
Team automata : a formal approach to the modeling of collaboration
between system components
Beek, M.H. ter

Citation
Beek, M. H. ter. (2003, December 10). Team automata : a formal approach to the modeling of
collaboration between system components. Retrieved from https://hdl.handle.net/1887/29570

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/29570

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/29570

Cover Page

The handle http://hdl.handle.net/1887/29570 holds various files of this Leiden University
dissertation.

Author: Beek, Maurice H. ter
Title: Team automata : a formal approach to the modeling of collaboration between
system components
Issue Date: 2003-12-10

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/29570

4. Synchronized Automata

In the previous chapter we have introduced automata as the basic components
underlying team automata. In this chapter we define precisely how automata
can be combined in order to form a synchronized automaton. Within such a
synchronized automaton its constituting automata interact by synchronizing
on certain occurrences of shared actions. We also define how to obtain a
subautomaton from a synchronized automaton by focusing on a subset of
its constituting automata, and we study the relation between synchronized
automata and their subautomata in terms of computations. Consequently,
we show how to iteratively obtain synchronized automata from synchronized
automata.

We then characterize three basic and natural ways of synchronizing. We
also define maximal-syn synchronized automata as the unique synchronized
automata being maximal with respect to a given type of synchronization syn.
Through the formulation of predicates of synchronization we furthermore pro-
vide direct descriptions of such synchronized automata. Finally, we conclude
this chapter with a study of the effect that synchronizations have on the in-
heritance of the automata-theoretic properties introduced in Section 3.2 from
synchronized automata to their (sub)automata, and vice versa.

Notation 1. In this chapter we assume a fixed, but arbitrary and possibly
infinite index set I ⊆ N, which we will use to index the automata involved.
For each i ∈ I, we let Ai = (Qi, Σi, δi, Ii) be a fixed automaton. Moreover,
we let S = {Ai | i ∈ I} be a fixed set of automata. Note that I ⊆ N implies
that I is ordered by the usual ≤ relation on N, thus inducing an ordering on
S. Also note that the Ai are not necessarily different. -.

4.1 Definitions

We begin this section by defining synchronized automata as composite au-
tomata. Consequently, we consider also the dual approach by defining how
to extract (sub)automata from a given synchronized automaton.

60 4. Synchronized Automata

4.1.1 Synchronized Automata

Consider the set S = {Ai | i ∈ I} of automata, as fixed above. Then a state
q of any synchronized automaton over S describes the states that each of the
automata is in. The state space of any synchronized automaton T formed
from S is thus the product

∏
i∈IQi of the state spaces of the automata of S,

with the product
∏

i∈IIi of their initial states forming the set of initial states
of T .

The transition relation of such T is defined by allowing certain “synchro-
nizations” and excluding others and is based solely on the transition relations
of the automata forming the synchronized automaton.

Definition 4.1.1. Let a ∈
⋃

i∈I Σi. Then the complete transition space of
a in S is denoted by ∆a(S) and is defined as

∆a(S) = {(q, q′) ∈
∏

i∈IQi ×
∏

i∈IQi | ∃j ∈ I : projj
[2](q, q′) ∈ δj,a∧

(∀i ∈ I : proji
[2](q, q′) ∈ δi,a ∨ proji(q) = proji(q

′))}. -.

The complete transition space ∆a(S) thus consists of all possible combi-
nations of a-transitions from automata of S, with all non-participating au-
tomata remaining idle. It is an explicit requirement that at least one au-
tomaton is active, i.e. executes an a-transition. The transitions in ∆a(S) are
referred to as synchronizations (on a).

This ∆a(S) is called the complete transition space of a in S because
whenever a synchronized automaton T is constructed from S, then for each
action a, all a-transitions of T come from ∆a(S). The transformation of a
state of T is defined by the local state changes of the automata participating
in the action of T being executed. When defining T , for each action a, a
specific subset δa of ∆a(S) has to be chosen. By restricting the set of allowed
transitions in this way, a certain kind of interaction between the automata
constituting the synchronized automaton can be enforced.

Definition 4.1.2. A synchronized automaton over S is a construct T =
(Q,Σ, δ, I), where

Q =
∏

i∈I Qi,
Σ =

⋃
i∈I Σi,

δ ⊆ Q×Σ ×Q is such that for all a ∈ Σ,

δa ⊆ ∆a(S), and

I =
∏

i∈I Ii. -.

4.1 Definitions 61

All synchronized automata over a given set of automata thus have the same
set of states, the same alphabet of actions, and the same set of initial states.
They only differ by the choice of their transition relation, which is based on
but not fixed by the transition relations of the individual automata. Due to
this freedom of choosing a δa for each action a, a set of automata does not
uniquely define a single synchronized automaton. Instead, a flexible frame-
work is provided within which one can construct a variety of synchronized
automata, all of which differ solely by the choice of the transition relation.

In the literature, automata are mostly composed according to some fixed
strategy, thus leading to a uniquely defined synchronized automaton. In fact,
the strategy that is prevalent in the literature (cf. the Introduction) is the
rule to include, for all actions a, all and only those a-transitions in which all
automata from S participate that have a as one of their actions. This leaves
no choice for the transition relation and thus leads to a unique synchronized
automaton. In Section 4.5 we will describe this and other fixed strategies for
choosing transition relations in a predetermined way. Within our framework,
however, it is precisely the freedom to choose transition relations which pro-
vides the flexibility to distinguish even the smallest nuances in the meaning
of one’s design.

The following example illustrates the definition of synchronized automata.
Recall that vectors may be written vertically, even though in the text they
are written horizontally.

Example 4.1.3. (Example 3.1.8 continued) Consider the automaton W2 =
({s2, t2}, {a, b}, δ2, {s2}), with δ2={(s2, b, s2), (s2, a, t2), (t2, a, t2), (t2, b, s2)},
modeling the second wheel of a car. Since W2 in essence is just a copy of W1

its structure is the same as that of W1, depicted in Figure 3.1.
Now we show how W1 and W2 can form a synchronized automaton (an

axle). The synchronized automaton T{1,2} over {W1,W2} is depicted in Fig-
ure 4.1(a). It has four states of which (s1, s2) is its only initial state. It
has no other actions than a and b. We require the two wheels W1 and
W2 to accelerate and break in unison, so we choose δ{1,2} = {((s1, s2), b,
(s1, s2)), ((s1, s2), a, (t1, t2)), ((t1, t2), a, (t1, t2)), ((t1, t2), b, (s1, s2))}. We note
that only the transition relation had to be chosen, all other elements follow
from Definition 4.1.2.

Note that T{1,2} is action reduced and transition reduced but not state
reduced, since its states (s1, t2) and (t1, s2) are not reachable.

By choosing a different transition relation such as, e.g., δ′{1,2} = {((s1, s2),
a, (s1, t2)), ((t1, t2), b, (s1, s2))}, another synchronized automaton over {W1,
W2} is defined, which we denote by T ′

{1,2}. Apart from its transition relation,
T ′
{1,2} contains the same elements as T{1,2}. T ′

{1,2} is depicted in Figure 4.1(b).

62 4. Synchronized Automata

a

T ′
{1,2}:

(a)

T{1,2}:

b a
a

b b

(

t1
s2

)

(b)

(

t1
t2

)

(

s1
t2

)

(

s1
s2

)

(

s1
t2

)

(

s1
s2

) (

t1
t2

)

(

t1
s2

)

Fig. 4.1. Synchronized automata T{1,2} and T ′
{1,2}.

If we assume that a flat tire is modeled by a wheel that cannot accelerate,
then in T ′

{1,2} the wheel W1 has a flat tire. T ′
{1,2} ends up in a deadlock (i.e. in

a state where no action is enabled) after the execution of a, since one doesn’t
drive far with a flat tire. Furthermore, T ′

{1,2} is not even action reduced nor
is it transition reduced, because action b can never be executed in T ′

{1,2} due
to the fact that state (t1, t2) is not reachable. -.

Definition 4.1.2 immediately implies the following result.

Theorem 4.1.4. Every synchronized automaton is an automaton. -.

Since every synchronized automaton is again an automaton, it could in its
turn be used as a constituting automaton of a new synchronized automaton.

Note, however, that even though a synchronized automaton over just one
automaton {Aj} is again an automaton, such a synchronized automaton is
different from its only constituting automaton. Even when Qj and

∏
{j} Qj

are identified, the transition relation of the synchronized automaton may be
properly included in the transition relation of the automaton. This is due to
the fact that the freedom in choosing the transition relation of a synchronized
automaton, allows one to omit transitions from Aj in the transition relation
of a synchronized automaton over {Aj}.

Example 4.1.5. (Example 4.1.3 continued) We now show how to form a syn-
chronized automaton (a car) over three automata (an axle and two wheels).

For i ∈ {3, 4}, let Wi = ({si, ti}, {a, b}, δi, {si}), where δi = {(si, b, si),
(si, a, ti), (ti, a, ti), (ti, b, si)}, be two automata modeling the third and the
fourth wheel of a car. Since W3 and W4 (like W2) are in essence just copies
of W1, their structure is the same as that of W1, depicted in Figure 3.1.

4.1 Definitions 63

Any synchronized automaton over {T{1,2},W3,W4} has alphabet {a, b}
and 16 states, among which the initial state ((s1, s2), s3, s4). We choose syn-
chronized automaton T̂ by defining δ̂ = {(((s1, s2), s3, s4), b, ((s1, s2), s3, s4)),
(((s1, s2), s3, s4), a,((t1, t2), t3, t4)),(((t1, t2), t3, t4), a,((t1, t2), t3, t4)),(((t1,t2),
t3, t4), b, ((s1, s2), s3, s4))} as its transition relation. Its state-reduced version
T̂S is depicted in Figure 4.2. -.





(t1, t2)
t3
t4





T̂S :

a

b





(s1, s2)
s3
s4





a
b

Fig. 4.2. State-reduced synchronized automaton T̂S.

We conclude this section with two additional observations.
First it should be noted that in the definition of a synchronized automaton

over S = {Ai | i ∈ I} we have implicitly used the ordering on S induced
by I. Every synchronized automaton over S has

∏
i∈I Qi as its set of states

and thus, if I = {i1, i2, . . . } with i1 < i2 < · · · , then every state q of T is
a tuple (q1, q2, . . .) with qj ∈ Qij for j ≥ 1. This is convenient in concrete
situations, but note that changing the order of the automata in S leads to
formally different state spaces. As an example, consider two automata A4

and A7 with sets of states Q4 and Q7, respectively. Let S = {Ai | i ∈ {4, 7}}
and let S ′ = {Dj | j ∈ {1, 2}} with D1 = A7 and D2 = A4. Synchronized
automata over S have Q4 × Q7 as their state space, whereas synchronized
automata over S ′ have Q7 × Q4 as their state space. In Section 4.3 we will
come back to the ordering within state spaces in a more general setup.

Secondly, neither in the definition of an automaton nor in the definition
of a synchronized automaton, have we required a priori that states have
to be reachable, that actions have to be active, or that transitions have to
be useful in at least one computation starting from the initial state of the
system. The lack of such extra conditions allows for a smooth and general
definition of a synchronized automaton, with the full cartesian product of the
sets of states of its constituting automata as the synchronized automaton’s
state space, the full union of the sets of actions of its constituting automata
as its alphabet of actions, and an arbitrary selection of synchronizations as
its transitions. Moreover, recall that in general no effective procedures exist

64 4. Synchronized Automata

to obtain the reduced versions of synchronized automata defined in Defini-
tions 3.2.8, 3.2.9, and 3.2.27.

4.1.2 Subautomata

Given a synchronized automaton T over S, by focusing on a subset of the
automata in S, a subautomaton within T can be distinguished. Its transitions
are restrictions of the transitions of T to the automata in the subset, while
its actions of course are the actions of these automata.

Definition 4.1.6. Let T = (Q,Σ, δ, I) be a synchronized automaton over S
and let J ⊆ I. Then the subautomaton of T determined by J is denoted by
SUBJ(T) and is defined as SUBJ (T) = (QJ , ΣJ , δJ , IJ), where

QJ =
∏

j∈J Qj,
ΣJ =

⋃
j∈J Σj,

δJ ⊆ QJ ×ΣJ ×QJ is such that for all a ∈ ΣJ ,

(δJ)a = projJ
[2](δa) ∩∆a({Aj | j ∈ J}), and

IJ =
∏

j∈J Ij. -.

We write SUBJ instead of SUBJ(T) if the synchronized automaton T is
clear from the context. In Figure 4.3 we have sketched a subautomaton of a
synchronized automaton.

The transition relation of a subautomaton SUBJ of a synchronized au-
tomaton T (over S) determined by some J ⊆ I, is obtained by restricting
the transition relation of T to synchronizations between the automata in
{Aj | j ∈ J}. Hence in each transition of the subautomaton at least one of
the automata from {Aj | j ∈ J} is actively involved. This is formalized by
the intersection of projJ

[2](δa) with ∆a({Aj | j ∈ J}), for each action a, as
in each transition in this complete transition space at least one automaton
from {Aj | j ∈ J } is active.

Note that if J = ∅, then SUBJ is the trivial automaton.

Example 4.1.7. (Example 4.1.5 continued) Subautomaton SUB{1}(T{1,2}) =
({(s1), (t1)}, {a, b}, δ{1}, {(s1)}), where δ{1} = {((s1), b, (s1)), ((s1), a, (t1)),
((t1), a, (t1)), ((t1), b, (s1))}, is depicted in Figure 4.4(a).

Note that SUB{1}(T{1,2}) differs from W1 in the sense that it has (s1)
and (t1) as states rather than s1 and t1. Obviously, SUB{1}(T{1,2}) and W1

do exhibit the same behavior.

4.1 Definitions 65

• ••

• ••

T over S = {Ai | i ∈ I} with I = [n] for some even n ≥ 1

AnA4A2

A1 A3

SUB{j∈[n]|j is odd}

An−1

Fig. 4.3. Subautomaton SUB{j∈[n]|j is odd} of synchronized automaton T .

a ab b
a a

b

(

t3
t4

)
(

s3
s4

)

(b)

(

t1
)

b

(SUB{3,4}(T̂))S :

(

s1
)

SUB{1}(T{1,2}):

(a)

Fig. 4.4. Subautomaton SUB{1}(T{1,2}) and automaton (SUB{3,4}(T̂))S.

Subautomaton SUB{3,4}(T̂) = ({(s3, s4), (s3, t4), (t3, s4), (t3, t4)},{a, b},
δ̂{3,4}, {(s3, s4)}), where δ̂{3,4} = {((s3, s4), b, (s3, s4)), ((s3, s4), a, (t3, t4)),
((t3, t4), a, (t3, t4)), ((t3, t4), b, (s3, s4))}, has as its state-reduced version the
automaton (SUB{3,4}(T̂))S depicted in Figure 4.4(b). -.

It is not hard to see that subautomata satisfy the requirements of a synchro-
nized automaton.

Theorem 4.1.8. Let T = (Q,Σ, δ, I) be a synchronized automaton over S
and let J ⊆ I. Then

SUBJ is a synchronized automaton over {Aj | j ∈ J}.

Proof. The states, alphabet, and initial states of SUBJ as given in Defini-
tion 4.1.6 satisfy the requirements of Definition 4.1.2 for synchronized au-
tomata over {Aj | j ∈ J}. Finally, (δJ)a ⊆ ∆a({Aj | j ∈ J}) by Defini-
tion 4.1.6. -.

66 4. Synchronized Automata

According to this theorem a subautomaton of a synchronized automaton is
again a synchronized automaton and thus, by Theorem 4.1.4, also an automa-
ton. In Section 4.3 we will consider the dual approach and use synchronized
automata as automata in “larger” synchronized automata. It will be shown
that subautomata can be used as automata to iteratively define the synchro-
nized automaton they are derived from.

We conclude this section by comparing the set of transitions and com-
putations of a singleton subautomaton SUB{j} of a synchronized automaton
T over S with those of the single automaton Aj from S, where j ∈ I.
Due to the fact that SUB{j} has vectors (of one element) as states, whereas
Aj does not, SUB{j} never equals Aj (see, e.g., Example 4.1.7). This is
a purely syntactic reason, though. Therefore, in order to compare the set
of transitions and computations of Aj with those of SUB{j}, we identify∏

{j} Qj and Qj . To this end we define, for j ∈ I, the homomorphism
υj : (Σ ∪

∏
{j} Qj)∞ → (Σ ∪Qj)∞ by

υj(x) =

{
x if x ∈ Σ and
projj(x) if x ∈

∏
{j} Qj.

Consequently, we now show that for all j ∈ I, the set of transitions (compu-
tations) of the subautomaton SUB{j} of a synchronized automaton T over S
is included in the set of transitions (computations) of the single automaton
Aj from S. However, as shown in the example directly following this result,
these inclusions can be proper.

Lemma 4.1.9. Let T = (Q,Σ, δ, I) be a synchronized automaton over S and
let j ∈ I. Then

(1) projj
[2]((δ{j})a) ⊆ δj,a, for all a ∈ Σ, and

(2) υj(C∞
SUB{j}

) ⊆ C∞
Aj

.

Proof. (1) Let a ∈ Σ and let (p, p′) ∈ (δ{j})a. From Definition 4.1.6 then
follows that (p, p′) ∈ ∆a({Aj}) = {(q, q′) ∈

∏
Qj ×

∏
Qj | projj

[2](q, q′) ∈

δj,a}. Consequently, projj
[2](p, p′) ∈ δj,a.

(2) Let α ∈ C∞
SUB{j}

. First consider the finitary case, i.e. let α ∈ CSUB{j}
.

If α ∈ Ij , then α =
∏

{j} q for some q ∈ Ij . Hence projj(α) = q ∈ Ij and
υj(α) = q ∈ CAj .

If α = βqaq′ for some βq ∈ CSUB{j}
, q, q′ ∈

∏
{j} Qj, and a ∈ Σ{j}, with

(q, q′) ∈ (δ{j})a, then we proceed with an inductive argument and assume
that υj(βq) ∈ CAj . From (1) follows that projj

[2](q, q′) ∈ δj,a and we thus
conclude υj(α) = υj(β)projj(q)aprojj(q

′) ∈ CAj .

4.1 Definitions 67

Consequently consider the infinitary case, i.e. let α ∈ Cω
SUB{j}

. Let
α1 ≤ α2 ≤ · · · ∈ CSUB{j}

be such that α = lim
n→∞

αn. By the same rea-

soning as above υj(αn) ∈ CAj , for all n ≥ 1. Since υj is a letter-to-letter
homomorphism we have υj(α1) ≤ υj(α2) ≤ · · · and lim

n→∞
υj(αn) is an infinite

word. Furthermore lim
n→∞

υj(αn) = υj(lim
n→∞

αn).

Hence υj(α) = υj(lim
n→∞

αn) = lim
n→∞

υj(αn) ∈ Cω
Aj

. -.

Given a synchronized automaton T = (Q,Σ, δ, I) over S, the following ex-
ample shows that it can be the case that there exists a j ∈ I for which
projj

[2]((δ{j})a) ⊂ δj,a, for all a ∈ Σ, and υj(C∞
SUB{j}

) ⊂ C∞
Aj

.

Example 4.1.10. Let A1 = ({q1, q′1}, {a}, {(q1, a, q
′
1), (q

′
1, a, q

′
1)}, {q1}) and

A2 = ({q2, q′2}, {a}, {(q2, a, q
′
2)}, {q2}) be the automata depicted in Fig-

ure 4.5(a).

q1 q′1

a
(

q1
q2

) (

q′1
q′2

)

A1:

q2 q′2

(

q1
q′2

) (

q′1
q2

)

A2:

(a) (b)

a

a

a

T :

Fig. 4.5. Automata A1 and A2, and synchronized automaton T .

Consider the synchronized automaton T = (Q, {a}, {((q1, q2), a, (q′1, q
′
2))},

{(q1, q2)}), in which Q = {(q1, q2), (q1, q′2), (q
′
1, q2), (q

′
1, q

′
2)}, over {A1,A2}. It

is depicted in Figure 4.5(b).
Let j = 1. It is clear that (δ{1})a = {((q1), (q′1))}. Thus proj1

[2]((δ{1})a) =
{(q1, q′1)} ⊂ {(q1, q′1), (q

′
1, q

′
1)} = δ1,a. Clearly, CSUB{1}

= {(q1), (q1)a(q′1)}.
Hence υ1(CSUB{1}

) = {q1, q1aq′1} ⊂ {q1, q1aq′1, q1aq
′
1aq

′
1, . . . } ∪ {q1(aq′1)

ω} =
C∞

A1
. -.

68 4. Synchronized Automata

4.2 Projecting

In this section we want to extract the computations of any one of the
(sub)automata constituting a synchronized automaton from the computa-
tions of this synchronized automaton. Note, however, that within the for-
malization of a synchronized automaton, no explicit information on loops is
provided. That is to say, in general one cannot distinguish whether or not
an automaton with a loop on a in its current local state participates in the
synchronized automaton’s synchronization on a. This automaton may have
been idle or, after having participated in the action a starting from the global
state, it may have returned to its original local state.

Example 4.2.1. Consider the three automata A1, A2, and A3, as depicted in
Figure 4.6(a).

(p, q, r)

a
(p, q, r′)

(a)

T :A2:A1:

A3:

p

r
a

r′

q

a

(b)

a

Fig. 4.6. Automata A1, A2, and A3, and synchronized automaton T .

A1 and A2 each have only one state, p and q, respectively, which are their
initial states. A3 has two states, r and r′, of which r is its initial state. A1

has an empty alphabet, while both A2 and A3 have {a} as their alphabet.
Finally, A1 has no transitions at all, the transition relation of A2 consists
solely of the loop (q, a, q), and that of A3 is {(r, a, r′)}.

Now consider the synchronized automaton T = ({(p, q, r), (p, q, r′)},
{a}, δ, {(p, q, r)}), where δa = ∆a({A1,A2,A3})\{((p, q, r), a, (p, q, r))}, over
{A1,A2,A3}. It is depicted in Figure 4.6(b). Now one might wonder which
automata participate when the a-transitions of T are executed.

4.2 Projecting 69

First consider the execution of the loop on a at (p, q, r′) in T . Clearly
A1 does not participate as it cannot execute a at all. Also A3 does not
participate since a is not enabled in r′. However, since in every transition of
a synchronized automaton at least one component is required to participate,
it must thus be the case that A2 executes its loop on a.

Secondly, consider the execution of the a-transition from (p, q, r) to
(p, q, r′) in T . Clearly A1 is not involved. On the other hand, A3 is responsi-
ble for the local state change from r to r′ and thus participates by executing
a. But what about A2 — does it execute its loop on a or does it remain idle
during this execution of a by T ? -.

In spite of the fact that Example 4.2.1 shows that information on the actual
execution of loops by the constituting automata is lacking in the definition
of a synchronized automaton, in order to relate the computations of a syn-
chronized automaton to those taking place in its constituting automata we
simply apply projections.

Recall that computations of a synchronized automaton are determined
by the consecutive execution of transitions, starting from the initial state.
Consider a transition (q, a, q′) of a synchronized automaton over S. We now
assume that the j-th automaton participates in this transition by executing
(projj(q), a, projj(q

′)) whenever proj[2](q, q′) ∈ δj,a. Otherwise no transition
takes place in the j-th automaton. We thus resolve the lacking of information
on loops by assuming that the presence of an automaton’s loop in a transi-
tion of a synchronized automaton implies execution of that loop. This may
be considered as a “maximal” interpretation of the participation of its con-
stituting automata in transitions of synchronized automata, in the sense that
we assume that if an automaton could have participated in an a-transition
of the synchronized automaton by executing a loop on this action a, then it
indeed has done so.

Example 4.2.2. (Example 4.2.1 continued) We consider the abovementioned
maximal interpretation of the automata’s participation in transitions of the
synchronized automaton. Then A2 is thus assumed to execute its loop on
a at q during the execution of a at (p, q, r) by means of the a-transition
((p, q, r), (p, q, r′)) of T . -.

Using the maximal interpretation we define the projection on (sub)automata
of the computations of a synchronized automaton. Because of the results at
the end of Section 4.1 we define separately the projection on the subautoma-
ton defined by {j} of a synchronized automaton and the projection on its j-th
automaton. The formal reason behind this is the fact that Qj and

∏
{j} Qj

70 4. Synchronized Automata

are not identified. In fact, as we will show shortly, the two separate definitions
are the same whenever Qj and

∏
{j} Qj are identified.

Finally, one could think of other interpretations of the participation of
constituting (sub)automata in transitions of synchronized automata in case
of loops.

Definition 4.2.3. Let T = (Q,Σ, δ, I) be a synchronized automaton over S.
Let J ⊆ I. Then

(1) the projection on subautomaton SUBJ of a finite computation α ∈ CT

is denoted by πSUBJ
(α) and is defined as

(a) if α = q ∈ I, then πSUBJ (α) = projJ (q), and
(b) if α = βqaq′, for some βq ∈ CT , q, q′ ∈ Q, and a ∈ Σ, then

πSUBJ
(α) =

{
πSUBJ

(βq) if projJ
[2](q, q′) /∈ (δJ)a and

πSUBJ
(βq)aprojJ(q

′) if projJ
[2](q, q′) ∈ (δJ)a,

and

(2) the projection on subautomaton SUBJ of an infinite computation α ∈
Cω

T is denoted by πSUBJ
(α) and is defined as

πSUBJ
(α) = lim

n→∞
πSUBJ

(αn) whenever α = lim
n→∞

αn for

α1 ≤ α2 ≤ · · · ∈ CT .

Let j ∈ I. Then

(3) the projection on automaton Aj of a finite computation α ∈ CT is de-
noted by πAj (α) and is defined as
(a) if α = q ∈ I, then πAj (α) = projj(q), and
(b) if α = βqaq′, for some βq ∈ CT , q, q′ ∈ Q, and a ∈ Σ, then

πAj (α) =

{
πAj (βq) if projj

[2](q, q′) /∈ δj,a and

πAj (βq)aprojj(q
′) if projj

[2](q, q′) ∈ δj,a,
and

(4) the projection on automaton Aj of an infinite computation α ∈ Cω
T is

denoted by πAj (α) and is defined as

πAj (α) = lim
n→∞

πAj (αn) whenever α= lim
n→∞

αn for α1 ≤ α2 ≤ · · · ∈ CT . -.

Recall that every prefix of odd length of an infinite computation α of a
synchronized automaton T is a finite computation. Thus α is the limit of any
prefix-ordered infinite subset of its finite prefixes. Moreover, if α1 ≤ α2 for
finite computations α1 and α2 of T , then πSUBJ

(α1) ≤ πSUBJ
(α2), for all

4.2 Projecting 71

J ⊆ I, and πAj (α1) ≤ πAj (α2), for all j ∈ I. Hence the projection πSUBJ (α)
on subautomaton SUBJ (T) and the projection πAj (α) on automaton Aj are
well defined for any computation α ∈ C∞

T . Furthermore, πSUBJ
(lim
n→∞

αn) =

lim
n→∞

πSUBJ (αn) and πAj (lim
n→∞

αn) = lim
n→∞

πAj (αn).

Note that πSUBJ
(α) and πAj (α) can be finite sequences. This happens

if subautomaton SUBJ(T) or automaton Aj , respectively, no longer partici-
pates in α after a finite number k of steps. In that case, if α = q0a1q1a2q2 · · · ,
then πSUBJ

(q0a1q1a2q2 · · ·anqn) = πSUBJ
(q0a1q1a2q2 · · · anqnan+1qn+1), for

all n ≥ k, and hence πSUBJ (α) = πSUBJ (q0a1q1a2q2 · · ·akqk). Likewise
πAj (α) = πAj (q0a1q1a2q2 · · · akqk) in that case.

Contrary to what one might expect from Example 4.1.10, we indeed see
that for each computation of a synchronized automaton its projection on
an automaton “agrees” with its projection on the corresponding singleton
subautomaton, in the sense that they are equal whenever Qj and

∏
{j} Qj

are identified.

Theorem 4.2.4. Let T = (Q,Σ, δ, I) be a synchronized automaton over S
and let j ∈ I. Then

υj(πSUB{j}
(C∞

T)) = πAj (C
∞
T).

Proof. Let α ∈ C∞
T . First consider the finitary case, i.e. let α ∈ CT . We

proceed by induction on the length of w. If α = q, then α ∈
∏

i∈I Ii. By Def-
inition 4.2.3, πAj (α) = projj(α) and πSUB{j}

(α) = proj{j}(α). Consequently
υj(πSUB{j}

(α)) = projj(proj{j}(α)) = projj(α) = πAj (α).
Next assume that α = βqaq′ for some β ∈ (Σ ∪ Q)∗, q, q′ ∈ Q, and

a ∈ Σ, such that βq ∈ CT and (q, q′) ∈ δa. It is not difficult to see that
projj

[2](q, q′) ∈ δj,a if and only if proj{j}
[2](q, q′) ∈ (δ{j})a. Indeed we al-

ready know from Lemma 4.1.9 that proj{j}
[2]((δ{j})a) ⊆ δj,a and hence

proj{j}
[2](q, q′) ∈ (δ{j})a implies projj

[2](proj{j}
[2](q, q′)) = projj

[2](q, q′) ∈

δj,a. Conversely, if projj
[2](q, q′) ∈ δj,a then proj{j}

[2](q, q′) ∈ (δ{j})a pro-
vided that (q, q′) ∈ δa, which is the case. Returning to our computation α we
now obtain the following.

If projj
[2](q, q′) /∈ δj,a, then by induction πAj (α) = πAj (βq) and πAj (βq)

= υj(πSUB{j}
(βq)). As proj{j}

[2](q, q′) /∈ (δ{j})a it follows that πSUB{j}
(α) =

πSUB{j}
(βq). Consequently πAj (α) = υj(πSUB{j}

(α)).

If projj
[2](q, q′) ∈ δj,a, then by induction πAj (α) = πAj (βq)aprojj(q

′) =

υj(πSUB{j}
(βq))aprojj(q

′). As proj{j}
[2](q, q′) ∈ (δ{j})a, then πSUB{j}

(α) =
πSUB{j}

(βq)aproj{j}(q
′). Hence πAj (α) = υj(πSUB{j}

(βq)aproj{j}(q
′)) =

υj(πSUB{j}
(α)). This concludes the proof for the finitary case.

72 4. Synchronized Automata

Now consider the infinitary case, i.e. let α ∈ Cω
T . Let α1 ≤ α2 ≤ · · · ∈ CT

be such that α = lim
n→∞

αn. Then by definition πAj (α) = lim
n→∞

πAj (αn) and

πSUB{j}
(α) = lim

n→∞
πSUB{j}

(αn). By the same reasoning as above πAj (αn) =

υj(πSUB{j}
(αn)) and since υj is a homomorphism we thus obtain πAj (α) =

lim
n→∞

υj(πSUB{j}
(αn)) = υj(lim

n→∞
πSUB{j}

(αn)) = υj(πSUB{j}
(α)). -.

Example 4.2.5. (Example 4.1.10 continued) It is easy to see that CT =
{(q1, q2), (q1, q2)a(q′1, q

′
2)}. Now recall that j = 1. Then υ1(πSUB{1}

(CT)) =
υ1({(q1), (q1)a(q′1)}) = {q1, q1aq′1} = πA1(CT). -.

We conclude this section by showing that if we take the set of computations
of a synchronized automaton and consequently project on a (sub)automaton
of that synchronized automaton, then the result is always included in the set
of computations of that (sub)automaton. However, these inclusions may be
proper.

Lemma 4.2.6. Let T = (Q,Σ, δ, I) be a synchronized automaton over S and
let J ⊆ I. Then

πSUBJ
(C∞

T) ⊆ C∞
SUBJ

.

Proof. Let α ∈ C∞
T . First consider the finitary case, i.e. let α ∈ CT . Hence

α = q0a1q1a2 · · ·anqn for some n ≥ 0, q! ∈ Q for 0 ≤ " ≤ n, and a! ∈ Σ
for 1 ≤ " ≤ n. By Definition 4.2.3 we have πSUBJ

(α) = p0b1p1b2 · · · bmpm for
some m ≥ 0, p! ∈ QJ for 0 ≤ " ≤ m, and b! ∈ ΣJ for 1 ≤ " ≤ m.
We prove by induction on n that πSUBJ

(α) ∈ CSUBJ
and, furthermore, that

projJ (qn) = pm.
If n = 0, then α = q0 ∈ I. Thus by Definition 4.2.3 we have πSUBJ

(α) =
projJ (q0) ∈ IJ , which implies that πSUBJ

(α) ∈ CSUBJ
. Moreover, m = 0

and projJ(q0) = p0.
Now assume that the statement holds for some k ≥ 0. Let n = k + 1.

Then by Definition 4.2.3 we have πSUBJ
(α) = πSUBJ

(q0a1q1a2 · · · akqk)γ,
where γ = λ if projJ

[2](qk, qk+1) /∈ (δJ)ak+1 and γ = ak+1projJ (qk+1) other-
wise.
First consider the case γ = λ. Then πSUBJ (α) ∈ CSUBJ by the induction
hypothesis. Moreover, since projJ

[2](qk, qk+1) /∈ (δJ)ak+1 , Definition 4.1.1 im-
plies that projJ(qk) = projJ(qk+1). By the induction hypothesis projJ(qk) =
pm, and hence projJ(qk+1) = pm.
Secondly, consider the case γ (= λ. Then πSUBJ

(α) = p0b1p1b2 · · · bmpm =
πSUBJ (q0a1q1a2 · · · akqk)ak+1projJ(qk+1). Thus in this case bm = ak+1 and
pm = projJ(qk+1).

4.2 Projecting 73

The only thing left to prove is that πSUBJ (α) ∈ CSUBJ . We already
have that projJ

[2](qk, qk+1) ∈ (δJ)ak+1 . From the induction hypothesis
above it now follows that p0b1p1b2 · · · bm−1pm−1 ∈ CSUBJ

and pm−1 =
projJ (qk). Thus projJ

[2](pm−1, pm) = projJ
[2](qk, qk+1) ∈ (δJ)bm , which im-

plies πSUBJ
(α) = p0b1p1b2 · · · bmpm ∈ CSUBJ

.
Now consider the infinitary case, i.e. let α ∈ Cω

T . Hence α = lim
n→∞

αn for fi-

nite computations α1 ≤ α2 ≤ · · · ∈ CT . Then πSUBJ
(α1) ≤ πSUBJ

(α2) ≤ · · ·
and πSUBJ

(αn) ∈ CSUBJ
, for all n ≥ 1. Thus πSUBJ

(α) = lim
n→∞

πSUBJ
(αn) ∈

C∞
SUBJ

. -.

Corollary 4.2.7. Let T be a synchronized automaton over S and let j ∈ I.
Then

πAj (C
∞
T) ⊆ C∞

Aj
.

Proof. Directly from Theorem 4.2.4 and Lemmata 4.2.6 and 4.1.9. -.

In the following example we show that, given a synchronized automaton T
over S, it can be the case that there exists a subset J ⊆ I or a j ∈ I for
which πSUBJ

(C∞
T) ⊂ C∞

SUBJ
or πAj (C

∞
T) ⊂ C∞

Aj
, respectively.

Example 4.2.8. Let A1 = ({q1, q′1}, {a, b}, {(q1, a, q1), (q1, b, q
′
1)}, {q1}) and

A2 = ({q2, q′2}, {a}, {(q2, a, q
′
2)}, {q2}) be the automata depicted in Fig-

ure 4.7(a).

a

a

q1 q′1

(

q1
q2

) (

q′1
q′2

)

A1:

q2 q′2

(

q1
q′2

) (

q′1
q2

)

A2:

(a) (b)

a

T :

b

Fig. 4.7. Automata A1 and A2, and synchronized automaton T .

Consider synchronized automaton T = (Q, {a, b}, {((q′1, q2), a, (q
′
1, q

′
2))},

{(q1, q2)}), in which Q = {(q1, q2), (q1, q′2), (q
′
1, q2), (q

′
1, q

′
2)}, over {A1,A2}. It

is depicted in Figure 4.7(b).

74 4. Synchronized Automata

It is clear that (q1, q2) is the only computation of T , whereas SUB{2} has
the two computations (q2) and (q2)a(q′2). Hence we have πSUB{2}

(C∞
T) =

proj{2}((q1, q2)) = (q2) ⊂ {(q2), (q2)a(q′2)} = C∞
SUB{2}

and, according
to Lemma 4.1.9(2) and Theorem 4.2.4, πA2 (C

∞
T) = υ2(πSUB{2}

(C∞
T)) =

υ2((q2)) = q2 ⊂ {q2, q2aq′2} = υ2({(q2), (q2)a(q′2)}) = υ2(C∞
SUB{2}

) ⊆ C∞
A2

.
As a further example we consider the synchronized automaton T ′ = (Q,

{a, b}, {((q1, q2), a, (q1, q′2))}, {(q1, q2)}) over {A1,A2}. It is depicted in Fig-
ure 4.8.

(

q1
q2

) (

q′1
q′2

)

(

q′1
q2

)

T ′:

(

q1
q′2

)

a

Fig. 4.8. Synchronized automaton T ′.

It is clear that C∞
T ′ = {(q1, q2), (q1, q2)a(q1, q′2)}, whereas we have C∞

A1
=

{q1, q1aq1, q1bq′1, q1aq1aq1, q1aq1bq
′
1, . . . }∪{q1(aq1)

ω}. Hence we now see that
πA1 (C

∞
T ′) = {q1, q1aq1} ⊂ C∞

A1
. -.

4.3 Iterated Composition

In this section we show that synchronized automata are naturally suited to
describe hierarchical systems. We do this by demonstrating how to iteratively
build synchronized automata from synchronized automata, and how to con-
sider subautomata as constituting automata in an iterated definition of a
synchronized automaton.

Given a set of automata S, there may be several ways of forming a syn-
chronized automaton over S. Until now we directly defined synchronized au-
tomata over S, but other routes are also feasible. We might first (iteratively)
form synchronized automata from (disjoint) subsets of S and then use these
as automata for a higher-level synchronized automaton, until after a finite
number of such iterations all automata from S have been used. This is shown
in Example 4.1.5 and Figure 4.2, where four wheels are combined by first

4.3 Iterated Composition 75

connecting two of them (to form an axle) and then attaching the other two
to the result. This section shows that whatever route chosen, the resulting
iterated synchronized automaton can always be regarded as a synchronized
automaton over S: it will always have the same alphabet of actions and it
will have essentially the same state space, transition space, and set of initial
states as any synchronized automaton formed directly over S.

Example 4.3.1. Let S = {Ai | i ∈ [7]}, with Ai = (Qi, Σi, δi, Ii), for i ∈ [7].
Let T1−7 = (

∏
i∈[7] Qi,

⋃
i∈[7] Σi, δ,

∏
i∈[7] Ii) be a synchronized automaton

over S. As δ is not relevant for the moment, it is not specified any further. Re-
call that all other parameters of T1−7 are uniquely defined by Definition 4.1.2.
The structure of this synchronized automaton relative to S, is depicted in the
tree of Figure 4.9(a).

T1−7

A2 A4 A5 A6

T ′′

T{2,4,6} T{1,3,5}

A2 A4 A6 A1 A3 A5 A1 A3 A4 A5

U2 U3U1

U4

U5

U6

(c)

A7A3A1

A7 A6A7A2

(b)

(a)

T ′

Fig. 4.9. Three synchronized automata constructed from {Ai | i ∈ [7]}.

Next consider the synchronized automaton T{2,4,6} over {A2,A4,A6}
and the synchronized automaton T{1,3,5} over {A1,A3,A5}. Let T{2,4,6}
be specified as T{2,4,6} = (P1, Γ1, γ1, J1) and let T{1,3,5} be specified as
T{1,3,5} = (P2, Γ2, γ2, J2).

Let T ′ be a synchronized automaton over S ′ = {A′
1,A

′
2}, with A′

1 =
T{2,4,6} and A′

2 = T{1,3,5}. Let T ′ be specified as T ′ = (P ′, Γ ′, γ′, J ′).
Let T ′′ be a synchronized automaton over S ′′ = {A′′

1 ,A
′′
2}, with A′′

1 = T ′

and A′′
2 = A7. Let T ′′ be specified as T ′′ = (P ′′, Γ ′′, γ′′, J ′′), for some γ′′ ⊆

P ′′ × Γ ′′ × P ′′. By Definition 4.1.2 we have P ′′ = P ′ ×Q7 = (
∏

i∈{1,2} Pi)×

76 4. Synchronized Automata

Q7 = ((
∏

i∈{2,4,6} Qi)×(
∏

i∈{1,3,5} Qi))×Q7 = ((Q2×Q4×Q6)×(Q1×Q3×
Q5))×Q7. Similarly, J ′′ = ((I2× I4× I6)× (I1× I3× I5))× I7. Furthermore,
Γ ′′ = Γ ′∪Σ7 = (

⋃
i∈{1,2} Γi)∪Σ7 = ((

⋃
i∈{2,4,6} Σi)∪(

⋃
i∈{1,3,5} Σi))∪Σ7 =⋃

i∈[7] Σi.
Thus T ′′ has the same actions as any synchronized automaton formed

directly over S. Its set of states, however, differs from the set of states of a
synchronized automaton over S by its nested structure and its ordering. In
Figure 4.9(b) the structure of T ′′ relative to S is depicted.

In Figure 4.9(c) the structure relative to S of yet another route for con-
structing a synchronized automaton, starting from the automata in S, is
depicted. The set of states of this particular synchronized automaton U6 is
(((Q1 ×Q2)×Q3)× (Q7 ×Q4))× (Q6 ×Q5). -.

In order to describe in a precise way the relationship between a synchronized
automaton obtained by iteratively composing synchronized automata and a
synchronized automaton formed directly from a given set of automata, we
need formal notions enabling us to describe the construction and the parsing
of vectors with vectors as elements. Let D = {Dj | j ∈ J} be an indexed set,
with J ⊆ N and J (= ∅. Then V(D) is defined as consisting of all finitely
nested combinations of elements from D provided each Dj is used at most
once. The domain of an element V from V(D) consequently is defined to
consist of the indices of the sets in D combined to form V . This leads to
the following recursive definition of V(D) and the accompanying notion of
domain.

Definition 4.3.2. V(D) is the smallest set V such that

(1) Dj ∈ V, for each j ∈ J ;
Set dom (Dj) = {j}, and

(2) if {V! | " ∈ L} ⊆ V, with L ⊆ N and L (= ∅, then
∏

!∈L V! ∈ V provided
that for all k (= " ∈ L, dom (Vk) ∩ dom (V!) = ∅;
Set dom (

∏
!∈L V!) =

⋃
!∈L dom (V!). -.

This definition provides a description of how to construct products of prod-
ucts of indexed sets. Every element of V(D) describes a finitely nested carte-
sian product of sets from D, while its domain gives the information as to
which Dj have been used.

Note that according to step (2) of Definition 4.3.2 each product may
combine an infinite number of sets. In the construction of any product in V ,
however, step (2) is applied only a finite number of times. This corresponds
to the intuition that a synchronized automaton is constructed by a finite
iteration.

4.3 Iterated Composition 77

Example 4.3.3. (Example 4.3.1 continued) Let Q = {Qi | i ∈ [7]}. The set of
states P2 =

∏
i∈{1,3,5} Qi is an element of V(Q) with domain {1, 3, 5}. Also

P ′ = P1×P2 =
∏

i∈{2,4,6} Qi×
∏

i∈{1,3,5} Qi is an element of V(Q). Its domain
is {2, 4, 6}∪ {1, 3, 5} = {1, 2, 3, 4, 5, 6}. Finally, for P ′′ = P ′×Q7 ∈ V(Q), we
have dom(P ′ ×Q7) = {1, 2, 3, 4, 5, 6, 7}. -.

Given an element v of a nested cartesian product V from V(D) with do-
main dom(V), we want to unpack and reorder v in such a way that the
“corresponding” element of

∏
j∈dom (V) Dj results. To this end we define the

function uV which recursively, for each j ∈ dom(V), locates in v the element
in the position of Dj according to the construction of V . Note that since
each Dj with j ∈ dom(V) is used exactly once in the construction of V , its
position in V is unique. Thus uV unpacks v and on basis of this unpack-
ing the resulting elements of

⋃
j∈dom (V) Dj are ordered in 〈v〉V according to

dom (V).

Definition 4.3.4. Let V ∈ V(D) be such that dom (V) = J ′ for some J ′ ⊆ J .
Then

(1) the function uV : V × J ′ →
⋃

j∈J′ Dj is defined as follows:
(a) if J ′ = {j} and V = Dj, then uV (v, j) = v for all v ∈ V and
(b) if V =

∏
!∈L V!, with V! ∈ V(D) for all " ∈ L, then, for all v ∈ V

and j ∈ J ′, uV (v, j) = uVk
(projk(v), j), where k ∈ L is such that

j ∈ dom (Vk), and

(2) the reordering of an element v ∈ V relative to the construction of V is
denoted by 〈v〉V and is defined as

〈v〉V =
∏

j∈J′ uV (v, j). -.

Example 4.3.5. (Example 4.3.3 continued) Assume that we know that q =
(((x,m, "), (e, a, p)), e) ∈ P ′′. With the above definition we now reorder
q relative to the construction of P ′′: 〈q〉P ′′ =

∏
i∈[7] uP ′′(q, i). Here, e.g.,

uP ′′(q, 3)=a. This follows from the fact that uP ′′((((x,m, "), (e, a, p)), e), 3) =
uP ′(((x,m, "), (e, a, p)), 3) since 3 ∈ dom (P ′), uP ′(((x,m, "), (e, a, p)), 3) =
uP2((e, a, p), 3) as 3 ∈ dom (P2), and uP2((e, a, p), 3) = uQ3(a, 3) = a. Each
uP ′′(q, i) can thus be determined, leading to 〈q〉P ′′ = (e, x, a,m, p, ", e). -.

Definition 4.3.4 may seem unnecessarily complicated but, as illustrated in
the next example, the information about the construction of V ∈ V(D) is
necessary in order to obtain a faithful reordering of the entries from

⋃
j∈J Dj

in V .

78 4. Synchronized Automata

Example 4.3.6. LetQ = {Qi | i ∈ [3]}. Let a ∈ Q1 and let b, c ∈ Q2∩Q3. Now
assume we want to reorder q = (a, (b, c)). Then we need to know whether we
are dealing with a construction Q1 × (Q2 ×Q3) ∈ V(Q), which would mean
that the faithful reordering of q is (a, b, c), or with a construction Q1× (Q3×
Q2) ∈ V(Q), which would result in (a, c, b) as the faithful reordering of q. -.

Only if Di∩Dj = ∅ for any two sets of states of a set of automata, the above
definitions could be simplified. This has never been a condition though.

Unpacking and reordering all elements of a nested cartesian product V
over sets from D (relative to the construction of V) results in the cartesian
product (over sets from D) according to J . This is formally stated in the
following lemma.

Lemma 4.3.7. If V ∈ V(D) and dom (V) = J ′, then {〈v〉V | v ∈ V } =∏
j∈J′ Dj.

Proof. Let V ∈ V(D) and let dom (V) = J ′.
(⊆) Let v ∈ V . By Definition 4.3.4 we have 〈v〉V =

∏
j∈J′ uV (v, j). Now

we only have to prove that uV (v, j) ∈ Dj , for all j ∈ J ′. We do this by
structural induction.
If J ′ = {j} and V = Dj , then uV (v, j) = v ∈ V = Dj .
Next assume that V =

∏
!∈L V!, with V! ∈ V(D) for all " ∈ L. Then, by

Definition 4.3.4, for all j ∈ J ′, uV (v, j) = uVk
(projk(v), j), where k is such

that j ∈ dom (Vk). Since each Vk ∈ V(D), the depth of its nesting is strictly
less than the depth of the nesting in V . Thus by the induction hypothesis,
uVk

(projk(v), j) ∈ Dj , for all j ∈ dom(Vk), which completes this direction of
the proof.

(⊇) Let d ∈
∏

j∈J′ Dj . Then we only have to prove that there exists a
v ∈ V such that 〈v〉V = d or, equivalently, that there exists a v ∈ V such
that for all j ∈ J ′, uV (v, j) = projj(d). We do this by structural induction.
Assume that J ′ = {j} and V = Dj . Now set v = projj(d). Then uV (v, j) =
v = projj(d).
Next assume that V =

∏
!∈L V!. Then from the induction hypothesis it follows

that for all " ∈ L, {〈v!〉V#
| v! ∈ V!} =

∏
j∈J#

Dj where J! = dom (V!). Hence
for all " ∈ L and for all j ∈ J! we have a v! ∈ V! such that uV#

(v!, j) =
projj(d) ∈ Dj . Let v ∈ V be such that for all " ∈ L, proj!(v) = v! with
v! ∈ V!. Then for all j ∈ J ′, uV (v, j) = uV#

(proj!(v), j), where " is such that
j ∈ dom(V!). Since for all " ∈ L, uV#

(proj!(v), j) = uV#
(v!, j) = projj(d), this

completes also this direction of the proof. -.

Now we are ready to return to the issue of iteratively forming a synchronized
automaton, given a set of synchronized automata. We begin by generalizing
the notion of a synchronized automaton.

4.3 Iterated Composition 79

Definition 4.3.8. T is an iterated synchronized automaton over S if either

(1) T is a synchronized automaton over S, or

(2) T is a synchronized automaton over {Tj | j ∈ J }, where each Tj is an
iterated synchronized automaton over {Ai | i ∈ Ij}, for some Ij ⊆ I,
and {Ij | j ∈ J } forms a partition of I. -.

We see that iterated synchronized automata indeed are a generalization of
synchronized automata: every synchronized automaton over a given set of
automata may also be viewed as an iterated synchronized automaton over
that set. But, as announced in the beginning of this section, synchronized au-
tomata formed iteratively over a set of automata are essentially synchronized
automata over that set. Intuitively the only difference lies in the ordering and
grouping of the elements from the set of automata. In the remainder of this
section, we will formalize this statement.

The following lemma shows that the set of (initial) states of an iterated
synchronized automaton over a set of automata is — upto a reordering —
the same as the set of (initial) states of any synchronized automaton over
that set.

Lemma 4.3.9. Let T = (P, Γ, γ, J) be an iterated synchronized automaton
over S. Let Q = {Qi | i ∈ I}. Then

(1) P ∈ V(Q) and dom (P) = I,

(2) {〈q〉P | q ∈ P} =
∏

i∈I Qi, and

(3) {〈q〉P | q ∈ J} =
∏

i∈I Ii.

Proof. If T is a synchronized automaton over S, then P =
∏

i∈I Qi and
J =

∏
i∈I Ii.

By Definition 4.3.2(2) we have P ∈ V(Q) and dom (P) =
⋃

i∈I dom(Qi) = I.
By Lemma 4.3.7 we have {〈q〉P | q ∈ P} =

∏
i∈I Qi.

Since according to Definition 4.3.4 for all q ∈ P , 〈q〉P =
∏

i∈I uP (q, i) =∏
i∈I uQi(proji(q), i) =

∏
i∈I proji(q) = q, it follows that {〈q〉P | q ∈ J} =

{q | q ∈
∏

i∈I Ii} =
∏

i∈I Ii.
Now assume that T is an iterated synchronized automaton over S. Hence

T is a synchronized automaton over a set of automata {Tj | j ∈ J }, where
J ⊆ N, {Ij | j ∈ J } forms a partition of I, and each Tj is an iterated
synchronized automaton over {Ai | i ∈ Ij}. Let, for j ∈ J , Tj be specified
as Tj = (Pj , Γj , γj , Jj). Hence P =

∏
j∈J Pj and J =

∏
j∈J Jj . As induction

hypothesis we assume that for all j ∈ J , Pj ∈ V(Q) with dom(Pj) = Ij , and

80 4. Synchronized Automata

{〈q〉Pj | q ∈ Jj} =
∏

i∈Ij
Ii.

Since {Ij | j ∈ J } forms a partition of I, we immediately have P =∏
j∈J Pj ∈ V(Q) and dom(P) =

⋃
j∈J dom (Pj) =

⋃
j∈J Ij = I.

By Lemma 4.3.7 we have {〈q〉P | q ∈ P} =
∏

i∈I Qi.
Furthermore, q ∈ J if and only if projj(q) ∈ J , for all j ∈ J . By
the induction hypothesis, for all j ∈ J , projj(q) ∈ Jj if and only if
〈projj(q)〉Pj =

∏
i∈Ij

uPj (projj(q), i) ∈
∏

i∈Ij
Ii. Thus q ∈ J if and only

if for all j ∈ J and for all i ∈ Ij , uPj (projj(q), i) ∈ Ii. Since for all q ∈ P ,
〈q〉P =

∏
i∈I uP (q, i) =

∏
i∈I uPki

(projki
(q), i), where ki ∈ J is such that

i ∈ dom (Pki), it follows that {〈q〉P | q ∈ J} =
∏

i∈I Ii. -.

Next we consider the actions and transitions of iterated synchronized au-
tomata. The actions of an iterated synchronized automaton over a set of
automata S are the same as the actions of any synchronized automaton
over S. Furthermore, the transitions of any synchronized automaton over
{Tj | j ∈ J } are — after reordering — the transitions of a synchronized
automaton over S.

Lemma 4.3.10. Let T = (P, Γ, γ, J) be an iterated synchronized automaton
over S. Then

(1) Γ =
⋃

i∈I Σi and

(2) {(〈q〉P , 〈q′〉P) | (q, q′) ∈ γa} ⊆ ∆a(S), for all a ∈ Γ .

Proof. If T is a synchronized automaton over S, then (1) follows immedi-
ately from Definition 4.1.2. In that case also (2) follows immediately from
Definition 4.1.2 because, as in the proof of Lemma 4.3.9, 〈q〉P = q, for all
q ∈ P .

Now assume that T is a synchronized automaton over {Tj | j ∈ J },
where J ⊆ N, and each Tj = (Pj , Γj , γj, Jj) is an iterated synchronized
automaton over {Ai | i ∈ Ij}, with {Ij | j ∈ J } forming a partition of I.
Assume furthermore inductively that for all j ∈ J , Γj =

⋃
i∈Ij

Σi. Then
Γ =

⋃
j∈J Γj =

⋃
j∈J

⋃
i∈Ij

Σi =
⋃

i∈I Σi, by Definition 4.1.2, and because
{Ij | j ∈ J } forms a partition of I.

Consequently we consider the transitions of T . Let a ∈ Γ . Since T is a
synchronized automaton over {Tj | j ∈ J }, we know that γa ⊆ ∆a({Tj | j ∈
J }). We have to prove that — upto the reordering relative to the construction
of P — every a-transition of T is an element of the complete transition space
of a in S. In order to prove this we make inductively the following assumption.
For all j ∈ J , {(〈p〉Pj , 〈p

′〉Pj) | (p, p
′) ∈ γj,a} ⊆ ∆a({Ai | i ∈ Ij}).

Before we turn to the proof we make the following auxiliary observation.
Let q ∈ P . By Lemma 4.3.9 we have 〈q〉P ∈

∏
i∈I Qi and thus 〈q〉P =

4.3 Iterated Composition 81

∏
i∈I proji(〈q〉P). Let i ∈ I. By Definition 4.3.4 we have proji(〈q〉P) =

uP (q, i) = uPj (projj(q), i), where j is such that i ∈ Ij . Now projj(q) ∈ Pj and
hence, again by Lemma 4.3.9, 〈projj(q)〉Pj ∈

∏
i∈Ij

Qi. By Definition 4.3.4
once again we have proji(〈projj(q)〉Pj) = uPj (projj(q), i), whenever i ∈ Ij .
Hence proji(〈q〉P) = proji(〈projj(q)〉Pj), for all q ∈ P , i ∈ Ij , and j ∈ J .
This ends the observation.

Now let (q, q′) ∈ γa. In order to prove that (〈q〉P , 〈q′〉P) ∈ ∆a(S) we verify
the two conditions in Definition 4.1.1.
First we prove that there exists an i ∈ I such that proji

[2](〈q〉P , 〈q′〉P) ∈
δi,a. Let j ∈ J be such that projj

[2](q, q′) ∈ γj,a. Such a j exists be-
cause γa ⊆ ∆a({Tj | j ∈ J }). By the induction hypothesis we have
(〈projj(q)〉Pj , 〈projj(q

′)〉Pj) ∈ ∆a({Ai | i ∈ Ij}). Hence by Definition 4.1.1

there exists an i ∈ Ij such that proji
[2](〈projj(q)〉Pj , 〈projj(q

′)〉Pj) ∈ δi,a.

Thus, by our observation above, for this i we have proji
[2](〈q〉P , 〈q′〉P) ∈ δi,a,

as desired.
Secondly, we prove that for all i ∈ I, either proji

[2](〈q〉P , 〈q′〉P) ∈ δi,a or
proji(〈q〉P) = proji(〈q

′〉P). Let i ∈ I and let j ∈ J be such that i ∈ Ij . Be-
cause {Ij | j ∈ J } forms a partition of I such a j exists and is unique. Since

γa ⊆ ∆a({Tj | j ∈ J }), Definition 4.1.1 implies that either proj[2]j (q, q′) ∈ γj,a
or projj(q) = projj(q

′).

If proj[2]j (q, q′) ∈ γj,a, then (〈projj(q)〉Pj , 〈projj(q
′)〉Pj) ∈ ∆a({Ai | i ∈ Ij})

by the induction hypothesis. Hence by Definition 4.1.1, we get that either
proji

[2](〈projj(q)〉Pj , 〈projj(q
′)〉Pj) ∈ δi,a, which — by the above auxiliary ob-

servation — implies that proji
[2](〈q〉P , 〈q′〉P) ∈ δi,a, or proji(〈projj(q)〉Pj) =

proji(〈projj(q
′)〉Pj), which — again by the above auxiliary observation —

implies that proji(〈q〉P) = proji(〈q
′〉P).

If projj(q) = projj(q
′), then proji(〈q〉P) = uPj (projj(q), i) = uPj (projj(q

′), i)
= proji(〈q

′〉P), which completes the proof. -.

Note that this lemma states that for each action a its complete transition
space in {Tj | j ∈ J } is included — after reordering — in its complete tran-
sition space in S. Iteration in the construction of a synchronized automaton
thus does not lead to an increase of the number of possibilities for synchro-
nization. In other words, every iterated synchronized automaton over a set
of automata can be interpreted as a synchronized automaton over that set,
by reordering its state space and transition space.

Definition 4.3.11. Let T = (Q,Σ, δ, I) be an iterated synchronized automa-
ton over S. Then the reordered version of T w.r.t. S is denoted by 〈〈T 〉〉S
and is defined as

82 4. Synchronized Automata

〈〈T 〉〉S = ({〈q〉Q | q ∈ Q}, Σ,
{(〈q〉Q, a, 〈q′〉Q) | q, q′ ∈ Q, (q, a, q′) ∈ δ}, {〈q〉I | q ∈ I}). -.

From Lemmata 4.3.9 and 4.3.10 we conclude that 〈〈T 〉〉S is indeed a synchro-
nized automaton over S whenever T is an iterated synchronized automaton
over S. In fact, 〈〈T 〉〉S is the interpretation of T as a synchronized automaton
over S by reordering. Since their only difference is the ordering of the ele-
ments of their state spaces, it is immediate that 〈〈T 〉〉S and T have — upto
a reordering — the same set of computations and thus the same behavior.

Theorem 4.3.12. Let T = (Q,Σ, δ, I) be an iterated synchronized automa-
ton over S and let Θ be an alphabet disjoint from Q. Then

(1) C∞
〈〈T 〉〉S

= {〈q0〉Qa1〈q1〉Qa2〈q2〉Q · · · | q0a1q1a2q2 · · · ∈ C∞
T } and

(2) BΘ,∞
〈〈T 〉〉S

= BΘ,∞
T . -.

Clearly the converse of the inclusion of Lemma 4.3.10(2) in general does not
hold, since synchronized automata — and hence also iterated synchronized
automata — are equipped with only a subset of all possible synchronizations.
Moreover, a given intermediate synchronized automaton Tj over a subset Sj

of S may have a transition relation that is properly included in the complete
transition space of Sj . As a consequence, {Tj | j ∈ J } may provide less
transitions for the forming of a synchronized automaton than {Ai | i ∈ I}
does. However, there is a natural condition that guarantees that for a given
arbitrary synchronized automaton T over S and given iterated synchronized
automata Tj over subsets Sj = {Ai | i ∈ Ij}, where the Ij form a partition
of I, one can still obtain a synchronized automaton T̂ over the set consisting
of the Tj , such that 〈〈T̂ 〉〉S = T . This condition requires that each of the
Tj has at least all transitions — after reordering — of the corresponding
subautomaton of T determined by Ij . In fact, when loops are ignored this
is a necessary and sufficient condition for obtaining an iterated version of a
given synchronized automaton over S. Formally, we have the following result,
where we recall δIj to be the transition relation of SUBIj (T).

Theorem 4.3.13. Let T = (Q,Σ, δ, I) be a synchronized automaton over S
and let {Ij | j ∈ J }, where J ⊆ N, form a partition of I. Let, for each j ∈ J ,
Tj = (Pj , Γj , γj , Jj) be an iterated synchronized automaton over {Ai | i ∈ Ij}.
Then

(1) if (δIj)a ⊆ {(〈q〉Pj , 〈q
′〉Pj) | (q, q

′) ∈ γj,a}, for all a ∈ Γj for all j ∈ J ,

then there exists a synchronized automaton T̂ over {Tj | j ∈ J } such
that 〈〈T̂ 〉〉S = T , and

4.3 Iterated Composition 83

(2) if T̂ is a synchronized automaton over {Tj | j ∈ J }, then 〈〈T̂ 〉〉S = T im-
plies that (δIj)a \ {(p, p) | (p, p) ∈ ∆a({Ai | i ∈ Ij})} ⊆ {(〈q〉Pj , 〈q

′〉Pj) |
(q, q′) ∈ γj,a}, for all a ∈ Γj for all j ∈ J .

Proof. Let T̂ = (P, Γ, γ, J) be an arbitrary synchronized automaton over
{Tj | j ∈ J }. First we make an auxiliary observation similar to the
one in the proof of Lemma 4.3.10. Let q ∈ P and let j ∈ J . Then
projIj

(〈q〉P) = 〈projj(q)〉Pj , since P =
∏

j∈J Pj and, by Lemma 4.3.9(2),∏
i∈Ij

Qi = {〈q〉Pj | q ∈ Pj}.
(1) Assume that (δIj)a ⊆ {(〈q〉Pj , 〈q

′〉Pj) | (q, q′) ∈ γj,a}. By Lem-
mata 4.3.9(2), 4.3.10(1), and 4.3.9(3) we know that Q = {〈q〉P | q ∈ P},
Σ = Γ , and I = {〈q〉J | q ∈ J}, respectively. Thus it only remains to
prove that the transition relation γ for T̂ can be chosen in such a way that
δ = {(〈q〉P , a, 〈q′〉P) | q, q′ ∈ P, (q, a, q′) ∈ γ}. Thus using the injectivity
of reordering we define γ simply by γa = {(q, q′) ∈

∏
j∈J Pj ×

∏
j∈J Pj |

(〈q〉P , 〈q′〉P) ∈ δa}, for all a ∈ Γ and prove that this is indeed the transition
relation of a synchronized automaton over {Tj | j ∈ J }.

Let (p, p′) ∈ γa. We prove there exists a j ∈ J so that projj
[2](p, p′) ∈ γj,a.

As (〈p〉P , 〈p′〉P) ∈ δa there exists an i ∈ I such that projj
[2](〈p〉P , 〈p′〉P) ∈

δi,a. Let j be such that i ∈ Ij . Then it follows that projIj

[2](〈p〉P , 〈p′〉P) ∈
(δIj)a. Since (δIj)a ⊆ {(〈q〉Pj , 〈q

′〉Pj) | (q, q
′) ∈ γj,a} there exists an (r, r′) ∈

γj,a such that (〈r〉Pj , 〈r
′〉Pj) = projIj

[2](〈p〉P , 〈p′〉P). Thus by the observation
above we have (〈r〉Pj , 〈r

′〉Pj) = (〈projj(p)〉Pj , 〈projj(p
′)〉Pj). Since reordering

is an injective operation it follows that r = projj(p) and r′ = projj(p
′), and

thus projj
[2](p, p′) = (r, r′) ∈ γj,a.

It now remains to prove that for all j ∈ J , either projj(p) = projj(p
′) or

projj
[2](p, p′) ∈ γj,a. Let j ∈ J be such that projj(p) (= projj(p

′). Then

we only have to prove that projj
[2](p, p′) ∈ γj,a. Since (p, p′) ∈ γa we

have (〈p〉P , 〈p′〉P) ∈ δa. By the observation above we have projIj
(〈p〉P) =

〈projj(p)〉Pj and projIj
(〈p′〉P) = 〈projj(p

′)〉Pj . From the fact that reordering
is an injective operation we infer that projIj

(〈p〉P) (= projIj
(〈p′〉P). Hence

projIj

[2](〈p〉P , 〈p′〉P) ∈ (δIj)a. Since (δIj)a ⊆ {(〈q〉Pj , 〈q
′〉Pj) | (q, q

′) ∈ γj,a}

it follows that projj
[2](p, p′) ∈ γj,a.

(2) Now assume that 〈〈T̂ 〉〉S = T . Let j ∈ J and a ∈ Γ be fixed. Let
(p, p′) ∈ (δIj)a be such that p (= p′. By Definition 4.1.6 there is a pair

(r, r′) ∈ δa such that projIj

[2](r, r′) = (p, p′). Since 〈〈T̂ 〉〉S = T there are
(r̂, r̂′) ∈ γa such that (〈r̂〉P , 〈r̂′〉P) = (r, r′). By the observation above we have
(p, p′) = projIj

[2](r, r′) = (〈projj(r̂)〉Pj , 〈projj(r̂
′)〉Pj) and thus the only thing

left to prove here is that (projj(r̂), projj(r̂
′)) ∈ γj,a. Assume to the contrary

that this is not the case. Then the fact that T̂ is a synchronized automaton

84 4. Synchronized Automata

over {Tj | j ∈ J }, together with (r̂, r̂′) ∈ γa, implies that projj(r̂) = projj(r̂
′)

and thus p = p′, a contradiction. Hence (projj(r̂), projj(r̂
′)) ∈ γj,a. -.

Thus, not only can every iterated synchronized automaton over S be con-
sidered as a synchronized automaton directly constructed from S by Defi-
nition 4.3.11, but according to Theorem 4.3.13 also every synchronized au-
tomaton can be iteratively constructed from its subautomata. Consequently,
both subautomata and iterated synchronized automata can be treated as
synchronized automata — including the considerations concerning their com-
putations and behavior — and it thus suffices to study only the relationship
between (sub)automata and synchronized automata in the sequel, i.e. without
considering iterated synchronized automata explicitly.

4.4 Synchronizations

As said before, the high level of flexibility that is obtained by leaving the set
of transitions of a synchronized automaton as a modeling choice is an impor-
tant — perhaps even the most important — feature of the team automata
framework we are introducing. The choice for a specific interconnection strat-
egy (which automata synchronize on what actions, and when) is based on the
system one wants to model.

In this section we provide the basis for the introduction of a broad variety
of often complex interconnection strategies for team automata in Section 5.3.
We do so by introducing some basic and natural types of synchronization
that can be expressed already within the synchronized automata underlying
team automata.

We focus on the individual actions of a synchronized automaton and we
distinguish several different ways of synchronizing on shared actions. We con-
sider actions that are never used in synchronizations between multiple au-
tomata, as well as actions on which all automata having these actions have
to synchronize. The latter case is weakened by requiring participation only if
an automaton is in a state at which that action is enabled.

Recall that information on the actual execution of loops is missing in the
transition relation of a synchronized automaton. In the coming definitions and
their intuitive explanation, the presence of loops on action a in automata is
treated as if a is actually executed, which is in accordance with the maximal
interpretation of the participation of automata adopted in Section 4.2.

Notation 2. For the remainder of this chapter we assume T = (Q,Σ, δ, I)
is an arbitrary but fixed synchronized automaton over our fixed set S of au-

4.4 Synchronizations 85

tomata. Note that Σ is the alphabet of any synchronized automaton over S
(i.e. not only of T). -.

4.4.1 Free

Intuitively, an action a is a free action of T if no a-transition of T is brought
about by a simultaneous execution of a by two or more automata. Thus,
whenever a is executed by T only one automaton is active in this execution.

Definition 4.4.1. The set of free actions of T is denoted by Free(T) and is
defined as

Free(T) = {a ∈ Σ | (q, q′) ∈ δa ⇒
#{i ∈ I | a ∈ Σi ∧ proji

[2](q, q′) ∈ δi,a} = 1}. -.

Example 4.4.2. (Example 4.1.3 continued) Actions a and b both are not free
in synchronized automaton T{1,2}. This can be concluded from the fact that
the a-transition ((s1, s2), a, (t1, t2)) and the b-transition ((t1, t2), b, (s1, s2))
can serve as an example of a simultaneous execution of a and b, respectively,
by two automata. In synchronized automaton T ′

{1,2}, however, action a is free
while action b is not free. -.

4.4.2 Action-Indispensable

If an action a is action-indispensable, then all automata which have a as one
of their actions are involved in every execution of a by T . This means that
T cannot execute an a if there is an automaton to which a belongs but in
which it is not enabled at the current local state.

Definition 4.4.3. The set of action-indispensable (ai for short) actions of
T is denoted by AI (T) and is defined as

AI (T) = {a ∈ Σ | ∀i ∈ I : (a ∈ Σi ∧ (q, q′) ∈ δa)⇒
proji

[2](q, q′) ∈ δi,a}. -.

Example 4.4.4. (Example 4.4.2 continued) Actions a and b both are ai in the
synchronized automaton T{1,2}. This follows directly from the fact that in all
of the a-transitions and in all of the b-transitions of T{1,2}, both W1 and W2

participate. Hence b is also ai in T ′
{1,2}, while a however is not ai in T ′

{1,2}.
This difference stems from the fact that in the a-transition ((s1, s2), a, (s1, t2))
only W2 participates while also W1 has a in its alphabet. -.

86 4. Synchronized Automata

4.4.3 State-Indispensable

State-indispensable, finally, is a weak version of action-indispensable: if an
action a is state-indispensable, then all executions of a by T involve all au-
tomata in which a is enabled at the current local state. In this case T does
not have to “wait” with the execution of a until a is enabled in all automata
to which it belongs.

Definition 4.4.5. The set of state-indispensable (si for short) actions of T
is denoted by SI (T) and is defined as

SI (T) = {a ∈ Σ | ∀i ∈ I : (a ∈ Σi ∧ (q, q′) ∈ δa ∧ a enAi proji(q))⇒
proji

[2](q, q′) ∈ δi,a}. -.

Example 4.4.6. (Example 4.4.4 continued) Actions a and b both are si in the
synchronized automaton T{1,2}. This follows immediately from the fact that
in all of the a-transitions as well as in all of the b-transitions of T{1,2}, both
W1 and W2 participate. Hence b is also si in T ′

{1,2}, whereas a is not si in
T ′
{1,2}. This is due to the fact that in the a-transition ((s1, s2), a, (s1, t2)) only

W2 participates, while at state (s1, s2) action a is also enabled at the local
state s1 of W1. -.

4.4.4 Free, Action-Indispensable, and State-Indispensable

We now compare the three types of synchronization introduced in this section.
It is immediate that all ai actions in T also satisfy the weaker requirement

of being si actions.

Lemma 4.4.7. AI (T) ⊆ SI (T).

In fact, as we show next, this lemma describes the only dependency among
free, ai , and si actions.

The combination of the properties of being free, ai , and si leads in princi-
ple to eight different types of actions in a synchronized automaton. However,
by Lemma 4.4.7, ai implies si , which eliminates the combinations 〈free, ai ,
not si〉 and 〈not free, ai , not si〉. Each of the remaining six combinations is
feasible, as we demonstrate in the following example.

Example 4.4.8. Consider the automata A1 = ({q, q′}, {a}, {(q, a, q′)}, {q})
and A2 = ({r, r′}, {a}, {(r, a, r′)}, {r}), as depicted in Figure 4.10.

From {A1,A2} we construct the following five synchronized automata
T i = ({(q, r), (q, r′), (q′, r), (q′, r′)}, {a}, δi, {(q, r)}), with i ∈ [5], where

4.5 Predicates of Synchronizations 87

a

A1:

q q′
a

A2:

r r′

Fig. 4.10. Automata A1 and A2.

δ1 = {((q, r), a, (q, r′)), ((q, r), a, (q′, r′))}; now a is not free since both au-
tomata execute a in the second transition, while a is not si (and thus also
not ai) since A1 does not execute a in the first transition, even though
it is in a state at which a is enabled,

δ2 = {((q, r), a, (q′, r′))}; now a is not free since in the given transition a is
executed by both automata, which implies that a is ai and thus si ,

δ3 = {((q, r), a, (q′, r))}; now a is free since only one automaton is involved
in the a-transition, but a is not si (and thus also not ai) since A2 does
not execute a even though it is in a state at which a is enabled,

δ4 = {((q, r′), a, (q′, r′))}; now a is free for the same reason as in the previous
case, a is not ai since A2 does have a in its alphabet but nevertheless
does not execute a, and a is si since C2 cannot execute a in state r′ (a is
not enabled at state r′), and

δ5 = ∅; now a trivially is free, ai , and si .

These synchronized automata T 1, T 2, T 3, T 4, and T 5 thus illustrate the
cases 〈not free, not ai , not si〉, 〈not free, ai , si〉, 〈free, not ai , not si〉, 〈free,
not ai , si〉, and 〈free, ai , si〉, respectively.

It is not difficult to check that action a is si but neither free nor ai in the
synchronized automaton T of Example 4.2.1, depicted in Figure 4.6(b). This
concludes our display of the remaining six combinations. -.

We conclude by noting that the definitions of free, ai , and si synchronizations
are based on the maximal interpretation adopted in Section 4.2. We will
come back to this in Subsection 7.2.1, where we will reconsider free, ai ,
and si synchronizations in a context in which precise information on the
participation of loops in synchronizations is available.

4.5 Predicates of Synchronizations

Our exposition until now has been analytical, in the sense that we have
investigated transition relations to determine whether or not they satisfy the

88 4. Synchronized Automata

conditions inherent to certain types of synchronization. These conditions in
general do not lead to uniquely defined synchronized automata.

In this section we deal with the question of how to describe a unique
synchronized automaton, given a set of automata and certain conditions to
be satisfied by the synchronizations. Recall that all elements of a synchronized
automaton, except for its set of transitions, are uniquely determined by the
set of automata it is composed over.

We begin by describing specific synchronized automata satisfying certain
constraints on synchronizations. Synchronization constraints for an action a
are conditions on the a-transitions to be chosen from ∆a(S), the complete
transition space of a in S. Together, these conditions should determine a
unique subset Ra, which will be the set of a-transitions in the synchronized
automaton. We will refer to subsets of the complete transition space ∆a(S) as
predicates (of synchronizations) for a. Once predicates have been chosen for
all actions, the synchronized automaton over S defined by these predicates
is unique.

The following generic definition formalizes this setup.

Definition 4.5.1. For all a ∈ Σ, let Ra(S) ⊆ ∆a(S) and let R = {Ra(S) |
a ∈ Σ}. Then T is the R-synchronized automaton over S if for all a ∈ Σ,

δa = Ra(S). -.

A natural way of fixing a predicate for a given type of synchronization is to
apply a maximality principle. Since a predicate is a subset of the complete
transition space, this amounts to including everything that is not forbidden,
i.e. everything that is in accordance with the chosen type of synchroniza-
tion. This is the intuitive approach of [Ell97] and generalizes the classical
approach to define synchronized systems from ai to other types of synchro-
nization (cf. the Introduction). Thus when a synchronized automaton is to
be constructed according to a specification of synchronization conditions for
its set of actions, the strategy is to include as many transitions as possible
without violating the specification, while checking that the result is unique.

This leads to the following predicates.

Definition 4.5.2. Let a ∈ Σ. Then

(1) the predicate no-constraints in S for a is denoted by Rno
a (S) and is defined

as

Rno
a (S) = ∆a(S),

(2) the predicate is-free in S for a is denoted by Rfree
a (S) and is defined as

4.5 Predicates of Synchronizations 89

Rfree
a (S) = {(q, q′) ∈ ∆a(S) |#{i ∈ I | a ∈ Σi∧proji

[2](q, q′) ∈ δi,a}=1},

(3) the predicate is-ai in S for a is denoted by Rai
a (S) and is defined as

Rai
a (S) = {(q, q′) ∈ ∆a(S) | ∀i ∈ I : a ∈ Σi ⇒ proji

[2](q, q′) ∈ δi,a}, and

(4) the predicate is-si in S for a is denoted by Rsi
a (S) and is defined as

Rsi
a (S) = {(q, q′) ∈ ∆a(S) | ∀i ∈ I : (a ∈ Σi ∧ a enAi proji(q))⇒

proji
[2](q, q′) ∈ δi,a}. -.

Each of these predicates selects, for a given action a, all transitions from its
complete transition space ∆a(S) that obey a certain type of synchronization.
In the case of no-constraints for a, this means that all a-transitions are al-
lowed since nothing is required (and thus no transition is forbidden). In the
other three cases, all and only those a-transitions are included that respect
the specified property of a.

Theorem 4.5.3. Let a ∈ Σ. Then

(1) a ∈ Free(T) if and only if δa ⊆ Rfree
a (S),

(2) a ∈ AI (T) if and only if δa ⊆ Rai
a (S), and

(3) a ∈ SI (T) if and only if δa ⊆ Rsi
a (S).

Proof. Immediately from Definitions 4.4.1, 4.4.3, 4.4.5, and 4.5.2. -.

The predicate Rfree
a (S) (Rai

a (S), Rsi
a (S)) thus defines the largest transition

relation in ∆a(S) in which an action a is free (ai , si). In other words, each of
the types of synchronization introduced in the previous section gives rise to
a predicate that is the unique maximal representative among all transition
relations satisfying the type of synchronization.

Definition 4.5.4. Let syn ∈ {free, ai , si}. Then

(1) the {Rsyn
a (S) | a ∈ Σ}-synchronized automaton over S is called the

maximal-syn synchronized automaton (over S) and

(2) an action a ∈ Σ is called maximal-syn in T if δa = Rsyn
a (S). -.

In case the automata from S have no shared actions, then the maximal-
free (maximal-ai , maximal-si) synchronized automaton equals the Rno-
synchronized automaton (over S).

Theorem 4.5.5. Let a ∈ Σj \ (
⋃

i∈I\{j} Σi). Then

Rno
a (S) = Rsyn

a (S), for all syn ∈ {free, ai , si}. -.

90 4. Synchronized Automata

4.6 Effect of Synchronizations

In this section we study the effect that the types of synchronization intro-
duced in the previous sections have on the inheritance of the automata-
theoretic properties from Section 3.2. We investigate both top-down inheri-
tance — from synchronized automata to their (sub)automata — and bottom-
up preservation — from (sub)automata to synchronized automata.

Notation 3. For the remainder of this chapter we fix an arbitrary j ∈ I and
an arbitrary subset J ⊆ I. The subautomaton SUBJ of T will be specified
as SUBJ = (QJ , ΣJ , δJ , IJ). We moreover fix Θ to be an arbitrary alphabet
disjoint from Q. -.

The properties whose inheritance we study are static, in the sense that they
depend on the mere “presence” of transitions in (sub)automata and synchro-
nized automata. We begin by introducing two useful auxiliary notions.

A transition (p, a, p′) of automaton Aj defines the execution of an action
a by taking Aj from a (local) state p to a (local) state p′. Such a transition
is present in the synchronized automaton T if it participates in one or more
of the transitions of T . In other words, if T can execute a by going from
a (global) state q such that projj(q) = p to a (global) state q′ such that
projj(q

′) = p′. The transition (p, a, p′) is omnipresent in T if for all (global)
states q of T such that projj(q) = p, it can always be executed by partici-
pating in an a-transition (q, a, q′) of T with projj(q

′) = p′. The presence and
omnipresence of transitions of SUBJ is defined likewise.

Definition 4.6.1. (1) Let (p, a, p′) ∈ δJ . Then

(a) (p, a, p′) is present in T if there exists a (q, a, q′) ∈ δ such that
(projJ(q), a, projJ(q

′)) = (p, a, p′) and

(b) (p, a, p′) is omnipresent in T if for all q ∈ Q such that projJ (q) = p,
there exists a (q, a, q′) ∈ δ such that projJ (q

′) = p′.

(2) Let (p, a, p′) ∈ δj. Then

(a) (p, a, p′) is present in T if there exists a (q, a, q′) ∈ δ such that
(projj(q), a, projj(q

′)) = (p, a, p′) and

(b) (p, a, p′) is omnipresent in T if for all q ∈ Q such that projj(q) = p,
there exists a (q, a, q′) ∈ δ such that projj(q

′) = p′. -.

Note that any transition of a (sub)automaton that is omnipresent in T is
also present in T .

4.6 Effect of Synchronizations 91

We now investigate which conditions guarantee the presence or even om-
nipresence of the transitions of (sub)automata in synchronizations of synchro-
nized automata over these (sub)automata. We are particularly interested in
the presence or omnipresence of transitions in case of free, ai , and si actions.

As the transitions of any subautomaton of T are obtained from transitions
of T by projection, each transition of a subautomaton of T is present — but
not necessarily omnipresent — in T .

Theorem 4.6.2. Each transition of SUBJ is present in T . -.

Since the transition relation of T is chosen from the complete transition
space, certain transitions of automata from S may not be present (and thus
neither omnipresent) in T . We now study the types of synchronized automata
in which not too many transitions from the complete transition space have
been left out, i.e. in which transitions are (omni)present.

In the maximal-si synchronized automaton T over S, all executions of an
action a by definition involve all automata in which a is enabled at the current
local state. Hence it is not surprising that all transitions of (sub)automata
from S are omnipresent — and thus present — in T .

Theorem 4.6.3. Let a ∈ Σ.

if δa = Rsi
a (S), then each a-transition of SUBJ as well as each a-

transition of Aj is omnipresent in T .

Proof. We only prove the statement for SUBJ , as the other case is analogous.
Let δa = Rsi

a (S) and let (p, a, p′) ∈ δJ . Now let q ∈ Q be such that projJ(q) =
p and let q′ ∈ Q be the state that is defined by projJ(q

′) = p′ and, for
all i ∈ I \ J , proji(q

′) is such that (proji(q), a, proji(q
′)) ∈ δi whenever

a enAi proji(q). Then by Definitions 4.1.1 and 4.5.2(4), (q, a, q′) ∈ Rsi
a (S).

Hence (p, a, p′) is omnipresent in T . -.

It is clear that once a transition of an automaton is present or omnipresent in a
synchronized automaton, adding more transitions to the latter will not affect
that property. We may thus conclude from Theorem 4.6.3 that whenever
T is such that δa = Rno

a (S), for all a ∈ Σext, then all transitions of the
automata from S are omnipresent — and thus present — in T . Moreover, if
δa = Rno

a (S), for all a ∈ Σext, then for every transition (p, a, p′) of SUBJ ,
we have that (q, a, q′) ∈ Rno

a (S) for all q ∈ Q such that projJ(q) = p,
projJ (q

′) = p′, and for all i ∈ I \ J , proji(q) = proji(q
′).

Theorem 4.6.4. Let a ∈ Σ. Then

92 4. Synchronized Automata

if δa = Rno
a (S), then each a-transition of SUBJ as well as each a-

transition of Aj is omnipresent in T . -.

In the following example we demonstrate that in the maximal-free (maximal-
ai) synchronized automaton over S, not all transitions of all automata from
S need to be present — let alone omnipresent. Apparently the is-free (is-ai)
predicate may contain too few transitions from the complete transition space.

Example 4.6.5. Consider automata A1 = ({p}, {a}, {(p, a, p)}, {p}), A2 =
({q, q′}, {a}, {(q, a, q), (q, a, q′), (q′, a, q′)}, {q}), and A3 = ({r}, {a},∅, {r}).
They are depicted in Figure 4.11.

q

A2:

q′

a a

a
r

A3:

p

A1:

a

Fig. 4.11. Automata A1, A2, and A3.

It is not difficult to see that both the Rfree -synchronized automaton T free
1,2

over {A1,A2} and the Rai -synchronized automaton T ai
2,3 over {A2,A3} have

an empty transition relation. We thus see that none of the a-transitions ap-
pearing in A2 is present — and thus neither omnipresent — in either T free

1,2

or T ai
2,3. -.

By looking more closely at Example 4.6.5 we obtain some hints as to why
some transitions of automata from S cannot be omnipresent in the maximal-
free (maximal-ai) synchronized automaton over S.

First consider the case that T is the maximal-ai synchronized automaton
over S. From Example 4.6.5 it follows immediately that no a-transition of
Aj will be present in T if δa = ∅. On the other hand, if δa = Rai

a (S) (= ∅,
then every a-transition of Aj can be executed in T from every state in which
a is enabled at the local states of all other automata that also have a as an
action.

Theorem 4.6.6. For all a ∈ Θ ∩Σj, let δa = Rai
a (S). Then

Rai
a (S) (= ∅ if and only if δj,a (= ∅ and each a-transition of Aj is present

in T .

4.6 Effect of Synchronizations 93

Proof. (If) Trivial.
(Only if) Let δa = Rai

a (S) (= ∅. Then for all i ∈ I, if a ∈ Σi, then there
exist qi, q′i such that (qi, a, q′i) ∈ δi. Now let (p, a, p′) ∈ δj and let q, q′ ∈ Q be
such that projj(q) = p and projj(q

′) = p′, proji(q) = qi and proji(q
′) = q′i,

for all i ∈ I such that a ∈ Σi and i (= j, and projk(q) = projk(q
′), for all

k ∈ I such that a /∈ Σk. This implies that (q, a, q′) ∈ Rai
a (S) and hence

(p, a, p′) is present in T . -.

Example 4.6.5 suggests furthermore that certain transitions of automata from
S cannot be omnipresent in T in case the following situation exists. Let q be
a state of T at which an action a is locally enabled — due to the existence of
an a-transition t — in (at least) one of the automata from S, while it is not
locally enabled — due to the absence of an a-transition — in (at least) one
other automaton from S that does have a in its alphabet . If this is the case,
then a is not enabled at q in T . The reason is that otherwise action a could
be executed from q without the participation of all of the automata having
this a as one of their actions, which would be contradicting the fact that T
is the maximal-ai synchronized automaton over S. Hence the a-transition t
cannot be omnipresent in T .

To avoid the situation sketched above from occurring when dealing with
maximal-ai synchronized automata, we define a Θ-enabling set of automata
as a set of automata with the property that each of its constituting automata
is Θ-enabling. Recall Θ to be an arbitrary alphabet disjoint from Q.

Definition 4.6.7. S is Θ-enabling if for all i ∈ I, Ai is Θ-enabling. -.

If S is Σ-enabling, then we may also simply say that S is enabling. Note,
however, that in that case the maximal-ai synchronized automaton over S
and the maximal-si synchronized automaton over S are one and the same.
In fact, if S is {a}-enabling and δa = Rai

a (S), for an action a, then clearly
δa = Rsi

a (S).

Theorem 4.6.8. For all a ∈ Θ ∩Σ, let δa = Rai
a (S). Then

if S is Θ-enabling, then for all a ∈ Θ, each a-transition of SUBJ as well
as each a-transition of Aj is omnipresent in T .

Proof. Let S be Θ-enabling. Together with the fact that δa = Rai
a (S), for all

a ∈ Θ ∩Σ, this implies that δa = Rsi
a (S), for all a ∈ Θ ∩Σ, after which the

result follows directly from Theorem 4.6.3. -.

We conclude that whenever S is enabling, all transitions of (sub)automata
from S are omnipresent — and thus present — in the maximal-ai synchro-
nized automaton T over S.

94 4. Synchronized Automata

Now consider the case that T is the maximal-free synchronized automa-
ton over S. Consequently, Example 4.6.5 suggests that certain transitions of
automata from S cannot be omnipresent in T in case the following situation
exists. Let q be a state of T at which an action a is locally enabled in (at
least) two of the automata from S, of which (at least) one time as a loop.
Then the other a-transition that is locally enabled at q cannot be omnipresent
in T . The reason is that by our maximal interpretation the automaton with
the loop on a participates in the execution of any a-transition in T from q.
This would be contradicting the fact that T is the maximal-free synchronized
automaton over S.

To avoid the situation sketched above from occurring when studying
maximal-free synchronized automata, we define a Θ-J-loop-limited set of au-
tomata as a set of automata with the property that whenever there is an
a-transition, with a ∈ Θ, in the maximal-free team automaton over Ak,
k ∈ J , then none of the other automata in the set has a loop on a.

Definition 4.6.9. (1) S is Θ-J-loop limited if for all a ∈ Θ∩ΣJ , whenever
there exists an i ∈ I \ J such that (q, q) ∈ δi,a for some q ∈ Qi, then
Rfree

a ({Ak | k ∈ J}) = ∅, and

(2) S is Θ-j-loop limited if for all a ∈ Θ ∩ Σj, whenever there exists an
i ∈ I \ {j} such that (q, q) ∈ δi,a for some q ∈ Qi, then δj,a = ∅. -.

We thus note that S being Θ-j-loop limited is the same as S being Θ-{j}-
loop limited. If S is ΣJ -J-loop limited or Σj-j-loop limited, then we may also
simply say that S is J-loop limited or j-loop limited, respectively. Finally,
note that whenever Θ ⊆ ΣJ \ (

⋃
i∈I\J Σi) or Θ ⊆ Σj \ (

⋃
i∈I\{j} Σi), then S

is Θ-J-loop limited or Θ-j-loop limited, respectively.
Loop limitedness is a sufficient and necessary condition on S for guaran-

teeing all transitions of (sub)automata from S to be omnipresent — and thus
present — in the maximal-free synchronized automaton T over S.

Theorem 4.6.10. For all a ∈ Θ ∩Σ, let δa = Rfree
a (S). Then

(1) each a-transition of SUBJ , for all a ∈ Θ, is omnipresent in T if and only
if S is Θ-J-loop limited, and

(2) each a-transition of Aj , for all a ∈ Θ, is omnipresent in T if and only if
S is Θ-j-loop limited.

Proof. (1) (If) Let S be Θ-J-loop limited, let a ∈ Θ, and let (p, a, p′) ∈ δJ .
Now let q ∈ Q be such that projJ(q) = p and let q′ ∈ Q be the state that
is defined by projJ (q

′) = p′ and, for all i ∈ I \ J , proji(q
′) = proji(q).

4.6 Effect of Synchronizations 95

Then Definitions 4.1.1 and 4.5.2(2) together with the fact that S is Θ-J-loop
limited imply that (q, a, q′) ∈ Rfree

a (S). Hence (p, a, p′) is omnipresent in T .
(Only if) Let each a-transition of SUBJ , for all a ∈ Θ, be omnipresent in

T . Now assume that S is not Θ-J-loop limited. Then there exist an a ∈ Θ,
a (p, a, p′) ∈ Rfree

a ({Ak | k ∈ J}), and an i ∈ I \ J such that (q, a, q) ∈ δi.
Now let r ∈ Q be such that projJ(r) = p and proji(r) = q. Since (p, a, p′)
is omnipresent in T , there exists an (r, a, r′) ∈ δ such that projJ (r

′) = p′.
Moreover, because δa = Rfree

a (S) it must be the case that for all " ∈ I \ J ,
proj!(r

′) = proj!(r) and (proj!(r), a, proj!(r
′)) /∈ δ!, which contradicts the

fact that (q, a, q) ∈ δi. Hence S is Θ-J-loop limited.
(2) Analogous. -.

This concludes our intermezzo on the presence and omnipresence of transi-
tions of (sub)automata in synchronized automata over these (sub)automata.
In the next two subsections we investigate the inheritance of the automata-
theoretic properties introduced in Section 3.2 from synchronized automata to
their (sub)automata, and vice versa. While doing so we adhere to the order
according to which these properties were introduced.

4.6.1 Top-Down Inheritance of Properties

Initially we search for sufficient conditions under which the automata-
theoretic properties of Section 3.2 are inherited from synchronized automata
to their (sub)automata.

Reduced Versions

In order to investigate the conditions under which action reducedness, tran-
sition reducedness, and state reducedness are inherited from a synchronized
automaton to its (sub)automata, it is important to know whether or not the
projection on a (sub)automaton of a state that is reachable in a synchronized
automaton is itself reachable in that (sub)automaton.

Lemma 4.6.11. Let q ∈ Q be reachable in T . Then

(1) projJ(q) is reachable in SUBJ and

(2) projj(q) is reachable in Aj.

Proof. If q ∈ Q is reachable in T , then there exists a computation αq ∈ CT .
Hence (1) and (2) follow directly from Lemma 4.2.6 and its Corollary 4.2.7,
respectively. -.

96 4. Synchronized Automata

An immediate consequence of Lemma 4.6.11 is that the state reducedness of
a synchronized automaton is inherited by all its (sub)automata.

Theorem 4.6.12. Let T be state reduced. Then

SUBJ as well as Aj is state reduced. -.

Note that the statements of Lemma 4.6.11 cannot be reversed. This fol-
lows from Example 4.2.8. This also means that the Θ-action-reduced (Θ-
transition-reduced) versions of the subautomata of a synchronized automa-
ton in general are different from the subautomata of the Θ-action-reduced
(Θ-transition-reduced) versions of that synchronized automaton. Hence in
general SUBJ(T Θ

A) (= (SUBJ(T))ΘA and SUBJ(T Θ
T) (= (SUBJ(T))ΘT , even if

Θ ⊆ ΣJ . The situation is different in case of state reducedness. In fact, since
the state-reduced version TS of a synchronized automaton T over S need
not be a synchronized automaton over S, subautomata of TS are not defined
unless TS = T , i.e. T is state reduced. However, if T is state reduced, then
Theorem 4.6.12 implies that SUBJ(T) = (SUBJ(T))S .

In the following example we show that the fact that T is Θ-action reduced
(Θ-transition reduced) in general does not imply that each of its constitut-
ing automata is Θ-action reduced (Θ-transition reduced). To construct a
Θ-action-reduced synchronized automaton T over S, it suffices to have just
one Θ-action-reduced automaton in S. By basing the transition relation of
T solely on that Θ-action-reduced automaton, e.g., one obtains that T is Θ-
action reduced while obviously not all automata from S need to be Θ-action
reduced. It is even easier to construct a Θ-transition-reduced synchronized
automaton T over S, viz. by equipping T with only useful a-transitions, for
all a ∈ Θ.

Example 4.6.13. Consider automata A1 = ({q1, q′1}, {a}, {(q1, a, q
′
1)}, {q1})

and A2 = ({q2, q′2}, {a}, {(q
′
2, a, q2)}, {q2}), as depicted in Figure 4.12(a).

Consider the synchronized automaton T = (Q, {a}, δ, {(q1, q2)}), with
Q = {(q1, q2), (q1, q′2), (q

′
1, q2), (q

′
1, q

′
2)} and δ = {((q1, q2), a, (q′1, q2))}, over

{A1,A2}. It is depicted in Figure 4.12(b).
It is easy to see that T is both action reduced and transition reduced,

whereas A2 clearly is neither action reduced nor transition reduced. -.

The action reducedness of a synchronized automaton is inherited by each of
its (sub)automata in case each of the latter’s actions is ai in the synchronized
automaton.

Theorem 4.6.14. Let T be Θ-action reduced. Then

4.6 Effect of Synchronizations 97

q1 q′1

(

q1
q2

) (

q′1
q′2

)

A1:

q2 q′2

(

q1
q′2

) (

q′1
q2

)

A2:

(a) (b)

T :

a

a

a

Fig. 4.12. Automata A1 and A2, and synchronized automaton T .

(1) if δa ⊆ Rai
a (S), for all a ∈ Θ ∩ΣJ , then SUBJ is Θ-action reduced, and

(2) if δa ⊆ Rai
a (S), for all a ∈ Θ ∩Σj, then Aj is Θ-action reduced.

Proof. (1) Let a ∈ Θ ∩ ΣJ and let δa ⊆ Rai
a (S). Since T is Θ-action re-

duced we know that there exists a computation α ∈ CT such that α = βaq
for some β ∈ I(ΣQ)∗ and q ∈ Q. Since δa ⊆ Rai

a (S), πSUBJ
(α) =

πSUBJ
(β)aprojJ (q) ∈ CSUBJ

by Definition 4.2.3(1) and Lemma 4.2.6. Hence
a is active in SUBJ and SUBJ is thus Θ-action reduced.

(2) Analogous, but now using Definition 4.2.3(3) and Corollary 4.2.7. -.

It is worthwhile to notice that the requirement of every action being ai as
condition in this theorem cannot be replaced by requiring each action to
be free or si without invalidating the statement. In the following example
we show this by demonstrating that the action reducedness of T in general
is not inherited by each of its (sub)automata in case T is the maximal-
free synchronized automaton nor in case T is the maximal-si synchronized
automaton — and hence neither in case T is a synchronized automaton in
which every action is free nor in case T is a synchronized automaton in which
every action is si .

Example 4.6.15. (Example 4.6.13 continued) First we consider the Rfree-
synchronized automaton T free = (Q, {a}, δfree, {(q1, q2)}), with δfree = δ ∪
{((q1, q′2), a, (q1, q2)), ((q1, q

′
2), a, (q

′
1, q

′
2)), ((q

′
1, q

′
2), a, (q

′
1, q2))}, over {A1,A2}.

It is depicted in Figure 4.13(a).
Clearly, T free is {a}-action reduced. Now note that SUB{2}(T free) is es-

sentially a copy of A2. It is easy to see that neither SUB{2}(T free) nor A2 is
{a}-action reduced.

98 4. Synchronized Automata

(

q′1
q′2

) (

q1
q2

)

(

q1
q′2

)
(

q′1
q2

)

a a

(

q1
q2

)

(

q′1
q2

)

(

q′1
q′2

)

T free : T si :

(b)(a)

a

(

q1
q′2

)

a

a

a

a

Fig. 4.13. Synchronized automata T free and T si .

Next we consider the Rsi -synchronized automaton T si = (Q, {a}, δsi ,
{(q1, q2)}), with δsi = δ ∪ {((q1, q′2), a, (q

′
1, q2)), ((q

′
1, q

′
2), a, (q

′
1, q2))}, over

{A1,A2}. It is depicted in Figure 4.13(b).
Clearly, T si is {a}-action reduced. Moreover, also SUB{2}(T si) is essen-

tially a copy of A2. Since we know that A2 is not {a}-action reduced, neither
is SUB{2}(T si).

Finally, we note that the Rai -synchronized automaton T ai = (Q, {a},
{((q1, q′2), a, (q

′
1, q2))},{(q1, q2)}) over {A1,A2} is not {a}-action reduced. -.

In Example 4.6.13 we have seen that the fact that T is transition reduced
in general does not imply that Aj is transition reduced. As we show next,
the transition reducedness of a synchronized automaton is inherited by each
of its (sub)automata in case each of the latter’s transitions is present in the
synchronized automaton.

Theorem 4.6.16. Let T be Θ-transition reduced. Then

(1) SUBJ is Θ-transition reduced and

(2) if each a-transition of Aj , for all a ∈ Θ, is present in T , then Aj is
Θ-transition reduced.

Proof. (1) Let a ∈ Θ∩ΣJ and let (p, a, p′) ∈ δJ . Then Theorem 4.6.2 implies
that there exists a transition (q, a, q′) ∈ δ such that (projJ (q), a, projJ(q

′)) =
(p, a, p′). Since T is Θ-transition reduced there furthermore exists a compu-
tation αq ∈ CT , i.e. q is reachable in T . Lemma 4.6.11(1) now implies that
p is reachable in SUBJ and thus (p, a, p′) is useful in SUBJ . Hence SUBJ is
Θ-transition reduced.

(2) Analogous. -.

4.6 Effect of Synchronizations 99

Together with Theorems 4.6.3, 4.6.4, 4.6.6, and 4.6.10(2) this implies the
following result.

Corollary 4.6.17. Let T be Θ-transition reduced and let syn ∈ {si , no}.
Then

(1) if δa = Rsyn
a (S), for all a ∈ Θ ∩Σj, then Aj is Θ-transition reduced,

(2) if δa = Rai
a (S) (= ∅, for all a ∈ Θ ∩Σj, then Aj is Θ-transition reduced,

and

(3) if δa = Rfree
a (S), for all a ∈ Θ ∩ Σj, and S is Θ-j-loop limited, then Aj

is Θ-transition reduced. -.

Enabling

We now turn to the inheritance of enabling from synchronized automata to
their (sub)automata. In the following example we show that when a syn-
chronized automaton T over S is Θ-enabling, then this in general does not
imply that each of its (sub)automata is Θ-enabling. We show this by using
the fact that a necessary condition for a synchronized automaton to be {a}-
enabling, for an action a, is that in each of its states (at least) one of its
constituting automata enables a. However, it is not guaranteed that each of
the synchronized automaton’s (sub)automata enables a in each of its states.

Example 4.6.18. (Example 4.2.1 continued) Clearly T is action reduced and
state reduced (and thus transition reduced). It is moreover enabling. However,
we immediately see thatA1 and A3 are not. It is also easy to see that SUB{3},
which is essentially a copy of A3, is not enabling. -.

Note that this example allows us to conclude that also the Θ-enabling of
a Θ-action-reduced (Θ-transition-reduced, state-reduced) synchronized au-
tomaton in general is not inherited by its (sub)automata.

The enabling of a synchronized automaton is inherited by each of its
(sub)automata in case every action of the synchronized automaton is ai .

Theorem 4.6.19. Let T be Θ-enabling. Then

(1) if δa ⊆ Rai
a (S), for all a ∈ Θ ∩ΣJ , then SUBJ is Θ-enabling, and

(2) if δa ⊆ Rai
a (S), for all a ∈ Θ ∩Σj, then Aj is Θ-enabling.

100 4. Synchronized Automata

Proof. (1) Let a ∈ Θ∩ΣJ and let δa ⊆ Rai
a (S). Let p ∈ QJ . Now let q ∈ Q be

such that projJ (q) = p. Since T is Θ-enabling we know that a en T q. Hence
there exists a q′ ∈ Q such that (q, q′) ∈ δa. Moreover, projJ

[2](q, q′) ∈ (δJ)a
because a ∈ ΣJ and δa ⊆ Rai

a (S). Consequently, a en SUBJ
p. Hence SUBJ

is Θ-enabling.
(2) Analogous. -.

It is worthwhile to notice that the requirement of every action being ai as
condition in this theorem cannot be replaced by requiring each action to be
free or si without invalidating the statement. In the following example we
show this by demonstrating that the enabling of T in general is not inherited
by each of its (sub)automata in case T is the maximal-free synchronized
automaton nor in case T is the maximal-si synchronized automaton — and
hence neither in case T is a synchronized automaton in which every action
is free nor in case T is a synchronized automaton in which every action is si .

Example 4.6.20. Let A1 = ({q1, q′1}, {a}, {(q1, a, q
′
1), (q

′
1, a, q1)}, {q1}) and let

A2 = ({q2, q′2}, {a}, {(q2, a, q
′
2)}, {q2}). These automata are depicted in Fig-

ure 4.14.

q1 q′1

a

a

a

A1:

q2

A2:

q′2

Fig. 4.14. Automata A1 and A2.

In Figure 4.15(a) we have depicted the Rfree-synchronized automaton
T free = (Q, {a}, δfree, {(q1, q2)}), with Q = {(q1, q2), (q1, q′2), (q

′
1, q2), (q

′
1, q

′
2)}

and δfree as depicted, over {A1,A2}.
It is easy to see that T free is enabling. Now note that SUB{2}(T free) is

essentially a copy of A2. Clearly neither SUB{2}(T free) nor A2 is enabling.
Consequently, in Figure 4.15(b) we have depicted the Rsi -synchronized

automaton T si = (Q, {a}, δsi , {(q1, q2)}), with δsi as depicted, over {A1,A2}.
It is again easy to see that T si is enabling. Clearly also SUB{2}(T si) is

essentially a copy of A2. Since A2 is not enabling, neither is SUB{2}(T si).
Finally, we note that the Rai -synchronized automaton T ai = (Q, {a},

{((q1, q2), a, (q′1, q
′
2)), ((q

′
1, q2), a, (q1, q

′
2))}, {(q1, q2)}) over {A1,A2} is not en-

abling. -.

4.6 Effect of Synchronizations 101

(

q′1
q′2

) (

q1
q2

)

(

q1
q′2

)

a

a

(

q′1
q2

)

a

a

a a

a

aa

a

(

q1
q2

)

(

q1
q′2

)
(

q′1
q2

)

(

q′1
q′2

)

T free : T si :

(b)(a)

Fig. 4.15. Synchronized automata T free and T si .

Determinism

We now conclude this subsection by turning to the inheritance of deter-
minism. We begin by showing that when a synchronized automaton T over
S is Θ-deterministic, then this in general does not imply that each of its
(sub)automata is Θ-deterministic. In case of inheritance from a synchronized
automaton to its constituting automata, this can be concluded directly from
Example 4.6.5. In case of inheritance from a synchronized automaton to its
subautomata, this can be concluded from the following example. This ex-
ample uses the fact that the states of Aj can be used to distinguish states
of a synchronized automaton T that without the j-th component cannot be
distinguished.

Example 4.6.21. Consider automata A1 = ({p, p′}, {a}, {(p, a, p′), (p′, a, p)},
{p}), A2 = ({q, q′}, {a}, {(q, a, q′), (q′, a, q)}, {q}), and A3 = ({r, r′}, {a},
{(r, a, r′), (r′, a, r)}, {r}), as depicted in Figure 4.16.

In Figure 4.17(a) we have depicted the synchronized automaton T =
(Q, {a}, δ, {(p, q, r)}), withQ = {(p, q, r), (p′, q, r), (p, q′, r), (p′, q′, r), (p, q, r′),
(p′, q, r′), (p, q′, r′), (p′, q′, r′)} and δ as depicted, over {Ai | i ∈ [3]}.

It is easy to see that T is action reduced and state reduced (and thus
transition reduced). Furthermore, T clearly is deterministic.

Consequently, in Figure 4.17(b) we have depicted its subautomaton
SUB{1,2} = ({(p, q), (p, q′), (p′, q), (p′, q′)}, {a}, δ{1,2}, {(p, q)}), with δ{1,2} as
depicted.

Clearly SUB{1,2} is not deterministic as, e.g., ((p′, q), a, (p, q)) ∈ δ{1,2}
and ((p′, q), a, (p, q′)) ∈ δ{1,2}. -.

102 4. Synchronized Automata

p′

a

p

A1:

a

q′

a

q

A2:

a

r′

a

r

A3:

a

Fig. 4.16. Automata A1, A2, and A3.





p

q

r′









p

q′

r′









p′

q

r′





a aa

aa





p

q

r









p

q′

r









p′

q

r





a





p′

q′

r









p′

q′

r′





T :

(a)

SUB{1,2}:

(b)

a a

a a

(

p′

q

) (

p

q′

)

(

p

q

)
(

p′

q′

)

a

a

a

a

Fig. 4.17. Synchronized automaton T and its subautomaton SUB{1,2}.

The determinism of a maximal-free (maximal-ai , maximal-si) synchronized
automaton is inherited by each of its (sub)automata in case each of the
latter’s transitions is present in the synchronized automaton.

Theorem 4.6.22. Let T be Θ-deterministic and let syn ∈ {no, free, ai , si}.
Then

(1) if δa = Rsyn
a (S), for all a ∈ Θ ∩ΣJ , then SUBJ is Θ-deterministic, and

4.6 Effect of Synchronizations 103

(2) if δa = Rsyn
a (S) and each a-transition of Aj is present in T , for all

a ∈ Θ ∩Σj, then Aj is Θ-deterministic.

Proof. (1) Let a ∈ Θ ∩ΣJ and let δa = Rsyn
a (S). Since T is Θ-deterministic

we know that I = {q0}, for some q0 ∈ Q. Hence, trivially, IJ = {projJ (q0)}.
It thus remains to prove that for all q ∈ QJ , there exists at most one q′ ∈ QJ

such that (q, a, q′) ∈ δJ .
Now assume that there exists a p ∈ QJ such that (p, a, p′) ∈ δJ and

(p, a, p′′) ∈ δJ , with p′ (= p′′. Then Theorem 4.6.2 implies that there exist a
(q, a, q′) ∈ δ such that (projJ(q), a, projJ(q

′)) = (p, a, p′) and an (r, a, r′) ∈ δ
such that (projJ (r), a, projJ(r

′)) = (p, a, p′′). Moreover, since q′ (= r′ and
T is Θ-deterministic, we know that q (= r. Consequently, the fact that δa =
Rsyn

a (S) implies that we can replace the components from J in (q, q′) by those
in (r, r′) and still have a transition in Rsyn

a (S). Hence there exists a q′′ ∈ Q
such that (q, a, q′′) ∈ δ with projI\J(q

′′) = projI\J(q
′) and projJ(q

′′) =
p′′ = projJ(r

′). Since p′ (= p′′ this means that T is not Θ-deterministic, a
contradiction. Hence SUBJ is Θ-deterministic.

(2) Analogous. -.

Together with Theorems 4.6.3, 4.6.4, 4.6.6, and 4.6.10(2) this implies the
following result.

Corollary 4.6.23. Let T be Θ-deterministic and let syn ∈ {si , no}. Then

(1) if δa = Rsyn
a (S), for all a ∈ Θ ∩Σj, then Aj is Θ-deterministic,

(2) if δa = Rai
a (S) (= ∅, for all a ∈ Θ ∩Σj, then Aj is Θ-deterministic, and

(3) if δa = Rfree
a (S), for all a ∈ Θ ∩ Σj, and S is Θ-j-loop limited, then Aj

is Θ-deterministic. -.

4.6.2 Bottom-Up Inheritance of Properties

Dual to the above investigations we now change focus and study sufficient
conditions under which the automata-theoretic properties of Section 3.2 are
preserved from automata to synchronized automata.

We recall from Section 4.3 that T is a synchronized automaton over S ′ —
upto a reordering — whenever S ′ = {SUBIj | {Ij | j ∈ J } forms a partition
of I}. Hence it suffices to investigate the conditions under which a property
that holds for (elements of) a set of automata is preserved by a synchronized
automaton over that set of automata. Therefore, we extend Definition 4.6.7
by defining when a set of automata is Θ-action reduced (Θ-transition reduced,
state reduced, Θ-deterministic).

104 4. Synchronized Automata

Definition 4.6.24. S is Θ-action reduced (Θ-transition reduced, state re-
duced, Θ-deterministic) if for all i ∈ I, Ai is Θ-action reduced (Θ-transition
reduced, state reduced, Θ-deterministic). -.

If S is Σ-action reduced (Σ-transition reduced, Σ-deterministic) we may also
simply say that S is action reduced (transition reduced, deterministic).

In the following example we show that the fact that S is Θ-action reduced
(Θ-transition reduced, state reduced) in general does not imply that T is Θ-
action reduced (Θ-transition reduced, state reduced). We moreover show that
in case S is Θ-enabling (Θ-deterministic), then this in general does not imply
that T is Θ-enabling (Θ-deterministic). To show this we use the fact that the
transition relation of a synchronized automaton over a set of automata is
chosen from the complete transition space. Hence we simply consider a set
of automata that satisfies a certain property (i.e. each of its constituting
automata satisfies this particular property) and consequently we choose the
transition relation of a synchronized automaton over it in such a way that
the property fails to hold for that particular synchronized automaton.

Example 4.6.25. Let automata A1 = ({q1, q′1}, {a}, {(q1, a, q
′
1), (q

′
1, a, q1)},

{q1}) and A2 = ({q2, q′2}, {a, b}, {(q2, b, q2), (q2, a, q
′
2), (q

′
2, b, q

′
2)}, {q2}) be as

depicted in Figure 4.18.

bb

q1 q′1

a

a
q2 q′2

a

A1: A2:

Fig. 4.18. Automata A1 and A2.

It is easy to see that both A1 and A2 are action reduced, state reduced
(and thus transition reduced), and deterministic. Moreover, A1 is enabling
and A2 is {b}-enabling.

Now consider the synchronized automaton T = (Q, {a, b}, δ, {(q1, q2)}),
where Q = {(q1, q2), (q1, q′2), (q

′
1, q2), (q

′
1, q

′
2)} and δ = {((q1, q2), a, (q′1, q

′
2)),

((q1, q2), a, (q1, q′2)), ((q
′
1, q2), a, (q1, q

′
2))}, over {A1,A2}. It is depicted in Fig-

ure 4.19(a).
Since b is not active in T it is clear that T is not action reduced. Fur-

thermore, T is not transition reduced (and thus neither state reduced) since
((q′1, q2), a, (q1, q

′
2)) is not useful in T . By removing both this transition and

4.6 Effect of Synchronizations 105

(

q′1
q′2

)

a

(

q1
q2

)

(

q1
q′2

)

a

TS :

(

q′1
q′2

)

(

q′1
q2

)

a

(

q1
q2

)

(

q1
q′2

)

a

a

T :

(a) (b)

Fig. 4.19. Synchronized automaton T and its state-reduced version TS .

the resulting isolated state (q′1, q2) we obtain the state-reduced version TS of
T , which is depicted in Figure 4.19(b).

Clearly neither T nor TS is enabling since, e.g., b is not even active in
either of these synchronized automata. It is also easy to see that neither T nor
TS is deterministic since both synchronized automata contain the transition
((q1, q2), a, (q1, q′2)) as well as the transition ((q1, q2), a, (q′1, q

′
2)). -.

Note that this example thus also suffices to conclude that the Θ-enabling
(Θ-determinism) of a set of automata is not inherited by a Θ-action-reduced
(Θ-transition-reduced, state-reduced) synchronized automaton over that set
of automata.

Summarizing, we conclude that the automata-theoretic properties of Sec-
tion 3.2 in general are not preserved from a set of automata S to a synchro-
nized automaton T over S. We nevertheless show next that — under certain
conditions — some of these properties are preserved from S to T .

Reduced Versions

As before we begin by considering action reducedness, transition reducedness,
and state reducedness. Note that these properties are based on the notion of
reachability of states. We know from Lemma 4.6.11(2) that whenever a state
q is reachable in T , then for all i ∈ I, proji(q) is reachable in Ai. Here we
study the inheritance from automata to synchronized automata. Given a state
q of a synchronized automaton T over S comprising solely reachable states of
the automata from S, it is not necessarily the case that q is reachable in T .
This is because it may be the case that the transition relation of T allows no
synchronous execution of actions from its constituting automata that would
lead to q. In the following example we show that even when we consider

106 4. Synchronized Automata

the maximal-free (maximal-ai , maximal-si) synchronized automaton over S,
then this may still be the case.

Example 4.6.26. (Examples 4.6.5 and 4.6.20 continued) Note that all the
states of all the automata of Examples 4.6.5 and 4.6.20, depicted in Fig-
ures 4.11 and 4.14, are reachable. Hence all these automata are state reduced.

Since in Example 4.6.5 both the maximal-free synchronized automaton
T free
1,2 and the maximal-ai synchronized automaton T ai

2,3 have an empty tran-
sition relation, it is however clear that (p, q′) and (q′, r) are not reachable in
T free
1,2 and T ai

2,3, respectively. Finally, in the maximal-si synchronized automa-
ton T si of Example 4.6.20 — depicted in Figure 4.15(b) — it is clear that
(q′1, q2) is not reachable. Hence neither of these three maximal synchronized
automata is state reduced. -.

This example thus not only presents counterexamples for the preservation of
reachability of states of automata from S to the maximal-free (maximal-ai ,
maximal-si) synchronized automaton over S, but it also demonstrates that
state reducedness of automata from S in general is not preserved by the
maximal-free (maximal-ai , maximal-si) synchronized automaton over S.

We now show that we can use the notion of loop limitedness to prove
the reachability of any state q of the maximal-free synchronized automaton
T over S that comprises solely reachable states of the automata from S. To
this aim, we extend Definition 4.6.9 by defining when S is Θ-loop-limited .

Definition 4.6.27. S is Θ-loop limited if for all i ∈ I, S is Θ-i-loop limit-
ed. -.

If S is Σ-loop limited, then we may also simply say that S is loop limited.
Observe that whenever there exists a k ∈ I such that Θ ⊆ Σk\(

⋃
i∈I\{k} Σi),

then S is Θ-loop limited. Whenever S is loop limited and T is the maximal-
free synchronized automaton over S, then Theorem 4.6.10 implies that all
transitions of the automata from S are omnipresent in T . Moreover, in all
synchronizations of T only one automaton participates. If in addition S is
finite, then we can thus simply reach q by executing one by one the sequences
of transitions responsible for the reachability of those states constituting q.

Lemma 4.6.28. Let q ∈ Q be such that for all i ∈ I, proji(q) is reachable
in Ai. Then

if S is finite and loop limited and δa = Rfree
a (S), for all a ∈ Σ, then q is

reachable in T .

4.6 Effect of Synchronizations 107

Proof. Let S be finite and loop limited and let δa = Rfree
a (S), for all

a ∈ Σ. Now let #I = n, for some n ≥ 1, and assume without loss
of generality that I = [n]. For all i ∈ [n], we can fix a computation
αi = qi0ai1qi1ai2qi2 · · · aimi

qimi
∈ CAi such that mi ≥ 0, qi0 ∈ Ii, aik ∈ Σi

and qik ∈ Qi, for all k ∈ [mi], and qimi
= proji(q) ∈ Qi. Consequently, we

define β inductively by a sequence β0, β1, . . . , βn such that βn = β as follows.
β0 = q0 is defined by proji(q0) = qi0 , for all i ∈ [n]. Hence q0 ∈

∏
i∈[n] Ii =

I and β0 ∈ CT . Moreover, πAi(β0) = qi0 , for all i ∈ [n].
β1 = β0a11q1a12q2 · · · a1m1

qm1 is defined, for all k ∈ [m1], by proj1(qk) =
q1k and proji(qk) = proji(q0) = qi0 if 1 < i ≤ n. Since (q1k−1 , a1k , q1k) ∈ δ1,
for all k ∈ [m1], S is loop limited, and δa = Rfree

a (S), for all a ∈ Σ, it follows
that β1 ∈ CT , πA1(β1) = α1 ∈ CA1 , and πAi(β1) = qi0 , for all 1 < i ≤ n.

Now let 0 ≤ " ≤ n and assume that β0, β1, . . . , β!−1 are defined in such
a way that β!−1 ∈ CT , πAi (β!−1) = αi ∈ CAi , for all i ∈ [" − 1], and
πAi(β!−1) = qi0 , for all " ≤ i ≤ n.

β! = β!−1a!1p1a!2p2 · · ·a!m#
pm#

is defined, for all k ∈ [m!], by proj!(pk) =
q!k , proji(pk) = qimi

if i ∈ [" − 1], and proji(pk) = proji(q0) = qi0 if " <
i ≤ n. Since (q!k−1 , a!k , q!k) ∈ δ!, for all k ∈ [m!], S is loop limited, and
δa = Rfree

a (S), for all a ∈ Σ, it follows that β! ∈ CT , πAi(β!) = αi ∈ CAi ,
for all i ∈ ["], and πAi(β!) = qi0 , for all " < i ≤ n.

βn = β = q0b1q1b2q2 · · · bzqz is thus defined in such a way that β ∈ CT

and, for all i ∈ [n], πAi(β) = αi ∈ CAi and proji(qz) = qimi
= proji(q).

Hence q is reachable in T . -.

An immediate consequence of Lemma 4.6.28 is that whenever S is a finite,
loop-limited, and state-reduced set of automata, then the maximal-free syn-
chronized automaton over S is state reduced (and thus transition reduced).

Theorem 4.6.29. Let S be state reduced. Then

if S is finite and loop limited and δa = Rfree
a (S), for all a ∈ Σ, then T

is state reduced as well as transition reduced. -.

It is worthwhile to notice that the requirement of every action being maximal-
free as condition in this theorem cannot be replaced by requiring each action
to be maximal-ai or maximal-si without invalidating the statement. In the
following example we show this by demonstrating that the fact that S is state
reduced (and thus transition reduced) in general does not imply that either
the maximal-ai synchronized automaton over S or the maximal-si synchro-
nized automaton over S is state reduced — nor does it imply that either of
these synchronized automata is transition reduced.

108 4. Synchronized Automata

Example 4.6.30. (Example 4.6.20 continued) ClearlyA1 and A2 form a state-
reduced (and thus transition-reduced), finite, and loop-limited set of au-
tomata. We have seen, however, that the maximal-si synchronized automa-
ton T si and the maximal-ai synchronized automaton T ai both contain the
transition ((q′1, q2), a, (q1, q

′
2)) while (q

′
1, q2) is not reachable in either of these

synchronized automata. Hence neither T si nor T ai is transition reduced (and
thus neither state reduced). -.

Finally, we investigate the conditions under which action reducedness is pre-
served from S to a synchronized automaton over S. It turns out that already
one action-reduced automaton Ak in S guarantees that T is action reduced,
provided that each transition of Ak is omnipresent in T .

Theorem 4.6.31. Let Aj be Θ-action reduced. Then

if each transition of Aj is omnipresent in T and I (= ∅, then T is Θ∩Σj-
action reduced.

Proof. Let each transition of Aj be omnipresent in T and let I (= ∅. If
Θ∩Σj = ∅, then there is nothing to prove. We thus assume that a ∈ Θ∩Σj .
Then the fact that Aj is Θ-action reduced implies that there exists a useful
transition (p, a, p′) ∈ δj and a computation p0a1p1a2p2 · · · ampmap′ ∈ CAj

such that pm = p. Now let q0 ∈ I be such that projj(q0) = p0. Then the
fact that each transition of Aj is omnipresent in T implies that there ex-
ists a (q0, a1, q1) ∈ δ such that projj(q1) = p1. By repeating this argu-
ment we thus obtain that for all k ∈ [m], there exists a (qk−1, ak, qk) ∈ δ
such that projj(qk−1) = pk−1 and projj(qk) = pk. This means that there
exists a computation α = q0a1q1a2q2 · · · amqm ∈ CT such that πAj (α) =
p0a1p1a2p2 · · · ampm. Since projj(qm) = pm = p and (p, a, p′) is omnipresent
in T , there must exist a computation αaqm+1 ∈ CT such that projj(qm+1) =
p′. Hence a is active in T and T is thus Θ ∩Σj-action reduced. -.

Together with Theorems 4.6.3, 4.6.4, 4.6.8, and 4.6.10(2) this implies the
following result.

Corollary 4.6.32. Let Aj be Θ-action reduced, let I (= ∅, and let syn ∈
{si , no}. Then

(1) if δa = Rsyn
a (S), for all a ∈ Σ, then T is Θ ∩Σj-action reduced,

(2) if δa = Rai
a (S), for all a ∈ Σ, and S is Θ-enabling, then T is Θ ∩ Σj-

action reduced, and

(3) if δa = Rfree
a (S), for all a ∈ Σ, and S is Θ-j-loop limited, then T is

Θ ∩Σj-action reduced. -.

4.6 Effect of Synchronizations 109

Enabling

We now turn to an investigation of the conditions under which enabling is
preserved from S to a synchronized automaton over S. It turns out that
already one enabling automaton Ak in S guarantees that T is enabling,
provided that each transition of Ak is omnipresent in T .

Theorem 4.6.33. Let Aj be Θ-enabling. Then

if each a-transition of Aj, for all a ∈ Θ, is omnipresent in T , then T is
Θ ∩Σj-enabling.

Proof. Let each a-transition of Aj , for all a ∈ Θ, be omnipresent in T . If
Θ ∩ Σj = ∅, then there is nothing to prove. We thus assume that a ∈
Θ ∩ Σj . Now let q ∈ Q. Since a ∈ Σj and Aj is Θ-enabling we know that
a enAj projj(q). The fact that each a-transition of Aj , for all a ∈ Θ, is
omnipresent in T consequently implies that a en T q. Hence T is Θ ∩ Σj-
enabling. -.

Together with Theorems 4.6.3, 4.6.4, 4.6.8, and 4.6.10(2) this implies the
following result.

Corollary 4.6.34. Let Aj be Θ-enabling and let syn ∈ {si , no}. Then

(1) if δa = Rsyn
a (S), for all a ∈ Θ ∩Σj, then T is Θ ∩Σj-enabling,

(2) if δa = Rai
a (S), for all a ∈ Θ ∩ Σj, and S is Θ-enabling, then T is

Θ ∩Σj-enabling, and

(3) if δa = Rfree
a (S), for all a ∈ Θ ∩ Σj, and S is Θ-j-loop limited, then T

is Θ ∩Σj-enabling. -.

Determinism

Finally, we turn to an investigation of the conditions under which determinism
is preserved from S to a synchronized automaton over S. It turns out that
whenever S is deterministic, then so is T provided that all its actions are
maximal-ai or maximal-si .

Theorem 4.6.35. Let S be Θ-deterministic and let syn ∈ {ai , si}. Then

if δa ⊆ Rsyn
a (S), for all a ∈ Θ ∩Σ, then T is Θ-deterministic.

110 4. Synchronized Automata

Proof. Let a ∈ Θ∩Σ and let δa ⊆ Rsyn
a (S). Now assume there exists a q ∈ Q

such that (q, q′) ∈ δa and (q, q′′) ∈ δa, with q′ (= q′′. Then there must exist
an i ∈ I such that proji(q

′) (= proji(q
′′). Now we have two possibilities.

If proji
[2](q, q′) ∈ δi,a and proji

[2](q, q′′) ∈ δi,a, then Ai is not {a}-determinis-
tic, a contradiction.
If proji

[2](q, q′)∈δi,a and proji
[2](q, q′′) /∈δi,a or — vice versa — proji

[2](q, q′) /∈
δi,a and proji

[2](q, q′′) ∈ δi,a, then (q, q′′) /∈ Rsyn
a (S) or — respectively —

(q, q′) /∈ Rsyn
a (S), a contradiction in either way.

Hence q′ = q′′ and T is thus Θ-deterministic. -.

We note that this theorem does not cover the case of maximal-free synchro-
nized automata. In fact, if S is Θ-deterministic, then this in general does
not imply that also the maximal-free synchronized automaton over S is Θ-
deterministic. This can be concluded from Example 4.6.20, where it is easy
to see that {A1,A2} is loop limited and deterministic, whereas T free is not
deterministic. This implies that neither the Θ-determinism of the Rno -team
automaton over S is implied by the Θ-determinism of S.

4.6.3 Conclusion

This section forms a detailed, although limited, account of our initial inves-
tigation of the top-down inheritance — from synchronized automata to their
(sub)automata — and the bottom-up preservation — from automata to syn-
chronized automata — of the automata-theoretic properties from Section 3.2.
The obtained results lean heavily on the presence and omnipresence of tran-
sitions of (sub)automata in synchronizations of synchronized automata over
these (sub)automata. These two auxiliary notions have been treated in an
intermezzo preceding our investigation.

We have focused on maximal-free, maximal-ai , and maximal-si synchro-
nized automata. To a lesser degree we have moreover considered synchronized
automata in which either every action is free, or every action is ai , or ev-
ery action is si . Results on the Rno -synchronized automaton over S have
been mentioned only when they required almost no effort. Finally, the only
additional conditions that have been considered in our search for sufficient
conditions under which the automata-theoretic properties from Section 3.2
are inherited top-down or preserved bottom-up, are the loop limitedness and
enabling of S. Consequently, for many of these properties it remains to nar-
row down which combinations of specific conditions and types of (synchro-
nized) automata guarantee their top-down inheritance and their bottom-up
preservation. Furthermore, once other types of synchronization have been in-
troduced, inheritance and preservation can be considered in the context of a
broader class of synchronized automata (cf. Chapter 5).

4.7 Inheritance of Synchronizations 111

4.7 Inheritance of Synchronizations

In the previous section we investigated the effect that the types of synchro-
nization introduced in Sections 4.4 and 4.5 have on the inheritance of the
automata-theoretic properties from Section 3.2. In this section we investigate
the conditions under which these types of synchronization are themselves
inherited top-down — from synchronized automata to subautomata — and
preserved bottom-up — from subautomata to synchronized automata.

Note that we deal with synchronizations between automata constituting
a synchronized automaton. There is thus no need to study whether synchro-
nizations are inherited by automata from synchronized automata — and vice
versa — since in any automaton — and in any synchronized automaton over
a single automaton — all its actions trivially are free, ai , and si .

We begin by studying the inheritance of the types of synchronization
introduced in Section 4.4. The property of an action a being free (ai , si) in a
synchronized automaton is inherited by all its subautomata having a as one
of their actions.

Lemma 4.7.1. (1) ΣJ ∩ Free(T) ⊆ Free(SUBJ),

(2) ΣJ ∩AI (T) ⊆ AI (SUBJ), and

(3) ΣJ ∩ SI (T) ⊆ SI (SUBJ).

Proof. (1) Let a ∈ ΣJ ∩ Free(T). Now assume that a /∈ Free(SUBJ).
This means there must exist a transition (p, a, p′) ∈ δJ such that #{i ∈
J | proji

[2](p, p′) ∈ δi,a} > 1. Then Theorem 4.6.2 implies that there ex-
ists a (q, q′) ∈ δa such that projJ

[2](q, q′) = (p, p′), and thus #{i ∈ I |
proji

[2](q, q′) ∈ δi,a} > 1. This contradicts the fact that a is free in T . Hence
a ∈ Free(SUBJ).

(2,3) Analogous. -.

Note that the proof of Lemma 4.7.1 relies heavily on the observation that
in a subautomaton of a synchronized automaton no (new) transitions —
i.e. other than those obtained as projections of existing transitions of the
synchronized automaton — are introduced. Hence if there exists a transition
in SUBJ violating the free (ai , si) requirement for a, then Theorem 4.6.2
implies that this transition is present in T , i.e. there exists an “extension” of
this transition in T which also violates the free (ai , si) requirement for a.

The converses of the statements of Lemma 4.7.1 in general do not hold.
The reason for this resides in the fact that an action a that is not free in
a synchronized automaton T , is free in a subautomaton of T provided the

112 4. Synchronized Automata

restriction to a subset of the automata leads to dropping those automata
from T that caused a not to be free in T . The same reasoning can be applied
in case a is ai or si . In the following example we demonstrate this.

Example 4.7.2. (Example 4.4.8 continued) We have seen that in synchronized
automaton T 1 action a is neither free, nor ai , nor si . However, in subautoma-
ton SUB{2}(T 1) — which is essentially a copy of A2 — action a trivially is
free, ai , and si . -.

We now demonstrate that the converses of the statements of Lemma 4.7.1
do hold if always only one automaton participates in the execution of an
action, as is the case for internal actions. More general, whenever an action
only belongs to automata which are included in a subautomaton, then the
properties of being free (ai , si) are preserved from that subautomaton to the
synchronized automaton as a whole.

Lemma 4.7.3. Let ΣJ ∩ (
⋃

i∈I\J Σi) = ∅. Then

(1) Free(SUBJ) ⊆ ΣJ ∩ Free(T),

(2) AI (SUBJ) ⊆ ΣJ ∩ AI (T), and

(3) SI (SUBJ) ⊆ ΣJ ∩ SI (T).

Proof. (1) Let a ∈ Free(SUBJ). Hence a ∈ ΣJ . Now assume that a /∈
Free(T). Then there exists a transition (q, q′) ∈ δa that violates the require-
ment for a to be free in T . However, since ΣJ∩(

⋃
i∈I\J Σi) = ∅, we have that

for all i ∈ I \ J , a /∈ Σi. We conclude that the violation of the requirement
for a to be free in T thus occurs in SUBJ , i.e. projJ

[2](q, q′) violates the re-
quirement for a to be free in SUBJ , a contradiction. Hence a ∈ ΣJ ∩Free(T).

(2,3) Analogous. -.

Together with Lemma 4.7.1, this lemma implies the following result.

Theorem 4.7.4. Let ΣJ ∩ (
⋃

i∈I\J Σi) = ∅. Then

(1) ΣJ ∩ Free(T) = Free(SUBJ),

(2) ΣJ ∩AI (T) = AI (SUBJ), and

(3) ΣJ ∩ SI (T) = SI (SUBJ). -.

Finally, we conclude this section with a result on the inheritance of the max-
imal types of synchronization introduced in Section 4.5. We show that under
certain conditions, the property of an action a being maximal-free (maximal-
ai , maximal-si) in a synchronized automaton is inherited by each subautoma-
ton of that synchronized automaton having a as one of its actions.

4.7 Inheritance of Synchronizations 113

Theorem 4.7.5. Let a ∈ ΣJ . Then

(1) if δa=Rfree
a (S) and S is {a}-loop limited, then (δJ)a=Rfree

a ({Aj |j∈J}),

(2) if δa = Rai
a (S) (= ∅, then (δJ)a = Rai

a ({Aj | j ∈ J}), and

(3) if δa = Rsi
a (S), then (δJ)a = Rsi

a ({Aj | j ∈ J}).

Proof. (1) Let δa = Rfree
a (S) and let S be {a}-loop limited. Then according

to Lemma 4.7.1(1) we only need to prove that Rfree
a ({Aj | j ∈ J}) ⊆ (δJ)a.

Now let (q, q′) ∈ Rfree
a ({Aj | j ∈ J}). Then there exists a k ∈ J such that

projk
[2](q, q′) = (p, p′) ∈ δk,a and for all i ∈ J \ {k}, proji(q

′) = proji(q).
Since S is {a}-loop limited it follows from Theorem 4.6.10(2) that (p, a, p′)
is omnipresent in T . Together with the fact that δa = Rfree

a (S) this implies
that there must exist an (r, r′) ∈ δa such that projJ

[2](r, r′) = (q, q′) and thus
(q, q′) = projJ

[2](r, r′) ∈ (δJ)a.
(2) Let δa = Rai

a (S) (= ∅. Then by Lemma 4.7.1(2) we only need to prove
that Rai

a ({Aj | j ∈ J}) ⊆ (δJ)a. Now let (q, q′) ∈ Rai
a ({Aj | j ∈ J}). Then

there exists a K ⊆ J such that for all k ∈ K, a ∈ Σk, projk
[2](q, q′) ∈ δk,a,

and for all i ∈ J \K, proji
[2](q, q′) /∈ δi,a and a /∈ Σi. Since δa = Rai

a (S) (= ∅,
it follows from Theorem 4.6.6 that for all k ∈ K, (projk(q), a, projk(q

′)) is
present in T . Together with the fact that δa = Rai

a (S) this implies that
there must exist an (r, r′) ∈ δa such that projJ

[2](r, r′) = (q, q′) and thus
(q, q′) = projJ

[2](r, r′) ∈ (δJ)a.
(3) Let δa = Rsi

a (S). Then according to Lemma 4.7.1(3) we only need to
prove that Rsi

a ({Aj | j ∈ J}) ⊆ (δJ)a. Now let (q, q′) ∈ Rsi
a ({Aj | j ∈ J}).

Then there exists a K ⊆ J such that for all k ∈ K, projk
[2](q, q′) ∈ δk,a and

for all i ∈ J \K, proji
[2](q, q′) /∈ δi,a and a is not enabled in Ai at proji(q).

From Theorem 4.6.3 it now follows that for all k ∈ K, (projk(q), a, projk(q
′))

is omnipresent in T . Together with the fact that δa = Rsi
a (S) this implies

that there must exist an (r, r′) ∈ δa such that projJ
[2](r, r′) = (q, q′) and thus

(q, q′) = projJ
[2](r, r′) ∈ (δJ)a. -.

