exist an i ≥ N0 such that di = (x1, y1, x2, y2, . . . , xn, yn)
with yn (= λ. Let "0 be the smallest such i. Thus, for all i ≥ "0, ui = u!0 .
From vi ≤ vi+1, for all i ≥ 0, we infer that for all i > "0 there exist zi ∈ ∆∗

such that vi+1 = vizi. Observe that v = lim
i→∞

vi = v!0 lim
i→∞

z1z2 · · · zi−v0 .

Thus for all i > "0 we have wi = w!0z1z2 · · · zi−!0 . Since w!0 ∈ u!0 || v!0 by
Lemma 6.3.35, we conclude that w = lim

i→∞
wi ∈ (u!0 || v!0) lim

i→∞
z1z2 · · · zi−!0 =

(u!0 || v!0)(λ || lim
i→∞

z1z2 · · · zi−!0) ⊆ u!0 || v ⊆ u || v by Lemma 6.3.14(2) and

the definition of u.
Now we move to the case that for all N ∈ N there exists a k ∈ N such that

|| dk|| ≥ N . Let j1, j2, . . . ∈ N be the (unique) infinite sequence of integers
such that for all i ∈ N, || dji || < || dji+1 || and || d!|| = || dji || for all ji ≤ " <
ji+1. Since || d0|| ≤ || d1|| ≤ · · · is an unbounded sequence of integers we
know that the ji as just described exist. Since each dji precedes dji+1 , Defini-
tion 6.3.38 implies that there exist x1, x2, . . . , y1, y2, . . . , s1, s2, . . . , t1, t2, · · · ∈
∆∗ such that dji = (x1, y1, x2, y2, . . . , x|| dji

||−1, y||dji
||−1, si, ti), for all i ≥ 1.

According to Lemma 6.3.39, uji = x1x2 · · ·x|| dji
||−1si ∈ pref (uji+1) =

pref (x1x2 · · ·x|| dji+1 ||−1si+1), for all i ≥ 1, and thus u = lim
n→∞

x1x2 · · ·xn.

Analogously we get v = lim
n→∞

y1y2 · · · yn, and w = lim
n→∞

x1y1x2y2 · · ·xnyn.

Thus w = x1y1x2y2 · · · with x1 ∈ ∆∗, xi ∈ ∆+ for all i ≥ 2, yi ∈ ∆+ for all
i ≥ 1, u = x1x2 · · · , and v = y1y2 · · · . Hence w ∈ u || v. -.

The preceding two lemmata allow us to conclude that whenever the prefixes
of an infinite word w are included in the shuffle of the prefixes of two words
u and v that do not share a single letter, then w is a shuffle of u and v.

Lemma 6.3.41. Let u, v ∈ ∆∞ be such that alph(u) ∩ alph(v) = ∅ and let
w ∈ ∆ω. Then

if pref (w) ⊆ pref (u) || pref (v), then w ∈ u || v.

Proof. Let pref (w) ⊆ pref (u) || pref (v). Now consider two arbitrary consec-
utive prefixes of w. Thus for some n ≥ 0 we have w[n] and w[n+ 1] = w[n]a
such that a ∈ alph(u) or a ∈ alph(v). Since pref (w) ⊆ pref (u) || pref (v),
there are prefixes un and un+1 of u, and prefixes vn and vn+1 of v such that
w[n] ∈ un || vn and w[n + 1] ∈ un+1 || vn+1. Observe that #a(w[n + 1]) =
#a(w[n]) + 1. Moreover, for all b ∈ alph(u) and for all c ∈ alph(v) such that
b (= a and c (= a we have #b(w[n]) = #b(un) = #b(w[n+1]) = #b(un+1) and
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#c(w[n]) = #c(vn) = #c(w[n + 1]) = #c(vn+1) because w[n + 1] = w[n]a
and alph(u) ∩ alph(v) = ∅.

Consequently, using the fact that un+1 and un are both prefixes of u,
and vn+1 and vn are both prefixes of v we conclude that un+1 = una and
vn+1 = vn if a ∈ alph(u), and vn+1 = vna and un+1 = un if a ∈ alph(v).

Now let dn be a (un, vn)-decomposition of w[n]. Then we have dn =
(x1, y1, x2, y2, . . . , xk, yk), with k ≥ 0. We define a (un+1, vn+1)-decomposition
of w[n+ 1] as follows.

First let a ∈ alph(u). If yk = λ, then dn+1 = (x1, y1, x2, y2, . . . , xka, yk),
whereas if yk (= λ, then we set dn+1 = (x1, y1, x2, y2, . . . , xk, yk, a,λ). In
both cases we have x1x2 · · ·xka = una = un+1 and y1y2 · · · yk = vn = vn+1.
Moreover x1y1x2y2 · · ·xkyka = w[n]a = w[n+1]. Thus dn+1 is a (un+1, vn+1)-
decomposition of w[n+ 1] and dn precedes dn+1.

Next we let a ∈ alph(v). Now dn+1 = (x1, y1, x2, y2, . . . , xk, yka). Since
x1x2 · · ·xk = un = un+1 and y1y2 · · · yka = vna = vn+1 are such that
x1y1x2y2 · · ·xkyka = w[n]a = w[n + 1] we thus know that dn+1 is a
(un+1, vn+1)-decomposition of w[n+ 1], which is preceded by dn.

Observe that the only decomposition of w[0] = λ is d0 = (λ,λ). Hence
we have defined an infinite (and unique) sequence of (ui, vi)-decompositions
di of w[i], i ≥ 0, such that di precedes di+1 for all i ≥ 0. Hence from Lem-
mata 6.3.40 it follows that w = lim

n→∞
w[n] ∈ lim

n→∞
un || lim

n→∞
vn = u || v. -.

This result implies that in order to determine whether or not an infinite word
is a shuffle of two (possibly infinite) words that do not share a single letter, it
suffices to consider only the (finite!) prefixes of those words. Unfortunately,
however, condition alph(u) ∩ alph(v) = ∅ of Lemma 6.3.41 is necessary to
prove that each prefix of w has a unique decomposition into prefixes of u and
v. This is illustrated in the following example. We moreover show that there
exist an infinite number of prefixes w[n] with a decomposition that does not
precede any decomposition of w[n+ 1].

Example 6.3.42. Let ∆ = {a, b}. Let u, v ∈ ∆ω be such that u = (a3b)ω and
v = bω. Clearly {a3, a3b} ⊆ pref (u), {b2, b3} ⊆ pref (v), and w = a3b3 ∈
pref (u) || pref (v). We thus note that d1 = (a3, b3) and d2 = (a3b, b2) are
decompositions of w.

Note that also w′ = wa = a3b3a ∈ pref (u) || pref (v). The only decom-
positions of w′ based on prefixes of u and v are d′ = (a3b, b2, a,λ) and
d′′ = (a3, b2, ba,λ). It is clear that d1 does not precede d′ nor does it precede
d′′. Hence w and w′ = wa are such that there exists a decomposition d1 of
w that does not precede any decomposition of w′. Note, however, that d′ is
preceded by d2.
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Let j ≥ 0 and let uj = a3(ba3)
j
∈ pref (u) and vj = b3(b3)

j
∈

pref (v). Then clearly both wj = (a3b4)
j
a3b3 ∈ pref (u) || pref (v) and

w′
j = wja = (a3b4)

j
a3b3a ∈ pref (u) || pref (v). Now note that dj =

(x0, y0, x1, y1, . . . , xj , yj, a3, b3), where xi = a3b and yi = b3 for all 0 ≤ i ≤ j,
is a (uj , vj)-decomposition of wj . By the same reasoning as for the case j = 0
above it is however easy to see that there does not exist a decomposition of
w′

j based on prefixes of u and v that is preceded by dj . -.

In order to generalize Lemma 6.3.41 by dropping the condition alph(u) ∩
alph(v) (= ∅ we need to be able to guarantee the following: if u, v ∈ ∆∞, w ∈
∆ω , and pref (w) ⊆ pref (u) || pref (v), then there exists an infinite sequence
of (un, vn)-decompositions of w[n], with n ≥ 0, preceding each other. With
this in mind we now recall König’s Lemma.

Lemma 6.3.43. (König’s Lemma) If G is an infinite finitely-branching root-
ed tree, then there exists an infinite path through G, starting in the root. -.

The subsequent definition of limit-closed languages allows us to first general-
ize Lemma 6.3.41 to languages and then to infer that the condition alph(u)∩
alph(v) (= ∅ can — after all — indeed be dropped from Lemma 6.3.41.

Definition 6.3.44. Let K ⊆ ∆∞. Then

K is limit closed if for all words w1 ≤ w2 ≤ · · · ∈ pref (K), lim
n→∞

wn ∈

K ∪ pref (K). -.

Example 6.3.45. All singleton languages {u} are limit closed. Also all finitary
languages L = {λ, a, . . . , an | n ≥ 1} over a unary alphabet are limit closed,
whereas a∗ is not limit closed due to the fact that lim

n→∞
an = aω /∈ a∗ ∪ L.

However, a∗ ∪ aω and aω are limit closed. -.

Lemma 6.3.46. Let K,L ⊆ ∆∞ be limit closed and let w ∈ ∆ω. Then

if pref (w) ⊆ pref (K) || pref (L), then w ∈ K || L.

Proof. Let pref (w) ⊆ pref (K) || pref (L).
For n ≥ 0, let Vn = {d | d is a (un, vn)-decomposition of w[n], un ∈

pref (K), and vn ∈ pref (L)} be the set of all possible decompositions of
the prefixes w[n] of w. Note that V0 = {(λ,λ)} consists of the (λ,λ)-
decomposition of w[0] = λ. Note furthermore that each Vn is finite, for n ≥ 0,
and that Vn ∩ Vn′ = ∅, for all n > n′ ≥ 0.

Consider the directly precedes relation E = {(d, d′) | d directly precedes
d′}. Thus E ⊆

⋃
n≥1(Vn−1 × Vn). Note that G = (

⋃
n≥0 Vn, E) is a directed

acyclic graph. It is sketched in Figure 6.7.
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Except for (λ,λ), every vertex of G has precisely one incoming edge.
This can be seen as follows. The fact that pref (w) ⊆ pref (K) || pref (L)
implies that every vertex has at least one incoming edge, whereas the fact
that for every decomposition of a prefix w[n], n ≥ 1, we can immediately
distinguish the unique last symbol of w[n], implies that every vertex has
at most one incoming edge. Furthermore, from Definition 6.3.38 it follows
that every vertex has at most two outgoing edges, depending on whether the
symbol added to w[n], n ≥ 0, to obtain w[n + 1] “belongs” to a prefix from
K or to a prefix from L. Hence G is an infinite finitely-branching rooted tree
with root (λ,λ).

We can thus use König’s Lemma to conclude that there exists an infinite
path π through G, starting in the root (λ,λ). Let π = (d0, d1, . . . ). Then
for all n ≥ 0, dn is a (un, vn)-decomposition of w[n] and (dn, dn+1) ∈ E.
Hence from Lemma 6.3.40 it follows that u = lim

n→∞
un, v = lim

n→∞
vn, and

w = lim
n→∞

wn exist, and w ∈ u || v. Since K and L are limit closed this

implies that w ∈ K || L. -.

The statement of this lemma in general does not hold when K or L are not
limit closed, as is shown next.

Example 6.3.47. Let ∆ = {a} and let w = aω ∈ ∆ω. Let K = a∗ ⊆ ∆∞

and let L = {λ} ⊆ ∆∞. Then clearly pref (w) = a∗ = pref (K) || pref (L),
whereas w = aω /∈ a∗ = K || L. -.

Since all singleton languages are limit closed, we immediately obtain the
following result.

Corollary 6.3.48. Let u, v ∈ ∆∞ and let w ∈ ∆ω. Then

if pref (w) ⊆ pref (u) || pref (v), then w ∈ u || v. -.

Together with Theorem 6.3.21, this corollary and its preceding lemma imply
the following result.

Theorem 6.3.49. Let u, v ∈ ∆∞, let K,L ⊆ ∆∞ be limit closed, and let
w ∈ ∆ω. Then

(1) w ∈ u || v if and only if pref (w) ⊆ pref (u) || pref (v), and

(2) w ∈ K || L if and only if pref (w) ⊆ pref (K) || pref (L). -.

We have thus been able to express the shuffles of possibly infinite words in
terms of the shuffles of finite prefixes of those possibly infinite words. One
more result now suffices to prove the associativity of shuffling.
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Corollary 6.3.50. Let v, w ∈ ∆∞. Then

v || w is limit closed.

Proof. Let y1 ≤ y2 ≤ · · · ∈ pref (v || w) and let y = lim
n→∞

yn. Since for all x ∈

pref (y), there exists an i ≥ 0 such that x ∈ pref (yi) ∈ pref (pref (v || w)) =
pref (v || w), it follows that pref (y) ⊆ pref (v || w). Consequently, we distin-
guish two cases.

If y ∈ ∆∗, then y ∈ pref (v || w).
If y ∈ ∆ω, then by Theorem 6.3.49(1), y ∈ v || w.

Hence y ∈ v || w ∪ pref (v || w) and v || w is thus limit closed. -.

Theorem 6.3.51. Let u, v, w ∈ ∆∞ and let L1, L2, L3 ⊆ ∆∞. Then

(1) {u} || (v || w) = (u || v) || {w} and

(2) L1 || (L2 || L3) = (L1 || L2) || L3.

Proof. (1) Let x ∈ {u} || (v || w).
If x ∈ ∆∗, then Definition 6.3.1 implies that u, v, w ∈ ∆∗. Consequently,

by Corollary 6.3.33(1), x ∈ (u || v) || {w}.
If x ∈ ∆ω, then since we know that {u} and v || w are limit closed, The-

orem 6.3.49(2) implies that pref (x) ⊆ pref ({u}) || pref (v || w). Hence, by
Theorem 6.3.21(1), pref (x) ⊆ pref ({u}) || (pref (v) || pref (w)). Then Corol-
lary 6.3.33(2) implies that pref (x) ⊆ (pref (u) || pref (v)) || pref ({w}) and
from Theorem 6.3.21(1) we obtain pref (x) ⊆ pref (u || v) || pref ({w}). Fi-
nally, using the fact that u || v and {w} are limit closed, Theorem 6.3.49(2)
implies that x ∈ (u || v) || {w}.

(2) Analogous to the proof of Theorem 6.3.32(2). -.

6.3.4 Conclusion

The associativity of (fairly) shuffling (cf. Theorems 6.3.32 and 6.3.51) directly
implies that the order in which we (fairly) shuffle a number of languages is
irrelevant, i.e. L1 ||| L2 ||| · · · ||| Ln and L1 || L2 || · · · || Ln unambiguously
define the fair shuffle and shuffle, respectively, of the languages L1, L2, . . . ,
Ln, for an n ≥ 1. It is thus not necessary to put any brackets in these
expressions and we will henceforth refrain from doing so. Using also the com-
mutativity of (fairly) shuffling, we may introduce the following shorthand
notations for such n-ary (fair) shuffles .

Notation 12. We denote the fair shuffle L1 ||| L2 ||| · · · ||| Ln and the shuf-
fle L1 || L2 || · · · || Ln of the languages L1, L2, . . . , Ln, for an n ≥ 1, by
||| i∈[n] Li and || i∈[n] Li, respectively. -.



206 6. Behavior of Team Automata

6.4 Synchronized Shuffles

In this section we generalize the basic shuffle by defining synchronized shuf-
fles . Rather than freely interleaving the occurrences of the letters in the words
being shuffled, some letters may now be subject to “synchronization”. This
means that occurrences of those letters in different words are now combined
into one occurrence. The resulting word thus has a “backbone” consisting of
occurrences of synchronized letters. As a preliminary example, consider the
words wev and ave. If we assume that the letter v needs to be synchronized,
then weave is a synchronized shuffle on v of wev and ave. Its backbone con-
sists of only one element, viz. v. We see that those letters occurring on the
left (right) side of v in the original words occur on the left (right) side of v
in weave as well. Note that weave is not an ordinary shuffle of wev and ave.

As was the case for shuffles, also the idea underlying synchronized shuffles
is not new. Instead, it appears in numerous disguises throughout the com-
puter science literature. The oldest reference — once again to the best of our
knowledge — to this idea is the concurrent composition P ⊕Q of synchroniz-
ing processes P and Q defined in [Kim76]. Within formal language theory, a
slightly adapted version of the idea was introduced in [DeS84] as the ‘produit
de mixage’ K -- L of two languages K and L. This operation was renamed
synchronized shuffle in [LR99]. In the context of process algebra, finally, two
further slightly adapted versions of the idea were introduced in [vdS85] as the
weave T w U of two words T and U , and in [Ros97] as the alphabetized par-
allel composition P

X
||

Y
Q of processes P and Q given alphabets X and Y .

We will soon see, however, that the synchronized shuffles we define here are
more general than any of these operations from the literature. In particular,
we define two variants of synchronized shuffles: the fully synchronized shuffle
and the relaxed synchronized shuffle, both obtained by varying the alphabet
of letters to be synchronized.

Given two words over two given (possibly different) alphabets, a fully
synchronized shuffle requires all letters in the intersection of these two alpha-
bets to be synchronized, while a relaxed synchronized shuffle requires only a
specified subset of the letters in this intersection to be synchronized. Both
synchronized shuffles are thus defined with respect to two alphabets. We con-
tinue our example by again considering the words wev and ave. Assume that
wev is a word over the alphabet {w, e, v} and that ave is a word over the
alphabet {a, v, e}. Then a fully synchronized shuffle of wev and ave w.r.t.
{w, e, v} and {a, v, e} does not exist due to the fact that e and v cannot form
one backbone respecting both the order ev from wev and the order ve from
ave. However, a relaxed synchronized shuffle on {e} of wev and ave w.r.t.
{w, e, v} and {a, v, e} does exist and contains, e.g., wavev .
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We begin by formally defining the most general synchronized shuffle, in
terms of which we consequently define the two variants just discussed —
complete with more elaborate examples. Along the way we will compare
our synchronized shuffles to the ones from the literature. Subsequently we
present a few of their basic properties. Since synchronized shuffles are defined
on the basis of the ordinary shuffle, many observations from the previous
section continue to hold (with trivial adaptions). We will not draw all such
implications, but rather provide a series of connections between the various
types of (synchronized) shuffles. Finally, we prove that all three types of
synchronized shuffles satisfy notions of commutativity and associativity.

6.4.1 Definitions

We start by defining synchronized shuffles as a generalization of the shuffles
of the previous section. Given an alphabet Γ and two words u and v, in a syn-
chronized shuffle u and v synchronize on letters from Γ , while all occurrences
of other letters are shuffled.

Definition 6.4.1. Let u, v ∈ ∆∞ and let Γ be an alphabet. Then

a word w ∈ ∆∞ is a synchronized shuffle (S-shuffle for short) on Γ of u and
v if one of the following two cases holds. Either

(1) w ∈ (u1 || v1)x1(u2 || v2)x2 · · ·xn−1(un || vn), where for some n ≥ 1,
u1, u2, . . . , un−1, v1, v2, . . . , vn−1 ∈ (∆ \ Γ )∗, un, vn ∈ (∆ \ Γ )∞, and
x1, x2, . . . , xn−1 ∈ Γ are such that u = u1x1u2x2 · · ·xn−1un and v =
v1x1v2x2 · · ·xn−1vn, or

(2) w ∈ (u1 || v1)x1(u2 || v2)x2 · · · , where u1, u2, . . . , v1, v2, · · · ∈ (∆ \ Γ )∗,
and x1, x2, · · · ∈ Γ are such that u = u1x1u2x2 · · · and v = v1x1v2x2 · · · .

This S-shuffle w on Γ is called fair if in case (1) (un || vn) is fair or if case
(2) holds. -.

The sequence presΓ (w) is called the backbone of w. Note that in case (1) the
S-shuffle w has a finite backbone x1x2 · · ·xn−1, while in case (2) it has an
infinite backbone x1x2 · · · .

For u, v ∈ ∆∞ the language consisting of all (fair) S-shuffles on Γ
of u and v is denoted by u ||Γ v (u |||Γ v) and is defined as u ||Γ v =
{w ∈ ∆∞ | w is an S-shuffle on Γ of u and v} and u |||Γ v = {w ∈ ∆∞ |
w is a fair S-shuffle on Γ of u and v}, respectively.

For L1, L2 ⊆ ∆∞ the (fair) S-shuffle on Γ of L1 and L2 is denoted by
L1 ||Γ L2 (L1 |||Γ L2) and is defined as the language consisting of all (fair)
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S-shuffles on Γ of a word from L1 and a word from L2. Thus L1 ||Γ L2 =
{w ∈ u ||Γ v | u ∈ L1, v ∈ L2} =

⋃
u∈L1, v∈L2

(u ||Γ v) and L1 |||Γ L2 =⋃
u∈L1, v∈L2

(u |||Γ v), respectively.

Example 6.4.2. (Example 6.3.2 continued) Recall that u = abc and v = cd .
Now u ||{c} v = u |||{c} v = {abcd}, whereas u ||{b,c} v = u |||{b,c} v = ∅.

Recall that w1 = aω. Now w1 ||{a} a = w1 |||{a} a = ∅ and w1 ||{a} w1 =
w1 |||{a} w1 = {aω}.

Finally, recall that ∆ = {a, b, c, d}. Let w12 = (ab)ω ∈ ∆ω and let
w21 = (ba)ω ∈ ∆ω. Then we have w12 ||{a} w21 = w12 |||{a} w21 = {(bab)ω},
whereas w12 ||{a,b} w21 = w12 |||{a,b} w21 = ∅. -.

From Definition 6.4.1 we furthermore obtain that the fair S-shuffle on an
alphabet Γ of languages is included in the S-shuffle on Γ of these languages.

We now show that S-shuffles are indeed a generalization of both the con-
current composition as defined in [Kim76] and the ‘produit de mixage’ as
defined in [DeS84] (and later renamed synchronized shuffle in [LR99]). If we
syntactically restrict an S-shuffle on an alphabet Γ of languages L1, L2 ⊆ ∆∗

to the case that Γ ⊆ ∆, then we obtain exactly the concurrent composition
operation defined in [Kim76]. If, on the other hand, we define the alphabet
alph(L) of a language L as alph(L) =

⋃
w∈L alph(w) and allow infinite words

in L1 and L2, then L1 |||alph(L1)∩alph(L2) L2 is exactly the ‘produit de mixage’
of L1 and L2 as defined in [DeS84] (which in [LR99] is restricted to finitary
languages and renamed synchonized shuffle).

We proceed by defining the fully synchronized shuffle as a special case
of the synchronized shuffle. Given a word u over ∆1 and a word v over ∆2,
in a fully synchronized shuffle u and v synchronize on letters from ∆1 ∩∆2,
while all occurrences of other letters are again shuffled. Limited to finite
words, the fully synchronized shuffle is exactly the weave operation defined
in [vdS85] in the context of process algebra. By allowing infinite words, the
fully synchronized shuffle is thus more general than the weave operation.

Definition 6.4.3. Let u ∈ ∆∞
1 and let v ∈ ∆∞

2 . Then

a word w ∈ (∆1 ∪ ∆2)∞ is a fully synchronized shuffle (fS-shuffle for
short) of u and v w.r.t. ∆1 and ∆2 if w is an S-shuffle on ∆1 ∩∆2 of u
and v.

This fS-shuffle of u and v w.r.t. ∆1 and ∆2 is called fair if w is a fair S-
shuffle on ∆1 ∩∆2 of u and v. -.

For u ∈ ∆∞
1 and v ∈ ∆∞

2 the language consisting of all (fair) fS-shuffles of u
and v w.r.t. ∆1 and ∆2 is denoted by u

∆1
||

∆2
v (u

∆1
|||

∆2
v) and is defined
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as u ∆1
||∆2

v = {w ∈ (∆1 ∪ ∆2)∞ | w is an fS-shuffle of u and v w.r.t. ∆1

and ∆2} and u
∆1

|||
∆2

v = {w ∈ (∆1 ∪∆2)∞ | w is a fair fS-shuffle of u and
v w.r.t. ∆1 and ∆2}, respectively.

For L1 ⊆ ∆∞
1 and L2 ⊆ ∆∞ the (fair) fS-shuffle of L1 and

L2 w.r.t. ∆1 and ∆2 is denoted by L1 ∆1
||

∆2
L2 (L1 ∆1

|||
∆2

L2) and is
defined as the language consisting of all (fair) fS-shuffles of a word from
L1 and a word from L2 w.r.t. ∆1 and ∆2. Thus L1 ∆1

||
∆2

L2 = {w ∈
u

∆1
||

∆2
v | u ∈ L1, v ∈ L2} =

⋃
u∈L1, v∈L2

(u
∆1

||
∆2

v) and L1 ∆1
|||

∆2
L2 =⋃

u∈L1, v∈L2
(u

∆1
|||

∆2
v), respectively.

Example 6.4.4. (Example 6.4.2 continued) Now u
∆
||

∆
v = u

∆
|||

∆
v = ∅.

Next let ∆1 = {a, b, c} and let ∆2 = {c, d}. Consequently, let u = abc ∈ ∆∗
1

and let v = cd ∈ ∆∗
2. Then u

∆1
||

∆2
v = u

∆1
|||

∆2
v = {abcd} = u |||{c} v =

u ||{c} v.
We moreover have w1 ∆

||
∆

a = w1 ∆
|||

∆
a = ∅, with a ∈ ∆∗, and

w1 ∆
||

∆
w1 = w1 ∆

|||
∆

w1 = {aω} = w1 |||{a} w1 = w1 ||{a} w1. Recall
that w2 = bω ∈ ∆∞ and hence w1 ∆

||
∆

w2 = w1 ∆
|||

∆
w2 = ∅. Next let

∆a = {a} and let ∆b = {b}. Consequently, let w1 = aω ∈ ∆∞
a and let w2 =

bω ∈ ∆∞
b . Then w1 ∆a

||∆b
w2 = w1 || w2 and w1 ∆a

|||∆b
w2 = w1 ||| w2.

Finally, w12 ∆
||

∆
w21 = w12 ∆

|||
∆

w21 = ∅. -.

Finally we define also the relaxed synchronized shuffle as a special case of the
synchronized shuffle. Given an alphabet Γ , a word u over ∆1, and a word v
over ∆2, in a relaxed synchronized shuffle u and v synchronize on letters from
Γ ∩∆1 ∩∆2, while all occurrences of other letters are once again shuffled.

Definition 6.4.5. Let u ∈ ∆∞
1 , let v ∈ ∆∞

2 , and let Γ be an alphabet. Then

a word w ∈ (∆1 ∪ ∆2)∞ is a relaxed synchronized shuffle (rS-shuffle
for short) on Γ of u and v w.r.t. ∆1 and ∆2 if w is an S-shuffle on
Γ ∩∆1 ∩∆2 of u and v.

This rS-shuffle on Γ of u and v w.r.t. ∆1 and ∆2 is called fair if w is a fair
S-shuffle on Γ ∩∆1 ∩∆2 of u and v. -.

For u ∈ ∆∞
1 and v ∈ ∆∞

2 the language consisting of all (fair) rS-shuffles on Γ
of u and v w.r.t. ∆1 and ∆2 is denoted by u ∆1

||Γ∆2
v (u ∆1

|||Γ∆2
v) and is de-

fined as u
∆1

||Γ
∆2

v = {w ∈ (∆1 ∪∆2)∞ | w is an rS-shuffle on Γ of u and v

w.r.t. ∆1 and ∆2} and u
∆1

|||Γ
∆2

v = {w ∈ (∆1 ∪∆2)∞ | w is a fair rS-shuffle
on Γ of u and v w.r.t. ∆1 and ∆2}, respectively.

For L1 ⊆ ∆∞
1 and L2 ⊆ ∆∞ the (fair) rS-shuffle on Γ of L1 and L2

w.r.t. ∆1 and ∆2 is denoted by L1 ∆1
||Γ∆2

L2 (L1 ∆1
|||Γ∆2

L2) and is de-
fined as the language consisting of all (fair) rS-shuffles on Γ of a word
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from L1 and a word from L2 w.r.t. ∆1 and ∆2. Thus L1 ∆1
||Γ∆2

L2 =

{w ∈ u
∆1

||Γ
∆2

v | u ∈ L1, v ∈ L2} =
⋃

u∈L1, v∈L2
(u

∆1
||Γ

∆2
v) and

L1 ∆1
|||Γ

∆2
L2 =

⋃
u∈L1, v∈L2

(u
∆1

|||Γ
∆2

v), respectively.

Example 6.4.6. (Example 6.4.4 continued) Now u ∆ ||{c}∆ v = u ∆ |||
{c}
∆ v =

{abcd}, whereas u ∆ ||
{b,c}
∆ v = u ∆ |||{b,c}∆ v = ∅. Furthermore, u ∆1

||{c}∆2
v =

u ∆1
|||{c}∆2

v = u ∆1
|||{b,c}∆2

v = u ∆1
||{b,c}∆2

v = {abcd} = u ∆1
||∆2

v =

u
∆1

|||
∆2

v = u |||{c} v = u ||{c} v.

We moreover have w1 ∆
||{a}

∆
a = w1 ∆

|||{a}
∆

a = ∅, with a ∈ ∆∗, and

w1 ∆
||{a}

∆
w1 = w1 ∆

|||{a}
∆

w1 = {aω} = w1 ∆
||

∆
w1 = w1 ∆

|||
∆

w1 =

w1 |||{a} w1 = w1 ||{a} w1. We also have w1 ∆
||{a}

∆
w2 = w1 ∆

|||{a}
∆

w2 = ∅,

w1 ∆a
||{a}

∆b
w2 = w1 || w2, and w1 ∆a

|||{a}
∆b

w2 = w1 ||| w2.

Finally, here w12 ∆
||{a}

∆
w21 = w12 ∆

|||{a}
∆

w21 = {(bab)ω}, whereas

w12 ∆
||{a,b}

∆
w21 = w12 ∆

|||{a,b}
∆

w21 = ∅. -.

We now take a closer look at the three synchronized shuffles just introduced.
We immediately note that the rS-shuffle can be considered to lie inbetween
the S-shuffle and the fS-shuffle. In fact, the following results follow directly
from Definitions 6.4.1, 6.4.3, and 6.4.5.

Lemma 6.4.7. Let u ∈ ∆∞
1 and v ∈ ∆∞

2 . Let K ⊆ ∆∞
1 and L ⊆ ∆∞

2 . Let
Γ be an alphabet. Then

(1) if Γ ⊆ ∆1 ∩ ∆2, then u
∆1

|||Γ
∆2

v = u |||Γ v, u
∆1

||Γ
∆2

v = u ||Γ v,

K
∆1

|||Γ
∆2

L = K |||Γ L, and K
∆1

||Γ
∆2

L = K ||Γ L, and

(2) if Γ ⊇∆1 ∩∆2, then u
∆1

|||Γ
∆2

v = u
∆1

|||
∆2

v, u
∆1

||Γ
∆2

v = u
∆1

||
∆2

v,

K
∆1

|||Γ
∆2

L = K
∆1

|||
∆2

L, and K
∆1

||Γ
∆2

L = K
∆1

||
∆2

L. -.

We continue by pointing out that for arbitrary alphabets ∆1, ∆2, and Γ ,
both u

∆1
||Γ

∆2
v and u

∆1
||

∆2
v are undefined if either u /∈ ∆∞

1 or v /∈ ∆∞
2 .

Finally, we show how this section’s synchronized shuffles are related to the
shuffle of the previous section. From Definition 6.4.1 we immediately obtain
that the S-shuffle is indeed a generalization of the shuffle.

Lemma 6.4.8. Let u, v ∈ ∆∞ and let K,L ⊆ ∆∞. Then

(1) u |||∅ v = u ||| v and u ||∅ v = u || v, and

(2) K |||∅ L = K ||| L and K ||∅ L = K || L. -.
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Together with Example 6.3.2, this lemma implies that the inclusions of the
fair S-shuffle on an alphabet Γ of languages in the S-shuffle on Γ of these
languages may be proper. Furthermore, an S-shuffle on an alphabet Γ of
languages is always fair in case both languages are finitary.

Moreover, the rS-shuffle degenerates to the shuffle if there are no letters
to synchronize on.

Lemma 6.4.9. Let u ∈ ∆∞
1 and v ∈ ∆∞

2 . Let K ⊆ ∆∞
1 and L ⊆ ∆∞

2 . Then

(1) u
∆1

|||∅
∆2

v = u |||∅ v = u ||| v and u
∆1

||∅
∆2

v = u ||∅ v = u || v, and

(2) K
∆1

|||∅
∆2

L = K |||∅ L = K ||| L and K
∆1

||∅
∆2

L = K |||∅ L =
K || L. -.

Similarly, the fS-shuffle is a generalization of the shuffle in case of disjoint
alphabets.

Lemma 6.4.10. Let u ∈ ∆∞
1 and v ∈ ∆∞

2 . Let K ⊆ ∆∞
1 and L ⊆ ∆∞

2 . Let
∆1 ∩∆2 = ∅. Then

(1) u ∆1
|||∆2

v = u |||∅ v = u ||| v and u ∆1
||∆2

v = u ||∅ v = u || v, and

(2) K
∆1

|||
∆2

L = K |||∅ L = K ||| L and K
∆1

||
∆2

L = K ||∅ L =
K || L. -.

6.4.2 Basic Observations

We have seen that a (fair) shuffle of two words always exists. From Exam-
ple 6.4.2 we however conclude that a (fair) S-shuffle of two nonempty words
need not exist. In fact, we have the following result.

Lemma 6.4.11. Let u, v ∈ ∆∞ and let Γ be an alphabet. Then

(1) for all w ∈ u ||Γ v, presΓ (w) = presΓ (u) = presΓ (v), and

(2) u ||Γ v = ∅ if and only if presΓ (u) (= presΓ (v).

Proof. (1) This follows immediately from Definition 6.4.1.
(2) (If) Let u ||Γ v (= ∅. Then (1) implies that presΓ (u) = presΓ (v).
(Only if) Let presΓ (u) = presΓ (v) = w. According to Definition 6.4.1 we

thus need to distinguish two cases.
If there exists an n ≥ 0 such that w = x1x2 · · ·xn, with xi ∈ Γ for

all i ∈ [n], then it must be the case that u = u1x1u2x2 · · ·xnun+1 and
v = v1x1v2x2 · · ·xnvn+1, with ui, vi ∈ (∆\Γ )∗ for all i ∈ [n] and un+1, vn+1 ∈
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(∆ \ Γ )∞. Hence u ||Γ v = (u1 || v1)x1(u2 || v2)x2 · · ·xn(un+1 || vn+1) (= ∅
because for all i ∈ [n+ 1], ui || vi (= ∅.

If w = x1x2 · · · , with xi ∈ Γ for all i ≥ 1, then it must be the case
that u = u1x1u2x2 · · · and v = v1x1v2x2 · · · , with ui, vi ∈ (∆ \ Γ )∗ for all
i ≥ 1. Hence u ||Γ v = (u1 || v1)x1(u2 || v2)x2 · · · (= ∅ because for all i ≥ 1,
ui || vi (= ∅. -.

We have also seen that the only (fair) shuffle of an arbitrary word and the
empty word is the given word itself. Due to the requirement of a matching
backbone, we immediately conclude that this in general does not hold when
any of the (fair) synchronized shuffles is considered.

In Lemma 6.3.10, finally, we have seen that the length of every word in
the shuffle of two finite words equals the sum of the lengths of those two
words. Any synchronized shuffle of two finite words, however, may be a word
of length less than the sum of the lengths of those two words. This is due
to the fact that each letter from the synchronization alphabet must occur in
both words being shuffled, while it occurs only once in the backbone of each
synchronized shuffle of those words.

In the remainder of this subsection we seek to express the S-shuffles of
possibly infinite words in terms of the S-shuffles of their finite prefixes. We
begin by considering the case in which two words that are S-shuffled share
a finite backbone (cf. Definition 6.4.1(1)). In such words u and v we can
thus distinguish initial prefixes u1 and v1 ending with the last letter of the
finite backbone, and suffixes u2 and v2 containing no more letters from the
alphabet of the backbone. It is clear that elements of the S-shuffle of u and v
then consist of a prefix that is part of the S-shuffle of u1 and v1 and a suffix
that is part of the shuffle of u2 and v2. This leads to the following result.

Lemma 6.4.12. Let Γ be an alphabet, let u1, v1 ∈ ((∆ \ Γ )∗Γ )∗, and let
u2, v2 ∈ (∆ \ Γ )∞. Then

(1) (u1 |||Γ v1)(u2 ||| v2) = u1u2 |||Γ v1v2 and

(2) (u1 ||Γ v1)(u2 || v2) = u1u2 ||Γ v1v2. -.

Note that this lemma resembles Lemma 6.3.14. The main difference between
the two lemmata is the fact that the statements of Lemma 6.4.12 consist of
equalities rather than inclusions from left to right only. The reason lies in
the fact that the application of Lemma 6.4.12 is limited to prefixes which
end at a predetermined position, viz. at the end of the backbone (which thus
dictates the structure of all S-shuffles).

Lemma 6.4.12 consequently allows us to conclude that whenever the pre-
fixes of an infinite word w are included in the S-shuffle of the prefixes of two
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words u and v sharing a finite backbone, then w is an element of the S-shuffle
of u and v. In fact we prove a more general statement, immediately for pre-
fixes of limited-closed languages (cf. Corollary 6.3.48 and Theorem 6.3.49).

Lemma 6.4.13. Let K,L ⊆ ∆∞ be limit closed, let Γ be an alphabet, and
let w = w1w2 be such that w1 ∈ ((∆ \ Γ )∗Γ )∗ and w2 ∈ (∆ \ Γ )ω. Then

if pref (w) ⊆ pref (K) ||Γ pref (L), then w ∈ K ||Γ L.

Proof. Let pref (w) ⊆ pref (K) ||Γ pref (L). Then there exist an n ≥ 1, ui ∈
pref (K) and vi ∈ pref (L) such that w1 ∈ ui ||Γ vi, for all i ∈ [n]. Note that
according to Definition 6.4.1, all ui, vi ∈ ((∆ \ Γ )∗Γ )∗. For all i ∈ [n], let
Kui = {u ∈ (∆ \ Γ )∗ | uiu ∈ K} and let Lvi = {v ∈ (∆ \ Γ )∗ | viv ∈ L}.

Let z∈pref (w2) and consider the wordw1z. Thus w1z∈pref (K)||Γpref (L)
because w1z ∈ pref (w). Hence there exist u ∈ pref (K) and v ∈ pref (L) such
that w1z ∈ u ||Γ v. Again by Definition 6.4.1 we know that u = u′u′′ and
v = v′v′′, with u′, v′ ∈ ((∆\Γ )∗Γ )∗ and u′′, v′′ ∈ (∆\Γ )∗, and w1 ∈ u′ ||Γ v′.
Hence there exists an i ∈ [n] such that u′ = ui and v′ = vi. This implies
that w1z ∈ uipref (Kui) ||

Γ vipref (Kvi). Consequently, by Lemma 6.4.12(2),
pref (w2) ⊆

⋃
i∈[n](pref (Kui) ||

Γ pref (Lvi)) =
⋃

i∈[n](pref (Kui) || pref (Lvi))
(the equality follows because pref (Kui) and pref (Lvi), with i ∈ [n], do not
contain letters from Γ ).

Since the number of pairs ui and vi, with i ∈ [n], is finite, it must be the
case that there exists a j ∈ [n] such that for each z ∈ pref (w2) there exists a
prefix z′ of w2 such that z < z′ and for which z′ ∈ pref (Kuj ) || pref (Lvj ) and
thus z ∈ pref (Kuj ) || pref (Lvj ). Hence pref (w2) ⊆ pref (Kuj ) || pref (Lvj ).
Since K and L are limit closed, so are Kuj and Lvj . Lemma 6.3.46 then
implies that w2 ∈ Kuj || Lvj . Hence with Lemma 6.4.12(2) we obtain w =
w1w2 ∈ (uj ||Γ vj)(Kuj || Lvj ) = ujKuj ||Γ vjLvj ⊆ K ||Γ L. -.

A similar statement can be proven for infinite words.

Lemma 6.4.14. Let K,L ⊆ ∆∞ be limit closed, let Γ be an alphabet, and
let w ∈ ((∆ \ Γ )∗Γ )ω. Then

if pref (w) ⊆ pref (K) ||Γ pref (L), then w ∈ K ||Γ L.

Proof. Let pref (w) ⊆ pref (K) ||Γ pref (L). Let w1, w2, . . . ∈ (∆ \ Γ )∗ and
x1, x2, . . . ∈ Γ be such that w = w1x1w2x2 · · · .

Since pref (w) ⊆ pref (K) ||Γ pref (L) we know that for all n ≥ 1 there
exists a sequence ρ = (u1, v1, u2, v2, . . . , un, vn), with ui, vi ∈ (∆ \ Γ )∗ for
all i ∈ [n], and such that u1x1u2x2 · · ·unxn ∈ pref (K), v1x1v2x2 · · · vnxn ∈
pref (L), and wi ∈ (ui || vi) for all i ∈ [n]. That is, w1x1w2x2 · · ·wnxn ∈



214 6. Behavior of Team Automata

(u1||v1)x1(u2||v2)x2 · · · (un||vn)xn = u1x1u2x2 · · ·unxn||Γ v1x1v2x2 · · · vnxn.
We will refer to w1x1w2x2 · · ·wnxn as w(n) and to ρ as a (K ||Γ L)-deco
of w(n).

We say that a (K ||Γ L)-deco ρ = (u1, v1, u2, v2, . . . , un, vn) of w(n) di-
rectly precedes a (K ||Γ L)-deco ρ′ of w(n+1) if ρ′ = (u1, v1, u2, v2, . . . , un, vn,
un+1, vn+1). We furthermore add a trivial ρλ which by definition directly pre-
cedes every (K ||Γ L)-deco of w(1).

For n ≥ 1, let Vn = {ρ | ρ is a (K ||Γ L)-deco of w(n)} be the set con-
taining every possible (K ||Γ L)-deco of w(n). Let V0 = {ρλ}. Note that each
Vn is finite, for n ≥ 0, and that Vn∩Vn′ = ∅, for all n > n′ ≥ 0. Furthermore,
let E = {(ρ, ρ′) | ρ directly precedes ρ′}. Thus E ⊆

⋃
n≥1(Vn−1 × Vn). Note

that G = (
⋃

n≥0 Vn, E) is a directed acyclic graph. In fact, G is an infinite
finitely-branching rooted tree with root ρλ. This can be seen as follows. Ex-
cept for ρλ, every vertex ρ = (u1, v1, u2, v2, . . . , uk+1, vk+1) has exactly one
incoming edge, viz. from ρλ if k = 0 and from (u1, v1, u2, v2, . . . , uk, vk) if
k ≥ 1. Note that this (u1, v1, u2, v2, . . . , uk, vk) is indeed a (K ||Γ L)-deco of
w(k). Since each wi, with i ∈ [n], is a finite word, every vertex moreover has
a finite number of outgoing edges. Finally, the graph is infinite since it has
at least one distinct vertex for every prefix w(n) of w.

We can thus use König’s Lemma to conclude that there exists an infi-
nite path π through G, starting in the root ρλ. Let π = (ρλ, ρ1, ρ2, . . . ),
with ρn = (u1, v1, u2, v2, . . . , un, vn) for all n ≥ 1. Then by definition
u1x1u2x2 · · ·unxn ∈ pref (K) and v1x1v2x2 · · · vnxn ∈ pref (L). Since K and
L are limit closed this implies that u = lim

n→∞
u1x1u2x2 · · ·unxn ∈ K and

v = lim
n→∞

v1x1v2x2 · · · vnxn ∈ L. By the definition of the (K ||Γ L)-deco of

w(n) we thus obtain that w = w1x1w2x2 · · · ∈ (u1 ||| v1)x1(u2 ||| v2)x2 · · · =
u ||Γ v. Hence w ∈ K ||Γ L. -.

The preceding two lemmata allow us to express — as we did for the shuffle
in Theorem 6.3.49(2) — the S-shuffle of possibly infinite words in terms of
the S-shuffle of finite prefixes of those possibly infinite words.

Theorem 6.4.15. Let K,L ⊆ ∆∞ be limit closed, let w ∈ ∆ω, and let Γ be
an alphabet. Then

w ∈ K ||Γ L if and only if pref (w) ⊆ pref (K) ||Γ pref (L).

Proof. (If) Let pref (w) ⊆ pref (K) ||Γ pref (L). Then by Definition 6.4.1 and
Lemmata 6.4.13 and 6.4.14 it follows that w ∈ K ||Γ L.

(Only if) Let w ∈ K ||Γ L. Then according to Definition 6.4.1 one of the
following two cases holds.
Either w = (u1 || v1)x1(u2 || v2)x2 · · ·xn−1(un || vn) for some n ≥ 1, ui, vi ∈



6.4 Synchronized Shuffles 215

(∆ \ Γ )∗ for all i ∈ [n− 1], un, vn ∈ (∆ \ Γ )∞, and xi ∈ Γ for all i ∈ [n− 1],
and such that u = u1x1u2x2 · · ·xnun+1 and v = v1x1v2x2 · · ·xnvn+1.
Or else w = (u1 || v1)x1(u2 || v2)x2 · · · for some n ≥ 1, ui, vi ∈ (∆ \ Γ )∗ for
all i ≥ 1, and xi ∈ Γ for all i ≥ 1, and such that u = u1x1u2x2 · · ·xnun+1

and v = v1x1v2x2 · · ·xnvn+1.
Consequently we consider a prefix y ∈ pref (w). Then in both cases

y = (u1 || v1)x1(u2 || v2)x2 · · ·xk−1x for some k ≥ 1 and x ∈ pref (uk || vk).
Immediately from Definition 6.4.1 and Theorem 6.3.21(1) it then follows that
y ∈ u1x1u2x2 · · · uk−1xk−1pref (uk) ||Γ v1x1v2x2 · · · vk−1xk−1pref (vk) ⊆
pref (u) ||Γ pref (v). Hence y ∈ pref (K) ||Γ pref (L). -.

Since all singleton languages are limit closed, we immediately obtain the
following result.

Theorem 6.4.16. Let u, v ∈ ∆∞, let w ∈ ∆ω, and let Γ be an alphabet.
Then

w ∈ u ||Γ v if and only if pref (w) ⊆ pref (u) ||Γ pref (v). -.

6.4.3 Commutativity and Associativity

In order to use the (fair) synchronized shuffles in the context of team au-
tomata, it is important to establish certain commutativity and associativity
properties.

The (fair) S-shuffle is defined on the basis of the (fair) shuffle, which is
commutative. Hence the commutativity of the (fair) S-shuffle is a direct con-
sequence of the commutativity of the (fair) shuffle, as stated in Theorem 6.3.8.

Theorem 6.4.17. Let u, v ∈ ∆∞ and let Γ be an alphabet. Then

(1) u |||Γ v = v |||Γ u and u ||Γ v = v ||Γ u, and

(2) L1 |||Γ L2 = L2 |||Γ L1 and L1 ||Γ L2 = L2 ||Γ L1. -.

Recall that both rS-shuffles and fS-shuffles are defined in terms of S-shuffles.
Consequently, also these synchronized shuffles may be considered commuta-
tive in the following sense.

Corollary 6.4.18. Let u, v ∈ ∆∞, let L1, L2 ⊆ ∆∞, and let Γ be an alpha-
bet. Then

(1) u
∆1

|||Γ
∆2

v = v
∆2

|||Γ
∆1

u and u
∆1

||Γ
∆2

v = v
∆2

||Γ
∆1

u, and

(2) L1 ∆1
|||Γ

∆2
L2 = L2 ∆2

|||Γ
∆1

L1 and L1 ∆1
||Γ

∆2
L2 = L2 ∆2

||Γ
∆1

L1. -.
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Corollary 6.4.19. Let u, v ∈ ∆∞ and let L1, L2 ⊆ ∆∞. Then

(1) u ∆1
|||∆2

v = v ∆2
|||∆1

u and u ∆1
||∆2

v = v ∆2
||∆1

u, and

(2) L1 ∆1
|||∆2

L2 = L2 ∆2
|||∆1

L1 and L1 ∆1
||∆2

L2 = L2 ∆2
||∆1

L1. -.

It remains to prove that also in case of synchronized shuffles a notion of asso-
ciativity can be upheld. In case of S-shuffles, associativity is easily understood.
S-shuffling is associative because {u} ||Γ (v ||Γ w) equals (u ||Γ v) ||Γ {w},
for words u, v, and w, and an alphabet Γ , and likewise for the fair case. To
prove this statement we use the associativity of (fair) shuffling.

Theorem 6.4.20. Let u, v, w ∈ ∆∞ and let Γ be an alphabet. Then

(1) {u} |||Γ (v |||Γ w) = (u |||Γ v) |||Γ {w} and

(2) {u} ||Γ (v ||Γ w) = (u ||Γ v) ||Γ {w}.

Proof. (1) Let x ∈ {u} |||Γ (v |||Γ w). Then by Lemma 6.4.11, presΓ (x) =
presΓ (u) = presΓ (v) = presΓ (w). Now let y = presΓ (x). We distinguish two
cases.

First consider that y ∈ Γ ∗. Then there exists an n ≥ 0 such that
y = y1y2 · · · yn with yi ∈ Γ , for all i ∈ [n]. Consequently there ex-
ist x1, x2, . . . , xn, u1, u2, . . . , un, v1, v2, . . . , vn, w1, w2, . . . , wn ∈ Γ ∗ and xn+1,
un+1, vn+1, wn+1∈Γ∞ such that x=x1y1x2y2 · · ·xnynxn+1, u=u1y1u2y2 · · ·
unynun+1, v = v1y1v2y2 · · · vnynvn+1, and w = w1y1w2y2 · · ·wnynwn+1.
By Definition 6.4.1, xi ∈ {ui} || (vi || wi), for all i ∈ [n], and xn+1 ∈
{un+1} ||| (vn+1 ||| wn+1). Now by Theorem 6.3.51(1), {ui} || (vi || wi) =
(ui || vi) || {wi}, for all i ∈ [n], and according to Theorem 6.3.32(1),
{un+1} ||| (vn+1 ||| wn+1) = (un+1 ||| vn+1) ||| {wn+1}. This implies, again
by Definition 6.4.1, that x ∈ (u |||Γ v) |||Γ {w}.

Secondly, the case that y ∈ Γ∞ is analogous.
(2) Analogous. -.

Theorem 6.4.21. Let L1, L2, L3 ⊆ ∆∞ and let Γ be an alphabet. Then

(1) L1 |||Γ (L2 |||Γ L3) = (L1 |||Γ L2) |||Γ L3 and

(2) L1 ||Γ (L2 ||Γ L3) = (L1 ||Γ L2) ||Γ L3.

Proof. Analogous to the proof of Theorem 6.3.32(2). -.

The statements of the preceding two theorems do not hold when the syn-
chronization alphabet Γ may vary. Given w1, w2, w3 ∈ ∆∗ and two dis-
tinct alphabets Γ and Γ ′, e.g., (w1 ||Γ w2) ||Γ

′

w3 in general does not equal
w1 ||Γ (w2 ||Γ

′
w3). This is shown in the following example.
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Example 6.4.22. Let L1 = {a}, let L2 = {a, b}, and let L3 = {ab}. Then
(L1 ||{a} L2) ||{b} L3 = {a} ||{b} {ab} = ∅, whereas L1 ||{a} (L2 ||{b} L3) =
{a} ||{a} {ab} = {ab}. -.

It is worthwhile to notice here that the synchronized shuffle as studied in
[DeS84] and [LR99] is not associative, as is noted in [LR99] and shown in the
following example. Recall that the ‘produit de mixage’ or synchonized shuffle
of L1, L2 ⊆ ∆∞ is defined as L1 |||alph(L1)∩alph(L2) L2, where alph(L) — for
an alphabet L — is defined as alph(L) =

⋃
w∈L alph(w).

Example 6.4.23. (Example 6.4.22 continued) Now L1 ||alph(L1)∩alph(L2) L2 =
{a} ||{a} {a, b} = {a} and thus {a} ||alph({a})∩alph(L3) L3 = {a} ||{a} {ab} =
{ab}, while on the other hand L2 ||alph(L2)∩alph(L3) L3 = {a, b} ||{a,b} {ab} =
∅ and thus L1 ||alph(L1)∩alph({ab}) ∅ = {a} ||{a} ∅ = ∅. -.

In [vdS85] it is noted that the weave operation studied there is on purpose not
defined as the synchronized shuffle operation of [DeS84] and [LR99] because
in that case it would no longer have been associative.

Contrary to the case of the S-shuffle, the synchronization alphabet of an
fS-shuffle or an rS-shuffle depends on the alphabets involved. Hence it is not
immediately clear how associativity should be formalized. A natural approach
would be to consider fS-shuffling associative if {u}

∆1
||

∆2∪∆3
(v

∆2
||

∆3
w)

equals (u
∆1

||
∆2

v)
∆1∪∆2

||
∆3

{w} for all words u ∈ ∆∞
1 , v ∈ ∆∞

2 , and w ∈
∆∞

3 , and similarly rS-shuffling and the fair cases.
We now present an example to illustrate this idea.

Example 6.4.24. (Example 6.4.4 continued) Recall that we have set ∆1 =
{a, b, c}, ∆2 = {c, d}, u = abc ∈ ∆∗

1, and v = cd ∈ ∆∗
2. Now we let

∆3 = {b, c, e} and we let w = bce ∈ ∆∗
3. Then it follows immediately that

{u}
∆1

||
∆2∪∆3

(v
∆2

||
∆3

w) = {abc}
{a,b,c}

||
{b,c,d,e}

(cd
{c,d}

||
{b,c,e}

bce) =
{abc}

{a,b,c}
||

{b,c,d,e}
{bcde,bced} = {abcde,abced} = abcd

{a,b,c,d}
||

{b,c,e}
bce =

(abc
{a,b,c}

||
{c,d}

cd)
{a,b,c,d}

||
{b,c,e}

{bce} = (u
∆1

||
∆2

v)
∆1∪∆2

||
∆3

{w}.
Next we let Γ = {b, c}. Consequently, it follows immediately that

{u} ∆1
||Γ∆2∪∆3

(v ∆2
||Γ∆3

w) = {abc}
{a,b,c}

||{b, c}
{b,c,d,e}

(cd
{c,d}

||{b, c}
{b,c,e}

bce) =

{abc}
{a,b,c}

||{b, c}
{b,c,d,e}

{bcde,bced} = {abcde,abced} = abcd
{a,b,c,d}

||{b, c}
{b,c,e}

bce =

(abc
{a,b,c}

||{b, c}
{c,d}

cd)
{a,b,c,d}

||{b, c}
{b,c,e}

{bce} = (u∆1
||Γ∆2

v) ∆1∪∆2
||Γ∆3

{w}. -.

This example dealt with finite words and hence fair fS-shuffles and fair rS-
shuffles. Before turning to the general case we now prove that indeed fair
fS-shuffling and fair rS-shuffling are associative in the sense just discussed.
The following characterization of the fair shuffles of two words over disjoint
alphabets in terms of preserving homomorphisms turns out to be very useful.
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We give here a full direct proof, but the statement can also be proven by
modification of Theorem 6.3.29 and its proof (using pres−1

∆1
and pres−1

∆2
instead

of the inverse homomorphisms ϕ−1
i,{j} and ϕ−1

j,{i}).

Lemma 6.4.25. Let u ∈ ∆∞
1 and v ∈ ∆∞

2 be such that ∆1 ∩∆2 = ∅. Then

u ||| v = {w ∈ (∆1 ∪∆2)∞ | pres∆1
(w) = u, pres∆2

(w) = v}.

Proof. (⊆) Let w ∈ u ||| v. Since ∆1 ∩ ∆2 = ∅ it follows immediately by
Lemma 6.3.7(1) that pres∆1

(w) = u and pres∆2
(w) = v.

(⊇) Let w ∈ (∆1 ∪∆2)∞ be such that pres∆1
(w) = u and pres∆2

(w) = v.
We distinguish three cases.

First consider that u ∈ ∆∗
1. Since pres∆1

(w) = u there exist an n ≥ 0 and
a1, a2, . . . , an ∈ ∆1 such that u = a1a2 · · · an and w = α0a1α1a2 · · · anαn,
where α0,α1, . . . ,αn−1 ∈ ∆∗

2 and αn ∈ ∆∞
2 . Since pres∆2

(w) = v and ∆1 ∩
∆2 = ∅, we have v = α0α1 · · ·αn. Now let αn = lim

m→∞
γ1γ2 · · · γm with

γi ∈ ∆∗
2, for all i ≥ 1. Hence w = α0a1α1a2 · · ·αn−1anγ1λγ2λ · · · with u =

a1a2 · · · an and v = α1α2 · · ·αn−1γ1γ2 · · · and thus, again by Lemma 6.3.7(1),
w ∈ u ||| v.

The case that v ∈ ∆∗
2 is analogous.

Finally, consider that u ∈ ∆ω
1 and v ∈ ∆ω

2 . Hence w ∈ (∆1∪∆2)ω . Let w =
c1c2 · · · = lim

n→∞
c1c2 · · · cn with ci ∈ ∆1∪∆2, for all i ≥ 1. By the definition of

homomorphisms on infinite words, pres∆1
(w) = lim

n→∞
pres∆1

(c1c2 · · · cn) = u

and pres∆2
(w) = lim

n→∞
pres∆2

(c1c2 · · · cn) = v. Now denote pres∆1
(c1c2 · · · cn)

by un and pres∆2
(c1c2 · · · cn) by vn. From the first two cases it then follows

that for all n ≥ 1, c1c2 · · · cn ∈ un ||| vn. Hence pref (w) ⊆ pref (u) ||| pref (v),
which implies that w ∈ u || v by Corollary 6.3.48. Since ∆1 ∩ ∆2 = ∅ and
u and v are both infinite words, w satisfies subcase (c) of case (4) of Defini-
tion 6.3.1 and thus w ∈ u ||| v. -.

This result implies that also the fair S-shuffles and the fair fS-shuffles can be
described in terms of preserving homomorphisms, provided that there is no
confusion about the non-synchronizing symbols.

Theorem 6.4.26. Let Γ be an alphabet and let u ∈ ∆∞
1 and v ∈ ∆∞

2 be
such that (∆1 \ Γ ) ∩ (∆2 \ Γ ) = ∅. Then

u |||Γ v= {w∈ (∆1∪∆2)∞ | presΓ (w)=presΓ (u)=presΓ (v), pres∆1
(w)=

u, pres∆2
(w) = v}.

Proof. (⊆) Let w ∈ u |||Γ v. As by Lemma 6.4.11(1), presΓ (w) = presΓ (u) =
presΓ (v), we only have to prove that pres∆1

(w) = u and pres∆2
(w) = v.

According to Definition 6.4.1 we can distinguish two cases.



6.4 Synchronized Shuffles 219

First consider that w = w1y1w2y2 · · · ynwn+1, where for some n ≥ 1,
w1, w2, . . . , wn ∈ ((∆1∪∆2)\Γ )∗, wn+1 ∈ ((∆1∪∆2)\Γ )∞, y1, y2, . . . , yn ∈ Γ ,
u = u1y1u2y2 · · · ynun+1, with u1, u2, . . . , un ∈ (∆1 \ Γ )∗ and un+1 ∈
(∆1 \ Γ )∞, and v = v1y1v2y2 · · · ynvn+1, with v1, v2, . . . , vn ∈ (∆2 \ Γ )∗

and vn+1 ∈ (∆2 \ Γ )∞, are such that for all i ∈ [n + 1], wi ∈ ui ||| vi.
Since (∆1 \ Γ ) ∩ (∆2 \ Γ ) = ∅, it follows from Lemma 6.4.25 that for all
i ∈ [n + 1], pres∆1

(wi) = ui and pres∆2
(wi) = vi. Hence pres∆1

(w) =
pres∆1

(w1) pres∆1
(y1) pres∆1

(w2) pres∆1
(y2) · · · pres∆1

(yn) pres∆1
(wn+1) =

u1y1u2y2 · · · ynun+1=u and, analogously,pres∆2
(w)=v1y1v2y2 · · · ynvn+1=v.

Secondly, consider that w = w1y1w2y2 · · · , where w1, w2, . . . ∈ ((∆1 ∪
∆2) \ Γ )∗, y1, y2, . . . ∈ Γ , u = u1y1u2y2 · · · , with u1, u2, . . . ∈ (∆1 \ Γ )∗, and
v = v1y1v2y2 · · · , with v1, v2, . . . ∈ (∆2 \ Γ )∗, are such that for all i ≥ 1,
wi ∈ ui ||| vi. Since (∆1 \ Γ ) ∩ (∆2 \ Γ ) = ∅, Lemma 6.4.25 implies that
for all i ≥ 1, pres∆1

(wi) = ui and pres∆2
(wi) = vi. Hence, by the definition

of homomorphisms on infinite words, pres∆1
(w) = u1y1u2y2 · · · = u and

pres∆2
(w) = v1y1v2y2 · · · = v.

(⊇) Let w ∈ (∆1 ∪∆2)∞ be such that presΓ (w) = presΓ (u) = presΓ (v),
pres∆1

(w) = u, and pres∆2
(w) = v. Observe that (∆1 \ Γ ) ∩ (∆2 \ Γ ) =

∅ implies that ∆1 ∩ ∆2 ⊆ Γ . Hence, by Lemma 6.4.7(2), u
∆1

|||Γ
∆2

v =

u
∆1

|||
∆2

v. Moreover, since presΓ (u) = presΓ (v), we have w ∈ u
∆1

|||Γ
∆2

v
if and only if w ∈ u |||Γ v. Thus it suffices to prove that w ∈ u

∆1
|||

∆2
v. We

distinguish two cases.
First consider that pres∆1∩∆2

(w) ∈ (∆1 ∪ ∆2)∗. Then there exists an
n ≥ 1 such that w = w1y1w2y2 · · · ynwn+1, where for all i ∈ [n], wi ∈
((∆1\∆2)∪(∆2\∆1))∗ and yi ∈ ∆1∩∆2, and wn+1 ∈ ((∆1\∆2)∪(∆2\∆1))∞.
Moreover, pres∆1

(w) = pres∆1
(w1)y1pres∆1

(w2)y2 · · · ynpres∆1
(wn+1) = u

and pres∆2
(w) = pres∆2

(w1)y1pres∆2
(w2)y2 · · · ynpres∆2

(wn+1) = v. Hence
u = u1y1u2y2 · · · ynun+1, with ui = pres∆1\∆2

(wi), for all i ∈ [n + 1], and
v = v1y1v2y2 · · · ynvn+1, with vi = pres∆2\∆1

(wi), for all i ∈ [n+1]. Since for
all i ∈ [n+1], ui ∈ (∆1 \∆2)∞, vi ∈ (∆2 \∆1)∞, and (∆1 \∆2)∩ (∆2 \∆1) =
∅, Lemma 6.4.25 implies that for all i ∈ [n], wi ∈ ui ||| vi = ui || vi, and
wn+1 ∈ un+1 ||| vn+1 ⊆ un+1 || vn+1. Definition 6.4.1(1) now implies that
w ∈ u |||∆1∩∆2 v, which by Definition 6.4.3 means that w ∈ u

∆1
|||

∆2
v.

Next consider that pres∆1∩∆2
(w) ∈ (∆1 ∪∆2)ω. Then w = w1y1w2y2 · · · ,

where for all i ≥ 1, wi ∈ ((∆1 \ ∆2) ∪ (∆2 \ ∆1))∗ and yi ∈ ∆1 ∩ ∆2.
Moreover, pres∆1

(w) = pres∆1
(w1)y1pres∆1

(w2)y2 · · · = u and pres∆2
(w) =

pres∆2
(w1)y1pres∆2

(w2)y2 · · · = v. Hence u = u1y1u2y2 · · · , with ui =
pres∆1\∆2

(wi), for all i ≥ 1, and v = v1y1v2y2 · · · , with vi = pres∆2\∆1
(wi),

for all i ≥ 1. Since for all i ≥ 1, ui ∈ (∆1 \ ∆2)∗, vi ∈ (∆2 \ ∆1)∗, and
(∆1 \ ∆2) ∩ (∆2 \ ∆1) = ∅, Lemma 6.4.25 implies that for all i ≥ 1,
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wi ∈ ui ||| vi = ui || vi. Definition 6.4.1(2) now implies that w ∈ u |||∆1∩∆2 v,
which by Definition 6.4.3 means that w ∈ u

∆1
|||

∆2
v. -.

Finally, we obtain from this result a characterization of fair fS-shuffling.

Corollary 6.4.27. Let u ∈ ∆∞
1 and v ∈ ∆∞

2 . Then

u
∆1

|||
∆2

v = {w ∈ (∆1 ∪∆2)∞ | pres∆1
(w) = u, pres∆2

(w) = v}.

Proof. By Definition 6.4.3, u
∆1

|||
∆2

v = u |||∆1∩∆2 v and (∆1 \(∆1∩∆2))∩
(∆2 \ (∆1 ∩ ∆2)) = ∅. Moreover, if pres∆1

(w) = u and pres∆2
(w) = v,

then pres∆1∩∆2
(w) = pres∆1

(pres∆2
(pres∆2

(w))) = pres∆1
(pres∆2

(v)) =
pres∆1∩∆2

(v). Similarly, pres∆1∩∆2
(w) = pres∆1∩∆2

(u). Hence, by Theo-
rem 6.4.26, u

∆1
|||

∆2
v = u |||∆1∩∆2 v = {w ∈ (∆1∪∆2)∞ | pres∆1∩∆2

(w) =
pres∆1∩∆2

(u) = pres∆1∩∆2
(v), pres∆1

(w) = u, pres∆2
(w) = v} = {w ∈

(∆1 ∪∆2)∞ | pres∆1
(w) = u, pres∆2

(w) = v}. -.

Now we can prove the associativity of fair fS-shuffling.

Theorem 6.4.28. Let u ∈ ∆∞
1 , let v ∈ ∆∞

2 , and let w ∈ ∆∞
3 . Then

{u}
∆1

|||
∆2∪∆3

(v
∆2

|||
∆3

w) = (u
∆1

|||
∆2

v)
∆1∪∆2

|||
∆3

{w}.

Proof. (⊆) Let x ∈ {u}
∆1

|||
∆2∪∆3

(v
∆2

|||
∆3

w) and let y ∈ v
∆2

|||
∆3

w
be such that x ∈

∆1
|||

∆2∪∆3
y. Hence, according to Corollary 6.4.27,

pres∆1
(w) = u and pres∆2∪∆3

(w) = y. Moreover, pres∆2
(y) = v and

pres∆3
(y) = w. Now let z = pres∆1∪∆2

(x). By repeatedly applying Corol-
lary 6.4.27 and by using the properties of preserving homomorphisms, we
obtain that pres∆3

(x) = pres∆3
(pres∆2∪∆3

(x)) = pres∆3
(y) = w, and thus

x ∈ z ∆1∪∆2
|||∆3

w. Furthermore, pres∆1
(z) = pres∆1

(pres∆1∪∆2
(x)) =

pres∆1
(x) = u and pres∆2

(z) = pres∆2
(pres∆1∪∆2

(x)) = pres∆2
(x) =

pres∆2
(pres∆2∪∆3

(x)) = pres∆2
(y) = v. Hence z ∈ u

∆1
|||

∆2
v and thus

we have proven that x ∈ (u
∆1

|||
∆2

v)
∆1∪∆2

|||
∆3

{w}.
(⊇) By Corollary 6.4.19 and (⊆) we immediately obtain that (u

∆1
|||

∆2
v)

∆1∪∆2
|||∆3

{w}={w} ∆3
|||∆1∪∆2

(u ∆1
|||∆2

v)={w} ∆3
|||∆1∪∆2

(v ∆2
|||∆1

u)⊆
(w

∆3
|||

∆2
v)

∆2∪∆3
|||

∆1
{u} = (v

∆2
|||

∆3
w)

∆2∪∆3
|||

∆1
{u} = {u}

∆1
|||

∆2∪∆3

(v
∆2

|||
∆3

w). -.

This result can be lifted to languages.

Theorem 6.4.29. Let L1 ⊆ ∆∞
1 , let L2 ⊆ ∆∞

2 , and let L3 ⊆ ∆∞
3 . Then

L1 ∆1
|||

∆2∪∆3
(L2 ∆2

|||
∆3

L3) = (L1 ∆1
|||

∆2
L2) ∆1∪∆2

|||
∆3

L3.
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Proof. Analogous to the proof of Theorem 6.3.32(2). -.

The fact that the rS-shuffle is defined in terms of the S-shuffle, together with
the associativity of fair fS-shuffling, now allows us to prove that also fair
rS-shuffling is associative.

Theorem 6.4.30. Let u ∈ ∆∞
1 , let v ∈ ∆∞

2 , let w ∈ ∆∞
3 , and let Γ be an

alphabet. Then

{u} ∆1
|||Γ∆2∪∆3

(v ∆2
|||Γ∆3

w) = (u ∆1
|||Γ∆2

v) ∆1∪∆2
|||Γ∆3

{w}.

Proof. Since fair rS-shuffles are defined in terms of fair S-shuffles, it is
clear that it suffices to prove that {u} |||Γ∩(∆1∩(∆2∪∆3)) (v |||Γ∩∆2∩∆3 w) =
(u |||Γ∩∆1∩∆2 v) |||Γ∩(∆1∪∆2)∩∆3 {w}.

Let ∆! = {a! | a ∈ ∆}, for all " ∈ {[123], [12], [13], [23], [1], [2], [3]}.
Consequently, we consider the homomorphism ϕ : (∆1 ∪ ∆2 ∪ ∆3)∞ →
(∆[123] ∪ ∆[12] ∪ ∆[13] ∪ ∆[23] ∪ ∆[1] ∪ ∆[2] ∪ ∆[3])∞, which we use to label
each letter from u, v, and w in a specific way: those letters that appear in Γ
and in at least two of the alphabets ∆1, ∆2, or ∆3, are labeled by subscripts
indicating all of the alphabets from ∆1, ∆2, or ∆3 that they appear in, while
all other letters are labeled by subscripts indicating the unique alphabet from
∆1, ∆2, or ∆3 that they appear in. Formally, ϕ is defined as follows.

ϕ(a) =






a[123] if a ∈ Γ ∩∆1 ∩∆2 ∩∆3,
a[12] if a ∈ (Γ ∩∆1 ∩∆2) \∆3,
a[13] if a ∈ (Γ ∩∆1 ∩∆3) \∆2,
a[23] if a ∈ (Γ ∩∆2 ∩∆3) \∆1,
a[1] if a ∈ (∆1 \ Γ ) ∪ ((Γ ∩∆1) \ (∆2 ∪∆3)),
a[2] if a ∈ (∆2 \ Γ ) ∪ ((Γ ∩∆2) \ (∆1 ∪∆3)), and
a[3] if a ∈ (∆3 \ Γ ) ∪ ((Γ ∩∆3) \ (∆1 ∪∆2)).

Now let ∆̂1 = ∆[123]∪∆[12]∪∆[13]∪∆[1], let ∆̂2 = ∆[123]∪∆[12]∪∆[23]∪∆[2],
and let ∆̂3 = ∆[123] ∪ ∆[13] ∪ ∆[23] ∪ ∆[3]. Hence ϕ(u) ∈ ∆̂∞

1 , ϕ(v) ∈ ∆̂∞
2 ,

and ϕ(w) ∈ ∆̂∞
3 . From the way we have labeled the alphabets we ob-

tain that a ∈ Γ ∩ (∆1 ∩ (∆2 ∪ ∆3)) if and only if a ∈ (Γ ∩ ∆1 ∩
∆2 ∩ ∆3) ∪ ((Γ ∩ ∆1 ∩ ∆2) \ ∆3) ∪ ((Γ ∩ ∆1 ∩ ∆3) \ ∆2) if and only
if ϕ(a) ∈ ∆[123] ∪ ∆[12] ∪ ∆[13] if and only if ϕ(a) ∈ ∆̂1 ∩ (∆̂2 ∪ ∆̂3)
and similarly for the other (potential) synchronization symbols. Since ϕ
is injective, it thus follows that {u} |||Γ∩(∆1∩(∆2∪∆3)) (v |||Γ∩∆2∩∆3 w) =
ϕ−1(ϕ(u) |||∆̂1∩(∆̂2∪∆̂3) (ϕ(v) |||∆̂2∩∆̂3 ϕ(w))), which by the associativity of
Theorem 6.4.28 is equal to ϕ−1((ϕ(u) |||∆̂1∩∆̂2 ϕ(v)) |||(∆̂1∪∆̂2)∩∆̂3 ϕ(w))
and this, once again by the labeling of the alphabets, equals (u |||Γ∩∆1∩∆2 v)
|||Γ∩(∆1∪∆2)∩∆3 {w}. -.
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The associativity of fair rS-shuffling can also be proven for languages.

Theorem 6.4.31. Let L1 ⊆ ∆∞
1 , let L2 ⊆ ∆∞

2 , let L3 ⊆ ∆∞
3 , and let Γ be

an alphabet. Then

L1 ∆1
|||Γ

∆2∪∆3
(L2 ∆2

|||Γ
∆3

L3) = (L1 ∆1
|||Γ

∆2
L2) ∆1∪∆2

|||Γ
∆3

L3.

Proof. Analogous to the proof of Theorem 6.3.32(2). -.

As was the case for the associativity of S-shuffling, also the statements of
the preceding two theorems do not hold when Γ may vary. Given wi ∈
∆∗

i , with i ∈ [3], and two distinct alphabets Γ and Γ ′, e.g., in general

(w1 ∆1
|||Γ

∆2
w2)∆1∪∆2

|||Γ
′

∆3
w3 does not equal w1 ∆1

|||Γ
∆2∪∆3

(w2 ∆2
|||Γ

′

∆3
w3).

This is shown in the following example.

Example 6.4.32. Let ∆1 = {a}, let ∆2 = {b}, and let ∆3 = {a, b}. Then
clearly (a

∆1
|||{a}

∆2
b)

∆1∪∆2
|||{b}

∆3
{ab} = (a

{a}
|||{a}

{b}
b)

{a,b}
|||{b}

{a,b}
{ab} =

{ab, ba}
{a,b}

||{b}
{a,b}

{ab} = {aab, aba}, while {a}
∆1

|||{a}
∆2∪∆3

(b
∆2

|||{b}
∆3

ab) =

{a}
{a}

|||{a}
{a,b}

(b
{b}

|||{b}
{a,b}

ab) = a
{a}

|||{a}
{a,b}

ab = {ab}. -.

In case of “unfair” fS-shuffling (and thus also in case of “unfair” rS-shuffling)
the associativity at the level of words which we have established for the fair
case (and for S-shuffling) does not hold. As the following example shows,
unfair fS-shuffling with an infinite word may lead to the abortion of its finite
partner and thus destroy the associativity.

Example 6.4.33. Let ∆1 = {a, b}, let ∆2 = {b}, and let ∆3 = {c}. Then
clearly a

∆1
||

∆2
b = ∅ and thus (a

∆1
||

∆2
b)

∆1∪∆2
||

∆3
{cω} = ∅. However,

{a}
∆1

||
∆2∪∆3

(b
∆2

||
∆3

cω) = {a}
{a,b}

||
{b,c}

(b
{b}

||
{c}

cω) = {a}
{a,b}

||
{b,c}

({cnbcω | n ≥ 0} ∪ {cω}) = {cnacω | n ≥ 0} ∪ {cω}. -.

At first sight, adding λ to represent possible abortion appears to be a solution.
For this example, adding λ indeed solves the problem, as is shown in the
following example.

Example 6.4.34. (Example 6.4.33 continued) We show how adding λ to a, b,
and cω may solve the problem, viz. ({λ, a}

∆1
||

∆2
{λ, b})

∆1∪∆2
||

∆3
{λ, cω} =

({λ, a}
{a,b}

||
{b}

{λ, b})
{a,b}

||
{c}

{λ, cω}= {λ, a}
{a,b}

||
{c}

{λ, cω}= {λ, a, cω}∪
{cnacω | n ≥ 0} = {λ, a}

{a,b}
||

{b,c}
({λ, b, cω} ∪ {cnbcω | n ≥ 0}) =

{λ, a}
{a,b}

||
{b,c}

({λ, b}
{b}

||
{c}

{λ, cω}) = {λ, a}
∆1

||
∆2∪∆3

({λ, b}
∆2

||
∆3

{λ, cω}). -.
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In this example the aborted word consists of one symbol only and thus has
λ as its only proper prefix, whereas in general infinite words when unfairly
shuffled may still tolerate arbitrary prefixes, in which case adding λ is not a
solution. This is shown in the following example.

Example 6.4.35. Note ({λ, aω}
{a}

||
{b}

{λ, b2})
{a,b}

||
{b}

{λ, b}=({λ, b2, aω}∪
{ambanbaω, anbaω | m,n ≥ 0})

{a,b}
||

{b}
{λ, b} = {λ, aω} ∪ {anbaω | n ≥ 0}.

However, {λ, aω}
{a}

||
{b}

({λ, b2}
{b}

||
{b}

{λ, b}) = {λ, aω}
{a}

||
{b}

{λ} =
{λ, aω}. -.

Hence we propose to add not just λ, but all prefixes of the words involved.
In the following example we show that this solves the problems encountered
in the previous examples.

Example 6.4.36. (Examples 6.4.33 and 6.4.35 continued) The problem we
met in Example 6.4.33 is indeed solved in this way, viz. ({λ, a}

{a,b}
||

{b}
{λ, b})

{a,b}
||

{c}
({cn | n ≥ 0} ∪ {cω}) = ({λ, a}

{a,b}
||

{c}
({cn | n ≥ 0} ∪ {cω}) =

{cnacω, cmacn, cn | m,n ≥ 0} ∪ {cω} = {λ, a}
{a,b}

||
{b,c}

({cnbcω, cmbcn, cn |
m,n ≥ 0} ∪ {cω}) = {λ, a}

{a,b}
||

{b,c}
({λ, b}

{b}
||

{c}
({cn | n ≥ 0} ∪ {cω})).

Moreover, also the problem we met in Example 6.4.35 is indeed solved
in this way, viz. (({an | n ≥ 0} ∪ {aω})

{a}
||

{b}
{λ, b, b2})

{a,b}
||

{b}
{λ, b} =

({ambanbaω, ambanbap, anbaω, amban, an |m,n, p≥0} ∪ {aω})
{a,b}

||
{b}

{λ, b}=
{anbaω, amban, an | n ≥ 0} ∪ {aω} = ({an | n ≥ 0} ∪ {aω})

{a}
||

{b}
{λ, b} =

({an | n ≥ 0} ∪ {aω})
{a}

||
{b}

({λ, b, b2}
{b}

||
{b}

{λ, b}). -.

This provides us with enough motivation to set out and prove associativity
of (general, unfair) fS-shuffling and rS-shuffling at the level of prefix-closed
languages. It is relevant to recall at this point that the behavior of a team
automaton and that of its constituting component automata are prefix closed.
Hence we can still apply this higher-level notion of associativity to behavior
of team automata.

First we express (general) S-shuffles in terms of fair S-shuffles and prefixes
(cf. Lemma 6.3.4).

Lemma 6.4.37. Let Γ be an alphabet. Then

(1) if u ∈ ∆∗
1 and v ∈ ∆∗

2, then u ||Γ v = u |||Γ v,

(2) if u∈∆∗
1 and v∈∆ω

2 , then u ||Γ v =
⋃

u′∈pref(u), presΓ (u′)=presΓ (u) (u
′ |||Γ v),

and

(3) if u∈∆ω
1 and v∈∆ω

2 , then u ||Γ v =
⋃

u′∈pref(u), presΓ (u′)=presΓ (u)(u
′ |||Γ v)∪

⋃
v′∈pref(v), presΓ (v′)=presΓ (v)(u |||Γ v′) ∪ u |||Γ v.
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Proof. (1) Trivial.
(2) Let u ∈ ∆∗

1 and let v ∈ ∆ω
2 .

(⊆) Let w ∈ u ||Γ v. By Definition 6.4.1, there exists an n ≥ 1 such that
w ∈ (u1 || v1)x1(u2 || v2)x2 · · ·xn−1(un || vn), where u1, u2, . . . , un ∈ (∆1 \
Γ )∗, v1, v2, . . . , vn−1 ∈ (∆2 \ Γ )∗, vn ∈ (∆2 \ Γ )ω, u = u1x1u2x2 · · ·xn−1un,
and v = v1x1v2x2 · · ·xn−1vn. Then, according to Lemma 6.3.4(2), un || vn =⋃

u′∈pref(un)
(u′ ||| v) and hence we obtain w ∈ (u1 || v1)x1(u2 || v2)x2 · · ·

xn−1(un || vn) =
⋃

u′∈pref(un)
((u1 || v1)x1(u2 || v2)x2 · · ·xn−1(u′ || vn)) =⋃

u′ ∈ pref (un)
(u1x1u2x2 · · · un−1xn−1u′ |||Γ v1x1v2x2 · · · vn−1xn−1vn) =⋃

ū∈pref(u), presΓ (ū)=presΓ (u)(ū |||Γ v).
(⊇) This follows immediately from Definitions 6.3.1 and 6.4.1.
(3) Analogous to (2) but now using Lemma 6.3.4(3). -.

As a consequence we obtain a characterization of fS-shuffling in terms of
prefixes and preserving homomorphisms.

Corollary 6.4.38. (1) If u ∈ ∆∗
1 and v ∈ ∆∗

2, then u
∆1

||
∆2

v = {w ∈
(∆1 ∪∆2)∗ | pres∆1

(w) = u, pres∆2
(w) = v},

(2) if u ∈ ∆∗
1 and v ∈ ∆ω

2 , then u
∆1

||
∆2

v = {w ∈ (∆1 ∪ ∆2)∞ | ∃u′ ∈
pref (u) : pres∆2

(u′) = pres∆2
(u), pres∆1

(w) = u′, pres∆2
(w) = v}, and

(3) if u ∈ ∆ω
1 and v ∈ ∆ω

2 , then u
∆1

||
∆2

v = {w ∈ (∆1 ∪ ∆2)∞ |
pres∆1

(w) = u, pres∆2
(w) = v} ∪ {w ∈ (∆1 ∪ ∆2)∞ | ∃u′ ∈ pref (u) :

pres∆2
(u′) = pres∆2

(u), pres∆1
(w) = u′, pres∆2

(w) = v} ∪ {w ∈
(∆1 ∪ ∆2)∞ | ∃ v′ ∈ pref (v) : pres∆1

(v′) = pres∆1
(v), pres∆1

(w) =
u, pres∆2

(w) = v′}.

Proof. By Definition 6.4.3, u
∆1

||
∆2

v = u ||∆1∩∆2 v and u
∆1

|||
∆2

v =
u |||∆1∩∆2 v whenever u ∈ ∆∞

1 and v ∈ ∆∞
2 . Moreover, for x ∈ ∆∞

1 ,
pres∆1∩∆2

(x) = pres∆2
(x) and, for x ∈ ∆∞

2 , pres∆1∩∆2
(x) = pres∆1

(x). The
statements now follow by combining Corollary 6.4.27 and Lemma 6.4.37, with
Γ = ∆1 ∩∆2. -.

With this corollary we can now prove a result similar to Corollary 6.4.27,
which was used to prove the associativity of fair fS-shuffling. In this case,
however, we (have to) deal with words together with their prefixes.

Lemma 6.4.39. If u ∈ ∆∞
1 and v ∈ ∆∞

2 , then ({u}∪pref (u))
∆1

||
∆2

({v}∪
pref (v)) = {w ∈ (∆1 ∪ ∆2)∞ | pres∆1

(w) ∈ {u} ∪ pref (u), pres∆2
(w) ∈

{v} ∪ pref (v)}.
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Proof. Let u ∈ ∆∞
1 and let v ∈ ∆∞

2 . We distinguish three cases.
(1) If u ∈ ∆∗

1 and v ∈ ∆∗
2, then by Corollary 6.4.38(1), ({u} ∪ pref (u))

∆1
||

∆2
({v} ∪ pref (v)) = {w ∈ (∆1 ∪ ∆2)∗ | pres∆1

(w) ∈ {u} ∪ pref (u),
pres∆2

(w) ∈ {v} ∪ pref (v)}.
(2) If u ∈ ∆∗

1 and v ∈ ∆ω
2 , then the fact that u ∈ pref (u) implies that

({u} ∪ pref (u)) ∆1
||∆2

({v} ∪ pref (v)) = pref (u) ∆1
||∆2

({v} ∪ pref (v)) =
(pref (u)

∆1
||

∆2
pref (v)) ∪ (pref (u)

∆1
||

∆2
{v}). By Corollary 6.4.38(2),

pref (u)
∆1

||
∆2

{v} = {w ∈ (∆1 ∪ ∆2)∞ | ∃u′ ∈ pref (u), u′′ ∈ pref (u′) :
pres∆2

(u′) = pres∆2
(u′′), pres∆1

(w) = u′′, pres∆2
(w) = v} = {w ∈

(∆1 ∪∆2)∞ | ∃u′′ ∈ pref (u) : pres∆1
(w) = u′′, pres∆2

(w) = v}. Combining
this with (1), we obtain pref (u) ∆1

||∆2
({v}∪pref (v)) = {w ∈ (∆1 ∪∆2)∞ |

pres∆1
(w) ∈ pref (u), pres∆2

(w) ∈ {v} ∪ pref (v)}.
(3) If u ∈ ∆ω

1 and v ∈ ∆ω
2 , then ({u}∪ pref (u))

∆1
||

∆2
({v}∪ pref (v)) =

L1 ∪ L2 ∪ L3, with L1, L2, and L3 as follows.
L1 = pref (u)

∆1
||

∆2
({v} ∪ pref (v)) = {w ∈ (∆1 ∪ ∆2)∞ | pres∆1

(w) ∈
pref (u), pres∆2

(w) ∈ {v} ∪ pref (v)} by (2).
L2 = ({u} ∪ pref (u))

∆1
||

∆2
pref (v) = {w ∈ (∆1 ∪ ∆2)∞ | pres∆1

(w) ∈
{u} ∪ pref (u), pres∆2

(w) ∈ pref (v)} by (2) and the commutativity of fS-
shuffling.
L3 = u

∆1
||

∆2
v = {w ∈ (∆1 ∪∆2)ω | pres∆1

(w) = u, pres∆2
(w) = v}∪L′

1∪
L′
2, with L′

1 ⊆ L1 and L′
2 ⊆ L2, by Corollary 6.4.38(3).

Consequently, ({u}∪pref (u))
∆1

||
∆2

({v}∪pref (v)) = {w ∈ (∆1∪∆2)∞ |
pres∆1

(w) ∈ {u} ∪ pref (u), pres∆2
(w) ∈ {v} ∪ pref (v)}. -.

We have thus found a characterization of fS-shuffling that is insensitive to
the order of application.

Theorem 6.4.40. Let ui ∈ ∆∞
i , for all i ∈ [3]. Then

({u1}∪ pref (u1))∆1
||

∆2∪∆3
(({u2}∪ pref (u2))∆2

||
∆3

({u3}∪ pref (u3))) =
{w ∈ (∆1 ∪∆2 ∪∆3)∞ | ∀ i ∈ [3] : pres∆i

(w) ∈ {ui} ∪ pref (ui)}.

Proof. (⊆) Let w ∈ ({u1} ∪ pref (u1)) ∆1
||

∆2∪∆3
(({u2} ∪ pref (u2)) ∆2

||
∆3

({u3} ∪ pref (u3))). By Lemma 6.4.39, pres∆1
(w) ∈ {u1} ∪ pref (u1) and

there exists a y ∈ ({u2} ∪ pref (u2)) ∆2
||

∆3
({u3} ∪ pref (u3)) such that

pres∆2∪∆3
(w) = y. Consequently, pres∆2

(w) = pres∆2
(pres∆2∪∆3

(w)) =
pres∆2

(y), which by Lemma 6.4.39 is included in {u2} ∪ pref (u2), and
pres∆3

(w) = pres∆3
(pres∆2∪∆3

(w)) = pres∆3
(y), which by Lemma 6.4.39

is included in {u3} ∪ pref (u3).
(⊇) Let w ∈ (∆1 ∪∆2 ∪∆3)∞ be such that pres∆i

(w) ∈ {ui} ∪ pref (ui),
for all i ∈ [3]. Now let z = pres∆2∪∆3

(w). Hence pres∆2
(z) = pres∆2

(w) and
pres∆3

(z) = pres∆3
(w). By Corollary 6.4.27, z ∈ pres∆2

(w)
∆2

|||
∆3

pres∆3
(w)
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and w ∈ pres∆1
(w) ∆1

||| ∆2∪∆3
z ⊆ pres∆1

(w) ∆1
|||∆2∪∆3

(pres∆2
(w) ∆2

|||∆3

pres∆3
(w)) ⊆ ({u1}∪pref (u1)) ∆1

|||
∆2∪∆3

(({u2}∪pref (u2)) ∆2
|||

∆3
({u3}∪

pref (u3))) ⊆ ({u1} ∪ pref (u1)) ∆1
||

∆2∪∆3
(({u2} ∪ pref (u2)) ∆2

||
∆3

({u3} ∪
pref (u3))). -.

It is worth noticing that the proof of this theorem shows how unfair fS-
shuffling can be translated into fair fS-shuffling by including prefixes. The
associativity of fS-shuffling of prefix-closed languages now follows immedi-
ately.

Theorem 6.4.41. Let u ∈ ∆∞
1 , v ∈ ∆∞

2 , and w ∈ ∆∞
3 . Then

({u} ∪ pref (u))
∆1

||
∆2∪∆3

(({v} ∪ pref (v))
∆2

||
∆3

({w} ∪ pref (w))) =
(({u} ∪ pref (u)) ∆1

||∆2
({v} ∪ pref (v))) ∆1∪∆2

||∆3
({w} ∪ pref (w)).

Proof. This follows directly from Theorem 6.4.40 and the commutativity of
fS-shuffling. -.

Theorem 6.4.42. Let Li ⊆ ∆∞
i , for all i ∈ [3], be prefix closed. Then

L1 ∆1
||

∆2∪∆3
(L2 ∆2

||
∆3

L3) = (L1 ∆1
||

∆2
L2) ∆1∪∆2

||
∆3

L3.

Proof. (⊆) Let w ∈ L1 ∆1
||

∆2∪∆3
(L2 ∆2

||
∆3

L3). Then by definition there
exist words u1 ∈ L1, u2 ∈ L2, and u3 ∈ L3 such that w ∈ ({u1} ∪
pref (u1))∆1

||∆2∪∆3
(({u2}∪pref (u2))∆2

||∆3
({u3}∪pref (u3))). Consequently,

by Theorem 6.4.41,w ∈ (({u1}∪pref (u1)) ∆1
||

∆2
({u2}∪pref (u2))) ∆1∪∆2

||
∆3

({u3}∪pref (u3)) ⊆ (L1 ∆1
||

∆2
L2) ∆1∪∆2

||
∆3

L3 by the fact that L1, L2, and
L3 are prefix closed.

(⊇) This follows from (1) and the commutativity of fS-shuffling. -.

As before in the case of fair rS-shuffling, the fact that the rS-shuffle is defined
in terms of the S-shuffle, together with the associativity of fS-shuffling, allows
us to conclude that also rS-shuffling of prefix-closed languages is associative.

Theorem 6.4.43. Let Γ be an alphabet and let ui ∈ ∆∞
i , for all i ∈ [3].

Then

({u1}∪pref (u1))∆1
||Γ∆2∪∆3

(({u2}∪pref (u2))∆2
||Γ∆3

({u3}∪pref (u3))) =

(({u1}∪pref (u1)) ∆1
||Γ∆2

({u2}∪pref (u2))) ∆1∪∆2
||Γ∆3

({u3}∪pref (u3)).

Proof. Similar to the proof of Theorem 6.4.30 by renaming the symbols, but
now using Theorem 6.4.41. -.

Theorem 6.4.44. Let Γ be an alphabet and let Li ⊆ ∆∞
i , for all i ∈ [3], be

prefix closed. Then

L1 ∆1
||Γ∆2∪∆3

(L2 ∆2
||Γ∆3

L3) = (L1 ∆1
||Γ∆2

L2) ∆1∪∆2
||Γ∆3

L3.

Proof. Analogous to the proof of Theorem 6.4.42. -.
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6.4.4 Conclusion

The commutativity and associativity of the S-shuffle (cf. Theorems 6.4.17 and
6.4.21) directly imply that the order in which we (fair) S-shuffle — on an al-
phabet Γ — a number of languages, is irrelevant, i.e. L1 |||Γ L2 |||Γ · · · |||Γ Ln

and L1 ||Γ L2 ||Γ · · · ||Γ Ln unambiguously define the fair S-shuffle and the
S-shuffle, respectively, on Γ of languages L1, L2, . . . , Ln, for an n ≥ 1. We
introduce some shorthand notations for such n-ary (fair) S-shuffles .

Notation 13. We denote the fair S-shuffle L1 |||Γ L2 |||Γ · · · |||Γ Ln and
the S-shuffle L1 ||Γ L2 ||Γ · · · ||Γ Ln, for an n ≥ 1, by |||Γi∈[n] Li and

||Γi∈[n] Li, respectively. -.

Note that contrary to the (fair) shuffle and the (fair) S-shuffle, it is currently
impossible to write either the (fair) fS-shuffle or the (fair) rS-shuffle — on an
alphabet Γ — of languages L1, L2, . . . , Ln, for an n ≥ 3, without brackets
since the order in which they are applied determines the synchronization
symbols. We now present an example to illustrate this.

Example 6.4.45. Let L1 ⊆ ∆∗
1, L2 ⊆ ∆∗

2, L3 ⊆ ∆∗
3, and L4 ⊆ ∆∗

4. Then
by Theorem 6.4.29, ((L1 ∆1

|||∆2
L2) ∆1∪∆2

|||∆3
L3) ∆1∪∆2∪∆3

|||∆4
L4 =

(L1∆1
|||

∆2
L2)∆1∪∆2

|||
∆3∪∆4

(L3∆3
|||

∆4
L4) = L1 ∆1

|||
∆2∪∆3∪∆4

(L2 ∆2
|||

∆3∪∆4

(L3 ∆3
|||

∆4
L4)).

Now we let Γ be an alphabet. Then ((L1 ∆1
|||Γ

∆2
L2) ∆1∪∆2

|||Γ
∆3

L3)

∆1∪∆2∪∆3
|||Γ

∆4
L4 = (L1 ∆1

|||Γ
∆2

L2) ∆1∪∆2
|||Γ

∆3∪∆4
(L3 ∆3

|||Γ
∆4

L4) =

L1 ∆1
|||Γ

∆2∪∆3∪∆4
(L2 ∆2

|||Γ
∆3∪∆4

(L3 ∆3
|||Γ

∆4
L4)) by Theorem 6.4.31. -.

There are various ways of writing the n-ary (fair) fS-shuffles and (fair) rS-
shuffles, for an n ≥ 3, which by Theorems 6.4.29, 6.4.31, 6.4.42, and 6.4.44,
are equivalent — provided that in the unfair case the languages are prefix
closed. We choose the left-associative variants as standard representants of
these classes.

Notation 14. Let n ≥ 1.
The fair fS-shuffle of languages L1, L2, . . . , Ln, with respect to ∆1,

∆2, . . . , ∆n, is (· · · (L1 ∆1
|||

∆2
L2) ∆1∪∆2

|||
∆3

· · · ) ⋃

i∈[n−1] ∆i
|||

∆n
Ln and

the fS-shuffle of L1, L2, . . . , Ln, with respect to ∆1, ∆2, . . . , ∆n, is
(· · · (L1 ∆1

||
∆2

L2) ∆1∪∆2
||

∆3
· · · ) ⋃

i∈[n−1] ∆i
||

∆n
Ln.

The fair rS-shuffle on an alphabet Γ of L1, L2, . . . , Ln, with respect to
∆1, ∆2, . . . , ∆n, is (· · · (L1 ∆1

|||Γ
∆2

L2) ∆1∪∆2
|||Γ

∆3
· · · ) ⋃

i∈[n−1] ∆i
|||Γ

∆n
Ln

and the rS-shuffle on Γ of L1, L2, . . . , Ln, with respect to ∆1, ∆2, . . . , ∆n,
is (· · · (L1 ∆1

||Γ
∆2

L2) ∆1∪∆2
||Γ

∆3
· · · ) ⋃

i∈[n−1] ∆i
||Γ

∆n
Ln. -.
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We now introduce some shorthand notations for these n-ary (fair) fS-shuffles
and n-ary (fair) rS-shuffles .

Notation 15. Let n ≥ 1.
We denote the fair fS-shuffle and the fS-shuffle of languages L1, L2, . . . ,

Ln, with respect to ∆1, ∆2, . . . , ∆n, by |||
{∆i|i∈[n]}

Li and ||
{∆i|i∈[n]}

Li,
respectively.

We denote the fair rS-shuffle and the rS-shuffle on an alphabet Γ of
L1, L2, . . . , Ln, with respect to ∆1, ∆2, . . . , ∆n, by |||Γ

{∆i|i∈[n]}
Li and

||Γ
{∆i|i∈[n]}

Li, respectively. -.

For the next section it is convenient to reformulate some results on the asso-
ciativity of (fair) fS-shuffling using the new notations.

Theorem 6.4.46. (1) If wi ∈ ∆∞
i , for all i ∈ [n], then |||

{∆i|i∈[n]}
{wi} =

{w ∈ (
⋃

i∈[n] ∆i)∞ | ∀ i ∈ [n] : pres∆i
(w) = wi}, and

(2) if Li ⊆ ∆∞
i , for all i ∈ [n], are prefix closed, then ||

{∆i|i∈[n]}
Li = {w ∈

(
⋃

i∈[n] ∆i)∞ | ∀ i ∈ [n] : pres∆i
(w) ∈ Li}.

Proof. (1) This follows from the repeated application of Corollary 6.4.27 and
the observation that for all i, j ∈ [n] and x ∈ ∆∞

i , pres∆i
(pres∆i∪∆j

(x)) =
pres∆i

(x).
(2) This follows from Theorem 6.4.40 and its proof. -.

6.5 Team Automata Satisfying Compositionality

In this section we combine the relations between the behavior of team au-
tomata and that of their constituting component automata — as developed
in Section 6.2 — and the (synchronized) shuffles from Sections 6.3 and 6.4.

In our general setup team automata may have an infinite set of component
automata. In the context of compositionality, however, it is more realistic to
consider team automata composed over a finite set of component automata.

Notation 16. For the remainder of this chapter we assume that our fixed
composable system S is finite, viz. I is a finite subset of N. -.

Each ai synchronization in a team automaton requires the participation of all
its constituting component automata sharing the action being synchronized.
This is reflected in the following result, which shows that the behavior of the
maximal-ai team automaton, in which no ai synchronizations are excluded,
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can be described as the fS-shuffle of the behavior of its constituting compo-
nent automata. Corresponding versions of this result have been formulated
for other automata-based specification models with composition based on the
ai principle (see, e.g., [Tut87] and [Jon87]).

Theorem 6.5.1. Let T be the Rai -team automaton over S. Then

BΣ,∞
T = ||

{Σi|i∈I}
BΣi,∞

Ci
.

Proof. (⊆) This follows immediately from Theorem 6.2.9, the prefix closure
of the behavior of component automata, and Theorem 6.4.46(2).

(⊇) Let w ∈ ||
{Σi|i∈I}

BΣi,∞
Ci

. Note that each BΣi,∞
Ci

is prefix closed.

Hence, according to Theorem 6.4.46(2), presΣi
(w) ∈ BΣi,∞

Ci
, for all i ∈ I.

Consequently, by definition there exist αi ∈ C∞
Ci

such that presΣi
(αi) =

presΣi
(w), for all i ∈ I. Hence

∏
i∈I αi ∈

∏
i∈I C

∞
Ci
. Since w ∈ Σ∞ is such

that presΣi
(w) = presΣi

(αi), for all i ∈ I, Corollary 6.2.15 implies that there
exists a β ∈ C∞

T such that presΣ(β) = w. Hence w ∈ BΣ,∞
T . -.

Example 6.5.2. (Example 6.2.12 continued) Recall the Rai -team automaton
T ai over {C1, C2}, depicted in Figure 6.4(b).

Indeed we see that we getBΣ,∞
T ai = {λ, a} = ({bn | n ≥ 0}∪{bna | n ≥ 0}∪

{bω})
{a,b}

||
{a,b}

({λ} ∪ {abn | n ≥ 0} ∪ {abω}) = BΣ1,∞
C1 Σ1

||
Σ2

BΣ2,∞
C2

=

(||
Σ1

BΣ1,∞
C1

)
Σ1

||
Σ2

BΣ2,∞
C2

= ||
{Σi|i∈[2]}

BΣi,∞
Ci

.
Now recall the team automaton T over {C1, C2}, depicted in Figure 6.3(a).

Note that while ba /∈ {λ, a} = ||
{Σi|i∈[2]}

BΣi,∞
Ci

, clearly ba ∈ BΣ,∞
T -.

Each free synchronization in a team automaton is such that only one of its
component automata participates — under the assumption that a loop on
the action being synchronized is always executed. Hence, if we require S to
be loop limited, then the behavior of the maximal-free team automaton over
S equals the shuffle of the behavior of the component automata from S.
Actually we prove a more general result, viz. that the behavior of a specific
heterogeneous team automaton that is composed according to a mixture of
maximal-free and maximal-ai synchronizations equals the rS-shuffle of the
behavior of its constituting component automata.

Theorem 6.5.3. Let Γ̄ = Σ\Γ and let T be the {Rai
a | a ∈ Σ∩Γ}∪{Rfree

a |
a ∈ Γ̄}-team automaton over S. Then

if S is Γ̄ -loop limited, then BΣ,∞
T = ||Γ

{Σi|i∈I}
BΣi,∞

Ci
.
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Proof. Let T ′ be the team automaton that is obtained from T by attaching
a label to each action from Γ̄ depending on the component automaton exe-
cuting that action, i.e. T ′ = (Q,Σ′, δ′, I) with Σ′ = {[a, i] | a ∈ Γ̄ ∩Σi, i ∈
I} ∪ (Σ ∩ Γ ) and δ′ = {(q, [a, i], q′) | a ∈ Γ̄ , (q, a, q′) ∈ δ, proji

[2](q, q′) ∈
δi,a, i ∈ I} ∪ (δ ∩ (Q × Γ × Q)). Since all actions from Γ̄ are free in T ,
the behavior of T is an encoding of the behavior of T ′. Let ψ : (Σ′)∗ → Σ∗

be the homomorphism defined by ψ([a, i]) = a and ψ(a) = a. Then clearly
BΣ,∞

T = ψ(BΣ′,∞
T ′ ).

For all i ∈ I, let C′
i be the component automaton that is obtained from

Ci by labeling each of its actions from Γ̄ with i, i.e. C′
i = (Qi,Σ′

i, δ
′
i, Ii)

with Σ′
i = {[a, i] | a ∈ Γ̄ ∩ Σi} ∪ (Γ ∩ Σi) and δ′i = {(q, [a, i], q′) | a ∈

Γ̄ , (q, a, q′) ∈ δi} ∪ (δi ∩ (Qi × Γ ×Qi)). Obviously, BΣi,∞
Ci

= ψ(B
Σ′

i,∞
C′
i

), for

all i ∈ I. Let S ′ = {C′
i | i ∈ I}. Since S is Γ̄ -loop limited it thus follows

that (δ′)[a,i] = Rfree
[a,i](S

′), for all a ∈ Γ̄ and for all i ∈ I. Hence T ′ is the

{Rai
a | a ∈ (Σ∩Γ )}∪{Rfree

a | a ∈ Σ′\Γ}-team automaton over S ′. Moreover,
since the component automata from S ′ can share actions from Σ ∩ Γ but
not from Σ′ \ Γ , it follows that for all K ⊆ I,

⋂
k∈K Σ′

k =
⋂

k∈K Σk ∩ Γ .
Hence Theorem 4.5.5 implies that T ′ is the maximal-ai team automaton
over S ′ as well. Subsequently, Theorem 6.5.1 and Lemma 6.4.7(2) imply that

BΣ,∞
T =ψ(BΣ′,∞

T ′ )=ψ(||
{Σ′

i
|i∈I}

B
Σ′

i,∞
C′
i

)=ψ(||Γ
{Σ′

i
|i∈I}

B
Σ′

i,∞
C′
i

), which equals

||Γ
{ψ(Σ′

i
)|i∈I}

ψ(B
Σ′

i,∞
C′
i

) = ||Γ
{Σi|i∈I}

BΣi,∞
Ci

because ψ(Σ′ \ Γ ) ∩ Γ = ∅. -.

Example 6.5.4. (Example 6.2.1 continued) The Rfree
a ∪Rai

b -team automaton
over {C1, C2} is defined as T fa =({(q1, q2), (q1, q′2), (q

′
1, q2), (q

′
1, q

′
2)}, {a, b}, δ

fa ,
{(q1, q2)}), where δfa = {((q1, q2), a, (q1, q′2)), ((q1, q2), a, (q

′
1, q2)), ((q1, q

′
2), b,

(q1, q′2)), ((q1, q
′
2), a, (q

′
1, q

′
2)), ((q

′
1, q2), a, (q

′
1, q

′
2))} and it is depicted in Fig-

ure 6.6(b).
Clearly {C1, C2} is {a}-loop limited and indeed we see that BΣ,∞

T fa =

||{b}
{Σi|i∈[2]}

BΣi,∞
Ci

. -.

The behavior of the maximal-free team automaton over a loop limited com-
posable system thus equals the shuffle of the behavior of its constituting
component automata.

Theorem 6.5.5. Let T be the Rfree-team automaton over S. Then

if S is loop limited, then BΣ,∞
T = || i∈I BΣi,∞

Ci
.

Proof. This follows immediately from Theorem 6.5.3 with Σ ∩ Γ = ∅. -.

Example 6.5.6. (Examples 6.2.22 and 6.5.4 continued) Recall the Rfree -team
automaton T free over {C1, C2}, depicted in Figure 6.6(a). Recall also that
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{C1, C2} is {a}-loop limited. Indeed B{a},∞
T free = {λ, a, aa} = {λ, a} || {λ, a} =

B{a},∞
C1

|| B{a},∞
C2

= (|| i∈[1] B
{a},∞
C1

) || B{a},∞
C2

= || i∈[2] B
{a},∞
Ci

.
Since {C1, C2} however is not loop limited, it is no surprise that ab /∈

BΣ,∞
T free , whereas ab ∈ || i∈[2] B

Σi,∞
Ci

. -.

Summarizing, we have thus been able to describe the behavior of three types
of team automata in terms of the behavior of their constituting component
automata (cf. Theorems 6.5.1, 6.5.3, and 6.5.5). However, we needed the con-
dition of loop limitedness to avoid ambiguity with respect to the participation
of component automata in case of loops. The reason is — once again — the
maximal interpretation adopted in Section 4.2. In the next chapter we will
show how to circumvent this problem by switching to vectors of actions.

The results of this section provide a semantic equivalent of the syn-
tactic hierarchical results presented in Sections 4.3 and 5.2. Recall from
those sections that every iterated team automaton over S can be consid-
ered as a team automaton directly composed over S. Hence, if we construct
only maximal-ai team automata, then the fact that fS-shuffling is associa-
tive for prefix-closed languages implies that the behavior of each such (it-
erated) maximal-ai team automaton equals the fS-shuffle of the behavior
of its constituting component automata from S. Such (iterated) maximal-ai
team automata thus satisfy compositionality. A similar reasoning can be ap-
plied in case we consider (iterated) maximal-free team automata or (iterated)
{Rai

a | a ∈ Σ ∩ Γ} ∪ {Rfree
a | a ∈ Σ \ Γ}-team automata over S, where Γ is

an alphabet. These satisfy compositonality in the sense that their behavior
equals the shuffle or rS-shuffle, respectively, of the behavior of their consti-
tuting component automata from S. We now illustrate this exposition by an
example. Note that the fact that the distinction of input, output, and inter-
nal actions is irrelevant here allows us to deal with synchronized automata
rather than team automata in this example.

Example 6.5.7. (Example 4.3.1 continued) Assume that all synchronized au-
tomata composed in Example 4.3.1 are maximal-ai synchronized automata.

Theorem 6.5.1 then implies that BΣ,∞
T1−7

= ||
{Σi|i∈[7]}

BΣi,∞
Ai

.
Consequently, together with the commutativity of fS-shuffling (cf. Corol-

lary 6.4.19) and the associativity of fS-shuffling for prefix closed languages
(cf. Theorems 6.4.29 and 6.4.42) Theorem 6.5.1 furthermore implies that
BΓ ′′,∞

T ′′ = BΓ ′,∞
T ′ ⋃

i∈[6] Σi
||

Σ7
BΣ7,∞

A7
= ( BΓ1,∞

T{2,4,6}
⋃

i∈{2,4,6} Σi
|| ⋃

i∈{1,3,5} Σi

BΓ2,∞
T{1,3,5}

)
(
⋃

i∈{2,4,6} Σi) ∪ (
⋃

i∈{1,3,5} Σi)
||

Σ7
BΣ7,∞

A7
= ( ( ||

{Σi|i∈{2,4,6}}
BΣi,∞

Ai
)

⋃

i∈{2,4,6} Σi
|| ⋃

i∈{1,3,5} Σi
(||

{Σi|i∈{1,3,5}}
BΣi,∞

Ai
))

(
⋃

i∈{2,4,6} Σi) ∪ (
⋃

i∈{1,3,5} Σi)
||

Σ7

BΣ7,∞
A7

= ( ||
{Σi|i∈[6]}

BΣi,∞
Ai

⋃

i∈[6] Σi
|| Σ7

BΣ7,∞
A7

= ||
{Σi|i∈[7]}

BΣi,∞
Ai

=

BΣ,∞
T1−7

. -.
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We close this chapter with an observation on si synchronizations. From a
behavioral point of view, si synchronizations are very different from both ai
and free synchronizations. While an ai synchronization of an action requires
the participation of every component automaton with that action, a free syn-
chronization of an action requires the participation of only and exactly one
component automaton with that action. Whether an action of a component
automaton is required to participate in an si synchronization of that action,
however, cannot be decided without information on its current local state. A
shuffle that would describe the behavior of a maximal-si team automaton in
terms of the behavior of its constituting component automata should thus be
a type of synchronized shuffle that — depending on local states of the compo-
nent automata — is able to decide which actions of the component automata
must be interleaved and which must be synchronized. This, however, seems
impossible due to the simple fact that the behavior of component automata
is stripped from all state information.


