
Team automata : a formal approach to the modeling of collaboration
between system components
Beek, M.H. ter

Citation
Beek, M. H. ter. (2003, December 10). Team automata : a formal approach to the modeling of
collaboration between system components. Retrieved from https://hdl.handle.net/1887/29570
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/29570
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/29570


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/29570 holds various files of this Leiden University 
dissertation. 
 
Author: Beek, Maurice H. ter 
Title: Team automata : a formal approach to the modeling of collaboration between 
system components 
Issue Date: 2003-12-10 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/29570


3. Automata

The basic concept underlying team automata is an automaton. An automaton
captures the idea of a system with states (configurations, possibly an infinite
number of them), together with actions the executions of which lead to (non-
deterministic) state changes. In addition some of the states may be designated
as initial states from which the automaton may start its executions. Also final
or accepting states may be distinguished, which can be used to define when an
execution of the automaton is considered successful. A particular automaton
model is the well-known finite (state) automaton. Such an automaton has a
finite set of states, with initial states and final states, as well as a finite set of
actions. Finite automata are among the most basic models in many branches
of computer science.

In this thesis automata are used as structures defining a state space that is
traversed by executing actions. They come into play when designing and an-
alyzing complex systems with a potentially infinite number of configurations
due to, e.g., unbounded data structures such as counters.

We begin this chapter by defining precisely the type of automata we shall
use in the sequel, thus laying the foundation on which we shall build our team
automata framework. Subsequently we review some notions from automata
theory.

3.1 Automata, Computations, and Behavior

Definition 3.1.1. An automaton is a construct A = (Q,Σ, δ, I), where

Q is the set of states of A, which may be infinite,
Σ is the set of actions of A such that Σ ∩Q = ∅,
δ ⊆ Q×Σ ×Q is the set of labeled transitions of A, and
I ⊆ Q is the set of initial states of A. -.

In the figures, the states of an automaton are drawn as circles and labeled
transitions appear as labeled arcs between states. Wavy arcs are used to
indicate the initial states. See, e.g., Figure 3.1.



30 3. Automata

Let A = (Q,Σ, δ, I) be an automaton and let a ∈ Σ. Then the set of a-
transitions (of A) is denoted by δa and is defined as δa = {(q, q′) | (q, a, q′) ∈
δ}. An a-transition (q, q) ∈ δa is called a loop (on a). We refer to A as the
trivial automaton if A = (∅,∅,∅,∅). Instead of labeled transition we often
simply say transition. Finally, a transition (q, q′) ∈ δa is called an outgoing
transition of q and an incoming transition of q′.

Executing an action in a certain state leads to a change of state as de-
scribed by the labeled transitions. The consecutive execution of a sequence
of actions from an initial state defines a computation.

Definition 3.1.2. Let A = (Q,Σ, δ, I) be an automaton. Then

(1) a finite computation of A is a finite sequence α = q0a1q1a2q2 · · ·anqn,
where n ≥ 0, qi ∈ Q for 0 ≤ i ≤ n, and aj ∈ Σ for 1 ≤ j ≤ n are such
that q0 ∈ I and (qi, ai+1, qi+1) ∈ δ for all 0 ≤ i < n;
if n = 0 and hence α = q0 ∈ I, then α is a trivial computation;
by CA we denote the set of all finite computations of A,

(2) an infinite computation of A is an infinite sequence α = q0a1q1a2q2 · · · ,
where qi ∈ Q for all i ≥ 0 and aj ∈ Σ for all j ≥ 1 are such that q0 ∈ I
and (qi, ai+1, qi+1) ∈ δ for all i ≥ 0;
by Cω

A we denote the set of all infinite computations of A, and

(3) the set of all computations of A is denoted by C∞
A and is defined as

C∞
A = CA ∪Cω

A. -.

Thus for a given automaton A = (Q,Σ, δ, I), its finite computations form
a finitary language CA ⊆ I(ΣQ)∗ while its infinite computations form an
infinitary languageCω

A ⊆ I(ΣQ)ω. Observe thatCA = ∅ if and only if I = ∅.
Moreover, Cω

A may be empty, even when CA is infinite (cf. Example 3.1.12).
The infinite computations of A can be expressed in terms of finite compu-

tations, viz. as limits of length-increasing sequences of finite computations.

Lemma 3.1.3. Let A = (Q,Σ, δ, I) be an automaton. Let α ∈ C∞
A . Then

α ∈ Cω
A if and only if there exist α1 ≤ α2 ≤ · · · ∈ CA such that for all

n ≥ 1, αn (= αn+1 and α = lim
n→∞

αn.

Proof. (If) Trivial.
(Only if) Obvious from the observation pref (α) ∩ I(ΣQ)∗ ⊆ CA. -.

Both finite and infinite computations are thus sequences of which every prefix
of odd length is a finite computation.



3.1 Automata, Computations, and Behavior 31

Theorem 3.1.4. Let A be an automaton. Then

α ∈ C∞
A if and only if for all n ≥ 1 there exist α1 ≤ α2 ≤ · · · ∈ CA such

that α = lim
n→∞

αn. -.

In fact, the infinite computations of an automaton are determined by its set
of finite computations.

Lemma 3.1.5. Let A and A′ be two automata. Then

if CA ⊆ CA′ , then Cω
A ⊆ Cω

A′ .

Proof. Let α ∈ Cω
A. Hence by Lemma 3.1.3, α = lim

n→∞
αn for computations

αn ∈ CA such that αn ≤ αn+1 and αn (= αn+1, for all n ≥ 1. Since CA ⊆
CA′ , again applying Lemma 3.1.3 (now in the other direction) yields that
α ∈ Cω

A′ . -.

Theorem 3.1.6. Let A and A′ be two automata. Then

C∞
A = C∞

A′ if and only if CA = CA′ . -.

Given a computation of an automaton one may choose to focus on certain
actions while filtering away other information. In this way, behavioral records
are made of computations.

Definition 3.1.7. Let A = (Q,Σ, δ, I) be an automaton and let Θ be an
alphabet disjoint from Q. Then

(1) v ∈ Θ∞ is a Θ-record of A if v = presΘ(α) for some α ∈ C∞
A ,

(2) the Θ-behavior of A is denoted by BΘ,∞
A and is defined as BΘ,∞

A =
presΘ(C

∞
A ),

(3) the finitary Θ-behavior of A is denoted by BΘ
A and is defined as BΘ

A =
BΘ,∞

A ∩Θ∗, and

(4) the infinitary Θ-behavior of A is denoted by BΘ,ω
A and is defined as

BΘ,ω
A = BΘ,∞

A ∩Θω. -.

If Σ is the full set of actions of automaton A, then a Σ-record is also simply
called a record and the (finitary or infinitary) Σ-behavior of A is also referred
to as the (finitary or infinitary) behavior of A, respectively.



32 3. Automata

ab
a

s1 t1
b

W1:

Fig. 3.1. Automaton W1.

Example 3.1.8. Let W1 = ({s1, t1}, {a, b}, δ1, {s1}), where δ1 = {(s1, b, s1),
(s1, a, t1), (t1, a, t1), (t1, b, s1)}, be an automaton modeling a wheel (of a car).
It is depicted in Figure 3.1.

The state s1 indicates that the wheel stands still, while the state t1 indi-
cates that the wheel turns. The result of accelerating, modeled by action a,
makes the wheel turn. The result of braking, modeled by action b causes the
wheel to stand still. Initially the wheel stands still, as indicated by the initial
state s1.

An example of a finite computation of W1 is α = s1at1bs1 ∈ CW1 ,
modeling accelerating and subsequently braking. The record of this com-
putation is presΣ(α) = ab, which is thus an element of the finitary be-
havior of W1: ab ∈ BΣ

W1
. An example of an infinite computation of W1 is

s1at1bs1bs1 · · · ∈ Cω
W1

, which thus leads to an example of an infinitary be-

havior abω ∈ BΣ,ω
W1

. -.

It is immediate that finite computations define finite records. In fact, all finite
Θ-records can be obtained from finite computations. On the other hand,
infinite computations may give rise to finite Θ-records even though infinite
Θ-records can only be obtained from infinite computations.

Lemma 3.1.9. Let A = (Q,Σ, δ, I) be an automaton and let Θ be an alpha-
bet disjoint from Q. Then

(1) BΘ
A = presΘ(CA) and

(2) BΘ,ω
A = presΘ(C

ω
A) ∩Θω.

Proof. (1) (⊇) Immediate.
(⊆) Let v ∈ Θ∗ and α ∈ C∞

A be such that presΘ(α) = v. Let
α1 ≤ α2 ≤ · · · ∈ CA be such that α = lim

n→∞
αn. Since presΘ is a homomor-

phism we have presΘ(α1) ≤ presΘ(α2) ≤ · · · . By definition lim
n→∞

presΘ(αn) =

presΘ(α) = v ∈ Θ∗, from which it follows that there exists an m ≥ 1 such
that presΘ(αm) = presΘ(αm+k) for all k ≥ 0. Hence presΘ(α) = presΘ(αm) ∈
presΘ(CA).



3.1 Automata, Computations, and Behavior 33

(2) (⊇) Immediate, by Definition 3.1.7(2,4).
(⊆) Let α ∈ BΘ,ω

A . Then Definition 3.1.7(2,4) implies α ∈ presΘ(C
∞
A ) ∩

Θω . Hence either α ∈ presΘ(C
ω
A) ∩Θω or α ∈ presΘ(CA) ∩Θω = ∅. -.

The finite computations thus determine the finitary behavior of an automa-
ton. By Theorem 3.1.6, moreover, they also determine its infinitary behavior
and thus the full behavior.

Theorem 3.1.10. Let A and A′ be two automata and let Θ be an alphabet
disjoint from their sets of states. Then

if CA = CA′ , then BΘ
A = BΘ

A′ and BΘ,ω
A = BΘ,ω

A′ . -.

Corollary 3.1.11. Let A and A′ be two automata and let Θ be an alphabet
disjoint from their sets of states. Then

if CA = CA′ , then BΘ,∞
A = BΘ,∞

A′ . -.

Unlike the situation for computations as formulated in Lemma 3.1.5 and
Theorem 3.1.6, the finitary behavior of an automaton does not determine
its infinitary behavior. The loss of information due to the omission of states
prohibits combining “matching” finite records into an infinite record.

Example 3.1.12. Consider the two automata A = (Q, {a}, δ, {q}) and A′ =
(Q′, {a}, δ′, {q′}), where Q = {q, q11, q21, q22, q31, q32, q33, . . . }, Q′ = {q′, q1,
q2, q3, . . . }, and δ and δ′ are as depicted in Figure 3.2.

It is easy to see that Cω
A = ∅, even though CA = {q, qaq11, qaq21aq22, . . . }

is infinite. We furthermore see that B{a}
A = B{a}

A′ = {λ, a, aa, aaa , . . . },

whereas aω ∈ B{a},∞
A′ \B{a},∞

A . In fact, BΣ,ω
A = ∅. -.

By considering automata with a possibly infinite set of states we have chosen
a computationally very powerful model. Any given Turing machine M can be
unfolded into an automaton A that has the same behavior: A has all possible
configurations of M as its set of states and a transition from a state C to C′

with label p whenever M can move from configuration C to configuration C′

by executing instruction p.
A direct consequence is that many problems or questions concerning au-

tomata that are decidable for finite automata are now undecidable, e.g., there
exists no effective procedure for deciding for a given automaton whether or
not a given state can be reached by a computation that starts from the initial
state. If this problem would be decidable, then an effective decision procedure
for the halting problem for Turing machines would exist, which is known to
be undecidable.



34 3. Automata

• • •

•

•

•

q

a a a

q21q11

q22 q32

q33

a a

a

q31

A′:A:

q′

a

a

a

q1

q2

q3

Fig. 3.2. Automata A and A′.

3.2 Properties of Automata

In this section we discuss some basic notions for automata. In three subsec-
tions we consider reduced versions of automata, the enabling of actions in
automata, and deterministic automata.

3.2.1 Reduced Versions

An automaton may have states, actions, or transitions that are “superfluous”
in the sense that they do not occur in any computation of the automaton.
Thus for the description and investigation of the dynamic — behavioral —
properties of an automaton these elements are often not relevant and may be
ignored.

In this subsection we introduce and relate to each other various reduced
versions of an automaton. A reduced version of an automaton has less states,



3.2 Properties of Automata 35

actions, or transitions than, but the same set of computations as, the original
automaton.

We begin by identifying those elements of an automaton that are crucial
for its set of computations and behavior, and which thus cannot be omitted
from an automaton without affecting its set of computations and behavior.

Definition 3.2.1. Let A = (Q,Σ, δ, I) be an automaton. Then

(1) a state q ∈ Q is reachable (in A) if there exists a computation α ∈ C∞
A

such that α = βqγ for some β ∈ (QΣ)∗ and γ ∈ (ΣQ)∞,

(2) an action a ∈ Σ is active (in A) if there exists a computation α ∈ C∞
A

such that α = βaγ for some β ∈ I(ΣQ)∗ and γ ∈ Q(ΣQ)∞, and

(3) a transition (q, a, q′) ∈ δ is useful (in A) if there exists a computation
α ∈ C∞

A such that α = βqaq′γ for some β ∈ (QΣ)∗ and γ ∈ (ΣQ)∞. -.

By Definition 3.1.7, an action can occur in a (Θ-)record of an automaton
if and only if it occurs in a computation of that automaton (and belongs
to Θ). It thus suffices to focus on computations only and there is no need
for an additional definition for actions occurring in the (Θ-)behavior of an
automaton.

Every occurrence of a state in a computation marks the end of a finite
computation (cf. the proof of Lemma 3.1.3). Thus a state is reachable if and
only if it can be reached as a result of a finite computation. Recall that the
initial states are always reachable by a trivial computation. Moreover, as
an immediate consequence of their definitions, it follows that reachability of
states, activity of actions, and usefulness of transitions can be established by
following the paths laid out by the labeled transitions starting from initial
states. However, one should keep in mind that — since no a priori constraints
are imposed on the state space, the alphabet, and the set of transitions of an
automaton — this is in general not an effective procedure.

Lemma 3.2.2. Let A = (Q,Σ, δ, I) be an automaton. Then

(1) a state q ∈ Q is reachable in A if and only if there exists a finite compu-
tation α ∈ CA such that α = βq for some β ∈ (QΣ)∗,

(2) a transition (q, a, q′) ∈ δ is useful in A if and only if q is reachable in A,

(3) an action a ∈ Σ is active in A if and only if there exists a useful transition
(q, a, q′) ∈ δ, and

(4) if (q, a, q′) ∈ δ is useful in A, then q′ is reachable in A and a is active in
A. -.



36 3. Automata

Definition 3.2.3. Let A be an automaton. Then

(1) its set of reachable states is denoted by QA,S,

(2) its set of active actions is denoted by ΣA,A, and

(3) its set of useful transitions is denoted by δA,T . -.

Whenever A is clear from the context, then we often simply use QS, ΣA, and
δT rather than QA,S , ΣA,A, and δA,T .

An immediate consequence of these definitions is the fact that the set of
computations of an arbitrary automaton contains the set CA of computations
of a given automaton A, if and only if QA,S is contained in its set of reachable
states, ΣA,A is contained in its set of active actions, δA,T is contained in its
set of useful transitions, and the initial states of A are among its initial states.

Lemma 3.2.4. Let A and A′ be two automata with sets of initial states IA
and IA′ , respectively. Then

CA ⊆ CA′ if and only if QA,S ⊆ QA′,S, ΣA,A ⊆ ΣA′,A, δA,T ⊆ δA′,T ,
and IA ⊆ IA′ . -.

The reduced versions of automata we are about to define will again be au-
tomata. Since they are the result of omitting — and not of adding — certain
elements, any reduced version of an automaton will always be contained in
the original automaton in the following sense.

Definition 3.2.5. Let A1 = (Q1,Σ1, δ1, I1) and A2 = (Q2,Σ2, δ2, I2) be two
automata. Then

A1 is contained in A2, denoted by A1 / A2, if Q1 ⊆ Q2, Σ1 ⊆ Σ2,
δ1 ⊆ δ2, and I1 ⊆ I2. -.

The containment relation / is reflexive and transitive and hence a partial
order on automata. Although it would be natural to say that A1 is a “sub-
automaton” of A2 whenever A1 / A2 holds, we refrain from doing so. The
reason being that this might lead to confusion with the notion of subautoma-
ton that we will introduce later in the context of synchronized automata.

Containment of one automaton in another implies that the first automa-
ton has no other (initial) states, actions, or transitions than those already
present in the second automaton. Consequently, it will also have no other
computations.

Lemma 3.2.6. Let A1 and A2 be two automata. Then



3.2 Properties of Automata 37

if A1 / A2, then CA1 ⊆ CA2 . -.

Note that by Lemma 3.1.5, CA1 ⊆ CA2 implies Cω
A1
⊆ Cω

A2
and it thus

suffices to refer to finite computations only.
Since an automaton may have states, actions, and transitions that never

occur in its computations, this statement cannot be reversed unless the con-
dition of containment is weakened by relating to initial states and useful
transitions only.

Lemma 3.2.7. Let A1 = (Q1,Σ1, δ1, I1) and A2 = (Q2,Σ2, δ2, I2) be two
automata. Then

CA1 ⊆ CA2 if and only if I1 ⊆ I2 and δA1,T ⊆ δ2. -.

A reduced version A′ of an automaton A lacks certain elements of A, but
should still define the same set of computations. Hence we require that A′

is an automaton. Furthermore, from here on we will focus on finite com-
putations. This is sufficient because according to Theorem 3.1.6 and Corol-
lary 3.1.11, equality of the sets of finite computations of A and A′ guarantees
that also the sets of all computations of A and A′ will be the same, as well
as their Θ-behavior (for every set of actions Θ).

We distinguish three different criteria that can be used to reduce an au-
tomaton. We define separately reductions based on states, on actions, and
on transitions, and subsequently we combine them. Action reductions and
transition reductions are both described relative to a given set Θ of actions,
similar to the definitions of the Θ-records and Θ-behavior of an automaton.

We begin by introducing the Θ-action-reduced version of an automaton
A, which is defined by omitting from the set of actions of A those actions
from Θ that are not active in A. Thus also the transitions of A which are
labeled with an action from Θ that is not active in A, will be omitted.

Definition 3.2.8. Let A = (Q,Σ, δ, I) be an automaton and let Θ be an
alphabet disjoint from Q. Then

(1) the Θ-action-reduced version of A is the automaton denoted by AΘ
A and

is defined as AΘ
A = (Q,ΣΘ

A,A, δ
Θ
A,A, I), where

ΣΘ
A,A = {a ∈ Σ | a ∈ Θ ⇒ a ∈ ΣA,A} and

δΘA,A = δ ∩ (Q×ΣΘ
A,A ×Q), and

(2) A is Θ-action reduced if A = AΘ
A. -.



38 3. Automata

Whenever the automaton A is clear from the context, then we may simply
write ΣΘ

A and δΘA rather than ΣΘ
A,A and δΘA,A, respectively.

Note that Σ∅

A = Σ and ΣΣ
A = ΣA. In general, ΣΘ

A = (Σ \Θ)∪ (ΣA ∩Θ).
Observe furthermore that in δΘA there may still be transitions labeled with a
symbol from Θ which are not useful in A. We have δΘA = {(q, a, q′) ∈ δ | a ∈
Θ ⇒ a ∈ ΣA}. Hence δ∅A = δ and δΣA ⊇ δT . Consequently A∅

A = A, which
shows that action reduction relative to ∅ does not affect the automaton.

Next we define the Θ-transition-reduced version of an automatonA. Tran-
sitions that are labeled with an action from Θ are retained only if they are
useful, while all other transitions remain.

Definition 3.2.9. Let A = (Q,Σ, δ, I) be an automaton and let Θ be an
alphabet disjoint from Q. Then

(1) the Θ-transition-reduced version of A is the automaton denoted by AΘ
T

and is defined as AΘ
T = (Q,Σ, δΘA,T , I), where

δΘA,T = {(q, a, q′) ∈ δ | a ∈ Θ ⇒ (q, a, q′) ∈ δA,T }, and

(2) A is Θ-transition reduced if A = AΘ
T . -.

Whenever the automaton A is clear from the context, then we may simply
write δΘT rather than δΘA,T .

Note that δ∅T = δ and thus A∅

T = A. Hence transition reduction relative
to ∅ does not affect the automaton. Moreover, δΣT = δT and — in general —
δΘT = (δ \ (Q×Θ ×Q)) ∪ (δT ∩ (Q×Θ ×Q)). In fact, δT ⊆ δΘT ⊆ δΘA . In the
following example we show that both of these inclusions can be proper.

Example 3.2.10. Let A = ({p, q}, {a, b}, δ, {p}), with δ = {(p, a, p), (q, a, q),
(q, b, p)}, be an automaton. It is depicted in Figure 3.3(a).

p

A{a}
T :

a

q

(b)

b
p q

(a)

A:

a a

b

Fig. 3.3. Automata A and A{a}
T .



3.2 Properties of Automata 39

It is easy to see that δT = {(p, a, p)}, i.e. A has only one useful transition.
This implies that ΣA = {a} and thus δ{a}A = δ, i.e. A is {a}-action reduced:

A{a}
A = A. It also implies that the {a}-transition-reduced version of A is

A{a}
T = ({p, q}, {a, b}, δ{a}T , {p}), with δ{a}T = {(p, a, p), (q, b, p)}, as depicted

in Figure 3.3(b). Consequently, δT " δ{a}T " δ{a}A . -.

Lemma 3.2.11. Let A = (Q,Σ, δ, I) be an automaton and let Θ be an al-
phabet disjoint from Q. Let AΘ

A = (Q,ΣΘ
A , δΘA , I) and let AΘ

T = (Q,Σ, δΘT , I).
Then

(1) δT = δΘT \ {(q, a, q′) ∈ δ | a /∈ Θ and (q, a, q′) /∈ δT } and

(2) δΘT = δΘA \ {(q, a, q′) ∈ δ | a ∈ Θ and (q, a, q′) /∈ δT }.

Proof. (1) (⊆) Immediate because δT consists only of useful transitions.
(⊇) This follows from the observation that all transitions (q, a, q′) ∈ δΘT ,

with a ∈ Θ, are useful in A.
(2) (⊆) Let (q, a, q′) ∈ δΘT . Thus (q, a, q′) ∈ δ.
If a /∈ Θ, then a ∈ ΣΘ

A and so (q, a, q′) ∈ δΘA .
If a ∈ Θ, then (q, a, q′) ∈ δT .

Hence (q, a, q′) ∈ δΘA \ {(q, a, q′) ∈ δ | a ∈ Θ and (q, a, q′) /∈ δT }.
(⊇) Let (q, a, q′) ∈ δΘA be such that a ∈ Θ implies (q, a, q′) ∈ δT . Then by

Definition 3.2.9(1), (q, a, q′) ∈ δΘT . -.

It is immediate from the definitions that for every automaton A and for
every set of actions Θ, both the Θ-action-reduced version AΘ

A of A and its Θ-
transition-reduced version AΘ

T are contained in A. Consequently, CAΘ
A
⊆ CA

and CAΘ
T
⊆ CA always hold due to Lemma 3.2.6. In addition, Lemma 3.2.11

implies that the transition relations of both AΘ
A and AΘ

T contain δT . Since
AΘ

A and AΘ
T have the same initial states as A, it follows from Lemma 3.2.7

that CA ⊆ CAΘ
A
and CA ⊆ CAΘ

T
.

We conclude that Definitions 3.2.8 and 3.2.9 thus satisfy the requirement
that the computations of an automaton are not affected by the reduction.

Theorem 3.2.12. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then

CA = CAΘ
A
= CAΘ

T
. -.

An immediate consequence of this theorem is that an automaton, its Θ-
action-reduced version, and its Θ-transition-reduced version, all three have
the same reachable states, active actions, and useful transitions.



40 3. Automata

Corollary 3.2.13. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then

(1) QA,S = QAΘ
A ,S = QAΘ

T ,S,

(2) ΣA,A = ΣAΘ
A ,A = ΣAΘ

T ,A, and

(3) δA,T = δAΘ
A ,T = δAΘ

T ,T . -.

In Definitions 3.2.8 and 3.2.9, the reduced versions of an automaton are
defined relative to some given alphabet Θ. From both definitions it is however
immediately clear that actions which do belong to Θ but not to the alphabet
of the automaton, are not even considered.

Lemma 3.2.14. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then

(1) AΘ
A = AΘ

T = A whenever Θ ∩Σ = ∅,

(2) AΘ
A = AΘ∩Σ

A , and

(3) AΘ
T = AΘ∩Σ

T . -.

In addition, both in Definition 3.2.8 and in Definition 3.2.9 the role of each
action is assessed on an individual basis, and reduction relative to any action
is independent of the role of other actions.

Example 3.2.15. (Example 3.2.10 continued) Let A2 be the automaton ob-
tained fromA by adding the transition (p, c, p) to its transition relation. Then
ΣA2,A = {a, c} are the active actions of A2. Hence A2 is {a}-action reduced,
{c}-action reduced, and {a, c}-action reduced. Since b is not active in A2 it
follows that A2 is neither {b}-action reduced, nor {a, b}-action reduced, nor
{b, c}-action reduced.

The useful transitions of A2 are δA2,T = {(p, a, p), (p, c, p)}. Hence A2 is
not {a}-transition reduced as (q, a, q) is not useful in A2. Since also (q, b, p)
is not useful in A2, it follows that A2 is neither {b}-transition reduced nor
{a, b}-transition reduced. Because the only c-transition is useful in A2, we
do have that A2 is {c}-transition reduced. However, A2 is neither {a, c}-
transition reduced nor {b, c}-transition reduced. -.

Consequently, as formally stated in the next lemma, the order in which ac-
tions are considered is irrelevant and has no effect on the resulting reduced
version.



3.2 Properties of Automata 41

Lemma 3.2.16. Let A = (Q,Σ, δ, I) be an automaton, let Θ be an alphabet
disjoint from Q, and let Θ1,Θ2 ⊆ Θ be such that Θ = Θ1 ∪Θ2. Then

(1) (AΘ1
A )Θ2

A = AΘ
A and

(2) (AΘ1
T )Θ2

T = AΘ
T .

Proof. (1) Let AΘ1
A = (Q,ΣΘ1

A , δΘ1
A , I), (AΘ1

A )Θ2
A = (Q, (ΣΘ1

A )Θ2
A , (δΘ1

A )Θ2
A , I),

and AΘ1∪Θ2
A = AΘ

A = (Q,ΣΘ
A , δΘA , I). First we prove that (ΣΘ1

A )Θ2
A = ΣΘ

A .
Let a ∈ (ΣΘ1

A )Θ2
A . Then a ∈ ΣΘ1

A , which implies that a ∈ Σ.
If a /∈ Θ, then a ∈ ΣΘ

A by definition.
If a ∈ Θ1, then a ∈ ΣA,A because a ∈ ΣΘ1

A , and hence a ∈ ΣΘ
A .

If a ∈ Θ2, then a ∈ Σ
A

Θ1
A ,A

because a ∈ (ΣΘ1
A )Θ2

A . By Corollary 3.2.13 it

follows that a ∈ ΣA,A and hence a ∈ ΣΘ
A .

Now assume that a ∈ ΣΘ
A . Then a ∈ Σ.

If a /∈ Θ, then by definition a ∈ ΣΘ1
A and a ∈ (ΣΘ1

A )Θ2
A .

If a ∈ Θ, then a ∈ ΣA,A because a ∈ ΣΘ
A and by Corollary 3.2.13 also

a ∈ Σ
A

Θ1
A ,A

. Hence a ∈ ΣΘ1
A and a ∈ (ΣΘ1

A )Θ2
A .

Having established (ΣΘ1
A )Θ2

A = ΣΘ
A we immediately obtain that (δΘ1

A )Θ2
A =

δΘ1
A ∩(Q×(ΣΘ1

A )Θ2
A ×Q) = (δ∩(Q×ΣΘ1

A ×Q))∩(Q×ΣΘ
A×Q). Since ΣΘ

A ⊆ ΣΘ1
A

this yields (δΘ1
A )Θ2

A = δ ∩ (Q ×ΣΘ
A ×Q) = δΘA .

(2) Let AΘ1
T = (Q,Σ, δΘ1

T , I), let (AΘ1
T )Θ2

T = (Q,Σ, (δΘ1
T )Θ2

T , I), and let
AΘ1∪Θ2

T = AΘ
T = (Q,Σ, δΘT , I). We prove that (δΘ1

T )Θ2
T = δΘT .

Let (q, a, q′) ∈ (δΘ1
T )Θ2

T . Then (q, a, q′) ∈ δΘ1
T , which implies (q, a, q′) ∈ δ.

If a /∈ Θ, then (q, a, q′) ∈ δΘT by definition.
If a ∈ Θ1, then (q, a, q′) ∈ δA,T because (q, a, q′) ∈ δΘ1

T , and hence
(q, a, q′) ∈ δΘT .
If a ∈ Θ2, then (q, a, q′) ∈ δ

A
Θ1
T ,T

because (q, a, q′) ∈ (δΘ1
T )Θ2

T . By Corol-

lary 3.2.13 it follows that (q, a, q′) ∈ δA,T and hence (q, a, q′) ∈ δΘT .
Now assume that (q, a, q′) ∈ δΘT . Thus (q, a, q

′) ∈ δ.
If a /∈ Θ, then by definition (q, a, q′) ∈ δΘ1

T and (q, a, q′) ∈ (δΘ1
T )Θ2

T .
If a ∈ Θ, then (q, a, q′) ∈ δA,T because (q, a, q′) ∈ δΘT . Thus by Corol-
lary 3.2.13 we have (q, a, q′) ∈ δ

A
Θ1
T ,T

. Hence (q, a, q′) ∈ δΘ1
T and (q, a, q′) ∈

(δΘ1
T )Θ2

T . -.

An immediate consequence of this lemma is that the Θ-action-reduced and
the Θ-transition-reduced versions of an automaton are indeed Θ-action-
reduced and Θ-transition-reduced automata, respectively.

Theorem 3.2.17. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then



42 3. Automata

(1) AΘ
A is Θ-action reduced and

(2) AΘ
T is Θ-transition reduced.

Proof. AΘ
A = (AΘ

A)
Θ
A and AΘ

T = (AΘ
T )

Θ
T follow directly from Lemma 3.2.16. -.

A more general consequence is that reduction relative to more actions has a
cumulative effect, but only for those actions that have not yet been considered
there is an effect.

Lemma 3.2.18. Let A = (Q,Σ, δ, I) be an automaton and let Θ1,Θ2 be
alphabets disjoint from Q and such that (Θ1 ∩Σ) ⊆ Θ2. Then

(1) (i) (AΘ2
A )Θ1

A = AΘ2
A ,

(ii) AΘ2
A / AΘ1

A , and

(iii) if A = AΘ2
A , then A = AΘ1

A , and

(2) (i) (AΘ2
T )Θ1

T = AΘ2
T ,

(ii) AΘ2
T / AΘ1

T , and

(iii) if A = AΘ2
T , then A = AΘ1

T .

Proof. (1) (i) Let Σ′ be the alphabet of AΘ2
A . Thus Σ′ ⊆ Σ and hence

Θ1 ∩ Σ′ ⊆ Θ1 ∩ Σ ⊆ Θ2. From Lemma 3.2.14(2) we know that (AΘ2
A )Θ1

A =
(AΘ2

A )Θ1∩Σ
′

A . Combining these facts with Lemma 3.2.16(1) yields (AΘ2
A )Θ1

A =

(AΘ2
A )Θ1∩Σ

′

A = AΘ2∪(Θ1∩Σ
′)

A = AΘ2
A .

(ii) Lemma 3.2.16(1) implies that (AΘ2
A )Θ1

A = (AΘ1
A )Θ2

A . Thus, by the
above, AΘ2

A = (AΘ1
A )Θ2

A . Since reduction always yields an automaton con-
tained in the original one, we now have AΘ2

A = (AΘ1
A )Θ2

A / AΘ1
A .

(iii) Let A = AΘ2
A . Then using (i) above we conclude that A = AΘ2

A =
(AΘ2

A )Θ1
A = AΘ1

A .
(2) (i) First we note that Σ is the alphabet of AΘ2

T . By Lemmata 3.2.13(3)

and 3.2.16(2) we have (AΘ2
T )Θ1

T = (AΘ2
T )Θ1∩Σ

T = AΘ2∪(Θ1∩Σ)
T = AΘ2

T .
(ii) Lemma 3.2.16(1) implies that (AΘ2

T )Θ1
T = (AΘ1

T )Θ2
T . Then, by the

above, AΘ2
T = (AΘ1

T )Θ2
T . Since the transition reductions always yield an au-

tomaton contained in the original one, we now have AΘ2
T = (AΘ1

T )Θ2
T / AΘ1

T .
(iii) Let A = AΘ2

T . Then from (2) (i) we conclude that A = AΘ2
T =

(AΘ2
T )Θ1

T = AΘ2
T . -.

Since all actions of an automaton A with alphabet Σ have been considered,
a further reduction with respect to actions of AΣ

A or a further reduction with
respect to transitions of AΣ

T thus has no additional effect.



3.2 Properties of Automata 43

Theorem 3.2.19. Let A = (Q,Σ, δ, I) be an automaton and let Θ be an
alphabet disjoint from Q. Then

(1) AΣ
A / AΘ

A and

(2) AΣ
T / AΘ

T . -.

From Lemma 3.2.6 it follows that whenever an automaton A1 is contained
in an automaton A2, then all elements which are superfluous in A2 will cer-
tainly be superfluous in A1. This implies that action reduction and transition
reduction are monotonous operations with respect to containment (/).

Lemma 3.2.20. Let A1 = (Q1,Σ1, δ1, I1) and A2 = (Q2,Σ2, δ2, I2) be two
automata such that A1 / A2 and let Θ be an alphabet disjoint from Q1 ∪Q2.
Then

(1) (A1)ΘA / (A2)ΘA and

(2) (A1)ΘT / (A2)ΘT .

Proof. (1) Let (A1)ΘA = (Q1, (Σ1)ΘA , (δ1)
Θ
A , I1) and let (A2)ΘA = (Q2, (Σ2)ΘA ,

(δ2)ΘA , I2). Since A1 / A2 we know that Q1 ⊆ Q2 and I1 ⊆ I2. By
Lemma 3.2.6, CA1 ⊆ CA2 and thus every action that is active in A1 is also
active in A2. Hence (Σ1)ΘA ⊆ (Σ2)ΘA . This in turn implies that (δ1)ΘA ⊆ (δ2)ΘA
because the transition relation of A1 is contained in that of A2. We conclude
that (A1)ΘA / (A2)ΘA .

(2) Let (A1)ΘT = (Q1,Σ1, (δ1)ΘT , I1) and let (A2)ΘT = (Q2,Σ2, (δ2)ΘT , I2).
Since A1 / A2 we know that Q1 ⊆ Q2, Σ1 ⊆ Σ2, and I1 ⊆ I2. From the fact
that CA1 ⊆ CA2 by Lemma 3.2.6, we deduce that every transition that is
useful in A1 is useful also in A2. Hence (δ1)ΘT ⊆ (δ2)ΘT and we conclude that
(A1)ΘT / (A2)ΘT . -.

Given an alphabet Θ, an automaton A may contain many automata that
are Θ-action reduced or Θ-transition reduced. We can now show that among
these AΘ

A and AΘ
T , respectively, are the largest (with respect to containment).

Lemma 3.2.21. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Let A′ / A. Then

(1) if A′ is Θ-action reduced, then A′ / AΘ
A, and

(2) if A′ is Θ-transition reduced, then A′ / AΘ
T .

Proof. Since A′ / A, Lemma 3.2.20 implies (A′)ΘA / AΘ
A and (A′)ΘT / AΘ

T .
Hence if A′ = (A′)ΘA , then A′ / AΘ

A , and if A′ = (A′)ΘT , then A′ / AΘ
T . -.



44 3. Automata

Theorem 3.2.22. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then

(1) AΘ
A is the largest Θ-action-reduced automaton contained in A and

(2) AΘ
T is the largest Θ-transition-reduced automaton contained in A.

Proof. Immediate from Theorem 3.2.17 and Lemma 3.2.21. -.

For a given automaton A and an alphabet Θ, the difference between A and
AΘ

A and between A and AΘ
T is thus minimal. Nevertheless, by definition, the

remaining actions of Θ in AΘ
A are active in both A and AΘ

A , and the remaining
transitions in AΘ

T with a label from Θ are useful in both A and AΘ
T . Hence,

a further reduction of AΘ
A or AΘ

T that will not affect the computations is
only feasible when other elements are considered. We already observed in
Theorem 3.2.19 that in case all actions of A have been involved in action
reduction (yielding AΣ

A) or transition reduction (yielding AΣ
T ), further action

reduction or transition reduction, respectively, will have no additional effect.
From Definitions 3.2.8 and 3.2.9 and the observations immediately follow-

ing these definitions we know that given an automaton A = (Q,Σ, δ, I) we
have AΣ

A = (Q,ΣA,A, δΣA , I) and AΣ
T = (Q,Σ, δA,T , I), with ΣA,A ⊆ Σ and

δA,T ⊆ δΣA . Hence AΣ
A and AΣ

T are in general incomparable. We now consider
the effect of combining action and transition reductions.

Lemma 3.2.23. Let A = (Q,Σ, δ, I) be an automaton and let Θ1,Θ2 be
alphabets disjoint from Q. Then

(AΘ1
A )Θ2

T = (AΘ2
T )Θ1

A .

Proof. Let AΘ1
A = (Q,ΣΘ1

A , δΘ1
A , I) and AΘ2

T = (Q,Σ, δΘ2
T , I). Then (AΘ1

A )Θ2
T

= (Q,ΣΘ1
A , δ2, I) with δ2 = {(q, a, q′) ∈ δΘ1

A | a ∈ Θ2 ⇒ (q, a, q′) ∈ δ
A

Θ1
A ,T

}.

By Corollary 3.2.13(3), (q, a, q′) ∈ δ
A

Θ1
A ,T

if and only if (q, a, q′) ∈ δA,T .

Hence δ2 = {(q, a, q′) ∈ δΘ1
A | a ∈ Θ2 ⇒ (q, a, q′) ∈ δA,T } = δΘ1

A ∩ δΘ2
T =

δΘ2
T ∩ (δ∩ (Q×ΣΘ1

A ×Q)). Since δΘ2
T ⊆ δ, we have δ2 = δΘ2

T ∩ (Q×ΣΘ1
A ×Q).

Next consider (AΘ2
T )Θ1

A = (Q,Σ1, δ1, I), with Σ1 = {a ∈ Σ | a ∈ Θ1 ⇒
a ∈ Σ

A
Θ2
T ,A

} and δ1 = δΘ2
T ∩(Q×Σ1×Q). By Corollary 3.2.13(2), a ∈ Σ

A
Θ2
T ,A

if and only if a ∈ ΣA,A. Thus Σ1 = {a ∈ Σ | a ∈ Θ1 ⇒ a ∈ ΣA,A} = ΣΘ1
A .

Hence δ1 = δΘ2
T ∩ (Q × ΣΘ1

A × Q) = δ2. We thus conclude that (AΘ1
A )Θ2

T =
(AΘ2

T )Θ1
A . -.

By this lemma, the order in which action and transition reductions are ap-
plied is irrelevant. Together with Lemma 3.2.16 this implies that for every



3.2 Properties of Automata 45

automaton A, any finite succession of action reductions and transition re-
ductions (relative to certain sets of actions) yields an automaton of the form
(AΘ1

A )Θ2
T = (AΘ2

T )Θ1
A .

Example 3.2.24. (Example 3.2.10 continued) We consider A, as depicted in
Figure 3.3(a). Since b is not active in A, the {b}-action-reduced version
of A is A{b}

A = ({p, q}, {a}, {(p, a, p), (q, a, q)}, {p}). Because (q, a, q) is not

useful in A{b}
A , the {a}-transition-reduced version of A{b}

A is (A{b}
A ){a}T =

({p, q}, {a}, {(p, a, p)}, {p}).
Now we consider the {a}-transition-reduced versionA{a}

T ofA, as depicted

in Figure 3.3(b). Since b is not active in A{a}
T , the {b}-action-reduced version

of A{a}
T is (A{a}

T ){b}A = (A{b}
A ){a}T . -.

Theorem 3.2.25. Let A be an automaton and let Θ1,Θ2 be alphabets dis-
joint from its set of states. Then

(1) (AΘ1
A )Θ2

T is the largest automaton contained in A that is both Θ1-action
reduced and Θ2-transition reduced, and

(2) C
(A

Θ1
A )

Θ2
T

= CA.

Proof. (1) By Lemma 3.2.23, (AΘ1
A )Θ2

T = (AΘ2
T )Θ1

A . Using Lemma 3.2.16 it
is easy to see that (AΘ1

A )Θ2
T is both Θ1-action reduced and Θ2-transition re-

duced. Now let A1 be an automaton contained in A. Then, by Lemma 3.2.20,
(A1)

Θ1
A / AΘ1

A and thus ((A1)
Θ1
A )Θ2

T / (AΘ1
A )Θ2

T . If A1 is Θ1-action reduced
and Θ2-transition reduced, then A1 = (A1)

Θ1
A and A1 = (A1)

Θ2
T . In that case

we have A1 = (A1)
Θ1
A = ((A1)

Θ1
A )Θ2

T / (AΘ1
A )Θ2

T .
(2) From Theorem 3.2.12 directly follows C

(A
Θ1
A )

Θ2
T

= C
A

Θ1
A

= CA. -.

In particular we now have that given an automaton A = (Q,Σ, δ, I), the
two automata (AΣ

A)
Σ
T and (AΣ

T )
Σ
A are the same. In fact, the definitions

together with Theorem 3.2.12 and Corollary 3.2.13 imply that (AΣ
A )ΣT =

(Q,ΣA,A, δA,T , I) = (AΣ
T )

Σ
A and this automaton has neither superfluous ac-

tions nor superfluous transitions.

Theorem 3.2.26. Let A = (Q,Σ, δ, I) be an automaton. Then

(1) AΣ
T is the least automaton with set of states Q and alphabet Σ such that

CAΣ
T
= CA, and

(2) (AΣ
A)

Σ
T is the least automaton with set of states Q such that C(AΣ

A )ΣT
=

CA.



46 3. Automata

Proof. By Theorem 3.2.12, CAΣ
T

= CA = CAΣ
A

= C(AΣ
A )ΣT

. As observed
before, AΣ

T = (Q,Σ, δA,T , I) and (AΣ
A)

Σ
T = (Q,ΣA,A, δA,T , I). Now assume

that A′ = (Q,Σ′, δ′, I ′) is an automaton such that CA′ = CA. Thus I ′ = I,
δA′,T = δA,T , and ΣA′,A = ΣA,A. Since δA′,T ⊆ δ′ and ΣA′,A ⊆ Σ′ we have
(AΣ

A )ΣT / A′, and if Σ′ = Σ, then we have AΣ
T / A′. -.

Finally, we consider (additional) reductions with respect to states.
The state-reduced version of an automaton is defined by omitting the

non-reachable states from its specification. Consequently, the outgoing and
incoming transitions of these states are no longer proper transitions and thus
disappear as well.

Definition 3.2.27. Let A = (Q,Σ, δ, I) be an automaton. Then

(1) the state-reduced version of A is the automaton denoted by AS and is
defined as AS = (QS ,Σ, δT , I), and

(2) A is state reduced if A = AS. -.

Note that δT = {(q, a, q′) ∈ δ | q, q′ ∈ QS} by Lemma 3.2.2. Exactly those
transitions that are outgoing or incoming transitions of a non-reachable state
of A have thus been omitted. Hence δT = δ ∩ (QS × Σ × QS) and, since
I ⊆ QS , AS is well defined. Now Lemma 3.2.7 immediately implies that
CA ⊆ CAS . Furthermore, since AS / A we know from Lemma 3.2.6 that
CAS ⊆ CA.

Theorem 3.2.28. Let A be an automaton. Then

CA = CAS . -.

Example 3.2.29. (Example 3.2.10 continued) Consider the automaton A de-
picted in Figure 3.3(a). We have seen that δT = {(p, a, p)}. This im-
plies that QS = {p}. Hence the state-reduced version of A is AS =
({p}, {a, b}, {(p, a, p)}, {p}) and thus CA = CAS = {p, pap, papap, . . .}. -.

Using the notion of a state-reduced version we can now reformulate Lem-
mata 3.2.6 and 3.2.7.

Lemma 3.2.30. Let A1 = (Q1,Σ1, δ1, I1) and A2 = (Q2,Σ2, δ2, I2) be two
automata such that Σ1 ⊆ Σ2. Then

CA1 ⊆ CA2 if and only if (A1)S / (A2)S.



3.2 Properties of Automata 47

Proof. (Only if) Let CA1 ⊆ CA2 . Then by Lemma 3.2.7, I1 ⊆ I2 and δA1,T ⊆
δ2. In fact, δA1,T ⊆ δA2,T holds because all transitions in δA1,T are used in
the computations of A2. From δA1,T ⊆ δA2,T and Lemma 3.2.2 now follows
that we also have QA1,S ⊆ QA2,S . Together with the fact that Σ1 ⊆ Σ2 this
proves that (A1)S / (A2)S .

(If) Let (A1)S / (A2)S . Then CA1 = C(A1)S ⊆ C(A2)S = CA2 by
Lemma 3.2.6 and Theorem 3.2.28. -.

As a consequence we obtain that also state reduction is a monotonous oper-
ation with respect to containment (/).

Lemma 3.2.31. Let A1 and A2 be two automata such that A1 / A2. Then

(A1)S / (A2)S.

Proof. By Lemma 3.2.6, CA1 ⊆ CA2 , and since the alphabet of A1 is con-
tained in that of A2, Lemma 3.2.30 implies that (A1)S / (A2)S . -.

Another consequence of Lemma 3.2.30 is that once an automaton has been
reduced with respect to its states, no further state reduction is possible.

Theorem 3.2.32. Let A be an automaton. Then

AS is state reduced.

Proof. By definition, A and AS have the same alphabet. By Theorem 3.2.28,
CA = CAS . Since A and AS have the same alphabet we can now apply
Lemma 3.2.30 twice and thus obtain A = (AS)S . Consequently, AS is state
reduced. -.

A state-reduced version of an automaton has neither superfluous states nor
superfluous transitions.

Theorem 3.2.33. Let A = (Q,Σ, δ, I) be an automaton. Then

AS is the least automaton with alphabet Σ such that CAS = CA.

Proof. By definition, AS and A have the same alphabet. By Theorem 3.2.28,
CAS = CA. Now assume that A′ is an automaton with alphabet Σ and
such that CA = CA′ . Then by applying Lemma 3.2.30 twice we have AS =
(A′)S / A′. -.

Though an automaton A may still contain many automata that are state
reduced, we now show that among these AS is the largest (with respect to
containment).



48 3. Automata

Lemma 3.2.34. Let A be an automaton and let A′ / A. Then

if A′ is state reduced, then A′ / AS .

Proof. If A′ = (A′)S , then by Lemma 3.2.31, A′ = (A′)S / AS . -.

The difference between A and AS is thus minimal.

Theorem 3.2.35. Let A be an automaton. Then

AS is the largest state-reduced automaton contained in A.

Proof. Immediate from Theorem 3.2.32 and Lemma 3.2.34. -.

A further reduction can only be achieved through the actions and transitions.
We thus combine state reductions with action reductions and transition re-
ductions.

Lemma 3.2.36. Let A = (Q,Σ, δ, I) be an automaton and let Θ be an al-
phabet disjoint from Q. Then

(1) (AΘ
A)S = (AS)ΘA and

(2) (AΘ
T )S = (AS)ΘT = AS .

Proof. (1) Let AΘ
A = (Q,ΣΘ

A , δΘA , I). By Corollary 3.2.13, QAΘ
A ,S = QA,S and

δAΘ
A ,T = δA,T . Hence (AΘ

A)S = (QA,S ,ΣΘ
A , δA,T , I).

Next we consider (AS)ΘA = (Q′,Σ′, δ′, I ′). By Definitions 3.2.8 and 3.2.27,
I ′ = I and Q′ = QA,S . Furthermore, Σ′ = {a ∈ Σ | a ∈ Θ ⇒ a ∈ ΣAS ,A}.
Since CAS = CA by Theorem 3.2.28, we have Σ′ = {a ∈ Σ | a ∈ Θ ⇒
ΣA,A} = ΣΘ

A . Finally, δ′ = δA,T ∩ (Q × ΣΘ
A × Q) = δA,T . Hence (AΘ

A)S =
(AS)ΘA .

(2) Both A and AΘ
T have alphabet Σ. By Theorem 3.2.12,CA = CAΘ

T
and

thus applying Lemma 3.2.30 twice yields AS = (AΘ
T )S . Also A and (AS)ΘT

have the same alphabet. Since CA = C(AS)ΘT
by Theorems 3.2.12 and 3.2.28,

applying Lemma 3.2.30 twice yields AS = ((AS)ΘT )S . ThusAS = ((AS)ΘT )S /
(AS)ΘT / AS and hence it must be the case that AS = (AS)ΘT . -.

Transition reduction in the context of state reduction thus has no effect. All
transitions that are not useful will disappear by the state reduction.

Theorem 3.2.37. Let A be a state-reduced automaton and let Θ be an al-
phabet disjoint from its set of states. Then

A is Θ-transition reduced.



3.2 Properties of Automata 49

Proof. Since A is state reduced we have A = AS . Then Lemma 3.2.36(2)
implies AΘ

T = (AS)ΘT = AS = A and hence A is Θ-transition reduced. -.

Example 3.2.38. (Example 3.2.29 continued) By definition every transition
of AS is useful. Hence AS trivially is Θ-transition reduced for any set of
actions Θ. -.

Lemmata 3.2.16, 3.2.23, and 3.2.36 now imply that for every automaton A,
any finite succession of action reductions and state reductions (at least one)
has the same effect as one state reduction and one action reduction (relative
to some alphabet Θ) and yields an automaton (AΘ

A)S = (AS)ΘA.

Example 3.2.39. (Examples 3.2.24 and 3.2.29 continued) Consider the state-
reduced version AS of A. Since ΣAS ,A = {a}, the {b}-action-reduced version

of AS is (AS)
{b}
A = ({p}, {a}, {(p, a, p)}, {p}).

Now consider the {b}-action-reduced versionA{b}
A ofA. We have seen that

its only useful transition is (p, a, p), which implies that q is not reachable and
thus (A{b}

A )S = (AS)
{b}
A . -.

Theorem 3.2.40. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then

(AΘ
A)S is the largest automaton contained in A that is both state reduced

and Θ-action reduced.

Proof. By Lemma 3.2.36(1) and Theorems 3.2.17(1) and 3.2.32, (AΘ
A)S =

(AS)ΘA is Θ-action reduced and state reduced.
Now let A1 / A. Then by Lemma 3.2.20(1), (A1)ΘA / AΘ

A , and by
Lemma 3.2.31, ((A1)ΘA)S / (AΘ

A)S . If A1 is Θ-action reduced, then by
definition (A1)ΘA = A1. If — in addition — it is state reduced, then
A1 = (A1)S = ((A1)ΘA)S / (AΘ

A)S . -.

Summarizing, an automaton may have superfluous states, actions, or tran-
sitions, which can be omitted without affecting its operational potential (as
represented by its set of finite computations). We have considered reductions
with respect to each of these elements separately, and in combination. It has
been shown that transition reduction is implied by state reduction, whereas
the other combinations of reductions are stronger than each reduction sep-
arately. Consequently, once an automaton has been reduced with respect
to states and actions, then it cannot be reduced any further without losing
computations.

In correspondence to the notions of Θ-records and Θ-behavior of an au-
tomaton, both action reduction and transition reduction have been investi-
gated relative to an alphabet. In case no special actions are distinguished and



50 3. Automata

every element of the alphabet of an automaton is considered, then we drop
in the sequel — as before — the reference to the alphabet if this cannot lead
to confusion.

The above implies that for an automaton A = (Q,Σ, δ, I) we now have
AA = AΣ

A as its action-reduced version, and we have AT = AΣ
T as its

transition-reduced version. Furthermore, we will refer to AR = (AA)S =
(AS)A as the reduced version of A. Note that the definitions of AS and
(AS)ΣA , together with Theorem 3.2.28 and Corollary 3.2.13, imply that the
automaton AR is specified as AR = (QS ,ΣA, δT , I). Hence AR has no super-
fluous elements at all.

Theorems 3.2.37 and 3.2.40 imply that AR is the largest automaton con-
tained in A that is state reduced, action reduced, and transition reduced,
and has the same computations as A. We now show that AR is the only such
automaton.

Theorem 3.2.41. Let A = (Q,Σ, δ, I) be an automaton. Then

AR is the unique automaton contained in A that is state reduced, action
reduced, and transition reduced, and such that CAR = CA.

Proof. Let A′ = (Q′,Σ′, δ′, I ′) be an action-reduced, transition-reduced, and
state-reduced automaton such that A′ / A. From Theorems 3.2.37 and 3.2.40
we know that A′ / AR.

Now assume that CA′ = CA. Then QA′,S = QA,S , ΣA′,A = ΣA,A,
δA′,T = δA,T , and I ′ = I. Since QA′,S ⊆ Q′, ΣA′,A ⊆ Σ′, and δA′,T ⊆ δ′, we
have AR = (QA,S ,ΣA,A, δA,T , I) / A′. We thus conclude that A′ = AR. -.

3.2.2 Enabling

For an arbitrary automaton and a given action, it is in general not the case
that this action can always (i.e. at any give state) be executed by the au-
tomaton. For certain types of systems (such as, e.g., reactive systems) it may
however be crucial that specific actions (in reaction to stimuli from the en-
vironment) can always be executed. Thus when such a system is modeled as
an automaton, the transition relation should contain a transition for each of
these actions at every (reachable) state.

In this subsection, we define enabledness of actions as a local (state de-
pendent) property of the transition relation and then lift it to the level of
the automaton. This contrasts with our approach in the previous subsection
in which the role of states, actions, and transitions was assessed on basis of
their occurrence in computations.



3.2 Properties of Automata 51

Definition 3.2.42. Let A = (Q,Σ, δ, I) be an automaton. Then

(1) an action a ∈ Σ is enabled (in A) at a state q ∈ Q, denoted by a enA q,
if (q, a, q′) ∈ δ for some q′ ∈ Q.

Let Θ be an alphabet disjoint from Q. Then

(2) A is Θ-enabling if for all a ∈ Θ and for all q ∈ Q, a ∈ Σ ⇒ a enA q. -.

Note that, as in previous definitions, also the property of enabling is defined
with respect to a separately specified arbitrary set of actions Θ. Similar to
those previous notions, whether or not an automaton is Θ-enabling is solely
determined by those elements of Θ that are actions of A. To be precise,
A is always ∅-enabling. Furthermore, A is Θ-enabling if and only if it is
Θ ∩Σ-enabling, where Σ is the set of actions of A.

Example 3.2.43. (Example 3.2.10 continued) It is easy to see that A is {a}-
enabling but not {b}-enabling. Hence A is neither {a, b}-enabling. However,
A is {d}-enabling, for all d /∈ Σ, and thus also {a, d}-enabling. -.

The deletion of states and/or transitions from an automaton does not affect
its enabling of given actions, provided relevant transitions are preserved.

Lemma 3.2.44. Let A1 = (Q1,Σ1, δ1, I1) and A2 = (Q2,Σ2, δ2, I2) be two
automata and let Θ1,Θ2 be two alphabets disjoint from Q1∪Q2. Let Q2 ⊆ Q1,
Θ2 ∩Σ2 ⊆ Θ1 ∩Σ1, and δ2 ⊇ δ1 ∩ (Q2 × (Θ2 ∩Σ2)×Q1). Then

if A1 is Θ1-enabling, then A2 is Θ2-enabling.

Proof. Let A1 be Θ1-enabling. Now let a ∈ Θ2 and let q ∈ Q2. If a ∈ Σ2,
then a ∈ Θ1 ∩ Σ1. Since q ∈ Q1, it then follows that there exists a q′ ∈ Q
such that (q, a, q′) ∈ δ1. Thus (q, a, q′) ∈ δ2 and we have a enA2 q. -.

Corollary 3.2.45. Let A = (Q,Σ, δ, I) be an automaton and let Θ1,Θ2 be
two alphabets disjoint from Q and such that (Θ2 ∩Σ) ⊆ Θ1. Then

if A is Θ1-enabling, then A is Θ2-enabling. -.

From the computational and the behavioral point of view, enabledness of
actions is especially relevant at the reachable states of an automaton. Recall
that for a given automaton A = (Q,Σ, δ, I) we denote by QS its set of
reachable states. We have defined AS = (QS ,Σ, δT , I) as the state-reduced
version of A, where δT = δ ∩ (QS × Σ × QS) = δ ∩ (QS × Σ × Q) consists
of the useful transitions of A. Thus, as another immediate consequence of
Lemma 3.2.44, we have that the state-reduced version of A is Θ-enabling
whenever A is.



52 3. Automata

Theorem 3.2.46. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then

if A is Θ-enabling, then AS is Θ-enabling. -.

The converse clearly does not hold, since actions which are enabled at reach-
able states of an automaton A are not necessarily enabled at every non-
reachable state of A. The fact that the state-reduced version of A may have
less states than A thus causes a lack of information concerning outgoing
transitions of non-reachable states.

The situation is different when A is reduced by removing only its non-
useful transitions with a label from an alphabet Θ1, but no states whatsoever,
as is done in order to obtain its Θ1-transition-reduced version AΘ1

T . In that
case the enabledness of actions in AΘ1

T can thus be used to decide their
enabledness in A. In fact, since AΘ1

T may have less transitions than A, but
it may never have less states than A, Lemma 3.2.44 immediately yields the
following result.

Lemma 3.2.47. Let A be an automaton and let Θ,Θ1 be two alphabets dis-
joint from its set of states. Then

if AΘ1
T is Θ-enabling, then A is Θ-enabling. -.

Furthermore, all transitions of AΘ1
T with a label from Θ1 are by definition

useful in AΘ1
T . Hence if there exists an a ∈ Σ ∩Θ1 which is enabled at every

state of AΘ1
T , then all states of AΘ1

T are reachable.

Lemma 3.2.48. Let A = (Q,Σ, δ, I) be an automaton and let Θ,Θ1 be two
alphabets disjoint from Q and such that Θ ∩Θ1 ∩Σ (= ∅. Then

if AΘ1
T is Θ-enabling, then Q = QA,S.

Proof. Let AΘ1
T = (Q,Σ, δΘ1

A,T , I) be Θ-enabling. Since QA,S ⊆ Q always
holds, we only have to prove the converse inclusion Q ⊆ QA,S. Let q ∈ Q.
Consider a ∈ Θ∩Θ1∩Σ. Then the assumption that AΘ1

T is Θ-enabling implies
there exists a q′ ∈ Q such that (q, a, q′) ∈ δΘ1

A,T . Since a ∈ Θ1, the definition

of δΘ1
A,T implies that (q, a, q′) ∈ δA,T . Consequently, q ∈ QA,S . -.

We have thus established that A is Θ-enabling whenever AΘ1
T is. Conversely,

AΘ1
T obviously is Θ-enabling whenever A is and no action from Θ is included

in both Θ1 and the set of actions of A. If the latter part of this condition
is not met, then the Θ-enabling of A nevertheless does imply that AΘ1

T is
Θ-enabling if A is Θ1-transition reduced.



3.2 Properties of Automata 53

Theorem 3.2.49. Let A = (Q,Σ, δ, I) be an automaton and let Θ,Θ1 be
two alphabets disjoint from Q. Then

AΘ1
T is Θ-enabling if and only if A is Θ-enabling and A = AS = AΘ1

T

whenever Θ ∩Θ1 ∩Σ (= ∅.

Proof. (Only if) By Lemma 3.2.47, A is Θ-enabling if AΘ1
T is Θ-enabling.

Assume that Θ ∩ Θ1 ∩ Σ (= ∅. Then from Lemma 3.2.48 we know that
the fact that AΘ1

T is Θ-enabling implies that Q = QA,S . Consequently, δ =
δ ∩ (QA,S × Σ × QA,S) and so δ = δA,T . Thus we have A = AS . Finally,
by definition δA,T ⊆ δΘ1

A,T ⊆ δ. Hence δA,T = δΘ1
A,T = δ, which implies that

A = AΘ1
T .

(If) If A is Θ-enabling and A = AΘ1
T , then it trivially follows that AΘ1

T is
Θ-enabling. Thus we assume that A is Θ-enabling and that Θ∩Θ1 ∩Σ = ∅.
Let AΘ1

T = (Q,Σ, δΘ1
A,T , I). By definition δΘ1

A,T ⊇ δ \ (Q×Θ1 ×Q) = δ \ (Q×

(Θ1∩Σ)×Q). Since Θ∩(Θ1∩Σ) = ∅, it follows that δΘ1
A,T ⊇ δ∩(Q×Θ×Q) =

δ∩(Q×(Θ∩Σ)×Q). Consequently, we can apply Lemma 3.2.44 and conclude
that AΘ1

T is Θ-enabling. -.

Corollary 3.2.50. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then

AΘ
T is Θ-enabling if and only if A is Θ-enabling and A = AΘ

T . -.

Let us now focus on the interplay between active actions and enabled ac-
tions. Recall that whenever an action is active, then there exists at least one
reachable state where it is enabled. Given an automaton we can thus delete
the non-active actions from its alphabet and the transitions these actions are
involved in from its transition relation, without effecting the enabling of this
automaton.

Lemma 3.2.51. Let A = (Q,Σ, δ, I) be an automaton and let Θ,Θ1 be two
alphabets disjoint from Q. Then

if A is Θ-enabling, then AΘ1
A is Θ-enabling.

Proof. Let A be Θ-enabling. By definition AΘ1
A = (Q,ΣΘ1

A,A, δ
Θ1
A,A, I), with

ΣΘ1
A,A ⊆ Σ and δΘ1

A,A = δ ∩ (Q × ΣΘ1
A,A × Q). Thus Θ ∩ ΣΘ1

A,A ⊆ Θ ∩ Σ.

Furthermore, δΘ1
A,A ⊇ δ ∩ (Q× (Θ ∩ΣΘ1

A,A)×Q). Consequently we can apply

Lemma 3.2.44 and conclude that AΘ1
A is Θ-enabling. -.



54 3. Automata

The converse in general does not hold, even though A contains all transitions
of AΘ1

A . The reason is that A may contain more actions than AΘ1
A does. Thus

whenever AΘ1
A is Θ-enabling also A will be Θ-enabling, provided Θ contains

no action of Θ1 that is a non-active action of A. Hence we require all actions
from Θ1 ∩Θ that appear also in the set of actions of A, to be active.

Lemma 3.2.52. Let A = (Q,Σ, δ, I) be an automaton and let Θ,Θ1 be two
alphabets disjoint from Q and such that Θ ∩Θ1 ∩Σ ⊆ ΣA,A. Then

if AΘ1
A is Θ-enabling, then A is Θ-enabling.

Proof. Let AΘ1
A = (Q,ΣΘ1

A,A, δ
Θ1
A,A, I) be Θ-enabling. By definition δΘ1

A,A ⊆ δ

and hence — once we have established that Θ ∩ Σ ⊆ Θ ∩ ΣΘ1
A,A — we can

apply Lemma 3.2.44 and conclude that A is Θ-enabling.
Assume that Θ ∩ Θ1 ∩ Σ ⊆ ΣA,A. Now let a ∈ Θ ∩ Σ and recall that

ΣΘ1
A,A = (Σ \Θ1) ∪ (ΣA,A ∩Θ1).

If a /∈ Θ1, then a ∈ (Σ \Θ1) ⊆ ΣΘ1
A,A.

If a ∈ Θ1, then a ∈ ΣA,A by our assumption and thus a ∈ ΣΘ1
A,A.

Hence in both cases a ∈ Θ ∩ΣΘ1
A,A and we are done. -.

From Lemma 3.2.2(3) we know that an action a ∈ Σ of an automaton A =
(Q,Σ, δ, I) is active if and only if there exists a useful transition (q, a, q′) ∈ δ.
This means that ΣA = ∅ whenever QS = ∅. If QS (= ∅, however, and A is
Θ-enabling, for some set of actions Θ, then every action in Θ ∩ Σ is active
in A. This is due to the fact that a nonempty set of reachable states implies
that all actions Θ ∩ Σ are enabled in every initial state of A, all of whose
outgoing transitions are by definition useful.

Lemma 3.2.53. Let A = (Q,Σ, δ, I) be an automaton such that QS (= ∅
and let Θ be an alphabet disjoint from Q. Then

if A is Θ-enabling, then Θ ∩Σ ⊆ ΣA and A = AΘ
A.

Proof. Let A be Θ-enabling and let a ∈ Θ ∩ Σ. Since I = ∅ implies that
QS = ∅, it must be the case that I (= ∅. Now let q ∈ I. Then there exists a
q′ ∈ Q such that (q, a, q′) ∈ δ. Since q ∈ I ⊆ QS is reachable in A this implies
that a is active in A, and thus a ∈ ΣA. Hence Θ ∩Σ ⊆ ΣA.

Now let AΘ
A = (Q,ΣΘ

A,A, δ
Θ
A,A, I). Then ΣΘ

A,A = (Σ \ Θ) ∪ (ΣA ∩ Θ) =
(Σ \Θ) ∪ (Σ ∩Θ) = Σ because Θ ∩Σ = Θ ∩ΣA by the above and ΣA ⊆ Σ.
By definition δΘA,A = δ∩ (Q×ΣΘ

A,A×Q). Hence δΘA,A = δ∩ (Q×Σ×Q) = δ.
Consequently, AΘ

A = A. -.

This lemma, together with Lemmata 3.2.51 and 3.2.52, directly implies the
following theorem.



3.2 Properties of Automata 55

Theorem 3.2.54. Let A = (Q,Σ, δ, I) be an automaton such that QS (= ∅
and let Θ,Θ1 be two alphabets disjoint from Q. Then

A is Θ-enabling if and only if AΘ1
A is Θ-enabling and Θ∩Θ1∩Σ ⊆ ΣA,A.

-.

Corollary 3.2.55. Let A be an automaton and let Θ be an alphabet disjoint
from its set of states. Then

A is Θ-enabling if and only if AΘ
A is Θ-enabling and A = AΘ

A. -.

In this subsection we have thus presented various conditions under which en-
abling is preserved from one (reduced) automaton to another. We have con-
sidered separately the state-reduced, action-reduced, and transition-reduced
versions of automata. We now conclude with a result that incorporates also
the reduced version of an automaton. It is obtained as a direct consequence
of combining Theorem 3.2.46 with Corollary 3.2.55.

Theorem 3.2.56. Let A = (Q,Σ, δ, I) be an automaton. Then

if A is Σ-enabling, then AS = AR. -.

3.2.3 Determinism

For an arbitrary automaton and a given action, it is in general not the case
that for each of its states there is at most one possible way to execute this
action. For certain types of systems (such as, e.g., transformational systems)
it may however be crucial that the outcome of the execution of one of its
actions is uniquely determined by the state the automaton is in. Thus when
such a system is modeled as an automaton, the transition relation should
contain at most one transition for each combination of such an action and a
state of the automaton.

In a deterministic automaton, there is no choice as to what state the
automaton ends up in after the execution of a sequence of actions. As was
the case for enabling, the definition of determinism of an automaton is based
on a local (state dependent) property of the transition relation.

Definition 3.2.57. Let A = (Q,Σ, δ, I) be an automaton and let Θ be an
alphabet disjoint from Q. Then

A is Θ-deterministic if I contains at most one element and for all a ∈ Θ
and for all q∈Q, {q′∈Q |(q, a, q′)∈δ} contains at most one element. -.



56 3. Automata

Note the duality between enabling and determinism: given that a is an action
of the automaton, then this automaton is {a}-enabling if each of its states
has at least one outgoing a-transition, while it is {a}-deterministic if each of
its states has at most one outgoing a-transition.

As in previous definitions, also the property of determinism is defined with
respect to a separately specified arbitrary set of actions Θ. Similar to those
previous notions, whether or not an automaton is Θ-deterministic is solely
determined by those elements of Θ that are actions of A. More precisely, if
we assume that A contains at most one initial state, then A is always ∅-
deterministic and — moreover — A is Θ-deterministic if and only if it is
Θ ∩Σ-deterministic, where Σ is the set of actions of A.

Example 3.2.58. (Example 3.2.10 continued) Let A′ be the automaton ob-
tained from automaton A of Example 3.2.10 — depicted in Figure 3.3(a) —
by replacing transition (q, a, q) with (q, b, q). Then A′ is {a}-deterministic but
not {b}-deterministic. Hence A′ is neither {a, b}-deterministic. However, A′

is {d}-deterministic, for all d /∈ Σ, and thus {a, d}-deterministic as well. -.

The deletion of states and/or transitions from an automaton does not affect
its determinism of given actions.

Lemma 3.2.59. Let A1 = (Q1,Σ1, δ1, I1) and A2 = (Q2,Σ2, δ2, I2) be two
automata and let Θ1,Θ2 be two alphabets disjoint from Q1∪Q2. Let Θ2∩Σ2 ⊆
Θ1, let δ2 ∩ (Q2 × Θ2 × Q2) ⊆ δ1, and let I2 contain at most one element.
Then

if A1 is Θ1-deterministic, then A2 is Θ2-deterministic.

Proof. Let A1 be Θ1-deterministic. Now let a ∈ Θ2 and let p ∈ Q2. Suppose
that there exist q, q′ ∈ Q2 such that both (p, a, q) ∈ δ2 and (p, a, q′) ∈ δ2.
This implies that a ∈ Θ2 ∩Σ2 and that both (p, a, q) ∈ δ1 and (p, a, q′) ∈ δ1.
Since Θ2 ∩Σ2 ⊆ Θ1 and A1 is Θ1-deterministic it follows that it must be the
case that q = q′. Together with the fact that I2 contains at most one element
this implies that A2 is Θ2-deterministic. -.

This lemma has several immediate consequences.

Corollary 3.2.60. Let A = (Q,Σ, δ, I) be an automaton and let Θ1,Θ2 be
two alphabets disjoint from Q and such that (Θ2 ∩Σ) ⊆ Θ1. Then

if A is Θ1-deterministic, then A is Θ2-deterministic. -.

Corollary 3.2.61. Let A1 = (Q1,Σ1, δ1, I1) and A2 = (Q2,Σ2, δ2, I2) be
two automata such that A2 / A1 and let Θ1,Θ2 be two alphabets disjoint
from Q1 ∪Q2 and such that (Θ2 ∩Σ2) ⊆ Θ1. Then



3.2 Properties of Automata 57

if A1 is Θ1-deterministic, then A2 is Θ2-deterministic. -.

Corollary 3.2.62. Let A = (Q,Σ, δ, I) and A′ = (Q,Σ′, δ, I) be two au-
tomata such that Σ ⊆ Σ′ and let Θ be an alphabet disjoint from Q. Then

if A is Θ-deterministic, then A′ is Θ-deterministic. -.

From the computational and the behavioral viewpoint also determinism is
most relevant at the reachable states of an automaton. We thus finish this
subsection with an overview of the influence that the determinism of one type
of reduced automaton has on the determinism of another type of reduced
automaton.

Theorem 3.2.63. Let A = (Q,Σ, δ, I) be an automaton and let Θ,Θ1 be
two alphabets disjoint from Q. Then

(1) if A is Θ-deterministic, then so is AΘ1
A ,

(2) if AΘ1
A is Θ-deterministic, then so is AΘ1

T , and

(3) if AΘ1
T is Θ-deterministic, then so is AS.

Proof. (1) This follows directly from Corollary 3.2.61 since AΘ1
A is a reduced

version of A and thus AΘ1
A / A.

(2) Let AΘ1
A = (Q,ΣΘ1

A,A, δ
Θ1
A,A, I) be Θ-deterministic. As by defini-

tion ΣΘ1
A,A ⊆ Σ, Corollary 3.2.62 implies that also the automaton A′ =

(Q,Σ, δΘ1
A,A, I) is Θ-deterministic. Now consider AΘ1

T = (Q,Σ, δΘ1
A,T , I). By

definition δΘ1
A,T ⊆ δΘ1

A,A and thus AΘ1
T / A′. Corollary 3.2.61 subsequently

implies that also AΘ1
T is Θ-deterministic.

(3) From Lemma 3.2.36(2) we know that AS = (AΘ1
T )S . Analogous to (1)

the result now follows from the fact that (AΘ1
T )S / AΘ1

T . -.

In certain cases Θ-determinism is thus preserved from one automaton to
another, for a set Θ of actions. The proof of this theorem however is heavily
based on the containment of one automaton in another. In case the reverse
of such a containment does not hold, often some characteristics crucial for
preserving Θ-determinism from one automaton to another, are lacking. When
formulating the reverses of the statements of this theorem, we thus settle for
a demonstration of the preservation of determinism from one automaton to
another for only a subset of Θ.

Theorem 3.2.64. Let A = (Q,Σ, δ, I) be an automaton and let Θ,Θ1 be
two alphabets disjoint from Q. Then



58 3. Automata

(1) if AS is Θ-deterministic, then AΘ1
T is (Θ ∩Θ1)-deterministic,

(2) if AΘ1
T is Θ-deterministic, then AΘ1

A is (Θ \Θ1)-deterministic, and

(3) if AΘ1
A is Θ-deterministic, then A is (Θ \ (Θ1 \ΣA,A))-deterministic.

Proof. (1) Let AS = (QA,S ,ΣA,A, δA,T , I) be Θ-deterministic. Now consider
AΘ1

T = (Q,Σ, δΘ1
A,T , I). Since (Θ∩Θ1)∩Σ ⊆ Θ and δΘ1

A,T ∩(Q×(Θ∩Θ1)×Q) ⊆

δA,T it follows from Lemma 3.2.59 that AΘ1
T is (Θ ∩Θ1)-deterministic.

(2) Let AΘ1
T = (Q,Σ, δΘ1

A,T , I) be Θ-deterministic. Now consider AΘ1
A =

(Q,ΣΘ1
A,A, δ

Θ1
A,A, I). Since (Θ\Θ1)∩Σ

Θ1
A,A ⊆ Θ and δΘ1

A,A∩(Q×(Θ\Θ1)×Q) ⊆

δ ∩ (Q × (Σ \ Θ1) × Q) ⊆ δΘ1
A,T it follows from Lemma 3.2.59 that AΘ1

A is
(Θ \Θ1)-deterministic.

(3) Let AΘ1
A = (Q,ΣΘ1

A,A, δ
Θ1
A,A, I) be Θ-deterministic. Clearly (Θ \ (Θ1 \

ΣA,A))∩Σ ⊆ Θ. Moreover, sinceΘ\(Θ1\ΣA,A)) = (Θ\Θ1)∪(Θ∩(ΣA,A∩Θ1))
it follows that δ ∩ (Q× (Θ \ (Θ1 \ΣA,A))×Q) ⊆ (δ ∩ (Q× (Σ \Θ1)×Q)) ∪
(δ ∩ (Q× (ΣA,A ∩Θ1)×Q)) = δΘ1

A,A. Hence by Lemma 3.2.59 it follows that
A is (Θ \ (Θ1 \ΣA,A))-deterministic. -.


