Universiteit

4 Leiden
The Netherlands

Team automata : a formal approach to the modeling of collaboration

between system components
Beek, M.H. ter

Citation
Beek, M. H. ter. (2003, December 10). Team automata : a formal approach to the modeling of
collaboration between system components. Retrieved from https://hdl.handle.net/1887/29570

Version: Corrected Publisher’s Version
License: Licence agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/29570

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/29570

Cover Page

The handle http://hdl.handle.net/1887/29570 holds various files of this Leiden University
dissertation.

Author: Beek, Maurice H. ter

Title: Team automata : a formal approach to the modeling of collaboration between
system components

Issue Date: 2003-12-10

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/29570

2. Preliminaries

In this chapter we fix most basic notation and terminology used throughout
this thesis.

Sets

Set inclusion is denoted by C, whereas proper inclusion is denoted by C.
The set difference of sets V and W is denoted by V \ W. For a finite set
V', its cardinality is denoted by #V. The empty set is denoted by &. For
convenience, we sometimes denote the set {1,2,...,n} by [n]. Then [0] = @.
We sometimes identify a singleton set {j} with its only element j.

Let N denote the set of positive integers. Let Z C N be a set of in-
dices given by Z = {i1,i2,...} with i; < i, if 1 < j < ¢ and let V;
be a set, for each i € Z. Then [[,.; Vi denotes the cartesian product
{(viy,viy,...) | vi; € Vi, for all j > 1}. The elements of [[,., V; are called
vectors. If 7 is finite and #Z = n, then the vectors in [[,.; Vi are said to
be n-dimensional. Throughout this thesis vectors may be written vertically
as well as horizontally. If v; € V;, for all ¢ € Z, then HieI v; denotes the
element (vj,,vi,,...) of [[,c7 Vi. f T = @, then [[,.; Vi = . In addition to
the prefix notation [];., Vi for a cartesian product, we sometimes also use
the infix notation V;; x Vi, x ---.

Let j € Z. Then projz ; [I,cz Vi = Vj is the projection function defined
by projz ;((ai,,ai,,...)) = a;. We thus observe that if Z = {2,3}, then
projz »((a,b)) = a. Note moreover that whenever Z = N, then projz ; is the
standard projection. Similarly, for J C Z, projz ; : [[,ez Vi — [l;e; Vi is
the projection function defined by projz ;(a) = [[,c; projz ;(a). Whenever
T is clear from the context we write proj; and proj; rather than proj; ; and
projz ;. Note that for each j € Z and a € [[;c; Vi we have proj;,(a) =
Hje{j} proj;(a), which we do not identify with proj;(a). Formally, we have
proj; (proj{j} (a)) = proj;(a).

The set {V; | i € T} is said to form a partition (of ;o7 Vi) if the V; are
pairwise disjoint, nonempty sets.

24 2. Preliminaries

Functions

All functions considered are total, unless explicitly stated otherwise.

Let f: A— A’ and let g : B — B’ be functions. Then f x g: A X B —
A’ x B’ is defined as (f x g)(a,b) = (f(a), g(b)). We will use f1?! as shorthand
notation for f x f. Thus fP?l(a,b) = (f(a), f(b)). This notation should not
be confused with iterated function application. In particular, we will use
projz ; (2] (2]
for projz_; x projz ;. We write proj,;'” and pronm rather than projzﬁjm and
projI”][Q] whenever 7 is clear from the context. If C C A, then f(C) = {f(a) |
a€C}. Thusif D C A x A, then fPI(D) = {(f(d1), f(d2)) | (d1,d2) € D}.

The function f is injective if f(a1) # f(a2) whenever ay # az, f is
surjective if for every a’ € A’ there exists an a € A such that f(a) = o/, and
f is a bijection if f is injective and surjective. The restriction of the function
f to a subset C of its domain A is denoted by f [C and is defined as the
function C' — A’ defined by (f | C)(c) = f(c), for all c € C.

as shorthand notation for projz ; x projz ; and likewise projz ;
(2]

Alphabets, Words, Languages

An alphabet is a set of letters — symbols — which may be used, e.g., to
represent actions of systems. We do not impose any a priori constraints on
the size of an alphabet. Alphabets may thus be empty and they may be
infinite. For the remainder of this chapter we let X' be an arbitrary but fixed
alphabet.

A word (over X)) is a sequence of symbols (from X). A word may be a
finite or infinite sequence of symbols, resulting in finite and infinite words,
respectively. An infinite word is also referred to as an w-word. The empty
sequence is called the empty word and denoted by A. As usual we represent
nonempty words a, as, ... over X as strings ajas - - - . For a finite word w, we
use the notation |w| to denote its length. Thus [A| = 0 and if w = ajaz2 - - - ay,
with n > 1 and a; € X, for all 1 <i <mn, then |w| = n.

Words may also be considered as functions which assign symbols to po-
sitions. Thus a finite word w = ajas---a,, with n > 1 and a; € X for all
1 < < n, is identified with the function w : [n] — X defined by w(i) = a;,
for all 1 < 4 < n. Similarly, an infinite word w = aqas - -, with a; € X for
all i > 1, defines the function w : N — X by w(i) = a;, for all ¢ > 1. To the
empty word A we associate the function A : [0] — X', which has an empty
domain.

For a finite word w over X and a symbol a € X, we use #,(w) to denote
the number of occurrences of a in w. Thus #,(w) = #{i € [Jw]|] | w(i) = a}.
Note that #,(A\) = 0, for all a. For a (finite or infinite) word w, its alphabet,

2. Preliminaries 25

denoted by alph(w), consists of all symbols that actually occur in w. Thus
alph(w) = {a € ¥ | 3i € N: w(i) = a}. Note that alph(\) = @ and that
alph(w) may be an infinite set if X' is infinite and w is an infinite word.

The set of all finite words over X' (including M) is denoted by X*. The set
X+ = 2*\{\} consists of all nonempty finite words. By convention X C 2.
The set of all infinite words over X' is denoted by Y. By XY*° we denote the
set of all words over X. Thus X*° = X*UX“. A language (over X)) is a set of
words (over X). A language consisting solely of finite words is called finitary.
If L C X%, ie. all words of L are infinite, then L is called an infinitary
language or w-language. As usual we refer to a collection (set) of languages
as a family of languages.

Concatenation

Using the operation of concatenation, two words (over X') are combined into
one word (over X) by gluing them together.

Formally, given u,v € X*° their concatenation u-v is defined as follows. If
u,v € X*, then w-v(i) = u(i) for i € [|u]] and w-v(Ju| + 1) = v(3) for i € [|v]].
Note that |u-v| = |u| + |v|. If w € X* and v € X¥, then u - v(i) = u(i)
for i € [lu|]] and w - v(Ju| +4) = v(i) for i > 1. If w € X¥ and v € X,
then u - v(7) = w(i) for all + > 1. In the last two cases u - v € X“. Note
that u- A = A -u = u, for all u € XY*°. Since concatenation is associative
this implies that 2> with concatenation and unit element A is a monoid.
Moreover, since concatenation of two finite words yields a finite word, also
27" with concatenation restricted to X* is a monoid with unit element .

The concatenation of two languages K and L (over X) is the language
K - L (over X)) defined by K- L={u-v|u€ K, veL}. Observe that K - L
is finitary if and only if both K and L are finitary. Moreover, K - L = K if
L = {A\} or K is infinitary. In the sequel, we will mostly write uv and KL
rather than u - v and K - L, respectively.

For u € X we set ©® = X and v"T! = u™ - u, for all n > 0. Note that
if u e X% then u™ = u, for all n > 1. Similarly, for a language K C X*° we
have K° = {\} and K"*! = K" . K, for all n > 0.

Prefixes

A word u € X¥* is said to be a (finite) prefix of a word w € X if there
exists a v € X*° such that w = wv. In that case we write u < w. If u < w
and u # w, then we may use the notation u < w. Moreover, if |u| = n, for
some n > 0, then u is said to be the prefix of length n of w, denoted by
w([n]. Note that w[0] = A. The set of all prefixes of a word w is denoted by

26 2. Preliminaries

pref (w) and it is defined as pref (w) = {u € X* | u < w}. Note that pref (w)
is finite if and only if w € X*. Note also that, for a word z € X°°, whenever
pref (w) = pref (z), then w = z.

For a language K, pref (K) = [J{pref (w) | w € K}. Thus K C pref (K)
whenever K is a finitary language. A language K is prefix closed if and only
if K D pref(K). A family of languages L is prefix closed if pref (K) € L for
all K € L.

Limits

Both finite and infinite words can be defined as limits of their prefixes. Let
V1, V2, -+ € X* be an infinite sequence of words such that v; < v;41, for all
i > 1. Then ILm vy, is the unique word w € X°° defined by w(i) = v;(4),
for all 4,5 € KI soljch that ¢ < |v;|. Thus v; < w for all 4 > 1 and w = vy
whenever there exists a k > 1 such that v, = v,41 for all n > k. For a word

u € XY we define v = limu™ if u € XJ* and v* = v if u € X*“. Note
n— o0

that A¥ = A. For an infinite sequence uy,us,... € X°° we define the word
Uy - Uz - - € X byuycug - - = lim ug -ug - - - uy, if ug € X%, for all
i>1,and uy -ug - - =up-uUg - - n;:ilun if u,, € X¢, for some n > 1.

These notations are carried over to languages in the natural way: for
K, Ki,Ks,... C X, we set K¥ = {ujus--- | u; € K, foralli > 1} and
Ky Ky - = {uuz--- | u; € K;, foralli > 1}. Observe that X =
{ar1az--- | a; € X, for all i > 1} is indeed the set consisting of all infinite
words over .

Homomorphisms

Let h : ¥ — I'* be a function assigning to each letter of X' a finite word
over the alphabet I'. The homomorphic extension of h to X*, also denoted
by h, is defined in the usual way by h(\) = X and h(zy) = h(x)h(y) for
all z,y € X*. This homomorphism is further extended to X* by setting
h(nlin;ovn) = nangoh(vn), for all vy,v9,... € X* such that for all i > 1, v; <
v;1+1. Note that this is well defined, since v; < v; 41 implies h(v;) < h(vit1).
Note however that if h is erasing, i.e. h(a) = A for some a € X, then there
exists a word x € X such that h(z) € X*. For such « we have h(zy) = h(x),
for all y € X°°, and consequently h(zy) = h(z)h(y) is no longer guaranteed.
In fact, h(xzy) = h(z)h(y), for all z,y € X°°, if and only if either h is not
erasing or h(a) = A, for all a € X¥. Thus h : ¥ — I'* cannot always be lifted
to a homomorphism on X*°. Still we sometimes abuse terminology and refer
to the extension h : X*° — I'*® of h as a homomorphism. If h(X) C I', then

2. Preliminaries 27

we refer to h as a coding, and if h(X) C I' U {\}, then h is called a weak
coding.

The function presy, p : X' — I'*, defined by presy, (a) = a if a € I' and
presy r(a) = A otherwise, preserves the symbols from I" and erases all other
symbols. Whenever X is clear from the context, we simply write pres; rather
than presy, . Note that presy, p is a weak coding.

