
Team automata : a formal approach to the modeling of collaboration
between system components
Beek, M.H. ter

Citation
Beek, M. H. ter. (2003, December 10). Team automata : a formal approach to the modeling of
collaboration between system components. Retrieved from https://hdl.handle.net/1887/29570

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/29570

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/29570

Cover Page

The handle http://hdl.handle.net/1887/29570 holds various files of this Leiden University
dissertation.

Author: Beek, Maurice H. ter
Title: Team automata : a formal approach to the modeling of collaboration between
system components
Issue Date: 2003-12-10

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/29570

5. Team Automata

In the preceding two chapters we have prepared the basis for team automata.
In Chapter 3 we have defined automata underlying the component au-

tomata that team automata are built on. In Chapter 4 we consequently
defined synchronized automata over sets of automata as a way to coordi-
nate the interactions of those automata. Team automata are defined similar
to synchronized automata, but they coordinate component automata rather
than automata. The extra feature of component automata with respect to
automata is a classification of their set of actions into input , output , and
internal actions. Subteams of team automata are defined analogous to the
subautomata of synchronized automata and we show how to iteratively build
team automata over team automata similar to the iterative construction of
synchronized automata.

The extra feature of component automata now allows us to character-
ize more types of synchronization and more predicates of synchronization by
using the classification of their sets of actions. Consequently maximal-syn
team automata are defined with respect to a given type of synchronization
syn, similar to the way we did this in the context of synchronized automata.
Finally, also this chapter is concluded with a study of the effect that syn-
chronizations have on the inheritance of the automata-theoretic properties
introduced in Section 3.2.

5.1 Definitions

Throughout this section we will occasionally illustrate our definitions using
simple examples of coffee vending machines and their customers. This class
of examples is very common in the literature on formal methods. Through
these examples we thus hope to facilitate an interesting comparison of the
team automata framework with models such as, e.g., (Theoretical) Commu-
nicating Sequential Processes (see, e.g., [Hoa78], [BHR84], and [Hoa85]) and
Input/Output automata (see, e.g., [Tut87], [LT87], [LT89], and [Lyn96]). A
survey can be found in [Shi97].

116 5. Team Automata

5.1.1 Component Automata

Team automata are built from component automata.
A component automaton is an automaton together with a classification

of its actions. The actions are divided into two main categories. Internal
actions have strictly local visibility and can thus not be used for collaboration
with other components, whereas external actions are observable by other
components. These external actions can be used for collaboration between
components and are divided into two more categories: input actions and
output actions. As formulated in [Ell97]: ”input actions are not under the
local system’s control and are caused by another non-local component, the
output actions are under the system’s control and are externally observable
by other components, and internal actions are under the local system’s control
but are not externally observable”.

When describing a component automaton with the system to be modeled
in mind, one of the design issues that thus has to be considered is the role
of the actions within that component in relation to the other components
within the system.

Definition 5.1.1. A component automaton is a construct C = (Q, (Σinp,
Σout,Σint), δ, I), where

(Q,Σinp ∪Σout ∪Σint, δ, I) is an automaton,
Σinp is the input alphabet of C,
Σout is the output alphabet of C, and
Σint is the internal alphabet of C such that Σinp, Σout, and Σint are

mutually disjoint. -.

The automaton (Q,Σinp ∪ Σout ∪ Σint, δ, I) of a component automaton
C = (Q, (Σinp,Σout,Σint), δ, I) is called the underlying automaton of C
and it is denoted by und(C). Moreover, the elements of the input, output,
and internal alphabet of C are called the input , output , and internal ac-
tions of C, respectively. We refer to C as the trivial component automaton if
C = (∅, (∅,∅,∅),∅,∅). Finally, if both Q and Σinp ∪Σout ∪Σint are finite,
then C is called a finite component automaton.

Definition 5.1.2. Let C = (Q, (Σinp,Σout,Σint), δ, I) be a component au-
tomaton. Then

(1) the (full) alphabet of C is denoted by Σ and is defined as Σ = Σinp ∪
Σout ∪Σint,

(2) the external alphabet of C is denoted by Σext and is defined as Σext =
Σinp ∪Σout, and

5.1 Definitions 117

(3) the locally-controlled alphabet of C is denoted by Σloc and is defined as
Σloc = Σout ∪Σint. -.

The elements of the full alphabet of a component automaton C are called the
actions of C. The elements of the external and locally-controlled alphabets
are called the external and locally-controlled actions of C, respectively.

For a given component automaton C, its set of (finite and infinite) compu-
tations and — given a set of actions Θ — its Θ-records and its Θ-behavior are
carried over from Definitions 3.1.2 and 3.1.7 through its underlying automa-
ton und(C). This means that we have, e.g., CC = Cund(C) and BΘ

C = BΘ
und(C).

The different roles actions can play within a component automaton natu-
rally give rise to various behavioral language definitions. Given a component
automaton C, we can distinguish specific records and behavior of C by select-
ing an appropriate subset of Σ.

If Θ = Σinp, then we refer to the Θ-records of C as the input records and
to BΘ,∞

C as the input behavior of C. Analogously, by setting Θ = Σout, we
obtain the output records and the output behavior of C; with Θ = Σint we
deal with internal records and the internal behavior of C; in case Θ = Σext we
have external records and the external behavior of C; finally, when Θ = Σloc

we have locally-controlled records and the locally-controlled behavior of C.
Needless to say, also finitary and infinitary (Θ-)behavior can be distinguished
in this way.

Example 5.1.3. Let C = ({e, f}, ({$}, {c},∅), {(e, $, f), (f, c, e)}, {e}) be a
component automaton modeling a very simple coffee vending machine. It
is depicted in Figure 5.1.

C:
$

e

c

f

Fig. 5.1. Component automaton C.

State e indicates that the coin slot of the vending machine is empty, while
state f indicates that it is filled. The result of inserting a dollar is modeled
by the action $ and fills the coin slot. The vending machine obviously is not
in charge of determining the moment a dollar is inserted and $ is thus defined
to be an input action. The automaton does decide when to output coffee and
this should moreover be observable by the environment. Hence the result of

118 5. Team Automata

outputting a coffee is modeled by the output action c. After the vending
machine has produced the coffee it is ready for another request for coffee.
Initially, the vending machine is waiting for the insertion of a dollar into its
empty coin slot. Hence the vending machine’s initial state is e.

The behavior of the vending machine is alternatingly accepting a dollar
and producing a coffee. It can do so ad infinitum. -.

Before we turn to the definition of a team automaton formed from a set of
component automata we fix some notation.

Notation 4. In the rest of this chapter we assume a fixed, but arbitrary and
possibly infinite index set I ⊆ N, which we will now use to index the compo-
nent automata involved. For each i ∈ I, we let Ci = (Qi, (Σi,inp,Σi,out,Σi,int),
δi, Ii) be a fixed component automaton and we use Σi to denote its set of ac-
tions Σi,inp ∪Σi,out ∪Σi,int. Moreover, we let S = {Ci | i ∈ I} be a fixed set
of component automata. Recall that I ⊆ N implies that I is ordered by the
usual ≤ relation on N, thus inducing an ordering on S. Note that the Ci are
not necessarily different. -.

5.1.2 Team Automata

When composing a team automaton over S, we require that the internal ac-
tions of the component automata involved are private, i.e. uniquely associated
to one component automaton. This is formally expressed as follows.

Definition 5.1.4. S is a composable system if for all i ∈ I,

Σi,int ∩
⋃

j∈I\{i} Σj = ∅. -.

Note that every subset of a composable system is again a composable system.

Example 5.1.5. (Example 5.1.3 continued) Let A = ({s, t}, ({c}, {$},∅),
{(s, $, t), (t, c, s)}, {s}) be a component automaton modeling a coffee addict.
It is depicted in Figure 5.2.

A:
$

s

c

t

Fig. 5.2. Component automaton A.

5.1 Definitions 119

State s indicates that our coffee addict is (temporarily) satisfied, while
state t indicates that our coffee addict is thirsty (again). The result of our
coffee addict inserting a dollar (into a coffee vending machine) is modeled by
the action $ and shows our coffee addict’s thirst. Our coffee addict obviously
is in charge of determining when to show his or her thirst and thus when
to insert a dollar. Since this should also be observable by the coffee vending
machine we define $ to be an output action. Our coffee addict however cannot
decide when the coffee vending machine produces the much-awaited coffee.
The result of our coffee addict trenching his or her thirst and becoming
satisfied is thus modeled by the input action c. Initially our coffee addict is
satisfied, modeled by our coffee addict’s initial state s.

The behavior of our coffee addict is alternatingly inserting a dollar and
trenching his or her thirst with a delicious cup of coffee. Like a true addict,
our coffee addict can do so ad infinitum.

Since neither C nor A has any internal actions, C and A trivially form a
composable system {C,A}. -.

We are now ready to define a team automaton over a composable system
S as a synchronized automaton over S, except that in our definition of a
team automaton we need to specify how to deal with the distinction of the
alphabet into input, output, and internal actions.

The alphabet of actions of any team automaton T formed from S is
uniquely determined by the alphabets of actions of the component automata
constituting S. The internal actions of the component automata will be the
internal actions of T . Each action which is output for one or more of the com-
ponent automata is an output action of T . Hence an action that is an output
action of one component automaton and also an input action of another com-
ponent automaton, is considered an output action of the team automaton.
The input actions of the component automata that do not occur at all as an
output action of any of the component automata, are the input actions of
the team automaton. The reason for this construction of alphabets is again
based on the intuitive idea of [Ell97] that when relating an input action a of a
component automaton to an output action a of another component, then the
input may be thought of as being caused by the output. On the other hand,
output actions remain observable as output to other component automata.

Finally, the freedom of choosing a particular transition relation for a syn-
chronized automaton over S is reduced slightly in the definition of a team
automaton over S, viz. for an internal action each component automaton
always retains all its possibilities to execute that action and change state.
Since S is a composable system, all internal actions are moreover uniquely

120 5. Team Automata

associated to one component automaton, which implies that synchronizations
on internal actions thus never involve more than one component automaton.

Definition 5.1.6. Let S be a composable system. Then a team automaton
over S is a construct T = (Q, (Σinp,Σout,Σint), δ, I), where

(Q,Σinp∪Σout∪Σint, δ, I) is a synchronized automaton over S such that

δa = ∆a(S), for all a ∈ Σint,

Σinp = (
⋃

i∈I Σi,inp) \
⋃

i∈I Σi,out,
Σout =

⋃
i∈I Σi,out, and

Σint =
⋃

i∈I Σi,int. -.

The synchronized automaton (Q,Σinp∪Σout∪Σint, δ, I) of a team automaton
T = (Q, (Σinp,Σout,Σint), δ, I) is called the underlying synchronized automa-
ton of T and it is denoted by und(T).

All team automata over a given composable system have the same set
of states, the same alphabet of actions — including the distribution over
input, output, and internal actions — and the same set of initial states. They
only differ by the choice of the transition relation, and in fact only as far as
external actions are concerned: for each external action a we have the freedom
to choose a δa. This implies that S, even if it is a composable system, does
not uniquely define a team automaton.

Example 5.1.7. (Example 5.1.5 continued) We now show how our coffee ad-
dict can obtain a coffee from our vending machine by forming a team au-
tomaton T over the composable system {C,A}. This team automaton should
model a form of collaboration between our coffee addict and the vending
machine. This is implemented by synchronizations of certain actions. We re-
quire the output action $ of our coffee addict to be synchronized with the
input action $ of our vending machine. The occurrence of this action in
the team automaton then reflects the simultaneous execution of $ by our
coffee addict and our vending machine. Likewise action c is simultaneously
executed by our coffee addict and our vending machine. This defines the
transition relation of T . Note that only the transition relation of T had
to be chosen, the other elements of T follow directly from Definition 5.1.6.
Note in particular that both $ and c are output actions of T . Hence T is
formally defined as T = ({(e, s), (e, t), (f, s), (f, t)}, (∅, {$, c},∅), δ, {(e, s)}),
where δ = {((e, s), $, (f, t)), ((f, t), c, (e, s))}. It is depicted in Figure 5.3. -.

Consistency in the sense that in a team automaton every action appears
exclusively as an input, output, or internal action, is guaranteed by Defini-
tion 5.1.6 (which ensures that input and output actions remain distinct) and

5.1 Definitions 121

$

c

(

e

t

) (

f

s

)

(

e

s

)
(

f

t

)

T :

Fig. 5.3. Team automaton T over {C,A}.

the fact that a team automaton is constructed over a composable system. To-
gether with Definition 5.1.4 this implies that every team automaton is again
a component automaton, which in its turn could be used as a component
automaton in a new team automaton.

Theorem 5.1.8. Every team automaton is a component automaton. -.

As was the case for synchronized automata (cf. Section 4.1) we note that even
though a team automaton over a composable system consisting of just one
component automaton {Ci} is again a component automaton, such a team
automaton is different from its only constituting component automaton.

All observations on (component) automata hold for team automata as
well. The abbreviations for sets of alphabets carry over to team automata
in the obvious way. Finally, note that whenever the distinction of the al-
phabet of actions into input, output, and internal actions is irrelevant, then
a synchronized automaton can be seen as a team automaton. As a matter
of fact, in examples in the remainder of this chapter we will often refer to
synchronized automata defined in earlier chapters as team automata.

5.1.3 Subteams

Similar to the way we extracted subautomata from synchronized automata,
by focusing on a subset of the composable system S of component automata
constituting a team automaton T we now distinguish subteams within T .
As before, the transitions of a subteam are restrictions of the transitions
of T to the component automata in the subteam, while its actions are the
actions of the component automata involved. However, the actions of both
component automata and team automata are distributed over three distinct
alphabets. Since we want to be able to deal with a subteam as an independent
team automaton over a subset of S, we need to classify its actions without

122 5. Team Automata

the context provided by T . Hence, whether an action is input, output, or
internal for the subteam only depends on its role in the component automata
forming the subteam rather than on how it is classified in T . This means in
particular that an action which is an output action of T is an input action
for the subteam, whenever this action is an input action of at least one of
the component automata of the subteam and no component automata of the
subteam have this action as an output action.

Definition 5.1.9. Let T = (Q, (Σinp,Σout,Σint), δ, I) be a team automa-
ton over the composable system S and let J ⊆ I. Then the subteam of
T determined by J is denoted by SUBJ (T) and is defined as SUBJ(T) =
(QJ , (ΣJ,inp,ΣJ,out,ΣJ,int), δJ , IJ), where

(QJ ,ΣJ,inp ∪ΣJ,out∪ΣJ,int, δJ , IJ) is the subautomaton SUBJ (und(T)),
ΣJ,inp = (

⋃
j∈J Σj,inp) \

⋃
j∈J Σj,out,

ΣJ,out =
⋃

j∈J Σj,out, and
ΣJ,int =

⋃
j∈J Σj,int. -.

As before, we write SUBJ instead of SUBJ (T) whenever T is clear from the
context. Note that the notation SUBJ is used both for the subautomaton
of a synchronized automaton and for the subteam of a team automaton. In
cases where this might lead to confusion, we will always state explicitly the
type of automaton we deal with.

It is not hard to see that any subteam satisfies the requirements of a team
automaton.

Theorem 5.1.10. Let T = (Q, (Σinp,Σout,Σint), δ, I) be a team automaton
over the composable system S and let J ⊆ I. Then

SUBJ is a team automaton over {Cj | j ∈ J}.

Proof. We already noted that every subset of a composable system is again a
composable system. Since the alphabets of SUBJ as given in Definition 5.1.9
moreover satisfy the requirements of Definition 5.1.6 for team automata over
{Cj | j ∈ J}, it directly follows from Theorem 4.1.8 that SUBJ is a team
automaton over {Cj | j ∈ J}. -.

Similar to our conclusion — in Subsection 4.1.2 — that a subautomaton of
a synchronized automaton is again a synchronized automaton, and thus also
an automaton, we now conclude from Theorem 5.1.10 that a subteam of a
team automaton is again a team automaton and thus, by Theorem 5.1.8,
also a component automaton. Based on the results from Section 4.3 we will
consider the dual approach and use team automata as component automata
in “larger” team automata in the next section.

5.2 Iterated Composition 123

5.2 Iterated Composition

This section continues our investigation of Section 4.3, the difference being
that instead of synchronized automata we now consider team automata. This
means that we have to take into account that team automata can only be
formed over composable systems and, moreover, that we deal with three
mutually disjoint alphabets constituting the alphabet of a team automaton.

Notation 5. In the rest of this chapter we let S be a composable system. -.

We consider the issue of iteratively composing team automata, given a com-
posable system of team automata. First we prove that composability is pre-
served in the process of iteration.

Theorem 5.2.1. Let {Ij | j ∈ J }, where J ⊆ N, form a partition of I. Let,
for each j ∈ J , Tj be a team automaton over Sj = {Ci | i ∈ Ij}. Then

{Tj | j ∈ J } is a composable system.

Proof. Denote for each Tj , j ∈ J , by Γj its set of actions and by Γj,int

its internal alphabet. By Definition 5.1.6 we have Γj,int =
⋃

i∈Ij
Σi,int and

Γj =
⋃

i∈Ij
Σi, for all j ∈ J . By the composability of S we have Σi,int ∩⋃

!∈I\{i} Σ! = ∅, for all i ∈ I. Since the Ij are mutually disjoint it now
follows immediately that for all j ∈ J , Γj,int ∩

⋃
!∈J\{j} Γ! = ∅. Hence

{Tj | j ∈ J } is a composable system. -.

Given a composable system one may thus form team automata over disjoint
subsets of the composable system. These team automata together with the
component automata not involved in any of these team automata form — by
Theorem 5.2.1 — again a composable system, which can subsequently be used
as the basis for the formation of still higher-level team automata. Completely
analogous to Definition 4.3.8 we now define iterated team automata as a
generalization of team automata.

Definition 5.2.2. T is an iterated team automaton over S if either

(1) T is a team automaton over S, or

(2) T is a team automaton over {Tj | j ∈ J }, where each Tj is an iterated
team automaton over {Ci | i ∈ Ij}, for some Ij ⊆ I, and {Ij | j ∈ J }
forms a partition of I. -.

124 5. Team Automata

As was the case for iterated synchronized automata, we see that an iterated
team automaton is thus a generalization of a team automaton: every team
automaton over a given composable system may also be viewed as an iterated
team automaton over that composable system. Conversely, as before, team
automata formed iteratively over a composable system are essentially team
automata over that composable system. Once again, the only difference is the
ordering and grouping of the elements from the composable system. Heavily
based on the results from Section 4.3, we now formalize this statement.

By Lemma 4.3.9, the set of (initial) states of an iterated team automaton
over S is — after reordering — the same as the set of (initial) states of any
team automaton over S. According to Lemma 4.3.10 also its actions are the
same as the actions of any team automaton formed over S. However, the
basic difference between team automata and synchronized automata is the
distinction of actions into three mutually disjoint alphabets. The following
lemma shows that this property is not destroyed by iteration.

Lemma 5.2.3. Let T = (P, (Γinp,Γout,Γint), γ, J) be an iterated team au-
tomaton over S. Then

(1) Γinp = (
⋃

i∈I Σi,inp) \
⋃

i∈I Σi,out,

(2) Γout =
⋃

i∈I Σi,out, and

(3) Γint =
⋃

i∈I Σi,int.

Proof. If T is a team automaton over S, then the statement follows imme-
diately from Definition 5.1.6. Now assume that T is a team automaton over
{Tj | j ∈ J }, where J ⊆ N, and each Tj = (Pj , (Γj,inp,Γj,out,Γj,int), γj , Jj)
is an iterated team automaton over {Ci | i ∈ Ij}, with {Ij | j ∈ J } forming
a partition of I. Assume furthermore inductively that for all j ∈ J , Γj,inp =
(
⋃

i∈Ij
Σi,inp) \

⋃
i∈Ij

Σi,out, Γj,out =
⋃

i∈Ij
Σi,out, and Γj,int =

⋃
i∈Ij

Σi,int.
Then Γint =

⋃
j∈J Γj,int =

⋃
j∈J

⋃
i∈Ij

Σi,int =
⋃

i∈I Σi,int, by Defini-
tion 5.1.6, and because {Ij | j ∈ J } forms a partition of I.
Similarly, Γout =

⋃
i∈I Σi,out.

Finally, Γinp = (
⋃

j∈J Γj,inp) \ Γout by Definition 5.1.6. Hence Γinp =
(
⋃

j∈J ((
⋃

i∈Ij
Σi,inp) \

⋃
i∈Ij

Σi,out)) \ Γout = (
⋃

i∈I Σi,inp) \ Γout because
{Ij | j ∈ J } forms a partition of I. -.

Hence the set of actions — including their distribution over input, output,
and internal actions — of every iterated team automaton over S is the same as
that of any team automaton over S. Finally, from Lemma 4.3.10 we moreover
know that the transitions of any team automaton over {Tj | j ∈ J } are —
after reordering — the transitions of a team automaton over S. Iteration in

5.2 Iterated Composition 125

the construction of a team automaton thus does not lead to an increase of the
possibilities for synchronization. In other words, we can conclude that every
iterated team automaton over a composable system can be interpreted as a
team automaton over that composable system by reordering its state space
and its transition space.

Definition 5.2.4. Let T = (Q, (Σinp,Σout,Σint), δ, I) be an iterated team
automaton over S. Then the reordered version of T w.r.t. S is denoted by
〈〈T 〉〉S and is defined as

〈〈T 〉〉S = ({〈q〉Q | q ∈ Q}, (Σinp,Σout,Σint),
{(〈q〉Q, a, 〈q′〉Q) | q, q′ ∈ Q, (q, a, q′) ∈ δ}, {〈q〉I | q ∈ I}). -.

Note that the notation 〈〈T 〉〉S is used both for the reordered version of a
synchronized automaton and for the reordered version of a team automaton.
In cases where this might lead to confusion, we will always state explicitly
the type of automaton we deal with.

From Lemmata 4.3.9, 4.3.10, and 5.2.3 we conclude that 〈〈T 〉〉S indeed is
a team automaton over S whenever T is an iterated team automaton over
S. In fact, 〈〈T 〉〉S is the interpretation of T as a team automaton over S
by reordering. We thus obtain the following direct consequences of Theo-
rems 4.3.12 and 4.3.13.

Theorem 5.2.5. Let T = (Q, (Σinp,Σout,Σint), δ, I) be an iterated team
automaton over S and let Θ be an alphabet disjoint from Q. Then

(1) C∞
〈〈T 〉〉S

= {〈q0〉Qa1〈q1〉Qa2〈q2〉Q · · · | q0a1q1a2q2 · · · ∈ C∞
T } and

(2) BΘ,∞
〈〈T 〉〉S

= BΘ,∞
T . -.

Theorem 5.2.6. Let T = (Q, (Σinp,Σout,Σint), δ, I) be a team automaton
over S and let {Ij | j ∈ J }, where J ⊆ N, form a partition of I. Let, for
each j ∈ J , Tj = (Pj , (Γj,inp,Γj,out,Γj,int), γj , Jj) be an iterated team over
{Ci | i ∈ Ij}. Then

(1) if (δIj)a ⊆ {(〈q〉Pj , 〈q
′〉Pj) | (q, q′) ∈ γj,a}, for all a ∈ Γj,inp ∪ Γj,out ∪

Γj,int for all j ∈ J , then there exists a team automaton T̂ over {Tj | j ∈
J } such that 〈〈T̂ 〉〉S = T , and

(2) if T̂ is a team automaton over {Tj | j ∈ J }, then 〈〈T̂ 〉〉S = T implies
that (δIj)a \ {(p, p) | (p, p) ∈ ∆a({Ci | i ∈ Ij})} ⊆ {(〈q〉Pj , 〈q

′〉Pj) |
(q, q′) ∈ γj,a}, for all a ∈ Γj,inp ∪ Γj,out ∪ Γj,int for all j ∈ J . -.

126 5. Team Automata

Similar to the conclusion we reached for synchronized automata in Section 4.3
we now see that not only every iterated team automaton over S can be con-
sidered as a team automaton directly constructed from S by Definition 5.2.4,
but according to Theorem 5.2.6 also every team automaton can be iteratively
constructed from its subteams. Consequently, both subteams and iterated
team automata can be treated as team automata — including the considera-
tions concerning their computations and their behavior — and it thus suffices
to study only the relationship between subteams and team automata in the
sequel, i.e. without considering iterated team automata explicitly.

5.3 Synchronizations

In Section 4.4 we introduced three natural types of synchronization. These
types of synchronization can be studied in the context of team automata
as well. However, they obviously ignore whether actions are input, output,
or internal to certain component automata. For internal actions which be-
long to only one component automaton, distinguishing between their roles in
different component automata is indeed not very relevant. External actions,
however, may be input to some component automata, and output to other
component automata. In this section we thus investigate types of synchro-
nizations relating to the different roles that an action may have in different
component automata.

Notation 6. For the remainder of this chapter we let T = (Q, (Σinp,Σout,
Σint), δ, I) be a fixed team automaton over S. Note that Σinp, Σout, and
Σint are the input, output, and internal alphabet, respectively, of any team
automaton over S (i.e. not only of T). Furthermore, we use Σ to denote the
set of actions Σinp ∪ Σout ∪ Σint, we use Σext to denote the set of external
actions Σinp ∪ Σout, and we use Σloc to denote the set of locally-controlled
actions Σout ∪Σint of any team automaton over S (i.e. including T). -.

First we separate the output role of external actions from their input role.
Given an external action, we locate its input and output domain within I,
and then use these domains to define input subteams and output subteams.
Finally, we define two specific types of synchronization relating such input
subteams and output subteams of team automata.

Definition 5.3.1. Let a ∈ Σext. Then

(1) Ia,inp(S) = {j ∈ I | a ∈ Σj,inp} is the input domain of a in S and

(2) Ia,out(S) = {j ∈ I | a ∈ Σj,out} is the output domain of a in S. -.

5.3 Synchronizations 127

No external action of any team automaton T will ever be both an input
and an output action for one component automaton. Thus, for each j ∈ I,
Σj,inp ∩ Σj,out = ∅, and consequently Ia,inp(S) ∩ Ia,out(S) = ∅, for all
a ∈ Σext.

Note that, by Definition 5.1.6, a ∈ Σout if and only if Ia,out(S) (= ∅, while
a ∈ Σinp if and only if Ia,inp(S) (= ∅ and Ia,out(S) = ∅.

In the following example we show how to to determine the input and
output domains of actions in a composable system.

Example 5.3.2. (Example 4.1.5 continued) We turn the automata Wi, with
i ∈ [4], into component automata by distributing their alphabet {a, b} over
input, output, and internal alphabets. We let a and b be output actions in
both W1 and W2 and we let them be input actions in both W3 and W4.
Since {W1,W2} is now a composable system, the synchronized automaton
T{1,2} (over {W1,W2}) is now a team automaton. Likewise {T{1,2},W3,W4}
is now a composable system and the synchronized automaton T (over
{T{1,2},W3,W4}) is now a team automaton. Both these team automata have
an empty input alphabet, output alphabet {a, b}, and an empty internal al-
phabet.

Let T1 = T{1,2}, T2 = W3, and T3 = W4. Then T is a team automaton
over S = {T1, T2, T3}. Actions a and b are output actions in T1, whereas they
are input actions in both T2 and T3. Hence Ia,out(S) = {1} and Ia,inp(S) =
{2, 3}. -.

Note that the input domain and the output domain of an external action
of a team automaton may be empty. For every external action, however, at
least one of these domains is nonempty. In case the input (output) domain is
empty, then the input (output) subteam is the trivial component automaton.

Example 5.3.3. In Figure 5.4 the structure of a team automaton T with
respect to one of its external actions a is depicted. Indicated are its input
subteam SUBa,inp and its output subteam SUBa,out. The square boxes in this
figure denote component automata. Clearly, T may also contain component
automata that do not have a as an external action. -.

Notation 7. For the remainder of this chapter we make no more explicit
references to the fixed composable system S when denoting the input and
output domain of an action a in S, i.e. we write Ia,inp and Ia,out rather than
Ia,inp(S) and Ia,out(S), respectively. Furthermore, for all a ∈ Σext, we use
SUBa,inp(T) to denote SUBIa,inp(T), the input subteam of a in T , and we
use SUBa,out(T) to denote SUBIa,out(T), the output subteam of a in T .
If no confusion arises we even omit the T and simply write SUBa,inp and
SUBa,out, respectively. -.

128 5. Team Automata

• ••

• ••

• ••

T a ∈ Σext

a ∈ Σj,out

a ∈ Σj,inpSUBa,inp

SUBa,out

Fig. 5.4. A team automaton T with its subteams SUBa,inp and SUBa,out.

5.3.1 Peer-to-Peer

Having determined for each external action a its input and its output sub-
team, we can now identify certain types of synchronization relating to a in its
role as input or output. We begin by looking within these subteams, in which
a by definition has only one role and all component automata are peers, in
the sense that they are on an equal footing with respect to a. We say that an
input (output) action a is input (output) peer-to-peer if every execution of a
involving component automata of that subteam requires the participation of
all.

This obligation to participate can be explained in a strong and in a weak
sense. Strong input (output) peer-to-peer simply means that no synchroniza-
tions on a can take place unless all component automata in the input (output)
domain of a take part. Weak input (output) peer-to-peer means that synchro-
nizations on a involve all of the component automata in the input (output)
domain of a which are ready to execute a — i.e. which are in a state in which
a is enabled. Thus the notion of strong input (output) peer-to-peer requires

5.3 Synchronizations 129

that a is ai in its input (output) subteam, while the notion of weak input
(output) peer-to-peer requires that a is si in its input (output) subteam.

Definition 5.3.4. (1) The set of strong input peer-to-peer (sipp for short)
actions of T is denoted by SIPP(T) and is defined as

SIPP(T) = {a ∈ Σext | a ∈ AI (SUBa,inp)},

(2) the set of weak input peer-to-peer (wipp for short) actions of T is denoted
by WIPP(T) and is defined as

WIPP(T) = {a ∈ Σext | a ∈ SI (SUBa,inp)},

(3) the set of strong output peer-to-peer (sopp for short) actions of T is
denoted by SOPP(T) and is defined as

SOPP(T) = {a ∈ Σext | a ∈ AI (SUBa,out)}, and

(4) the set of weak output peer-to-peer (wopp for short) actions of T is
denoted by WOPP(T) and is defined as

WOPP(T) = {a ∈ Σext | a ∈ SI (SUBa,out)}. -.

We should remark here that an external action a that does not occur as an
input action in any of the component automata (implying that Ia,inp = ∅
and that SUBa,inp is the trivial component automaton) can neither be sipp
nor wipp. This is due to the fact that trivial component automata (as was
the case for trivial automata) have no actions whatsoever, and thus neither
ai nor si actions. Note that a ∈ SIPP(T) or a ∈ WIPP(T) does not imply
that a ∈ Σinp. Similarly, if a is sopp or wopp in T , then it must be the case
that it occurs as an output action in at least one component automaton of
T (implying that a ∈ Σout).

Note that an external action of a team automaton T over S can be both
sipp and sopp in T . In that case the external action is an input action of
one component automaton of S and an output action of another component
automaton of S.

Example 5.3.5. (Example 5.3.3 continued) As depicted in Figures 5.5 and 5.6,
strong and weak input (output) peer-to-peer synchronizations relate to syn-
chronizations within the corresponding input (output) subteam. -.

Next we present a more concrete example of strong and weak input (output)
synchronizations within team automata.

130 5. Team Automata

• ••

• ••

• ••

a is ai/si

T a ∈ Σext

a ∈ Σj,inp

a ∈ Σj,outSUBa,out

SUBa,inp

Fig. 5.5. A team automaton T with a sipp/wipp action a.

Example 5.3.6. (Example 5.3.2 continued) Actions a and b both are sopp as
well as wopp in T . This can be concluded from the fact that we already know
from Example 4.4.4 that actions a and b both are ai in the output subteam
T1 = T{1,2} of T . It is easy to verify that actions a and b both are also sipp
as well as wipp in T . -.

5.3.2 Master-Slave

We now define synchronizations between the input and output subteams of an
external action a. Here the idea is that input actions (“slaves”) are driven by
output actions (“masters”). This means that if a is an output action, then its
input counterpart can never take place without being triggered (i.e. the slave
never proceeds on its own). Consequently, the input subteam of an output
action a cannot execute a unless a is also executed as an output action (by
its output subteam). It is however possible that a is executed as an output
action without its simultaneous execution as an input action. We say that a
is master-slave if it is an output action and its output subteam participates
in every a-transition of T .

5.3 Synchronizations 131

• ••

• ••

• ••

T a ∈ Σext

a ∈ Σj,inp

a ∈ Σj,outSUBa,out

SUBa,inp

a is ai/si

Fig. 5.6. A team automaton T with a sopp/wopp action a.

In addition one could require that a in its role of input action has to
synchronize with a as an output action (i.e. the slave has to follow the master).
Since the obligation of the slave to follow the master may again be formulated
in two different ways, we obtain notions of strong and weak master-slave
actions. When guided by the ai principle, we get a strong notion of master-
slave synchronization, while the si principle leads to a weak notion of master-
slave synchronization. We say that a is strong master-slave if it is master-slave
and its input subteam moreover participates in every a-transition of T . We
say that a is weak master-slave if it is master-slave and its input subteam
moreover participates in every a-transition of T whenever it can.

Definition 5.3.7. Let a ∈ Σout, and let J = Ia,out and K = Ia,inp. Then

(1) the set of master-slave (ms for short) actions of T is denoted by MS (T)
and is defined as

MS (T) = {a ∈ Σout | projJ
[2](δa) ⊆ (δJ)a},

(2) the set of strong master-slave (sms for short) actions of T is denoted by
SMS (T) and is defined as

132 5. Team Automata

SMS (T) = {a ∈ Σout | a ∈ MS (T) ∧ ([K (= ∅]⇒
[projK

[2](δa) ⊆ (δK)a])}, and

(3) the set of weak master-slave (wms for short) actions of T is denoted by
WMS (T) and is defined as

WMS (T) = {a ∈ Σout | a ∈ MS (T) ∧ ([K (= ∅]⇒
[((q, q′) ∈ δa ∧ a en SUBK projK(q))⇒ (projK

[2](q, q′) ∈ (δK)a)])}. -.

For a to be ms , we require it to occur at least once as an output action
(Ia,out (= ∅) — i.e. a can act as a master. Otherwise we could have slaves
without a master. A master without slaves is allowed: Ia,out (= ∅ and Ia,inp =
∅. In that case a trivially is sms and wms , since there are no slaves that do
not follow the master.

Since the definition of a beingms in T guarantees that the output subteam
of a is actively involved in every a-transition of T , it follows immediately
from Definition 4.1.6 that the a-transitions of the output subteam of a are
precisely the projections of the a-transitions of T on the output domain of a.
Similarly, in case a is sms we have in addition that the a-transitions of the
input subteam of a are precisely the projections of the a-transitions of T on
the input domain of a.

Theorem 5.3.8. Let J = Ia,out and let K = Ia,inp. Then

(1) if a ∈ MS (T), then projJ
[2](δa) = (δJ)a, and

(2) if a ∈ SMS (T), then projK
[2](δa) = (δK)a.

Proof. (1) By Definition 4.1.6 we have (δJ)a = projJ
[2](δa)∩∆a({Cj | j ∈ J}).

Since a ∈ MS (T) we have projJ
[2](δa) ⊆ (δJ)a, for J = Ia,out. Hence in this

case (δJ)a = projJ
[2](δa).

(2) Analogous. Note that if K = ∅, then projK
[2](δa) = ∅ = (∅)a. -.

Note that if a is wms , then there may be a-transitions in T in which the
input subteam — even when it is not trivial — is not actively involved. In
those cases a is executed as an output action by T without the simultaneous
execution of a as an input action.

Note that in Definition 5.3.7 input subteams and output subteams are
treated as given entities (black boxes). Clearly, one can combine the master-
slave types of synchronization with additional requirements on the synchro-
nizations taking place within the subteams. One might, e.g., prescribe a
master-slave type of synchronization on an action a that is in addition input
peer-to-peer, in which case all component automata with a as an input action
have to follow the output action. We will come back to this later.

5.3 Synchronizations 133

Example 5.3.9. (Example 5.3.5 continued) If for an external action a of T ,
SUBa,out is involved in all a-transitions of T , then a is an ms action. If
SUBa,inp moreover “has to” participate in every a-transition of T , then a is
an sms or wms action in T . The idea of (strong or weak) types of master-
slave synchronization between input and output subteams, is sketched in
Figure 5.7. -.

• ••

• ••

• ••

T a ∈ Σext

a ∈ Σj,inp

a ∈ Σj,outSUBa,out

SUBa,inp

a is ms/sms/wms

Fig. 5.7. A team automaton T with a ms/sms/wms action a.

We thus note that whereas peer-to-peer types of synchronization are defined
within subteams, master-slave types of synchronization are defined between
input and output subteams.

Next we give a more elaborate example in which we apply the various
types of synchronization introduced in this chapter so far to one of our run-
ning examples.

Example 5.3.10. (Example 5.3.6 continued) In this example we show that
the car T is actually a two-wheel drive. Recall that we assume a maximal
interpretation of the involvement of component automata in loops.

134 5. Team Automata

Actions a and b are both sms in T . For a this can be concluded from
the fact that proj{1}

[2](δa) = {((s1, s2), (t1, t2)), ((t1, t2), (t1, t2))} = (δ{1})a
and proj{2,3}

[2](δa) = {((s3, s4), (t3, t4)), ((t3, t4), (t3, t4))} = (δ{2,3})a, thus
satisfying (1) and (2) of Definition 5.3.7. For b one can verify this in a similar
fashion. We thus conclude that T models a two-wheel drive, in the sense that
one axle (the input subteam of a and b) only turns and halts as a reaction to
the other axle (the output subteam of a and b). Hence the former axle is the
“slave” of the latter axle. -.

5.3.3 A Case Study

In [Ell97] a simple example was presented to illustrate the concept of peer-
to-peer and master-slave types of synchronization within team automata. In
this subsection we give this example from [Ell97] a rigorous treatment in our
formal team automata framework.

Example 5.3.11. Consider the three component automata depicted in Fig-
ure 5.8. They are formally defined by Ci = (Qi, (Σi,inp,Σi,out,Σi,int), δi, Ii),
where for i ∈ [3],

Qi = {qi, q′i},
Σ1,inp = Σ2,inp = Σ3,out = ∅,
Σ1,out = Σ2,out = Σ3,inp = {b},
Σi,int = {ai, a′i}, with all ai and a′i distinct symbols different from b,
δi,b = {(qi, q′i)},
δj,aj = {(qj , q′j)} and δj,a′

j
= {(q′j , qj)}, for j ∈ [2],

δ3,a3 = {(q3, q3)} and δ3,a′
3
= {(q′3, q

′
3)}, and

Ii = {qi}.

Hence {C1, C2, C3} is a composable system.

a1

b

q1 q′1

a′
1

a2

b

q2 q′2

a′
2

b

q3 q′3

a3

C1: C2: C3:

a′
3

Fig. 5.8. Component automata C1, C2, and C3.

Two slightly different team automata T and T ′ over this composable
system are defined next. All parameters of these team automata, except for

5.3 Synchronizations 135

the set of labeled transitions, are predetermined by {C1, C2, C3}. In fact, only
the b-transitions can be varied as all the other actions are internal. The first
team automaton (T) is the one spelled out in [Ell97], whereas the second one
(T ′) is the one discussed in the text in [Ell97].

Let T = (
∏

i∈[3] Qi, (Σinp,Σout,Σint), δ, {(q1, q2, q3)}) and let T ′ =
(
∏

i∈[3] Qi, (Σinp,Σout,Σint), δ′, {(q1, q2, q3)}), where

Σinp = ∅,
Σout = {b},
Σint = {a1, a′1, a2, a

′
2, a3, a

′
3}, and

δ and δ′ are defined by
δa = δ′a = ∆a({C1, C2, C3}), for each a ∈ {a1, a′1, a2, a

′
2, a3, a

′
3},

δb = {((q1, q2, q3), (q′1, q
′
2, q

′
3))}, and

δ′b = {((q1, q2, q3), (q′1, q
′
2, q

′
3)), ((q1, q2, q

′
3), (q

′
1, q

′
2, q

′
3))}.

Hence in T there is only one b-transition that can take place. It involves all
three component automata and requires the j-th component to be in state
qj , for each j ∈ [3]. This transition is thus a simultaneous execution of b
by all three component automata. In T ′, however, next to this b-transition
just described, there is another b-transition that can take place and it in-
volves only the first two component automata while the third component
automaton is in state q′3 (in which b is not enabled). Hence this transition
is a simultaneous execution of b by the first two component automata only.
Both these team automata are depicted in Figure 5.9: T ′ contains all the de-
picted transitions, whereas T is obtained by ignoring the “dashed” transition
((q1, q2, q′3), b, (q

′
1, q

′
2, q

′
3)).

It is easy to check that Free(T) = Free(T ′) = AI (T ′) = Σint and
AI (T) = SI (T) = SI (T ′) = Σ. Thus b is both si and ai in T , while b
is si but not ai in T ′. This is because T ′ has a b-transition in which C3 does
not participate, even though C3 contains b in its (input) alphabet.

Note that in {C1, C2, C3} the input domain Ib,inp of b is {3} and the
output domain Ib,out of b is {1, 2}. The subteams of T and T ′ deter-
mined by {1, 2} are the same: SUB{1,2}(T) = SUB{1,2}(T ′). This is be-
cause proj{1,2}

[2](δc) = proj{1,2}
[2](δ′c), for each c ∈ {a1, a′1, a2, a

′
2, b}. Also

SUB{3}(T) = SUB{3}(T ′), since proj{3}
[2](δc) = proj{3}

[2](δ′c), for each

c ∈ {a3, a′3}, and proj{3}
[2](δb) ∩ ∆b({C3}) = proj{3}

[2](δ′b) ∩ ∆b({C3}) =
{((q3), (q′3))}.

Since b is ai in T , Lemma 4.7.1(2) implies that b is also ai in both
SUB{1,2}(T) = SUB{1,2}(T ′) and SUB{3}(T) = SUB{3}(T ′). From this it
follows that b is both sopp and sipp in T as well as in T ′.

Moreover, action b is ms in both T and T ′ since we have proj{1,2}
[2](δb) =

proj{1,2}
[2](δ′b) = {((q1, q2), (q′1, q

′
2))} ⊆ {((q1, q2), (q′1, q

′
2))} = (δ{1,2})b =

136 5. Team Automata

q′1
q′2
q′3

q1
q′2
q′3

q′1
q′2
q3

q1
q′2
q3

q1
q2
q′3

q1
q2
q3

q′1
q2
q′3

a3

a′
3

a′
2

a1a1

a′
1 a′

1

a2

a′
3

a′
2

a2

a′
3

a′
2

a2

a1

a′
1

a1

a3

a3a3

a2

a′
1

a′
2

a′
3

b

q′1
q2
q3

b

Fig. 5.9. Team automata T and T ′.

(δ′{1,2})b, i.e. the output subteam of b participates in every b-transition of
the team automata. In fact, b is even sms in T as b is ms in T and
proj{3}

[2](δb) = {(q3, q′3)} ⊆ {(q3, q′3)} = (δ{3})b, i.e. also the input subteam
of b participates in every b-transition of T . It is clear that b is also wms in T .
However, proj{3}

[2](δ′b) = {((q3), (q′3)), ((q
′
3), (q

′
3))} # {((q3), (q′3))} = (δ′{3})b

and b is thus not sms in T ′. Since q3 is the only state of C3 at which b is
enabled in C3 we do have that b is wms in T ′.

The fact that T does not allow an output action b to take place without a
“slave” input action b leads to b being sms in T . In T ′, however, b is wms since
the input action b follows the “master” output action b only when enabled.

To understand that despite the similarities this subtle difference —
due to the distinction between ai and si — may lead to different ex-
ternally observable behaviors of T and T ′, it is sufficient to show that
ba′1a

′
2b ∈ BΣ

T ′ while no word with two b’s is contained in BΣ
T . The computa-

tion (q1, q2, q3)b(q′1, q
′
2, q

′
3)a

′
1(q1, q

′
2, q

′
3)a

′
2(q1, q2, q

′
3)b(q

′
1, q

′
2, q

′
3) ∈ CT ′ proves

5.3 Synchronizations 137

that ba′1a
′
2b ∈ BΣ

T ′ , whereas in δ the execution of b from the initial state
(q1, q2, q3) always leads to (q′1, q

′
2, q

′
3), after which (q1, q2, q3) — the only state

from which b can be executed — has become unreachable. -.

5.3.4 Peer-to-Peer and Master-Slave

We continue our comparison of the various types of synchronization started
in Subsection 4.4.4 by extending our study to the types of synchronization
introduced in this section.

First we revisit the synchronizations introduced in Section 4.4. This time,
however, we deal with team automata rather than synchronized automata
and we thus have a distribution of the alphabet of actions into input, output,
and internal actions. We immediately note that if a is an internal action of
one of the component automata of a team automaton T , then it is not an
action of any other component automaton of T , in which case a thus trivially
is free, ai , and si in T .

Lemma 5.3.12. Σint ⊆ Free(T) ∩ AI (T).

Proof. Let a ∈ Σint. From Definition 5.1.4 it follows that for all (q, q′) ∈
δa there exists a unique i ∈ I such that (proji(q), a, proji(q

′)) ∈ δi and,
moreover, a /∈

⋃
j∈I\{i} Σj . Hence a trivially is free, ai , and si . -.

We continue our investigation by involving also the synchronizations intro-
duced in Section 5.3. We begin by comparing the various types of peer-to-peer
(master-slave) synchronization among each other.

Definition 5.3.4 and Lemma 4.4.7 directly imply that actions that are sipp
(sopp) are also wipp (wopp).

Lemma 5.3.13. (1) SIPP(T) ⊆WIPP(T) and

(2) SOPP(T) ⊆WOPP(T). -.

From Example 4.4.8 we immediately conclude that the inclusions of this
lemma in general do not hold the other way around.

From Definition 5.3.7 we immediately obtain that the fact that an action
is sms implies that it is wms , which in its turn implies that it is ms.

Lemma 5.3.14. SMS (T) ⊆WMS (T) ⊆ MS (T). -.

In Example 5.3.11 we have seen an example of a synchronization that is wms
but not sms . This implies that also the inclusion of this lemma in general
does not hold the other way around.

138 5. Team Automata

We now continue our investigation by comparing the various types of
peer-to-peer (master-slave) synchronizations with the types of synchroniza-
tion introduced in Section 4.4.

First we consider the types of peer-to-peer synchronization. Recall that
Σout =

⋃
i∈I Σi,out, whereas Σinp need not equal

⋃
i∈I Σi,inp.

Theorem 5.3.15. (1) (
⋃

i∈I Σi,inp) ∩ AI (T) ⊆ SIPP(T),

(2) (
⋃

i∈I Σi,inp) ∩ SI (T) ⊆WIPP(T),

(3) Σout ∩ AI (T) ⊆ SOPP(T), and

(4) Σout ∩ SI (T) ⊆WOPP(T).

Proof. (1) Let a ∈ (
⋃

i∈I Σi,inp) ∩ AI (T). According to Definition 5.3.4(1)
it remains to prove that a ∈ AI (SUBa,inp). However, a ∈

⋃
i∈I Σi,inp im-

plies that Ia,inp (= ∅ and since a ∈ AI (T), it thus follows directly from
Lemma 4.7.1(2) that a ∈ AI (SUBa,inp).

(2-4) Analogous. -.

In the following example we show that in general none of the inclusions of
this theorem holds also the other way around.

Example 5.3.16. (Example 4.4.8 continued) We turn automata A1 and A2

into component automata C1 and C2, respectively, each with input action a.
This is done in the obvious way, viz. C1 = ({q, q′}, ({a},∅,∅), {(q, a, q′)}, {q})
and C2 = ({r, r′}, ({a},∅,∅), {(r, a, r′)}, {r}). Note that und(C1) = A1 and
und(C2) = A2 are depicted in Figure 4.10.

Now consider the team automaton T̂ 1 = ({(q, r), (q, r′), (q′, r), (q′, r′)},
({a},∅,∅), δ1, {(q, r)}), where we recall that δ1 = {((q, r), a, (q, r′)), ((q, r), a,
(q′, r′))}. Then it is clear that input action a is not si and thus neither ai .
However, in SUB{2}(T̂ 1) — which is essentially a copy of C2 — action a
trivially is sipp and wipp.

In an analogous way we can show that in general neither of the inclusions
stated in Theorem 5.3.15(3,4) holds the other way around as well. -.

Next we consider the types of master-slave synchronization.

Theorem 5.3.17. Σout ∩ AI (T) ⊆ MS (T).

Proof. Let a ∈ Σout ∩ AI (T) and let (q, q′) ∈ δa. Then for all j ∈ Ia,out,
we have that projj

[2](q, q′) ∈ δj,a. This implies that it must be the case that

projIa,out

[2](δa) ⊆ (δIa,out)a and thus a ∈ MS (T). -.

5.3 Synchronizations 139

In the following example we show that in general the inclusion of this theorem
does not hold also the other way around.

Example 5.3.18. Consider the composable system {C1, C2} consisting of com-
ponent automata Ci = ({qi, q′i}, (∅, {a},∅), {(qi, a, q′i)}, {qi}), with i ∈ [2]. It
is depicted in Figure 5.10(a).

(

q1
q2

)

q2 q′2

q1 q′1

(

q′1
q2

)

(

q′1
q′2

)

(a)

(

q1
q′2

)

C2:

C1:

(b)

T :

a

a

a

Fig. 5.10. Component automata C1 and C2, and team automaton T .

Now consider team automaton T = ({(q1, q2), (q′1, q2), (q1, q
′
2), (q

′
1, q

′
2)},

(∅, {a},∅), {((q1, q2), a, (q′1, q2))}, {(q1, q2)}) over {C1, C2}, depicted in Fig-
ure 5.10(b).

Clearly Ia,out({C1, C2}) = {1, 2}. Hence a trivially is ms (sms , wms) in
T , but a is not ai in T since C2 does not participate in the a-transition of T
even though it has a in its alphabet. -.

The preceding two theorems immediately imply the following result.

Corollary 5.3.19. Σout ∩AI (T) ⊆ SOPP(T) ∩MS (T). -.

Finally we involve also sms and wms actions.

Theorem 5.3.20. If Σout ⊆ AI (T), then MS (T) = SMS (T) = WMS (T).

Proof. Let Σout ⊆ AI (T). Now let a ∈ MS (T). Then by Definition 5.3.7(1),
a ∈ Σout and thus also a ∈ AI (T). We distinguish two cases.
If there does not exist a j ∈ I such that a ∈ Σj,inp, then Ia,inp = ∅ and thus
trivially a ∈ SMS(T).
If there exist a j ∈ I such that a ∈ Σj,inp, then Ia,inp (= ∅ and, because a is
ai , projIa,inp

[2](δa) ⊆ (δIa,inp)a. Hence a ∈ SMS (T).
In both cases we thus obtain that a ∈ SMS(T). Hence MS (T) ⊆ SMS(T)

and since, by Lemma 5.3.14, SMS (T) ⊆ WMS (T) ⊆ MS (T) the equality
follows. -.

140 5. Team Automata

5.4 Predicates of Synchronizations

In the preceding sections of this chapter we have presented our team automata
framework. We have seen that team automata over composable systems are
themselves component automata that can be used in further constructions
of team automata. Team automata can thus be used as building blocks. We
have analyzed the transition relations of team automata in order to determine
whether or not they satisfy the conditions inherent to certain specific types
of synchronization modeling collaboration between system components. How-
ever, we have seen that these conditions in general do not lead to uniquely
defined team automata.

To make the model of team automata of any use, e.g. in the early phases
of system design, it is necessary to be able to unambiguously construct a team
automaton according to the specification of the required type of synchroniza-
tion. Given a composable system and certain conditions to be satisfied by
the synchronizations, we want to construct the unique team automaton over
this composable system. This is done in very much the same way as we con-
structed the maximal-free (maximal-ai , maximal-si) synchronized automata
of Section 4.5, viz. by defining predicates of synchronization. Since for an
internal action the transition relation is by definition equal to its complete
transition space in S, we need to choose predicates only for all external ac-
tions. Once we do so, the team automaton over S defined by these predicates
is unique.

Based on Definition 4.5.1, this is formalized as follows.

Definition 5.4.1. Let Ra(S) ⊆ ∆a(S), for all a ∈ Σext, and let Ra(S) =
∆a(S), for all a ∈ Σint. Let R = {Ra(S) | a ∈ Σ}. Then T is the R-team
automaton over S if for all a ∈ Σ,

δa = Ra(S). -.

In Section 4.5 we have seen that each of the predicates Rfree
a (S), Rai

a (S), and
Rsi

a (S) defines the largest transition relation in ∆a(S) in which an action a
is free, ai , and si , respectively.

As an immediate corollary of Theorem 4.5.5 we obtain that in case of
an internal action, each such a predicate equals the no-constraints predicate,
i.e. its complete transition space in S.

Theorem 5.4.2. Let a ∈ Σint. Then

∆a(S) = Rno
a (S) = Rsyn

a (S), for all syn ∈ {free, ai , si}. -.

5.4 Predicates of Synchronizations 141

The generic setup of Definition 5.4.1 now allows us to define three specific
team automata as an extension of Definition 4.5.4.

Definition 5.4.3. Let syn ∈ {free, ai , si}. Then

the {Rsyn
a (S) | a ∈ Σ}-team automaton over S is called the maximal-syn

team automaton (over S). -.

We now consider the constraints relating to the types of synchronization de-
fined in Section 5.3. This will allow us to define more types of team automata
than those of Definition 5.4.3. We define the predicates of synchronization
without any reference to a team automaton, its subteams, and its transition
relation.

We begin by considering the peer-to-peer types of synchronization. In this
case we have to distinguish between the input and output role an external
action a may have in S. The predicates thus have to refer to the input and
output domains of a in S. Moreover, we have to distinguish between strong
(ai) and weak (si) types of synchronization. This leads to four predicates,
each of which includes all and only those transitions from ∆a(S) in which all
component automata given by the input or output domain, respectively, are
forced (in the strong or in the weak sense) to participate.

Recall that, for an external action a, Ia,inp(S) = {i ∈ I | a ∈ Σi,inp} is
the input domain of a in S and Ia,out(S) = {i ∈ I | a ∈ Σi,out} is the output
domain of a in S. As before, we may simply write Ia,inp and Ia,out, since S
has been fixed.

First we focus on input actions.

Definition 5.4.4. Let a ∈ Σ and let Sa,inp = {Ci | i ∈ Ia,inp}. Then

(1) the predicate is-sipp in S for a is denoted by Rsipp
a (S) and is defined as

if a ∈
⋃

i∈I Σi,inp, then

Rsipp
a (S) = {(q, q′) ∈ ∆a(S) | projIa,inp

[2](q, q′) ∈ ∆a(Sa,inp)⇒

projIa,inp

[2](q, q′) ∈ Rai
a (Sa,inp)},

otherwise

Rsipp
a (S) = ∆a(S), and

(2) the predicate is-wipp in S for a is denoted by Rwipp
a (S) and is defined as

142 5. Team Automata

if a ∈
⋃

i∈I Σi,inp, then

Rwipp
a (S) = {(q, q′) ∈ ∆a(S) | projIa,inp

[2](q, q′) ∈ ∆a(Sa,inp)⇒

projIa,inp

[2](q, q′) ∈ Rsi
a (Sa,inp)},

otherwise

Rwipp
a (S) = ∆a(S). -.

Next we focus on output actions.

Definition 5.4.5. Let a ∈ Σ and let Sa,out = {Ci | i ∈ Ia,out}. Then

(1) the predicate is-sopp in S for a is denoted by Rsopp
a (S) and is defined as

if a ∈
⋃

i∈I Σi,out, then

Rsopp
a (S) = {(q, q′) ∈ ∆a(S) | projIa,out

[2](q, q′) ∈ ∆a(Sa,out)⇒

projIa,out

[2](q, q′) ∈ Rai
a (Sa,out)},

otherwise

Rsopp
a (S) = ∆a(S), and

(2) the predicate is-wopp in S for a is denoted by Rwopp
a (S) and is defined

as

if a ∈
⋃

i∈I Σi,out, then

Rwopp
a (S) = {(q, q′) ∈ ∆a(S) | projIa,out

[2](q, q′) ∈ ∆a(Sa,out)⇒

projIa,out

[2](q, q′) ∈ Rsi
a (Sa,out)},

otherwise

Rwopp
a (S) = ∆a(S). -.

One should recall at this point that we are not discussing the properties of a
given team automaton over S, with a fixed transition relation determining the
transitions in the input and output subteams of an external action a. Thus, in
Definitions 5.4.4 and 5.4.5, we relate to the complete transition spaces of a in
the respective “subsystems” determined by the input and output domain of a.
Each predicate includes all and only those transitions from ∆a(S), for which

5.4 Predicates of Synchronizations 143

all component automata given by the input or output domain, respectively,
are forced (in the weak or in the strong sense) to participate in the execution
of a by any of these component automata.

As the next result shows, the predicates of Definitions 5.4.4 and 5.4.5
describe the maximal sets of a-transitions satisfying the given constraint.
Recall that Σout =

⋃
i∈I Σi,out.

Theorem 5.4.6. Let a ∈
⋃

i∈I Σi,inp. Then

(1) a ∈ SIPP(T) if and only if δa ⊆ Rsipp
a (S), and

(2) a ∈WIPP(T) if and only if δa ⊆ Rwipp
a (S).

Let a ∈ Σout. Then

(3) a ∈ SOPP(T) if and only if δa ⊆ Rsopp
a (S), and

(4) a ∈WOPP(T) if and only if δa ⊆ Rwopp
a (S).

Proof. (1) (Only if) Let a ∈ SIPP(T). Hence according to Definition 5.3.4(1)
we have a ∈ AI (SUBa,inp), i.e. a is ai in the subteam of T determined by
the input domain of a. According to Definition 4.1.6 the a-transitions of this
subteam are (δIa,inp)a = projIa,inp

[2](δa) ∩ ∆a({Ci | i ∈ Ia,inp}). Now, by
Theorem 4.5.3(2), a ∈ AI (SUBa,inp) implies that (δIa,inp)a ⊆ Rai

a ({Ci | i ∈
Ia,inp}). Hence for all (q, q′) ∈ δa, whenever projIa,inp

[2](q, q′) ∈ ∆a({Ci |

i ∈ Ia,inp}), then projIa,inp

[2](q, q′) ∈ Rai
a ({Ci | i ∈ Ia,inp}). Consequently,

according to Definition 5.4.4(1), δa ⊆ Rsipp
a (S).

(If) Let δa ⊆ Rsipp
a (S). By Definition 5.3.4(1) we now have to prove that

a ∈ AI (SUBa,inp). Since a ∈
⋃

i∈I Σi,inp, we know that Ia,inp (= ∅. Hence
consider an arbitrary pair (p, p′) ∈ (δIa,inp)a. Since (p, p′) ∈ (δIa,inp)a =
projIa,inp

[2](δa) ∩ ∆a({Ci | i ∈ Ia,inp}) there is a (q, q′) ∈ δa ⊆ ∆a(S) for

which projIa,inp

[2](q, q′) = (p, p′). From δa ⊆ Rsipp
a (S) we infer that (p, p′) ∈

Rai
a ({Ci | i ∈ Ia,inp}). Hence (δIa,inp)a ⊆ Rai

a ({Ci | i ∈ Ia,inp}) and thus, by
Theorem 4.5.3(2), a ∈ AI (SUBa,inp).

(2-4) Analogous. -.

Now we turn to the master-slave types of synchronization. As in the case of
the peer-to-peer predicates, we have to distinguish between the input and
the output role of actions. This time, however, the predicates describe syn-
chronizations between the component automata from the input domain and
those from the output domain.

The is-ms predicate for an external action a includes all and only those
a-transitions in which a appears at least once in its output role. For the

144 5. Team Automata

predicates is-sms and is-wms in S, there is the additional requirement that a
should also be executed by the component automata from its input domain.
In the strong case, this obligation is strict in the sense that if the input
domain of a is not empty, then always at least one component automaton
from the input domain of a participates in every a-transition included in the
predicate. In the weak case, this obligation has to be met only when at least
one component automaton from the input domain of a is ready to execute a.

Definition 5.4.7. Let a ∈ Σ, let Sa,inp = {Ci | i ∈ Ia,inp}, and let Sa,out =
{Ci | i ∈ Ia,out}. Then

(1) the predicate is-ms in S for a is denoted by Rms
a (S) and is defined as

if a ∈ Σout, then

Rms
a (S) = {(q, q′) ∈ ∆a(S) | projIa,out

[2](q, q′) ∈ ∆a(Sa,out)},

otherwise

Rms
a (S) = ∆a(S),

(2) the predicate is-sms in S for a is denoted by Rsms
a (S) and is defined as

if a ∈ Σout, then

Rsms
a (S) = Rms

a (S) ∩ {(q, q′) ∈ ∆a(S) | Ia,inp (= ∅⇒

projIa,inp

[2](q, q′) ∈ ∆a(Sa,inp)},

otherwise

Rsms
a (S) = ∆a(S), and

(3) the predicate is-wms in S for a is denoted by Rwms
a (S) and is defined as

if a ∈ Σout, then

Rwms
a (S) = Rms

a (S) ∩ {(q, q′) ∈ ∆a(S) | Ia,inp (= ∅⇒

[(∃i ∈ Ia,inp : a en Ci proji(q))⇒ projIa,inp

[2](q, q′) ∈ ∆a(Sa,inp)]},

otherwise

Rwms
a (S) = ∆a(S). -.

5.4 Predicates of Synchronizations 145

The is-ms (is-sms , is-wms) predicate guarantees that the output action a is
indeedms (sms , wms) in every team automaton over S with that predicate for
its a-transitions. The predicates is-ms and is-sms , moreover, are the largest
set of a-transitions satisfying the specified constraint.

It is, however, not necessarily the case that every set of a-transitions by
which a is is-wms is contained in the predicate is-wms . This difference stems
from the fact that the predicate refers to component automata from the input
domain of a rather than an input subteam. There is no way out and in fact
the maximality principle is not applicable, because to define a subteam with
transitions, a team automaton including the transition relation should have
been defined already. Since a subteam only contains a selection of all possible
a-transitions, it may happen that a is enabled in a component automaton
of the input subteam, but not in the subteam. Thus a can be wms in team
automaton T even when δa contains transitions in which the input subteam
of a does not participate, although a is currently enabled in a component
automaton of this subteam.

Theorem 5.4.8. Let a ∈ Σout. Then

(1) a ∈ MS (T) if and only if δa ⊆ Rms
a (S),

(2) a ∈ SMS (T) if and only if δa ⊆ Rsms
a (S), and

(3) if δa ⊆ Rwms
a (S), then a ∈WMS (T).

Proof. (1) (Only if) Let a ∈ MS (T). Hence by Lemma 5.3.8(1) we have
projIa,out

[2](δa) = (δIa,out)a. By Definition 4.1.6 consequently (δIa,out)a =

projIa,out

[2](δa) ∩ ∆a({Ci | i ∈ Ia,out}) and thus projIa,out

[2](δa) ⊆ ∆a({Ci |
i ∈ Ia,out}). Hence by Definition 5.4.7(1), δa ⊆ Rms

a (S).
(If) Let δa ⊆ Rms

a (S). Then by Definition 5.3.7(1) we have to prove
that projIa,out

[2](δa) ⊆ (δIa,out)a. By Definition 4.1.6 we thus have to prove

projIa,out

[2](δa) ⊆ ∆a({Ci | i ∈ Ia,out}). This follows immediately from Defi-
nition 5.4.7(1).

(2) Let a ∈ SMS (T). If Ia,inp = ∅, then there is nothing to prove.
Hence assume that Ia,inp (= ∅. As in the proof of (1), for Ia,out it is easy
to prove that projIa,inp

[2](δa) ⊆ (δIa,inp)a if and only if δa ⊆ {(q, q′) ∈

∆a(S) | projIa,inp

[2](q, q′) ∈ ∆a({Ci | i ∈ Ia,inp})}. By using Defini-
tion 5.3.7(2) we thus infer that a ∈ SMS (T) if and only if δa ⊆ Rms

a (S)
and δa ⊆ {(q, q′) ∈ ∆a(S) | projIa,inp

[2](q, q′) ∈ ∆a({Ci | i ∈ Ia,inp})}. Hence
according to Definition 5.4.7(2) we are ready.

(3) Again there is nothing to prove whenever Ia,inp = ∅. Hence assume
that Ia,inp (= ∅. Let δa ⊆ Rwms

a (S). Then by Definition 5.3.7(3) we have

146 5. Team Automata

to prove that whenever (q, q′) ∈ δa and a en SUBa,inp projIa,inp
(q), then

projIa,inp

[2](q, q′) ∈ (δIa,inp)a. Definition 5.4.7(3) implies that for all (q, q′) ∈

δa, if there is an i ∈ Ia,inp for which a en Ci proji(q), then projIa,inp

[2](q, q′) ∈
∆a({Ci | i ∈ Ia,inp}). Since a en SUBa,inp

projIa,inp
(q) implies that then there

is an i ∈ Ia,inp for which a en Ci proji(q), we now have that if (q, q′) ∈ δa and
a en SUBa,inp

projIa,inp
(q), then projIa,inp

[2](q, q′) ∈ ∆a({Ci | i ∈ Ia,inp}).

Now Definition 4.1.6 implies that (δIa,inp)a = projIa,inp

[2](q, q′) and thus we
are ready. -.

In the following example we show that, as announced before, the converse of
Theorem 5.4.8(3) in general indeed does not hold.

Example 5.4.9. Let C1 = ({q1, q2}, ({a},∅,∅), {(q1, a, q′1)}, {q1}) and C2 =
({q2, q′2}, (∅, {a},∅), {(q2, a, q′2)}, {q2}) be the two component automata de-
picted in Figure 5.11(a).

(

q1
q2

)

q2 q′2

q1 q′1

(

q′1
q2

)

(

q′1
q′2

)

(a)

C2:

C1:

(b)

T :

a

a
(

q1
q′2

)

a

Fig. 5.11. Component automata C1 and C2, and team automaton T .

Clearly S = {C1, C2} is a composable system. Consider team automaton
T = ({(q1, q2), (q1, q′2), (q

′
1, q2), (q

′
1, q

′
2)}, (∅, {a},∅), {((q1, q2), a, (q1, q′2))},

{(q1, q2)}) over S. It is depicted in Figure 5.11(b). Since a is not enabled
in state (q1) of the input subteam of T it is trivial to see that a ∈WMS (T).
Note however that a is enabled in state q1 of component automaton C1
of the input subteam. Since this component automaton does not partici-
pate in the a-transition ((q1, q2), (q1, q′2)) of T , however, we have found that
((q1, q2), (q1, q′2)) ∈ δa \ Rwms

a (S). -.

Summarizing we thus conclude that except for wms , each of the types of syn-
chronization introduced in Section 5.3 — as did each of the types introduced

5.4 Predicates of Synchronizations 147

in Section 4.4 — gives rise to a predicate that is the unique maximal rep-
resentative among all transition relations satisfying the constraints implied
by the type of synchronization. Consequently, we can now distinguish more
specific types of team automata.

Definition 5.4.10. Let syn ∈ {sipp,wipp, sopp,wopp,ms, sms}. Then

(1) the {Rsyn
a (S) | a ∈ Σ}-team automaton over S is called the maximal-syn

team automaton (over S) and

(2) an action a ∈ Σ is called maximal-syn in T if δa = Rsyn
a (S). -.

5.4.1 Homogeneous Versus Heterogeneous

The team automata from Definitions 5.4.3 and 5.4.10(1) differ by the type of
predicate that needs to be satisfied. However, it is one and the same predicate
that needs to be satisfied by all external actions. Such team automata are
called homogeneous , as opposed to team automata for which different subsets
of external actions satisfy (potentially) different predicates, which are called
heterogeneous .

When defining heterogeneous team automata we need to specify exactly
which (combinations of) predicates must hold for which subsets of external
actions. Consider, e.g., that we want to construct a team automaton over
S such that all of its input actions are ai , while all of its locally-controlled
actions are ms . Then we construct the {Rai

a (S) | a ∈ Σinp} ∪ {Rms
a (S) | a ∈

Σloc}-team automaton over S, which is thus an example of a heterogeneous
team automaton.

Example 5.4.11. (Example 4.2.8 continued) We turn the automata A1 and
A2, depicted in Figure 4.7(a), into component automata C1 and C2, respec-
tively, by distributing their respective alphabets over input, output, and inter-
nal alphabets. We let a and b be input actions in C1 and we let a be an output
action in C2. Consequently, S = {C1, C2} is a composable system. Note that
any team automaton over S will have input alphabet {b}, output alphabet
{a}, and an empty internal alphabet.

We now construct a homogeneous team automata over S. The {Rsms
c (S) |

c ∈ Σ}-team automaton T 1 (i.e. the maximal-sms team automaton) over S
is depicted in Figure 5.12(a).

It is easy to construct other homogeneous team automata over S. The
{Rms

c (S) | c ∈ Σ}-team automaton over S, e.g., is obtained by adding the
transition ((q′1, q2), a, (q

′
1, q

′
2)) to the transition relation of T 1. The resulting

maximal-ms team automaton T 2 is depicted in Figure 5.12(b).

148 5. Team Automata

a

(

q1
q2

) (

q′1
q′2

)

(

q′1
q2

)

T 1:

(

q1
q′2

)

(

q1
q2

) (

q′1
q′2

)

(

q′1
q2

)

T 2:

(

q1
q′2

)

a

(a) (b)

a

b

b b

b

Fig. 5.12. Team automata T 1 and T 2.

It is also not difficult to construct heterogeneous team automata over S.
The {Rfree

c (S) | c ∈ Σinp} ∪ {Rai
c (S) | c ∈ Σout} ∪ {∆c(S) | c ∈ Σint}-team

automaton over S, e.g., is the team automaton T 1 depicted in Figure 5.12(a).
This is thus an example of a team automaton that is both homogeneous and
heterogenous. -.

As this example has shown, the dividing line between homogeneous and het-
erogeneous team automata is very thin.

We have paved the way for even more specific team automata that lie
inbetween homogeneous and heterogeneous team automata, since we can also
construct, e.g., the {Rsopp

a (S) ∩ Rms
a (S) | a ∈ Σext} ∪ {∆a(S) | a ∈ Σint}-

team automaton over S or the {Rai
a (S) | a ∈ Σinp} ∪ {Rsopp

a (S) ∩Rms
a (S) |

a ∈ Σout} ∪ {∆a(S) | a ∈ Σint}-team automaton over S.
To conclude this section we make the observation that, given a compos-

able system S, there exist team automata over S that cannot be obtained
as the homogeneous team automaton of any of the types introduced above.
Shortly we will give an example of one such a team automaton. We moreover
conjecture that it does not help to consider heterogeneous team automata. In
other words, there exist team automata over S whose transition relations can-
not be obtained as the result of any combination of the predicates introduced
in Definitions 4.5.2, 5.4.4, 5.4.5, and 5.4.7.

Example 5.4.12. (Example 5.4.11 continued) Let T 3 be obtained by removing
the transition ((q1, q2), b, ((q′1, q2)) from the transition relation of T 2. Now T 3

is clearly a team automaton over S. However, it is straightforward to verify
that T 3 cannot be obtained as the homogeneous team automaton defined by
any of the predicates introduced in Definitions 4.5.2, 5.4.4, 5.4.5, and 5.4.7.

5.5 Effect of Synchronizations 149

Furthermore, it seems unlikely that — given the current predicates — T 3

can be obtained as a heterogeneous team automaton over S. Intuitively, the
reason for this resides in the fact that in T 3, b is its only input action, its
output domain is empty, and as far as its input domain is concerned, tran-
sitions ((q1, q2), b, ((q′1, q2)) and ((q1, q′2), b, (q

′
1, q

′
2)) cannot be distinguished.

It thus appears to be the case that any team automaton over S that is
constructed according to any (combination) of the predicates introduced in
Definitions 4.5.2, 5.4.4, 5.4.5, and 5.4.7 will either contain none of the two
b-transitions above, or both. -.

Summarizing, in this section we have shown that there exists a large variety
of combinations of types of synchronizations that can be used to model many
intricate interactions among system components. Given that those compo-
nents are modeled by component automata and that the interactions the
system should exhibit are known, a designer can choose how to construct
the unique team automaton over the component automata as a model of the
system he or she set out to design.

5.5 Effect of Synchronizations

The (maximal) types of synchronization introduced earlier in this chapter,
together with the (maximal) types of synchronization introduced in Sec-
tions 4.4 and 4.5, form a whole range of possible synchronizations within
team automata. In Section 4.6 we studied the effect that the basic synchro-
nizations free, ai , si , and their maximal variants have on the inheritance of
the automata-theoretic properties of Section 3.2 from synchronized automata
to their (sub)automata, and vice versa. In this section we extend this study
to team automata, i.e. we now take into account that we deal with alpha-
bets with a distinction into three distinct types of actions. We apply some
restrictions, though.

First we do not extend this study to incorporate also the more complex
types of synchronization introduced earlier on in this chapter. As already
mentioned in the Introduction, such a full study is beyond the scope of this
thesis. What we do provide is a systematic study of the role free, ai , and
si actions play in our approach of modeling collaboration between system
components through synchronizations of actions shared by these components.

Secondly, we do not take into account the properties action reducedness,
transition reducedness, and state reducedness. Again, such a full study is
beyond the scope of this thesis. Instead we focus on the inheritance of enabling
and determinism from team automata to their constituents, and vice versa.

150 5. Team Automata

To this aim, the results of Section 4.6 are carried over to team automata, after
which we study the specific role of the distinction of the set of actions of a
team automaton into input, ouput, and internal actions. It turns out that we
need to be particularly careful concerning the possibility of an action being
input to a component automaton from S and output to the team automata
over S.

We start this section with a study of the top-down inheritance — from
team automata to their subteams and component automata — of enabling
and determinism. Subsequently we investigate also the bottom-up preserva-
tion — from subteams and component automata to team automata.

Notation 8. For the remainder of this chapter we let Σi,ext denote the set of
external actions Σi,inp∪Σi,out of our fixed component automaton Ci, where i ∈
I, and we let Σi,loc denote its set of locally-controlled actions Σi,out ∪Σi,int.
Recall that Σi denotes its set of actions Σi,inp ∪Σi,out ∪Σi,int. Furthermore,
we fix an arbitrary j ∈ I and an arbitrary subset J ⊆ I. We let ΣJ,ext denote
the set of external actions ΣJ,inp ∪ΣJ,out of the subteam SUBJ of T and we
let ΣJ,loc denote its set of locally-controlled actions ΣJ,out∪ΣJ,int. Recall that
ΣJ denotes its set of actions ΣJ,inp ∪ ΣJ,out ∪ ΣJ,int. Finally, recall that Σ
denotes the set of actions Σinp∪Σout∪Σint, Σext denotes the set of external
actions Σinp ∪ Σout, and Σloc denotes the set of locally-controlled actions
Σout ∪Σint of any team automaton over our fixed composable system S. -.

5.5.1 Top-Down Inheritance of Properties

In this subsection we search for sufficient conditions under which enabling
and determinism are inherited from team automata to their subteams and
component automata.

It is clear that Definitions 3.2.42 and 3.2.57 extend in a natural way
to component automata. Given an alphabet Θ disjoint from the set of
states, we can thus speak of a Θ-enabling component automaton and of a Θ-
deterministic component automaton. Moreover, if Θ equals its set of actions,
then we simply speak of enabling and deterministic component automata,
respectively.

Finally, recall from Theorem 5.4.2 that for all a ∈ Σint, we know that
δa = Rsyn

a (S), for all syn ∈ {no, free, ai , si}.

Enabling

In case the distribution of the alphabet plays no role, then the results con-
cerning the inheritance of enabling from team automata to their subteams
and component automata can obviously be lifted from Theorem 4.6.19.

5.5 Effect of Synchronizations 151

Theorem 5.5.1. Let T be Θ-enabling. Then

(1) if δa ⊆ Rai
a (S), for all a ∈ Θ ∩ΣJ , then SUBJ is Θ-enabling, and

(2) if δa ⊆ Rai
a (S), for all a ∈ Θ ∩Σj, then Cj is Θ-enabling. -.

Since Σalph∩ΣJ ⊆ ΣJ,alph andΣalph∩Σj ⊆ Σj,alph, for alph ∈ {inp, int , ext},
the following result follows immediately.

Corollary 5.5.2. Let alph ∈ {inp, int , ext} and let T be Σalph-enabling.
Then

(1) if δa ⊆ Rai
a (S), for all a ∈ ΣJ,alph, then SUBJ is Σalph-enabling, and

(2) if δa ⊆ Rai
a (S), for all a ∈ Σj,alph, then Cj is Σalph-enabling. -.

Note that this corollary does not cover the cases in which alph ∈ {out , loc}.
In the following example we show that the fact that a team automaton T
over S is Σout-enabling in general does not imply that each of its subteams
(component automata from S) is Σout-enabling, not even if all its output
actions are ai in T .

Example 5.5.3. (Example 4.2.1 continued) We turn automata A2 and A3

into component automata C2 and C3, respectively, by making a an output
action of C2 and an input action of C3. The other elements of C2 and C3 are
as in their underlying automata depicted in Figure 4.6(a). Then {C2, C3} is
a composable system and any team automaton T over {C2, C3} has output
alphabet {a}, while its input as well as its internal alphabet is empty.

Consequently, let T be the team automaton whose underlying synchro-
nized automaton is depicted in Figure 4.6(b) once states (p, q, r) and (p, q, r′)
have been replaced by states (q, r) and (q, r′), respectively. Clearly T is {a}-
enabling. It is however easy to see that C3 is not, even though all its output
actions trivially (since there are none) are ai in T . Moreover, the subteam
SUB{3} of T is essentially a copy of C3 and is thus neither {a}-enabling. -.

An additional condition is needed to extend Corollary 5.5.2 to the cases in
which alph ∈ {out , loc}.

Corollary 5.5.4. Let alph ∈ {out , loc} and let T be Σalph-enabling. Then

(1) if Σalph∩ΣJ ⊆ ΣJ,alph and δa ⊆ Rai
a (S), for all a ∈ ΣJ,alph, then SUBJ

is Σalph-enabling, and

(2) if Σalph ∩ Σj ⊆ Σj,alph and δa ⊆ Rai
a (S), for all a ∈ Σj,alph, then Cj is

Σalph-enabling. -.

152 5. Team Automata

Determinism

In case the distribution of the alphabet plays no role, then the results concern-
ing the inheritance of determinism from team automata to their subteams
and component automata can obviously be lifted from Theorem 4.6.22.

Theorem 5.5.5. Let T be Θ-deterministic and let syn ∈ {no, free, ai , si}.
Then

(1) if δa = Rsyn
a (S), for all a ∈ Θ ∩ΣJ , then SUBJ is Θ-deterministic, and

(2) if δa = Rsyn
a (S) and each a-transition of Cj is present in T , for all

a ∈ Θ ∩Σj, then Cj is Θ-deterministic. -.

Since Σalph∩ΣJ ⊆ ΣJ,alph andΣalph∩Σj ⊆ Σj,alph, for alph ∈ {inp, int , ext},
the following result follows immediately.

Corollary 5.5.6. Let alph ∈ {inp, int , ext} and let T be Σalph-deterministic.
Let syn ∈ {no, free, ai , si}. Then

(1) if δa = Rsyn
a (S), for all a ∈ ΣJ,alph, then SUBJ is Σalph-deterministic,

and

(2) if δa = Rsyn
a (S) and each a-transition of Cj is present in T , for all

a ∈ Σj,alph, then Cj is Σalph-deterministic. -.

Note that this corollary does not cover the cases in which alph ∈ {out , loc}.
In the following example we show that the fact that a team automaton T
over S is Σout-deterministic in general does not imply that each of its consti-
tuting component automata is Σout-deterministic, not even if all its output
actions are maximal-free, maximal-ai , or maximal-si in T and all component
automaton transitions of output actions are present in T . It is not difficult
to provide a similar example for the case of subteams.

Example 5.5.7. (Example 4.6.5 continued) We turn automataA1 and A2 into
component automata C1 and C2, respectively, by making a an output action
of C1 and an input action of C2. The other elements of C1 and C2 are as in their
underlying automata depicted in Figure 4.11. Then {C1, C2} is a composable
system and any team automaton T over {C1, C2} has output alphabet {a},
while its input as well as its internal alphabet is empty.

Now let T be the team automaton with empty transition relation. Hence T
is trivially {a}-deterministic. It is however clear that C2 is not, even though all
its output actions trivially (since there are none) are maximal-free, maximal-
ai , and maximal-si in T and all its transitions of output actions trivially
(again, there are none) are present in T . -.

5.5 Effect of Synchronizations 153

An additional condition is needed to extend Corollary 5.5.6 to the cases in
which alph ∈ {out , loc}.

Corollary 5.5.8. Let alph ∈ {out , loc} and let T be Σalph-deterministic. Let
syn ∈ {no, free, ai , si}. Then

(1) if Σalph ∩ ΣJ ⊆ ΣJ,alph and δa = Rsyn
a (S), for all a ∈ ΣJ,alph, then

SUBJ is Σalph-deterministic, and

(2) if Σalph ∩ ΣJ ⊆ ΣJ,alph, δa = Rsyn
a (S), and each a-transition of Cj is

present in T , for all a ∈ Σj,alph, then Cj is Σalph-deterministic. -.

5.5.2 Bottom-Up Inheritance of Properties

Dual to the above investigations we now change focus and study the suffi-
cient conditions under which enabling and determinism are preserved from
component automata from S to team automata over S.

We recall from Section 5.2 that T is a team automaton over S ′ — upto a
reordering — whenever S ′ = {SUBIj | {Ij | j ∈ J } forms a partition of I}.
Hence it suffices to investigate the conditions under which the enabling and
determinism of (component automata from) a composable system is preserved
by a team automaton over that composable system.

Enabling

In case the distribution of the alphabet plays no role, then the results con-
cerning the preservation of enabling from component automata from S to a
team automaton over S can obviously be lifted from Theorem 4.6.33.

Theorem 5.5.9. Let Cj be Θ-enabling. Then

if each a-transition of Cj, for all a ∈ Θ, is omnipresent in T , then T is
Θ ∩Σj-enabling. -.

As the set of input (output, internal) actions of any team automaton T over
S is included in the union of the sets of input (output, internal) actions of the
component automata from S, we immediately obtain the following result.

Corollary 5.5.10. Let alph ∈ {inp, out , int , ext , loc} and let Ci be Σi,alph-
enabling, for all i ∈ I. Then

if all a-transitions of Ci, for all a ∈ Σi,alph and for all i ∈ I, are om-
nipresent in T , then T is Σalph-enabling. -.

154 5. Team Automata

Note how, contrary to the results in the previous subsection, the possibility
of an action being input to a component automaton from S and output
to the team automata over S plays no role here. The reason is the fact
that every input (output) action of a team automaton T over S needs to
be an input (output) action of at least one component automaton from S.
Hence no additional condition is needed to cover the case in which alph ∈
{out , loc} in this corollary. Even though an input action a of a non-{a}-
enabling component automaton from S may be an output action of T , it
cannot prevent T from being Σout-enabling if the conditions of this corollary
are satisfied. The reason is that according to these conditions, the component
automaton from S in which a appears as an output action must not only be
{a}-enabling, but all its a-transitions must moreover be omnipresent in T .

Determinism

In case the distribution of the alphabet plays no role, then the results con-
cerning the preservation of determinism from component automata from S
to a team automaton over S can obviously be lifted from Theorem 4.6.35.

Theorem 5.5.11. Let S be Θ-deterministic and let syn ∈ {ai , si}. Then

if δa ⊆ Rsyn
a (S), for all a ∈ Θ ∩Σ, then T is Θ-deterministic. -.

Since Σalph ∩ Σj ⊆ Σj,alph, for alph ∈ {inp, int , ext}, the following result
follows immediately.

Lemma 5.5.12. Let alph ∈ {inp, int , ext}. Then

if Cj is Σj,alph-deterministic, then Cj is Σalph-deterministic. -.

Since an action may be input in a component automaton from S but output
in a team automaton over S, Lemma 5.5.12 cannot be extended to the cases
in which alph ∈ {out , loc}. To see this, consider an external action a that is
input to a component automaton (e.g. C2) which is Σ2,out-deterministic but
not {a}-deterministic, and output to another component automaton (e.g. C1).
Then a will clearly be an output action of any team automaton over {C1, C2},
but C2 nevertheless is not {a}-deterministic.

Lemma 5.5.12 allows us to extend Theorem 5.5.11 to the cases in which
alph ∈ {inp, int , ext}.

Corollary 5.5.13. Let alph ∈ {inp, int , ext} and let Ci be Σi,alph-determini-
stic, for all i ∈ I. Let syn ∈ {ai , si}. Then

if δa ⊆ Rsyn
a (S), for all a ∈ Σalph, then T is Σalph-deterministic. -.

5.6 Inheritance of Synchronizations 155

Note that — contrary to Corollary 5.5.10 — Corollary 5.5.13 cannot be ex-
tended to the cases in which alph ∈ {out , loc}, not even when we consider
team automata whose every action is maximal-free, maximal-ai , or maximal-
si . This is because the transitions that cause a component automaton not to
be deterministic are not a priori excluded from being present in such team
automata, but when they are present they thus also cause those team au-
tomata not to be deterministic. In the following example we demonstrate
this by showing that even if Ci is Σi,out-deterministic, for all i ∈ I, and
δa ⊆ Rsyn

a (S), for all a ∈ Σout and syn ∈ {free, ai , si}, then this in general
does not imply that T is Σout-deterministic.

Example 5.5.14. Let component automata C1 = ({q1, q′1}, ({a},∅,∅), {(q1, a,
q1), (q1, a, q′1)}, {q1}) and C2 = ({q2, q′2}, (∅, {a},∅), {(q2, a, q′2)}, {q2}) be as
depicted in Figure 5.13.

q1 q′1 q2 q′2

C1: C2:

a a

a

Fig. 5.13. Component automata C1 and C2.

Note that both Ci, with i ∈ [2], are Σi,out-deterministic. Furthermore,
{Ci | i ∈ [2]} is a composable system. Now consider the team automaton T =
(Q, (∅, {a},∅), δ, {(q1, q2)}), where Q = {(q1, q2), (q1, q′2), (q

′
1, q2), (q

′
1, q

′
2)}

and δ = {((q1, q2), a, (q1, q′2)), ((q1, q2), a, (q
′
1, q

′
2))}, over this composable sys-

tem. It is depicted in Figure 5.14(a).
Clearly δa = Rai

a (S) ⊆ Rsi
a (S), but T obviously is not Σout-deterministic.

Next consider the team automaton T ′ = (Q, (∅, {a},∅), δ′, {(q1, q2)}),
where δ′ = {((q1, q2), a, (q1, q2)), ((q1, q2), a, (q′1, q2))}, over this composable
system. It is depicted in Figure 5.14(b). Clearly δ′a ⊆ Rfree

a (S). However, also
T ′ obviously is not Σout-deterministic. -.

5.6 Inheritance of Synchronizations

In this section we start an initial exploration into the conditions under which
the types of synchronization introduced in Sections 5.3 and 5.4 are inherited
top-down— from team automata to subteams — and preserved bottom-up—

156 5. Team Automata

a

a

T :

(a) (b)

T ′:

a
(

q′1
q′2

)

(

q′1
q2

)

(

q1
q2

)
(

q1
q2

)
(

q′1
q′2

)

(

q1
q′2

)
(

q1
q′2

)
(

q′1
q2

)

a

Fig. 5.14. Team automata T and T ′.

from subteams to team automata — as an addition to the results presented in
Section 4.7 on the inheritance and preservation of the basic synchronizations
free, ai , and si .

Since we deal with synchronizations between component automata consti-
tuting a team automaton, there is no need to study whether synchronizations
are inherited by component automata from team automata — and vice versa:
in any component automaton — and in any team automaton over a single
component automaton — all its input (output) actions trivially are sipp and
wipp (sopp and wopp) while all its output actions trivially are ms , sms , and
wms .

We begin by considering the inheritance of the peer-to-peer types of syn-
chronization. In the following example we show that if an action is sipp (wipp,
sopp, wopp) in a team automaton, then this in general does not imply that
it is also sipp (wipp, sopp, wopp) in each of its subteams.

Example 5.6.1. Consider the composable system {C1, C2}, which consists of
component automata C1 = ({q1, q′1}, ({a},∅,∅), {(q1, a, q′1)}, {q1}) and C2 =
({q2, q′2}, (∅, {a},∅), {(q2, a, q′2)}, {q2}). It is depicted in Figure 5.15(a).

Now consider team automaton T = ({(q1, q2), (q′1, q2), (q1, q
′
2), (q

′
1, q

′
2)},

(∅, {a},∅), {((q1, q2), a, (q′1, q
′
2))}, {(q1, q2)}) over {C1, C2}, depicted in Fig-

ure 5.15(b).
Clearly Ia,inp({C1, C2}) = {1} and Ia,out({C1, C2}) = {2}. Thus a trivially

is ai in both SUBa,inp = SUB{1} and SUBa,out = SUB{2}. Hence a is sipp
and sopp (and thus wipp and wopp) in T .

We observe that SUB{2}a,inp({C2})(SUB{2}) = (∅, (∅,∅,∅),∅,∅) =
SUB{1}a,out({C1})(SUB{1}). This implies a /∈ SI (SUB{2}a,inp({C2})(SUB{2}))

5.6 Inheritance of Synchronizations 157

(

q1
q2

)

(

q1
q′2

)

q2 q′2

q1 q′1

(

q′1
q2

)

(

q′1
q′2

)

(b)

C2:

C1:

(a)

a

a a

T :

Fig. 5.15. Component automata C1 and C2, and team automaton T .

and a /∈ SI (SUB{1}a,out({C1})(SUB{1})). Hence a is neither wipp nor wopp
(and thus neither sipp nor sopp) in SUB{2} and SUB{1}, respectively. -.

From Lemma 4.7.1(2,3) we obtain that sipp and wipp (sopp and wopp) actions
are inherited from a team automaton to a subteam as long as the subteam is
chosen from the input (output) domain of the team automaton. Recall that
Σout =

⋃
i∈I Σi,out.

Lemma 5.6.2. Let a ∈
⋃

i∈I Σi,inp and let ∅ (= K ⊆ Ia,inp(S). Then

(1) if a ∈ SIPP(T), then a ∈ SIPP(SUBK(T)), and

(2) if a ∈WIPP(T), then a ∈WIPP(SUBK(T)).

Let a ∈ Σout and let ∅ (= L ⊆ Ia,out(S). Then

(3) if a ∈ SOPP(T), then a ∈ SOPP(SUBL(T)), and

(4) if a ∈WOPP(T), then a ∈WOPP(SUBL(T)).

Proof. (1) From a ∈ Σinp and ∅ (= K ⊆ Ia,inp(S) we know that the input
domain of a in {Ck | k ∈ K} is K itself. Hence Ka,inp({Ck | k ∈ K}) =
K (= ∅. Now let a be sipp in T . Then by Definition 5.3.4(1), a is ai in
SUBIa,inp(S)(T). Since K ⊆ Ia,inp(S), Lemma 4.7.1(2) directly implies that
a is ai in SUBK(SUBIa,inp(S)(T)) = SUBKa,inp({Ck|k∈K})(SUBK(T)). Defi-
nition 5.3.4(1) now implies that a is sipp in SUBK(T).

(2-4) Analogous. -.

Next we wonder whether sipp and wipp (sopp and wopp) actions are preserved
from subteams to team automata. In the following example we show that in
general they are not.

158 5. Team Automata

Example 5.6.3. (Example 5.3.18 continued) Note that a /∈ WOPP(T) ∪
SOPP(T) since a /∈ SI (SUBa,out). However, it is easy to see that a ∈
SOPP(SUB{1}(T)) ⊆ WOPP(SUB{1}(T)). It is not difficult to adjust this
example in order to show that also sipp and wipp actions in general are not
preserved from subteams to team automata. -.

It turns out that sipp and wipp (sopp and wopp) actions are preserved from
the input (output) subteam of a team automaton to the team automaton
as a whole, which together with the previous lemma provides us with the
following result.

Theorem 5.6.4. Let a∈
⋃

i∈I Σi,inp, let K=Ia,inp(S), and let SUBK(T) =
(QK ,ΣK , δK , IK). Then

(1) a ∈ ΣK ∩ SIPP(T) if and only if a ∈ SIPP(SUBK(T)) and

(2) a ∈ ΣK ∩WIPP(T) if and only if a ∈WIPP(SUBK(T)).

Let a ∈ Σout, let L = Ia,out(S), and let SUBL(T) = (QL,ΣL, δL, IL). Then

(3) a ∈ ΣL ∩ SOPP(T) if and only if a ∈ SOPP(SUBL(T)) and

(4) a ∈ ΣL ∩WOPP(T) if and only if a ∈WOPP(SUBL(T)).

Proof. (1) (Only if) Directly from Lemma 5.6.2(1).
(If) Let a ∈ SIPP(SUBK(T)). Then Definition 5.3.4(1) implies that a ∈

ΣK ∩ AI (SUBK(T))). Since K = Ia,inp(S) and a ∈ ΣK ∩ AI (SUBK(T)),
Definition 5.3.4(1) implies that a ∈ ΣK ∩ SIPP(T).

(2-4) Analogous. -.

Finally, we turn to the master-slave types of synchronization. In the following
example we show that if an action is ms (sms , wms) in a team automaton,
then this in general does not imply that it is also ms (sms , wms) in each of
its subteams.

Example 5.6.5. (Example 5.6.1 continued) Clearly a is sms (and thus also
ms and wms) in T . However, a is not an output action of SUB{1} and it thus
cannot be ms (and hence neither sms nor wms) in SUB{1}. -.

We do have that every output action a of T is ms in any subteam of T
determined by a subset of the output domain of a in S.

Theorem 5.6.6. If a∈Σout and ∅ (=K⊆Ia,out(S), then a∈MS (SUBK(T)).

5.6 Inheritance of Synchronizations 159

Proof. Let a ∈ Σout and let ∅ (= K ⊆ Ia,out(S). Clearly a ∈ ΣK,out. In
fact, the output domain J = Ka,out({Ck | k ∈ K}) of a in {Ck | k ∈ K}
is K itself. Now let (p, p′) ∈ (δK)a = projK

[2](δa) ∩ ∆a({Ck | k ∈ K}).
Then projK

[2](p, p′) = (p, p′) and it thus follows from the above that
projJ

[2]((δK)a) = (δK)a = (δJ)a. Hence a ∈ MS (SUBK(T)). -.

We also get that an ms action a from a team automaton over S is also ms in
all subteams determined by a set that contains the output domain of a in S.

Theorem 5.6.7. If a∈MS (T) and K⊇Ia,out(S), then a∈MS (SUBK(T)).

Proof. Let a ∈ MS (T) and let K ⊇ Ia,out(S). Clearly a ∈ Σout and hence
Ia,out(S) (= ∅. Now let (p, p′) ∈ (δK)a. Then there must exist q, q′ ∈ Q
such that (q, q′) ∈ δa and projK

[2](q, q′) = (p, p′) ∈ ∆a({Ck | k ∈ K}).
Since a ∈ MS (T), there exists a k ∈ Ia,out(S) ⊆ K such that projk

[2](q, q′) =
projk

[2](p, p′) ∈ δk,a. Because the output domain J = Ka,out({Ck | k ∈ K}) of
a in {Ck | k ∈ K} is Ia,out(S) it follows that projJ

[2](q, q′) ∈ ∆a({C! | " ∈ J})
and thus projJ

[2]((δK)a) = (δJ)a. Hence a ∈ MS (SUBK(T)). -.

Furthermore, as we show next, an ms action a is preserved from a subteam
to the team automaton over S as a whole, provided that the subteam is
determined by a set that contains the input domain of a in S.

Theorem 5.6.8. Let a ∈ Σout and let K ⊇ Ia,inp(S). Then

if a ∈ MS (SUBK(T)), then a ∈ MS (T).

Proof. Let J = Ia,out(S). Note that J (= ∅. Now let (q, q′) ∈ δa and assume
that projJ

[2](q, q′) /∈ (δJ)a, which means that proj!
[2](q, q′) /∈ δ!,a, for all

" ∈ J , i.e. only the input domain of a in S is involved in this transition.
Consequently, projK

[2](q, q′) ∈ ∆a({Ck | k ∈ K}). Now suppose that a ∈
MS (SUBK(T)). Then a ∈ ΣK,out and thus K ∩ J (= ∅. Moreover, from a
being ms in SUBK(T) it follows that there exists a k ∈ K ∩ J such that
projk

[2](q, q′) ∈ δk,a, a contradiction with the fact that projJ
[2](q, q′) /∈ (δJ)a.

Hence we have proven that a /∈ MS (T) implies a /∈ MS (SUBK(T)). -.

Finally, we note that whenever an output action a is sms (wms) in T and
J ⊆ Ia,out(S), then a trivially is sms (wms) in SUBJ (T) because the input
domain of a in {Cj | j ∈ J} is empty.

This completes our initial exploration into the conditions under which
the complex types of synchronization introduced in Section 5.3 are inherited
from team automata to subteams, and vice versa.

We conclude this section with a result on the inheritance of the maximal
types of synchronization introduced in Section 5.4. Using our knowledge from

160 5. Team Automata

earlier results of this section we extend the results presented in Theorem 4.7.5
to the case of peer-to-peer and master-slave types of synchronization.

Theorem 5.6.9. Let a ∈
⋃

i∈I Σi,inp and let K ⊆ Ia,inp(S). Then

(1) if δa = Rsipp
a (S), then (δK)a = Rsipp

a ({Ck | k ∈ K}), and

(2) if δa = Rwipp
a (S), then (δK)a = Rwipp

a ({Ck | k ∈ K}).

Let a ∈ Σout and let L ⊆ Ia,out(S). Then

(3) if δa = Rsopp
a (S), then (δL)a = Rsopp

a ({C! | " ∈ L}),

(4) if δa = Rwopp
a (S), then (δL)a = Rwopp

a ({C! | " ∈ L}), and

(5) if δa = Rms
a (S), then (δL)a = Rms

a ({C! | " ∈ L}).

Proof. (1) By Lemma 5.6.2(1) we only need to prove that δa = Rsipp
a (S)

implies Rsipp
a ({Ck | k ∈ K}) ⊆ (δK)a. Hence let (p, p′) ∈ Rsipp

a ({Ck |
k ∈ K}). Then by Definition 5.4.4(1) there exists a (q, q′) ∈ Rsipp

a (S)
such that projK

[2](q, q′) = (p, p′) and thus, since δa = Rsipp
a (S), (p, p′) =

projK
[2](q, q′) ∈ (δK)a.

(2-4) Analogous.
(5) Analogous, but now using Theorem 5.6.6 and Definition 5.4.7(1). -.

5.7 Conclusion

Team automata can be classified on basis of the properties of their transition
relations or by imposing conditions on their transition relations, which may
lead to team automata that are maximal with respect to the given conditions.
Furthermore, we can consider properties at the team level, or at the level of
subteams.

Team automata allow exact descriptions of certain groupware notions
which may otherwise have an ambiguous interpretation. Consider, e.g., the
distinction between cooperation and collaboration within the team automa-
ton model as described in [Ell97]:

“A Team Automaton is defined to be cooperating if it is structured so
that one of its components is the active master, and all the others are passive
slaves.”

and
“A Team Automaton is defined to be collaborating if it is structured so

that all of the automata are active peers.”

5.7 Conclusion 161

To this it is added that the master-slave mechanism is referred to as
passive cooperation, since the master is never blocked waiting for a slave.
This contrasts with the peer-to-peer mechanism, in which blocking may occur
when not all of the participants are ready to execute the action, and which
is called active collaboration.

The framework of team automata clearly allows for more and finer distinc-
tions. This is mainly due to the uniform approach towards the formalization
of the notion of obligation for component automata to participate in the ex-
ecution of a certain action, which is independent of the role of that action
(input or output, peer, master, or slave).

We have thus provided two global interpretations of collaboration through
the notions of ai (comparable to the adjective “active” above, as blocking may
occur) and si . Here the input role an action may have is not yet separated
from its output role. When this distinction is made we arrive at the four
notions of strong (weak) input (output) peer-to-peer.

Cooperation, on the other hand, is formalized through the notions of
(weak and strong) ms synchronizations. When an action is ms , then it can-
not be executed as an input action without being simultaneously executed as
an output action. In the strong case, all slaves (the component automata hav-
ing the action as an input action) should participate in the action, whereas in
the weak case all component automata that are ready for that action should
participate in the synchronization (which corresponds to the “passive” co-
operation mentioned above). Note that the master in an ms synchronization
may be a subteam rather than a single component automaton. As argued
in Section 5.2, there is no essential difference between a subteam of a team
automaton and a component automaton which itself may have been obtained
as a team automaton. Similarly, the slaves may be one or more component
automata or one or more subteams.

The above viewpoint also easily allows combinations of cooperation and
collaboration, called hybrids in [Ell97]. One may, e.g., have an ms synchro-
nization in which within the master (subteam) the synchronizations are sopp,
while the subteam of the slaves exhibits wipp synchronization (all slaves that
can, participate) or sipp synchronization (all slaves have to take part).

Finally, observe that these considerations on cooperation and collabo-
ration all relate to the synchronizations of a single external action. These
notions can also be lifted to the level of the team automaton as a whole,
either in a homogeneous way or in an heterogeneous way. In the first case
there is one type of cooperation or collaboration (the same for all actions)
including the identity of the master, the slaves, the input domain, the out-

162 5. Team Automata

put domain, etc. In the second case, each external action can have its own
cooperation or collaboration specification.

Given requirements for each external action, one may follow the approach
outlined in Section 5.4 to construct a unique team automaton with the ap-
propriate combinations of cooperating and collaborating synchronizations.

The theory presented so far has thus led to a flexible framework that
allows one to precisely classify, describe and construct many different incar-
nations of cooperation and collaboration. Which of these may be of use in
applications, is for practice to decide.

