
Team automata : a formal approach to the modeling of collaboration
between system components
Beek, M.H. ter

Citation
Beek, M. H. ter. (2003, December 10). Team automata : a formal approach to the modeling of
collaboration between system components. Retrieved from https://hdl.handle.net/1887/29570
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/29570
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/29570


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/29570 holds various files of this Leiden University 
dissertation. 
 
Author: Beek, Maurice H. ter 
Title: Team automata : a formal approach to the modeling of collaboration between 
system components 
Issue Date: 2003-12-10 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/29570


2. Preliminaries

In this chapter we fix most basic notation and terminology used throughout
this thesis.

Sets

Set inclusion is denoted by ⊆, whereas proper inclusion is denoted by ⊂.
The set difference of sets V and W is denoted by V \ W . For a finite set
V , its cardinality is denoted by #V . The empty set is denoted by ∅. For
convenience, we sometimes denote the set {1, 2, . . . , n} by [n]. Then [0] = ∅.
We sometimes identify a singleton set {j} with its only element j.

Let N denote the set of positive integers. Let I ⊆ N be a set of in-
dices given by I = {i1, i2, . . .} with ij < i! if 1 ≤ j < " and let Vi

be a set, for each i ∈ I. Then
∏

i∈I Vi denotes the cartesian product
{(vi1 , vi2 , . . .) | vij ∈ Vij , for all j ≥ 1}. The elements of

∏
i∈I Vi are called

vectors. If I is finite and #I = n, then the vectors in
∏

i∈I Vi are said to
be n-dimensional. Throughout this thesis vectors may be written vertically
as well as horizontally. If vi ∈ Vi, for all i ∈ I, then

∏
i∈I vi denotes the

element (vi1 , vi2 , . . . ) of
∏

i∈I Vi. If I = ∅, then
∏

i∈I Vi = ∅. In addition to
the prefix notation

∏
i∈I Vi for a cartesian product, we sometimes also use

the infix notation Vi1 × Vi2 × · · · .
Let j ∈ I. Then projI,j :

∏
i∈I Vi → Vj is the projection function defined

by projI,j((ai1 , ai2 , . . . )) = aj . We thus observe that if I = {2, 3}, then
projI,2((a, b)) = a. Note moreover that whenever I = N, then projI,j is the
standard projection. Similarly, for J ⊆ I, projI,J :

∏
i∈I Vi →

∏
i∈J Vi is

the projection function defined by projI,J(a) =
∏

j∈J projI,j(a). Whenever
I is clear from the context we write projj and projJ rather than projI,j and
projI,J . Note that for each j ∈ I and a ∈

∏
i∈I Vi we have proj{j}(a) =∏

j∈{j} projj(a), which we do not identify with projj(a). Formally, we have
projj(proj{j}(a)) = projj(a).

The set {Vi | i ∈ I} is said to form a partition (of
⋃

i∈I Vi) if the Vi are
pairwise disjoint, nonempty sets.



24 2. Preliminaries

Functions

All functions considered are total, unless explicitly stated otherwise.
Let f : A → A′ and let g : B → B′ be functions. Then f × g : A × B →

A′×B′ is defined as (f ×g)(a, b) = (f(a), g(b)). We will use f [2] as shorthand
notation for f × f . Thus f [2](a, b) = (f(a), f(b)). This notation should not
be confused with iterated function application. In particular, we will use
projI,j

[2] as shorthand notation for projI,j × projI,j and likewise projI,J
[2]

for projI,J×projI,J . We write projj
[2] and projJ

[2] rather than projI,j
[2] and

projI,J
[2] whenever I is clear from the context. If C ⊆ A, then f(C) = {f(a) |

a ∈ C}. Thus if D ⊆ A×A, then f [2](D) = {(f(d1), f(d2)) | (d1, d2) ∈ D}.
The function f is injective if f(a1) (= f(a2) whenever a1 (= a2, f is

surjective if for every a′ ∈ A′ there exists an a ∈ A such that f(a) = a′, and
f is a bijection if f is injective and surjective. The restriction of the function
f to a subset C of its domain A is denoted by f ! C and is defined as the
function C → A′ defined by (f ! C)(c) = f(c), for all c ∈ C.

Alphabets, Words, Languages

An alphabet is a set of letters — symbols — which may be used, e.g., to
represent actions of systems. We do not impose any a priori constraints on
the size of an alphabet. Alphabets may thus be empty and they may be
infinite. For the remainder of this chapter we let Σ be an arbitrary but fixed
alphabet.

A word (over Σ) is a sequence of symbols (from Σ). A word may be a
finite or infinite sequence of symbols, resulting in finite and infinite words,
respectively. An infinite word is also referred to as an ω-word. The empty
sequence is called the empty word and denoted by λ. As usual we represent
nonempty words a1, a2, . . . over Σ as strings a1a2 · · · . For a finite word w, we
use the notation |w| to denote its length. Thus |λ| = 0 and if w = a1a2 · · · an,
with n ≥ 1 and ai ∈ Σ, for all 1 ≤ i ≤ n, then |w| = n.

Words may also be considered as functions which assign symbols to po-
sitions. Thus a finite word w = a1a2 · · · an, with n ≥ 1 and ai ∈ Σ for all
1 ≤ i ≤ n, is identified with the function w : [n] → Σ defined by w(i) = ai,
for all 1 ≤ i ≤ n. Similarly, an infinite word w = a1a2 · · · , with ai ∈ Σ for
all i ≥ 1, defines the function w : N → Σ by w(i) = ai, for all i ≥ 1. To the
empty word λ we associate the function λ : [0] → Σ, which has an empty
domain.

For a finite word w over Σ and a symbol a ∈ Σ, we use #a(w) to denote
the number of occurrences of a in w. Thus #a(w) = #{i ∈ [|w|] | w(i) = a}.
Note that #a(λ) = 0, for all a. For a (finite or infinite) word w, its alphabet,



2. Preliminaries 25

denoted by alph(w), consists of all symbols that actually occur in w. Thus
alph(w) = {a ∈ Σ | ∃i ∈ N : w(i) = a}. Note that alph(λ) = ∅ and that
alph(w) may be an infinite set if Σ is infinite and w is an infinite word.

The set of all finite words over Σ (including λ) is denoted by Σ∗. The set
Σ+ = Σ∗\{λ} consists of all nonempty finite words. By convention Σ ⊆ Σ+.
The set of all infinite words over Σ is denoted by Σω. By Σ∞ we denote the
set of all words over Σ. Thus Σ∞ = Σ∗∪Σω. A language (over Σ) is a set of
words (over Σ). A language consisting solely of finite words is called finitary.
If L ⊆ Σω, i.e. all words of L are infinite, then L is called an infinitary
language or ω-language. As usual we refer to a collection (set) of languages
as a family of languages.

Concatenation

Using the operation of concatenation, two words (over Σ) are combined into
one word (over Σ) by gluing them together.

Formally, given u, v ∈ Σ∞, their concatenation u·v is defined as follows. If
u, v ∈ Σ∗, then u · v(i) = u(i) for i ∈ [|u|] and u · v(|u|+ i) = v(i) for i ∈ [|v|].
Note that |u · v| = |u| + |v|. If u ∈ Σ∗ and v ∈ Σω, then u · v(i) = u(i)
for i ∈ [|u|] and u · v(|u| + i) = v(i) for i ≥ 1. If u ∈ Σω and v ∈ Σ∞,
then u · v(i) = u(i) for all i ≥ 1. In the last two cases u · v ∈ Σω. Note
that u · λ = λ · u = u, for all u ∈ Σ∞. Since concatenation is associative
this implies that Σ∞ with concatenation and unit element λ is a monoid.
Moreover, since concatenation of two finite words yields a finite word, also
Σ∗ with concatenation restricted to Σ∗ is a monoid with unit element λ.

The concatenation of two languages K and L (over Σ) is the language
K ·L (over Σ) defined by K ·L = {u · v | u ∈ K, v ∈ L}. Observe that K ·L
is finitary if and only if both K and L are finitary. Moreover, K · L = K if
L = {λ} or K is infinitary. In the sequel, we will mostly write uv and KL
rather than u · v and K · L, respectively.

For u ∈ Σ∞ we set u0 = λ and un+1 = un · u, for all n ≥ 0. Note that
if u ∈ Σω, then un = u, for all n ≥ 1. Similarly, for a language K ⊆ Σ∞ we
have K0 = {λ} and Kn+1 = Kn ·K, for all n ≥ 0.

Prefixes

A word u ∈ Σ∗ is said to be a (finite) prefix of a word w ∈ Σ∞ if there
exists a v ∈ Σ∞ such that w = uv. In that case we write u ≤ w. If u ≤ w
and u (= w, then we may use the notation u < w. Moreover, if |u| = n, for
some n ≥ 0, then u is said to be the prefix of length n of w, denoted by
w[n]. Note that w[0] = λ. The set of all prefixes of a word w is denoted by



26 2. Preliminaries

pref (w) and it is defined as pref (w) = {u ∈ Σ∗ | u ≤ w}. Note that pref (w)
is finite if and only if w ∈ Σ∗. Note also that, for a word x ∈ Σ∞, whenever
pref (w) = pref (x), then w = x.

For a language K, pref (K) =
⋃
{pref (w) | w ∈ K}. Thus K ⊆ pref (K)

whenever K is a finitary language. A language K is prefix closed if and only
if K ⊇ pref (K). A family of languages L is prefix closed if pref (K) ∈ L for
all K ∈ L.

Limits

Both finite and infinite words can be defined as limits of their prefixes. Let
v1, v2, · · · ∈ Σ∗ be an infinite sequence of words such that vi ≤ vi+1, for all
i ≥ 1. Then lim

n→∞
vn is the unique word w ∈ Σ∞ defined by w(i) = vj(i),

for all i, j ∈ N such that i ≤ |vj |. Thus vi ≤ w for all i ≥ 1 and w = vk
whenever there exists a k ≥ 1 such that vn = vn+1 for all n ≥ k. For a word
u ∈ Σ∞ we define uω = lim

n→∞
un if u ∈ Σ∗ and uω = u if u ∈ Σω. Note

that λω = λ. For an infinite sequence u1, u2, . . . ∈ Σ∞ we define the word
u1 · u2 · · · · ∈ Σ∞ by u1 · u2 · · · · = lim

n→∞
u1 · u2 · · · · · un if ui ∈ Σ∗, for all

i ≥ 1, and u1 · u2 · · · · = u1 · u2 · · · · · un−1 · un if un ∈ Σω, for some n ≥ 1.
These notations are carried over to languages in the natural way: for

K,K1,K2, . . . ⊆ Σ∞, we set Kω = {u1u2 · · · | ui ∈ K, for all i ≥ 1} and
K1 · K2 · · · · = {u1u2 · · · | ui ∈ Ki, for all i ≥ 1}. Observe that Σω =
{a1a2 · · · | ai ∈ Σ, for all i ≥ 1} is indeed the set consisting of all infinite
words over Σ.

Homomorphisms

Let h : Σ → Γ ∗ be a function assigning to each letter of Σ a finite word
over the alphabet Γ . The homomorphic extension of h to Σ∗, also denoted
by h, is defined in the usual way by h(λ) = λ and h(xy) = h(x)h(y) for
all x, y ∈ Σ∗. This homomorphism is further extended to Σ∞ by setting
h( lim

n→∞
vn) = lim

n→∞
h(vn), for all v1, v2, . . . ∈ Σ∗ such that for all i ≥ 1, vi ≤

vi+1. Note that this is well defined, since vi ≤ vi+1 implies h(vi) ≤ h(vi+1).
Note however that if h is erasing, i.e. h(a) = λ for some a ∈ Σ, then there
exists a word x ∈ Σω such that h(x) ∈ Σ∗. For such x we have h(xy) = h(x),
for all y ∈ Σ∞, and consequently h(xy) = h(x)h(y) is no longer guaranteed.
In fact, h(xy) = h(x)h(y), for all x, y ∈ Σ∞, if and only if either h is not
erasing or h(a) = λ, for all a ∈ Σ. Thus h : Σ → Γ ∗ cannot always be lifted
to a homomorphism on Σ∞. Still we sometimes abuse terminology and refer
to the extension h : Σ∞ → Γ∞ of h as a homomorphism. If h(Σ) ⊆ Γ , then



2. Preliminaries 27

we refer to h as a coding, and if h(Σ) ⊆ Γ ∪ {λ}, then h is called a weak
coding.

The function presΣ,Γ : Σ → Γ ∗, defined by presΣ,Γ (a) = a if a ∈ Γ and
presΣ,Γ (a) = λ otherwise, preserves the symbols from Γ and erases all other
symbols. Whenever Σ is clear from the context, we simply write presΓ rather
than presΣ,Γ . Note that presΣ,Γ is a weak coding.




